Comprehensive Physiology Wiley Online Library

Glucose Transporters in Cardiac Metabolism and Hypertrophy

Full Article on Wiley Online Library



ABSTRACT

The heart is adapted to utilize all classes of substrates to meet the high‐energy demand, and it tightly regulates its substrate utilization in response to environmental changes. Although fatty acids are known as the predominant fuel for the adult heart at resting stage, the heart switches its substrate preference toward glucose during stress conditions such as ischemia and pathological hypertrophy. Notably, increasing evidence suggests that the loss of metabolic flexibility associated with increased reliance on glucose utilization contribute to the development of cardiac dysfunction. The changes in glucose metabolism in hypertrophied hearts include altered glucose transport and increased glycolysis. Despite the role of glucose as an energy source, changes in other nonenergy producing pathways related to glucose metabolism, such as hexosamine biosynthetic pathway and pentose phosphate pathway, are also observed in the diseased hearts. This article summarizes the current knowledge regarding the regulation of glucose transporter expression and translocation in the heart during physiological and pathological conditions. It also discusses the signaling mechanisms governing glucose uptake in cardiomyocytes, as well as the changes of cardiac glucose metabolism under disease conditions. © 2016 American Physiological Society. Compr Physiol 6:331‐351, 2016.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Schematic model of GLUTs in the plasma membrane with 12 membrane‐spanning domains and 6 exofacial loops. The proposed substrate or cytochalasin B‐binding site, and the N‐linked glycosylation site are indicated.
Figure 2. Figure 2. Major signaling mechanisms mediating GLUT4 translocation in muscle and/or adipose tissues: insulin (red and green), ischemia/exercise or contraction (blue) stimulated GLUT4 translocation. For insulin signaling cascade, PI3‐kinase‐dependent (green) and independent (red) pathways are described. APS, adapter protein with Pleckstrin homology and Src homology 2 domains; CAP, c‐Cbl‐associated protein; Cbl, Casitas B‐lineage Lymphoma; Crk, v‐crk avian sarcoma virus CT10 oncogene homolog; IRS1, Insulin receptor substrate 1; PI3K, phosphoinositide 3‐kinase; PIP2, phosphatidylinositol 4,5‐bisphosphate; PIP3, phosphatidylinositol 3,4,5‐triphosphate; PDK1, 3‐phosphoinositide dependent protein kinase‐1; Protein kinase B, Akt; AS160, Akt substrate of 160 kDa; aPKC, atypical protein kinase C; LKB1, liver kinase B1; CaMKK, calcium/calmodulin‐dependent protein kinase kinase; AMPK, 5' AMP‐activated protein kinase; PKD, protein kinase D; NOS, nitric oxide synthase; NO, nitric oxide.
Figure 3. Figure 3. Glucose metabolism pathways in the heart. Changes in the levels of metabolites, key enzymes, or fluxes during pathological cardiac hypertrophy are shown in red (increased) or green (unaltered). G6PD, glucose‐6‐phosphate dehydrogenase; 6‐PGL, 6‐phosphogluconolactone; 6‐PG, 6‐phosphogluconate; NADP+, nicotinamide adenine dinucleotide phosphate; NADPH, reduced nicotinamide adenine dinucleotide phosphate; X‐5‐P, xylose‐5‐phosphate; R‐5‐P, ribose‐5‐phosphate; AR, aldose reductase; SDH, sorbitol dehydrogenase; NAD+, nicotinamide adenine dinucleotide; NADH, reduced nicotinamide adenine dinucleotide; HK, hexokinase; G‐6‐P, glucose‐6‐phosphate; F‐6‐P, fructose‐6‐phosphate; PFK‐1, phosphofructokinase‐1; F‐1,6‐BP, fructose‐1,6‐bisphosphate; G‐3‐P, glyceraldehyde 3‐phosphate; 1, 3‐BPG, 1,3‐diphosphoglycerate; GAPDH, glyceraldehyde‐3‐phosphate dehydrogenase; PEP, phosphoenolpyruvate; PK, pyruvate kinase; LDH, lactate dehydrogenase; PDH, pyruvate dehydrogenase; acetyl‐coA, acetyl coenzyme A; PC, pyruvate carboxylase; ME, malic enzyme; TCA, tricarboxylic acid; ETC, electron transport chain; GFAT, glutamine fructose‐6‐phosphate aminotransferase; UDP‐GlcNAc, uridine diphosphate‐N‐acetylglucosamine; OGT, O‐GlcNAc transferase.


Figure 1. Schematic model of GLUTs in the plasma membrane with 12 membrane‐spanning domains and 6 exofacial loops. The proposed substrate or cytochalasin B‐binding site, and the N‐linked glycosylation site are indicated.


Figure 2. Major signaling mechanisms mediating GLUT4 translocation in muscle and/or adipose tissues: insulin (red and green), ischemia/exercise or contraction (blue) stimulated GLUT4 translocation. For insulin signaling cascade, PI3‐kinase‐dependent (green) and independent (red) pathways are described. APS, adapter protein with Pleckstrin homology and Src homology 2 domains; CAP, c‐Cbl‐associated protein; Cbl, Casitas B‐lineage Lymphoma; Crk, v‐crk avian sarcoma virus CT10 oncogene homolog; IRS1, Insulin receptor substrate 1; PI3K, phosphoinositide 3‐kinase; PIP2, phosphatidylinositol 4,5‐bisphosphate; PIP3, phosphatidylinositol 3,4,5‐triphosphate; PDK1, 3‐phosphoinositide dependent protein kinase‐1; Protein kinase B, Akt; AS160, Akt substrate of 160 kDa; aPKC, atypical protein kinase C; LKB1, liver kinase B1; CaMKK, calcium/calmodulin‐dependent protein kinase kinase; AMPK, 5' AMP‐activated protein kinase; PKD, protein kinase D; NOS, nitric oxide synthase; NO, nitric oxide.


Figure 3. Glucose metabolism pathways in the heart. Changes in the levels of metabolites, key enzymes, or fluxes during pathological cardiac hypertrophy are shown in red (increased) or green (unaltered). G6PD, glucose‐6‐phosphate dehydrogenase; 6‐PGL, 6‐phosphogluconolactone; 6‐PG, 6‐phosphogluconate; NADP+, nicotinamide adenine dinucleotide phosphate; NADPH, reduced nicotinamide adenine dinucleotide phosphate; X‐5‐P, xylose‐5‐phosphate; R‐5‐P, ribose‐5‐phosphate; AR, aldose reductase; SDH, sorbitol dehydrogenase; NAD+, nicotinamide adenine dinucleotide; NADH, reduced nicotinamide adenine dinucleotide; HK, hexokinase; G‐6‐P, glucose‐6‐phosphate; F‐6‐P, fructose‐6‐phosphate; PFK‐1, phosphofructokinase‐1; F‐1,6‐BP, fructose‐1,6‐bisphosphate; G‐3‐P, glyceraldehyde 3‐phosphate; 1, 3‐BPG, 1,3‐diphosphoglycerate; GAPDH, glyceraldehyde‐3‐phosphate dehydrogenase; PEP, phosphoenolpyruvate; PK, pyruvate kinase; LDH, lactate dehydrogenase; PDH, pyruvate dehydrogenase; acetyl‐coA, acetyl coenzyme A; PC, pyruvate carboxylase; ME, malic enzyme; TCA, tricarboxylic acid; ETC, electron transport chain; GFAT, glutamine fructose‐6‐phosphate aminotransferase; UDP‐GlcNAc, uridine diphosphate‐N‐acetylglucosamine; OGT, O‐GlcNAc transferase.
References
 1.Abel ED, Kaulbach HC, Tian R, Hopkins JC, Duffy J, Doetschman T, Minnemann T, Boers ME, Hadro E, Oberste‐Berghaus C, Quist W, Lowell BB, Ingwall JS, Kahn BB. Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. J Clin Invest 104: 1703‐1714, 1999.
 2.Ahn MY, Katsanakis KD, Bheda F, Pillay TS. Primary and essential role of the adaptor protein APS for recruitment of both c‐Cbl and its associated protein CAP in insulin signaling. J Biol Chem 279: 21526‐21532, 2004.
 3.Allard MF, Henning SL, Wambolt RB, Granleese SR, English DR, Lopaschuk GD. Glycogen metabolism in the aerobic hypertrophied rat heart. Circulation 96: 676‐682, 1997.
 4.Allard MF, Schonekess BO, Henning SL, English DR, Lopaschuk GD. Contribution of oxidative‐metabolism and glycolysis to Atp production in hypertrophied hearts. Am J Physiol 267: H742‐H750, 1994.
 5.Asada T, Ogawa T, Iwai M, Kobayashi M. Effect of recombinant human insulin‐like growth factor‐I on expression of glucose transporters, GLUT 2 and GLUT 4, in streptozotocin‐diabetic rat. Jpn J Pharmacol 78: 63‐67, 1998.
 6.Bae SS, Cho H, Mu J, Birnbaum MJ. Isoform‐specific regulation of insulin‐dependent glucose uptake by Akt/protein kinase B. J Biol Chem 278: 49530‐49536, 2003.
 7.Bandyopadhyay G, Standaert ML, Kikkawa U, Ono Y, Moscat J, Farese RV. Effects of transiently expressed atypical (zeta, lambda), conventional (alpha, beta) and novel (delta, epsilon) protein kinase C isoforms on insulin‐stimulated translocation of epitope‐tagged GLUT4 glucose transporters in rat adipocytes: specific interchangeable effects of protein kinases C‐zeta and C‐lambda. Biochem J 337(Pt 3): 461‐470, 1999.
