Comprehensive Physiology Wiley Online Library

Role of the Thyroid System in Myelination and Neural Connectivity

Full Article on Wiley Online Library


The role of thyroid hormone on brain development is dramatically illustrated by “cretinism,” a severe mental retardation due to iodine deficiency and maternal hypothyroidism during gestation. In the last decades, the molecular bases of the cellular action of thyroid hormone in the nervous tissue have been at least partially elucidated, and the emerged picture is much more complex than expected. In this article, the main mechanisms determining thyroid hormone availability, nuclear and membrane receptor occupancy and downstream action, gene expression, and nongenomic mechanism are reviewed, focusing on myelination and myelin turnover. © 2015 American Physiological Society. Compr Physiol 5:1405‐1421, 2015.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images

Figure 1. Figure 1. The thyroid system in the brain. The Figure represents a schematic scenario of TH transport into—and processing inside—the CNS cells. Blood brain barrier (BBB) is formed by capillary endothelial cells which are connected by tight junctions. T4 and T3 are transported from the blood into the brain through the BBB TH transporters transthyretin, OATP1C1 and MCT8, among others. Inside the brain, T4 can be transported into astrocytes by OATP1C1 and transformed in the active T3 through the enzyme. T3 is transported from the intracellular/interstitial fluid into neurons or OPCs, where can bind TH nuclear receptors (TR) initiating the genomic actions of TH, or can be inactivated by D3 to give T2 or rT3. Integrin αVβ3 binds preferably T4 initiating the nongenomic effects of TH which may also lead to specific changes in gene transcription inside neurons. Abbreviations: TH, thyroid hormone; CNS, central nervous system; OATP1C1, organic anion transporter protein 1C1; MCT8, monocarboxylate anion transporter type 8; MCT10, monocarboxylate anion transporter type 10; D2, deiodinase enzyme type 2; D3, deiodinase enzyme type 3; OPCs, oligodendrocyte precursor cells.
Figure 2. Figure 2. Postnatal development expression of thyroid hormone receptors, deiodinases, transporters, and markers of myelination in the cerebellum. The expression profile of different thyroid hormone signaling components and myelination markers in the cerebellum at different postnatal stages is summarized in the graphs. The gene expression was studied by real‐time PCR whereas protein levels by Western blot. (A) Thyroid hormone receptors (TR) α1, α2, and β1 mRNA. (B) Deiodinases type 2, 3, and the TH transporter MCT8 mRNA. (C) Myelination markers gene expression: precursor oligodendrocytes, Olig‐1, PDGF‐αR; mature oligodendrocytes, MBP. (D) MBP protein 17, 18.5 and 21.5 KDa subunits. C and D are published results (89). Results are expressed as mean values ± SEM. Abbreviations: MCT8, monocarboxylate anion transporter type 8; PDGF‐αR, platelet derived growth factor receptor type alpha; MBP, myelin basic protein.

Figure 1. The thyroid system in the brain. The Figure represents a schematic scenario of TH transport into—and processing inside—the CNS cells. Blood brain barrier (BBB) is formed by capillary endothelial cells which are connected by tight junctions. T4 and T3 are transported from the blood into the brain through the BBB TH transporters transthyretin, OATP1C1 and MCT8, among others. Inside the brain, T4 can be transported into astrocytes by OATP1C1 and transformed in the active T3 through the enzyme. T3 is transported from the intracellular/interstitial fluid into neurons or OPCs, where can bind TH nuclear receptors (TR) initiating the genomic actions of TH, or can be inactivated by D3 to give T2 or rT3. Integrin αVβ3 binds preferably T4 initiating the nongenomic effects of TH which may also lead to specific changes in gene transcription inside neurons. Abbreviations: TH, thyroid hormone; CNS, central nervous system; OATP1C1, organic anion transporter protein 1C1; MCT8, monocarboxylate anion transporter type 8; MCT10, monocarboxylate anion transporter type 10; D2, deiodinase enzyme type 2; D3, deiodinase enzyme type 3; OPCs, oligodendrocyte precursor cells.

Figure 2. Postnatal development expression of thyroid hormone receptors, deiodinases, transporters, and markers of myelination in the cerebellum. The expression profile of different thyroid hormone signaling components and myelination markers in the cerebellum at different postnatal stages is summarized in the graphs. The gene expression was studied by real‐time PCR whereas protein levels by Western blot. (A) Thyroid hormone receptors (TR) α1, α2, and β1 mRNA. (B) Deiodinases type 2, 3, and the TH transporter MCT8 mRNA. (C) Myelination markers gene expression: precursor oligodendrocytes, Olig‐1, PDGF‐αR; mature oligodendrocytes, MBP. (D) MBP protein 17, 18.5 and 21.5 KDa subunits. C and D are published results (89). Results are expressed as mean values ± SEM. Abbreviations: MCT8, monocarboxylate anion transporter type 8; PDGF‐αR, platelet derived growth factor receptor type alpha; MBP, myelin basic protein.
 1.Abe K, Kroning J, Greer MA, Critchlow V. Effects of destriction of the suprachiasmatic nuclei on the circadian rhythms in plasma corticosterone, body temperature, feeding and plasma thyrotropin. Neuroendocrinology 29: 119‐131, 1979.
 2.Abel ED, Ahima RS, Boers ME, Elmquist JK, Wondisford FE. Critical role for thyroid hormone receptor beta2 in the regulation of paraventricular thyrotropin‐releasing hormone neurons. J Clin Invest 107: 1017‐1023, 2001.
 3.Alkemade A, Unmehopa UA, Wiersinga WM, Swaab DF, Fliers E. Glucocorticoids decrease thyrotropin‐releasing hormone messenger ribonucleic acid expression in the paraventricular nucleus of the human hypothalamus. J Clin Endocrinol Metab 90: 323‐327, 2005.
 4.Alvarez‐Dolado M, Cuadrado A, Navarro‐Yubero C, Sonderegger P, Furley AJ, Bernal J, Muñoz A. Regulation of the L1 cell adhesion molecule by thyroid hormone in the developing brain. Mol Cell Neurosci 16: 499‐514, 2000.
 5.Alvarez‐Dolado M, González‐Sancho JM, Bernal J, Muñoz A. Developmental expression of the tenascin‐C is altered by hypothyroidism in the rat brain. Neuroscience 84: 309‐322, 1998.
 6.Andersen S, Bruun NH, Pedersen KM, Laurberg P. Biologic variation is important for interpretation of thyroid function tests. Thyroid 13: 1069‐1078, 2003.
 7.Arrojo e Drigo R, Fonseca TL, Saar Werneck‐de‐Castro JP, Bianco AC. Role of the type 2 iodothyronine deiodinase (D2) in the control of thyroid hormone signaling. Biochimica Biophysica Acta 1830: 3956‐3964, 2013.
 8.Astapova I, Vella KR, Ramadoss P, Holtz KA, Rodwin BA, Liao XH, Weiss RE, Rosenberg MA, Rosenzweig A, Hollenberg AN. The nuclear receptor corepressor (NCoR) controls thyroid hormone sensitivity and the set point of the hypothalamic‐pituitary‐thyroid axis. Mol Endocrinol 25: 212‐224, 2011.
