Comprehensive Physiology Wiley Online Library

Central Nervous System Regulation of Brown Adipose Tissue

Full Article on Wiley Online Library



Abstract

Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command‐driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold‐defensive and behavioral state‐related BAT activation is strongly influenced by signals reflecting the short‐ and long‐term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior. © 2014 American Physiological Society. Compr Physiol 4:1677‐1713, 2014.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Model for the neuroanatomical and neurotransmitter/hormonal organization of the core thermoregulatory network and other CNS sites controlling and modulating brown adipose tissue (BAT) thermogenesis. Cool and warm cutaneous thermal sensory receptors transmit signals to respective primary sensory neurons in the dorsal root ganglia which relay this thermal information to second‐order thermal sensory neurons in the dorsal horn (DH). Cool sensory DH neurons glutamatergically activate third‐order sensory neurons in the external lateral subnucleus of the lateral parabrachial nucleus (LPBel), while warm sensory DH neurons project to third‐order sensory neurons in the dorsal subnucleus of the lateral parabrachial nucleus (LPBd). Thermosensory signals for thermoregulatory responses are transmitted from the LPB to the preoptic area (POA) where GABAergic interneurons in the median preoptic (MnPO) subnucleus are activated by glutamatergic inputs from cool‐activated neurons in LPBel and inhibit a BAT‐regulating population of warm‐sensitive (W‐S) neurons in the medial preoptic area (MPA). In contrast, glutamatergic interneurons in the MnPO, postulated to be excited by glutamatergic inputs from warm‐activated neurons in LPBd, excite W‐S neurons in MPA. Prostaglandin (PG) E2 binds to EP3 receptors to inhibit the activity of W‐S neurons in the POA. Preoptic W‐S neurons providing thermoregulatory control of BAT thermogenesis inhibit BAT sympathoexcitatory neurons in the dorsomedial hypothalamus and dorsal hypothalamic area (DMH/DA) which, when disinhibited during skin cooling, excite BAT sympathetic premotor neurons in the rostral ventromedial medulla, including the rostral raphe pallidus (rRPa) and parapyramidal area (PaPy), that project to BAT sympathetic preganglionic neurons (SPN) in the spinal intermediolateral nucleus (IML). Some BAT premotor neurons can release glutamate (GLU) to excite BAT sympathetic preganglionic neurons and increase BAT sympathetic nerve activity, while others can release serotonin (5‐HT) to interact with 5‐HT1A receptors, potentially on inhibitory interneurons in the IML, to increase the BAT sympathetic outflow. Modulatory regions represent areas of the CNS that are not within the core thermoregulatory pathway, but from which chemical manipulation of the activity of local neurons produced effects (see text) on BAT activity. Dotted lines to question marks indicate that the pathway mediating the effect on BAT activity is unknown. Neurochemicals/hormones in yellow boxes activated and those in blue boxes reduced BAT activity. Neurons in the anterior piriform cortex (APC) sense the absence of indispensible amino acids (IAA) from the diet and stimulate an elevated level of BAT activity. Orexinergic neurons in the perifornical lateral hypothalamus (PeF‐LH) project to the rRPa to increase the excitability of BAT sympathetic premotor neurons. Histaminergic neurons in the tuberomammillary nucleus (TMN) project to the POA to increase BAT activity by influencing the discharge of neurons in the core thermoregulatory pathway. Activation of neurons in the ventrolateral medulla (VLM) produces an inhibition of BAT thermogenesis, at least in part by noradrenergic (NE) activation of α2 receptors on rRPa neurons. Neurons in the nucleus of the solitary tract (NTS) mediate the effects of afferents in the vagus and carotid sinus (CSN) and aortic depressor nerves. 2‐DG, 2‐deoxyglucose; 5‐HT, 5‐hydroxytryptamine; 5‐TG, 5‐thioglucose; αMSH, alpha melanocyte‐stimulating hormone; AngII, angiotensin II; BDNF, brain‐derived neurotrophic factor; CRF, corticotrophin releasing factor; NPY, neuropeptide Y; PGE2, prostaglandin E2; T3, triiodothyronine; TIP39, tuberoinfundibular peptide of 39 residues; TRH, thyrotropin‐releasing hormone; VGLUT3, vesicular glutamate transporter 3. Copyright 2014 by Oregon Health and Science University.
Figure 2. Figure 2. Lateral parabrachial neurons mediate cutaneous thermoreceptor afferent signaling regulating BAT thermogenesis. [(A) and (B) Bilateral nanoinjections into the lateral parabrachial nucleus (LPB) of the glutamate receptor antagonists, (2R)‐amino‐5‐phosphonovaleric acid (AP5), and 6‐cyano‐7‐nitroquinoxaline‐2,3‐dionesaline (CNQX), but not the saline (SAL) vehicle, reverse the skin cooling‐evoked increases in brown adipose tissue (BAT) sympathetic nerve activity (SNA), BAT temperature (Tbat), expired CO2, and heart rate (HR).TSKIN, skin temperature. Modified, with permission, from (243). [(C) and (D)] Injection into the median preoptic area (MnPO) of the retrograde tracer, cholera toxin B (orange injectate top panels), labels neurons in the dorsal subnucleus of the LPB (LPBd, middle panel in C), or in the external lateral subnucleus of the LPB (LPBel, middle panel in D) that also express c‐fos immunoreactivity (arrows in lower panels) following exposure to a warm ambient temperature (C) or a cool ambient temperature (D). Modified, with permission, from (243,244). (E) The discharge of a neuron (Unit) in LPBd is increased during episodes of skin warming that inhibit BAT SNA. Filled circles in inset indicate recording sites of warming‐activated units in LPBd. Modified, with permission, from (244). (F) The discharge of a neuron in LPBel is increased during episodes of skin cooling that activate BAT SNA. Filled circles in inset indicate recording sites of cooling‐activated units in LPBel. Modified, with permission, from (243).
Figure 3. Figure 3. POA microcircuitry integrates cutaneous and central thermal sensation and mediates febrile activations of BAT thermogenesis. (A) Action potentials (left panel) of a GABAergic (lower middle panel), warm‐sensitive neuron recorded in a brain slice (upper middle panel) through the preoptic area of a GAD65‐GFP mouse. Bath application of the histamine 3 receptor (H3R) agonist, R‐α‐methylhistamine, reduced the firing rate and eliminated the temperature sensitivity (right panel) of such GABAergic neurons in POA. Modified from (189). (B) The median preoptic area (MnPO) contains neurons (yellow) that express the leptin receptor (LepRb) (green) and are synaptically connected to BAT, as indicated by their transsynaptic retrograde infection (red) following pseudorabies virus (PRV) inoculations of BAT in LepRbEGFP mice. POA microcircuitry integrates cutaneous and central thermal sensation and mediates febrile activations of BAT thermogenesis. (A) Action potentials (left panel) of a GABAergic (lower middle panel), warm‐sensitive neuron recorded in a brain slice (upper middle panel) through the preoptic area of a GAD65‐GFP mouse. Bath application of the histamine 3 receptor (H3R) agonist, R‐α‐methylhistamine, reduced the firing rate and eliminated the temperature sensitivity (right panel) of such GABAergic neurons in POA. Modified from (189). (B) The median preoptic area (MnPO) contains neurons (yellow) that express the leptin receptor (LepRb) (green) and are synaptically connected to BAT, as indicated by their transsynaptic retrograde infection (red) following pseudorabies virus (PRV) inoculations of BAT in LepRbEGFP mice. Modified, with permission, from (418). Ca: blockade of GABAA receptors with bicuculline (BIC) nanoinjections in the medial preoptic area (MPA) reverses the skin cooling‐evoked increases in brown adipose tissue (BAT) sympathetic nerve activity (SNA), BAT temperature (Tbat), expired CO2 (Exp CO2), and heart rate (HR). TSKIN, skin temperature; SAL, saline vehicle, modified, with permission, from (241). Cb: nanoinjection into the MnPO of the glutamate receptor antagonists, (2R)‐amino‐5‐phosphonovaleric acid (AP5) and 6‐cyano‐7‐nitroquinoxaline‐2,3‐dionesaline (CNQX), but not the saline (SAL) vehicle, reversed the increases in BAT SNA, Tbat, Exp CO2, and HR evoked by activation of neurons in the lateral parabrachial nucleus (LPB) with nanoinjection of the glutamate receptor agonist, N‐methyl‐D‐aspartate (NMDA). Modified, with permission, from (243). Cc: bilateral nanoinjections of BIC, but not the SAL vehicle, into the MPA reversed the increases in BAT SNA, Tbat, Exp CO2, and HR evoked by disinhibition of neurons in the MnPO with a nanoinjection of BIC. Modified from (242). Cd: schematic drawings and histological section indicating representative nanoinjection sites in MnPO (left panel) and in MPA (middle and right panels). Modified, with permission, from (242). Da: immunohistochemical localization of the EP3 receptor in the rat MnPO and MPA (left panel). Modified, with permission, from (237). Selective genetic deletion of the EP3 receptor in the MnPO of Ptger 3ΔCNS/NesCre mice prevents the rise in body temperature observed in wild‐type mice following icv PGE2 (right panel). Modified, with permission, from (172). Db: prostaglandin (PG)E2 reduced the firing rate of a POA warm‐responsive neuron recorded in a rat brain slice, whose discharge frequency was increased during increases in bath temperature. Modified, with permission, from (286). Dc: nanoinjection of PGE2 into the MPA dramatically increased BAT SNA, Tbat, Tcore, Exp CO2, and HR and these fever‐mimicking thermogenic responses were completely reversed by inhibition of neuronal activity in the DMH with bilateral injections of muscimol (MUSC). Modified, with permission, from (246).
Figure 4. Figure 4. Neurons in the dorsomedial hypothalamus (DMH) and dorsal hypothalamic area (DA) mediate BAT sympathoexcitation. (A) Histological sections and drawings through the DMH/DA (upper panels) indicating (a) CTb retrogradely labeled neurons in the DMH/DA following iontophoretic CTb deposit (lower panel) in the rostral raphe pallidus (rRPa), modified, with permission, from (322); [(b) and (c)] the locations of CTb retrogradely labeled neurons (green circles) following nanoinjections of CTb (lower panel) in the rostral raphe pallidus (rRPa, b) or in the parapyramidal area (PaPy, c); red circles depict orexin immunoreactive neurons; filled black circles represent double‐labeled, orexinergic neurons that project to the rRPa; modified, with permission, from (386); and (D) the DMH/DA contains neurons (yellow) that both express the leptin receptor (LepRb) (green) and are synaptically connected to BAT, as indicated by their transsynaptic retrograde infection (red) following pseudorabies virus (PRV) injections into BAT in LepRbEGFP mice, modified, with permission, from (418). mt, mamillothalamic tract; f, fornix; py, pyramidal tract; B: the increases in BAT sympathetic nerve activity (SNA), BAT temperature (Tbat), expired CO2 (ExpCO2) and heart rate (HR) elicited by skin cooling are unaffected (Ba) by nanoinjections of saline vehicle (SAL) into the DMH/DA (Bc, right panel), but are reversed (Bb) by inhibition of local DMH/DA neurons with nanoinjections of muscimol (MUSC) into the DMH/DA (Bc). Modified, with permission, from (241). (C) Disinhibition of neurons in the DMH/DA (white arrowhead in inset histological section through the rat DMH/DA) by nanoinjection of the GABAA antagonist, bicuculline (BIC), resulted in an increase in BAT SNA, Tbat, and Exp CO2. Modified, with permission, from (226). D: nanoinjection of prostaglandin E2 (PGE2) into the medial preoptic area (MPA) increased BAT SNA, Tbat, Exp CO2, and heart rate (HR). Subsequent bilateral nanoinjections of the glutamate receptor antagonist, kynurenate (KYN), into the DMH completely reversed these PGE2‐evoked responses. Modified, with permission, from (193).
Figure 5. Figure 5. Rostral raphe pallidus (rRPa) contains BAT sympathetic premotor neurons whose activity determines the level of BAT thermogenesis. (A) Histological section through the rostral medulla at the level of the facial nucleus and the rostral raphe pallidus (rRPa) illustrating the transsynaptic, pseudorabies virus (PRV) labeling of BAT sympathetic premotor neurons (red) following PRV inoculations in interscapular BAT, and serotonergic neurons (green) immunohistochemically labeled for tryptophan hydroxylase, and rRPa‐BAT neurons that contain both markers (yellow). py, pyramidal tract. Modified, with permission, from (44). (B) Nanoinjection of bicuculline (BIC) in rRPa disinhibits BAT sympathetic premotor neurons and elicits a dramatic increase in BAT sympathetic nerve activity (SNA), BAT temperature (Tbat), and metabolic oxygen consumption, indirectly indicated by the elevation in expired CO2 (EXP CO2). Subsequent activation of the inhibitory 5‐HT1A receptors in rRPa with a local injection of 8OH‐DPAT completely reverses the activation of BAT SNA, likely by inhibiting BAT sympathetic premotor neurons. (C) Inhibition of local neurons in the rRPa with a nanoinjection of glycine produces a rapid and complete reversal of the skin cooling‐evoked increases in BAT SNA and Tbat, despite the sustained reduction in skin temperature (TSKIN). Modified, with permission, from (241). (D) Decreases in core body temperature after microinjection (dotted line) of 10, 20, and 80 pmol/100 nL of muscimol (MUSC) or saline vehicle into the RPa in four conscious rats. Bars with asterisk denote intervals during which temperature was significantly less than after saline treatment: solid bar, MUSC 80 pmol; dotted bar, MUSC 20 pmol. Modified, with permission, from (416).
Figure 6. Figure 6. Paraventricular hypothalamic nucleus (PVH) mechanisms influencing BAT thermogenesis. (A) Unilateral nanoinjection of bicuculline (BIC) into the PVH completely reversed the cooling‐evoked increases in BAT sympathetic nerve activity (SNA), BAT temperature (Tbat), and expired CO2 (Exp CO2). Modified, with permission, from (197). (Ba) The increases in BAT SNA and Tbat evoked by activation of rRPa neurons with nanoinjection of NMDA are unaffected by unilateral saline injection into the PVH (upper panel), but are markedly reduced by increasing the activity of PVH neurons with a unilateral nanoinjection of bicuculline (BIC) in the PVH (lower panel). Modified from (197). (Bb) Nanoinjection of BIC into the rostral raphe pallidus (rRPa) increases BAT SNA, Tbat, and Exp CO2, and prevents the inhibition of BAT SNA evoked by unilateral nanoinjection of BIC into the PVH. Modified from (197). (Ca) Channelrhodopsin2 (CHR2)‐tranfected, RIP‐Cre neurons (left panel) and their terminals in PVH (right panel) following adeno‐associated virus (AAV) injection in the arcuate nucleus (ARC) of a RIP‐Cre mouse; 3V, third ventricle; opt, optic chiasm; fx, fornix. Laser light (blue dashes) pulses depolarizing the CHR2‐expressing terminals of ARC RIP‐Cre neurons in PVH elicits inhibitory postsynaptic currents (IPSCs, lower panel) in a PVH neuron in a brain slice. (Cb) Leptin increases interscapular BAT (iBAT) temperature in vesicular GABA transporter (Vgat)‐floxxed mice, but not in RIP‐Cre, Vgatflox/flox mice. (Cc) Following injection into ARC of a cre‐dependent AAV producing expression of the designer receptor (hM3Dq) exclusively activated by designer drug (DREADD), selective activation of ARC RIP‐Cre neurons with clozapine‐N‐oxide (CNO) elicits a significant increase in oxygen consumption (VO2) and in iBAT temperature (Temp). Panels Ca‐Cc were modified, with permission, from (166). (D) Histological section through the PVH illustrating the overlap of transsynaptically infected, pseudorabies virus (PRV)‐labeled neurons (brown) following PRV injections into interscapular BAT and in situ hybridization for melanocortin 4‐receptor (MC4‐R) mRNA expression (black granules). Inset: High magnification of the outlined portion of the PVH. Note the presence of PRV in neurons surrounded by MC4‐R (curved black arrows) and PRV in neurons without associated MC4‐R (curved open arrows). Modified, with permission, from (349); 3V, third ventricle; ZI, zona inserta; oc, optic chiasm; SCH, suprachiasmatic nucleus. E: immunohistochemical labeling of PVH neurons for oxytocin (OXY, red) and for transsynaptic infection with PRV (green) after PRV injections into interscapular BAT. Arrows indicate neurons containing both PRV and OXY (yellow). Modified, with permission, from (259). (E) Schematic, based in part on (71), of the local PVH neurocircuitry proposed to mediate the GABAergic, neuropeptide Y (NPY) and α‐melanocyte‐stimulating hormone (αMSH) influences on BAT thermogenesis mediated by PVH neurons.
Figure 7. Figure 7. Orexinergic and other PeF/LH neurons influence BAT thermogenesis. (A) Coronal brain section through the PeF/LH shows many double‐labeled (white arrowheads, yellow fluorescence in the cytoplasm) orexinergic (red) neurons that were pseudorabies virus (PRV)‐infected (green), indicating their synaptic connection to BAT. Modified, with permission, from (386). (B) Orexinergic fibers (red) surround putative BAT sympathetic premotor neurons in rRPa (and in PaPy) transsynaptically infected following PRV inoculations of interscapular BAT. Modified, with permission, from (386). (C) Under cool conditions (Tcore < 37°C) with a low level of basal BAT SNA, nanoinjection of orexin‐A (Orx‐A, dashed line) in the rRPa elicited prolonged increases in BAT SNA, Tbat, Exp CO2, and heart rate (HR). Modified, with permission, from (386). (D) Under cool conditions (Tcore < 37°C) with a low level of basal BAT SNA, nanoinjection of NMDA (dashed line) in the PeF/LH elicited prolonged increases in BAT SNA, Tbat, Exp CO2, and HR. Modified, with permission, from (386). (E) icv PGE2 (filled symbols), but not ACSF (open symbols), elicited a marked increase in BAT temperature in orexin‐KO mice (triangles) and in the wild‐type littermates for either the orexin‐KO (circles) and for the orexin neuron‐ablated (squares) mice, but had no effect on Tbat in orexin neuron‐ablated mice (diamonds). Modified, with permission, from (372). (F) The activation of BAT SNA and BAT thermogenesis produced by disinhibitory activation of PeF/LH neurons with bicuculline (BIC) nanoinjection is dependent on the activation of glutamate receptors on DMH/DA neurons. Modified, with permission, from (55).
