Comprehensive Physiology Wiley Online Library

Cardiac Metabolism in Perspective

Full Article on Wiley Online Library



ABSTRACT

The heart is a biological pump that converts chemical to mechanical energy. This process of energy conversion is highly regulated to the extent that energy substrate metabolism matches energy use for contraction on a beat‐to‐beat basis. The biochemistry of cardiac metabolism includes the biochemistry of energy transfer, metabolic regulation, and transcriptional, translational as well as posttranslational control of enzymatic activities. Pathways of energy substrate metabolism in the heart are complex and dynamic, but all of them conform to the First Law of Thermodynamics. The perspectives expand on the overall idea that cardiac metabolism is inextricably linked to both physiology and molecular biology of the heart. The article ends with an outlook on emerging concepts of cardiac metabolism based on new molecular models and new analytical tools. © 2016 American Physiological Society. Compr Physiol 6:1675‐1699, 2016.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Perfusion apparatus for beating frog heart used by Yeo (1885). Using electrical stimulation as a mean to increase cardiac work and using reduction of oxyhemoglobin as a mean to estimate oxygen consumption, Yeo (1885) was the first to demonstrate correlation between work and oxygen consumption in heart muscle. This advance was the result of a new perfusion technique depicted here. Reproduced, with permission, from J. Physiol, vol. 6y, pg. 97, 1885 (288).
Figure 2. Figure 2. Perfusion apparatus for the beating mammalian heart introduced by Langendorff (1895). Langendorff constructed this apparatus for the perfusion of the “surviving mammalian heart” to demonstrate that the heart receives its nutrients from the coronary circulation (and not from the ventricular cavities, as it was hitherto believed). Modifications of the Langendorff perfusion system have made important contributions to the study of cardiac metabolism and are still used in many biochemical and pharmacological laboratories. Reproduced, with permission, from B.D. Ross: Perfusion Techniques in Biochemistry, 1974. Oxford University Press, p. 267 (212).
Figure 3. Figure 3. Perfusion apparatus for the working frog heart by Frank (1895). The principle of the “working” heart preparation was first elaborated by Otto Frank in Munich. In his now classical studies on the factors, affecting cardiac work Frank used the preparation depicted in this figure. Both the filling pressure of the left atrium as well as the resistance of the aorta could be controlled. Frank showed that the greater the passive tension before contraction, the greater was the developed tension during contraction. Reproduced, with permission, from Zeitschrift für Biologie, vol. 32, p. 375, 1895 (1).
Figure 4. Figure 4. Comparison between Langendorff's technique and the working heart. The principal difference between the retrograde perfusion by Langendorff's technique (i) and the “working heart” technique (ii) is that in the latter the heart pumps fluid against a pressure head and cardiac work can be measured. Approximate values of aortic flow and coronary flow are given. A rat heart (wet wt—approx. 1 g) is able to generate a pressure, which is sufficient to overcome an aortic pressure head of 140 cm H2O). This is illustrated in Figure 3. The size of the heart and the height of the aortic fluid column are drawn to scale (vertical bar—50 cm).
Figure 5. Figure 5. The heart is a “metabolic omnivore”: The heart can process a variety of energy providing substrates to fuel ATP production that support the contractile process.
Figure 6. Figure 6. The heart as a biological pump. The heart transforms chemical energy–in the form of substrates and oxygen—into mechanical energy—contraction and cardiac output—on a beat‐to‐beat basis throughout the lifespan of an individual.
Figure 7. Figure 7. Metabolic cycles improve the efficiency of energy transfer. From the circulation of the blood to the crossbridges of the sarcomeres energy transfer makes use of a series of moiety conserved cycles. The metabolic cycles are located in the mitochondria (red). Ca2+ is considered the main regulator of both contraction and Krebs cycle flux. Panel A depicts a model of normal energy transfer (arrow on top of each panel). Panel B depicts a model of increased energy transfer in the adaptive response to an increase in workload of the heart. Panel C depicts a model of decreased energy transfer in the maladaptive state of heart failure. ADP, adenosine diphosphate; ATP, adenosine triphosphate; FAD, flavine adenine dinucleotide; FADH, reduced flavine adenine dinucleotide; NAD, nicotinamide adenine dinucleotide; NADH, reduced nicotinamide dinucleotide. Reproduced, with permission, from Taegtmeyer and Lubrano, 2014 (253).
Figure 8. Figure 8. The metabolism of energy providing substrates is organized into four stages. All of these stages are regulated: delivery and uptake (I), acetyl‐coA formation (II), oxidation of smaller carbon units in the Krebs cycle providing reducing equivalents for the respiratory chain (III), and ATP production (IV). ADP, adenosine diphosphate; ATP, adenosine triphosphate; Ac‐CoA: acetyl coenzyme A; CP: Phosphocreatine; OAA: Oxaloacetate. Modified, with permission, from Olson et al., 1959 (189).
Figure 9. Figure 9. Differential substrate metabolism during acute increase of heart workload. In the isolated working heart, an acute increase in workload results in an acute increase of oxygen consumption (A) and oxidation of carbohydrates (B). Note the instant, but transient, increase in glycogen oxidation, and the sustained increase in glucose and lactate oxidation. All three substrates support the increase in cardiac work. Reproduced, with permission, from Goodwin et al., 1998 (83).
Figure 10. Figure 10. Glucose 6‐phosphate (G6P) has four possible metabolic fates. G6P can be converted to ribose‐5‐phosphate through the pentose phosphate pathway, glycogen through glycogen synthesis, UDP‐GlcNAc through HBP, and pyruvate through glycolysis.
Figure 11. Figure 11. Pyruvate as a branching point in metabolism. Pyruvate has multiple metabolic fates and can be converted into the Krebs cycle intermediates malate and oxaloacetate, fermented to produce lactate in the absence of oxygen, transaminated to alanine, or decarboxylated to produce acetyl‐coA.
Figure 12. Figure 12. Fatty acid oxidation in the muscle. The main fuels for respiration in heart muscle uptake and oxidation of glucose and of long‐chain fatty acids are tightly regulated to meet the energy needs for contraction of the heart. Acetyl‐CoA, acetyl coenzyme A; Acyl‐CoA, acyl‐coenzyme A; ADP, adenosine diphosphate; ATP adenosine triphosphate; CPT, carnitine‐palmitoyl transferase; FAD, flavine adenine dinucleotide; FADH2, flavine adenine dinucleotide, reduced form; FFA, free fatty acid; G‐6‐P, glucose‐6‐phosphate; MHC, myosin heavy chain; NAD+, nicotinamide adenine dinucleotide, reduced form; Pi, inorganic phosphate; SERCA, sarcoendoplasmic reticulum ATPase. Reproduced, with permission, from Willerson et al., 3rd edition. Springer, 2007 (244).
Figure 13. Figure 13. Schematic drawing showing substrate metabolism as source of energy provision and modulator of cellular functions. Products of metabolism can provide energy (red), building blocks of complex molecules (yellow) and lipid bilayers (blue), substrates for protein posttranslational modifications (PTMs) (purple), for epigenetic modifications (green), and metabolic signals (orange) such as glucose 6‐phosphate (G6P), AMP/ATP ratio, acyl‐, acetyl‐, and methyl‐ groups that can serve as substrates for epigenetic changes and PTMs. AMP, adenosine monophosphate; ATP, adenosine triphosphate; G6P: Glucose 6‐phosphate. Reproduced, with permission, from Davogustto G, Taegtmeyer H., 2015 (46).
Figure 14. Figure 14. Number of Pubmed publications per year containing the Mesh terms “Metabolism” and “Cardiovascular diseases” in different biological systems. Since 1945, the number of publications per year of metabolism and cardiovascular diseases has increased in humans (blue line) and animal models (orange line). This growth is closely correlated and likely the consequence of landmark discoveries in science (purple arrows in text). The surge has been more pronounced in the last 20 years, especially after the introduction of metabolomics (186) PCR, polymerase chain reaction; HGP, human genome project.


Figure 1. Perfusion apparatus for beating frog heart used by Yeo (1885). Using electrical stimulation as a mean to increase cardiac work and using reduction of oxyhemoglobin as a mean to estimate oxygen consumption, Yeo (1885) was the first to demonstrate correlation between work and oxygen consumption in heart muscle. This advance was the result of a new perfusion technique depicted here. Reproduced, with permission, from J. Physiol, vol. 6y, pg. 97, 1885 (288).


Figure 2. Perfusion apparatus for the beating mammalian heart introduced by Langendorff (1895). Langendorff constructed this apparatus for the perfusion of the “surviving mammalian heart” to demonstrate that the heart receives its nutrients from the coronary circulation (and not from the ventricular cavities, as it was hitherto believed). Modifications of the Langendorff perfusion system have made important contributions to the study of cardiac metabolism and are still used in many biochemical and pharmacological laboratories. Reproduced, with permission, from B.D. Ross: Perfusion Techniques in Biochemistry, 1974. Oxford University Press, p. 267 (212).


