Comprehensive Physiology Wiley Online Library

Epilepsy: Insights into Higher Brain Functions in Humans

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Focal Neocortical Seizures
1.1 Basic Mechanisms of Seizure Discharges
1.2 Functional Organization of Interictal Focus
1.3 Functional Anatomy of Focal Motor Seizures
1.4 Focal Sensory Seizures
2 Summary: Neocortical Seizures
3 Limbic System Seizures
3.1 Basic Aspects
3.2 Ictal Phenomena
3.3 Interictal Behavior
4 Summary: Limbic System Seizures
5 Conclusions
Figure 1. Figure 1.

A: dog brain stimulation experiments of Fritsch and Hitzig were first to show localization by direct cortical stimulation. Points indicate movement of contralateral parts as well as different movements in same part: Δ, neck; +, extension‐abduction of anterior leg; + flexion‐rotation of anterior leg; #, posterior leg; and , face. These authors noted effects of repeated stimulation: facilitation, exhaustion, and occasional aftermovements and were first to produce experimental seizures. B and C: Ferrier used weak faradic stimulation to produce first motor maps of primate brain. Note especially point 15 in C over periamygdaloid cortex of uncus, an area that produced ipsilateral movements of upper lip and ala of nose.

A from Fritsch and Hitzig ; B and C from Ferrier
Figure 2. Figure 2.

Pathophysiology of epileptic discharges. Interictal electroencephalogram (EEG) spike is 1 hallmark of focal epilepsy. Physiological experiments in variety of models show that large neurons undergo paroxysmal depolarizing shift followed by prolonged afterhyperpolarization that coincides in time with surface spike. Many currents responsible for this abnormal event are related to increased Ca2+ influx in dendrites. Three hypotheses relate to changes in local circuits that might potentiate abnormal Ca2+ currents: 1) abnormal dendrites, 2) hypersynchronous excitatory input, and 3) loss of inhibition.

Figure 3. Figure 3.

Organization of seizure focus. Large populations of neurons must be temporally synchronized into burst firing to cause an epileptic spike on EEG (pyramidal neurons A and B). This change occurs predominantly through action of local excitatory interneurons, although failure of inhibitory interneurons and other factors probably also play a role. Most cells inside the focus show depolarizing shifts in membrane potential coincident with surface spikes. Inhibitory surround is characterized by predominance of cells that are hyperpolarized during surface spikes (pyramidal neuron C). Farther laterally, cortex remains normal. Inhibitory surround is created by axon terminals of inhibitory neurons driven within the focus and recurrent collaterals of pyramidal cells ending on inhibitory neurons outside the focus. Transition zone between excitation and inhibition is temporally and spatially dynamic, and the focus greatly expands when interictal spikes change to produce prolonged seizures.

Data from Prince and Wilder
Figure 4. Figure 4.

2‐Deoxyglucose autoradiography of intense focal occipital seizures induced by injecting 80 units of penicillin into cortex. A: metabolic focus occupies most of visual areas 17, 18, and 18a (pallor represents trauma surrounding needle track). There is drop‐off of activity in layer IV, and a metabolic depression surrounds the focus and extends laterally into temporal cortex. In contralateral homotopic cortex, glucose utilization is also depressed in area 17 medial to vertical band of activation on border of areas 17 and 18a. Temporal cortex lateral to this is normal. Bands of activation in subcortical sites are seen ipsilaterally in dorsal lateral geniculate nucleus (LGN) and lateralis posterior nucleus and are seen contralaterally in dorsal LGN. This particular locus of activation in contralateral LGN represents central portion of visual field, indicating activity in projections descending from border of areas 17 and 18a in visual cortex above it. B: increased activity can be seen in fiber tracts descending ipsilaterally to dorsal LGN and to tail of caudate (arrows, right), and in optic radiation to contralateral dorsal LGN (arrow, left). C: in addition to activation of cortical columns posterior to the focus, there is evidence for mild accentuation of activity ipsilaterally in postsubiculum (arrow). D: activation of columns posteriorly and laterally in temporal cortex. E: functional anatomy of focal seizures in visual cortex. Topical cortical maps and occipital lobe EEGs. Corticocortical spread of seizure activity into columns and strips is reflection of intensity, size, and location of cortical focus.