 9.Baas D, Bourbeau D, Sarliève LL, Ittel ME, Dussault JH, Puymirat J. Oligodendrocyte maturation and progenitor cell proliferation are independently regulated by thyroid hormone. Glia 19: 324‐332, 1997.
 10.Babu S, Sinha RA, Mohan V, Rao G, Pal A, Pathak A, Singh M, Godbole MM. Effect of hypothyroxinemia on thyroid hormone responsiveness and action during rat postnatal neocortical development. Exp Neurol 228:91‐98, 2011.
 11.Banks WA. Brain meets body: The blood‐brain barrier is an endocrine interface. Endocrinology 153: 4111‐4119, 2012.
 12.Barateiro A, Fernandes A. Temporal oligodendrocyte lineage progression: In vitro models of proliferation, differentiation and myelination. Biochim Biophys Acta 1843: 1917‐1929, 2014.
 13.Barres BA, Lazar MA, Raff MC. A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development 120: 1097‐1108, 1994.
 14.Bartzokis G. Neuroglialpharmacology: White matter pathophysiologies and psychiatric treatments. Front Biosci 16: 2695‐2733, 2011.
 15.Bassett JH, Harvey CB, Williams GR. Mechanisms of thyroid hormone receptor‐specific nuclear and extra nuclear actions. Mol Cell Endocrinol 213: 1‐11, 2003.
 16.Baxi EG, Schott JT, Fairchild AN, Kirby LA, Karani R, Uapinyoying P, Pardo‐Villamizar C, Rothstein JR, Bergles DE, Calabresi PA. A selective thyroid hormone β receptor agonist enhances human and rodent oligodendrocyte differentiation. Glia 62: 1513‐1529, 2014.
 17.Bergh JJ, Lin HY, Lansing L, Mohamed SN, Davis FB, Mousa S, Davis PJ. Integrin αvβ3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen‐activated protein kinase and induction of angiogenesis. Endocrinology 146: 2864‐2871, 2005.
 18.Bernal J. Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab 3: 249‐259, 2007.
 19.Bernal J. Thyroid Hormones in Brain Development and Function. December 17, 2012. Thyroid Disease Manager. Endocrine Education Inc, South Dartmouth, MA 02748.
 20.Bernal J, Guadaño‐Ferraz A, Morte B. Perspectives in the study of thyroid hormone action on brain development and function. Thyroid 13: 1005‐1012, 2003.
 21.Bernal J, Morte B. Thyroid hormone receptor activity in the absence of ligand: Physiological and developmental implications. Biochim Biophys Acta 1830: 3893‐3899, 2013.
 22.Bianco AC. Cracking the metabolic code for thyroid hormone signaling. Endocrinology 152: 3306‐3311, 2011.
 23.Bianco AC, Salvatore D, Gereben B, berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23: 38‐89, 2002.
 24.Billon N, Jolicoeur C, Tokumoto Y, Vennström B, Raff M. Normal timing of oligodendrocyte development depends on thyroid hormone receptor alpha 1 (TRalpha1). EMBO J 21: 6452‐6460, 2002.
 25.Boelen A, Kwakkel J, Fliers E. Beyond low plasma T3: Local thyroid hormone metabolism during inflammation and infection. Endocr Rev 32: 670‐693, 2011.
 26.Boelen A, Kwakkel J, Fliers E. Thyroid hormone receptors in health and disease. Minerva Endocrinol 37: 291‐304, 2012.
 27.Boelen A, Kwakkel J, Platvoet‐ter Schiphorst M, Baur A, Köhrle J, Wiersinga WM. Contribution of interleukin‐12 to the pathogenesis of non‐thyroidal illness. Horm Meatb Res 36: 101‐106, 2004.
 28.Boelen A, Mikita J, Boiziau C, Chassande O, Fliers E, Petry KG. Type 3 deiodinase expression in inflammatory spinal cord lesions in rat experimental autoimmune encephalomyelitis. Thyroid 19: 1401‐1406, 2009.
 29.Boulanger JJ, Messier C. From precursors to myelinating oligodendrocytes: Contribution of intrinsic and extrinsic factors to white matter plasticity in the adult brain. Neuroscience 269: 343‐366, 2014.
 30.Brabant G, Cain J, Jackson A, Kreitschmann‐Andermahr I. Visualizing hormone actions in the brain. Trends Endocrinol Metab 22: 153‐163, 2011.
 31.Bradley DJ, Towle HC, Young WS III. Spatial and temporal expression of alpha‐ and beta‐thyroid hormone receptor mRNAs, including the beta 2‐subtype, in the developing mammalian nervous system. J Neurosci 12: 2288‐302, 1992.
 32.Braun D, Kinne A, Bräuer AU, Sapin R, Klein MO, Köhrle J, Wirth EK, Schweizer U. Developmental and cell type‐specific expression of thyroid hormone transporters in the mouse brain and in primary brain cells. Glia 59: 463‐471, 2011.
 33.Burris TP, Solt LA, Wang Y, Crumbley C, Banerjee S, Griffett K, Lundasen T, Hughes T, Kojetin DJ. Nuclear receptors and their selective pharmacologic modulators. Pharmacol Rev 65: 710‐778, 2013.
 34.Bury F, Carré JL, Vega S, Ghandour MS, Rodriguez‐Pena A, Langley K, Sarliève LL. Coexpression of thyroid hormone receptor isoforms in mouse oligodendrocytes. J Neurosci Res 67: 106‐113, 2002.
 35.Calzà L, Fernández M, Giardino L. Cellular approaches to central nervous system remyelination stimulation: Thyroid hormone to promote myelin repair via endogenous stem and precursor cells. J Mol Endocrinol 44: 13‐23, 2010.
 36.Calzà L, Fernández M, Giuliani A, Aloe L, Giardino L. Thyroid hormone activates oligodendrocyte precursors and increases a myelin‐forming protein and NGF content in the spinal cord during experimental allergic encephalomyelitis. Proc Natl Acad Sci USA 99: 3258‐3263, 2002.
 37.Calzà L, Fernández M, Giuliani A, D'Intino G, Pirondi S, Sivilia S, Paradisi M, Desordi N, Giardino L. Thyroid hormone and remyelination in adult central nervous system: A lesson from an inflammatory‐demyelinating disease. Brain Res Brain Res Rev 48: 339‐346, 2005.
 38.Calzà L, Forrest D, Vennström B, Hökfelt T. Expression of peptides and other neurochemical markers in hypothalamus and olfactory bulb of mice devoid of all known thyroid hormone receptors. Neuroscience 101: 1001‐1012, 2000.
 39.Calzà L, Giardino L, Aloe L. NGF content and expression in the rat pituitary gland and regulation by thyroid hormone. Brain res Mol Brain Res 51: 60‐68, 1997a.
 40.Calzà L, Giardino L, Ceccatelli S, Hökfelt T. Neurotrophins and their receptors in the adult hypo‐ and hyperthyroid rat after kainic acid injection: An in situ hybridization study. Eur J Neurosci 8: 1873‐1881, 1996.