 8.Barros RP, Machado UF, Warner M, Gustafsson JA. Muscle GLUT4 regulation by estrogen receptors ERbeta and ERalpha. Proc Natl Acad Sci U S A 103: 1605‐1608, 2006.
 9.Baumann CA, Ribon V, Kanzaki M, Thurmond DC, Mora S, Shigematsu S, Bickel PE, Pessin JE, Saltiel AR. CAP defines a second signalling pathway required for insulin‐stimulated glucose transport. Nature 407: 202‐207, 2000.
 10.Beauloye C, Marsin AS, Bertrand L, Vanoverschelde JL, Rider MH, Hue L. The stimulation of heart glycolysis by increased workload does not require AMP‐activated protein kinase but a wortmannin‐sensitive mechanism. Febs Lett 531: 324‐328, 2002.
 11.Becker C, Sevilla L, Tomas E, Palacin M, Zorzano A, Fischer Y. The endosomal compartment is an insulin‐sensitive recruitment site for GLUT4 and GLUT1 glucose transporters in cardiac myocytes. Endocrinology 142: 5267‐5276, 2001.
 12.Belke DD, Betuing S, Tuttle MJ, Graveleau C, Young ME, Pham M, Zhang D, Cooksey RC, McClain DA, Litwin SE, Taegtmeyer H, Severson D, Kahn CR, Abel ED. Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. J Clin Invest 109: 629‐639, 2002.
 13.Belke DD, Larsen TS, Gibbs EM, Severson DL. Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol‐Endoc M 279: E1104‐E1113, 2000.
 14.Belke DD, Larsen TS, Gibbs EM, Severson DL. Glucose metabolism in perfused mouse hearts overexpressing human GLUT‐4 glucose transporter. Am J Physiol Endocrinol Metab 280: E420‐E427, 2001.
 15.Bell GI, Kayano T, Buse JB, Burant CF, Takeda J, Lin D, Fukumoto H, Seino S. Molecular biology of mammalian glucose transporters. Diabetes care 13: 198‐208, 1990.
 16.Bertrand L, Horman S, Beauloye C, Vanoverschelde JL. Insulin signalling in the heart. Cardiovasc Res 79: 238‐248, 2008.
 17.Bevan P. Insulin signalling. J Cell Sci 114: 1429‐1430, 2001.
 18.Bihler I, McNevin SR, Sawh PC. Sarcolemmal glucose transport in Ca2+‐tolerant myocytes from adult rat heart. Calcium dependence of insulin action. Biochim Biophys Acta 844: 9‐18, 1985.
 19.Bishop SP, Altschuld RA. Increased glycolytic metabolism in cardiac hypertrophy and congestive failure. Am J Physiol 218: 153‐159, 1970.
 20.Brosius FC, Liu YN, Nguyen N, Sun DQ, Bartlett J, Schwaiger M. Persistent myocardial ischemia increases GLUT1 glucose transporter expression in both ischemic and non ischemic heart regions. J Mol Cell Cardiol 29: 1675‐1685, 1997.
 21.Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter glut4. Nat Rev Mol Cell Bio 3: 267‐277, 2002.
 22.Carayannopoulos MO, Chi MMY, Cui Y, Pingsterhaus JM, McKnight RA, Mueckler M, Devaskar SU, Moley KH. GLUT8 is a glucose transporter responsible for insulin‐stimulated glucose uptake in the blastocyst. P Natl Acad Sci USA 97: 7313‐7318, 2000.
 23.Carruthers A. Facilitated diffusion of glucose. Physiol Rev 70: 1135‐1176, 1990.
 24.Castello A, Rodriguez‐Manzaneque JC, Camps M, Perez‐Castillo A, Testar X, Palacin M, Santos A, Zorzano A. Perinatal hypothyroidism impairs the normal transition of GLUT4 and GLUT1 glucose transporters from fetal to neonatal levels in heart and brown adipose tissue. Evidence for tissue‐specific regulation of GLUT4 expression by thyroid hormone. J Biol Chem 269: 5905‐5912, 1994.
 25.Chen CH, Pore N, Behrooz A, Ismail‐Beigi F, Maity A. Regulation of glut1 mRNA by hypoxia‐inducible factor‐1: Interaction between H‐ras and hypoxia. J Biol Chem 276: 9519‐9525, 2001.
 26.Cheung JY, Constantine JM, Bonventre JV. Cytosolic free calcium concentration and glucose transport in isolated cardiac myocytes. Am J Physiol 252: C163‐C172, 1987.
 27.Contreras‐Ferrat AE, Toro B, Bravo R, Parra V, Vasquez C, Ibarra C, Mears D, Chiong M, Jaimovich E, Klip A, Lavandero S. An inositol 1,4,5‐triphosphate (IP3)‐IP3 receptor pathway is required for insulin‐stimulated glucose transporter 4 translocation and glucose uptake in cardiomyocytes. Endocrinology 151: 4665‐4677, 2010.
 28.Coven DL, Hu X, Cong L, Bergeron R, Shulman GI, Hardie DG, Young LH. Physiological role of AMP‐activated protein kinase in the heart: graded activation during exercise. Am J Physiol Endocrinol Metab 285: E629‐E636, 2003.
 29.Cushman SW, Wardzala LJ. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem 255: 4758‐4762, 1980.
 30.Dassanayaka S, Jones SP. O‐GlcNAc and the cardiovascular system. Pharmacol Ther 142: 62‐71, 2014.
 31.Daugaard JR, Nielsen JN, Kristiansen S, Andersen JL, Hargreaves M, Richter EA. Fiber type‐specific expression of GLUT4 in human skeletal muscle: influence of exercise training. Diabetes 49: 1092‐1095, 2000.
 32.Davidson NO, Hausman AM, Ifkovits CA, Buse JB, Gould GW, Burant CF, Bell GI. Human intestinal glucose transporter expression and localization of GLUT5. Am J Physiol 262: C795‐C800, 1992.
 33.Dawson PA, Mychaleckyj JC, Fossey SC, Mihic SJ, Craddock AL, Bowden DW. Sequence and functional analysis of GLUT10: a glucose transporter in the Type 2 diabetes‐linked region of chromosome 20q12‐13.1. Mol Genet Metab 74: 186‐199, 2001.
 34.DeBosch B, Treskov I, Lupu TS, Weinheimer C, Kovacs A, Courtois M, Muslin AJ. Akt1 is required for physiological cardiac growth. Circulation 113: 2097‐2104, 2006.
 35.Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, Yan N. Crystal structure of the human glucose transporter GLUT1. Nature 510: 121‐125, 2014.
 36.Depre C, Shipley GL, Chen W, Han Q, Doenst T, Moore ML, Stepkowski S, Davies PJ, Taegtmeyer H. Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nat Med 4: 1269‐1275, 1998.
 37.Depre C, Vanoverschelde JL, Taegtmeyer H. Glucose for the heart. Circulation 99: 578‐588, 1999.
 38.Des Rosiers C, Labarthe F, Lloyd SG, Chatham JC. Cardiac anaplerosis in health and disease: food for thought. Cardiovasc Res 90: 210‐219, 2011.
 39.Desrois M, Sidell RJ, Gauguier D, Davey CL, Radda GK, Clarke K. Gender differences in hypertrophy, insulin resistance and ischemic injury in the aging type 2 diabetic rat heart. J Mol Cell Cardiol 37: 547‐555, 2004.
 40.Desrois M, Sidell RJ, Gauguier D, King LM, Radda GK, Clarke K. Initial steps of insulin signaling and glucose transport are defective in the type 2 diabetic rat heart. Cardiovasc Res 61: 288‐296, 2004.
 41.Dirkx E, Schwenk RW, Coumans WA, Hoebers N, Angin Y, Viollet B, Bonen A, van Eys GJ, Glatz JF, Luiken JJ. Protein kinase D1 is essential for contraction‐induced glucose uptake but is not involved in fatty acid uptake into cardiomyocytes. J Biol Chem 287: 5871‐5881, 2012.
 42.Doege H, Bocianski A, Joost HG, Schurmann A. Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar‐transport facilitators predominantly expressed in brain and leucocytes. Biochem J 350(Pt 3): 771‐776, 2000.
 43.Doege H, Bocianski A, Scheepers A, Axer H, Eckel J, Joost HG, Schurmann A. Characterization of human glucose transporter (GLUT) 11 (encoded by SLC2A11), a novel sugar‐transport facilitator specifically expressed in heart and skeletal muscle. Biochem J 359: 443‐449, 2001.
 44.Doege H, Schurmann A, Bahrenberg G, Brauers A, Joost HG. GLUT8, a novel member of the sugar transport facilitator family with glucose transport activity. J Biol Chem 275: 16275‐16280, 2000.
 45.Doenst T, Cedars AM, Taegtmeyer H. Insulin‐stimulated glucose transport is dependent on Golgi function in isolated working rat heart. J Mol Cell Cardiol 32: 1481‐1488, 2000.
 46.Doenst T, Taegtmeyer H. alpha‐adrenergic stimulation mediates glucose uptake through phosphatidylinositol 3‐kinase in rat heart. Circulation research 84: 467‐474, 1999.
 47.Dransfeld O, Uphues I, Sasson S, Schurmann A, Joost HG, Eckel J. Regulation of subcellular distribution of GLUT4 in cardiomyocytes: Rab4A reduces basal glucose transport and augments insulin responsiveness. Exp Clin Endocrinol Diabetes 108: 26‐36, 2000.