From Collins and Caston
Figure 5. Figure 5.

Body parts in motor cortex may be organized into “nested rings” . A: more distal parts (F, fingers) lie internal to proximal parts (W, wrist; E, elbow; S, shoulder). B: each ring is composed of vertical aggregates contained within horizontal clusters. C: in this scheme, Jacksonian march would begin in center of rings and spread centrifugally.

From Kwan et al. and Murphy et al.
Figure 6. Figure 6.

Patterns of Jacksonian march within sensory system. Maximum spread of somatosensory symptoms beginning in hand are indicated for 45 patients. After arm is occupied there is much greater likelihood of spread to face than to lower extremity. There is no clear explanation for this pattern or for why seizures occasionally jump from hand to face (cheiro‐oral pattern).

From Mauguire and Courjon
Figure 7. Figure 7.

A: cortical connections of parahippocampal gyrus. Connections from neocortex to limbic system converge on cingulate and retrosplinial cortex (Rspl) from lateral prefrontal cortex, on entorhinal cortex from temporal and parietal cortex, and on periamygdaloid cortex from orbitofrontal cortex. B: cortical afferents to amygdala. Connections from neocortex directly to amygdala occur from frontal cortex (dark), temporal cortex (shaded), and insula (hatched).

A from Van Hoesen ; B from Van Hoesen
Figure 8. Figure 8.

Multiple depth stereotaxic EEG recordings in select patients with partial complex seizures have been studied to localize site of onset and spread of discharges within limbic system. Common pattern in studies by Wieser is the unilateral temporobasal limbic seizure type shown. Discharges originating in medial hippocampus spread anteriorly to amygdala and posteriorly to retrosplenial cortex and posterior part of cingulate gyrus. There is weaker spread to lateral neocortex and contralateral limbic system. Patients with this pattern of spread often have intellectual aura, fear, abdominal sensation, as well as simple facial, oral, and alimentary automatisms.

From Wieser
Figure 9. Figure 9.

Correlation of different symptoms with spread of limbic seizures is indicated for the 7 different functional types proposed by Wieser. Length of bar is proportional to correlation of symptoms. Symptoms with high correlation (observed at least 5 times) are accentuated.

From Wieser
Figure 10. Figure 10.

Depth‐electrode stimulation of patient with partial complex seizures. Anatomical site of response is indicated along 2 electrodes inserted from each lateral temporal neocortex into left (LT) and right (RT) amygdala. Height of vertical lines roughly indicates intensity of patient's response. AD, afterdischarge.

From Gloor et al.
Figure 11. Figure 11.

Neocortical‐limbic‐thalamic system proposed for visual learning and memory. Note dense neocortical projections from temporal cortex to hippocampus and amygdala (see Fig. A, B). Bilateral lesions located at arrows 1–5 produce deficits in visual recognition memory. Seizures within this visual → memory corridor can evoke complex hallucinations and visual memory flashbacks.

From Mishkin


Figure 1.

A: dog brain stimulation experiments of Fritsch and Hitzig were first to show localization by direct cortical stimulation. Points indicate movement of contralateral parts as well as different movements in same part: Δ, neck; +, extension‐abduction of anterior leg; + flexion‐rotation of anterior leg; #, posterior leg; and , face. These authors noted effects of repeated stimulation: facilitation, exhaustion, and occasional aftermovements and were first to produce experimental seizures. B and C: Ferrier used weak faradic stimulation to produce first motor maps of primate brain. Note especially point 15 in C over periamygdaloid cortex of uncus, an area that produced ipsilateral movements of upper lip and ala of nose.

A from Fritsch and Hitzig ; B and C from Ferrier


Figure 2.