 41.Calzà L, Giardino L, Hökfelt T. Thyroid hormone‐dependent regulation of galanin synthesis in neurons and glial cells after colchicine administration. Neuroendocrinology 68: 428‐436, 1998.
 42.Calzà L, Giardino L, Pozza M, Micera A, Aloe L. Time‐course changes of nerve growth factor, corticotropin‐releasing hormone, and nitric oxide synthase isoforms and their possible role in the development of inflammatory response in experimental allergic encephalomyelitis. Proc Natl Acad Sci U S A 94: 3368‐3373, 1997b.
 43.Cano P, Jiménez‐Ortega V, Larrad A, Reyes Toso CF, Cardinali DP, Esquifino AI. Effect of a high‐fat diet on 24‐h pattern of circulating levels of prolactin, luteinizing hormone, testosterone, corticosterone, thyroid‐stimulating hormone and glucose, and pineal melatonin content, in rats. Endocrine 33: 118‐125, 2008.
 44.Cao X, Kambe F, Moeller LC, Refetoff S, Seo H. Thyroid hormone induces rapid activation of Akt/protein kinase B‐mammalian target of rapamycin‐p70S6K cascade through phosphatidylinositol 3‐kinase in human fibroblasts. Mol Endocrinol 19: 102‐112, 2005.
 45.Castro I, Quisenberry L, Calvo RM, Obregon MJ, Lado‐Abeal J. Septic shock non‐thyroidal illness syndrome causes hypothyroidism and conditions for reduced sensitivity to thyroid hormone. J Mol Endocrinol 50: 255‐266, 2013.
 46.Ceballos A, Belinchon MM, Sanchez‐Mendoza E, Grijota‐Martinez C, Dumitrescu AM, Refetoff S, Morte B, Bernal J. Importance of monocarboxylate transporter 8 for the blood‐brain barrier‐dependent availability of 3,5,3′‐triiodo‐L‐thyronine. Endocrinology 150: 2491‐2496, 2009.
 47.Ceccatelli S, Giardino L, Calzá L. Response of hypothalamic peptide mRNAs to thyroidectomy. Neuroendocrinology 56: 694‐703, 1992.
 48.Chan S, Kachilele S, McCabe CJ, Tannahill LA, Boelaert K, Gittoes NJ, Visser TJ, Franklyn JA, Kilby MD. Early expression of thyroid hormone deiodinases and receptors in human fetal cerebral cortex. Brain Res Dev Brain Res 138: 109‐116, 2002.
 49.Chanoine JP, Alex S, Fang SL, Stone S, Leonard JL, Körhle J, Braverman LE. Role of transthyretin in the transport of thyroxine from the blood to the choroid plexus, the cerebrospinal fluid, and the brain. Endocrinology 130: 933‐938, 1992.
 50.Charalambous M, Hernandez A. Genomic imprinting of the type 3 thyroid hormone deiodinase gene: Regulation and developmental implications. Biochim Biophys Acta 1830: 3946‐3955, 2013.
 51.Chassande O. Do unliganted thyroid hormone receptors have physiological functions? J Mol Endocrinol 31: 9‐20, 2003.
 52.Chen C, Zhou Z, Zhong M, Zhang Y, Li M, Zhang L, Qu M, Yang J, Wang Y, Yu Z. Thyroid hormone promotes neuronal differntiation of embryonic neural stem cells by inhibiting STAT3 signaling through Tra1. Stem Cells Dev 21: 2667‐2681, 2012.
 53.Chen RL, Kassem NA, Preston JE. Dose‐dependent transthyretin inhibition of T4 uptake from cerebrospinal fluid in sheep. Neurosci Lett 396: 7‐11, 2006.
 54.Chen ZP, Hetzel BS. Cretinism revisited. Best Pract Res Clin Endocrinol Metab 24: 39‐50, 2010.
 55.Cheng S‐Y, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev 31: 139‐170, 2010.
 56.Chong SY, Chan JR. Tapping into the glial reservoir: Cells committed to remaining uncommitted. J Cell Biol 188: 305‐312, 2010.
 57.Copland JA, Sheffield‐Moore M, Koldzic‐Zivanovic N, Gentry S, Lamprou G, Tzortzatou‐Stathopoulou F, Zoumpourlis V, Urban RJ, Vlahopoulos SA. Sex steroid receptors in skeletal differentiation and epithelial neoplasia: Is tissue‐specific intervention possible? Bioessays 31: 629‐641, 2009.
 58.Costa‐e‐Sousa RH, Hollenberg AN. Minireview: The neural regulation of the hypothalamic‐pituitary‐thyroid axis. Endocrinology 153: 4128‐4135, 2012.
 59.Crawford AH, Stockley JH, Tripathi RB, Richardson WD, Franklin RJ. Oligodendrocyte progenitors: Adult stem cells of the central nervous system? Exp Neurol 260: 50‐55, 2014.
 60.Darras VM, Houbrechts AM, Van Herck SL. Intracellular thyroid hormone metabolism as a local regulator of nuclear thyroid hormone receptor‐mediated impact on vertebrate development. Biochim Biophys Acta 1849: 130‐141, 2015.
 61.Davis FB, Davis V. Cody Membrane receptors mediating thyroid hormone action. Trends Endocrinol Metab 16: 429‐435, 2005.
 62.Davis PJ, Davis FB, Lin HY, Mousa SA, Zhou M, Luidens MK. Translational implications of nongenomic actions of thyroid hormone initiated at its integrin receptor. Am J Physiol Endocrinol Metab 297: E1238‐E1246, 2009.
 63.Davis PJ, Davis FB, Mousa SA, Luidens MK, Lin HY. Membrane receptor for thyroid hormone: Physiologic and pharmacologic implications. Annu Rev Pharmacol Toxicol 51: 99‐115, 2011.
 64.Davis PJ, Leonard JL, Davis FB. Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol 29: 211‐218, 2008.
 65.Davis PJ, Shih A, Lin HY, Martino LJ, Davis FB. Thyroxine promotes association of mitogen‐activated protein kinase and nuclear thyroid hormone receptor (TR) and causes serine phosphorylation of TR. J Biol Chem 275: 38032‐38039, 2000.
 66.Davis PJ, Zhou M, Davis FB, Lansing L, Mousa SA, Lin HY. Mini‐review: Cell surface receptor for thyroid hormone and nongenomic regulation of ion fluxes in excitable cells. Physiol Behav 99: 237‐239, 2010.
 67.De Escobar GM, Obregón MJ, del Rey FE. Iodine deficiency and brain development in the first half of pregnancy. Public Health Nutr 10: 1554‐1570, 2007.
 68.De Groot LJ. Non‐thyroidal illness syndrome is a manifestation of hypothalamic‐pituitary dysfunction, and in view of current evidence, should be treated with appropriate replacement therapies. Crit Care Clin 22: 57‐86, 2006. Jesus LA, Carvalho SD, Ribeiro MO, Schneider M, SW, Harney JW, Larsen PR, Bianco AC. The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J Clin Invest 108 1379‐1385, 2001.