Figure 8. Figure 8. NTS neurons mediate both inhibition and excitation of BAT thermogenesis. (A) The disinhibitory activation of neurons in the intermediate NTS (iNTS), with injections of bicuculline (BIC), completely reversed the increases in BAT SNA, BAT temperature (Tbat), and expired CO2 that follow blockade of GABAA receptors in the rostral raphe pallidus (rRPa). Modified, with permission, from (47). (B) Activation of adenosine 1A receptors in iNTS at the level of the area postrema (inset), with bilateral injections of the agonist, N6‐cyclohexyladenosine (CHA), reverses the cooling‐evoked increases in BAT SNA and Tbat. Inhibition of iNTS neurons with bilateral injections of muscimol (MUSC) reverses the CHA‐evoked inhibition of BAT SNA, consistent with adenosine producing an increase in the activity of BAT sympathoinhibitory neurons in iNTS. Modified, with permission, from (387). (C) Ventilation with an hypoxic (8% O2) gas mixture that produces increases in integrated phrenic nerve amplitude (int PHR), heart rate (HR) and arterial pressure (AP), also elicits a complete inhibition of the increase in BAT SNA evoked by nanoinjection of BIC in rRPa. Inhibition of neuronal activity in the commissural subnucleus of the NTS (commNTS), with a nanoinjection of MUSC, eliminates the hypoxic inhibition of BAT SNA. Modified, with permission, from (194). (D) Changes in Tbat elicited by agents applied to the fourth ventricle. When preceded by leptin in the fourth ventricle, thyrotropin releasing hormone (TRH) markedly increases Tbat, indicating BAT thermogenesis. This effect is prevented by prior blockade of signal transduction pathways via fourth ventricle administration of wortmannin to block leptin‐evoked PIP3 generation or by the Src‐SH2 antagonist, PP2. Modified, with permission, from (291). (E) The iNTS contains neurons (yellow) that both express the leptin receptor (LepRb) (green) and are synaptically connected to BAT, as indicated by their transsynaptic retrograde infection (red) following pseudorabies virus (PRV) injections into BAT in LepRbEGFP mice. Modified, with permission, from (418).
Figure 9. Figure 9. Neurons in the ventrolateral medulla (VLM), including catecholaminergic neurons, provide an inhibitory regulation of BAT SNA and BAT thermogenesis. (A) The A1/C1 area of the VLM (bregma −13 mm) contains transsynaptically infected neurons (green) following pseudorabies virus (PRV) injections into interscapular BAT, tyrosine hydroxylase (TH)‐immunoreactive neurons (red), and double‐labeled (yellow, arrowhead) neurons indicative of catecholaminergic VLM neurons synaptically‐connected to BAT. (B) Distribution relative to the distance from bregma of catecholaminergic (red squares) and total (filled circles) neurons in the VLM retrogradely labeled following CTb injections into the rRPa. (C) Following PRSx8‐channel rhodopsin 2‐mCherry (ChR2) lentivirus, which preferentially transfects catecholaminergic neurons, nanoinjections into VLM, the rostral raphe pallidus (rRPa, white dotted outline) contains highly varicose fibers (red) expressing ChR2. (D) Laser photostimulation of VLM neurons containing the ChR2 (largely catecholaminergic neurons) inhibited BAT SNA and reduced BAT temperature (Tbat), an effect on BAT thermogenesis that was attenuated by blockade of α2‐adrenergic receptors in the rRPa. Panels A‐D, consistent with an activation of catecholaminergic neurons in the VLM inhibiting BAT SNA via a direct catecholaminergic input to the rRPa, are modified, with permission, from (199). (E) Glucoprivation with systemic 2‐deoxyglucose (2‐DG) activates [increases c‐fos (black nuclei)] many catecholaminergic neurons (gray) in the A1/C1 area of the VLM. Modified, with permission, from (290). (F) Local glucoprivation in the VLM by nanoinjection of 5‐thioglucose (5‐TG, dashed line) completely inhibits BAT SNA and reduces (Tbat) and metabolic oxygen consumption, indirectly indicated by the level of expired CO2 (Exp CO2). Modified, with permission, from (191).


Figure 1. Model for the neuroanatomical and neurotransmitter/hormonal organization of the core thermoregulatory network and other CNS sites controlling and modulating brown adipose tissue (BAT) thermogenesis. Cool and warm cutaneous thermal sensory receptors transmit signals to respective primary sensory neurons in the dorsal root ganglia which relay this thermal information to second‐order thermal sensory neurons in the dorsal horn (DH). Cool sensory DH neurons glutamatergically activate third‐order sensory neurons in the external lateral subnucleus of the lateral parabrachial nucleus (LPBel), while warm sensory DH neurons project to third‐order sensory neurons in the dorsal subnucleus of the lateral parabrachial nucleus (LPBd). Thermosensory signals for thermoregulatory responses are transmitted from the LPB to the preoptic area (POA) where GABAergic interneurons in the median preoptic (MnPO) subnucleus are activated by glutamatergic inputs from cool‐activated neurons in LPBel and inhibit a BAT‐regulating population of warm‐sensitive (W‐S) neurons in the medial preoptic area (MPA). In contrast, glutamatergic interneurons in the MnPO, postulated to be excited by glutamatergic inputs from warm‐activated neurons in LPBd, excite W‐S neurons in MPA. Prostaglandin (PG) E2 binds to EP3 receptors to inhibit the activity of W‐S neurons in the POA. Preoptic W‐S neurons providing thermoregulatory control of BAT thermogenesis inhibit BAT sympathoexcitatory neurons in the dorsomedial hypothalamus and dorsal hypothalamic area (DMH/DA) which, when disinhibited during skin cooling, excite BAT sympathetic premotor neurons in the rostral ventromedial medulla, including the rostral raphe pallidus (rRPa) and parapyramidal area (PaPy), that project to BAT sympathetic preganglionic neurons (SPN) in the spinal intermediolateral nucleus (IML). Some BAT premotor neurons can release glutamate (GLU) to excite BAT sympathetic preganglionic neurons and increase BAT sympathetic nerve activity, while others can release serotonin (5‐HT) to interact with 5‐HT1A receptors, potentially on inhibitory interneurons in the IML, to increase the BAT sympathetic outflow. Modulatory regions represent areas of the CNS that are not within the core thermoregulatory pathway, but from which chemical manipulation of the activity of local neurons produced effects (see text) on BAT activity. Dotted lines to question marks indicate that the pathway mediating the effect on BAT activity is unknown. Neurochemicals/hormones in yellow boxes activated and those in blue boxes reduced BAT activity. Neurons in the anterior piriform cortex (APC) sense the absence of indispensible amino acids (IAA) from the diet and stimulate an elevated level of BAT activity. Orexinergic neurons in the perifornical lateral hypothalamus (PeF‐LH) project to the rRPa to increase the excitability of BAT sympathetic premotor neurons. Histaminergic neurons in the tuberomammillary nucleus (TMN) project to the POA to increase BAT activity by influencing the discharge of neurons in the core thermoregulatory pathway. Activation of neurons in the ventrolateral medulla (VLM) produces an inhibition of BAT thermogenesis, at least in part by noradrenergic (NE) activation of α2 receptors on rRPa neurons. Neurons in the nucleus of the solitary tract (NTS) mediate the effects of afferents in the vagus and carotid sinus (CSN) and aortic depressor nerves. 2‐DG, 2‐deoxyglucose; 5‐HT, 5‐hydroxytryptamine; 5‐TG, 5‐thioglucose; αMSH, alpha melanocyte‐stimulating hormone; AngII, angiotensin II; BDNF, brain‐derived neurotrophic factor; CRF, corticotrophin releasing factor; NPY, neuropeptide Y; PGE2, prostaglandin E2; T3, triiodothyronine; TIP39, tuberoinfundibular peptide of 39 residues; TRH, thyrotropin‐releasing hormone; VGLUT3, vesicular glutamate transporter 3. Copyright 2014 by Oregon Health and Science University.


Figure 2. Lateral parabrachial neurons mediate cutaneous thermoreceptor afferent signaling regulating BAT thermogenesis. [(A) and (B) Bilateral nanoinjections into the lateral parabrachial nucleus (LPB) of the glutamate receptor antagonists, (2R)‐amino‐5‐phosphonovaleric acid (AP5), and 6‐cyano‐7‐nitroquinoxaline‐2,3‐dionesaline (CNQX), but not the saline (SAL) vehicle, reverse the skin cooling‐evoked increases in brown adipose tissue (BAT) sympathetic nerve activity (SNA), BAT temperature (Tbat), expired CO2, and heart rate (HR).TSKIN, skin temperature. Modified, with permission, from (243). [(C) and (D)] Injection into the median preoptic area (MnPO) of the retrograde tracer, cholera toxin B (orange injectate top panels), labels neurons in the dorsal subnucleus of the LPB (LPBd, middle panel in C), or in the external lateral subnucleus of the LPB (LPBel, middle panel in D) that also express c‐fos immunoreactivity (arrows in lower panels) following exposure to a warm ambient temperature (C) or a cool ambient temperature (D). Modified, with permission, from (243,244). (E) The discharge of a neuron (Unit) in LPBd is increased during episodes of skin warming that inhibit BAT SNA. Filled circles in inset indicate recording sites of warming‐activated units in LPBd. Modified, with permission, from (244). (F) The discharge of a neuron in LPBel is increased during episodes of skin cooling that activate BAT SNA. Filled circles in inset indicate recording sites of cooling‐activated units in LPBel. Modified, with permission, from (243).


Figure 3. POA microcircuitry integrates cutaneous and central thermal sensation and mediates febrile activations of BAT thermogenesis. (A) Action potentials (left panel) of a GABAergic (lower middle panel), warm‐sensitive neuron recorded in a brain slice (upper middle panel) through the preoptic area of a GAD65‐GFP mouse. Bath application of the histamine 3 receptor (H3R) agonist, R‐α‐methylhistamine, reduced the firing rate and eliminated the temperature sensitivity (right panel) of such GABAergic neurons in POA. Modified from (189). (B) The median preoptic area (MnPO) contains neurons (yellow) that express the leptin receptor (LepRb) (green) and are synaptically connected to BAT, as indicated by their transsynaptic retrograde infection (red) following pseudorabies virus (PRV) inoculations of BAT in LepRbEGFP mice. POA microcircuitry integrates cutaneous and central thermal sensation and mediates febrile activations of BAT thermogenesis. (A) Action potentials (left panel) of a GABAergic (lower middle panel), warm‐sensitive neuron recorded in a brain slice (upper middle panel) through the preoptic area of a GAD65‐GFP mouse. Bath application of the histamine 3 receptor (H3R) agonist, R‐α‐methylhistamine, reduced the firing rate and eliminated the temperature sensitivity (right panel) of such GABAergic neurons in POA. Modified from (189). (B) The median preoptic area (MnPO) contains neurons (yellow) that express the leptin receptor (LepRb) (green) and are synaptically connected to BAT, as indicated by their transsynaptic retrograde infection (red) following pseudorabies virus (PRV) inoculations of BAT in LepRbEGFP mice. Modified, with permission, from (418). Ca: blockade of GABAA receptors with bicuculline (BIC) nanoinjections in the medial preoptic area (MPA) reverses the skin cooling‐evoked increases in brown adipose tissue (BAT) sympathetic nerve activity (SNA), BAT temperature (Tbat), expired CO2 (Exp CO2), and heart rate (HR). TSKIN, skin temperature; SAL, saline vehicle, modified, with permission, from (241). Cb: nanoinjection into the MnPO of the glutamate receptor antagonists, (2R)‐amino‐5‐phosphonovaleric acid (AP5) and 6‐cyano‐7‐nitroquinoxaline‐2,3‐dionesaline (CNQX), but not the saline (SAL) vehicle, reversed the increases in BAT SNA, Tbat, Exp CO2, and HR evoked by activation of neurons in the lateral parabrachial nucleus (LPB) with nanoinjection of the glutamate receptor agonist, N‐methyl‐D‐aspartate (NMDA). Modified, with permission, from (243). Cc: bilateral nanoinjections of BIC, but not the SAL vehicle, into the MPA reversed the increases in BAT SNA, Tbat, Exp CO2, and HR evoked by disinhibition of neurons in the MnPO with a nanoinjection of BIC. Modified from (242). Cd: schematic drawings and histological section indicating representative nanoinjection sites in MnPO (left panel) and in MPA (middle and right panels). Modified, with permission, from (242). Da: immunohistochemical localization of the EP3 receptor in the rat MnPO and MPA (left panel). Modified, with permission, from (237). Selective genetic deletion of the EP3 receptor in the MnPO of Ptger 3ΔCNS/NesCre mice prevents the rise in body temperature observed in wild‐type mice following icv PGE2 (right panel). Modified, with permission, from (172). Db: prostaglandin (PG)E2 reduced the firing rate of a POA warm‐responsive neuron recorded in a rat brain slice, whose discharge frequency was increased during increases in bath temperature. Modified, with permission, from (286). Dc: nanoinjection of PGE2 into the MPA dramatically increased BAT SNA, Tbat, Tcore, Exp CO2, and HR and these fever‐mimicking thermogenic responses were completely reversed by inhibition of neuronal activity in the DMH with bilateral injections of muscimol (MUSC). Modified, with permission, from (246).


Figure 4. Neurons in the dorsomedial hypothalamus (DMH) and dorsal hypothalamic area (DA) mediate BAT sympathoexcitation. (A) Histological sections and drawings through the DMH/DA (upper panels) indicating (a) CTb retrogradely labeled neurons in the DMH/DA following iontophoretic CTb deposit (lower panel) in the rostral raphe pallidus (rRPa), modified, with permission, from (322); [(b) and (c)] the locations of CTb retrogradely labeled neurons (green circles) following nanoinjections of CTb (lower panel) in the rostral raphe pallidus (rRPa, b) or in the parapyramidal area (PaPy, c); red circles depict orexin immunoreactive neurons; filled black circles represent double‐labeled, orexinergic neurons that project to the rRPa; modified, with permission, from (386); and (D) the DMH/DA contains neurons (yellow) that both express the leptin receptor (LepRb) (green) and are synaptically connected to BAT, as indicated by their transsynaptic retrograde infection (red) following pseudorabies virus (PRV) injections into BAT in LepRbEGFP mice, modified, with permission, from (418). mt, mamillothalamic tract; f, fornix; py, pyramidal tract; B: the increases in BAT sympathetic nerve activity (SNA), BAT temperature (Tbat), expired CO2 (ExpCO2) and heart rate (HR) elicited by skin cooling are unaffected (Ba) by nanoinjections of saline vehicle (SAL) into the DMH/DA (Bc, right panel), but are reversed (Bb) by inhibition of local DMH/DA neurons with nanoinjections of muscimol (MUSC) into the DMH/DA (Bc). Modified, with permission, from (241). (C) Disinhibition of neurons in the DMH/DA (white arrowhead in inset histological section through the rat DMH/DA) by nanoinjection of the GABAA antagonist, bicuculline (BIC), resulted in an increase in BAT SNA, Tbat, and Exp CO2. Modified, with permission, from (226). D: nanoinjection of prostaglandin E2 (PGE2) into the medial preoptic area (MPA) increased BAT SNA, Tbat, Exp CO2, and heart rate (HR). Subsequent bilateral nanoinjections of the glutamate receptor antagonist, kynurenate (KYN), into the DMH completely reversed these PGE2‐evoked responses. Modified, with permission, from (193).


Figure 5. Rostral raphe pallidus (rRPa) contains BAT sympathetic premotor neurons whose activity determines the level of BAT thermogenesis. (A) Histological section through the rostral medulla at the level of the facial nucleus and the rostral raphe pallidus (rRPa) illustrating the transsynaptic, pseudorabies virus (PRV) labeling of BAT sympathetic premotor neurons (red) following PRV inoculations in interscapular BAT, and serotonergic neurons (green) immunohistochemically labeled for tryptophan hydroxylase, and rRPa‐BAT neurons that contain both markers (yellow). py, pyramidal tract. Modified, with permission, from (44). (B) Nanoinjection of bicuculline (BIC) in rRPa disinhibits BAT sympathetic premotor neurons and elicits a dramatic increase in BAT sympathetic nerve activity (SNA), BAT temperature (Tbat), and metabolic oxygen consumption, indirectly indicated by the elevation in expired CO2 (EXP CO2). Subsequent activation of the inhibitory 5‐HT1A receptors in rRPa with a local injection of 8OH‐DPAT completely reverses the activation of BAT SNA, likely by inhibiting BAT sympathetic premotor neurons. (C) Inhibition of local neurons in the rRPa with a nanoinjection of glycine produces a rapid and complete reversal of the skin cooling‐evoked increases in BAT SNA and Tbat, despite the sustained reduction in skin temperature (TSKIN). Modified, with permission, from (241). (D) Decreases in core body temperature after microinjection (dotted line) of 10, 20, and 80 pmol/100 nL of muscimol (MUSC) or saline vehicle into the RPa in four conscious rats. Bars with asterisk denote intervals during which temperature was significantly less than after saline treatment: solid bar, MUSC 80 pmol; dotted bar, MUSC 20 pmol. Modified, with permission, from (416).