Pathophysiology of epileptic discharges. Interictal electroencephalogram (EEG) spike is 1 hallmark of focal epilepsy. Physiological experiments in variety of models show that large neurons undergo paroxysmal depolarizing shift followed by prolonged afterhyperpolarization that coincides in time with surface spike. Many currents responsible for this abnormal event are related to increased Ca2+ influx in dendrites. Three hypotheses relate to changes in local circuits that might potentiate abnormal Ca2+ currents: 1) abnormal dendrites, 2) hypersynchronous excitatory input, and 3) loss of inhibition.



Figure 3.

Organization of seizure focus. Large populations of neurons must be temporally synchronized into burst firing to cause an epileptic spike on EEG (pyramidal neurons A and B). This change occurs predominantly through action of local excitatory interneurons, although failure of inhibitory interneurons and other factors probably also play a role. Most cells inside the focus show depolarizing shifts in membrane potential coincident with surface spikes. Inhibitory surround is characterized by predominance of cells that are hyperpolarized during surface spikes (pyramidal neuron C). Farther laterally, cortex remains normal. Inhibitory surround is created by axon terminals of inhibitory neurons driven within the focus and recurrent collaterals of pyramidal cells ending on inhibitory neurons outside the focus. Transition zone between excitation and inhibition is temporally and spatially dynamic, and the focus greatly expands when interictal spikes change to produce prolonged seizures.

Data from Prince and Wilder


Figure 4.

2‐Deoxyglucose autoradiography of intense focal occipital seizures induced by injecting 80 units of penicillin into cortex. A: metabolic focus occupies most of visual areas 17, 18, and 18a (pallor represents trauma surrounding needle track). There is drop‐off of activity in layer IV, and a metabolic depression surrounds the focus and extends laterally into temporal cortex. In contralateral homotopic cortex, glucose utilization is also depressed in area 17 medial to vertical band of activation on border of areas 17 and 18a. Temporal cortex lateral to this is normal. Bands of activation in subcortical sites are seen ipsilaterally in dorsal lateral geniculate nucleus (LGN) and lateralis posterior nucleus and are seen contralaterally in dorsal LGN. This particular locus of activation in contralateral LGN represents central portion of visual field, indicating activity in projections descending from border of areas 17 and 18a in visual cortex above it. B: increased activity can be seen in fiber tracts descending ipsilaterally to dorsal LGN and to tail of caudate (arrows, right), and in optic radiation to contralateral dorsal LGN (arrow, left). C: in addition to activation of cortical columns posterior to the focus, there is evidence for mild accentuation of activity ipsilaterally in postsubiculum (arrow). D: activation of columns posteriorly and laterally in temporal cortex. E: functional anatomy of focal seizures in visual cortex. Topical cortical maps and occipital lobe EEGs. Corticocortical spread of seizure activity into columns and strips is reflection of intensity, size, and location of cortical focus.

From Collins and Caston


Figure 5.

Body parts in motor cortex may be organized into “nested rings” . A: more distal parts (F, fingers) lie internal to proximal parts (W, wrist; E, elbow; S, shoulder). B: each ring is composed of vertical aggregates contained within horizontal clusters. C: in this scheme, Jacksonian march would begin in center of rings and spread centrifugally.

From Kwan et al. and Murphy et al.


Figure 6.

Patterns of Jacksonian march within sensory system. Maximum spread of somatosensory symptoms beginning in hand are indicated for 45 patients. After arm is occupied there is much greater likelihood of spread to face than to lower extremity. There is no clear explanation for this pattern or for why seizures occasionally jump from hand to face (cheiro‐oral pattern).

From Mauguire and Courjon


Figure 7.

A: cortical connections of parahippocampal gyrus. Connections from neocortex to limbic system converge on cingulate and retrosplinial cortex (Rspl) from lateral prefrontal cortex, on entorhinal cortex from temporal and parietal cortex, and on periamygdaloid cortex from orbitofrontal cortex. B: cortical afferents to amygdala. Connections from neocortex directly to amygdala occur from frontal cortex (dark), temporal cortex (shaded), and insula (hatched).

A from Van Hoesen ; B from Van Hoesen


Figure 8.