 48.Efferth T, Schwarzl SM, Smith J, Osieka R. Role of glucose‐6‐phosphate dehydrogenase for oxidative stress and apoptosis. Cell Death Differ 13: 527‐528; author reply 529‐530, 2006.
 49.Egert S, Nguyen N, Brosius FC, III, Schwaiger M. Effects of wortmannin on insulin‐ and ischemia‐induced stimulation of GLUT4 translocation and FDG uptake in perfused rat hearts. Cardiovasc Res 35: 283‐293, 1997.
 50.Egert S, Nguyen N, Schwaiger M. Contribution of alpha‐adrenergic and beta‐adrenergic stimulation to ischemia‐induced glucose transporter (GLUT) 4 and GLUT1 translocation in the isolated perfused rat heart. Circ Res 84: 1407‐1415, 1999.
 51.El Alaoui‐Talibi Z, Guendouz A, Moravec M, Moravec J. Control of oxidative metabolism in volume‐overloaded rat hearts: Effect of propionyl‐L‐carnitine. Am J Physiol‐Heart C 272: H1615‐H1624, 1997.
 52.Facundo HT, Brainard RE, Watson LJ, Ngoh GA, Hamid T, Prabhu SD, Jones SP. O‐GlcNAc signaling is essential for NFAT‐mediated transcriptional reprogramming during cardiomyocyte hypertrophy. Am J Physiol‐Heart C 302: H2122‐H2130, 2012.
 53.Fandos C, Sanchez‐Feutrie M, Santalucia T, Vinals F, Cadefau J, Guma A, Cusso R, Kaliman P, Canicio J, Palacin M, Zorzano A. GLUT1 glucose transporter gene transcription is repressed by Sp3. Evidence for a regulatory role of Sp3 during myogenesis. J Mol Biol 294: 103‐119, 1999.
 54.Farese RV, Sajan MP, Yang H, Li P, Mastorides S, Gower WR, Jr., Nimal S, Choi CS, Kim S, Shulman GI, Kahn CR, Braun U, Leitges M. Muscle‐specific knockout of PKC‐lambda impairs glucose transport and induces metabolic and diabetic syndromes. J Clin Invest 117: 2289‐2301, 2007.
 55.Feldhaus LM, Liedtke AJ. mRNA expression of glycolytic enzymes and glucose transporter proteins in ischemic myocardium with and without reperfusion. J Mol Cell Cardiol 30: 2475‐2485, 1998.
 56.Fico A, Paglialunga F, Cigliano L, Abrescia P, Verde P, Martini G, Iaccarino I, Filosa S. Glucose‐6‐phosphate dehydrogenase plays a crucial role in protection from redox‐stress‐induced apoptosis. Cell Death Differ 11: 823‐831, 2004.
 57.Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, Han X, Gross RW, Kozak R, Lopaschuk GD, Kelly DP. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 109: 121‐130, 2002.
 58.Fischer Y, Thomas J, Holman GD, Rose H, Kammermeier H. Contraction‐independent effects of catecholamines on glucose transport in isolated rat cardiomyocytes. Am J Physiol 270: C1204‐C1210, 1996.
 59.Fischer Y, Thomas J, Sevilla L, Munoz P, Becker C, Holman G, Kozka IJ, Palacin M, Testar X, Kammermeier H, Zorzano A. Insulin‐induced recruitment of glucose transporter 4 (GLUT4) and GLUT1 in isolated rat cardiac myocytes. Evidence of the existence of different intracellular GLUT4 vesicle populations. J Biol Chem 272: 7085‐7092, 1997.
 60.Fox AC, Reed GE. Changes in lactate dehydrogenase composition of hearts with right ventricular hypertrophy. Am J Physiol 216: 1026‐1033, 1969.
 61.Fukumoto H, Kayano T, Buse JB, Edwards Y, Pilch PF, Bell GI, Seino S. Cloning and characterization of the major insulin‐responsive glucose transporter expressed in human skeletal‐muscle and other insulin‐responsive tissues. J Biol Chem 264: 7776‐7779, 1989.
 62.Fulop N, Feng W, Xing D, He K, Not LG, Brocks CA, Marchase RB, Miller AP, Chatham JC. Aging leads to increased levels of protein O‐linked N‐acetylglucosamine in heart, aorta, brain and skeletal muscle in Brown‐Norway rats. Biogerontology 9: 139‐151, 2008.
 63.Garland PB, Randle PJ, Newsholme EA. Citrate as an intermediary in the inhibition of phosphofructokinase in rat heart muscle by fatty acids, ketone bodies, pyruvate, diabetes, and starvation. Nature 200: 169‐170, 1963.
 64.Garvey WT, Hardin D, Juhaszova M, Dominguez JH. Effects of diabetes on myocardial glucose transport system in rats: Implications for diabetic cardiomyopathy. Am J Physiol 264: H837‐H844, 1993.
 65.Gibala MJ, Young ME, Taegtmeyer H. Anaplerosis of the citric acid cycle: Role in energy metabolism of heart and skeletal muscle. Acta Physiol Scand 168: 657‐665, 2000.
 66.Gibbs EM, Stock JL, McCoid SC, Stukenbrok HA, Pessin JE, Stevenson RW, Milici AJ, McNeish JD. Glycemic improvement in diabetic db/db mice by overexpression of the human insulin‐regulatable glucose transporter (GLUT4). J Clin Invest 95: 1512‐1518, 1995.
 67.Goldfarb AH, Bruno JF, Buckenmeyer PJ. Intensity and duration effects of exercise on heart cAMP, phosphorylase, and glycogen. J Appl Physiol (1985) 60: 1268‐1273, 1986.
 68.Goodwin GW, Arteaga JR, Taegtmeyer H. Glycogen turnover in the isolated working rat heart. J Biol Chem 270: 9234‐9240, 1995.
 69.Goodwin GW, Taylor CS, Taegtmeyer H. Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem 273: 29530‐29539, 1998.
 70.Gosteli‐Peter MA, Schmid C, Zapf J. Triiodothyronine increases glucose transporter isotype 4 mRNA expression, glucose transport, and glycogen synthesis in adult rat cardiomyocytes in long‐term culture. Biochem Biophys Res Commun 221: 521‐524, 1996.
 71.Gray SJ, Feinberg MW, Hull S, Kuo CT, Watanabe M, Sen Banerjee S, DePina A, Haspel R, Jain MK. The Kruppel‐like factor KLF15 regulates the insulin‐sensitive glucose transporter GLUT4. Circulation 106: 165‐165, 2002.
 72.Grover‐McKay M, Walsh SA, Thompson SA. Glucose transporter 3 (GLUT3) protein is present in human myocardium. Biochim Biophys Acta 1416: 145‐154, 1999.
 73.Gulve EA, Ren JM, Marshall BA, Gao J, Hansen PA, Holloszy JO, Mueckler M. Glucose transport activity in skeletal muscles from transgenic mice overexpressing GLUT1. Increased basal transport is associated with a defective response to diverse stimuli that activate GLUT4. J Biol Chem 269: 18366‐18370, 1994.
 74.Gupte RS, Vijay V, Marks B, Levine RJ, Sabbah HN, Wolin MS, Recchia FA, Gupte SA. Upregulation of glucose‐6‐phosphate dehydrogenase and NAD(P)H oxidase activity increases oxidative stress in failing human heart. J Card Fail 13: 497‐506, 2007.
 75.Gupte SA, Levine RJ, Gupte RS, Young ME, Lionetti V, Labinskyy V, Floyd BC, Ojaimi C, Bellomo M, Wolin MS, Recchia FA. Glucose‐6‐phosphate dehydrogenase‐derived NADPH fuels superoxide production in the failing heart. J Mol Cell Cardiol 41: 340‐349, 2006.
 76.Hall JL, Sexton WL, Stanley WC. Exercise training attenuates the reduction in myocardial Glut‐4 in diabetic rats. J Appl Physiol 78: 76‐81, 1995.
 77.Hansen PA, Gulve EA, Marshall BA, Gao J, Pessin JE, Holloszy JO, Mueckler M. Skeletal muscle glucose transport and metabolism are enhanced in transgenic mice overexpressing the Glut4 glucose transporter. J Biol Chem 270: 1679‐1684, 1995.
 78.Hecker PA, Leopold JA, Gupte SA, Recchia FA, Stanley WC. Impact of glucose‐6‐phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease. Am J Physiol Heart Circ Physiol 304: H491‐H500, 2013.
 79.Hecker PA, Lionetti V, Ribeiro RF, Jr., Rastogi S, Brown BH, O'Connell KA, Cox JW, Shekar KC, Gamble DM, Sabbah HN, Leopold JA, Gupte SA, Recchia FA, Stanley WC. Glucose 6‐phosphate dehydrogenase deficiency increases redox stress and moderately accelerates the development of heart failure. Circ Heart Fail 6: 118‐126, 2013.
 80.Heilig CW, Saunders T, Brosius FC, III, Moley K, Heilig K, Baggs R, Guo L, Conner D. Glucose transporter‐1‐deficient mice exhibit impaired development and deformities that are similar to diabetic embryopathy. Proc Natl Acad Sci U S A 100: 15613‐15618, 2003.
 81.Henning SL, Wambolt RB, Schonekess BO, Lopaschuk GD, Allard MF. Contribution of glycogen to aerobic myocardial glucose utilization. Circulation 93: 1549‐1555, 1996.
 82.Hoenack C, Roesen P. Inhibition of angiotensin type 1 receptor prevents decline of glucose transporter (GLUT4) in diabetic rat heart. Diabetes 45: S82‐S87, 1996.
 83.Horecker BL, Mehler AH. Carbohydrate metabolism. Annu Rev Biochem 24: 207‐274, 1955.