Figure 6. Paraventricular hypothalamic nucleus (PVH) mechanisms influencing BAT thermogenesis. (A) Unilateral nanoinjection of bicuculline (BIC) into the PVH completely reversed the cooling‐evoked increases in BAT sympathetic nerve activity (SNA), BAT temperature (Tbat), and expired CO2 (Exp CO2). Modified, with permission, from (197). (Ba) The increases in BAT SNA and Tbat evoked by activation of rRPa neurons with nanoinjection of NMDA are unaffected by unilateral saline injection into the PVH (upper panel), but are markedly reduced by increasing the activity of PVH neurons with a unilateral nanoinjection of bicuculline (BIC) in the PVH (lower panel). Modified from (197). (Bb) Nanoinjection of BIC into the rostral raphe pallidus (rRPa) increases BAT SNA, Tbat, and Exp CO2, and prevents the inhibition of BAT SNA evoked by unilateral nanoinjection of BIC into the PVH. Modified from (197). (Ca) Channelrhodopsin2 (CHR2)‐tranfected, RIP‐Cre neurons (left panel) and their terminals in PVH (right panel) following adeno‐associated virus (AAV) injection in the arcuate nucleus (ARC) of a RIP‐Cre mouse; 3V, third ventricle; opt, optic chiasm; fx, fornix. Laser light (blue dashes) pulses depolarizing the CHR2‐expressing terminals of ARC RIP‐Cre neurons in PVH elicits inhibitory postsynaptic currents (IPSCs, lower panel) in a PVH neuron in a brain slice. (Cb) Leptin increases interscapular BAT (iBAT) temperature in vesicular GABA transporter (Vgat)‐floxxed mice, but not in RIP‐Cre, Vgatflox/flox mice. (Cc) Following injection into ARC of a cre‐dependent AAV producing expression of the designer receptor (hM3Dq) exclusively activated by designer drug (DREADD), selective activation of ARC RIP‐Cre neurons with clozapine‐N‐oxide (CNO) elicits a significant increase in oxygen consumption (VO2) and in iBAT temperature (Temp). Panels Ca‐Cc were modified, with permission, from (166). (D) Histological section through the PVH illustrating the overlap of transsynaptically infected, pseudorabies virus (PRV)‐labeled neurons (brown) following PRV injections into interscapular BAT and in situ hybridization for melanocortin 4‐receptor (MC4‐R) mRNA expression (black granules). Inset: High magnification of the outlined portion of the PVH. Note the presence of PRV in neurons surrounded by MC4‐R (curved black arrows) and PRV in neurons without associated MC4‐R (curved open arrows). Modified, with permission, from (349); 3V, third ventricle; ZI, zona inserta; oc, optic chiasm; SCH, suprachiasmatic nucleus. E: immunohistochemical labeling of PVH neurons for oxytocin (OXY, red) and for transsynaptic infection with PRV (green) after PRV injections into interscapular BAT. Arrows indicate neurons containing both PRV and OXY (yellow). Modified, with permission, from (259). (E) Schematic, based in part on (71), of the local PVH neurocircuitry proposed to mediate the GABAergic, neuropeptide Y (NPY) and α‐melanocyte‐stimulating hormone (αMSH) influences on BAT thermogenesis mediated by PVH neurons.


Figure 7. Orexinergic and other PeF/LH neurons influence BAT thermogenesis. (A) Coronal brain section through the PeF/LH shows many double‐labeled (white arrowheads, yellow fluorescence in the cytoplasm) orexinergic (red) neurons that were pseudorabies virus (PRV)‐infected (green), indicating their synaptic connection to BAT. Modified, with permission, from (386). (B) Orexinergic fibers (red) surround putative BAT sympathetic premotor neurons in rRPa (and in PaPy) transsynaptically infected following PRV inoculations of interscapular BAT. Modified, with permission, from (386). (C) Under cool conditions (Tcore < 37°C) with a low level of basal BAT SNA, nanoinjection of orexin‐A (Orx‐A, dashed line) in the rRPa elicited prolonged increases in BAT SNA, Tbat, Exp CO2, and heart rate (HR). Modified, with permission, from (386). (D) Under cool conditions (Tcore < 37°C) with a low level of basal BAT SNA, nanoinjection of NMDA (dashed line) in the PeF/LH elicited prolonged increases in BAT SNA, Tbat, Exp CO2, and HR. Modified, with permission, from (386). (E) icv PGE2 (filled symbols), but not ACSF (open symbols), elicited a marked increase in BAT temperature in orexin‐KO mice (triangles) and in the wild‐type littermates for either the orexin‐KO (circles) and for the orexin neuron‐ablated (squares) mice, but had no effect on Tbat in orexin neuron‐ablated mice (diamonds). Modified, with permission, from (372). (F) The activation of BAT SNA and BAT thermogenesis produced by disinhibitory activation of PeF/LH neurons with bicuculline (BIC) nanoinjection is dependent on the activation of glutamate receptors on DMH/DA neurons. Modified, with permission, from (55).


Figure 8. NTS neurons mediate both inhibition and excitation of BAT thermogenesis. (A) The disinhibitory activation of neurons in the intermediate NTS (iNTS), with injections of bicuculline (BIC), completely reversed the increases in BAT SNA, BAT temperature (Tbat), and expired CO2 that follow blockade of GABAA receptors in the rostral raphe pallidus (rRPa). Modified, with permission, from (47). (B) Activation of adenosine 1A receptors in iNTS at the level of the area postrema (inset), with bilateral injections of the agonist, N6‐cyclohexyladenosine (CHA), reverses the cooling‐evoked increases in BAT SNA and Tbat. Inhibition of iNTS neurons with bilateral injections of muscimol (MUSC) reverses the CHA‐evoked inhibition of BAT SNA, consistent with adenosine producing an increase in the activity of BAT sympathoinhibitory neurons in iNTS. Modified, with permission, from (387). (C) Ventilation with an hypoxic (8% O2) gas mixture that produces increases in integrated phrenic nerve amplitude (int PHR), heart rate (HR) and arterial pressure (AP), also elicits a complete inhibition of the increase in BAT SNA evoked by nanoinjection of BIC in rRPa. Inhibition of neuronal activity in the commissural subnucleus of the NTS (commNTS), with a nanoinjection of MUSC, eliminates the hypoxic inhibition of BAT SNA. Modified, with permission, from (194). (D) Changes in Tbat elicited by agents applied to the fourth ventricle. When preceded by leptin in the fourth ventricle, thyrotropin releasing hormone (TRH) markedly increases Tbat, indicating BAT thermogenesis. This effect is prevented by prior blockade of signal transduction pathways via fourth ventricle administration of wortmannin to block leptin‐evoked PIP3 generation or by the Src‐SH2 antagonist, PP2. Modified, with permission, from (291). (E) The iNTS contains neurons (yellow) that both express the leptin receptor (LepRb) (green) and are synaptically connected to BAT, as indicated by their transsynaptic retrograde infection (red) following pseudorabies virus (PRV) injections into BAT in LepRbEGFP mice. Modified, with permission, from (418).


Figure 9. Neurons in the ventrolateral medulla (VLM), including catecholaminergic neurons, provide an inhibitory regulation of BAT SNA and BAT thermogenesis. (A) The A1/C1 area of the VLM (bregma −13 mm) contains transsynaptically infected neurons (green) following pseudorabies virus (PRV) injections into interscapular BAT, tyrosine hydroxylase (TH)‐immunoreactive neurons (red), and double‐labeled (yellow, arrowhead) neurons indicative of catecholaminergic VLM neurons synaptically‐connected to BAT. (B) Distribution relative to the distance from bregma of catecholaminergic (red squares) and total (filled circles) neurons in the VLM retrogradely labeled following CTb injections into the rRPa. (C) Following PRSx8‐channel rhodopsin 2‐mCherry (ChR2) lentivirus, which preferentially transfects catecholaminergic neurons, nanoinjections into VLM, the rostral raphe pallidus (rRPa, white dotted outline) contains highly varicose fibers (red) expressing ChR2. (D) Laser photostimulation of VLM neurons containing the ChR2 (largely catecholaminergic neurons) inhibited BAT SNA and reduced BAT temperature (Tbat), an effect on BAT thermogenesis that was attenuated by blockade of α2‐adrenergic receptors in the rRPa. Panels A‐D, consistent with an activation of catecholaminergic neurons in the VLM inhibiting BAT SNA via a direct catecholaminergic input to the rRPa, are modified, with permission, from (199). (E) Glucoprivation with systemic 2‐deoxyglucose (2‐DG) activates [increases c‐fos (black nuclei)] many catecholaminergic neurons (gray) in the A1/C1 area of the VLM. Modified, with permission, from (290). (F) Local glucoprivation in the VLM by nanoinjection of 5‐thioglucose (5‐TG, dashed line) completely inhibits BAT SNA and reduces (Tbat) and metabolic oxygen consumption, indirectly indicated by the level of expired CO2 (Exp CO2). Modified, with permission, from (191).
References
 1. Acheson K , Jequier E , Wahren J . Influence of beta‐adrenergic blockade on glucose‐induced thermogenesis in man. J Clin Invest 72: 981‐986, 1983.
 2. Almeida MC , Hew‐Butler T , Soriano RN , Rao S , Wang W , Wang J , Tamayo N , Oliveira DL , Nucci TB , Aryal P , Garami A , Bautista D , Gavva NR , Romanovsky AA . Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature. J Neurosci 32: 2086‐2099, 2012.
 3. Almeida MC , Steiner AA , Branco LG , Romanovsky AA . Neural substrate of cold‐seeking behavior in endotoxin shock. PLoS ONE 1: e1, 2006.
 4. Almeida MC , Steiner AA , Coimbra NC , Branco LG . Thermoeffector neuronal pathways in fever: A study in rats showing a new role of the locus coeruleus. J Physiol 558: 283‐294, 2004.
 5. Amini‐Sereshki L , Zarrindast MR . Brain stem tonic inhibition of thermoregulation in the rat. Am J Physiol 247: R154‐R159, 1984.
 6. Amir S . Retinohypothalamic tract stimulation activates thermogenesis in brown adipose tissue in the rat. Brain Res 503: 163‐166, 1989.
 7. Amir S , Shizgal P , Rompre PP . Glutamate injection into the suprachiasmatic nucleus stimulates brown fat thermogenesis in the rat. Brain Res 498: 140‐144, 1989.
 8. Andrew D , Craig AD . Spinothalamic lamina I neurons selectively sensitive to histamine: A central neural pathway for itch. Nat Neurosci 4: 72‐77, 2001.
 9. Arai K , Kim K , Kaneko K , Iketani M , Otagiri A , Yamauchi N , Shibasaki T . Nicotine infusion alters leptin and uncoupling protein 1 mRNA expression in adipose tissues of rats. Am J Physiol Endocrinol Metab 280: E867‐E876, 2001.
 10. Arase K , York DA , Shimizu H , Shargill N , Bray GA . Effects of corticotropin‐releasing factor on food intake and brown adipose tissue thermogenesis in rats. Am J Physiol 255: E255‐E259, 1988.
 11. Arruda AP , Milanski M , Romanatto T , Solon C , Coope A , Alberici LC , Festuccia WT , Hirabara SM , Ropelle E , Curi R , Carvalheira JB , Vercesi AE , Velloso LA . Hypothalamic actions of tumor necrosis factor alpha provide the thermogenic core for the wastage syndrome in cachexia. Endocrinology 151: 683‐694, 2010.
 12. Bachman ES , Dhillon H , Zhang CY , Cinti S , Bianco AC , Kobilka BK , Lowell BB . betaAR signaling required for diet‐induced thermogenesis and obesity resistance. Science 297: 843‐845, 2002.
 13. Bacon SJ , Smith AD . Preganglionic sympathetic neurones innervating the rat adrenal medulla: Immunocytochemical evidence of synaptic input from nerve terminals containing substance P, GABA or 5‐hydroxytryptamine. J Auton Nerv Sys 24: 97‐122, 1988.
 14. Bajzer M , Olivieri M , Haas MK , Pfluger PT , Magrisso IJ , Foster MT , Tschop MH , Krawczewski‐Carhuatanta KA , Cota D , Obici S . Cannabinoid receptor 1 (CB1) antagonism enhances glucose utilisation and activates brown adipose tissue in diet‐induced obese mice. Diabetologia 54: 3121‐3131, 2011.
 15. Balthasar N , Dalgaard LT , Lee CE , Yu J , Funahashi H , Williams T , Ferreira M , Tang V , McGovern RA , Kenny CD , Christiansen LM , Edelstein E , Choi B , Boss O , Aschkenasi C , Zhang CY , Mountjoy K , Kishi T , Elmquist JK , Lowell BB . Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123: 493‐505, 2005.
 16. Bamshad M , Song CK , Bartness TJ . CNS origins of the sympathetic nervous system outflow to brown adipose tissue. Am J Physiol 276: R1569‐R1578, 1999.
 17. Barbatelli G , Murano I , Madsen L , Hao Q , Jimenez M , Kristiansen K , Giacobino JP , De Matteis R , Cinti S . The emergence of cold‐induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298: E1244‐E1253, 2010.
 18. Bartelt A , Heeren J . Adipose tissue browning and metabolic health. Nat Rev Endocrinol 10: 24‐36, 2014.
 19. Bartness TJ , Vaughan CH , Song CK . Sympathetic and sensory innervation of brown adipose tissue. Int J Obes 34(Suppl 1): S36‐S42, 2010.
 20. Bautista DM , Siemens J , Glazer JM , Tsuruda PR , Basbaum AI , Stucky CL , Jordt SE , Julius D . The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448: 204‐208, 2007.
 21. Bernardis LL , Bellinger LL . The dorsomedial hypothalamic nucleus revisited: 1998 update. Proc Soc Exp Biol Med 218: 284‐306, 1998.
 22. Berthoud HR , Patterson LM , Sutton GM , Morrison C , Zheng H . Orexin inputs to caudal raphe neurons involved in thermal, cardiovascular, and gastrointestinal regulation. Histochem Cell Biol 123: 147‐156, 2005.
 23. Billington CJ , Bartness TJ , Briggs J , Levine AS , Morley JE . Glucagon stimulation of brown adipose tissue growth and thermogenesis. Am J Physiol 252: R160‐R165, 1987.
 24. Billington CJ , Briggs JE , Grace M , Levine AS . Effects of intracerebroventricular injection of neuropeptide Y on energy metabolism. Am J Physiol 260: R321‐R327, 1991.
 25. Billington CJ , Briggs JE , Harker S , Grace M , Levine AS . Neuropeptide Y in hypothalamic paraventricular nucleus: A center coordinating energy metabolism. Am J Physiol 266: R1765‐R1770, 1994.
 26. Billington CJ , Briggs JE , Link JG , Levine AS . Glucagon in physiological concentrations stimulates brown fat thermogenesis in vivo. Am J Physiol 261: R501‐R507, 1991.
 27. Blandina P , Munari L , Provensi G , Passani MB . Histamine neurons in the tuberomamillary nucleus: A whole center or distinct subpopulations? Front Syst Neurosci 6: 33, 2012.
 28. Blatteis CM , Banet M . Autonomic thermoregulation after separation of the preoptic area from the hypothalamus in rats. Pflugers Arch 406: 480‐484, 1986.
 29. Blessing W , Mohammed M , Ootsuka Y . Heating and eating: Brown adipose tissue thermogenesis precedes food ingestion as part of the ultradian basic rest‐activity cycle in rats. Physiol Behav 105: 966‐974, 2012.
 30. Blessing W , Mohammed M , Ootsuka Y . Brown adipose tissue thermogenesis, the basic rest–activity cycle, meal initiation, and bodily homeostasis in rats. Physiol Behav 121: 61‐69, 2013.
 31. Blessing WW , Zilm A , Ootsuka Y . Clozapine reverses increased brown adipose tissue thermogenesis induced by 3,4‐methylenedioxymethamphetamine and by cold exposure in conscious rats. Neuroscience 141: 2067‐2073, 2006.
 32. Blouet C , Schwartz GJ . Duodenal lipid sensing activates vagal afferents to regulate non‐shivering brown fat thermogenesis in rats. PLoS One 7: e51898, 2012.
 33. Boulant JA . Counterpoint: Heat‐induced membrane depolarization of hypothalamic neurons: An unlikely mechanism of central thermosensitivity. Am J Physiol Regul Integr Comp Physiol 290: R1481‐R1484; discussion R1484, 2006a.
 34. Boulant JA . Neuronal basis of Hammel's model for set‐point thermoregulation. J Appl Physiol 100: 1347‐1354, 2006b.
 35. Boulant JA , Dean JB . Temperature receptors in the central nervous system. Annu Rev Physiol 48: 639‐654, 1986.
 36. Boulant JA , Hardy JD . The effect of spinal and skin temperatures on the firing rate and thermosensitivity of preoptic neurones. J Physiol 240: 639‐660, 1974.
 37. Bratincsak A , Palkovits M . Activation of brain areas in rat following warm and cold ambient exposure. Neuroscience 127: 385‐397, 2004.
 38. Bratincsak A , Palkovits M . Evidence that peripheral rather than intracranial thermal signals induce thermoregulation. Neuroscience 135: 525‐532, 2005.
 39. Buchanan TA , Cane P , Eng CC , Sipos GF , Lee C . Hypothermia is critical for survival during prolonged insulin‐induced hypoglycemia in rats. Metabolism 40: 330‐334, 1991.
 40. Butler AA , Kozak LP . A recurring problem with the analysis of energy expenditure in genetic models expressing lean and obese phenotypes. Diabetes 59: 323‐329, 2010.
 41. Caldeira JC , Franci CR , Pela IR . Bilateral lesion of hypothalamic paraventricular nucleus abolishes fever induced by endotoxin and bradykinin in rats. Ann N Y Acad Sci 856: 294‐297, 1998.
 42. Cammack C , Logan SD . Excitation of rat sympathetic preganglionic neurones by selective activation of the NK1 receptor. J Auton Nerv Syst 57: 87‐92, 1996.
 43. Cannon B , Nedergaard J . Brown adipose tissue: Function and physiological significance. Physiol Rev 84: 277‐359, 2004.
 44. Cano G , Passerin AM , Schiltz JC , Card JP , Morrison SF , Sved AF . Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure. J Comp Neurol 460: 303‐326, 2003.