Multiple depth stereotaxic EEG recordings in select patients with partial complex seizures have been studied to localize site of onset and spread of discharges within limbic system. Common pattern in studies by Wieser is the unilateral temporobasal limbic seizure type shown. Discharges originating in medial hippocampus spread anteriorly to amygdala and posteriorly to retrosplenial cortex and posterior part of cingulate gyrus. There is weaker spread to lateral neocortex and contralateral limbic system. Patients with this pattern of spread often have intellectual aura, fear, abdominal sensation, as well as simple facial, oral, and alimentary automatisms.

From Wieser


Figure 9.

Correlation of different symptoms with spread of limbic seizures is indicated for the 7 different functional types proposed by Wieser. Length of bar is proportional to correlation of symptoms. Symptoms with high correlation (observed at least 5 times) are accentuated.

From Wieser


Figure 10.

Depth‐electrode stimulation of patient with partial complex seizures. Anatomical site of response is indicated along 2 electrodes inserted from each lateral temporal neocortex into left (LT) and right (RT) amygdala. Height of vertical lines roughly indicates intensity of patient's response. AD, afterdischarge.

From Gloor et al.


Figure 11.

Neocortical‐limbic‐thalamic system proposed for visual learning and memory. Note dense neocortical projections from temporal cortex to hippocampus and amygdala (see Fig. A, B). Bilateral lesions located at arrows 1–5 produce deficits in visual recognition memory. Seizures within this visual → memory corridor can evoke complex hallucinations and visual memory flashbacks.