Figure 3. Perfusion apparatus for the working frog heart by Frank (1895). The principle of the “working” heart preparation was first elaborated by Otto Frank in Munich. In his now classical studies on the factors, affecting cardiac work Frank used the preparation depicted in this figure. Both the filling pressure of the left atrium as well as the resistance of the aorta could be controlled. Frank showed that the greater the passive tension before contraction, the greater was the developed tension during contraction. Reproduced, with permission, from Zeitschrift für Biologie, vol. 32, p. 375, 1895 (1).


Figure 4. Comparison between Langendorff's technique and the working heart. The principal difference between the retrograde perfusion by Langendorff's technique (i) and the “working heart” technique (ii) is that in the latter the heart pumps fluid against a pressure head and cardiac work can be measured. Approximate values of aortic flow and coronary flow are given. A rat heart (wet wt—approx. 1 g) is able to generate a pressure, which is sufficient to overcome an aortic pressure head of 140 cm H2O). This is illustrated in Figure 3. The size of the heart and the height of the aortic fluid column are drawn to scale (vertical bar—50 cm).


Figure 5. The heart is a “metabolic omnivore”: The heart can process a variety of energy providing substrates to fuel ATP production that support the contractile process.


Figure 6. The heart as a biological pump. The heart transforms chemical energy–in the form of substrates and oxygen—into mechanical energy—contraction and cardiac output—on a beat‐to‐beat basis throughout the lifespan of an individual.


Figure 7. Metabolic cycles improve the efficiency of energy transfer. From the circulation of the blood to the crossbridges of the sarcomeres energy transfer makes use of a series of moiety conserved cycles. The metabolic cycles are located in the mitochondria (red). Ca2+ is considered the main regulator of both contraction and Krebs cycle flux. Panel A depicts a model of normal energy transfer (arrow on top of each panel). Panel B depicts a model of increased energy transfer in the adaptive response to an increase in workload of the heart. Panel C depicts a model of decreased energy transfer in the maladaptive state of heart failure. ADP, adenosine diphosphate; ATP, adenosine triphosphate; FAD, flavine adenine dinucleotide; FADH, reduced flavine adenine dinucleotide; NAD, nicotinamide adenine dinucleotide; NADH, reduced nicotinamide dinucleotide. Reproduced, with permission, from Taegtmeyer and Lubrano, 2014 (253).


Figure 8. The metabolism of energy providing substrates is organized into four stages. All of these stages are regulated: delivery and uptake (I), acetyl‐coA formation (II), oxidation of smaller carbon units in the Krebs cycle providing reducing equivalents for the respiratory chain (III), and ATP production (IV). ADP, adenosine diphosphate; ATP, adenosine triphosphate; Ac‐CoA: acetyl coenzyme A; CP: Phosphocreatine; OAA: Oxaloacetate. Modified, with permission, from Olson et al., 1959 (189).


Figure 9. Differential substrate metabolism during acute increase of heart workload. In the isolated working heart, an acute increase in workload results in an acute increase of oxygen consumption (A) and oxidation of carbohydrates (B). Note the instant, but transient, increase in glycogen oxidation, and the sustained increase in glucose and lactate oxidation. All three substrates support the increase in cardiac work. Reproduced, with permission, from Goodwin et al., 1998 (83).


Figure 10. Glucose 6‐phosphate (G6P) has four possible metabolic fates. G6P can be converted to ribose‐5‐phosphate through the pentose phosphate pathway, glycogen through glycogen synthesis, UDP‐GlcNAc through HBP, and pyruvate through glycolysis.


Figure 11. Pyruvate as a branching point in metabolism. Pyruvate has multiple metabolic fates and can be converted into the Krebs cycle intermediates malate and oxaloacetate, fermented to produce lactate in the absence of oxygen, transaminated to alanine, or decarboxylated to produce acetyl‐coA.


Figure 12. Fatty acid oxidation in the muscle. The main fuels for respiration in heart muscle uptake and oxidation of glucose and of long‐chain fatty acids are tightly regulated to meet the energy needs for contraction of the heart. Acetyl‐CoA, acetyl coenzyme A; Acyl‐CoA, acyl‐coenzyme A; ADP, adenosine diphosphate; ATP adenosine triphosphate; CPT, carnitine‐palmitoyl transferase; FAD, flavine adenine dinucleotide; FADH2, flavine adenine dinucleotide, reduced form; FFA, free fatty acid; G‐6‐P, glucose‐6‐phosphate; MHC, myosin heavy chain; NAD+, nicotinamide adenine dinucleotide, reduced form; Pi, inorganic phosphate; SERCA, sarcoendoplasmic reticulum ATPase. Reproduced, with permission, from Willerson et al., 3rd edition. Springer, 2007 (244).


Figure 13. Schematic drawing showing substrate metabolism as source of energy provision and modulator of cellular functions. Products of metabolism can provide energy (red), building blocks of complex molecules (yellow) and lipid bilayers (blue), substrates for protein posttranslational modifications (PTMs) (purple), for epigenetic modifications (green), and metabolic signals (orange) such as glucose 6‐phosphate (G6P), AMP/ATP ratio, acyl‐, acetyl‐, and methyl‐ groups that can serve as substrates for epigenetic changes and PTMs. AMP, adenosine monophosphate; ATP, adenosine triphosphate; G6P: Glucose 6‐phosphate. Reproduced, with permission, from Davogustto G, Taegtmeyer H., 2015 (46).