 45. Cao L , Choi EY , Liu X , Martin A , Wang C , Xu X , During MJ . White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic‐adipocyte axis. Cell Metab 14: 324‐338, 2011.
 46. Cao WH , Fan W , Morrison SF . Medullary pathways mediating specific sympathetic responses to activation of dorsomedial hypothalamus. Neuroscience 126: 229‐240, 2004.
 47. Cao WH , Madden CJ , Morrison SF . Inhibition of brown adipose tissue thermogenesis by neurons in the ventrolateral medulla and in the nucleus tractus solitarius. Am J Physiol Regul Integr Comp Physiol 299: R277‐R290, 2010.
 48. Cao WH , Morrison SF . Brown adipose tissue thermogenesis contributes to fentanyl‐evoked hyperthermia. Am J Physiol Regul Integr Comp Physiol 288: R723‐R732, 2005.
 49. Cao WH , Morrison SF . Glutamate receptors in the raphe pallidus mediate brown adipose tissue thermogenesis evoked by activation of dorsomedial hypothalamic neurons. Neuropharmacology 51: 426‐437, 2006.
 50. Cardinal P , Bellocchio L , Clark S , Cannich A , Klugmann M , Lutz B , Marsicano G , Cota D. Hypothalamic CB1 cannabinoid receptors regulate energy balance in mice. Endocrinology 153: 4136‐4143, 2012.
 51. Cassolla P , Uchoa ET , Mansur Machado FS , Guimaraes JB , Rissato Garofalo MA , de Almeida Brito N , Kagohara Elias LL , Coimbra CC , do Carmo Kettelhut I , Carvalho Navegantes LC . The central administration of C75, a fatty acid synthase inhibitor, activates sympathetic outflow and thermogenesis in interscapular brown adipose tissue. Pflugers Arch 465: 1687‐1699, 2013.
 52. Caterina MJ , Leffler A , Malmberg AB , Martin WJ , Trafton J , Petersen‐Zeitz KR , Koltzenburg M , Basbaum AI , Julius D . Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288: 306‐313, 2000.
 53. Cederberg A , Gronning LM , Ahren B , Tasken K , Carlsson P , Enerback S . FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet‐induced insulin resistance. Cell 106: 563‐573, 2001.
 54. Cerri M , Mastrotto M , Tupone D , Martelli D , Luppi M , Perez E , Zamboni G , Amici R . The inhibition of neurons in the central nervous pathways for thermoregulatory cold defense induces a suspended animation state in the rat. J Neurosci 33: 2984‐2993, 2013.
 55. Cerri M , Morrison SF . Activation of lateral hypothalamic neurons stimulates brown adipose tissue thermogenesis. Neuroscience 135: 627‐638, 2005.
 56. Cerri M , Morrison SF . Corticotropin releasing factor increases in brown adipose tissue thermogenesis and heart rate through dorsomedial hypothalamus and medullary raphe pallidus. Neuroscience 140: 711‐721, 2006.
 57. Chao PT , Yang L , Aja S , Moran TH , Bi S . Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet‐induced obesity. Cell Metab 13: 573‐583, 2011.
 58. Chen P , Williams SM , Grove KL , Smith MS . Melanocortin 4 receptor‐mediated hyperphagia and activation of neuropeptide Y expression in the dorsomedial hypothalamus during lactation. J Neurosci 24: 5091‐5100, 2004.
 59. Chen XM , Hosono T , Yoda T , Fukuda Y , Kanosue K . Efferent projection from the preoptic area for the control of non‐shivering thermogenesis in rats. J Physiol 512 (Pt 3): 883‐892, 1998.
 60. Chen XM , Nishi M , Taniguchi A , Nagashima K , Shibata M , Kanosue K . The caudal periaqueductal gray participates in the activation of brown adipose tissue in rats. Neurosci Lett 331: 17‐20, 2002.
 61. Cheng Y , Meng Q , Wang C , Li H , Huang Z , Chen S , Xiao F , Guo F . Leucine deprivation decreases fat mass by stimulation of lipolysis in white adipose tissue and upregulation of uncoupling protein 1 (UCP1) in brown adipose tissue. Diabetes 59: 17‐25, 2010.
 62. Christensen CR , Clark PB , Morton KA . Reversal of hypermetabolic brown adipose tissue in F‐18 FDG PET imaging. Clinical Nuclear Medicine 31: 193‐196, 2006.
 63. Clapham JC . Central control of thermogenesis. Neuropharmacology 63: 111‐123, 2011.
 64. Colburn RW , Lubin ML , Stone DJ, Jr. , Wang Y , Lawrence D , D'Andrea MR , Brandt MR , Liu Y , Flores CM , Qin N . Attenuated cold sensitivity in TRPM8 null mice. Neuron 54: 379‐386, 2007.
 65. Collins S , Kuhn CM , Petro AE , Swick AG , Chrunyk BA , Surwit RS . Role of leptin in fat regulation. Nature 380: 677, 1996.
 66. Commins SP , Watson PM , Padgett MA , Dudley A , Argyropoulos G , Gettys TW . Induction of uncoupling protein expression in brown and white adipose tissue by leptin. Endocrinology 140: 292‐300, 1999.
 67. Connoley IP , Liu YL , Frost I , Reckless IP , Heal DJ , Stock MJ . Thermogenic effects of sibutramine and its metabolites. Br J Pharmacol 126: 1487‐1495, 1999.
 68. Conte D , Deuchars SA , Deuchars J . Do serotonin immunoreactive terminals innervate GABAergic neurons in the central autonomic area of the mouse spinal cord. FASEB J 21: A885, 2007.
 69. Coote JH , Macleod VH , Fleetwood‐Walker S , Gilbey MP . The response of individual sympathetic preganglionic neurones to microelectrophoretically applied endogenous monoamines. Brain Res 215: 135‐145, 1981.
 70. Correia ML , Morgan DA , Mitchell JL , Sivitz WI , Mark AL , Haynes WG . Role of corticotrophin‐releasing factor in effects of leptin on sympathetic nerve activity and arterial pressure. Hypertension 38: 384‐388, 2001.
 71. Cowley MA , Pronchuk N , Fan W , Dinulescu DM , Colmers WF , Cone RD . Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: Evidence of a cellular basis for the adipostat. Neuron 24: 155‐163, 1999.
 72. Craig AD . How do you feel? Interoception: The sense of the physiological condition of the body. Nat Rev Neurosci 3: 655‐666, 2002.
 73. Craig AD , Bushnell MC , Zhang ET , Blomqvist A . A thalamic nucleus specific for pain and temperature sensation. Nature 372: 770‐773, 1994.
 74. Craig AD , Krout K , Andrew D . Quantitative response characteristics of thermoreceptive and nociceptive lamina I spinothalamic neurons in the cat. J Neurophysiol 86: 1459‐1480, 2001.
 75. Cypess AM , Lehman S , Williams G , Tal I , Rodman D , Goldfine AB , Kuo FC , Palmer EL , Tseng YH , Doria A , Kolodny GM , Kahn CR . Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360: 1509‐1517, 2009.
 76. Dascombe MJ , Rothwell NJ , Sagay BO , Stock MJ . Pyrogenic and thermogenic effects of interleukin 1 beta in the rat. Am J Physiol 256: E7‐E11, 1989.
 77. Dashti HM , Mathew TC , Khadada M , Al‐Mousawi M , Talib H , Asfar SK , Behbahani AI , Al‐Zaid NS . Beneficial effects of ketogenic diet in obese diabetic subjects. Mol Cell Biochem 302: 249‐256, 2007.
 78. Day TA , Blessing W , Willoughby JO . Noradrenergic and dopaminergic projections to the medial preoptic area of the rat. A combined horseradish peroxidase/catecholamine fluorescence study. Brain Res 193: 543‐548, 1980.
 79. de Kloet AD , Krause EG , Scott KA , Foster MT , Herman JP , Sakai RR , Seeley RJ , Woods SC . Central angiotensin II has catabolic action at white and brown adipose tissue. Am J Physiol Endocrinol Metab 301: E1081‐E1091, 2011.
 80. de Kloet AD , Pati D , Wang L , Hiller H , Sumners C , Frazier CJ , Seeley RJ , Herman JP , Woods SC , Krause EG . Angiotensin type 1a receptors in the paraventricular nucleus of the hypothalamus protect against diet‐induced obesity. J Neurosci 33: 4825‐4833, 2013.
 81. de Lecea L , Kilduff TS , Peyron C , Gao X , Foye PE , Danielson PE , Fukuhara C , Battenberg EL , Gautvik VT , Bartlett FS, 2nd , Frankel WN , van den Pol AN , Bloom FE , Gautvik KM , Sutcliffe JG . The hypocretins: Hypothalamus‐specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95: 322‐327, 1998.
 82. de Menezes RC , Zaretsky DV , Fontes MA , DiMicco JA . Cardiovascular and thermal responses evoked from the periaqueductal grey require neuronal activity in the hypothalamus. J Physiol 587: 1201‐1215, 2009.
 83. Deuchars SA , Milligan CJ , Stornetta RL , Deuchars J . GABAergic neurons in the central region of the spinal cord: A novel substrate for sympathetic inhibition. J Neurosci 25: 1063‐1070, 2005.
 84. Deuchars SA , Spyer KM , Gilbey MP . Stimulation within the rostral ventrolateral medulla can evoke monosynaptic GABAergic IPSPs in sympathetic preganglionic neurons in vitro. J Neurophysiol 77: 229‐235, 1997.
 85. Dhaka A , Murray AN , Mathur J , Earley TJ , Petrus MJ , Patapoutian A . TRPM8 is required for cold sensation in mice. Neuron 54: 371‐378, 2007.
 86. Dib B . Thermoregulatory behaviour induced by intrathecal injection of substance P in the rat. Eur J Pharmacol 133: 147‐153, 1987.
 87. Dicker A , Zhao J , Cannon B , Nedergaard J . Apparent thermogenic effect of injected glucagon is not due to a direct effect on brown fat cells. Am J Physiol 275: R1674‐R1682, 1998.
 88. DiMicco JA , Samuels BC , Zaretskaia MV , Zaretsky DV . The dorsomedial hypothalamus and the response to stress: Part renaissance, part revolution. Pharmacol Biochem Behav 71: 469‐480, 2002.
 89. Dimicco JA , Zaretsky DV . The dorsomedial hypothalamus: A new player in thermoregulation. Am J Physiol Regul Integr Comp Physiol 292: R47‐R63, 2007.
 90. Dimitrov EL , Kim YY , Usdin TB . Regulation of hypothalamic signaling by tuberoinfundibular peptide of 39 residues is critical for the response to cold: A novel peptidergic mechanism of thermoregulation. J Neurosci 31: 18166‐18179, 2011.
 91. Du F , Higginbotham DA , White BD . Food intake, energy balance and serum leptin concentrations in rats fed low‐protein diets. J Nutr 130: 514‐521, 2000.
 92. Du Y , Meng Q , Zhang Q , Guo F . Isoleucine or valine deprivation stimulates fat loss via increasing energy expenditure and regulating lipid metabolism in WAT. Amino Acids 43: 725‐734, 2012.
 93. Egawa M , Yoshimatsu H , Bray GA . Effects of 2‐deoxy‐D‐glucose on sympathetic nerve activity to interscapular brown adipose tissue. Am J Physiol 257: R1377‐R1385, 1989a.
 94. Egawa M , Yoshimatsu H , Bray GA . Lateral hypothalamic injection of 2‐deoxy‐D‐glucose suppresses sympathetic activity. Am J Physiol 257: R1386‐R1392, 1989b.
 95. Egawa M , Yoshimatsu H , Bray GA . Effect of corticotropin releasing hormone and neuropeptide Y on electrophysiological activity of sympathetic nerves to interscapular brown adipose tissue. Neuroscience 34: 771‐775, 1990a.
 96. Egawa M , Yoshimatsu H , Bray GA . Preoptic area injection of corticotropin‐releasing hormone stimulates sympathetic activity. Am J Physiol 259: R799‐R806, 1990b.
 97. Egawa M , Yoshimatsu H , Bray GA . Neuropeptide Y suppresses sympathetic activity to interscapular brown adipose tissue in rats. Am J Physiol 260: R328‐R334, 1991.
 98. Eley J , Himms‐Hagen J . Brown adipose tissue of mice with GTG‐induced obesity: Altered circadian control. Am J Physiol 256: E773‐E779, 1989.
 99. Elmquist JK , Scammell TE , Jacobson CD , Saper CB . Distribution of Fos‐like immunoreactivity in the rat brain following intravenous lipopolysaccharide administration. J Comp Neurol 371: 85‐103, 1996.
 100. Elmquist JK , Scammell TE , Saper CB . Mechanisms of CNS response to systemic immune challenge: The febrile response. Trends Neurosci 20: 565‐570, 1997.
 101. Enerback S , Jacobsson A , Simpson EM , Guerra C , Yamashita H , Harper ME , Kozak LP . Mice lacking mitochondrial uncoupling protein are cold‐sensitive but not obese. Nature 387: 90‐94, 1997.
 102. Enriori PJ , Sinnayah P , Simonds SE , Garcia Rudaz C , Cowley MA . Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. J Neurosci 31: 12189‐12197, 2011.
 103. Fan W , Morrison SF , Cao WH , Yu P . Thermogenesis activated by central melanocortin signaling is dependent on neurons in the rostral raphe pallidus (rRPa) area. Brain Res 1179: 61‐69, 2007.
 104. Fan W , Voss‐Andreae A , Cao WH , Morrison SF . Regulation of thermogenesis by the central melanocortin system. Peptides 26: 1800‐1813, 2005.
 105. Fargali S , Sadahiro M , Jiang C , Frick AL , Indall T , Cogliani V , Welagen J , Lin WJ , Salton SR . Role of neurotrophins in the development and function of neural circuits that regulate energy homeostasis. J Mol Neurosci 48: 654‐659, 2012.
 106. Feldmann HM , Golozoubova V , Cannon B , Nedergaard J . UCP1 ablation induces obesity and abolishes diet‐induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 9: 203‐209, 2009.
 107. Fernandes‐Santos C , Zhang Z , Morgan DA , Guo DF , Russo AF , Rahmouni K . Amylin acts in the central nervous system to increase sympathetic nerve activity. Endocrinology 154: 2481‐2488, 2013.
 108. Fontes MA , Xavier CH , de Menezes RC , Dimicco JA . The dorsomedial hypothalamus and the central pathways involved in the cardiovascular response to emotional stress. Neuroscience 184: 64‐74, 2011.
 109. Foster GD , Wyatt HR , Hill JO , McGuckin BG , Brill C , Mohammed BS , Szapary PO , Rader DJ , Edman JS , Klein S . A randomized trial of a low‐carbohydrate diet for obesity. N Engl J Med 348: 2082‐2090, 2003.
 110. Freinkel N , Metzger BE , Harris E , Robinson S , Mager M . The hypothermia of hypoglycemia. Studies with 2‐deoxy‐D‐glucose in normal human subjects and mice. N Engl J Med 287: 841‐845, 1972.
 111. Fromme T , Klingenspor M . Uncoupling protein 1 expression and high‐fat diets. Am J Physiol Regul Integr Comp Physiol 300: R1‐R8, 2011.
 112. Fyda DM , Cooper KE , Veale WL . Nucleus tractus solitarii lesions alter the metabolic and hyperthermic response to central prostaglandin E1 in the rat. J Physiol 442: 337‐349, 1991.
 113. Gao B , Kikuchi‐Utsumi K , Ohinata H , Hashimoto M , Kuroshima A . Repeated immobilization stress increases uncoupling protein 1 expression and activity in Wistar rats. Jpn J Physiol 53: 205‐213, 2003.
 114. Gavva NR , Bannon AW , Surapaneni S , Hovland DN, Jr. , Lehto SG , Gore A , Juan T , Deng H , Han B , Klionsky L , Kuang R , Le A , Tamir R , Wang J , Youngblood B , Zhu D , Norman MH , Magal E , Treanor JJ , Louis JC . The vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation. J Neurosci 27: 3366‐3374, 2007.
 115. Giordano A , Smorlesi A , Frontini A , Barbatelli G , Cinti S . White, brown and pink adipocytes: The extraordinary plasticity of the adipose organ. Eur J Endocrinol 170: R159‐R171, 2014.
 116. Goke R , Larsen PJ , Mikkelsen JD , Sheikh SP . Distribution of GLP‐1 binding sites in the rat brain: Evidence that exendin‐4 is a ligand of brain GLP‐1 binding sites. Eur J Neurosci 7: 2294‐2300, 1995.
 117. Gong TW , Horwitz BA , Stern JS . The effects of 2‐deoxy‐D‐glucose and sympathetic denervation of brown fat GDP binding in Sprague‐Dawley rats. Life Sci 46: 1037‐1044, 1990.
 118. Gray SL , Yamaguchi N , Vencova P , Sherwood NM . Temperature‐sensitive phenotype in mice lacking pituitary adenylate cyclase‐activating polypeptide. Endocrinology 143: 3946‐3954, 2002.
 119. Griffin JD , Kaple ML , Chow AR , Boulant JA . Cellular mechanisms for neuronal thermosensitivity in the rat hypothalamus. J Physiol 492(Pt 1): 231‐242, 1996.
 120. Griffiths EC , Rothwell NJ , Stock MJ . Thermogenic effects of thyrotrophin‐releasing hormone and its analogues in the rat. Experientia 44: 40‐42, 1988.
 121. Grill HJ , Hayes MR . Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab 16: 296‐309, 2012.
 122. Grobe JL , Buehrer BA , Hilzendeger AM , Liu X , Davis DR , Xu D , Sigmund CD . Angiotensinergic signaling in the brain mediates metabolic effects of deoxycorticosterone (DOCA)‐salt in C57 mice. Hypertension 57: 600‐607, 2011.
 123. Grobe JL , Grobe CL , Beltz TG , Westphal SG , Morgan DA , Xu D , de Lange WJ , Li H , Sakai K , Thedens DR , Cassis LA , Rahmouni K , Mark AL , Johnson AK , Sigmund CD . The brain Renin‐angiotensin system controls divergent efferent mechanisms to regulate fluid and energy balance. Cell Metab 12: 431‐442, 2010.