 84.Hrelia S, Fiorentini D, Maraldi T, Angeloni C, Bordoni A, Biagi PL, Hakim G. Doxorubicin induces early lipid peroxidation associated with changes in glucose transport in cultured cardiomyocytes. Biochim Biophys Acta 1567: 150‐156, 2002.
 85.Hue L, Rider MH. Role of fructose 2,6‐bisphosphate in the control of glycolysis in mammalian tissues. Biochem J 245: 313‐324, 1987.
 86.Ikemoto S, Thompson KS, Takahashi M, Itakura H, Lane MD, Ezaki O. High fat diet‐induced hyperglycemia: Prevention by low level expression of a glucose transporter (GLUT4) minigene in transgenic mice. Proc Natl Acad Sci U S A 92: 3096‐3099, 1995.
 87.Ishikura S, Bilan PJ, Klip A. Rabs 8A and 14 are targets of the insulin‐regulated Rab‐GAP AS160 regulating GLUT4 traffic in muscle cells. Biochem Biophys Res Commun 353: 1074‐1079, 2007.
 88.Issad T, Kuo M. O‐GlcNAc modification of transcription factors, glucose sensing and glucotoxicity. Trends Endocrinol Metab 19: 380‐389, 2008.
 89.Jain M, Brenner DA, Cui L, Lim CC, Wang B, Pimentel DR, Koh S, Sawyer DB, Leopold JA, Handy DE, Apstein CS, Liao R. Glucose‐6‐phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes. Circulation 108: 173‐173, 2003.
 90.Jain M, Cui L, Brenner DA, Wang B, Handy DE, Leopold JA, Loscalzo J, Apstein CS, Liao R. Increased myocardial dysfunction after ischemia‐reperfusion in mice lacking glucose‐6‐phosphate dehydrogenase. Circulation 109: 898‐903, 2004.
 91.James DE, Hiken J, Lawrence JC, Jr. Isoproterenol stimulates phosphorylation of the insulin‐regulatable glucose transporter in rat adipocytes. Proc Natl Acad Sci U S A 86: 8368‐8372, 1989.
 92.Jenkins CM, Yang J, Sims HF, Gross RW. Reversible high affinity inhibition of phosphofructokinase‐1 by acyl‐CoA: A mechanism integrating glycolytic flux with lipid metabolism. J Biol Chem 286: 11937‐11950, 2011.
 93.Jimenez‐Amilburu V, Jong‐Raadsen S, Bakkers J, Spaink HP, Marin‐Juez R. GLUT12 deficiency during early development results in heart failure and a diabetic phenotype in zebrafish. J Endocrinol 224: 1‐15, 2015.
 94.Johannsson E, Lunde PK, Heddle C, Sjaastad I, Thomas MJ, Bergersen L, Halestrap AP, Blackstad TW, Ottersen OP, Sejersted OM. Upregulation of the cardiac monocarboxylate transporter MCT1 in a rat model of congestive heart failure. Circulation 104: 729‐734, 2001.
 95.Joost HG, Bell GI, Best JD, Birnbaum MJ, Charron MJ, Chen YT, Doege H, James DE, Lodish HF, Moley KH, Moley JF, Mueckler M, Rogers S, Schurmann A, Seino S, Thorens B. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am J Physiol Endocrinol Metab 282: E974‐E976, 2002.
 96.Joost HG, Thorens B. The extended GLUT‐family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol 18: 247‐256, 2001.
 97.Kagaya Y, Kanno Y, Takeyama D, Ishide N, Maruyama Y, Takahashi T, Ido T, Takishima T. Effects of long‐term pressure overload on regional myocardial glucose and free fatty acid uptake in rats. A quantitative autoradiographic study. Circulation 81: 1353‐1361, 1990.
 98.Kainulainen H, Breiner M, Schurmann A, Marttinen A, Virjo A, Joost HG. In‐Vivo Glucose‐Uptake and Glucose‐Transporter Proteins Glut1 and Glut4 in Heart and Various Types of Skeletal‐Muscle from Streptozotocin‐Diabetic Rats. Bba‐Mol Basis Dis 1225: 275‐282, 1994.
 99.Kane S, Sano H, Liu SC, Asara JM, Lane WS, Garner CC, Lienhard GE. A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase‐activating protein (GAP) domain. J Biol Chem 277: 22115‐22118, 2002.
 100.Kasahara M, Hinkle PC. Reconstitution and purification of the D‐glucose transporter from human erythrocytes. J Biol Chem 252: 7384‐7390, 1977.
 101.Katz EB, Stenbit AE, Hatton K, DePinho R, Charron MJ. Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 377: 151‐155, 1995.
 102.Kayano T, Burant CF, Fukumoto H, Gould GW, Fan YS, Eddy RL, Byers MG, Shows TB, Seino S, Bell GI. Human facilitative glucose transporters ‐ isolation, functional‐characterization, and gene localization of Cdnas encoding an isoform (Glut5) expressed in small‐intestine, kidney, muscle, and adipose‐tissue and an unusual glucose transporter pseudogene‐like sequence (Glut6). J Biol Chem 265: 13276‐13282, 1990.
 103.Kayano T, Fukumoto H, Eddy RL, Fan YS, Byers MG, Shows TB, Bell GI. Evidence for a family of human glucose transporter‐like proteins ‐ sequence and gene localization of a protein expressed in fetal skeletal‐muscle and other tissues. J Biol Chem 263: 15245‐15248, 1988.
 104.Kolwicz SC, Jr., Olson DP, Marney LC, Garcia‐Menendez L, Synovec RE, Tian R. Cardiac‐specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure‐overload hypertrophy. Circ Res 111: 728‐738, 2012.
 105.Kopp SJ, Daar J, Paulson DJ, Romano FD, Laddaga R. Effects of oral vanadyl treatment on diabetes induced alterations in the heart GLUT‐4 transporter. J Mol Cell Cardiol 29: 2355‐2362, 1997.
 106.Korvald C, Elvenes OP, Myrmel T. Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol 278: H1345‐H1351, 2000.
 107.Kotani K, Ogawa W, Matsumoto M, Kitamura T, Sakaue H, Hino Y, Miyake K, Sano W, Akimoto K, Ohno S, Kasuga M. Requirement of atypical protein kinase clambda for insulin stimulation of glucose uptake but not for Akt activation in 3T3‐L1 adipocytes. Mol Cell Biol 18: 6971‐6982, 1998.
 108.Kraegen EW, Sowden JA, Halstead MB, Clark PW, Rodnick KJ, Chisholm DJ, James DE. Glucose transporters and in vivo glucose uptake in skeletal and cardiac muscle: Fasting, insulin stimulation and immunoisolation studies of GLUT1 and GLUT4. Biochem J 295(Pt 1): 287‐293, 1993.
 109.Kramer HF, Witczak CA, Fujii N, Jessen N, Taylor EB, Arnolds DE, Sakamoto K, Hirshman MF, Goodyear LJ. Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes 55: 2067‐2076, 2006.
 110.Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl‐CoA levels due to an increase in 5'‐AMP‐activated protein kinase inhibition of acetyl‐CoA carboxylase. J Biol Chem 270: 17513‐17520, 1995.
 111.Laczy B, Hill BG, Wang K, Paterson AJ, White CR, Xing D, Chen YF, Darley‐Usmar V, Oparil S, Chatham JC. Protein O‐GlcNAcylation: A new signaling paradigm for the cardiovascular system. Am J Physiol‐Heart C 296: H13‐H28, 2009.
 112.Larance M, Ramm G, Stockli J, van Dam EM, Winata S, Wasinger V, Simpson F, Graham M, Junutula JR, Guilhaus M, James DE. Characterization of the role of the Rab GTPase‐activating protein AS160 in insulin‐regulated GLUT4 trafficking. J Biol Chem 280: 37803‐37813, 2005.
 113.Lawrence JC, Jr., Hiken JF, James DE. Phosphorylation of the glucose transporter in rat adipocytes. Identification of the intracellular domain at the carboxyl terminus as a target for phosphorylation in intact‐cells and in vitro. J Biol Chem 265: 2324‐2332, 1990.
 114.Laybutt DR, Thompson AL, Cooney GJ, Kraegen EW. Selective chronic regulation of GLUT1 and GLUT4 content by insulin, glucose, and lipid in rat cardiac muscle in vivo. Am J Physiol 273: H1309‐H1316, 1997.
 115.Le Marchand‐Brustel Y, Gautier N, Cormont M, Van Obberghen E. Wortmannin inhibits the action of insulin but not that of okadaic acid in skeletal muscle: comparison with fat cells. Endocrinology 136: 3564‐3570, 1995.
 116.Lee L, Campbell R, Scheuermann‐Freestone M, Taylor R, Gunaruwan P, Williams L, Ashrafian H, Horowitz J, Fraser AG, Clarke K, Frenneaux M. Metabolic modulation with perhexiline in chronic heart failure ‐ a randomized, controlled trial of short‐term use of a novel treatment. Circulation 112: 3280‐3288, 2005.
 117.Lehman JJ, Kelly DP. Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin Exp Pharmacol P 29: 339‐345, 2002.
 118.Lemieux MJ, Song J, Kim MJ, Huang Y, Villa A, Auer M, Li XD, Wang DN. Three‐dimensional crystallization of the Escherichia coli glycerol‐3‐phosphate transporter: a member of the major facilitator superfamily. Protein Sci 12: 2748‐2756, 2003.
 119.Leong HS, Brownsey RW, Kulpa JE, Allard MF. Glycolysis and pyruvate oxidation in cardiac hypertrophy–why so unbalanced? Comp Biochem Physiol A Mol Integr Physiol 135: 499‐513, 2003.