Figure 14. Number of Pubmed publications per year containing the Mesh terms “Metabolism” and “Cardiovascular diseases” in different biological systems. Since 1945, the number of publications per year of metabolism and cardiovascular diseases has increased in humans (blue line) and animal models (orange line). This growth is closely correlated and likely the consequence of landmark discoveries in science (purple arrows in text). The surge has been more pronounced in the last 20 years, especially after the introduction of metabolomics (186) PCR, polymerase chain reaction; HGP, human genome project.
References
 1.Kuhne W, Voit C. Zeitschrift für Biologie. De Gruyter 1865.
 2.Aasum E, Lathrop DA, Henden T, Sundset R, Larsen TS. The role of glycolysis in myocardial calcium control. J Mol Cell Cardiol 30: 1703‐1712, 1998.
 3.Allard MF, Emanuel PG, Russell JA, Bishop SP, Digerness SB, Anderson PG. Preischemic glycogen reduction or glycolytic inhibition improves postischemic recovery of hypertrophied rat heart. Am J Physiol 267: H66‐H74, 1994.
 4.Antos CL, McKinsey TA, Frey N, Kutschke W, McAnally J, Shelton JM, Richardson JA, Hill JA, Olson EN. Activated glycogen synthase‐3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A 99: 907‐912, 2002.
 5.Arany Z, He H, Lin J, Hoyer K, Handschin C, Toka O, Ahmad F, Matsui T, Chin S, Wu PH, Rybkin, II, Shelton JM, Manieri M, Cinti S, Schoen FJ, Bassel‐Duby R, Rosenzweig A, Ingwall JS, Spiegelman BM. Transcriptional coactivator PGC‐1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab 1: 259‐271, 2005.
 6.Arch JR, Newsholme EA. The control of the metabolism and the hormonal role of adenosine. Essays Biochem 14: 82‐123, 1978.
 7.Balaban RS. Regulation of oxidative phosphorylation in the mammalian cell. Am J Physiol 258: C377‐C389, 1990.
 8.Balaban RS. Cardiac energy metabolism homeostasis: Role of cytosolic calcium. J Mol Cell Cardiol 34: 1259‐1271, 2002.
 9.Balaban RS, Kontor HL, Katz LA, Briggs RW. Relation between work and phosphate metabolite in the in vivo paced mammalian heart. Science 232: 1121‐1123, 1986.
 10.Baldwin JE, Krebs HA. The evolution of metabolic cycles. Nature 291: 381‐382, 1981.
 11.Barth E, Stämmler G, Speiser B, Schaper J. Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J Molec Cell Cardiol 24: 669‐681, 1992.
 12.Bass NM. The cellular fatty acid binding proteins: Aspects of structure, regulation, and function. Int Rev Cytol 111: 143‐184, 1988.
 13.Behrooz A, Ismail‐Beigi F. Stimulation of glucose transport by hypoxia: Signals and mechanisms. News Physiol Sci 14: 105‐110, 1999.
 14.Bianchi A, Evans J, Iverson A, Nordlund A, Watts T, Wilters L. Identification of an isozymic form of acetyl‐CoA carboxylase. J Biol Chem 265: 1502‐1509, 1990.
 15.Binas B, Danneberg H, McWhir J, Mullins L, Clark AJ. Requirement for the heart‐type fatty acid binding protein in cardiac fatty acid utilization. FASEB J 13: 805‐812, 1999.
 16.Bing RJ. The metabolism of the heart. Harvey Lect 50: 27‐70, 1955.
 17.Bing RJ. The metabolism of the heart. Trans Am Coll Cardiol 5: 8‐14, 1955.
 18.Bing RJ. The course of science and cardiac metabolism. Circ Res 38: I151‐I155, 1976.
 19.Handelsman JC, Powers SR, Spencer FC, Eckenhoff JE, Goodale WT, Hafkenschiel JH, Kety SS. The measurement of coronary blood flow, oxygen consumption, and efficiency of the left ventricle in man. Am Heart J 38: 1‐24, 1949.
 20.Bing RJ, Siegel A, Ungar I, Gilbert M. Metabolism of the human heart. II. Studies on fat, ketone and amino acid metabolism. Am J Med 16: 504‐515, 1954.
 21.Bishop S, Altschuld R. Increased glycolytic metabolism in cardiac hypertrophy and congestive heart failure. Am J Physiol 218: 153‐159, 1970.
 22.Bizino MB, Hammer S, Lamb HJ. Metabolic imaging of the human heart: Clinical application of magnetic resonance spectroscopy. Heart 100: 881‐890, 2014.
 23.Bleehen NM, Fisher RB. The action of insulin in the isolated rat heart. J Physiol 123: 260‐276, 1954.
 24.Borst P, Loos JA, Christ EJ, Slater EC. Uncoupling activity of long chain fatty acids. Biochim Biophys Acta 62: 509‐517, 1962.
 25.Bottomley P. Noninvasive study of high energy phosphate metabolism in human heart by depth‐resolved 31P NMR spectroscopy. Science 229: 769‐772, 1985.
 26.Brandt JM, Djouadi F, Kelly DP. Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator‐activated receptor alpha. J Biol Chem 273: 23786‐23792, 1998.
 27.Bremer J, Wojtzak A. Factors controlling the role of fatty acid beta oxidation in rat liver mitochondria. Biochem Biophys Acta 280: 515‐530, 1972.
 28.Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, Chen YC, Cox JE, Cardon CM, Van Vranken JG, Dephoure N, Redin C, Boudina S, Gygi SP, Brivet M, Thummel CS, Rutter J. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337: 96‐100, 2012.
 29.Brosnan JT, Brosnan ME. The sulfur‐containing amino acids: An overview. J Nutr 136: 1636S‐1640S, 2006.
 30.Brown G, Cooper C. Control analysis applied to single enzymes: Can an isolated enzyme have a unique rate‐limiting step? Biochem J 294: 87‐94, 1993.
 31.Brown GC. Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 284: 1‐13, 1992.
 32.Bugger H, Abel ED. Molecular mechanisms for myocardial mitochondrial dysfunction in the metabolic syndrome. Clin Sci (Lond) 114: 195‐210, 2008.
 33.Burrage LC, Nagamani SC, Campeau PM, Lee BH. Branched‐chain amino acid metabolism: From rare Mendelian diseases to more common disorders. Hum Mol Genet 23: R1‐8, 2014.
 34.Camici PG, Prasad SK, Rimoldi OE. Stunning, hibernation, and assessment of myocardial viability. Circulation 117: 103‐114, 2008.
 35.Carlsten A, Hallgren B, Jagenburg R, Werko L. Myocardial metabolism of glucose, lactic acid, amino and fatty acids in healthy individuals at rest and at different work loads. Scand J Clin Invest 13: 418‐427, 1961.
 36.Chen Y, Liu Y, Dorn GW, II. Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res 109: 1327‐1331, 2011.
 37.Chin E, Allen D. Effects of reduced muscle glycogen concentration on force, Ca2+ release and contractile protein function in intact mouse skeletal muscle. J Physiol (Lond) 498: 17‐29, 1997.
 38.Cocco P, Todde P, Fornera S, Manca MB, Manca P, Sias AR. Mortality in a cohort of men expressing the glucose‐6‐phosphate dehydrogenase deficiency. Blood 91: 706‐709, 1998.
 39.Cohen P. Control of Enzyme Activity. London: Chapman & Hall, 1976.
 40.Cohen P. The role of cyclic‐AMP‐dependent protein kinase in the regulation of glycogen metabolism in mammalian skeletal muscle. Curr Top Cell Regul 14: 117‐196, 1978.
 41.Conheim J, von Schultheiss‐Rechberg A. On the consequences of coronary artery occlusion for the heart. Virchows Arch path Anat 85: 503, 1881.
 42.Cori G, Colowick S, Cori C. The action of nucleotides on the disruptive phosphorylation of glycogen. J Biol Chem 123: 381‐389, 1938.
 43.Cushman S, Wardzala L. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. J Biol Chem 255: 4755‐4762, 1980.
 44.Daniel PM, Love ER, Pratt OE. Factors affecting the supply of glucose to the heart of the rat, in vivo. J Physiol 309: 157‐169, 1980.
 45.Dassanayaka S, Jones SP. O‐GlcNAc and the cardiovascular system. Pharmacol Ther 142: 62‐71, 2014.
 46.Davogustto G, Taegtmeyer H. The changing landscape of cardiac metabolism. J Mol Cell Cardiol 84: 129‐132, 2015.
 47.DeBerardinis RJ. Is cancer a disease of abnormal cellular metabolism? New angles on an old idea. Genet Med 10: 767‐777, 2008.
 48.DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7: 11‐20, 2008.
 49.Denton RM, Halestrap AP. Regulations of pyruvate metabolism in mammalian tissues. Essays Biochem 15: 37‐77, 1979.
 50.Depre C, Shipley GL, Chen W, Han Q, Doenst T, Moore ML, Stepkowski S, Davies PJ, Taegtmeyer H. Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nat Med 4: 1269‐1275, 1998.
 51.Des Rosiers C, Labarthe F, Lloyd SG, Chatham JC. Cardiac anaplerosis in health and disease: Food for thought. Cardiovasc Res 90: 210‐219, 2011.
 52.Doenst T, Goodwin GW, Cedars AM, Wang M, Stepkowski S, Taegtmeyer H. Load‐induced changes in vivo alter substrate fluxes and insulin responsiveness of rat heart in vitro. Metabolism 50: 1083‐1090, 2001.