 124. Guieu JD , Hardy JD . Effects of heating and cooling of the spinal cord on preoptic unit activity. J Appl Physiol 29: 675‐683, 1970.
 125. Gupta BN , Nier K , Hensel H . Cold‐sensitive afferents from the abdomen. Pflugers Arch 380: 203‐204, 1979.
 126. Guyenet PG , Stornetta RL , Riley T , Norton FR , Rosin DL , Lynch KR . Alpha 2A‐adrenergic receptors are present in lower brainstem catecholaminergic and serotonergic neurons innervating spinal cord [published erratum appears in Brain Res 1994 May 23;646(2):356‐7]. Brain Res 638: 285‐294, 1994.
 127. Hamann A , Flier JS , Lowell BB . Decreased brown fat markedly enhances susceptibility to diet‐induced obesity, diabetes, and hyperlipidemia. Endocrinology 137: 21‐29, 1996.
 128. Hansen KR , Krasnow SM , Nolan MA , Fraley GS , Baumgartner JW , Clifton DK , Steiner RA . Activation of the sympathetic nervous system by galanin‐like peptide–a possible link between leptin and metabolism. Endocrinology 144: 4709‐4717, 2003.
 129. Hany TF , Gharehpapagh E , Kamel EM , Buck A , Himms‐Hagen J , von Schulthess GK . Brown adipose tissue: A factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging 29: 1393‐1398, 2002.
 130. Hara J , Yanagisawa M , Sakurai T . Difference in obesity phenotype between orexin‐knockout mice and orexin neuron‐deficient mice with same genetic background and environmental conditions. Neurosci Lett 380: 239‐242, 2005.
 131. Harlan SM , Morgan DA , Agassandian K , Guo DF , Cassell MD , Sigmund CD , Mark AL , Rahmouni K . Ablation of the leptin receptor in the hypothalamic arcuate nucleus abrogates leptin‐induced sympathetic activation. Circ Res 108: 808‐812, 2011.
 132. Haynes WG , Morgan DA , Djalali A , Sivitz WI , Mark AL . Interactions between the melanocortin system and leptin in control of sympathetic nerve traffic. Hypertension 33: 542‐547, 1999.
 133. Haynes WG , Morgan DA , Walsh SA , Mark AL , Sivitz WI . Receptor‐mediated regional sympathetic nerve activation by leptin. J Clin Invest 100: 270‐278, 1997.
 134. He M , Deng C , Huang XF . The role of hypothalamic H1 receptor antagonism in antipsychotic‐induced weight gain. CNS Drugs 27: 423‐434, 2013.
 135. Hemmen TM , Lyden PD . Hypothermia after acute ischemic stroke. J Neurotrauma 26: 387‐391, 2009.
 136. Hermann DM , Luppi PH , Peyron C , Hinckel P , Jouvet M . Afferent projections to the rat nuclei raphe magnus, raphe pallidus and reticularis gigantocellularis pars alpha demonstrated by iontophoretic application of choleratoxin (subunit b). J Chem Neuroanat 13: 1‐21, 1997.
 137. Hermann GE , Barnes MJ , Rogers RC . Leptin and thyrotropin‐releasing hormone: Cooperative action in the hindbrain to activate brown adipose thermogenesis. Brain Res 1117: 118‐124, 2006.
 138. Hetherington AW , Ranson SW . Hypothalamic lesions and adiposity in the rat. Anat Rec 78: 149‐172, 1940.
 139. Hilzendeger AM , Morgan DA , Brooks L , Dellsperger D , Liu X , Grobe JL , Rahmouni K , Sigmund CD , Mark AL . A brain leptin‐renin angiotensin system interaction in the regulation of sympathetic nerve activity. Am J Physiol Heart Circ Physiol 303: H197‐H206, 2012.
 140. Hirooka Y , Polson JW , Potts PD , Dampney RA . Hypoxia‐induced Fos expression in neurons projecting to the pressor region in the rostral ventrolateral medulla. Neuroscience 80: 1209‐1224, 1997.
 141. Hodges MR , Tattersall GJ , Harris MB , McEvoy SD , Richerson DN , Deneris ES , Johnson RL , Chen ZF , Richerson GB . Defects in breathing and thermoregulation in mice with near‐complete absence of central serotonin neurons. J Neurosci 28: 2495‐2505, 2008.
 142. Holt SJ , York DA . Interaction of intracerebroventricular insulin and glucose in the regulation of the activity of sympathetic efferent nerves to brown adipose tissue in lean and obese Zucker rats. Brain Res 500: 384‐388, 1989.
 143. Hori T . Capsaicin and central control of thermoregulation. Pharmacol Ther 26: 389‐416, 1984.
 144. Horiuchi J , McDowall LM , Dampney RA . Role of 5‐HT(1A) receptors in the lower brainstem on the cardiovascular response to dorsomedial hypothalamus activation. Auton Neurosci 142: 71‐76, 2008.
 145. Horn T , Wilkinson MF , Landgraf R , Pittman QJ . Reduced febrile responses to pyrogens after lesions of the hypothalamic paraventricular nucleus. Am J Physiol 267: R323‐R328, 1994.
 146. Hylden JL , Anton F , Nahin RL . Spinal lamina I projection neurons in the rat: Collateral innervation of parabrachial area and thalamus. Neuroscience 28: 27‐37, 1989.
 147. Iliff BW , Swoap SJ . Central adenosine receptor signaling is necessary for daily torpor in mice. Am J Physiol Regul Integr Comp Physiol 303: R477‐R484, 2012.
 148. Imai‐Matsumura K , Matsumura K , Nakayama T . Involvement of ventromedial hypothalamus in brown adipose tissue thermogenesis induced by preoptic cooling in rats. Jpn J Physiol 34: 939‐943, 1984.
 149. Inglott MA , Farnham MM , Pilowsky PM . Intrathecal PACAP‐38 causes prolonged widespread sympathoexcitation via a spinally mediated mechanism and increases in basal metabolic rate in anesthetized rat. Am J Physiol Heart Circ Physiol 300: H2300‐H2307, 2011.
 150. Ishiwata T , Saito T , Hasegawa H , Yazawa T , Kotani Y , Otokawa M , Aihara Y . Changes of body temperature and thermoregulatory responses of freely moving rats during GABAergic pharmacological stimulation to the preoptic area and anterior hypothalamus in several ambient temperatures. Brain Res 1048: 32‐40, 2005.
 151. Jancso‐Gabor A , Szolcsanyi J , Jancso N . Irreversible impairment of thermoregulation induced by capsaicin and similar pungent substances in rats and guinea‐pigs. J Physiol 206: 495‐507, 1970.
 152. Jinka TR , Toien O , Drew KL . Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A(1) receptors. J Neurosci 31: 10752‐10758, 2011.
 153. Jornayvaz FR , Jurczak MJ , Lee HY , Birkenfeld AL , Frederick DW , Zhang D , Zhang XM , Samuel VT , Shulman GI . A high‐fat, ketogenic diet causes hepatic insulin resistance in mice, despite increasing energy expenditure and preventing weight gain. Am J Physiol Endocrinol Metab 299: E808‐E815, 2010.
 154. Jung KM , Clapper JR , Fu J , D'Agostino G , Guijarro A , Thongkham D , Avanesian A , Astarita G , DiPatrizio NV , Frontini A , Cinti S , Diano S , Piomelli D . 2‐arachidonoylglycerol signaling in forebrain regulates systemic energy metabolism. Cell Metab 15: 299‐310, 2012.
 155. Kasahara Y , Sato K , Takayanagi Y , Mizukami H , Ozawa K , Hidema S , So KH , Kawada T , Inoue N , Ikeda I , Roh SG , Itoi K , Nishimori K . Oxytocin receptor in the hypothalamus is sufficient to rescue normal thermoregulatory function in male oxytocin receptor knockout mice. Endocrinology 154: 4305‐4315, 2013.
 156. Kasahara Y , Takayanagi Y , Kawada T , Itoi K , Nishimori K . Impaired thermoregulatory ability of oxytocin‐deficient mice during cold‐exposure. Biosci Biotechnol Biochem 71: 3122‐3126, 2007.
 157. Kataoka N , Hioki H , Kaneko T , Nakamura K . Psychological stress activates a dorsomedial hypothalamus‐medullary raphe neural circuit to drive brown adipose tissue thermogenesis and hyperthermia. Cell Metab, 20: 1‐13, 2014.
 158. Kendall A , Mosley C , Brojer J . Tachypnea and antipyresis in febrile horses after sedation with alpha‐agonists. J Vet Intern Med 24: 1008‐1011, 2010.
 159. Kennedy AR , Pissios P , Otu H , Roberson R , Xue B , Asakura K , Furukawa N , Marino FE , Liu FF , Kahn BB , Libermann TA , Maratos‐Flier E . A high‐fat, ketogenic diet induces a unique metabolic state in mice. Am J Physiol Endocrinol Metab 292: E1724‐E1739, 2007.
 160. Klockener T , Hess S , Belgardt BF , Paeger L , Verhagen LA , Husch A , Sohn JW , Hampel B , Dhillon H , Zigman JM , Lowell BB , Williams KW , Elmquist JK , Horvath TL , Kloppenburg P , Bruning JC . High‐fat feeding promotes obesity via insulin receptor/PI3K‐dependent inhibition of SF‐1 VMH neurons. Nat Neurosci 14: 911‐918, 2011.
 161. Kobayashi A , Osaka T . Involvement of the parabrachial nucleus in thermogenesis induced by environmental cooling in the rat. Pflugers Arch 446: 760‐765, 2003.
 162. Kobayashi A , Osaka T , Inoue S , Kimura S . Thermogenesis induced by intravenous infusion of hypertonic solutions in the rat. J Physiol 535: 601‐610, 2001.
 163. Kobayashi S , Hori A , Matsumura K , Hosokawa H . Point: Heat‐induced membrane depolarization of hypothalamic neurons: A putative mechanism of central thermosensitivity. Am J Physiol Regul Integr Comp Physiol 290: R1479‐R1480; discussion R1484, 2006.
 164. Kok SW , Overeem S , Visscher TL , Lammers GJ , Seidell JC , Pijl H , Meinders AE . Hypocretin deficiency in narcoleptic humans is associated with abdominal obesity. Obes Res 11: 1147‐1154, 2003.
 165. Kolanowski J , Young JB , Landsberg L . Stimulatory influence of D(‐)3‐hydroxybutyrate feeding on sympathetic nervous system activity in the rat. Metabolism 43: 180‐185, 1994.
 166. Kong D , Tong Q , Ye C , Koda S , Fuller PM , Krashes MJ , Vong L , Ray RS , Olson DP , Lowell BB . GABAergic RIP‐Cre neurons in the arcuate nucleus selectively regulate energy expenditure. Cell 151: 645‐657, 2012.
 167. Kontani Y , Wang Y , Kimura K , Inokuma KI , Saito M , Suzuki‐Miura T , Wang Z , Sato Y , Mori N , Yamashita H . UCP1 deficiency increases susceptibility to diet‐induced obesity with age. Aging Cell 4: 147‐155, 2005.
 168. Kotz CM , Briggs JE , Grace MK , Levine AS , Billington CJ . Divergence of the feeding and thermogenic pathways influenced by NPY in the hypothalamic PVN of the rat. Am J Physiol 275: R471‐R477, 1998.
 169. Kozak LP . Brown fat and the myth of diet‐induced thermogenesis. Cell Metab 11: 263‐267, 2010.
 170. Lahdesmaki J , Sallinen J , MacDonald E , Sirvio J , Scheinin M . Alpha2‐adrenergic drug effects on brain monoamines, locomotion, and body temperature are largely abolished in mice lacking the alpha2A‐adrenoceptor subtype. Neuropharmacology 44: 882‐892, 2003.
 171. Larsen PJ , Tang‐Christensen M , Holst JJ , Orskov C . Distribution of glucagon‐like peptide‐1 and other preproglucagon‐derived peptides in the rat hypothalamus and brainstem. Neuroscience 77: 257‐270, 1997.
 172. Lazarus M , Yoshida K , Coppari R , Bass CE , Mochizuki T , Lowell BB , Saper CB . EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nat Neurosci 10: 1131‐1133, 2007.
 173. Lee SJ , Kirigiti M , Lindsley SR , Loche A , Madden CJ , Morrison SF , Smith MS , Grove KL . Efferent projections of neuropeptide Y‐expressing neurons of the dorsomedial hypothalamus in chronic hyperphagic models. J Comp Neurol 521: 1891‐1914, 2013.
 174. Lee YH , Petkova AP , Mottillo EP , Granneman JG . In vivo identification of bipotential adipocyte progenitors recruited by beta3‐adrenoceptor activation and high‐fat feeding. Cell Metab 15: 480‐491, 2012.
 175. LeFeuvre RA , Rothwell NJ , Stock MJ . Activation of brown fat thermogenesis in response to central injection of corticotropin releasing hormone in the rat. Neuropharmacology 26: 1217‐1221, 1987.
 176. Leung PM , Rogers QR . Importance of prepyriform cortex in food‐intake response of rats to amino acids. Am J Physiol 221: 929‐935, 1971.
 177. Levin BE , Triscari J , Sullivan AC . The effect of diet and chronic obesity on brain catecholamine turnover in the rat. Pharmacol Biochem Behav 24: 299‐304, 1986a.
 178. Levin BE , Triscari J , Sullivan AC . Metabolic features of diet‐induced obesity without hyperphagia in young rats. Am J Physiol 251: R433‐R440, 1986b.
 179. Levin BE , Triscari J , Sullivan AC . Relationship between sympathetic activity and diet‐induced obesity in two rat strains. Am J Physiol 245: R364‐R371, 1983.
 180. Li J , Xiong K , Pang Y , Dong Y , Kaneko T , Mizuno N . Medullary dorsal horn neurons providing axons to both the parabrachial nucleus and thalamus. J Comp Neurol 498: 539‐551, 2006.
 181. Liu X , Rossmeisl M , McClaine J , Riachi M , Harper ME , Kozak LP . Paradoxical resistance to diet‐induced obesity in UCP1‐deficient mice. J Clin Invest 111: 399‐407, 2003.
 182. Lkhagvasuren B , Nakamura Y , Oka T , Sudo N , Nakamura K . Social defeat stress induces hyperthermia through activation of thermoregulatory sympathetic premotor neurons in the medullary raphe region. Eur J Neurosci 34: 1442‐1452, 2011.
 183. Lockie SH , Heppner KM , Chaudhary N , Chabenne JR , Morgan DA , Veyrat‐Durebex C , Ananthakrishnan G , Rohner‐Jeanrenaud F , Drucker DJ , DiMarchi R , Rahmouni K , Oldfield BJ , Tschop MH , Perez‐Tilve D . Direct control of brown adipose tissue thermogenesis by central nervous system glucagon‐like peptide‐1 receptor signaling. Diabetes 61: 2753‐2762, 2012.
 184. Loewy AD . Raphe pallidus and raphe obscurus projections to the intermediolateral cell column in the rat. Brain Res 222: 129‐133, 1981.
 185. Loewy AD , McKellar S . Serotonergic projections from the ventral medulla to the intermediolateral cell column in the rat. Brain Res 211: 146‐152, 1981.
 186. Lomax P , Malveaux E , Smith RE . Brain temperatures in the rat during exposure to low environmental temperatures. Am J Physiol 207: 736‐739, 1964.
 187. Lopez M , Varela L , Vazquez MJ , Rodriguez‐Cuenca S , Gonzalez CR , Velagapudi VR , Morgan DA , Schoenmakers E , Agassandian K , Lage R , Martinez de Morentin PB , Tovar S , Nogueiras R , Carling D , Lelliott C , Gallego R , Oresic M , Chatterjee K , Saha AK , Rahmouni K , Dieguez C , Vidal‐Puig A . Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med 16: 1001‐1008, 2010.
 188. Lu J , Zhang YH , Chou TC , Gaus SE , Elmquist JK , Shiromani P , Saper CB . Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep‐wake cycle and temperature regulation. J Neurosci 21: 4864‐4874, 2001.
 189. Lundius EG , Sanchez‐Alavez M , Ghochani Y , Klaus J , Tabarean IV . Histamine influences body temperature by acting at H1 and H3 receptors on distinct populations of preoptic neurons. J Neurosci 30: 4369‐4381, 2010.
 190. Lupien JR , Bray GA . Nicotine increases thermogenesis in brown adipose tissue in rats. Pharmacol Biochem Behav 29: 33‐37, 1988.
 191. Madden CJ . Glucoprivation in the ventrolateral medulla decreases brown adipose tissue sympathetic nerve activity by decreasing the activity of neurons in raphe pallidus. Am J Physiol Regul Integr Comp Physiol 302: R224‐R232, 2012.
 192. Madden CJ , Morrison SF . Excitatory amino acid receptor activation in the raphe pallidus area mediates prostaglandin‐evoked thermogenesis. Neuroscience 122: 5‐15, 2003.
 193. Madden CJ , Morrison SF . Excitatory amino acid receptors in the dorsomedial hypothalamus mediate prostaglandin‐evoked thermogenesis in brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 286: R320‐R325, 2004.
 194. Madden CJ , Morrison SF . Hypoxic activation of arterial chemoreceptors inhibits sympathetic outflow to brown adipose tissue in rats. J Physiol 566: 559‐573, 2005.
 195. Madden CJ , Morrison SF . Serotonin potentiates sympathetic responses evoked by spinal NMDA. J Physiol 577: 525‐537, 2006.
 196. Madden CJ , Morrison SF . Brown adipose tissue sympathetic nerve activity is potentiated by activation of 5‐hydroxytryptamine (5‐HT)(1A)/5‐HT(7) receptors in the rat spinal cord. Neuropharmacology 54: 487‐496, 2008.
 197. Madden CJ , Morrison SF . Neurons in the paraventricular nucleus of the hypothalamus inhibit sympathetic outflow to brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 296: R831‐R843, 2009.