From Mishkin
References
 1. Adebimpe, V. R. Complex partial seizures simulating schizophrenia. J. Am. Med. Assoc. 237: 1339–1341, 1977.
 2. Ajmone‐Marsan, C. Clinical‐electrographic correlations of partial seizures. In: Modern Perspectives in Epilepsy, edited by J. A. Wada. Montreal, Canada: Eden, 1978, p. 76–98.
 3. Ajmone‐Marsan, C., and L. Goldhammer. Clinical ictal patterns and electrographic data in cases of partial seizures of frontal‐central‐parietal origin. In: Epilepsy: Its Phenomena in Man, edited by M. A. B. Brazier. New York: Academic, 1973, p. 235–258.
 4. Ajmone‐Marsan, C., and J. M. Van Buren. Epileptiform activity in cortical and subcortical structures in the temporal lobe in man. In: Temporal Lobe Epilepsy, edited by M. Baldwin and P. Bailey. Springfield, IL: Thomas, 1958, p. 78–108.
 5. Allen, I. M. Unilateral asomatognosia as part of the epileptic attack. NZ Med. J. 53: 142–150, 1955.
 6. Andersen, P., P. J. Hagen, C. G. Phillips, and T. P. S. Powell. Mapping by microstimulation of overlapping projections from area 4 to motor units of the baboon's hand. Proc. R. Soc. Lond. B Biol. Sci. 188: 31–60, 1975.
 7. Andersen, P., and T. Lomo. Counteractivation of powerful recurrent inhibition in hippocampal pyramidal cells by frequency potentiation of excitatory synapses. In: Structure and Function of Inhibitory Mechanisms, edited by C. von Euler, S. Skoglund, and U. Soderbert. New York: Pergamon, 1968, p. 335–342.
 8. Andy, O. J., and K. Akert. Seizure patterns induced by electrical stimulation of hippocampal formation in the cat. J. Neuropathol. Exp. Neurol. 14: 198–213, 1955.
 9. Asanuma, H. Recent developments in the study of the columnar arrangement of neurons within the motor cortex. Physiol. Rev. 55: 143–156, 1975.
 10. Asanuma, H., S. D. Stoney, Jr., and C. Abzug. Relationship between afferent input and motor outflow in cat motorsensory cortex. J. Neurophysiol. 31: 670–681, 1968.
 11. Ayala, G. F., M. Dichter, R. J. Gumnit, H. Matsumoto, and W. A. Spencer. Genesis of epileptic interictal spikes. A new knowledge of cortical feedback systems suggests a neuro‐physiological explanation of brief paroxysms. Brain Res. 52: 1–17, 1973.
 12. Ayala, G. F., H. Matsumoto, and R. J. Gumnit. Excitability changes and inhibitory mechanisms in neocortical neurons during seizures. J. Neurophysiol. 33: 73–85, 1970.
 13. Bach‐y‐Rita, G., J. R. Lion, C. E. Climent, and F. R. Ervin. Episodic dyscontrol: a study of 130 violent patients. Am. J. Psychiatry 127: 1473–1475, 1971.
 14. Baldwin, M., L. L. Frost, and C. D. Wood. Investigation of the primate amygdala, movements of face and jaw. Neurology 4: 586–598, 1954.
 15. Bancaud, J. Physiopathogenesis of generalized epilepsies of organic nature (stereoelectroencephalographic study). In: The Physiopathogenesis of the Epilepsies, edited by H. Gastaut, H. Jasper, J. Bancaud,and A. Waltregny. Springfield, IL: Thomas, 1969, p. 158–185.
 16. Bancaud, J. Rôle du cortex cérébral dans les épilepsies généralisées d'origine organique. Presse Med. 79: 669–673, 1971.
 17. Bancaud, J., J. Talairach, P. Morel, M. Bresson, A. Bonis, S. Geier, E. Hemon,and P. Buser. “Generalized” epileptic seizures elicited by electrical stimulation of the frontal lobe in man. Electroencephalogr. Clin. Neurophysiol. 37: 275–282, 1974.
 18. Bear, D. M. Temporal lobe epilepsy—a syndrome of sensorylimbic hyperconnection. Cortex 15: 357–384, 1979.
 19. Bear, D. M. The temporal lobes: an approach to the study of organic behavioral changes. In: Handbook of Behavioral Neurobiology. Neuropsychology, edited by M. S. Gazzaniga. New York: Plenum, 1979, vol. 2, p. 75–95.
 20. Bear, D. M., and P. Fedio. Quantitative analysis of interictal behavior in temporal lobe epilepsy. Arch. Neurol. 34: 454–467, 1977.
 21. Bear, D. M., K. Levin, D. Blumer, D. Chetham,and J. Ryder. Interictal behavior in hospitalized temporal lobe epileptics: relationship to idiopathic psychiatric syndromes. J. Neurol. Neurosurg. Psychiatry 45: 481–488, 1982.
 22. Beevor, C. E., and V. Horsley. A record of the results obtained by electrical excitation of the so‐called motor cortex and internal capsule in an orang‐outang (Simia oatyrus). Philos. Trans. R. Soc. Land. B Biol. Sci. 181: 49–70, 1890.
 23. Ben‐Ari, Y., K. Krnjević, and W. Reinhardt. Hippocampal seizures and failure of inhibition. Can. J. Physiol. Pharmacol. 57: 1462–1466, 1979.