 53.Doenst T, Taegtmeyer H. Alpha‐adrenergic stimulation mediates glucose uptake through phosphatidylinositol 3‐kinase in rat heart. Circ Res 84: 467‐474, 1999.
 54.Doenst T, Taegtmeyer H. Ischemia‐stimulated glucose uptake does not require catecholamines in rat heart. J Mol Cell Cardiol 31: 435‐443, 1999.
 55.Dorn GW II, Kitsis RN. The mitochondrial dynamism‐mitophagy‐cell death interactome: Multiple roles performed by members of a mitochondrial molecular ensemble. Circ Res 116: 167‐182, 2015.
 56.Dyck JR, Barr AJ, Barr RL, Kolattukudy PE, Lopaschuk GD. Characterization of cardiac malonyl‐CoA decarboxylase and its putative role in regulating fatty acid oxidation. Am J Physiol 275: H2122‐H2129, 1998.
 57.Dyck JR, Cheng JF, Stanley WC, Barr R, Chandler MP, Brown S, Wallace D, Arrhenius T, Harmon C, Yang G, Nadzan AM, Lopaschuk GD. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Circ Res 94: e78‐84, 2004.
 58.Eggleston LV, Krebs HA. Regulation of the pentose phosphate cycle. Biochem J 138: 425‐435, 1974.
 59.Ellis JM, Mentock SM, Depetrillo MA, Koves TR, Sen S, Watkins SM, Muoio DM, Cline GW, Taegtmeyer H, Shulman GI, Willis MS, Coleman RA. Mouse cardiac acyl coenzyme a synthetase 1 deficiency impairs Fatty Acid oxidation and induces cardiac hypertrophy. Mol Cell Biol 31: 1252‐1262, 2011.
 60.Entman ML, Kanike K, Goldstein MA, Nelson TE, Bornet EP, Futch TW, Schwartz A. Association of glycogenolysis with cardiac sarcoplasmic reticulum. J Biol Chem 251: 3140‐3146, 1976.
 61.Erol E, Cline GW, Kim JK, Taegtmeyer H, Binas B. Nonacute effects of H‐FABP deficiency on skeletal muscle glucose uptake in vitro. Am J Physiol Endocrinol Metab 287: E977‐982, 2004.
 62.Essop MF, Camp HS, Choi CS, Sharma S, Fryer RM, Reinhart GA, Guthrie PH, Bentebibel A, Gu Z, Shulman GI, Taegtmeyer H, Wakil SJ, Abu‐Elheiga L. Reduced heart size and increased myocardial fuel substrate oxidation in ACC2 mutant mice. Am J Physiol Heart Circ Physiol 295: H256‐265, 2008.
 63.Evans CL. The effect of glucose on the gaseous metabolism of the isolated mammalian heart. J Physiol (London) 47: 407‐418, 1914.
 64.Evans CL. The metabolism of cardiac muscle. In: Newton W, editor. Evan's Recent Advances in Physiology (6th ed). Philadelphia: Blakinston's Sons and Co., 1939, pp. 157‐182.
 65.Fabiato A, Fabiato F. Use of chlorotetracycline fluorescence to demonstrate Ca2+‐induced release of Ca2+ from the sarcoplasmic reticulum of skinned cardiac cells. Nature 281: 146‐148, 1979.
 66.Fell D. Understanding the Control of Metabolism. Miami: Portland Press, 1997.
 67.Ferrari R, Merli E, Cicchitelli G, Mele D, Fucili A, Ceconi C. Therapeutic effects of L‐carnitine and propionyl‐L‐carnitine on cardiovascular diseases: A review. Ann N Y Acad Sci 1033: 79‐91, 2004.
 68.Frank O. Zur dynamik des herzmuskels. Zeitschr Biol (Munich) 32: 370‐437, 1895.
 69.Fricovsky ES, Suarez J, Ihm SH, Scott BT, Suarez‐Ramirez JA, Banerjee I, Torres‐Gonzalez M, Wang H, Ellrott I, Maya‐Ramos L, Villarreal F, Dillmann WH. Excess protein O‐GlcNAcylation and the progression of diabetic cardiomyopathy. Am J Physiol Regul Integr Comp Physiol 303: R689‐699, 2012.
 70.Fried SK, Watford M. Leucing weight with a futile cycle. Cell Metab 6: 155‐156, 2007.
 71.Friedman JR, Nunnari J. Mitochondrial form and function. Nature 505: 335‐343, 2014.
 72.Gadian D, Hoult D, Radda G, Seeley P, Chance B, Barlow C. Phosphorous nuclear magnetic resonance studies in normoxic and ischemic cardiac tissue. Proc Natl Acad Sci USA 73: 291‐332, 1976.
 73.Gallo P, Latronico MV, Gallo P, Grimaldi S, Borgia F, Todaro M, Jones P, Gallinari P, De Francesco R, Ciliberto G, Steinkuhler C, Esposito G, Condorelli G. Inhibition of class I histone deacetylase with an apicidin derivative prevents cardiac hypertrophy and failure. Cardiovasc Res 80: 416‐424, 2008.
 74.Garland PB, Randle PJ, Newsholme EA. Citrate as an intermediary in the inhibition of phosphofructokinase in rat heart muscle by fatty acids, ketone bodies, pyruvate, diabetes and starvation. Nature (London) 200: 169‐170, 1963.
 75.Gertz EW, Wisneski JA, Neese RA, Bristow JD, Searle GL, Hanlon JT. Myocardial lactate metabolism: Evidence of lactate release during net chemical extraction in man. Circulation 63: 1273‐1279, 1981.
 76.Gertz EW, Wisneski JA, Stanley WC, Neese RA. Myocardial substrate utilization during exercise in humans. J Clin Invest 82: 2017‐2025, 1988.
 77.Gillette TG, Hill JA. Readers, writers, and erasers: Chromatin as the whiteboard of heart disease. Circ Res 116: 1245‐1253, 2015.
 78.Goldberg AD, Allis CD, Bernstein E. Epigenetics: A landscape takes shape. Cell 128: 635‐638, 2007.
 79.Goodwin GW, Ahmad F, Doenst T, Taegtmeyer H. Energy provision from glycogen, glucose, and fatty acids on adrenergic stimulation of isolated working rat hearts. Am J Physiol 274: H1239‐H1247, 1998.
 80.Goodwin GW, Cohen DM, Taegtmeyer H. [5‐3H]glucose overestimates glycolytic flux in isolated working rat heart: Role of the pentose phosphate pathway. Am J Physiol Endocrinol Metab 280: E502‐E508, 2001.
 81.Goodwin GW, Taegtmeyer H. Improved energy homeostasis of the heart in the metabolic state of exercise. Am J Physiol Heart Circ Physiol 279: H1490‐H1501, 2000.
 82.Goodwin GW, Taegtmeyer H. Regulation of fatty acid oxidation of the heart by MCD and ACC during contractile stimulation. Am J Physiol 277: E772‐777, 1999.
 83.Goodwin GW, Taylor CS, Taegtmeyer H. Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem 273: 29530‐29539, 1998.
 84.Gould GW. Facilitative Glucose Transporters. Georgetown, TX: Landes Comp., Chapman & Hall, 1997.
 85.Gould GW, Holman GD. The glucose transporter family: Structure, function and tissue‐specific expression. Biochem J 295: 329‐341, 1993.
 86.Gradinac S, Coleman GM, Taegtmeyer H, Sweeney MS, Frazier OH. Improved cardiac function with glucose‐insulin‐potassium after aortocoronary bypass grafting. Ann Thorac Surg 48: 484‐489, 1989.
 87.Greiwe JS, Kwon G, McDaniel ML, Semenkovich CF. Leucine and insulin activate p70 S6 kinase through different pathways in human skeletal muscle. Am J Physiol Endocrinol Metab 281: E466‐E471, 2001.
 88.Gropler RJ. Recent advances in metabolic imaging. J Nucl Cardiol 20: 1147‐1172, 2013.
 89.Grueter CE, van Rooij E, Johnson BA, DeLeon SM, Sutherland LB, Qi X, Gautron L, Elmquist JK, Bassel‐Duby R, Olson EN. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell 149: 671‐683, 2012.
 90.Gulick T, Cresci S, Caira T, Moore D, Kelly D. The peroxisome proliferator‐activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc Natl Acad Sci USA 91: 11012‐11016, 1994.
 91.Gupte AA, Hamilton DJ, Cordero‐Reyes AM, Youker KA, Yin Z, Estep JD, Stevens RD, Wenner B, Ilkayeva O, Loebe M, Peterson LE, Lyon CJ, Wong ST, Newgard CB, Torre‐Amione G, Taegtmeyer H, and Hsueh WA. Mechanical unloading promotes myocardial energy recovery in human heart failure. Circ Cardiovasc Genet 7: 266‐276, 2014.
 92.Gusterson RJ, Jazrawi E, Adcock IM, Latchman DS. The transcriptional co‐activators CREB‐binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity. J Biol Chem 278: 6838‐6847, 2003.
 93.Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, Heldmaier G, Maier R, Theussl C, Eder S, Kratky D, Wagner EF, Klingenspor M, Hoefler G, Zechner R. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312: 734‐737, 2006.
 94.Halestrap AP. The mitochondrial pyruvate carrier: Has it been unearthed at last? Cell Metab 16: 141‐143, 2012.
 95.Hardie DG, Carling D. The AMP‐activated protein kinase–fuel gauge of the mammalian cell? Eur J Biochem 246: 259‐273, 1997.
 96.Hardie DG, Ross FA, Hawley SA. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13: 251‐262, 2012.
 97.Harmancey R, Vasquez HG, Guthrie PH, Taegtmeyer H. Decreased long‐chain fatty acid oxidation impairs postischemic recovery of the insulin‐resistant rat heart. FASEB J 27: 3966‐3978, 2013.
 98.Harris P, Jones JH, Bateman M, Chlouverakis C, Gloster J. Metabolism of the myocardium at rest and during exercise in patients with rheumatic heart disease. Clin Sci 26: 145‐156, 1964.
 99.Harris RA, Joshi M, Jeoung NH. Mechanisms responsible for regulation of branched‐chain amino acid catabolism. Biochem Biophys Res Commun 313: 391‐396, 2004.