 198. Madden CJ , Morrison SF . Endogenous activation of spinal 5‐hydroxytryptamine (5‐HT) receptors contributes to the thermoregulatory activation of brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 298: R776‐R783, 2010.
 199. Madden CJ , Tupone D , Cano G , Morrison SF . alpha2 Adrenergic receptor‐mediated inhibition of thermogenesis. J Neurosci 33: 2017‐2028, 2013.
 200. Madden CJ , Tupone D , Morrison SF . Orexin modulates brown adipose tissue thermogenesis. Biomol Concepts 3: 381‐386, 2012.
 201. Mager M , Robinson S , Freinkel N . Drug modification of hypothermia induced by CNS glucopenia in the mouse. J Appl Physiol 41: 559‐564, 1976.
 202. Mano‐Otagiri A , Iwasaki‐Sekino A , Ohata H , Arai K , Shibasaki T . Nicotine suppresses energy storage through activation of sympathetic outflow to brown adipose tissue via corticotropin‐releasing factor type 1 receptor. Neurosci Lett 455: 26‐29, 2009.
 203. Mark AL , Agassandian K , Morgan DA , Liu X , Cassell MD , Rahmouni K . Leptin signaling in the nucleus tractus solitarii increases sympathetic nerve activity to the kidney. Hypertension 53: 375‐380, 2009.
 204. Marks A , Vianna DM , Carrive P . Nonshivering thermogenesis without interscapular brown adipose tissue involvement during conditioned fear in the rat. Am J Physiol Regul Integr Comp Physiol 296: R1239‐R1247, 2009.
 205. Martenson ME , Cetas JS , Heinricher MM . A possible neural basis for stress‐induced hyperalgesia. Pain 142: 236‐244, 2009.
 206. Martin‐Cora FJ , Fornal CA , Metzler CW , Jacobs BL . Single‐unit responses of serotonergic medullary and pontine raphe neurons to environmental cooling in freely moving cats. Neuroscience 98: 301‐309, 2000.
 207. Martinez de Morentin PB , Whittle AJ , Ferno J , Nogueiras R , Dieguez C , Vidal‐Puig A , Lopez M . Nicotine induces negative energy balance through hypothalamic AMP‐activated protein kinase. Diabetes 61: 807‐817, 2012.
 208. Masaki T , Yasuda T , Yoshimatsu H . Apelin‐13 microinjection into the paraventricular nucleus increased sympathetic nerve activity innervating brown adipose tissue in rats. Brain Res Bull 87: 540‐543, 2012.
 209. Matsuda T , Hori T , Nakashima T . Thermal and PGE2 sensitivity of the organum vasculosum lamina terminalis region and preoptic area in rat brain slices. J Physiol 454: 197‐212, 1992.
 210. Matsumura K , Cao C , Ozaki M , Morii H , Nakadate K , Watanabe Y . Brain endothelial cells express cyclooxygenase‐2 during lipopolysaccharide‐induced fever: Light and electron microscopic immunocytochemical studies. J Neurosci 18: 6279‐6289, 1998.
 211. McAllen RM , Tanaka M , Ootsuka Y , McKinley MJ . Multiple thermoregulatory effectors with independent central controls. Eur J Appl Physiol 109: 27‐33, 2010.
 212. McKemy DD , Neuhausser WM , Julius D . Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416: 52‐58, 2002.
 213. Merchenthaler I , Lane M , Shughrue P . Distribution of pre‐pro‐glucagon and glucagon‐like peptide‐1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol 403: 261‐280, 1999.
 214. Millan MJ , Dekeyne A , Newman‐Tancredi A , Cussac D , Audinot V , Milligan G , Duqueyroix D , Girardon S , Mullot J , Boutin JA , Nicolas JP , Renouard‐Try A , Lacoste JM , Cordi A . S18616, a highly potent, spiroimidazoline agonist at alpha(2)‐adrenoceptors: I. Receptor profile, antinociceptive and hypothermic actions in comparison with dexmedetomidine and clonidine. J Pharmacol Exp Ther 295: 1192‐1205, 2000.
 215. Minokoshi Y , Saito M , Shimazu T . Sympathetic denervation impairs responses of brown adipose tissue to VMH stimulation. Am J Physiol 251: R1005‐R1008, 1986.
 216. Miyazaki T , Coote JH , Dun NJ . Excitatory and inhibitory effects of epinephrine on neonatal rat sympathetic preganglionic neurons in vitro. Brain Res 497: 108‐116, 1989.
 217. Mochizuki T , Klerman EB , Sakurai T , Scammell TE . Elevated body temperature during sleep in orexin knockout mice. Am J Physiol Regul Integr Comp Physiol 291: R533‐R540, 2006.
 218. Mohammed M , Ootsuka Y , Blessing W . Brown adipose tissue thermogenesis contributes to emotional hyperthermia in a resident rat suddenly confronted with an intruder rat. Am J Physiol Regul Integr Comp Physiol 306: R394‐R400, 2014.
 219. Monda M , Sullo A , De Luca V , Pellicano MP , Viggiano A . L‐threonine injection into PPC modifies food intake, lateral hypothalamic activity, and sympathetic discharge. Am J Physiol 273: R554‐R559, 1997.
 220. Monda M , Viggiano A , De Luca V . Haloperidol reduces the sympathetic and thermogenic activation induced by orexin A. Neurosci Res 45: 17‐23, 2003.
 221. Monda M , Viggiano A , Mondola P , De Luca V . Inhibition of prostaglandin synthesis reduces hyperthermic reactions induced by hypocretin‐1/orexin A. Brain Res 909: 68‐74, 2001.
 222. Morrison SF . Activation of 5‐HT1A receptors in raphe pallidus inhibits leptin‐evoked increases in brown adipose tissue thermogenesis. Am J Physiol Regul Integr Comp Physiol 286: R832‐R837, 2004.
 223. Morrison SF . Raphe pallidus neurons mediate prostaglandin E2‐evoked increases in brown adipose tissue thermogenesis. Neuroscience 121: 17‐24, 2003.
 224. Morrison SF. 2010 Carl Ludwig Distinguished Lectureship of the APS Neural Control and Autonomic Regulation Section: Central neural pathways for thermoregulatory cold defense. J Appl Physiol (1985) 110: 1137‐1149, 2011.
 225. Morrison SF , Blessing WW . Central nervous system regulation of body temperature. In: Llewellyn‐Smith IJ , Verberne AJM , editors. Central Regulation of Autonomic Functions. New York, NY: Oxford University Press, 2011, pp. 324‐344.
 226. Morrison SF , Cao W‐H , Madden CJ . Dorsomedial hypothalamic and brainstem pathways controlling thermogenesis in brown adipose tissue. J Therm Biol 29: 333‐337, 2004.
 227. Morrison SF , Madden CJ , Tupone D . Central control of brown adipose tissue thermogenesis. Front Endocrinol 3: pii: 00005, 2012.
 228. Morrison SF , Madden CJ , Tupone D . Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab 19: 741‐756, 2014.
 229. Morrison SF , Nakamura K . Central neural pathways for thermoregulation. Front Biosci 16: 74‐104, 2011.
 230. Morrison SF , Nakamura K , Madden CJ . Central control of thermogenesis in mammals. Exp Physiol 93: 773‐797, 2008.
 231. Morrison SF , Sved AF , Passerin AM . GABA‐mediated inhibition of raphe pallidus neurons regulates sympathetic outflow to brown adipose tissue. Am J Physiol 276: R290‐R297, 1999.
 232. Muller C , Voirol MJ , Stefanoni N , Surmely JF , Jequier E , Gaillard RC , Tappy L . Effect of chronic intracerebroventricular infusion of insulin on brown adipose tissue activity in fed and fasted rats. Int J Obes 21: 562‐566, 1997.
 233. Murazumi K , Yahata T , Kuroshima A . Effects of cold and immobilization stress on noradrenaline turnover in brown adipose tissue of rat. Jpn J Physiol 37: 601‐607, 1987.
 234. Muzzi M , Blasi F , Masi A , Coppi E , Traini C , Felici R , Pittelli M , Cavone L , Pugliese AM , Moroni F , Chiarugi A . Neurological basis of AMP‐dependent thermoregulation and its relevance to central and peripheral hyperthermia. J Cereb Blood Flow Metab 33: 183‐190, 2012.
 235. Nagashima K , Nakai S , Tanaka M , Kanosue K . Neuronal circuitries involved in thermoregulation. Auton Neurosci 85: 18‐25, 2000.
 236. Nakamura K . Central circuitries for body temperature regulation and fever. Am J Physiol Regul Integr Comp Physiol 301: R1207‐R1228, 2011.
 237. Nakamura K , Kaneko T , Yamashita Y , Hasegawa H , Katoh H , Ichikawa A , Negishi M . Immunocytochemical localization of prostaglandin EP3 receptor in the rat hypothalamus. Neurosci Lett 260: 117‐120, 1999.
 238. Nakamura K , Kaneko T , Yamashita Y , Hasegawa H , Katoh H , Negishi M . Immunohistochemical localization of prostaglandin EP3 receptor in the rat nervous system. J Comp Neurol 421: 543‐569, 2000.
 239. Nakamura K , Matsumura K , Hubschle T , Nakamura Y , Hioki H , Fujiyama F , Boldogkoi Z , Konig M , Thiel HJ , Gerstberger R , Kobayashi S , Kaneko T . Identification of sympathetic premotor neurons in medullary raphe regions mediating fever and other thermoregulatory functions. J Neurosci 24: 5370‐5380, 2004.
 240. Nakamura K , Matsumura K , Kaneko T , Kobayashi S , Katoh H , Negishi M . The rostral raphe pallidus nucleus mediates pyrogenic transmission from the preoptic area. J Neurosci 22: 4600‐4610, 2002.
 241. Nakamura K , Morrison SF . Central efferent pathways mediating skin cooling‐evoked sympathetic thermogenesis in brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 292: R127‐R136, 2007.
 242. Nakamura K , Morrison SF . Preoptic mechanism for cold‐defensive responses to skin cooling. J Physiol 586: 2611‐2620, 2008.
 243. Nakamura K , Morrison SF . A thermosensory pathway that controls body temperature. Nat Neurosci 11: 62‐71, 2008.
 244. Nakamura K , Morrison SF . A thermosensory pathway mediating heat‐defense responses. Proc Natl Acad Sci U S A 107: 8848‐8853, 2010.
 245. Nakamura K , Wu SX , Fujiyama F , Okamoto K , Hioki H , Kaneko T . Independent inputs by VGLUT2‐ and VGLUT3‐positive glutamatergic terminals onto rat sympathetic preganglionic neurons. Neuroreport 15: 431‐436, 2004.
 246. Nakamura Y , Nakamura K , Matsumura K , Kobayashi S , Kaneko T , Morrison SF . Direct pyrogenic input from prostaglandin EP3 receptor‐expressing preoptic neurons to the dorsomedial hypothalamus. Eur J Neurosci 22: 3137‐3146, 2005.
 247. Nakamura Y , Nakamura K , Morrison SF . Different populations of prostaglandin EP3 receptor‐expressing preoptic neurons project to two fever‐mediating sympathoexcitatory brain regions. Neuroscience 161: 614‐620, 2009.
 248. Nakayama T , Eisenman JS , Hardy JD . Single unit activity of anterior hypothalamus during local heating. Science 134: 560‐561, 1961.
 249. Nakayama T , Hammel H , Hardy J , Eisenman J . Thermal stimulation of electrical activity of single units of the preoptic region. Am J Physiol 204: 1122‐1126, 1963.
 250. Narumiya S , Sugimoto Y , Ushikubi F . Prostanoid receptors: Structures, properties, and functions. Physiol Rev 79: 1193‐1226, 1999.
 251. Nason MW, Jr. , Mason P . Medullary raphe neurons facilitate brown adipose tissue activation. J Neurosci 26: 1190‐1198, 2006.
 252. Nautiyal KM , Dailey M , Brito N , Brito MN , Harris RB , Bartness TJ , Grill HJ . Energetic responses to cold temperatures in rats lacking forebrain‐caudal brain stem connections. Am J Physiol Regul Integr Comp Physiol 295: R789‐R798, 2008.
 253. Nedergaard J , Cannon B . UCP1 mRNA does not produce heat. Biochim Biophys Acta 1831: 943‐949, 2013.
 254. Negishi M , Irie A , Sugimoto Y , Namba T , Ichikawa A . Selective coupling of prostaglandin E receptor EP3D to Gi and Gs through interaction of alpha‐carboxylic acid of agonist and arginine residue of seventh transmembrane domain. J Biol Chem 270: 16122‐16127, 1995.
 255. Nicholson C . Diffusion from an injected volume of a substance in brain tissue with arbitrary volume fraction and tortuosity. Brain Res 333: 325‐329, 1985.
 256. Niijima A . Reflex effects from leptin sensors in the white adipose tissue of the epididymis to the efferent activity of the sympathetic and vagus nerve in the rat. Neurosci Lett 262: 125‐128, 1999.
 257. Niijima A , Rohner‐Jeanrenaud F , Jeanrenaud B . Role of ventromedial hypothalamus on sympathetic efferents of brown adipose tissue. Am J Physiol 247: R650‐R654, 1984.
 258. Okita N , Hayashida Y , Kojima Y , Fukushima M , Yuguchi K , Mikami K , Yamauchi A , Watanabe K , Noguchi M , Nakamura M , Toda T , Higami Y . Differential responses of white adipose tissue and brown adipose tissue to caloric restriction in rats. Mech Ageing Dev 133: 255‐266, 2012.
 259. Oldfield BJ , Giles ME , Watson A , Anderson C , Colvill LM , McKinley MJ . The neurochemical characterisation of hypothalamic pathways projecting polysynaptically to brown adipose tissue in the rat. Neuroscience 110: 515‐526, 2002.
 260. Ono K , Tsukamoto‐Yasui M , Hara‐Kimura Y , Inoue N , Nogusa Y , Okabe Y , Nagashima K , Kato F . Intragastric administration of capsiate, a transient receptor potential channel agonist, triggers thermogenic sympathetic responses. J Appl Physiol 110: 789‐798, 2011.
 261. Ootsuka Y , Blessing WW . Thermogenesis in brown adipose tissue: Increase by 5‐HT2A receptor activation and decrease by 5‐HT1A receptor activation in conscious rats. Neurosci Lett 395: 170‐174, 2006.
 262. Ootsuka Y , Blessing WW , Nalivaiko E . Selective blockade of 5‐HT2A receptors attenuates the increased temperature response in brown adipose tissue to restraint stress in rats. Stress 11: 125‐133, 2008.
 263. Ootsuka Y , Blessing WW , Steiner AA , Romanovsky AA . Fever response to intravenous prostaglandin E2 is mediated by the brain but does not require afferent vagal signaling. Am J Physiol Regul Integr Comp Physiol 294: R1294‐R1303, 2008.
 264. Ootsuka Y , de Menezes RC , Zaretsky DV , Alimoradian A , Hunt J , Stefanidis A , Oldfield BJ , Blessing WW . Brown adipose tissue thermogenesis heats brain and body as part of the brain‐coordinated ultradian basic rest‐activity cycle. Neuroscience 164: 849‐861, 2009.
 265. Osaka T . Cold‐induced thermogenesis mediated by GABA in the preoptic area of anesthetized rats. Am J Physiol Regul Integr Comp Physiol 287: R306‐R313, 2004a.
 266. Osaka T . Thermogenesis elicited by skin cooling in anaesthetized rats: Lack of contribution of the cerebral cortex. J Physiol 555: 503‐513, 2004b.
 267. Osaka T. Heat loss responses and blockade of prostaglandin E(2)‐induced thermogenesis elicited by alpha(1)‐adrenergic activation in the rostromedial preoptic area. Neuroscience 162: 1420‐1428, 2009.
 268. Osaka T . Thermoregulatory responses elicited by microinjection of L‐glutamate and its interaction with thermogenic effects of GABA and prostaglandin E2 in the preoptic area. Neuroscience 226: 156‐164, 2012.
 269. Osaka T , Kobayashi A , Inoue S . Thermogenesis induced by osmotic stimulation of the intestines in the rat. J Physiol 532: 261‐269, 2001.
 270. Osaka T , Kobayashi A , Namba Y , Ezaki O , Inoue S , Kimura S , Lee TH . Temperature‐ and capsaicin‐sensitive nerve fibers in brown adipose tissue attenuate thermogenesis in the rat. Pflugers Arch 437: 36‐42, 1998.
 271. Osborne PG , Onoe H , Watanabe Y . GABAergic system inducing hyperthermia in the rat preoptic area: Its independence of prostaglandin E2 system. Brain Res 661: 237‐242, 1994.
 272. Panula P , Yang HY , Costa E . Histamine‐containing neurons in the rat hypothalamus. Proc Natl Acad Sci U S A 81: 2572‐2576, 1984.
 273. Patel HR , Qi Y , Hawkins EJ , Hileman SM , Elmquist JK , Imai Y , Ahima RS . Neuropeptide Y deficiency attenuates responses to fasting and high‐fat diet in obesity‐prone mice. Diabetes 55: 3091‐3098, 2006.
 274. Peier AM , Moqrich A , Hergarden AC , Reeve AJ , Andersson DA , Story GM , Earley TJ , Dragoni I , McIntyre P , Bevan S , Patapoutian A . A TRP channel that senses cold stimuli and menthol. Cell 108: 705‐715, 2002.
 275. Pelleymounter MA , Cullen MJ , Baker MB , Hecht R , Winters D , Boone T , Collins F . Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269: 540‐543, 1995.
 276. Perkins MN , Rothwell NJ , Stock MJ , Stone TW . Activation of brown adipose tissue thermogenesis by the ventromedial hypothalamus. Nature 289: 401‐402, 1981.
 277. Peyron C , Tighe DK , van den Pol AN , de Lecea L , Heller HC , Sutcliffe JG , Kilduff TS . Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18: 9996‐10015, 1998.