 120.Leong HS, Grist M, Parsons H, Wambolt RB, Lopaschuk GD, Brownsey R, Allard MF. Accelerated rates of glycolysis in the hypertrophied heart: Are they a methodological artifact? Am J Physiol Endocrinol Metab 282: E1039‐H1045, 2002.
 121.Leturque A, Loizeau M, Vaulont S, Salminen M, Girard J. Improvement of insulin action in diabetic transgenic mice selectively overexpressing GLUT4 in skeletal muscle. Diabetes 45: 23‐27, 1996.
 122.Lewandowski ED, O'Donnell J M, Scholz TD, Sorokina N, Buttrick PM. Recruitment of NADH shuttling in pressure‐overloaded and hypertrophic rat hearts. Am J Physiol Cell Physiol 292: C1880‐C1886, 2007.
 123.Li J, Hu X, Selvakumar P, Russell RR, III, Cushman SW, Holman GD, Young LH. Role of the nitric oxide pathway in AMPK‐mediated glucose uptake and GLUT4 translocation in heart muscle. Am J Physiol Endocrinol Metab 287: E834‐E841, 2004.
 124.Li Q, Manolescu A, Ritzel M, Yao S, Slugoski M, Young JD, Chen XZ, Cheeseman CI. Cloning and functional characterization of the human GLUT7 isoform SLC2A7 from the small intestine. Am J Physiol‐Gastr L 287: G236‐G242, 2004.
 125.Liao R, Jain M, Cui L, D'Agostino J, Aiello F, Luptak I, Ngoy S, Mortensen RM, Tian R. Cardiac‐specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice. Circulation 106: 2125‐2131, 2002.
 126.Lisinski I, Schurmann A, Joost HG, Cushman SW, Al‐Hasani H. Targeting of GLUT6 (formerly GLUT9) and GLUT8 in rat adipose cells. Biochem J 358: 517‐522, 2001.
 127.Liu J, Kimura A, Baumann CA, Saltiel AR. APS facilitates c‐Cbl tyrosine phosphorylation and GLUT4 translocation in response to insulin in 3T3‐L1 adipocytes. Mol Cell Biol 22: 3599‐3609, 2002.
 128.Liu ML, Olson AL, Edgington NP, Moyerowley WS, Pessin JE. Myocyte enhancer factor‐2 (Mef2) binding‐site is essential for C2c12 myotube‐specific expression of the rat Glut4 muscle‐adipose facilitative glucose‐transporter gene. J Biol Chem 269: 28514‐28521, 1994.
 129.Liu ML, Olson AL, Moye‐Rowley WS, Buse JB, Bell GI, Pessin JE. Expression and regulation of the human GLUT4/muscle‐fat facilitative glucose transporter gene in transgenic mice. J Biol Chem 267: 11673‐11676, 1992.
 130.Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev 90: 207‐258, 2010.
 131.Lu Z, Zaniewska E, Lo TCY. Use of transport mutants to examine the identity and expression of GLUT isoforms in rat cardiac myoblasts. Biochem Mol Biol Int 41: 103‐121, 1997.
 132.Luiken JJ, Ouwens DM, Habets DD, van der Zon GC, Coumans WA, Schwenk RW, Bonen A, Glatz JF. Permissive action of protein kinase C‐zeta in insulin‐induced CD36‐ and GLUT4 translocation in cardiac myocytes. J Endocrinol 201: 199‐209, 2009.
 133.Luiken JJ, Vertommen D, Coort SL, Habets DD, El Hasnaoui M, Pelsers MM, Viollet B, Bonen A, Hue L, Rider MH, Glatz JF. Identification of protein kinase D as a novel contraction‐activated kinase linked to GLUT4‐mediated glucose uptake, independent of AMPK. Cell Signal 20: 543‐556, 2008.
 134.Lund S, Holman GD, Schmitz O, Pedersen O. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci U S A 92: 5817‐5821, 1995.
 135.Luptak I, Yan J, Cui L, Jain M, Liao R, Tian R. Long‐term effects of increased glucose entry on mouse hearts during normal aging and ischemic stress. Circulation 116: 901‐909, 2007.
 136.Lydell CP, Chan A, Wambolt RB, Sambandam N, Parsons H, Bondy GP, Rodrigues B, Popov KM, Harris RA, Brownsey RW, Allard MF. Pyruvate dehydrogenase and the regulation of glucose oxidation in hypertrophied rat hearts. Cardiovasc Res 53: 841‐851, 2002.
 137.Macheda ML, Kelly DJ, Best JD, Rogers S. Expression during rat fetal development of GLUT12 ‐ a member of the class III hexose transporter family. Anat Embryol 205: 441‐452, 2002.
 138.Malhotra R, Brosius FC, III. Glucose uptake and glycolysis reduce hypoxia‐induced apoptosis in cultured neonatal rat cardiac myocytes. J Biol Chem 274: 12567‐12575, 1999.
 139.Marchington DR, Kerbey AL, Randle PJ. Longer‐term regulation of pyruvate‐dehydrogenase kinase in cultured rat cardiac myocytes. Biochem J 267: 245‐247, 1990.
 140.Marino G, Pietrocola F, Eisenberg T, Kong Y, Malik SA, Andryushkova A, Schroeder S, Pendl T, Harger A, Niso‐Santano M, Zamzami N, Scoazec M, Durand S, Enot DP, Fernandez AF, Martins I, Kepp O, Senovilla L, Bauvy C, Morselli E, Vacchelli E, Bennetzen M, Magnes C, Sinner F, Pieber T, Lopez‐Otin C, Maiuri MC, Codogno P, Andersen JS, Hill JA, Madeo F, Kroemer G. Regulation of autophagy by cytosolic acetyl‐coenzyme A. Mol Cell 53: 710‐725, 2014.
 141.Marsh SA, Collins HE, Chatham JC. Protein O‐GlcNAcylation and Cardiovascular (Patho)physiology. J Biol Chem 289: 34449‐34456, 2014.
 142.Marsh SA, Dell'Italia LJ, Chatham JC. Activation of the hexosamine biosynthesis pathway and protein O‐GlcNAcylation modulate hypertrophic and cell signaling pathways in cardiomyocytes from diabetic mice. Amino Acids 40: 819‐828, 2011.
 143.Marsin AS, Bertrand L, Rider MH, Deprez J, Beauloye C, Vincent MF, Van den Berghe G, Carling D, Hue L. Phosphorylation and activation of heart PFK‐2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 10: 1247‐1255, 2000.
 144.McVie‐Wylie AJ, Lamson DR, Chen YT. Molecular cloning of a novel member of the GLUT family of transporters, SLC2a10 (GLUT10), localized on chromosome 20q13.1: A candidate gene for NIDDM susceptibility. Genomics 72: 113‐117, 2001.
 145.Meerson FZ, Spiritchev VB, Pshennikova MG, Djachkova LV. The role of the pentose‐phosphate pathway in adjustment of the heart to a high load and the development of myocardial hypertrophy. Experientia 23: 530‐532, 1967.
 146.Membrez M, Hummler E, Beermann F, Haefliger JA, Savioz R, Pedrazzini T, Thorens B. GLUT8 is dispensable for embryonic development but influences hippocampal neurogenesis and heart function. Mol Cell Biol 26: 4268‐4276, 2006.
 147.Michael LF, Wu ZD, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, Kelly DP, Spiegelman BM. Restoration of insulin‐sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC‐1. P Natl Acad Sci U S A 98: 3820‐3825, 2001.
 148.Miinea CP, Sano H, Kane S, Sano E, Fukuda M, Peranen J, Lane WS, Lienhard GE. AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase‐activating protein domain. Biochem J 391: 87‐93, 2005.
 149.Mitra P, Zheng X, Czech MP. RNAi‐based analysis of CAP, Cbl, and CrkII function in the regulation of GLUT4 by insulin. J Biol Chem 279: 37431‐37435, 2004.
 150.Mochizuki S, Neely JR. Control of glyceraldehyde‐3‐phosphate dehydrogenase in cardiac muscle. J Mol Cell Cardiol 11: 221‐236, 1979.
 151.Molero JC, Jensen TE, Withers PC, Couzens M, Herzog H, Thien CB, Langdon WY, Walder K, Murphy MA, Bowtell DD, James DE, Cooney GJ. c‐Cbl‐deficient mice have reduced adiposity, higher energy expenditure, and improved peripheral insulin action. J Clin Invest 114: 1326‐1333, 2004.
 152.Montessuit C, Papageorgiou I, Remondino‐Muller A, Tardy I, Lerch R. Post‐ischemic stimulation of 2‐deoxyglucose uptake in rat myocardium: role of translocation of Glut‐4. J Mol Cell Cardiol 30: 393‐403, 1998.
 153.Montessuit C, Thorburn A. Transcriptional activation of the glucose transporter GLUT1 in ventricular cardiac myocytes by hypertrophic agonists. J Biol Chem 274: 9006‐9012, 1999.
 154.Mor I, Cheung EC, Vousden KH. Control of glycolysis through regulation of PFK1: Old friends and recent additions. Cold Spring Harb Symp Quant Biol 76: 211‐216, 2011.
 155.Mora A, Komander D, van Aalten DM, Alessi DR. PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol 15: 161‐170, 2004.
 156.Mora S, Yang CM, Ryder JW, Boeglin D, Pessin JE. The MEF2A and MEF2D isoforms are differentially regulated in muscle and adipose tissue during states of insulin deficiency. Endocrinology 142: 1999‐2004, 2001.