 70.Dell'Acqua ML, Lorenzini L, D'Intino G, Sivilia S, Pasqualetti P, Panetta V, Paradisi M, Filippi MM, Baiguera C, Pizzi M, Giardino L, Rossini PM, Calzà L. Functional and molecular evidence of myelin‐ and neuroprotection by thyroid hormone administration in experimental allergic encephalomyelitis. Neuropathol Appl Neurobiol 38: 454‐470, 2012.
 71.Dentice M, Marsili A, Zavacki A, Larsen PR, Salvatore D. The deiodinases and the control of intracellular thyroid hormone signaling during cellular differentiation. Biochim Biophys Acta 1830: 3937‐3945, 2013.
 72.Dentice M, Salvatore D. Deiodinases: The balance of thyroid hormone: Local impact of thyroid hormone inactivation. J Endocrinol 209: 273‐282, 2011.
 73.D'Intino G, Lorenzini L, Fernandez M, Taglioni A, Perretta G, Del Vecchio G, Villoslada P, Giardino L, Calzà L. Triiodothyronine administration ameliorates the demyelination/remyelination ratio in a non‐human primate model of multiple sclerosis by correcting tissue hypothyroidism. J Neuroendocrinol 23: 778‐790, 2011.
 74.Dong H, Yauk CL, Rowan‐Carroll A, You SH, Zoeller RT, Lambert I, Wade MG. Identification of thyroid hormone receptor binding sites and target genes using ChIP‐on‐chip in developing mouse cerebellum. PLoS One 4: e4610, 2009.
 75.Dratman MB, Crutchfield FL, Schoenhoff MB. Transport of iodothyronines from bloodstream to brain: Contributions by blood, brain and choroid plexus: Cerebrospinal fluid barriers. Brain Res 554: 229‐236, 1991.
 76.Dugas JC, Ibrahim A, Barres BA. A crucial role for p57(Kip2) in the intracellular timer that controls oligodendrocyte differentiation. J Neurosci 27: 6185‐6196, 2007.
 77.Dugas JC, Ibrahim A, Barres BA. The T3‐induced gene KLF9 regulates oligodendrocyte differentiation and myelin regeneration. Mol Cell Neurosci 50: 45‐57, 2012.
 78.Dumitrescu AM, Liao XH, Best TB, Brockmann K, Refetoff S. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet 74: 168‐175, 2004.
 79.Durand B, Fero ML, Roberts JM, Raff MC. p27Kip1 alters the response of cells to mitogen and is part of a cell‐intrinsic timer that arrests the cell cycle and initiates differentiation. Curr Biol 8: 431‐440, 1998.
 80.Durand B, Gao FB, Raff M. Accumulation of the cyclin‐dependent kinase inhibitor p27/Kip1 and the timing of oligodendrocyte differentiation. EMBO J 16: 306‐317, 1997.
 81.Durand B, Raff M. A cell‐intrinsic timer that operates during oligodendrocyte development. Bioessays 22: 64‐71, 2000.
 82.Dussault JH, Labrie F. Development of the hypothalamic‐pituitary‐thyroid axis in the neonatal rat. Endocrinology 97: 1321‐1324, 1975.
 83.Farwell AP. Nonthyroidal illness syndrome. Curr Opin Endocrinol Diabetes Obes 20: 478‐484, 2013.
 84.Farwell AP, Dubord‐Tomasetti SA. Thyroid hormone regulates the extracellular organization of laminin on astrocytes. Endocrinology 140: 5014‐5021, 1999a.
 85.Farwell AP, Dubord‐Tomasetti SA. Thyroid hormone regulates the expression of laminin in the developing rat cerebellum. Endocrinology 140: 4221‐4227, 1999b.
 86.Farwell AP, Lynch RM, Okulicz WC, Comi AM, Leonard JL. The actin cytoskeleton mediates the hormonally regulated translocation of type II iodothyronine 5′‐deiodinase in astrocytes. J Biol Chem 265: 18546‐18553, 1990.
 87.Fekete C1, Lechan RM. Central regulation of hypothalamic‐pituitary‐thyroid axis under physiological and pathophysiological conditions. Endocr Rev 35:159‐194, 2014.
 88.Fernández M, Giuliani A, Pirondi S, D'Intino G, Giardino L, Aloe L, Levi‐Montalcini R, Calzà L. Thyroid hormone administration enhances remyelination in chronic demyelinating inflammatory disease. Proc Natl Acad Sci U S A 101: 16363‐16368, 2004b.
 89.Fernández M, Paradisi M, D'Intino G, Del Vecchio G, Sivilia S, Giardino L, Calzà L. A single prenatal exposure to the endocrine disruptor 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin alters developmental myelination and remyelination potential in the rat brain. J Neurochem 115: 897‐909, 2010.
 90.Fernández M, Paradisi M, Del Vecchio G, Giardino L, Calzà L. Thyroid hormone induces glial lineage of primary neurospheres derived from non‐pathological and pathological rat brain: Implications for remyelination‐enhancing therapies. Int J Dev Neurosci 27: 769‐778, 2009.
 91.Fernández M, Pirondi S, Manservigi M, Giardino L, Calza L. Thyroid hormone participates in the regulation of neural stem cells and oligodendrocyte precursor cells in the central nervous system of adult rat. Eur J Neurosci 20: 2059‐2070, 2004a.
 92.Ferrara AM, Liao XH, Gil‐Ibáñez P, Marcinkowski T, Bernal J, Weiss RE, Dumitrescu AM, Refetoff S. Changes in thyroid status during perinatal development of MCT8‐deficient male mice. Endocrinology 154: 2533‐2541, 2013.
 93.Fields RD. White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31: 361‐370, 2008.
 94.Fisher DA, Brown RS, The maturation of the thyroid function in the perinatal period and during childhood. In: Braverman LE, Cooper DS, editors. The Thyroid. A Fundamental and Clinical Text. Walter Kluwer, Lippincott, Williams & Wilkins, 2013, pp. 775‐786.
 95.Fisher DA, Dussault JH, Sack J, Chopra IJ. Ontogenesis of hypothalamic‐pituitary‐thyroid function and metabolism in man, sheep, and rat. Recent Prog Horm Res 33: 59‐116, 1976.
 96.Flamant F, Baxter JD, Forrest D, Refetoff S, Samuels H, Scanlan TS, Vennström B, Samarut J. International Union of Pharmacology. LIX. The pharmacology and classification of the nuclaer receptor superfamily: Thyroid hormone receptors. Pharmacol Rev 58: 705‐711, 2006.
 97.Fliers E, Kalsbeek A, Boelen A. Mechanisms in endocrinology: Beyond the fixed setpoint of the hypothalamus‐pituitary‐thyroid axis. Eur J Endocrinol 171: R197‐R208, 2014.
 98.Forrest D, Hallböök F, Persson H, Vennström B. Distinct functions for thyroid hormone receptors alpha and beta in brain development indicated by differential expression of receptor genes. EMBO J 10: 269‐275, 1991.
 99.Forrest D, Sjöberg M, Vennström B. Contrasting developmental and tissue‐specific expression of alpha and beta thyroid hormone receptor genes. EMBO J 9: 1519‐1528, 1990.