 278. Plazzi G , Moghadam KK , Maggi LS , Donadio V , Vetrugno R , Liguori R , Zoccoli G , Poli F , Pizza F , Pagotto U , Ferri R . Autonomic disturbances in narcolepsy. Sleep Med Rev 15: 187‐196, 2011.
 279. Pogorzala LA , Mishra SK , Hoon MA . The Cellular Code for Mammalian Thermosensation. J Neurosci 33: 5533‐5541, 2013.
 280. Porter JP , Anderson JM , Robison RJ , Phillips AC . Effect of central angiotensin II on body weight gain in young rats. Brain Res 959: 20‐28, 2003.
 281. Porter JP , Potratz KR . Effect of intracerebroventricular angiotensin II on body weight and food intake in adult rats. Am J Physiol Regul Integr Comp Physiol 287: R422‐R428, 2004.
 282. Quarta C , Bellocchio L , Mancini G , Mazza R , Cervino C , Braulke LJ , Fekete C , Latorre R , Nanni C , Bucci M , Clemens LE , Heldmaier G , Watanabe M , Leste‐Lassere T , Maitre M , Tedesco L , Fanelli F , Reuss S , Klaus S , Srivastava RK , Monory K , Valerio A , Grandis A , De Giorgio R , Pasquali R , Nisoli E , Cota D , Lutz B , Marsicano G , Pagotto U . CB(1) signaling in forebrain and sympathetic neurons is a key determinant of endocannabinoid actions on energy balance. Cell Metab 11: 273‐285, 2010.
 283. Rahmouni K , Morgan DA . Hypothalamic arcuate nucleus mediates the sympathetic and arterial pressure responses to leptin. Hypertension 49: 647‐652, 2007.
 284. Rahmouni K , Morgan DA , Morgan GM , Liu X , Sigmund CD , Mark AL , Haynes WG . Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin. J Clin Invest 114: 652‐658, 2004.
 285. Rahmouni K , Morgan DA , Morgan GM , Mark AL , Haynes WG . Role of selective leptin resistance in diet‐induced obesity hypertension. Diabetes 54: 2012‐2018, 2005.
 286. Ranels HJ , Griffin JD . The effects of prostaglandin E2 on the firing rate activity of thermosensitive and temperature insensitive neurons in the ventromedial preoptic area of the rat hypothalamus. Brain Res 964: 42‐50, 2003.
 287. Rathner JA , Morrison SF . Rostral ventromedial periaqueductal gray: A source of inhibition of the sympathetic outflow to brown adipose tissue. Brain Res 1077: 99‐107, 2006.
 288. Riedel W . Warm receptors in the dorsal abdominal wall of the rabbit. Pflugers Arch 361: 205‐206, 1976.
 289. Ritter S , Li AJ , Wang Q , Dinh TT . Minireview: The value of looking backward: The essential role of the hindbrain in counterregulatory responses to glucose deficit. Endocrinology 152: 4019‐4032, 2011.
 290. Ritter S , Llewellyn‐Smith I , Dinh TT . Subgroups of hindbrain catecholamine neurons are selectively activated by 2‐deoxy‐D‐glucose induced metabolic challenge. Brain Res 805: 41‐54, 1998.
 291. Rogers RC , Barnes MJ , Hermann GE . Leptin “gates” thermogenic action of thyrotropin‐releasing hormone in the hindbrain. Brain Res 1295: 135‐141, 2009.
 292. Romanovsky AA . Do fever and anapyrexia exist? Analysis of set point‐based definitions. Am J Physiol Regul Integr Comp Physiol 287: R992‐R995, 2004.
 293. Romanovsky AA . Thermoregulation: Some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol 292: R37‐R46, 2007.
 294. Romanovsky AA , Almeida MC , Garami A , Steiner AA , Norman MH , Morrison SF , Nakamura K , Burmeister JJ , Nucci TB . The transient receptor potential vanilloid‐1 channel in thermoregulation: A thermosensor it is not. Pharmacol Rev 61: 228‐261, 2009.
 295. Romanovsky AA , Ivanov AI , Shimansky YP . Selected contribution: Ambient temperature for experiments in rats: A new method for determining the zone of thermal neutrality. J Appl Physiol 92: 2667‐2679, 2002.
 296. Romanovsky AA , Shido O , Sakurada S , Sugimoto N , Nagasaka T . Endotoxin shock: Thermoregulatory mechanisms. Am J Physiol 270: R693‐R703, 1996.
 297. Rosin DL , Weston MC , Sevigny CP , Stornetta RL , Guyenet PG . Hypothalamic orexin (hypocretin) neurons express vesicular glutamate transporters VGLUT1 or VGLUT2. J Comp Neurol 465: 593‐603, 2003.
 298. Rossi J , Balthasar N , Olson D , Scott M , Berglund E , Lee CE , Choi MJ , Lauzon D , Lowell BB , Elmquist JK . Melanocortin‐4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab 13: 195‐204, 2011.
 299. Rothwell NJ . Central effects of TNF alpha on thermogenesis and fever in the rat. Biosci Rep 8: 345‐352, 1988.
 300. Rothwell NJ . CRF is involved in the pyrogenic and thermogenic effects of interleukin 1 beta in the rat. Am J Physiol 256: E111‐E115, 1989.
 301. Rothwell NJ , Saville ME , Stock MJ . Acute effects of food, 2‐deoxy‐D‐glucose and noradrenaline on metabolic rate and brown adipose tissue in normal and atropinised lean and obese (fa/fa) Zucker rats. Pflugers Arch 392: 172‐177, 1981.
 302. Rothwell NJ , Stock MJ . A role for insulin in the diet‐induced thermogenesis of cafeteria‐fed rats. Metabolism 30: 673‐678, 1981.
 303. Rothwell NJ , Stock MJ . Effect of chronic food restriction on energy balance, thermogenic capacity, and brown‐adipose‐tissue activity in the rat. Biosci Rep 2: 543‐549, 1982.
 304. Rothwell NJ , Stock MJ , Thexton AJ . Decerebration activates thermogenesis in the rat. J Physiol 342: 15‐22, 1983.
 305. Rothwell NJ , Stock MJ , Tyzbir RS . Mechanisms of thermogenesis induced by low protein diets. Metabolism 32: 257‐261, 1983.
 306. Rudell JB , Rechs AJ , Kelman TJ , Ross‐Inta CM , Hao S , Gietzen DW . The anterior piriform cortex is sufficient for detecting depletion of an indispensable amino acid, showing independent cortical sensory function. J Neurosci 31: 1583‐1590, 2011.
 307. Ruohonen ST , Savontaus E , Rinne P , Rosmaninho‐Salgado J , Cavadas C , Ruskoaho H , Koulu M , Pesonen U . Stress‐induced hypertension and increased sympathetic activity in mice overexpressing neuropeptide Y in noradrenergic neurons. Neuroendocrinology 89: 351‐360, 2009.
 308. Rusyniak DE , Ootsuka Y , Blessing WW . When administered to rats in a cold environment, 3,4‐methylenedioxymethamphetamine reduces brown adipose tissue thermogenesis and increases tail blood flow: Effects of pretreatment with 5‐HT1A and dopamine D2 antagonists. Neuroscience 154: 1619‐1626, 2008.
 309. Sacks H , Symonds ME . Anatomical locations of human brown adipose tissue: Functional relevance and implications in obesity and type 2 diabetes. Diabetes 62: 1783‐1790, 2013.
 310. Sahu A , Kalra SP , Crowley WR , Kalra PS . Evidence that NPY‐containing neurons in the brainstem project into selected hypothalamic nuclei: Implication in feeding behavior. Brain Res 457: 376‐378, 1988.
 311. Saito M , Okamatsu‐Ogura Y , Matsushita M , Watanabe K , Yoneshiro T , Nio‐Kobayashi J , Iwanaga T , Miyagawa M , Kameya T , Nakada K , Kawai Y , Tsujisaki M . High Incidence of Metabolically Active Brown Adipose Tissue in Healthy Adult Humans. Diabetes 58: 1526‐1531, 2009.
 312. Sakaguchi T , Arase K , Bray GA . Effect of intrahypothalamic hydroxybutyrate on sympathetic firing rate. Metabolism 37: 732‐735, 1988.
 313. Sakaguchi T , Arase K , Fisler JS , Bray GA . Effect of a high‐fat diet on firing rate of sympathetic nerves innervating brown adipose tissue in anesthetized rats. Physiol Behav 45: 1177‐1182, 1989.
 314. Sakaguchi T , Bray GA . Intrahypothalamic injection of insulin decreases firing rate of sympathetic nerves. Proc Natl Acad Sci U S A 84: 2012‐2014, 1987.
 315. Sakaguchi T , Bray GA . Sympathetic activity following paraventricular injections of glucose and insulin. Brain Res Bull 21: 25‐29, 1988.
 316. Sakaguchi T , Bray GA . Effect of norepinephrine, serotonin and tryptophan on the firing rate of sympathetic nerves. Brain Res 492: 271‐280, 1989.
 317. Sakaguchi T , Bray GA , Eddlestone G . Sympathetic activity following paraventricular or ventromedial hypothalamic lesions in rats. Brain Res Bull 20: 461‐465, 1988.
 318. Sakaguchi T , Takahashi M , Bray GA . Diurnal changes in sympathetic activity. Relation to food intake and to insulin injected into the ventromedial or suprachiasmatic nucleus. J Clin Invest 82: 282‐286, 1988.
 319. Sakai K , Takahashi K , Anaclet C , Lin JS . Sleep‐waking discharge of ventral tuberomammillary neurons in wild‐type and histidine decarboxylase knock‐out mice. Front Behav Neurosci 4: 53, 2010.
 320. Sakurai T , Amemiya A , Ishii M , Matsuzaki I , Chemelli RM , Tanaka H , Williams SC , Richardson JA , Kozlowski GP , Wilson S , Arch JR , Buckingham RE , Haynes AC , Carr SA , Annan RS , McNulty DE , Liu WS , Terrett JA , Elshourbagy NA , Bergsma DJ , Yanagisawa M . Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein‐coupled receptors that regulate feeding behavior. Cell 92: 573‐585, 1998.
 321. Samuels BC , Zaretsky DV , DiMicco JA . Tachycardia evoked by disinhibition of the dorsomedial hypothalamus in rats is mediated through medullary raphe. J Physiol 538: 941‐946, 2002.
 322. Samuels BC , Zaretsky DV , DiMicco JA . Dorsomedial hypothalamic sites where disinhibition evokes tachycardia correlate with location of raphe‐projecting neurons. Am J Physiol Regul Integr Comp Physiol 287: R472‐R478, 2004.
 323. Sanchez‐Alavez M , Tabarean IV , Osborn O , Mitsukawa K , Schaefer J , Dubins J , Holmberg KH , Klein I , Klaus J , Gomez LF , Kolb H , Secrest J , Jochems J , Myashiro K , Buckley P , Hadcock JR , Eberwine J , Conti B , Bartfai T . Insulin causes hyperthermia by direct inhibition of warm‐sensitive neurons. Diabetes 59: 43‐50, 2010.
 324. Saper CB , Fuller PM , Pedersen NP , Lu J , Scammell TE . Sleep state switching. Neuron 68: 1023‐1042, 2010.
 325. Saper CB , Reis DJ , Joh T . Medullary catecholamine inputs to the anteroventral third ventricular cardiovascular regulatory region in the rat. Neurosci Lett 42: 285‐291, 1983.
 326. Sarkar S , Zaretskaia MV , Zaretsky DV , Moreno M , DiMicco JA . Stress‐ and lipopolysaccharide‐induced c‐fos expression and nNOS in hypothalamic neurons projecting to medullary raphe in rats: A triple immunofluorescent labeling study. Eur J Neurosci 26: 2228‐2238, 2007.
 327. Sasek CA , Wessendorf MW , Helke CJ . Evidence for co‐existence of thyrotropin‐releasing hormone, substance P and serotonin in ventral medullary neurons that project to the intermediolateral cell column in the rat. Neuroscience 35: 105‐119, 1990.
 328. Satoh N , Ogawa Y , Katsuura G , Numata Y , Masuzaki H , Yoshimasa Y , Nakao K . Satiety effect and sympathetic activation of leptin are mediated by hypothalamic melanocortin system. Neurosci Lett 249: 107‐110, 1998.
 329. Sawchenko PE , Swanson LW , Grzanna R , Howe PR , Bloom SR , Polak JM . Colocalization of neuropeptide Y immunoreactivity in brainstem catecholaminergic neurons that project to the paraventricular nucleus of the hypothalamus. J Comp Neurol 241: 138‐153, 1985.
 330. Scammell TE , Elmquist JK , Griffin JD , Saper CB . Ventromedial preoptic prostaglandin E2 activates fever‐producing autonomic pathways. J Neurosci 16: 6246‐6254, 1996.
 331. Schoener EP , Wang SC . Effects of locally administered prostaglandin E1 on anterior hypothalamic neurons. Brain Res 117: 157‐162, 1976.
 332. Schwartz RS , Jaeger LF , Veith RC . Effect of clonidine on the thermic effect of feeding in humans. Am J Physiol 254: R90‐R94, 1988.
 333. Schwartz RS , Ravussin E , Massari M , O'Connell M , Robbins DC . The thermic effect of carbohydrate versus fat feeding in man. Metabolism 34: 285‐293, 1985.
 334. Seale P , Conroe HM , Estall J , Kajimura S , Frontini A , Ishibashi J , Cohen P , Cinti S , Spiegelman BM . Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest 121: 96‐105, 2011.
 335. Sell H , Berger JP , Samson P , Castriota G , Lalonde J , Deshaies Y , Richard D . Peroxisome proliferator‐activated receptor gamma agonism increases the capacity for sympathetically mediated thermogenesis in lean and ob/ob mice. Endocrinology 145: 3925‐3934, 2004.
 336. Sellayah D , Bharaj P , Sikder D . Orexin is required for brown adipose tissue development, differentiation, and function. Cell Metab 14: 478‐490, 2011.
 337. Sethi J , Sanchez‐Alavez M , Tabarean IV . Kv4.2 mediates histamine modulation of preoptic neuron activity and body temperature. PLoS One 6: e29134, 2011.
 338. Seydoux J , Chinet A , Schneider‐Picard G , Bas S , Imesch E , Assimacopoulos‐Jeannet F , Giacobino JP , Girardier L . Brown adipose tissue metabolism in streptozotocin‐diabetic rats. Endocrinology 113: 604‐610, 1983.
 339. Shi YC , Lau J , Lin Z , Zhang H , Zhai L , Sperk G , Heilbronn R , Mietzsch M , Weger S , Huang XF , Enriquez RF , Baldock PA , Zhang L , Sainsbury A , Herzog H , Lin S . Arcuate NPY controls sympathetic output and BAT function via a relay of tyrosine hydroxylase neurons in the PVN. Cell Metab 17: 236‐248, 2013.
 340. Shibata M , Uno T , Hashimoto M . Disinhibition of lower midbrain neurons enhances non‐shivering thermogenesis in anesthetized rats. Brain Res 833: 242‐250, 1999.
 341. Shintani M , Tamura Y , Monden M , Shiomi H . Thyrotropin‐releasing hormone induced thermogenesis in Syrian hamsters: Site of action and receptor subtype. Brain Res 1039: 22‐29, 2005.
 342. Shiraishi T , Mager M . 2‐Deoxy‐D‐glucose‐induced hypothermia: Thermoregulatory pathways in rat. Am J Physiol 239: R270‐R276, 1980.
 343. Shiraishi T , Mager M . Hypothermia following injection of 2‐deoxy‐D‐glucose into selected hypothalamic sites. Am J Physiol 239: R265‐R269, 1980.
 344. Sivitz WI , Fink BD , Morgan DA , Fox JM , Donohoue PA , Haynes WG . Sympathetic inhibition, leptin, and uncoupling protein subtype expression in normal fasting rats. Am J Physiol 277: E668‐E677, 1999.
 345. Skibicka KP , Alhadeff AL , Leichner TM , Grill HJ . Neural controls of prostaglandin 2 pyrogenic, tachycardic, and anorexic actions are anatomically distributed. Endocrinology 152: 2400‐2408, 2011.
 346. Skibicka KP , Grill HJ . Energetic responses are triggered by caudal brainstem melanocortin receptor stimulation and mediated by local sympathetic effector circuits. Endocrinology 149: 3605‐3616, 2008.
 347. Skibicka KP , Grill HJ . Hypothalamic and hindbrain melanocortin receptors contribute to the feeding, thermogenic, and cardiovascular action of melanocortins. Endocrinology 150: 5351‐5361, 2009.
 348. Song CK , Schwartz GJ , Bartness TJ . Anterograde transneuronal viral tract tracing reveals central sensory circuits from white adipose tissue. Am J Physiol Regul Integr Comp Physiol 296: R501‐R511, 2009.
 349. Song CK , Vaughan CH , Keen‐Rhinehart E , Harris RB , Richard D , Bartness TJ . Melanocortin‐4 receptor mRNA expressed in sympathetic outflow neurons to brown adipose tissue: Neuroanatomical and functional evidence. Am J Physiol Regul Integr Comp Physiol 295: R417‐R428, 2008.
 350. Srivastava S , Baxa U , Niu G , Chen X , Veech RL . A ketogenic diet increases brown adipose tissue mitochondrial proteins and UCP1 levels in mice. IUBMB Life 65: 58‐66, 2013.
 351. Srivastava S , Kashiwaya Y , King MT , Baxa U , Tam J , Niu G , Chen X , Clarke K , Veech RL . Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet. FASEB J 26: 2351‐2362, 2012.
 352. Stanley BG , Kyrkouli SE , Lampert S , Leibowitz SF . Neuropeptide Y chronically injected into the hypothalamus: A powerful neurochemical inducer of hyperphagia and obesity. Peptides 7: 1189‐1192, 1986.
 353. Ste Marie L , Miura GI , Marsh DJ , Yagaloff K , Palmiter RD . A metabolic defect promotes obesity in mice lacking melanocortin‐4 receptors. Proc Natl Acad Sci U S A 97: 12339‐12344, 2000.