 100.Heather LC, Wang X, West JA, Griffin JL. A practical guide to metabolomic profiling as a discovery tool for human heart disease. J Mol Cell Cardiol 55: 2‐11, 2013.
 101.Hecker PA, Leopold JA, Gupte SA, Recchia FA, Stanley WC. Impact of glucose‐6‐phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease. Am J Physiol Heart Circ Physiol 304: H491‐500, 2013.
 102.Helmholtz H. Uber den Stoffverbranch bei der Muskelaktion. Arch fur Anatomie 73, 1845.
 103.Helmholtz H. Uber die Erhaltung der Kraft: Eine physikalische. Berlin: Abhandlung, 1847.
 104.Hochachka P, Somero G. Strategies of Biochemical Adapatations. Philadelphia: WB Saunders, 1973.
 105.Holloway C, ten Hove M, Clarke K, Neubauer S. MR spectroscopy in heart failure. Front Biosci (Schol Ed) 3: 331‐340.
 106.Holmes FL. Between Biology and Medicine: The Formation of Intermediary Metabolism. Berkeley, CA: University of California at Berkeley, 1992.
 107.Hovener JB, Chekmenev EY, Harris KC, Perman WH, Robertson LW, Ross BD, Bhattacharya P. PASADENA hyperpolarization of 13C biomolecules: Equipment design and installation. Magma 22: 111‐121, 2009.
 108.Howell NJ, Ashrafian H, Drury NE, Ranasinghe AM, Contractor H, Isackson H, Calvert M, Williams LK, Freemantle N, Quinn DW, Green D, Frenneaux M, Bonser RS, Mascaro JG, Graham TR, Rooney SJ, Wilson IC, Pagano D. Glucose‐insulin‐potassium reduces the incidence of low cardiac output episodes after aortic valve replacement for aortic stenosis in patients with left ventricular hypertrophy: Results from the Hypertrophy, Insulin, Glucose, and Electrolytes (HINGE) trial. Circulation 123: 170‐177.
 109.Hu Y, Riesland L, Paterson AJ, Kudlow JE. Phosphorylation of mouse glutamine‐fructose‐6‐phosphate amidotransferase 2 (GFAT2) by cAMP‐dependent protein kinase increases the enzyme activity. J Biol Chem 279: 29988‐29993, 2004.
 110.Huang Y, Zhou M, Sun H, Wang Y. Branched‐chain amino acid metabolism in heart disease: An epiphenomenon or a real culprit? Cardiovasc Res 90: 220‐223, 2011.
 111.Hue L, Rider MH. Role of fructose 2,6‐bisphosphate in the control of glycolysis in mammalian tissues. Biochem J 245: 313‐324, 1987.
 112.Huss JM, Kelly DP. Mitochondrial energy metabolism in heart failure: A question of balance. J Clin Invest 115: 547‐555, 2005.
 113.Ichihara K, Neely JR, Siehl DL, Morgan HE. Utilization of leucine by working rat heart. Am J Physiol 239: E430‐436, 1980.
 114.Jacobus W, Taylor G, Hollis D, Nunnally R. Phosphorous nuclear magnetic resonance of perfused working rat hearts. Nature 265: 756‐758, 1977.
 115.Johnson M, Everitt B. The high concentration of glycogen in fetal cardiac muscle probably explains why the heart can maintain its contractile activity in the face of severe hypoxia. In: Essential Reproduction (3rd ed). Oxford: Blackwell Scientific Publ., 1988, p. 275.
 116.Joost HG, Bell GI, Best JD, Birnbaum MJ, Charron MJ, Chen YT, Doege H, James DE, Lodish HF, Moley KH, Moley JF, Mueckler M, Rogers S, Schurmann A, Seino S, Thorens B. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am J Physiol Endocrinol Metab 282: E974‐976, 2002.
 117.Kaelin WG Jr, McKnight SL. Influence of metabolism on epigenetics and disease. Cell 153: 56‐69, 2013.
 118.Karlstadt A, Fliegner D, Kararigas G, Ruderisch HS, Regitz‐Zagrosek V, Holzhutter HG. CardioNet: A human metabolic network suited for the study of cardiomyocyte metabolism. BMC Syst Biol 6: 114, 2012.
 119.Katz A. Is the failing heart energy depleted? Cardiol Clin 16: 633‐644, 1998.
 120.Keating ST, El‐Osta A. Epigenetics and metabolism. Circ Res 116: 715‐736, 2015.
 121.Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18: 357‐368, 2004.
 122.Kerbey AL, Randle PJ, Cooper RH, Whitehouse S, Pask HT, Denton RM. Regulation of pyruvate dehydrogenase in rat heart. Biochem J 154: 327‐348, 1976.
 123.Kersten JR, Schmeling TJ, Orth KG, Pagel PS, Warltier DC. Acute hyperglycemia abolishes ischemic preconditioning in vivo. Am J Physiol 275: H721‐725, 1998.
 124.Kienesberger PC, Pulinilkunnil T, Nagendran J, Young ME, Bogner‐Strauss JG, Hackl H, Khadour R, Heydari E, Haemmerle G, Zechner R, Kershaw EE, Dyck JR. Early structural and metabolic cardiac remodelling in response to inducible adipose triglyceride lipase ablation. Cardiovasc Res 99: 442‐451, 2013.
 125.Knapp W, Helus F, Ostertag H, Tilmanns H, Kuebler W. Uptake and turnover of L‐[13N] glutamate in the normal human heart and patients with coronary artery disease. Eur J Nucl Med 7: 211‐215, 1982.
 126.Knoop F. Der Abbau aromatischer Fettsaeuren im Tierkoerper. Beitr Chem Physiol Pathol 6: 150‐162, 1904.
 127.Kobayashi K, Neely J. Control of maximum rates of glycolysis in rat cardiac muscle. Circ Res 44: 166‐175, 1979.
 128.Kolwicz SC Jr, Olson DP, Marney LC, Garcia‐Menendez L, Synovec RE, Tian R. Cardiac‐specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure‐overload hypertrophy. Circ Res 111: 728‐738, 2012.
 129.Kong Y, Tannous P, Lu G, Berenji K, Rothermel BA, Olson EN, Hill JA. Suppression of class I and II histone deacetylases blunts pressure‐overload cardiac hypertrophy. Circulation 113: 2579‐2588, 2006.
 130.Kornberg HL. The role and control of the glyoxylate cycle in Escherichia coli. Biochem J 99: 1‐11, 1966.
 131.Korvald C, Elvenes OP, Myrmel T. Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol 278: H1345‐1351, 2000.
 132.Krebs EG, Beavo JA. Phosphorylation‐dephosphorylation of enzymes. Annu Rev Biochem 48: 923‐959, 1979.
 133.Krebs EG, Fischer EH. The phosphorylase b to a converting enzyme of rabbit skeletal muscle. Biochim Biophys Acta 20: 150‐157, 1956.
 134.Krebs HA. Control of metabolic processes. Endeavour 16: 125‐132, 1957.
 135.Krebs HA. Some aspects of the regulation of fuel supply in omnivorous animals. Adv Enzyme Regul 10: 397‐420, 1972.
 136.Krebs HA, Johnson WA. The role of citric acid in intermediate metabolism in animal tissues. Enzymologia 4: 148‐156, 1937.
 137.Kupriyanov VV, Lakomkin VL, Kapelko VI, Steinschneider AY, Ruuge EK, Saks VA. Dissociation of adenosine triphosphate levels and contractile function in isovolumic hearts perfused with 2‐deoxyglucose. J Mol Cell Cardiol 19: 729‐740, 1987.
 138.Langendorff O. Untersuchungen am uberlebenden Saugethierherzen. Arch Ges Physiol Menschen Tiere 61: 291‐332, 1895.
 139.Laughlin MR, Fleming Taylor J, Chesnik AS, Balaban RS. Regulation of glycogen metabolism in canine myocardium: Effects of insulin and epinephrine in vivo. Am J Physiol 262: E875‐E883, 1992.
 140.Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator‐activated receptor gamma coactivator‐1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106: 847‐856, 2000.
 141.Lewandowski ED. Nuclear magnetic resonance evaluation of metabolic and respiratory support of work load in intact rabbit hearts. Circ Res 70: 576‐582, 1992.
 142.Lewandowski ED, Doumen C, White LT, LaNoue KF, Damico LA, Yu X. Multiplet structure of 13C NMR signal from glutamate and direct detection of tricarboxylic acid (TCA) cycle intermediates. Magn Reson Med 35: 149‐154, 1996.
 143.Lewandowski ED, Yu X, LaNoue KF, White LT, Doumen C, O'Donnell JM. Altered metabolite exchange between subcellular compartments in intact postischemic rabbit hearts. Circ Res 81: 165‐175, 1997.
 144.Liao R, Jain M, Cui L, D'Agostino J, Aiello F, Luptak I, Ngoy S, Mortensen RM, Tian R. Cardiac‐specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice. Circulation 106: 2125‐2131, 2002.
 145.Liesa M, Shirihai OS. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17: 491‐506, 2013.
 146.Lindgren CA, Paulson DJ, Shanahan MF. Isolated cardiac myocytes. A new cellular model for studying insulin modulation of monosaccharide transport. Biochim Biophys Acta 721: 385‐393, 1982.
 147.Lipmann F. Metabolic generation and utilization of phosphate bond energy. Adv Enzymol 1: 99‐165, 1941.
 148.Locke F, Rosenheim O. The disappearance of dextrose when perfused through the isolated mammalian heart. J Physiol (Lond) 31: 14‐15, 1904.
 149.Locke FS, Rosenheim O. Contributions to the physiology of the isolated heart: The consumption of dextrose by mammalian cardiac muscle. J Physiol 36: 205‐220, 1907.
 150.Long WK, Wilson SW, Frenkel EP. Associations between red cell glucose‐6‐phosphate dehydrogenase variants and vascular diseases. Am J Hum Genet 19: 35‐53, 1967.