 100.Franco PG, Silvestroff L, Soto EF, Pasquini JM. Thyroid hormones promote differentiation of oligodendrocyte progenitor cells and improve remyelination after cuprizone‐induced demyelination. Exp Neurol 212: 458‐467, 2008.
 101.Freitas BC, Gereben B, Castillo M, Kalló I, Zeöld A, Egri P, Liposits Z, Zavacki AM, Maciel RM, Jo S, Singru P, Sanchez E, Lechan RM, Bianco AC. Paracrine signaling by glial cell‐derived triiodothyronine activates neuronal gene expression in the rodent brain and human cells. J Clin Invest. 120: 2206‐2217, 2010.
 102.Friesema EC, Grueters A, Biebermann H, Krude H, von Moers A, Reeser M, Barrett TG, Mancilla EE, Svensson J, Kester MH, Kuiper GG, Balkassmi S, Uitterlinden AG, Koehrle J, Rodien P, Halestrap AP, Visser TJ. Association between mutations in a thyroid hormone transporter and severe X‐linked psychomotor retardation. Lancet 364: 1435‐1437, 2004.
 103.Fu J, Refetoff S, Dumitrescu AM. Inherited defects of thyroid hormone‐cell‐membrane transport: Review of recent findings. Curr Opin Endocrinol Diabetes Obes 20: 434‐440, 2013.
 104.Galton VA, Wood ET, St Germain EA, Withrow CA, Aldrich G, St Germain GM, Clark AS, St Germain DL. Thyroid hormone homeostasis and action in the type 2 deiodinase‐deficient rodent brain during development. Endocrinology 148: 3080‐3088, 2007.
 105.Gao FB, Durand B, Raff M. Oligodendrocyte precursor cells count time but not cell divisions before differentiation. Curr Biol 7: 152‐155, 1997.
 106.Garstka HL, Fäcke M, Escribano JR, Wiesner RJ. Stoichiometry of mitochondrial transcripts and regulation of gene expression by mitochondrial transcription factor A. Biochem Biophys Res Commun 200: 619‐626, 1994.
 107.Gereben B, Pachucki J, Kollar A, Liposits Z, Fekete C. Ontogenic redistribution of type 2 deiodinase messenger ribonucleic acid in the brain of chicken. Endocrinology 145: 3619‐3625, 2004.
 108.Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, Zeöld A, Bianco AC. Cellular and molecular basis of deiodinase‐regulated thyroid hormone signaling. Endocr Rev 29: 898‐938, 2008.
 109.Giardino L, Ceccatelli S, Hökfelt T, Calza L. Expression of enkephalin and dynorphin precursor mRNAs in brain areas of hypo‐and hyperthyroid rat: Effect of kainic acid injection. Brain Res 687: 83‐93, 1995.
 110.Giardino L, Ceccatelli S, Zanni M, Hökfelt T, Calzà L. Regulation of VIP mRNA expression by thyroid hormone in different brain areas of adult rat. Brain Res Mol Brain Res 27: 87‐94, 1994.
 111.Giardino L, Velardo A, Gallinelli A, Calzà L. Deficit of galanin‐like immunostaining in the median eminence of adult hypothyroid rats. Neuroendocrinology 55: 237‐247, 1992.
 112.Gil‐Ibáñez P, Bernal J, Morte B. Thyroid hormone regulation of gene expression in primary cerebrocortical cells: Role of thyroid hormone receptor subtypes and interactions with retinoic acid and glucocorticoids. PLoS One 9: e91692, 2014.
 113.Gold BT, Jiang Y, Powell DK, Smith CD. Multimodal imaging evidence for axonal and myelin deterioration in amnestic mild cognitive impairment. J Alzheimers Dis 31(Suppl 3): S19‐31, 2012.
 114.Guadaño‐Ferraz A, Obregon MJ, St Germain DL, Bernal J. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc Natl Acad Sci USA 94: 10391‐10396, 1997.
 115.Guillemin R, Yamazaki E, Gard DA, Jutisz M, Sakiz E. In vitro secretion of thyrotropin (TSH): Stimulation by a hypothalamic peptide (TRF). Endocrinology 73: 564‐572, 1963.
 116.Hagen GA, Elliot TM. Transport of thyroid hormones in serum and cerebrospinal fluid. J Clin Endocrinol Metab 37: 415‐422, 1973.
 117.Harsan LA, Steibel J, Zaremba A, Agin A, Sapin R, Poulet P, Guignard B, Parizel N, Grucker D, Boehm N, Miller RH, Ghandour MS. Recovery from chronic demyelination by thyroid hormone therapy: Myelinogenesis induction and assessment by diffusion tensor magnetic resonance imaging. J Neurosci 28: 14189‐14201, 2008.
 118.Harvey CB, Bassett JH, Maruvada P, Yen PM, Williams GR. The rat thyroid hormone receptor (TR) Deltabeta3 displays cell‐, TR isoform‐, and thyroid hormone response element‐specific actions. Endocrinology 148: 1764‐1773, 2007.
 119.Harvey CB, Williams GR. Mechanism of thyroid hormone action. Thyroid 12: 441‐446, 2002.
 120.Hasimoto K, Curty FH, Borges PP, Lee CE, Abel ED, Elmquist JK, Cohen RN, Wondisford FE. An unliganded thyroid hormone receptor causes severe neurological dysfunction. Proc Natl Acad Sci U S A 98: 3998‐4003, 2001.
 121.Hernandez A, Martinez ME, Fiering S, Galton VA, St Germain D. Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Invest 116: 476‐484, 2006.
 122.Heuer H. The importance of thyroid hormone transporters for brain development and function. Best Pract Res Clin Endocrinol Metab 21: 265‐276, 2007.
 123.Heuer H, Maier MK, Iden S, Mittag J, Friesema EC, Visser TJ, Bauer K. The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone‐sensitive neuron populations. Endocrinology 146: 1701‐1706, 2005.
 124.Heuer H, Visser TJ. Minireview: Pathophysiological importance of thyroid hormone transporters. Endocrinology 150: 1078‐1083, 2009.
 125.Hollenberg AN. The role of thyrotropin‐releasing hormone (TRH) neuron as a metabolic sensor. Thyroid 18: 131‐139, 2008.
 126.Huang SA, Bianco AC. Reawakened interest in type III iodothyronine deiodinase in critical illness and injury. Nat Clin Pract Endocrinol Metab 4: 148‐155, 2008.
 127.Hung PL, Huang CC, Huang HM, Tu DG, Chang YC. Thyroxin treatment protects against white matter injury in the immature brain via brain‐derived neurotrophic factor. Stroke 44: 2275‐2283, 2013.
 128.Ibarrola N, Rodriguez‐Peña A. Hypothyroidism coordinately and transiently affects myelin protein gene expression in most rat brain regions during postnatal development. Brain Res 752: 285‐293, 1997.
 129.Iglesias M, Soler RM, Ribera J, Esquerda JE, Comella JX. The carbohydrate N‐acetylglucosamine is involved in the guidance of neurites from chick ciliary ganglion neurons through the extracellular matrix of rat skeletal muscle fiber. Neurosci Lett 207: 81‐84, 1996.