 354. Steiner AA , Antunes‐Rodrigues J , Branco LG . Role of preoptic second messenger systems (cAMP and cGMP) in the febrile response. Brain Res 944: 135‐145, 2002.
 355. Steiner AA , Krall CM , Liu E . A reappraisal on the ability of leptin to induce fever. Physiol Behav 97: 430‐436, 2009.
 356. Steiner AA , Molchanova AY , Dogan MD , Patel S , Petervari E , Balasko M , Wanner SP , Eales J , Oliveira DL , Gavva NR , Almeida MC , Szekely M , Romanovsky AA . The hypothermic response to bacterial lipopolysaccharide critically depends on brain CB1, but not CB2 or TRPV1, receptors. J Physiol 589: 2415‐2431, 2011.
 357. Steiner AA , Turek VF , Almeida MC , Burmeister JJ , Oliveira DL , Roberts JL , Bannon AW , Norman MH , Louis JC , Treanor JJ , Gavva NR , Romanovsky AA . Nonthermal activation of transient receptor potential vanilloid‐1 channels in abdominal viscera tonically inhibits autonomic cold‐defense effectors. J Neurosci 27: 7459‐7468, 2007.
 358. Stob NR , Bell C , van Baak MA , Seals DR . Thermic effect of food and beta‐adrenergic thermogenic responsiveness in habitually exercising and sedentary healthy adult humans. J Appl Physiol 103: 616‐622, 2007.
 359. Stock MJ . The role of brown adipose tissue in diet‐induced thermogenesis. Proc Nutr Soc 48: 189‐196, 1989.
 360. Stock MJ . Gluttony and thermogenesis revisited. Int J Obes 23: 1105‐1117, 1999.
 361. Stornetta RL , McQuiston TJ , Guyenet PG . GABAergic and glycinergic presympathetic neurons of rat medulla oblongata identified by retrograde transport of pseudorabies virus and in situ hybridization. J Comp Neurol 479: 257‐270, 2004.
 362. Stornetta RL , Rosin DL , Simmons JR , McQuiston TJ , Vujovic N , Weston MC , Guyenet PG . Coexpression of vesicular glutamate transporter‐3 and gamma‐aminobutyric acidergic markers in rat rostral medullary raphe and intermediolateral cell column. J Comp Neurol 492: 477‐494, 2005.
 363. Strack AM , Akana SF , Horsley CJ , Dallman MF . A hypercaloric load induces thermogenesis but inhibits stress responses in the SNS and HPA system. Am J Physiol 272: R840‐R848, 1997.
 364. Surmely JF , Voirol MJ , Stefanoni N , Assimacopoulos‐Jeannet F , Giacobino JP , Jequier E , Gaillard RC , Tappy L . Stimulation by leptin of 3H GDP binding to brown adipose tissue of fasted but not fed rats. Int J Obes 22: 923‐926, 1998.
 365. Swaab DF , Purba JS , Hofman MA . Alterations in the hypothalamic paraventricular nucleus and its oxytocin neurons (putative satiety cells) in Prader‐Willi syndrome: A study of five cases. J Clin Endocrinol Metab 80: 573‐579, 1995.
 366. Szekely M . The vagus nerve in thermoregulation and energy metabolism. Auton Neurosci 85: 26‐38, 2000.
 367. Szelenyi Z , Hummel Z , Szolcsanyi J , Davis JB . Daily body temperature rhythm and heat tolerance in TRPV1 knockout and capsaicin pretreated mice. Eur J Neurosci 19: 1421‐1424, 2004.
 368. Szreder Z . Do cardiovascular mechanisms participate in thermoregulatory activity of alpha 2‐adrenoceptor agonists and antagonists in rabbits? Ann N Y Acad Sci 813: 512‐525, 1997.
 369. Tabarean IV . Persistent histamine excitation of glutamatergic preoptic neurons. PLoS One 7: e47700, 2012.
 370. Tajino K , Hosokawa H , Maegawa S , Matsumura K , Dhaka A , Kobayashi S . Cooling‐sensitive TRPM8 is thermostat of skin temperature against cooling. PLoS One 6: e17504, 2011.
 371. Tajino K , Matsumura K , Kosada K , Shibakusa T , Inoue K , Fushiki T , Hosokawa H , Kobayashi S . Application of menthol to the skin of whole trunk in mice induces autonomic and behavioral heat‐gain responses. Am J Physiol Regul Integr Comp Physiol 293: R2128‐R2135, 2007.
 372. Takahashi Y , Zhang W , Sameshima K , Kuroki C , Matsumoto A , Sunanaga J , Kono Y , Sakurai T , Kanmura Y , Kuwaki T . Orexin neurons are indispensable for prostaglandin E2‐induced fever and defence against environmental cooling in mice. J Physiol 591: 5623‐5643, 2013.
 373. Takayanagi Y , Kasahara Y , Onaka T , Takahashi N , Kawada T , Nishimori K . Oxytocin receptor‐deficient mice developed late‐onset obesity. Neuroreport 19: 951‐955, 2008.
 374. Tanida M , Shintani N , Hashimoto H . The melanocortin system is involved in regulating autonomic nerve activity through central pituitary adenylate cyclase‐activating polypeptide. Neurosci Res 70: 55‐61, 2011.
 375. Tanida M , Shintani N , Morita Y , Tsukiyama N , Hatanaka M , Hashimoto H , Sawai H , Baba A , Nagai K . Regulation of autonomic nerve activities by central pituitary adenylate cyclase‐activating polypeptide. Regul Pept 161: 73‐80, 2010.
 376. Toda C , Shiuchi T , Lee S , Yamato‐Esaki M , Fujino Y , Suzuki A , Okamoto S , Minokoshi Y . Distinct effects of leptin and a melanocortin receptor agonist injected into medial hypothalamic nuclei on glucose uptake in peripheral tissues. Diabetes 58: 2757‐2765, 2009.
 377. Tominaga M , Caterina MJ , Malmberg AB , Rosen TA , Gilbert H , Skinner K , Raumann BE , Basbaum AI , Julius D . The cloned capsaicin receptor integrates multiple pain‐producing stimuli. Neuron 21: 531‐543, 1998.
 378. Torrealba F , Yanagisawa M , Saper CB . Colocalization of orexin a and glutamate immunoreactivity in axon terminals in the tuberomammillary nucleus in rats. Neuroscience 119: 1033‐1044, 2003.
 379. Tovar S , Paeger L , Hess S , Morgan Donald A , Hausen AC , Brönneke Hella S , Hampel B , Ackermann PJ , Evers N , Büning H , Wunderlich FT , Rahmouni K , Kloppenburg P , Brüning Jens C . KATP‐Channel‐Dependent Regulation of Catecholaminergic Neurons Controls BAT Sympathetic Nerve Activity and Energy Homeostasis. Cell Metab 18: 445‐455, 2013.
 380. Trayhurn P , Jennings G . Nonshivering thermogenesis and the thermogenic capacity of brown fat in fasted and/or refed mice. Am J Physiol 254: R11‐R16, 1988.
 381. Trayhurn P , Thurlby PL , James WP . Thermogenic defect in pre‐obese ob/ob mice. Nature 266: 60‐62, 1977.
 382. Tseng YH , Kokkotou E , Schulz TJ , Huang TL , Winnay JN , Taniguchi CM , Tran TT , Suzuki R , Espinoza DO , Yamamoto Y , Ahrens MJ , Dudley AT , Norris AW , Kulkarni RN , Kahn CR . New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454: 1000‐1004, 2008.
 383. Tsoli M , Moore M , Burg D , Painter A , Taylor R , Lockie SH , Turner N , Warren A , Cooney G , Oldfield B , Clarke S , Robertson G . Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res 72: 4372‐4382, 2012.
 384. Tsukita S , Yamada T , Uno K , Takahashi K , Kaneko K , Ishigaki Y , Imai J , Hasegawa Y , Sawada S , Ishihara H , Oka Y , Katagiri H . Hepatic glucokinase modulates obesity predisposition by regulating BAT thermogenesis via neural signals. Cell Metab 16: 825‐832, 2012.
 385. Tucker DC , Saper CB , Ruggiero DA , Reis DJ . Organization of central adrenergic pathways: I. Relationships of ventrolateral medullary projections to the hypothalamus and spinal cord. J Comp Neurol 259: 591‐603, 1987.
 386. Tupone D , Madden CJ , Cano G , Morrison SF . An orexinergic projection from perifornical hypothalamus to raphe pallidus increases rat brown adipose tissue thermogenesis. J Neurosci 31: 15944‐15955, 2011.
 387. Tupone D , Madden CJ , Morrison SF . Central Activation of the A1 Adenosine Receptor (A1AR) Induces a Hypothermic, Torpor‐Like State in the Rat. J Neurosci 33: 14512‐14525, 2013.
 388. Tupone D , Madden CJ , Morrison SF . Autonomic regulation of brown adipose tissue thermogenesis in health and disease: Potential clinical applications for altering BAT thermogenesis. Front Neurosci 8: 14, 2014.
 389. Uschakov A , Gong H , McGinty D , Szymusiak R . Efferent projections from the median preoptic nucleus to sleep‐ and arousal‐regulatory nuclei in the rat brain. Neuroscience 150: 104‐120, 2007.
 390. van Marken Lichtenbelt WD , Vanhommerig JW , Smulders NM , Drossaerts JM , Kemerink GJ , Bouvy ND , Schrauwen P , Teule GJ . Cold‐activated brown adipose tissue in healthy men. N Engl J Med 360: 1500‐1508, 2009.
 391. Vaughan CH , Bartness TJ . Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses. Am J Physiol Regul Integr Comp Physiol 302: R1049‐R1058, 2012.
 392. Vaughan CH , Shrestha YB , Bartness TJ . Characterization of a novel melanocortin receptor‐containing node in the SNS outflow circuitry to brown adipose tissue involved in thermogenesis. Brain Res 1411: 17‐27, 2011.
 393. Vera PL , Holets VR , Miller KE . Ultrastructural evidence of synaptic contacts between substance P‐, enkephalin‐, and serotonin‐immunoreactive terminals and retrogradely labeled sympathetic preganglionic neurons in the rat: A study using a double‐peroxidase procedure. Synapse 6: 221‐229, 1990.
 394. Verty AN , Allen AM , Oldfield BJ . The effects of rimonabant on brown adipose tissue in rat: Implications for energy expenditure. Obesity (Silver Spring) 17: 254‐261, 2009.
 395. Verty AN , Allen AM , Oldfield BJ . The endogenous actions of hypothalamic peptides on brown adipose tissue thermogenesis in the rat. Endocrinology 151: 4236‐4246, 2010.
 396. Virtanen KA , Lidell ME , Orava J , Heglind M , Westergren R , Niemi T , Taittonen M , Laine J , Savisto NJ , Enerback S , Nuutila P . Functional brown adipose tissue in healthy adults. N Engl J Med 360: 1518‐1525, 2009.
 397. Wang C , Bomberg E , Billington C , Levine A , Kotz CM . Brain‐derived neurotrophic factor in the hypothalamic paraventricular nucleus increases energy expenditure by elevating metabolic rate. Am J Physiol Regul Integr Comp Physiol 293: R992‐R1002, 2007.
 398. Welle S , Lilavivat U , Campbell RG . Thermic effect of feeding in man: Increased plasma norepinephrine levels following glucose but not protein or fat consumption. Metabolism 30: 953‐958, 1981.
 399. Whittle AJ , Carobbio S , Martins L , Slawik M , Hondares E , Vazquez MJ , Morgan D , Csikasz RI , Gallego R , Rodriguez‐Cuenca S , Dale M , Virtue S , Villarroya F , Cannon B , Rahmouni K , Lopez M , Vidal‐Puig A . BMP8B Increases Brown Adipose Tissue Thermogenesis through Both Central and Peripheral Actions. Cell 149: 871‐885, 2012.
 400. Williams DL , Bowers RR , Bartness TJ , Kaplan JM , Grill HJ . Brainstem melanocortin 3/4 receptor stimulation increases uncoupling protein gene expression in brown fat. Endocrinology 144: 4692‐4697, 2003.
 401. Wu Z , Xu Y , Zhu Y , Sutton AK , Zhao R , Lowell BB , Olson DP , Tong Q . An obligate role of oxytocin neurons in diet induced energy expenditure. PLoS One 7: e45167, 2012.
 402. Xi D , Gandhi N , Lai M , Kublaoui BM . Ablation of Sim1 neurons causes obesity through hyperphagia and reduced energy expenditure. PLoS One 7: e36453, 2012.
 403. Yamagata K , Matsumura K , Inoue W , Shiraki T , Suzuki K , Yasuda S , Sugiura H , Cao C , Watanabe Y , Kobayashi S . Coexpression of microsomal‐type prostaglandin E synthase with cyclooxygenase‐2 in brain endothelial cells of rats during endotoxin‐induced fever. J Neurosci 21: 2669‐2677, 2001.
 404. Yamashita H , Wang Z , Wang Y , Furuyama T , Kontani Y , Sato Y , Mori N . Impaired basal thermal homeostasis in rats lacking capsaicin‐sensitive peripheral small sensory neurons. J Biochem 143: 385‐393, 2008.
 405. Yasuda T , Masaki T , Gotoh K , Chiba S , Kakuma T , Yoshimatsu H . Intracerebroventricular administration of urotensin II regulates food intake and sympathetic nerve activity in brown adipose tissue. Peptides 35: 131‐135, 2012.
 406. Yasuda T , Masaki T , Sakata T , Yoshimatsu H . Hypothalamic neuronal histamine regulates sympathetic nerve activity and expression of uncoupling protein 1 mRNA in brown adipose tissue in rats. Neuroscience 125: 535‐540, 2004.
 407. Yoshida K , Konishi M , Nagashima K , Saper CB , Kanosue K . Fos activation in hypothalamic neurons during cold or warm exposure: Projections to periaqueductal gray matter. Neuroscience 133: 1039‐1046, 2005.
 408. Yoshida K , Li X , Cano G , Lazarus M , Saper CB . Parallel preoptic pathways for thermoregulation. J Neurosci 29: 11954‐11964, 2009.
 409. Yoshida K , Nakamura K , Matsumura K , Kanosue K , Konig M , Thiel HJ , Boldogkoi Z , Toth I , Roth J , Gerstberger R , Hubschle T . Neurons of the rat preoptic area and the raphe pallidus nucleus innervating the brown adipose tissue express the prostaglandin E receptor subtype EP3. Eur J Neurosci 18: 1848‐1860, 2003.
 410. Yoshimatsu H , Egawa M , Bray GA . Effects of cholecystokinin on sympathetic activity to interscapular brown adipose tissue. Brain Res 597: 298‐303, 1992.
 411. Yoshimatsu H , Egawa M , Bray GA . Sympathetic nerve activity after discrete hypothalamic injections of L‐glutamate. Brain Res 601: 121‐128, 1993.
 412. Young JB , Saville E , Rothwell NJ , Stock MJ , Landsberg L . Effect of diet and cold exposure on norepinephrine turnover in brown adipose tissue of the rat. J Clin Invest 69: 1061‐1071, 1982.
 413. Zaretskaia MV , Zaretsky DV , DiMicco JA . Role of the dorsomedial hypothalamus in thermogenesis and tachycardia caused by microinjection of prostaglandin E2 into the preoptic area in anesthetized rats. Neurosci Lett 340: 1‐4, 2003.
 414. Zaretskaia MV , Zaretsky DV , Shekhar A , DiMicco JA . Chemical stimulation of the dorsomedial hypothalamus evokes non‐shivering thermogenesis in anesthetized rats. Brain Res 928: 113‐125, 2002.
 415. Zaretsky DV , Hunt JL , Zaretskaia MV , DiMicco JA . Microinjection of prostaglandin E2 and muscimol into the preoptic area in conscious rats: Comparison of effects on plasma adrenocorticotrophic hormone (ACTH), body temperature, locomotor activity, and cardiovascular function. Neurosci Lett 397: 291‐296, 2006.
 416. Zaretsky DV , Zaretskaia MV , DiMicco JA . Stimulation and blockade of GABAA receptors in the raphe pallidus: Effects on body temperature, heart rate, and blood pressure in conscious rats. Am J Physiol Regul Integr Comp Physiol 285: R110‐R116, 2003.
 417. Zhang W , Sunanaga J , Takahashi Y , Mori T , Sakurai T , Kanmura Y , Kuwaki T . Orexin neurons are indispensable for stress‐induced thermogenesis in mice. J Physiol 588: 4117‐4129, 2010.
 418. Zhang Y , Kerman IA , Laque A , Nguyen P , Faouzi M , Louis GW , Jones JC , Rhodes C , Munzberg H . Leptin‐receptor‐expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J Neurosci 31: 1873‐1884, 2011.
 419. Zhang Y , Kilroy GE , Henagan TM , Prpic‐Uhing V , Richards WG , Bannon AW , Mynatt RL , Gettys TW . Targeted deletion of melanocortin receptor subtypes 3 and 4, but not CART, alters nutrient partitioning and compromises behavioral and metabolic responses to leptin. FASEB J 19: 1482‐1491, 2005.
 420. Zhang YH , Lu J , Elmquist JK , Saper CB . Lipopolysaccharide activates specific populations of hypothalamic and brainstem neurons that project to the spinal cord. J Neurosci 20: 6578‐6586, 2000.
 421. Zhang Z , Liu X , Morgan DA , Kuburas A , Thedens DR , Russo AF , Rahmouni K . Neuronal receptor activity‐modifying protein 1 promotes energy expenditure in mice. Diabetes 60: 1063‐1071, 2011.
 422. Zhu X , Krasnow SM , Roth‐Carter QR , Levasseur PR , Braun TP , Grossberg AJ , Marks DL . Hypothalamic signaling in anorexia induced by indispensable amino acid deficiency. Am J Physiol Endocrinol Metab 303: E1446‐E1458, 2012.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Shaun F. Morrison, Christopher J. Madden. Central Nervous System Regulation of Brown Adipose Tissue. Compr Physiol 2014, 4: 1677-1713. doi: 10.1002/cphy.c140013