 151.Lopaschuk GD, Folmes CD, Stanley WC. Cardiac energy metabolism in obesity. Circ Res 101: 335‐347, 2007.
 152.Lu C, Thompson CB. Metabolic regulation of epigenetics. Cell Metab 16: 9‐17, 2012.
 153.Lunde IG, Aronsen JM, Kvaloy H, Qvigstad E, Sjaastad I, Tonnessen T, Christensen G, Gronning‐Wang LM, Carlson CR. Cardiac O‐GlcNAc signaling is increased in hypertrophy and heart failure. Physiol Genomics 44: 162‐172, 2012.
 154.Malloy C, Sherry A, Jeffrey F. Carbon flux through citric acid cycle pathways in perfused heart by 13C NMR spectroscopy. FEBS Lett 212: 58‐62, 1987.
 155.Manchester J, Kong X, Nerbonne J, Lowry O, Lawrence J, Jr. Glucose transport and phosphorylation in single cardiac myocytes: Rate limiting steps in glucose metabolism. Am J Physiol 266: E326‐E333, 1994.
 156.Marshall S, Bacote V, Traxinger RR. Discovery of a metabolic pathway mediating glucose‐induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem 266: 4706‐4712, 1991.
 157.Masoud WG, Ussher JR, Wang W, Jaswal JS, Wagg CS, Dyck JR, Lygate CA, Neubauer S, Clanachan AS, Lopaschuk GD. Failing mouse hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and glucose oxidation. Cardiovasc Res 101: 30‐38, 2014.
 158.Matsuhashi T, Hishiki T, Zhou H, Ono T, Kaneda R, Iso T, Yamaguchi A, Endo J, Katsumata Y, Atsushi A, Yamamoto T, Shirakawa K, Yan X, Shinmura K, Suematsu M, Fukuda K, Sano M. Activation of pyruvate dehydrogenase by dichloroacetate has the potential to induce epigenetic remodeling in the heart. J Mol Cell Cardiol 82: 116‐124, 2015.
 159.McGarry JD, Mannaerts GP, Foster DW. A possible role for malonyl‐CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest 60: 265‐270, 1977.
 160.McGarry JD, Mills SE, Long CS, Foster DW. Observations on the affinity for carnitine and malonyl‐CoA sensitivity of carnitine palmitoyl transferase I in animal and human tissues. Demonstration of the presence of malonyl‐CoA in non‐hepatic tissues of the rat. Biochem J 214: 21‐28, 1983.
 161.McKnight SL. On getting there from here. Science 330: 1338‐1339, 2010.
 162.McMillin‐Wood J. Biochemical approaches in metabolism: Application to positron emission tomography. Circulation 72: IV145‐IV150, 1985.
 163.McNutt N, Fawcett D. Myocardial ultrastructure. In: Lauger G, Brady A, editors. The Mammalian Myocardium. New York: John Wiley & Sons, 1973, pp. 1‐50.
 164.Meloni L, Manca MR, Loddo I, Cioglia G, Cocco P, Schwartz A, Muntoni S, Muntoni S. Glucose‐6‐phosphate dehydrogenase deficiency protects against coronary heart disease. J Inherit Metab Dis 31: 412‐417, 2008.
 165.Mitch WE, Walser M, Sapir DG. Nitrogen sparing induced by leucine compared with that induced by its keto analogue, alpha‐ketoisocaproate, in fasting obese man. J Clin Invest 67: 553‐562, 1981.
 166.Morgan H, Rannels D, McKee E. Protein Metabolism of the Heart. In: Berne R, editor. Handbook of Physiology: The Cardiovascular System: The Heart. Washington, D.C.: American Physiology Society, 1979, pp. 845‐871.
 167.Morgan HE, Henderson MJ, Regen DM, Park CR. Regulation of glucose uptake in Muscle. I. The effects of insulin and anoxia on glucose transport and phosphorylation in the isolated perfused heart of normal rats. J Biol Chem 236: 253‐261, 1961.
 168.Morgan HE, Neely JR, Wood RE, Liebecq C, Liebermeister H, Park CR. Factors affecting glucose transport in heart muscle and erythrocytes. Fed Proc 24: 1040‐1045, 1965.
 169.Morgan HE, Neely JR. Insulin and membrane Transport. In: Steiner DF FN, editor. Handbook of Physiology. American Physiological Society. Washington, DC, 1972, p. 323.
 170.Morrison CD, Xi X, White CL, Ye J, Martin RJ. Amino acids inhibit Agrp gene expression via an mTOR‐dependent mechanism. Am J Physiol Endocrinol Metab 293: E165‐171, 2007.
 171.Mudge GH Jr, Mills RM Jr, Taegtmeyer H, Gorlin R, Lesch M. Alterations of myocardial amino acid metabolism in chronic ischemic heart disease. J Clin Invest 58: 1185‐1192, 1976.
 172.Mueckler M. Facilitative glucose transporters. Eur J Biochem 219: 713‐725, 1994.
 173.Muller J. Studien uber die quelle der musklekraft. Arch Gesamte Phsyiol 44: 282‐302, 1904.
 174.Nair KS, Schwartz RG, Welle S. Leucine as a regulator of whole body and skeletal muscle protein metabolism in humans. Am J Physiol 263: E928‐934, 1992.
 175.Neely JR, Grotyohann LW. Role of glycolytic products in damage to myocardium: Dissociation of adenosine triphosphate levels and recovery of function of reperfused canine myocardium. Circ Res 55: 816‐824, 1984.
 176.Neely JR, Liebermeister H, Battersby EJ, Morgan HE. Effect of pressure development on oxygen consumption by isolated rat heart. Am J Physiol 212: 804‐814, 1967.
 177.Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Ann Rev Physiol 36: 413‐439, 1974.
 178.Newsholme EA, Crabtree B. Theoretical principles in the approaches to the control of metabolic pathways and their application to glycolysis in muscle. J Molec Cell Cardiol 11: 839‐856, 1979.
 179.Newsholme EA, Leech AR. Biochemistry for the Medical Sciences. Chichester: J. Wiley, 1983.
 180.Newsholme EA, Randle PJ. Regulation of glucose uptake. 5. Effects of anoxia, insulin, adrenaline, and prolonged starving on concentrations of hexose phosphates in isolated rat diaphragm and perfused isolated rat heart. Biochem J 80: 655‐662, 1961.
 181.Newsholme EA, Start C. Regulation in Metabolism. London: J. Wiley & Sons, 1973.
 182.Nguyen VT, Mossberg KA, Tewson TJ, Wong WH, Rowe RW, Coleman GM, Taegtmeyer H. Temporal analysis of myocardial glucose metabolism by 2‐[18F]fluoro‐2‐deoxy‐D‐glucose. Am J Physiol 259: H1022‐1031, 1990.
 183.Nishimura H, Pallardo FV, Seidner GA, Vannucci S, Simpson IA, Birnbaum MF. Kinetics of GLUT1 and GLUT4 glucose transporters expressed in Xenopus oocytes. J Biol Chem 268: 8514‐8520, 1993.
 184.Nuutila P, Koivisto VA, Knuuti J, Ruotsalainen U, Teras M, Haaparanta M, Bergman J, Solin O, Voipio‐Pulkki LM, Wegelius U. Glucose‐free fatty acid cycle operates in human heart and skeletal muscle in vivo. J Clin Invest 89: 1767‐1774, 1992.
 185.O'Donnell JM, Kudej RK, LaNoue KF, Vatner SF, Lewandowski ED. Limited transfer of cytosolic NADH into mitochondria at high cardiac workload. Am J Physiol Heart Circ Physiol 286: H2237‐2242, 2004.
 186.Oliver SG, Winson MK, Kell DB, Baganz F. Systematic functional analysis of the yeast genome. Trends Biotechnol 16: 373‐378, 1998.
 187.Olson AL, Pessin JE. Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annu Rev Nutr 16: 235‐256, 1996.
 188.Olson MS, Dennis SC, DeBuysere MS, Padma A. The regulation of pyruvate dehydrogenase in the isolated perfused rat heart. J Biol Chem 253: 7369‐7375, 1978.
 189.Olson RE. Myocardial metabolism in congestive heart failure. J Chronic Dis 9: 442‐464, 1959.
 190.Opie LH. Metabolism of the heart in health and disease. I. Am Heart J 76: 685‐698, 1968.
 191.Osterholt M, Sen S, Dilsizian V, Taegtmeyer H. Targeted metabolic imaging to improve the management of heart disease. JACC Cardiovasc Interv 5: 214‐226, 2012.
 192.Panchal AR, Comte B, Huang H, Kerwin T, Darvish A, des Rosiers C, Brunengraber H, Stanley WC. Partitioning of pyruvate between oxidation and anaplerosis in swine hearts. Am J Physiol Heart Circ Physiol 279: H2390‐2398, 2000.
 193.Panten U, Christians J, von Kriegstein E, Poser W, Hasselblatt A. Studies on the mechanism of L‐leucine‐and alpha‐ketoisocaproic acid‐induced insulin release from perifused isolated pancreatic islets. Diabetologia 10: 149‐154, 1974.
 194.Passonneau JV, Lowry OH. Phosphofructokinase and the Pasteur effect. Biochem Biophys Res Comm 7: 10‐15, 1962.
 195.Paulson D, Ward K, Shug A. Malonyl‐CoA inhibition of carnitine palmitoyl transferase. FEBS Lett 176: 381‐384, 1984.
 196.Pessin JE, Bell GI. Mammalian facilitative glucose transporter family: Structure and molecular regulation. Annu Rev Physiol 54: 911‐930, 1992.
 197.Peuhkurinen KJ, Hassinen IE. Pyruvate carboxylation as an anaplerotic mechanism in the isolated perfused rat heart. Biochem J 202: 67‐76, 1982.
 198.Porter WF. A new method for the study of the isolated mammalian heart. Am J Physiol 1: 511‐519, 1898.