 130.Jansen J, Friesema EC, Milici C, Visser TJ. Thyroid hormone transporters in health and disease. Thyroid 15: 757‐768, 2005.
 131.Jo S, Kalló I, Bardóczi Z, Arrojo e Drigo R, Zeöld A, Liposits Z, Oliva A, Lemmon VP, Bixby JL, Gereben B, Bianco AC. Neuronal hypoxia induces Hsp40‐mediated nuclear import of type 3 deiodinase as an adaptive mechanism to reduce cellular metabolism. J Neurosci 32: 8491‐8500, 2012.
 132.Kalsbeek A, Fliers E, Franke AN, Wortel J, Buijs RM. Functional connections between the suprachiasmatic nucleus and the thyroid gland as revealed by lesioning and viral tracing techniques in the rat. Endocrinology 141: 3832‐3841, 2000.
 133.Kaplan MM, Yaskoski KA. Maturational patterns of iodothyronine phenolic and tyrosyl ring deiodinase activities in rat cerebrum, cerebellum, and hypothalamus. J Clin Invest 67: 1208‐1214, 1981.
 134.Kapoor R, Desouza LA, Nanavaty IN, Kernie SG, Vaidya VA. Thyroid hormone accelerates the differentiation of adult hippocampal progenitors. J Neuroendocrinol 24: 1259‐1271, 2012.
 135.Kassem NA, Deane R, Segal MB, Preston JE. Role of transthyretin in thyroxine transfer from cerebrospinal fluid to brain and choroid plexus. Am J Physiol Regul Integr Comp Physiol 291: R1310‐1315, 2006.
 136.Keijzer R, Blommaart PJ, Labruyère WT, Vermeulen JL, Doulabi BZ, Bakker O, Tibboel D, Lamers WH. Expression of thyroid hormone receptors A and B in developing rat tissues; evidence for extensive posttranscriptional regulation. J Mol Endocrinol 38: 523‐535, 2007.
 137.Koenig RJ. Modeling the nonthyroidal illness sindrome. Curr Opin Endocrinol Diabetes Obesity 15: 466‐469, 2008.
 138.Kress E, Samarut J, Plateroti M. Thyroid hormones and the control of cell proliferation or cell differentiation: Paradox or duality? Mol Cell Endocrinol 313: 36‐49, 2009.
 139.Kuhlmann T, Miron V, Cui Q, Wegner C, Antel J, Brück W. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131: 1749‐1758, 2008.
 140.Kwakkel J, Chassande O, van Beeren HC, Fliers E, Wiersinga WM, Boelen A. Thyroid hormone receptor {alpha} modulates lipopolysaccharide‐induced changes in peripheral thyroid hormone metabolism. Endocrinology 151: 1959‐1969, 2010.
 141.Lamirand A, Pallud‐Mothré S, Ramaugé M, Pierre M, Courtin F. Oxidative stress regulates type 3 deiodinase and type 2 deiodinase in cultured rat astrocytes. Endocrinology 149: 3713‐3721, 2008.
 142.Larsen PR, Silva JE, Kaplan MM. Relationships between circulating and intracellular thyroid hormones: Physiological and clinical implications. Endocr Rev 2: 87‐102, 1981.
 143.Lechan RM, Fekete C. Feedback regulation of thyrotropin‐releasing hormone (TRH): Mechanisms for the non‐thyroidal illness syndrome. J Endocrinol Invest 27(Suppl 6): 105‐119, 2004.
 144.Lechan RM, Fekete C. Role of thyroid hormone deiodination in the hypothalamus. Thyroid 15: 883‐897, 2005.
 145.Lechan RM, Fekete C. Infundibular tanycytes as modulators of neuroendocrine function: Hypothetical role in the regulation of the thyroid and gonadal axis. Acta Biomed 78(Suppl 1): 84‐98, 2007.
 146.Lemkine GF, Raj A, Alfama G, Turque N, Hassani Z, Alegria‐Prévot O, Samarut J, Levi G, Demeneix BA. Adult neural stem cell cycling in vivo requires thyroid hormone and its alpha receptor. FASEB J 19: 863‐865, 2005.
 147.Levine JM, Reynolds R, Fawcett JW. The oligodendrocyte precursor cell in health and disease. Trends Neurosci 24: 39‐47, 2001.
 148.Li WW, Le Goascogne C, Ramaugé M, Schumacher M, Pierre M, Courtin F. Induction of type 3 iodothyronine deiodinase by nerve injury in the rat peripheral nervous system. Endocrinology 142: 5190‐5197, 2001.
 149.López‐Juárez A, Remaud S, Hassani Z, Jolivet P, Pierre Simons J, Sontag T, Yoshikawa K, Price J, Morvan‐Dubois G, Demeneix BA. Thyroid hormone signaling acts as a neurogenic switch by repressing Sox2 in the adult neural stem cell niche. Cell Stem Cell 10: 531‐543, 2012.
 150.Losi G, Garzon G, Puia G. Nongenomic regulation of glutamatergic neurotransmission in hippocampus by thyroid hormones. Neuroscience 151: 155‐163, 2008.
 151.Margaill I, Royer J, Lerouet D, Ramaugé M, Le Goascogne C, Li WW, Plotkine M, Pierre M, Courtin F. Induction of type 2 iodothyronine deiodinase in astrocytes after transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 25: 468‐476, 2005.
 152.Mayerl S, Müller J, Bauer R, Richert S, Kassmann CM, Darras VM, Buder K, Boelen A, Visser TJ, Heuer H. Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. J Clin Invest 124: 1987‐1999, 2014.
 153.McEwan IJ. Nuclear receptors: One big family. Methods Mol Biol 505: 3‐18, 2009.
 154.Miller RH, Mi S. Dissecting demyelination. Nat Neurosci 10: 1351‐1354, 2007.
 155.Mitchell ML, Hsu HW, Sahai I. Changing perspectives in screening for congenital hypothyroidism and congenital adrenal hyperplasia. Curr Opin Endocrinol Diabetes Obes 21: 39‐44, 2014.
 156.Mitew S, Hay CM, Peckham H, Xiao J, Koenning M, Emery B. Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience 276: 29‐47, 2013.
 157.Moelloeer LC, Brcker‐Preuss M. Transcriptional regulation by nonclassical action of thyroid hormone. Thyroid Res 4(Suppl 1): S6, 2011.
 158.Moeller LC, Führer D. Thyroid hormone, thyroid hormone receptors, and cancer: A clinical perspective. Endocr Relat Cancer 20: R19‐R29, 2013.
 159.Montero‐Pedrazuela A, Venero C, Lavado‐Autric R, Fernández‐Lamo I, García‐Verdugo JM, Bernal J, Guadaño‐Ferraz A. Modulation of adult hippocampal neurogenesis by thyroid hormones: Implications in depressive‐like behavior. Mol Psychiatry 11: 361‐371, 2006.
 160.Morvan‐Dubois G, Fini JB, Demeneix BA. Is thyroid hormone signaling relevant for vertebrate embryogenesis? Curr Top Dev Biol 103: 365‐396, 2013.