 157.Moreno H, Serrano AL, Santalucia T, Guma A, Canto C, Brand NJ, Palacin M, Schiaffino S, Zorzano A. Differential regulation of the muscle‐specific GLUT4 enhancer in regenerating and adult skeletal muscle. J Biol Chem 278: 40557‐40564, 2003.
 158.Moule SK, Denton RM. Multiple signaling pathways involved in the metabolic effects of insulin. Am J Cardiol 80: 41A‐49A, 1997.
 159.Mueckler M. Facilitative glucose transporters. Eur J Biochem 912: 527‐317, 4991.
 160.Mueckler M, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, Allard WJ, Lienhard GE, Lodish HF. Sequence and structure of a human glucose transporter. Science 229: 941‐945, 1985.
 161.Mueckler M, Hresko RC, Sato M. Structure, function and biosynthesis of GLUT1. Biochem Soc Trans 25: 951‐954, 1997.
 162.Nascimben L, Ingwall JS, Lorell BH, Pinz I, Schultz V, Tornheim K, Tian R. Mechanisms for increased glycolysis in the hypertrophied rat heart. Hypertension 44: 662‐667, 2004.
 163.Neely JR, Whitfiel.Cf, Morgan HE. Regulation of glycogenolysis in hearts: Effects of pressure development, glucose, and FFA. Am J Physiol 219: 1083‐1088, 1970.
 164.Neubauer S. The failing heart–an engine out of fuel. N Engl J Med 356: 1140‐1151, 2007.
 165.Opie LH. The metabolic vicious cycle in heart failure. Lancet 364: 1733‐1734, 2004.
 166.Opie LH. Myocardial energy metabolism. Adv Cardiol 12: 70‐83, 1974.
 167.Osborn BA, Daar JT, Laddaga RA, Romano FD, Paulson DJ. Exercise training increases sarcolemmal GLUT‐4 protein and mRNA content in diabetic heart. J Appl Physiol 82: 828‐834, 1997.
 168.Oshel KM, Knight JB, Cao KT, Thai MV, Olson AL. Identification of a 30‐base pair regulatory element and novel DNA binding protein that regulates the human GLUT4 promoter in transgenic mice. J Biol Chem 275: 23666‐23673, 2000.
 169.Pao SS, Paulsen IT, Saier MH, Jr. Major facilitator superfamily. Microbiol Mol Biol Rev 62: 1‐34, 1998.
 170.Paternostro G, Clarke K, Heath J, Seymour AM, Radda GK. Decreased GLUT‐4 mRNA content and insulin‐sensitive deoxyglucose uptake show insulin resistance in the hypertensive rat heart. Cardiovasc Res 30: 205‐211, 1995.
 171.Paternostro G, Pagano D, Gnecchi‐Ruscone T, Bonser RS, Camici PG. Insulin resistance in patients with cardiac hypertrophy. Cardiovasc Res 42: 246‐253, 1999.
 172.Pelletier A, Joly E, Prentki M, Coderre L. Adenosine 5'‐monophosphate‐activated protein kinase and p38 mitogen‐activated protein kinase participate in the stimulation of glucose uptake by dinitrophenol in adult cardiomyocytes. Endocrinology 146: 2285‐2294, 2005.
 173.Pereira RO, Wende AR, Olsen C, Soto J, Rawlings T, Zhu Y, Anderson SM, Abel ED. Inducible overexpression of GLUT1 prevents mitochondrial dysfunction and attenuates structural remodeling in pressure overload but does not prevent left ventricular dysfunction. J Am Heart Assoc 2: e000301, 2013.
 174.Phay JE, Hussain HB, Moley JF. Strategy for identification of novel glucose transporter family members by using internet‐based genomic databases. Surgery 128: 946‐951, 2000.
 175.Pound KM, Sorokina N, Ballal K, Berkich DA, Fasano M, LaNoue KF, Taegtmeyer H, O'Donnell JM, Lewandowski ED. Substrate‐enzyme competition attenuates upregulated anaplerotic flux through malic enzyme in hypertrophied rat heart and restores triacylglyceride content: Attenuating upregulated anaplerosis in hypertrophy (vol 104, pg 805, 2009). Circ Res 104: E59‐E59, 2009.
 176.Rajasekaran NS, Connell P, Christians ES, Yan LJ, Taylor RP, Orosz A, Zhang XQ, Stevenson TJ, Peshock RM, Leopold JA, Barry WH, Loscalzo J, Odelberg SJ, Benjamin IJ. Human alpha B‐crystallin mutation causes oxido‐reductive stress and protein aggregation cardiomyopathy in mice. Cell 130: 427‐439, 2007.
 177.Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty‐acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1: 785‐789, 1963.
 178.Randle PJ, Newsholme EA, Garland PB. Regulation of glucose uptake by muscle. 8. Effects of fatty acids, ketone bodies and pyruvate, and of alloxan‐diabetes and starvation, on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles. Biochem J 93: 652‐665, 1964.
 179.Rattigan S, Appleby GJ, Clark MG. Insulin‐like action of catecholamines and Ca2+ to stimulate glucose transport and GLUT4 translocation in perfused rat heart. Biochim Biophys Acta 1094: 217‐223, 1991.
 180.Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H. Metabolic gene expression in fetal and failing human heart. Circulation 104: 2923‐2931, 2001.
 181.Razeghi P, Young ME, Cockrill TC, Frazier OH, Taegtmeyer H. Downregulation of myocardial myocyte enhancer factor 2C and myocyte enhancer factor 2C‐regulated gene expression in diabetic patients with nonischemic heart failure. Circulation 106: 407‐411, 2002.
 182.Razeghi P, Young ME, Ying J, Depre C, Uray IP, Kolesar J, Shipley GL, Moravec CS, Davies PJA, Frazier OH, Taegtmeyer H. Downregulation of metabolic gene expression in failing human heart before and after mechanical unloading. Cardiology 97: 203‐209, 2002.
 183.Ren J, Gintant GA, Miller RE, Davidoff AJ. High extracellular glucose impairs cardiac E‐C coupling in a glycosylation‐dependent manner. Am J Physiol 273: H2876‐H2883, 1997.
 184.Revis NW, Thomson RY, Cameron AJ. Lactate dehydrogenase isoenzymes in the human hypertrophic heart. Cardiovasc Res 11: 172‐176, 1977.
 185.Rodnick KJ, Henriksen EJ, James DE, Holloszy JO. Exercise training, glucose transporters, and glucose transport in rat skeletal muscles. Am J Physiol 262: C9‐C14, 1992.
 186.Rogers S, Chandler JD, Clarke AL, Petrou S, Best JD. Glucose transporter GLUT12‐functional characterization in Xenopus laevis oocytes. Biochem Bioph Res Co 308: 422‐426, 2003.
 187.Rosenblatt‐Velin N, Montessuit C, Papageorgiou I, Terrand M, Lerch R. Postinfarction heart failure in rats is associated with upregulation of GLUT‐1 and downregulation of genes of fatty acid metabolism. Cardiovasc Res 52: 407‐416, 2001.
 188.Roy D, Perreault M, Marette A. Insulin stimulation of glucose uptake in skeletal muscles and adipose tissues in vivo is NO dependent. Am J Physiol 274: E692‐E699, 1998.
 189.Rupert BE, Schutte BC, TenEyck CJ, Scholz TD. Metabolic adaptation of the hypertrophied heart: Role of the malate/aspartate and alpha‐glycerophosphate shuttles. Circulation 100: 765‐765, 1999.
 190.Russell RR, III, Bergeron R, Shulman GI, Young LH. Translocation of myocardial GLUT‐4 and increased glucose uptake through activation of AMPK by AICAR. Am J Physiol 277: H643‐H649, 1999.
 191.Russell RR, III, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M, Giordano FJ, Mu J, Birnbaum MJ, Young LH. AMP‐activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest 114: 495‐503, 2004.
 192.Ryder JW, Kawano Y, Chibalin AV, Rincon J, Tsao TS, Stenbit AE, Combatsiaris T, Yang J, Holman GD, Charron MJ, Zierath JR. In vitro analysis of the glucose‐transport system in GLUT4‐null skeletal muscle. Biochem J 342(Pt 2): 321‐328, 1999.
 193.Safer B. The metabolic significance of the malate‐aspartate cycle in heart. Circ Res 37: 527‐533, 1975.
 194.Salas‐Burgos A, Iserovich P, Zuniga F, Vera JC, Fischbarg J. Predicting the three‐dimensional structure of the human facilitative glucose transporter glut1 by a novel evolutionary homology strategy: Insights on the molecular mechanism of substrate migration, and binding sites for glucose and inhibitory molecules. Biophys J 87: 2990‐2999, 2004.
 195.Samant SA, Courson DS, Sundaresan NR, Pillai VB, Tan MJ, Zhao YM, Shroff SG, Rock RS, Gupta MP. HDAC3‐dependent reversible lysine acetylation of cardiac myosin heavy chain isoforms modulates their enzymatic and motor activity. J Biol Chem 286: 5567‐5577, 2011.
 196.Sano H, Eguez L, Teruel MN, Fukuda M, Chuang TD, Chavez JA, Lienhard GE, McGraw TE. Rab10, a target of the AS160 Rab GAP, is required for insulin‐stimulated translocation of GLUT4 to the adipocyte plasma membrane. Cell metabolism 5: 293‐303, 2007.
 197.Sano H, Kane S, Sano E, Miinea CP, Asara JM, Lane WS, Garner CW, Lienhard GE. Insulin‐stimulated phosphorylation of a Rab GTPase‐activating protein regulates GLUT4 translocation. J Biol Chem 278: 14599‐14602, 2003.