 199.Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H. Return to the fetal gene program protects the stressed heart: A strong hypothesis. Heart Fail Rev 12: 331‐343, 2007.
 200.Randle P. Regulation of glycolysis and pyruvate oxidation in cardiac muscle. Circ Res 38: I8‐I15, 1976.
 201.Randle P, Sugden P, Kerbey A, Radcliffe P, Hutson N. Regulation of pyruvate oxidation and the conservation of glucose. Biochem Soc Symp 43: 47‐67, 1978.
 202.Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty‐acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1: 785‐789, 1963.
 203.Randle PJ, Garland PB, Hales CN, Newsholme EA, Denton RM, Pogson CI. Interactions of metabolism and the physiological role of insulin. Rec Prog Horm Res 22: 1‐41, 1966.
 204.Randle PJ, Tubbs PK. Carbohydrate and fatty acid metabolism. In: Berne R, Sperelakis V, Geiger S, editors. Handbook of Physiology. The Cardiovascular System. Bethesda, MD: American Physiological Society, 1979, pp. 805‐844.
 205.Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H. Metabolic gene expression in fetal and failing human heart. Circulation 104: 2923‐2931, 2001.
 206.Razeghi P, Young ME, Cockrill TC, Frazier OH, Taegtmeyer H. Downregulation of myocardial myocyte enhancer factor 2C and myocyte enhancer factor 2C‐regulated gene expression in diabetic patients with nonischemic heart failure. Circulation 106: 407‐411, 2002.
 207.Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L. 6‐phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase: Head‐to‐head with a bifunctional enzyme that controls glycolysis. Biochem J 381: 561‐579, 2004.
 208.Robertson J, Vinten‐Johansen J, Buckberg G, Rosenkranz E, Maloney J. Safety of prolonged aortic clamping with blood cardioplegia: Glutamate enrichment in normal hearts. J Thorac Cardiovas Surg 88: 402‐410, 1984.
 209.Robison G, Butcher R, Sutherland E. Cyclic AMP. London: Academic Press, 1971.
 210.Roe CR, Sweetman L, Roe DS, David F, Brunengraber H. Treatment of cardiomyopathy and rhabdomyolysis in long‐chain fat oxidation disorders using an anaplerotic odd‐chain triglyceride. J Clin Invest 110: 259‐269, 2002.
 211.Romanello V, Sandri M. Mitochondrial biogenesis and fragmentation as regulators of protein degradation in striated muscles. J Mol Cell Cardiol 55: 64‐72, 2013.
 212.Ross BD. Perfusion Techniques in Biochemistry: A Laboratory Manual in the Use of Isolated Perfused Organs in Biochemical Experimentation. Oxford: Clarendon Press, 1972.
 213.Rovetto M, Lamberton W, Neely J. Mechanisms of glycolytic inhibition in ischemic rat heart. Circ Res 37: 742‐751, 1975.
 214.Rudolph W, Haas D, Richter J, Masinger F, Hofmann H, Dohm P. Uber die bedeutung von acetoacetat und ß‐hydroxybutyrat im stoffwechel der menschlichen herzens. Klin Wochenscher 43: 445‐451, 1965.
 215.Russell RR III, Cline GW, Guthrie PH, Goodwin GW, Shulman GI, Taegtmeyer H. Regulation of exogenous and endogenous glucose metabolism by insulin and acetoacetate in the isolated working rat heart. A three tracer study of glycolysis, glycogen metabolism, and glucose oxidation. J Clin Invest 100: 2892‐2899, 1997.
 216.Russell RR, Taegtmeyer H. Anaplerosis. In: Encyclopedia of Biological Chemistry (2nd ed). New York: Elsevier, 2010.
 217.Russell RR, Taegtmeyer H. Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate. J Clin Invest 87: 384‐390, 1991.
 218.Russell RR, Taegtmeyer H. Coenzyme A sequestration in rat hearts oxidizing ketone bodies. J Clin Invest 89: 968‐973, 1992.
 219.Russell RR, Taegtmeyer H. Pyruvate carboxylation prevents the decline in contractile function of rat hearts oxidizing acetoacetate. Am J Physiol 261: H1756‐H1762, 1991.
 220.Russell RR, Yin R, Caplan MJ, Hu X, Ren J, Young LH. Ischemia on myocardial GLUT1 and GLUT4 translocation in vivo. Circulation 98: 2180‐2186, 1998.
 221.Schaffer JE. Fatty acid transport: The roads taken. Am J Physiol Endocrinol Metab 282: E239‐E246, 2002.
 222.Schaffer JE. Lipotoxicity: When tissues overeat. Curr Opin Lipidol 14: 281‐287, 2003.
 223.Scheckhuber CQ, Wanger RA, Mignat CA, Osiewacz HD. Unopposed mitochondrial fission leads to severe lifespan shortening. Cell Cycle 10: 3105‐3110, 2011.
 224.Schelbert HR. Assessment of myocardial metabolism by PET: A sophisticated dream or clinical reality? Eur J Nucl Med 12: 570‐575, 1986.
 225.Schoenheimer R. The Dynamic State of Body Constituents. Cambridge, MA: Harvard University Press, 1942.
 226.Schroeder MA, Atherton HJ, Ball DR, Cole MA, Heather LC, Griffin JL, Clarke K, Radda GK, Tyler DJ. Real‐time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy. FASEB J 23: 2529‐2538, 2009.
 227.Schroeder MA, Clarke K, Neubauer S, Tyler DJ. Hyperpolarized magnetic resonance: A novel technique for the in vivo assessment of cardiovascular disease. Circulation 124: 1580‐1594, 2011.
 228.Schwaiger M, Hicks R. The clinical role of metabolic imaging of the heart by positron emission tomography. J Nucl Med 32: 565‐578, 1991.
 229.Sen S, Kundu BK, Wu HC, Hashmi SS, Guthrie P, Locke LW, Roy RJ, Matherne GP, Berr SS, Terwelp M, Scott B, Carranza S, Frazier OH, Glover DK, Dillmann WH, Gambello MJ, Entman ML, Taegtmeyer H. Glucose regulation of load‐induced mTOR signaling and ER stress in mammalian heart. J Am Heart Assoc 2: e004796, 2013.
 230.Sharma S, Adrogue JV, Golfman L, Uray I, Lemm J, Youker K, Noon GP, Frazier OH, Taegtmeyer H. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J 18: 1692‐1700, 2004.
 231.Sharma S, Guthrie PH, Chan SS, Haq S, Taegtmeyer H. Glucose phosphorylation is required for insulin‐dependent mTOR signalling in the heart. Cardiovasc Res 76: 71‐80, 2007.
 232.Shepherd PR, Gould GW, Colville CA, McCoid SC, Gibbs EM, Kahn BB. Distribution of GLUT3 glucose transporter protein in human tissues. Biochem Biophys Res Commun 188: 149‐154, 1992.
 233.Shepherd PR, Kahn BB. Glucose transporters and insulin action–implications for insulin resistance and diabetes mellitus. N Engl J Med 341: 248‐257, 1999.
 234.Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85: 1093‐1129, 2005.
 235.Starling EH. Linacre Lecture on the Law of the Heart 1915. London: Longmans, Green & Co., 1918.
 236.Sun D, Nguyen N, Delgrado TR, Schwaiger M, Brosius FCI. Ischemia induces translocation of the insulin‐responsive glucose transporter GLUT 4 to the plasma membrane of cardiac myocytes. Circulation 89: 793‐798, 1994.
 237.Taegtmeyer H. Metabolic responses to cardiac hypoxia: Increased production of succinate by rabbit papillary muscles. Circ Res 43: 808‐815, 1978.
 238.Taegtmeyer H. On the inability of ketone bodies to serve as the only energy providing substrate for rat heart at physiological work load. Basic Res Cardiol 78: 435‐ 450, 1983.
 239.Taegtmeyer H. Six blind men explore an elephant: Aspects of fuel metabolism and the control of tricarboxylic acid cycle activity in heart muscle. Basic Res Cardiol 79: 322‐336, 1984.
 240.Taegtmeyer H. The use of hypertonic glucose, insulin, and potassium (GIK) in myocardial preservation. J Appl Cardiol 6: 255‐259, 1991.
 241.Taegtmeyer H. Energy metabolism of the heart: From basic concepts to clinical applications. Curr Prob Cardiol 19: 57‐116, 1994.
 242.Taegtmeyer H. Cardiac metabolism as a target for the treatment of heart failure. Circulation 110: 894‐896, 2004.
 243.Taegtmeyer H. Glycogen in the heart–an expanded view. J Mol Cell Cardiol 37: 7‐10, 2004.
 244.Taegtmeyer H. Fueling the Heart: Multiple Roles for Cardiac Metabolism. In: Willerson JT, Wellens HJJ, Cohn JN, Holmes DR, editors. London: Springer London, 2007, pp. 1157‐1175.
 245.Taegtmeyer H. Tracing cardiac metabolism in vivo: One substrate at a time. J Nucl Med 51(Suppl 1): 80S‐87S, 2010.
 246.Taegtmeyer H. The new cardiac metabolism. J Mol Cell Cardiol 55: 1, 2013.
 247.Taegtmeyer H, Dilsizian V. Imaging myocardial metabolism and ischemic memory. Nat Clin Pract Cardiovasc Med 5(Suppl 2): S42‐48, 2008.
 248.Taegtmeyer H, Ferguson AG, Lesch M. Protein degradation and amino acid metabolism in autolyzing rabbit myocardium. Exp Mol Pathol 26: 52, 1977.
 249.Taegtmeyer H, Ferguson AG, Lesch M. Thermoregulation of myocardial protein synthesis. Am J Physiol 228: 884‐889, 1975.
 250.Taegtmeyer H, Harinstein ME, Gheorghiade M. More than bricks and mortar: Comments on protein and amino acid metabolism in the heart. Am J Cardiol 101: 3E‐7E, 2008.