 161.Nagy L. Nuclear hormone receptors are powerful regulators of stem cell maintenance, differentiation, metabolism and function. Semin Cell Dev Biol 24: 669, 2013.
 162.Nicolay DJ, Doucette JR, Nazarali AJ. Transcriptional control of oligodendrogenesis. Glia 55: 1287‐1299, 2007.
 163.Nikrodhanond AA, Ortiga‐Carvalho TM, Shibusawa N, Hashimoto K, Liao XH, Refetoff S, Yamada M, Mori M, Wondisford FE. Dominant role of thyrotropin‐releasing hormone in the hypothalamic‐pituitary‐thyroid axis. J Biol Chem 281: 5000‐5007, 2006.
 164.Nillni EA. Regulation of the hypothalamic thyrotropin releasing hormone (TRH) neuron by neuronal and peripheral inputs. Front Neuroendocrinol 31: 134‐156, 2010.
 165.Noble M. Precursor cell transitions in oligodendrocyte development. J Cell Biol 148: 839‐842, 2000.
 166.Ortiga‐Carvalho TM, Shibusawa N, Nikrodhanond A, Oliveira KJ, Machado DS, Liao XH, Cohen RN, Refetoff S, Wondisford FE. Negative regulation by thyroid hormone receptor requires an intact coactivator‐binding surface. J Clin Invest 115: 2517‐2523, 2005.
 167.O'Shea PJ, Williams GR. Insight into the physiological actions of thyroid hormone receptors from genetically modified mice. J Endocrinol 175: 553‐570, 2002.
 168.Pajevic S, Basser PJ, Fields RD. Role of myelin plasticity in oscillations and synchrony of neuronal activity. Neuroscience 276: 135‐147, 2014.
 169.Papadimitriou A, Dumitrescu AM, Papavasiliou A, Fretzayas A, Nicolaidou P, Refetoff S. A novel monocarboxylate transporter 8 gene mutation as a cause of severe neonatal hypotonia and developmental delay. Pediatrics 121: e199‐e202, 2008.
 170.Pappa TA, Vagenakis AG, Alevizaki M. The nonthyroidal illness syndrome in the non‐critically ill patient. Eur J Clin Invest 41: 212‐220, 2011.
 171.Pascual A, Aranda A. Thyroid hormone receptors, cell growth and differentiation. Biochim Biophys Acta 1830: 3908‐3916, 2013.
 172.Peeters RP, Geyten SV, Wouters PJ, Darras VM, van Toor H, Kaptein E, Visser TJ, Van den Berghe G. Tissue thyroid hormone levels in critical illness. J Clin Endocrinol Metab 12: 6498‐6507, 2005.
 173.Perez‐Juste G, Aranda A. The cyclin‐dependent kinase inhibitor p27(kip1) is involved in thyroid hormone‐mediated neuronal differentiation. J Biol Chem 274: 5026‐5031, 1999.
 174.Perissi V, Rosenfeld MG. Controlling nuclear receptors: The circular logic of cofactor cycles. Nat Rev Mol Cell Biol 6: 542‐554, 2005.
 175.Pizzagalli F, Hagenbuch B, Stieger B, Klenk U, Folkers G, Medier PJ. Identification of a novel human organic anion transporting polypeptides as a high affinity thyroxine transporter. Mol Endocrinol 16: 2283‐2296, 2002.
 176.Puia G, Losi G. Thyroid hormones modulate GABA(A) receptor‐mediated currents in hippocampal neurons. Neuropharmacology 60: 1254‐1261, 2011.
 177.Puymirat J, l'Hereault S, Dussault JH. Expression of thyroid hormone receptors mRNAs in rat cerebral hemisphere neuronal cultures. Brain Res Dev Brain Res 69: 173‐177, 1992.
 178.Qi JS, Yuan Y, Desai‐Yajnik V, Samuels HH. Regulation of the mdm2 oncogene by thyroid hormone receptor. Mol Cell Biol 19: 864‐872, 1999.
 179.Raff M. The mystery of intracellular developmental programmes and timers. Biochem Soc Trans 34: 663‐670, 2006.
 180.Remaud S, Gothié JD, Morvan‐Dubois G, Demeneix BA. Thyroid hormone signaling and adult neurogenesis in mammals. Front Endocrinol 5: 62, 2014.
 181.Riskind PN, Kolodny JM, Larsen PR. The regional hypothalamic distribution of type II 5′‐monodeiodinase in euthyroid and hypothyroid rats. Brain Res 420: 194‐198, 1987.
 182.Roberts LM, Woodford K, Zhou M, Black DS, Haggerty JE, Tate EH, Grindstaff KK, Mengesha W, Raman C, Zerangue N. Expression of the thyroid hormone transporters monocarboxylate transporter‐8 (SLC16A2) and organic ion transporter‐14 (SLCO1C1) at the blood‐brain barrier. Endocrinology 149: 6251‐6261, 2008.
 183.Rodgers JM, Robinson AP, Miller SD. Strategies for protecting oligodendrocytes and enhancing remyelination in multiple sclerosis. Discov Med 16: 55‐63, 2013.
 184.Rodriguez‐Peña A, Ibarrola N, Iñiguez MA, Muñoz A, Bernal J. Neonatal hypothyroidism affects the timely expression of myelin‐associated glycoprotein in the rat brain. J Clin Invest 91: 812‐818, 1993.
 185.Saelim N, Holstein D, Chocron ES, Camacho P, Lechleiter JD. Inhibition of apoptotic potency by ligand stimulated thyroid hormone receptors located in mitochondria. Apoptosis 12: 1781‐1794, 2007.
 186.Samuels MH, Kolobova I, Smeraglio A, Peters D, Janowsky JS, Schuff KG. The effects of levothyroxine replacement or suppressive therapy on health status, mood, and cognition. J Clin Endocrinol Metab 99: 843‐851, 2014.
 187.Sarliève LL, Rodríguez‐Peña A, Langley K. Expression of thyroid hormone receptor isoforms in the oligodendrocyte lineage. Neurochem Res 29: 903‐922, 2004.
 188.Schlosser G, Koyano‐Nakagawa N, Kintner C. Thyroid hormone promotes neurogenesis in the Xenopus spinal cord. Dev Dyn 225: 485‐498, 2002.
 189.Schroeder AC, Privalsky ML. Thyroid hormones, T3 and T4, in the brain. Front Endocrinol 5: 40, 2014.
 190.Schwartz CE, May MM, Carpenter NJ, Rogers RC, Martin J, Bialer MG, Ward J, Sanabria J, Marsa S, Lewis JA, Echeverri R, Lubs HA, Voeller K, Simensen RJ, Stevenson RE. Allan‐Herndon‐Dudley syndrome and the monocarboxylate transporter 8 (MCT8) gene. Am J Hum Genet 77: 41‐53, 2005.
 191.Sharlin DS, Bansal R, Zoeller RT. Polychlorinated biphenyls exert selective effects on cellular composition of white matter in a manner inconsistent with thyroid hormone insufficiency. Endocrinology 14: 846‐858, 2006.