 198.Santalucia T, Boheler KR, Brand NJ, Sahye U, Fandos C, Vinals F, Ferre J, Testar X, Palacin M, Zorzano A. Factors involved in GLUT‐1 glucose transporter gene transcription in cardiac muscle. J Biol Chem 274: 17626‐17634, 1999.
 199.Santalucia T, Christmann M, Yacoub MH, Brand NJ. Hypertrophic agonists induce the binding of c‐Fos to an AP‐1 site in cardiac myocytes: Implications for the expression of GLUT1. Cardiovasc Res 59: 639‐648, 2003.
 200.Santalucia T, Moreno H, Palacin M, Yacoub MH, Brand NJ, Zorzano A. A novel functional co‐operation between MyoD, MEF2 and TR alpha 1 is sufficient for the induction of GLUT4 gene transcription. J Mol Biol 314: 195‐204, 2001.
 201.Satoh S, Nishimura H, Clark AE, Kozka IJ, Vannucci SJ, Simpson IA, Quon MJ, Cushman SW, Holman GD. Use of bismannose photolabel to elucidate insulin‐regulated GLUT4 subcellular trafficking kinetics in rat adipose cells. Evidence that exocytosis is a critical site of hormone action. J Biol Chem 268: 17820‐17829, 1993.
 202.Scheepers A, Schmidt S, Manolescu A, Cheeseman CI, Bell A, Zahn C, Joost HG, Schurmann A. Characterization of the human SLC2A11 (GLUT11) gene: Alternative promoter usage, function, expression, and subcellular distribution of three isoforms, and lack of mouse orthologue. Mol Membr Biol 22: 339‐351, 2005.
 203.Schmidt S, Joost HG, Schurmann A. GLUT8, the enigmatic intracellular hexose transporter. Am J Physiol‐Endoc M 296: E614‐E618, 2009.
 204.Schmidt‐Schweda S, Holubarsch C. First clinical trial with etomoxir in patients with chronic congestive heart failure. Clin Sci 99: 27‐35, 2000.
 205.Schneider CA, Nguyen VT, Taegtmeyer H. Feeding and fasting determine postischemic glucose utilization in isolated working rat hearts. Am J Physiol 260: H542‐H548, 1991.
 206.Scholz TD, Koppenhafer SL, TenEyck CJ, Schutte BC. Developmental regulation of the alpha‐glycerophosphate shuttle in porcine myocardium. J Mol Cell Cardiol 29: 1605‐1613, 1997.
 207.Scholz TD, Koppenhafer SL, tenEyck CJ, Schutte BC. Ontogeny of malate‐aspartate shuttle capacity and gene expression in cardiac mitochondria. Am J Physiol 274: C780‐C788, 1998.
 208.Schonekess BO, Allard MF, Henning SL, Wambolt RB, Lopaschuk GD. Contribution of glycogen and exogenous glucose to glucose metabolism during ischemia in the hypertrophied rat heart. Circ Res 81: 540‐549, 1997.
 209.Schonekess BO, Allard MF, Lopaschuk GD. Propionyl L‐carnitine improvement of hypertrophied heart function is accompanied by an increase in carbohydrate oxidation. Circ Res 77: 726‐734, 1995.
 210.Shankar RR, Wu Y, Shen HQ, Zhu JS, Baron AD. Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit insulin resistance. Diabetes 49: 684‐687, 2000.
 211.Shepherd PR, Kahn BB. Mechanisms of disease ‐ glucose transporters and insulin action ‐ implications for insulin resistance and diabetes mellitus. New Engl J Med 341: 248‐257, 1999.
 212.Sidell RJ, Cole MA, Draper NJ, Desrois M, Buckingham RE, Clarke K. Thiazolidinedione treatment normalizes insulin resistance and ischemic injury in the zucker fatty rat heart. Diabetes 51: 1110‐1117, 2002.
 213.Sivitz WI, Lund DD, Yorek B, Grover‐McKay M, Schmid PG. Pretranslational regulation of two cardiac glucose transporters in rats exposed to hypobaric hypoxia. Am J Physiol 263: E562‐E569, 1992.
 214.Slot JW, Geuze HJ, Gigengack S, James DE, Lienhard GE. Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Proc Natl Acad Sci U S A 88: 7815‐7819, 1991.
 215.Smith SH, Kramer MF, Reis I, Bishop SP, Ingwall JS. Regional changes in creatine kinase and myocyte size in hypertensive and nonhypertensive cardiac hypertrophy. Circ Res 67: 1334‐1344, 1990.
 216.Sorokina N, O'Donnell JM, McKinney RD, Pound KM, Woldegiorgis G, LaNoue KF, Ballal K, Taegtmeyer H, Buttrick PM, Lewandowski ED. Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts. Circulation 115: 2033‐2041, 2007.
 217.Standaert ML, Bandyopadhyay G, Perez L, Price D, Galloway L, Poklepovic A, Sajan MP, Cenni V, Sirri A, Moscat J, Toker A, Farese RV. Insulin activates protein kinases C‐zeta and C‐lambda by an autophosphorylation‐dependent mechanism and stimulates their translocation to GLUT4 vesicles and other membrane fractions in rat adipocytes. J Biol Chem 274: 25308‐25316, 1999.
 218.Stanley WC, Lopaschuk GD, Hall JL, McCormack JG. Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res 33: 243‐257, 1997.
 219.Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85: 1093‐1129, 2005.
 220.Stenbit AE, Tsao TS, Li J, Burcelin R, Geenen DL, Factor SM, Houseknecht K, Katz EB, Charron MJ. GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes. Nat Med 3: 1096‐1101, 1997.
 221.Stephens JM, Pilch PF. The metabolic‐regulation and vesicular transport of Glut4, the major insulin‐responsive glucose‐transporter. Endocr Rev 16: 529‐546, 1995.
 222.Stretton C, Evans A, Hundal HS. Cellular depletion of atypical PKC{lambda} is associated with enhanced insulin sensitivity and glucose uptake in L6 rat skeletal muscle cells. Am J Physiol Endocrinol Metab 299: E402‐E412, 2010.
 223.Stuart CA, Howell ME, Zhang Y, Yin D. Insulin‐stimulated translocation of glucose transporter (GLUT) 12 parallels that of GLUT4 in normal muscle. J Clin Endocrinol Metab 94: 3535‐3542, 2009.
 224.Suarez J, Hu Y, Makino A, Fricovsky E, Wang H, Dillmann WH. Alterations in mitochondrial function and cytosolic calcium induced by hyperglycemia are restored by mitochondrial transcription factor A in cardiomyocytes. Am J Physiol Cell Physiol 295: C1561‐C1568, 2008.
 225.Sweeney G, Somwar R, Ramlal T, Volchuk A, Ueyama A, Klip A. An inhibitor of p38 mitogen‐activated protein kinase prevents insulin‐stimulated glucose transport but not glucose transporter translocation in 3T3‐L1 adipocytes and L6 myotubes. J Biol Chem 274: 10071‐10078, 1999.
 226.Taegtmeyer H, Overturf ML. Effects of Moderate Hypertension on Cardiac‐Function and Metabolism in the Rabbit. Hypertension 11: 416‐426, 1988.
 227.Takeuchi K, McGowan FX, Jr., Glynn P, Moran AM, Rader CM, Cao‐Danh H, del Nido PJ. Glucose transporter upregulation improves ischemic tolerance in hypertrophied failing heart. Circulation 98: II234‐II239; discussion II240‐II231, 1998.
 228.Tanaka T, Nakatani K, Morioka K, Urakawa H, Maruyama N, Kitagawa N, Katsuki A, Araki‐Sasaki R, Hori Y, Gabazza EC, Yano Y, Wada H, Nobori T, Sumida Y, Adachi Y. Nitric oxide stimulates glucose transport through insulin‐independent GLUT4 translocation in 3T3‐L1 adipocytes. Eur J Endocrinol 941: 76−16, 3002.
 229.Thong FS, Bilan PJ, Klip A. The Rab GTPase‐activating protein AS160 integrates Akt, protein kinase C, and AMP‐activated protein kinase signals regulating GLUT4 traffic. Diabetes 56: 414‐423, 2007.
 230.Thorens B, Mueckler M. Glucose transporters in the 21st Century. Am J Physiol Endocrinol Metab 298: E141‐E145, 2010.
 231.Tian R. Transcriptional regulation of energy substrate metabolism in normal and hypertrophied heart. Curr Hypertens Rep 5: 454‐458, 2003.
 232.Tian R, Abel ED. Responses of GLUT4‐deficient hearts to ischemia underscore the importance of glycolysis. Circulation 103: 2961‐2966, 2001.
 233.Tian R, Musi N, D'Agostino J, Hirshman MF, Goodyear LJ. Increased adenosine monophosphate‐activated protein kinase activity in rat hearts with pressure‐overload hypertrophy. Circulation 104: 1664‐1669, 2001.
 234.Toth PP, Raghavan VA. Glucolipotoxicity and the heart preface. Heart Fail Clin 8: Xvii‐Xviii, 2012.
 235.Tsao TS, Stenbit AE, Factor SM, Chen W, Rossetti L, Charron MJ. Prevention of insulin resistance and diabetes in mice heterozygous for GLUT4 ablation by transgenic complementation of GLUT4 in skeletal muscle. Diabetes 48: 775‐782, 1999.
 236.Tsunoda N, Maruyama K, Cooke DW, Lane DM, Ezaki O. Localization of exercise‐ and denervation‐responsive elements in the mouse GLUT4 gene. Biochem Bioph Res Co 267: 744‐751, 2000.