 251.Taegtmeyer H, Hems R, Krebs HA. Utilization of energy‐providing substrates in the isolated working rat heart. Biochem J 186: 701‐711, 1980.
 252.Taegtmeyer H, King LM, Jones BE. Energy substrate metabolism, myocardial ischemia, and targets for pharmacotherapy. Am J Cardiol 82: 54K‐60K, 1998.
 253.Taegtmeyer H, Lubrano G. Rethinking cardiac metabolism: Metabolic cycles to refuel and rebuild the failing heart. F1000Prime Rep 6: 90, 2014.
 254.Taegtmeyer H, McNulty P, Young ME. Adaptation and maladaptation of the heart in diabetes: Part I: General concepts. Circulation 105: 1727‐1733, 2002.
 255.Taegtmeyer H, Mossberg KA, Nguyen VT. Positron labeled tracers. A window for the assessment of energy metabolism in heart and skeletal muscle. Acta Radiol Suppl 376: 40‐44, 1991.
 256.Taegtmeyer H, Overturf ML. Effects of moderate hypertension on cardiac function and metabolism in the rabbit. Hypertension 11: 416‐426, 1988.
 257.Taegtmeyer H, Peterson MB, Ragavan VV, Ferguson AG, Lesch M. De novo alanine synthesis in isolated oxygen‐deprived rabbit myocardium. J Biol Chem 252: 5010‐5018, 1977.
 258.Taegtmeyer H, Roberts AF, Raine AE. Energy metabolism in reperfused heart muscle: Metabolic correlates to return of function. J Am Coll Cardiol 6: 864‐870, 1985.
 259.Taegtmeyer H, Rodriguez A. More than just an engine: The heart regulates body weight. Circ Res 111: 513‐515, 2012.
 260.Taegtmeyer H, Sen S, Vela D. Return to the fetal gene program: A suggested metabolic link to gene expression in the heart. Ann N Y Acad Sci 1188: 191‐198, 2010.
 261.Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley‐Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL, Gropler RJ, Holzhuetter HG, Kizer JR, Lewandowski ED, Malloy CR, Neubauer S, Peterson LR, Portman MA, Recchia FA, Van Eyk JE, and Wang TJ. Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association. Circ Res, 2016.
 262.Tirosh R, Mishor T, Pinson A. Glucose is essential for the initiation of fatty acid oxidation in ATP‐depleted cultured myocytes. Mol Cell Biochem 162: 159‐163, 1996.
 263.Truton JS. A Sceptical Biochemist. Cambridge, MA: Harvard University Press, 1992.
 264.Turer AT. Using metabolomics to assess myocardial metabolism and energetics in heart failure. J Mol Cell Cardiol 55: 12‐18, 2013.
 265.Ungar I, Gilbert M, Siegel A, Blain JM, Bing RJ. Studies on myocardial metabolism: IV. Myocardial metabolism in diabetes. Am J Med 18: 385‐396, 1955.
 266.Ussher JR, Lopaschuk GD. Targeting malonyl CoA inhibition of mitochondrial fatty acid uptake as an approach to treat cardiac ischemia/reperfusion. Basic Res Cardiol 104: 203‐210, 2009.
 267.Ussher JR, Wang W, Gandhi M, Keung W, Samokhvalov V, Oka T, Wagg CS, Jaswal JS, Harris RA, Clanachan AS, Dyck JR, Lopaschuk GD. Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. Cardiovasc Res 94: 359‐369, 2012.
 268.Uyeda K. Phosphofructokinase. Adv Enzymol 48: 193‐244, 1979.
 269.Vamecq J, Latruffe N. Medical significance of peroxisome proliferator‐activated receptors. Lancet 354: 141‐148, 1999.
 270.van Bilsen M, Van der Vusse GJ, Reneman RS. Transcriptional regulation of metabolic processes: Implications for cardiac metabolism. Pflugers Arch 437: 2‐14, 1998.
 271.van der Lee KA, Vork MM, De Vries JE, Willemsen PH, Glatz JF, Reneman RS, Van der Vusse GJ, Van Bilsen M. Long‐chain fatty acid‐induced changes in gene expression in neonatal cardiac myocytes. J Lipid Res 41: 41‐47, 2000.
 272.van der Vusse G, Groot M. Interrelationship between lactate and cardiac fatty acid metabolism. Mol Cell Biochem 116: 11‐17, 1992.
 273.Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324: 1029‐1033, 2009.
 274.Waddington CH. Organizers and Genes. Cambridge University Press, 1940.
 275.Weiss RG, Gloth ST, Kalil‐Filho R, Chacko VP, Stern MD, Gerstenblith G. Indexing tricarboxylic acid cycle flux in intact hearts by carbon‐13 nuclear magnetic resonance. Circ Res 70: 392‐408, 1992.
 276.Wells L, Vosseller K, Hart GW. Glycosylation of nucleocytoplasmic proteins: Signal transduction and O‐GlcNAc. Science 291: 2376‐2378, 2001.
 277.Wheeler TJ. Translocation of glucose transporters in response to anoxia in heart. J Biol Chem 263: 19447‐19454, 1988.
 278.Williamson JR. Mitochondrial function in the heart. Annu Rev Physiol 41: 485‐506, 1979.
 279.Williamson JR, Krebs HA. Acetoacetate as fuel of respiration in the perfused rat heart. Biochem J 80: 540‐547, 1961.
 280.Williamson JR, Safer B, LaNoue KF, Smith CM, Walajtys E. Mitochondrial‐cytosolic interactions in cardiac tissue: Role of the malate‐aspartate cycle in the removal of glycolytic NADH from the cytosol. Symp Soc Exp Biol 27: 241‐281, 1973.
 281.Winterstein H. Ueber die Sauerstoffatmung des isolierten Saeugetierherzens. Z Allg Physiol 4: 339‐359, 1904.
 282.Wisneski JA, Gertz EW, Neese RA, Gruenke LD, Morris DL, Craig JC. Metabolic fate of extracted glucose in normal human myocardium. J Clin Invest 76: 1819‐1827, 1985.
 283.Wisneski JA, Stanley WC, Neese RA, Gertz EW. Effects of acute hyperglycemia on myocardial glycolytic activity in humans. J Clin Invest 85: 1648‐1656, 1990.
 284.Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, Cantor JR, Sabatini DM. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351: 43‐48, 2015.
 285.Wollenberger A. Metabolic action of the cardiac glycosides. II. Effect of ouabain and digoxin on the energy‐rich phosphate content of the heart. J Pharmacol Exp Ther 103: 123‐135, 1951.
 286.Wu R, Smeele KM, Wyatt E, Ichikawa Y, Eerbeek O, Sun L, Chawla K, Hollmann MW, Nagpal V, Heikkinen S, Laakso M, Jujo K, Wasserstrom JA, Zuurbier CJ, Ardehali H. Reduction in hexokinase II levels results in decreased cardiac function and altered remodeling after ischemia/reperfusion injury. Circ Res 108: 60‐69, 2011.
 287.Xie M, Kong Y, Tan W, May H, Battiprolu PK, Pedrozo Z, Wang ZV, Morales C, Luo X, Cho G, Jiang N, Jessen ME, Warner JJ, Lavandero S, Gillette TG, Turer AT, Hill JA. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation 129: 1139‐1151, 2014.
 288.Yeo GF. An attempt to estimate the gaseous interchange of the frog's heart by means of the spectroscope. J Physiol 6: 93‐121, 1885.
 289.Young ME, Goodwin GW, Ying J, Guthrie P, Wilson CR, Laws FA, Taegtmeyer H. Regulation of cardiac and skeletal muscle malonyl‐CoA decarboxylase by fatty acids. Am J Physiol Endocrinol Metab 280: E471‐479, 2001.
 290.Young ME, Goodwin GW, Ying J, Guthrie P, Wilson CR, Laws FA, Taegtmeyer H. Regulation of cardiac and skeletal muscle malonyl‐CoA decarboxylase by fatty acids. Am J Physiol Endocrinol Metab 280: E471‐E479, 2001.
 291.Young ME, Patil S, Ying J, Depre C, Ahuja HS, Shipley GL, Stepkowski SM, Davies PJ, Taegtmeyer H. Uncoupling protein 3 transcription is regulated by peroxisome proliferator‐activated receptor (alpha) in the adult rodent heart. FASEB J 15: 833‐845, 2001.
 292.Young ME, Yan Z, Razeghi P, Cooksey RC, Guthrie PH, Stepkowski SM, McClain DA, Tian R, Taegtmeyer H. Proposed regulation of gene expression by glucose in rodent heart. Gene Reg Systems Biol 1: 251‐262, 2007.
 293.Yu X, White LT, Alpert NM, Lewandowski ED. Subcellular metabolite transport and carbon isotope kinetics in the intramyocardial glutamate pool. Biochemistry 35: 6963‐6968, 1996.
 294.Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN. Class II histone deacetylases act as signal‐responsive repressors of cardiac hypertrophy. Cell 110: 479‐488, 2002.
 295.Zimmer HG. Regulation of and intervention into the oxidative pentose phosphate pathway and adenine nucleotide metabolism in the heart. Mol Cell Biochem 160‐161: 101‐109, 1996.
 296.Zimmermann ANE, Meijler FL, Hülsmann WC. The inhibitory effect of acetoacetate on myocardial contraction. Lancet 2: 757‐758, 1962.

Related Articles:

Cellular Basis of Physiological and Pathological Myocardial Growth
Pathophysiology of Heart Failure
Biomechanics of Cardiac Function
Metabolic Shifts during Aging and Pathology

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Heinrich Taegtmeyer, Truong Lam, Giovanni Davogustto. Cardiac Metabolism in Perspective. Compr Physiol 2016, 6: 1675-1699. doi: 10.1002/cphy.c150056