 192.Shoonover CM, Seibel MM, Jolson DM, Stack MJ, Rahman RJ, Jones SA, Mariash CN, Anderson GW. Thyroid hormone regulates oligodendrocyte accumulation in developing rat brain white matter tracts. Endocrinology 145: 5013‐5020, 2004.
 193.Siegrist‐Kaiser CA, Juge‐Aubry C, Tranter MP, Ekenbarger DM, Leonard JL. Thyroxine‐dependent modulation of actin polymerization in cultured astrocytes. A novel extranuclear action of thyroid hormone. J Biol Chem 265: 5296‐5302, 1990.
 194.Sijens PE, Rödiger LA, Meiners LC, Lunsing RJ. 1H magnetic resonance spectroscopy in monocarboxylate transporter 8 gene deficiency. J Clin Endocrinol Metab 93: 1854‐1959, 2008.
 195.Silvestroff L, Bartucci S, Pasquini J, Franco P. Cuprizone‐induced demyelination in the rat cerebral cortex and thyroid hormone effects on cortical remyelination. Exp Neurol 235: 357‐367, 2012.
 196.Simandi Z, Cuaranta‐Monroy I, Nagy L. Nuclear receptors as regulators of stem cell and cancer stem cell metabolism. Semin Cell Dev Biol 24: 716‐723, 2013.
 197.Simonides WS, Mulcahey MA, Redout EM, Muller A, Zuidwijk MJ, Visser TJ, Wassen FW, Crescenzi A, da‐Silva WS, Harney J, Engel FB, Obregon MJ, Larsen PR, Bianco AC, Huang SA. Hypoxia‐inducible factor induces local thyroid hormone inactivation during hypoxic‐ischemic disease in rats. J Clin Invest 118: 975‐983, 2008.
 198.Singh S, Modi S, Bagga D, Kaur P, Shankar LR, Khushu S. Voxel‐based morphometric analysis in hypothyroidism using diffeomorphic anatomic registration via an exponentiated lie algebra algorithm approach. J Neuroendocrinol 25: 229‐234, 2013.
 199.Sirakov M, Skah S, Nadjar J, Plateroti M. Thyroid hormone's action on progenitor/stem cell biology: New challenge for a classic hormone? Biochim Biophys Acta 1830: 3917‐3927, 2013.
 200.Stenzel D, Wilsch‐Brauninger M, Wong FK, Heuer H, Huttner WB. Integrin αvβ3 and thyroid hormones promote expansion of progenitors in embryonic neocortex. Development 141: 795‐806, 2014.
 201.Stergiopoulos A, Politis PK. The role of nuclear receptors in controlling the fine balance between proliferation and differentiation of neural stem cells. Arch Biochem Biophys 534: 27‐37, 2013.
 202.Strait KA, Schwartz HL, Perez‐Castillo A, Oppenheimer JH. Relationship of c‐erbA mRNA content to tissue triiodothyronine nuclear binding capacity and function in developing and adult rats. J Biol Chem 265: 10514‐10521, 1990.
 203.Sugiyama D, Kusuhara H, Taniguchi H, Ishikawa S, Nozaki Y, Aburatani H, Sugiyama Y. Functional characterization of rat brain‐specific organic anion transporter (Oatp14) at the blood‐brain barrier: High affinity transporter for thyroxine. J Biol Chem 278: 43489‐43495, 2003.
 204.Tokumoto YM, Tang DG, Raff MC. Two molecularly distinct intracellular pathways to oligodendrocyte differentiation: Role of a p53 family protein. EMBO J 20:5261‐5268, 2001.
 205.Tu HM, Kim SW, Salvatore D, Bartha T, Legradi G, Larsen PR, Lechan RM. Regional distribution of type 2 thyroxine deiodinase messenger ribonucleic acid in rat hypothalamus and pituitary and its regulation by thyroid hormone. Endocrinology 138: 3359‐3368, 1997.
 206.Tu HM, Legradi G, Bartha T, Salvatore D, Lechan RM, Larsen PR. Regional expression of the type 3 iodothyronine deiodinase messenger ribonucleic acid in the rat central nervous system and its regulation by thyroid hormone. Endocrinology 140: 784‐790, 1999.
 207.Tuca A, Giralt M, Villarroya F, Viñas O, Mampel T, Iglesias R. Ontogeny of thyroid hormone receptors and c‐erbA expression during brown adipose tissue development: Evidence of fetal acquisition of the mature thyroid status. Endocrinology 132: 1913‐1920, 1993.
 208.Vallortigara J, Alfos S, Micheau J, Higueret P, Enderlin V. T3 administration in adult hypothyroid mice modulates expression of proteins involved in striatal synaptic plasticity and improves motor behavior. Neurobiol Dis 31: 378‐385, 2008.
 209.Vallortigara J, Chassande O, Higueret P, Enderlin V. Thyroid hormone receptor alpha plays an essential role in the normalisation of adult‐onset hypothyroidism‐related hypoexpression of synaptic plasticity target genes in striatum. J Neuroendocrinol 21: 49‐56, 2009.
 210.Vose LR, Vinukonda G, Jo S, Miry O, Diamond D, Korumilli R, Arshad A, Zia MT, Hu F, Kayton RJ, La Gamma EF, Bansal R, Bianco AC, Ballabh P. Treatment with thyroxine restores myelination and clinical recovery after intraventricular hemorrhage. J Neurosci 33: 17232‐17246, 2013.
 211.Wajner SM, Maia AL. New insights toward the acute non‐thyroidal illness syndrome. Front Endocrinol 3: 8, 2012.
 212.Wang S, Young KM. White matter plasticity in adulthood. Neuroscience 276: 148‐160, 2013.
 213.Williams A. Central nervous system regeneration—Where are we? QJM 107: 335‐339, 2014.
 214.Williams GR, Bassett JH. Deiodinases: The balance of thyroid hormone: Local control of thyroid hormone action: Role of type 2 deiodinase. J Endocrinol 209: 261‐272, 2011.
 215.Wirth EK, Roth S, Blechschmidt C, Hölter SM, Becker L, Racz I, Zimmer A, Klopstock T, Gailus‐Durner V, Fuchs H, Wurst W, Naumann T, Bräuer A, de Angelis MH, Köhrle J, Grüters A, Schweizer U. Neuronal 3′,3,5‐triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan‐Herndon‐Dudley syndrome. J Neurosci 29: 9439‐9449, 2009.
 216.Wrutniak C, Cassar‐Malek I, Marchal S, Rascle A, Heusser S, Keller JM, Fléchon J, Dauça M, Samarut J, Ghysdael J. A 43‐kDa protein related to c‐Erb A α 1 is located in the mitochondrial matrix of rat liver. J Biol Chem 270: 16347‐16354, 1995.
 217.Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev 81: 1097‐1142, 2001.
 218.Yoshimura T, Yasuo S, Watanabe M, Iigo M, Yamamura T, Hirunagi K, Ebihara S. Light‐induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature 426: 178‐181, 2003.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Laura Calzà, Mercedes Fernández, Luciana Giardino. Role of the Thyroid System in Myelination and Neural Connectivity. Compr Physiol 2015, 5: 1405-1421. doi: 10.1002/cphy.c140035