 237.Tsuru M, Katagiri H, Asano T, Yamada T, Ohno S, Ogihara T, Oka Y. Role of PKC isoforms in glucose transport in 3T3‐L1 adipocytes: Insignificance of atypical PKC. Am J Physiol Endocrinol Metab 283: E338‐E345, 2002.
 238.Uhlig M, Passlack W, Eckel J. Functional role of Rab11 in GLUT4 trafficking in cardiomyocytes. Mol Cell Endocrinol 235: 1‐9, 2005.
 239.Uldry M, Ibberson M, Horisberger JD, Chatton JY, Riederer BM, Thorens B. Identification of a mammalian H(+)‐myo‐inositol symporter expressed predominantly in the brain. EMBO J 20: 4467‐4477, 2001.
 240.Uldry M, Ibberson M, Hosokawa M, Thorens B. GLUT2 is a high affinity glucosamine transporter. Febs Lett 524: 199‐203, 2002.
 241.van der Vusse GJ, Dubelaar ML, Coumans WA, Seymour AM, Clarke SB, Bonen A, Drake‐Holland AJ, Noble MI. Metabolic alterations in the chronically denervated dog heart. Cardiovasc Res 37: 160‐170, 1998.
 242.Vettor R, Fabris R, Serra R, Lombardi AM, Tonello C, Granzotto M, Marzolo M, Carruba M, Ricquier D, Federspil G, Nisoli E. Changes in FAT/CD36, UCP2, UCP3 and GLUT4 gene expression during lipid infusion in rat skeletal and heart muscle. Int J Obesity 26: 838‐847, 2002.
 243.Vinals F, Fandos C, Santalucia T, Ferre J, Testar X, Palacin M, Zorzano A. Myogenesis and MyoD down‐regulate Sp1 ‐ a mechanism for the repression of GLUT1 during muscle cell differentiation. J Biol Chem 272: 12913‐12921, 1997.
 244.Waller AP, George M, Kalyanasundaram A, Kang C, Periasamy M, Hu KL, Lacombe VA. GLUT12 functions as a basal and insulin‐independent glucose transporter in the heart. Bba‐Mol Basis Dis 1832: 121‐127, 2013.
 245.Wambolt RB, Henning SL, English DR, Dyachkova Y, Lopaschuk GD, Allard MF. Glucose utilization and glycogen turnover are accelerated in hypertrophied rat hearts during severe low‐flow ischemia. J Mol Cell Cardiol 31: 493‐502, 1999.
 246.Wambolt RB, Lopaschuk GD, Brownsey RW, Allard MF. Dichloroacetate improves postischemic function of hypertrophied rat hearts. J Am Coll Cardiol 36: 1378‐1385, 2000.
 247.Wang C, Hu SM. Developmental regulation in the expression of rat‐heart glucose transporters. Biochem Bioph Res Co 177: 1095‐1100, 1991.
 248.Wang D, Pascual JM, Yang H, Engelstad K, Mao X, Cheng J, Yoo J, Noebels JL, De Vivo DC. A mouse model for Glut‐1 haploinsufficiency. Hum Mol Genet 15: 1169‐1179, 2006.
 249.Wang ZV, Deng Y, Gao N, Pedrozo Z, Li DL, Morales CR, Criollo A, Luo X, Tan W, Jiang N, Lehrman MA, Rothermel BA, Lee AH, Lavandero S, Mammen PP, Ferdous A, Gillette TG, Scherer PE, Hill JA. Spliced X‐box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell 156: 1179‐1192, 2014.
 250.Watson LJ, Facundo HT, Ngoh GA, Ameen M, Brainard RE, Lemma KM, Long BW, Prabhu SD, Xuan YT, Jones SP. O‐linked beta‐N‐acetylglucosamine transferase is indispensable in the failing heart. P Natl Acad Sci U S A 107: 17797‐17802, 2010.
 251.Weiss RG, Chatham JC, Georgakopolous D, Charron MJ, Wallimann T, Kay L, Walzel B, Wang Y, Kass DA, Gerstenblith G, Chacko VP. An increase in the myocardial PCr/ATP ratio in GLUT4 null mice. FASEB J 16: 613‐615, 2002.
 252.Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. ATP‐citrate lyase links cellular metabolism to histone acetylation. Science 324: 1076‐1080, 2009.
 253.Wheeler TJ, Fell RD, Hauck MA. Translocation of two glucose transporters in heart: Effects of rotenone, uncouplers, workload, palmitate, insulin and anoxia. Biochim Biophys Acta 1196: 191‐200, 1994.
 254.Willaert A, Khatri S, Callewaert BL, Coucke PJ, Crosby SD, Lee JGH, Davis EC, Shiva S, Tsang M, De Paepe A, Urban Z. GLUT10 is required for the development of the cardiovascular system and the notochord and connects mitochondrial function to TGF signaling. Hum Mol Genet 21: 1248‐1259, 2012.
 255.Winder WW, Hardie DG. Inactivation of acetyl‐CoA carboxylase and activation of AMP‐activated protein kinase in muscle during exercise. Am J Physiol 270: E299‐E304, 1996.
 256.Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT): Expanded families of sugar transport proteins. Br J Nutr 89: 3‐9, 2003.
 257.Wu XH, Freeze HH. GLUT14, a duplicon of GLUT3, is specifically expressed in testis as alternative splice forms. Genomics 80: 553‐557, 2002.
 258.Xing Y, Musi N, Fujii N, Zou L, Luptak I, Hirshman MF, Goodyear LJ, Tian R. Glucose metabolism and energy homeostasis in mouse hearts overexpressing dominant negative alpha2 subunit of AMP‐activated protein kinase. J Biol Chem 278: 28372‐28377, 2003.
 259.Yan J, Young ME, Cui L, Lopaschuk GD, Liao R, Tian R. Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet‐induced obesity. Circulation 119: 2818‐2828, 2009.
 260.Yin Z, Haynie J, Yang X, Han B, Kiatchoosakun S, Restivo J, Yuan S, Prabhakar NR, Herrup K, Conlon RA, Hoit BD, Watanabe M, Yang YC. The essential role of Cited2, a negative regulator for HIF‐1alpha, in heart development and neurulation. Proc Natl Acad Sci U S A 99: 10488‐10493, 2002.
 261.York JW, Penney DG, Weeks TA, Stagno PA. Lactate‐dehydrogenase changes following several cardiac hypertrophic stresses. J Appl Physiol 40: 923‐926, 1976.
 262.Young LH, Renfu Y, Russell R, Hu X, Caplan M, Ren J, Shulman GI, Sinusas AJ. Low‐flow ischemia leads to translocation of canine heart GLUT‐4 and GLUT‐1 glucose transporters to the sarcolemma in vivo. Circulation 95: 415‐422, 1997.
 263.Young ME, Yan J, Razeghi P, Cooksey RC, Guthrie PH, Stepkowski SM, McClain DA, Tian R, Taegtmeyer H. Proposed regulation of gene expression by glucose in rodent heart. Gene Regul Syst Bio 1: 251‐262, 2007.
 264.Yu J, Auwerx J. The role of sirtuins in the control of metabolic homeostasis. Ann N Y Acad Sci 1173(Suppl 1): E10‐E19, 2009.
 265.Zachara NE. The roles of O‐linked beta‐N‐acetylglucosamine in cardiovascular physiology and disease. Am J Physiol Heart Circ Physiol 302: H1905‐H1918, 2012.
 266.Zachara NE, O'Donnell N, Cheung WD, Mercer JJ, Marth JD, Hart GW. Dynamic O‐GlcNAc modification of nucleocytoplasmic proteins in response to stress ‐ a survival response of mammalian cells. J Biol Chem 279: 30133‐30142, 2004.
 267.Zaninetti D, Crettaz M, Jeanrenaud B. Dysregulation of glucose‐transport in hearts of genetically‐obese (Fa/Fa) rats. Diabetologia 25: 525‐529, 1983.
 268.Zhang J, Duncker DJ, Ya X, Zhang Y, Pavek T, Wei H, Merkle H, Ugurbil K, From AH, Bache RJ. Effect of left ventricular hypertrophy secondary to chronic pressure overload on transmural myocardial 2‐deoxyglucose uptake. A 31P NMR spectroscopic study. Circulation 92: 1274‐1283, 1995.
 269.Zhao SM, Xu W, Jiang WQ, Yu W, Lin Y, Zhang TF, Yao J, Zhou L, Zeng YX, Li H, Li YX, Shi J, An WL, Hancock SM, He FC, Qin LX, Chin J, Yang PY, Chen X, Lei QY, Xiong Y, Guan KL. Regulation of cellular metabolism by protein lysine acetylation. Science 327: 1000‐1004, 2010.
 270.Zhou L, Huang H, Yuan CL, Keung W, Lopaschuk GD, Stanley WC. Metabolic response to an acute jump in cardiac workload: Effects on malonyl‐CoA, mechanical efficiency, and fatty acid oxidation. Am J Physiol Heart Circ Physiol 294: H954‐H960, 2008.
 271.Zimmer HG. Regulation of and intervention into the oxidative pentose phosphate pathway and adenine nucleotide metabolism in the heart. Mol Cell Biochem 161: 101‐109, 1996.
 272.Zimmer HG, Ibel H, Steinkopff G. Studies on the hexose monophosphate shunt in the myocardium during development of hypertrophy. Adv Myocardiol 1: 487‐492, 1980.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Dan Shao, Rong Tian. Glucose Transporters in Cardiac Metabolism and Hypertrophy. Compr Physiol 2015, 6: 331-351. doi: 10.1002/cphy.c150016