 24. Bickford, R. G. The application of depth electroencephalography in some varieties of epilepsy. Electroencephalogr. Clin. Neurophysiol. 8: 526–527, 1956.
 25. Bliss, T. V. P., and A. C. Dolphin. What is the mechanism of long‐term potentiation in the hippocampus? Trends Neurosci. 5: 287–289, 1982.
 26. Bliss, T. V. P., and A. R. Gardner‐Medwin. Long lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path. J. Physiol. Lond. 232: 357–374, 1973.
 27. Blumer, D., and A. E. Walker. Sexual behavior in temporal lobe epilepsy. Arch. Neurol. 16: 37–43, 1967.
 28. Bogen, J. E., R. W. Sperry, and P. J. Vogel. Commissural section and the propagation of seizures. In: Basic Mechanisms of the Epilepsies, edited by H. H. Jasper, A. A. Ward, Jr., and A. Pope. Boston, MA: Little, Brown, 1969, p. 439–440.
 29. Branch, C. L., and A. R. Martin. Inhibition of Betz cell activity by thalamic and cortical stimulation. J. Neurophysiol. 21: 380–390, 1958.
 30. Brazier, M. A. B. Electrical seizure discharges within the human brain: the problem of spread. In: Epilepsy: Its Phenomena in Man, edited by M. A. B. Brazier. New York: Academic, 1973, p. 153–170.
 31. British Medical Association. Report on surgery. Lancet 2: 346–347, 1886.
 32. Brown, T. G., and C. S. Sherrington. On the instability of a cortical point. Proc. R. Soc. Lond. B Biol. Sci. 69: 206–235, 1901.
 33. Buser, P. A., J. Bancaud, and J. Talairach. Depth recordings in man in temporal lobe epilepsy. In: Epilepsy: Its Phenomena in Man, edited by M. A. B. Brazier. New York: Academic, 1973, p. 7–97.
 34. Caveness, W. F., M. Kato, B. L. Malamut, S. Hosokawa, S. Wakisaka, R. Raymond,and B. S. O'Neill. Propagation of focal motor seizures in the pubescent monkey. Ann. Neurol. 7: 213–221, 1980.
 35. Chauvel, P., J. Louvel, and M. Lamarche. Transcortical reflexes and focal motor epilepsy. Electroencephalogr. Clin. Neurophysiol. 45: 309–318, 1978.
 36. Chen, R.‐C., and F. M. Foster. Cursive epilepsy and gelastic epilepsy. Neurology 23: 1019–1029, 1973.
 37. Cirignotta, F., C. V. Todesco, and E. Lugaresi. Temporal lobe epilepsy with ecstatic seizures (so‐called Dostoevsky epilepsy). Epilepsia 21: 705–710, 1980.
 38. Collins, R. C. Use of cortical circuits during focal penicillin seizures: an autoradiographic study with [14C]deoxyglucose. Brain Res. 150: 487–501, 1978.
 39. Collins, R. C. Kindling of neuroanatomic pathways during recurrent focal penicillin seizures. Brain Res. 150: 503–517, 1978.
 40. Collins, R. C. Intracortical localization of 2‐deoxyglucose metabolism: on‐off metabolic columns. In: Cerebral Metabolism and Neural Function, edited by J. V. Passonneau, R. A. Hawkins, W. D. Lust,and F. A. Welsh. Baltimore, MD: Williams & Wilkins, 1980, p. 338–351.
 41. Collins, R. C. Functional anatomy of focal epilepsy. Ann. Neurol. 13: 224–225, 1983.
 42. Collins, R. C., and T. V. Caston. Activation of cortical circuits during interictal spikes. Ann. Neurol. 6: 117–125, 1979.
 43. Collins, R. C., and T. V. Caston. Functional anatomy of occipital lobe seizures: an experimental study in rats. Neurology 29: 705–716, 1979.
 44. Collins, R. C., C. Kennedy, L. Sokoloff,and F. Plum. Metabolic anatomy of focal motor seizures. Arch. Neurol. 33: 536–542, 1976.
 45. Collins, R. C., E. W. Lothman, and J. W. Olney. Status epilepticus in the limbic system: biochemical and pathological changes. Adv. Neurol. 34: 277–288, 1983.
 46. Collins, R. C., and J. W. Olney. Focal cortical seizures cause distant thalamic lesions. Science Wash. DC 218: 177–179, 1982.
 47. Collins, R. C., J. W. Olney, and E. W. Lothman. Metabolic and pathologic consequences of focal seizures. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 61: 87–107, 1983.
 48. Collins, R. C., R. G. Tearse, and E. W. Lothman. Functional anatomy of limbic seizures: focal discharges from medial entorhinal cortex in rat. Brain Res. 280: 25–40, 1983.
 49. Cowan, D. P. Human language cortex: localization of memory, syntax, and sequential motor‐phoneme identification systems. Science Wash. DC 205: 1401–1405, 1979.
 50. Crowell, R. M. Distant effects of a focal epileptogenic process. Brain Res. 18: 137–154, 1970.
 51. Currier, R. D., S. C. Little, J. F. Suess,and O. J. Andy. Sexual seizures. Arch. Neurol. 25: 260–264, 1971.
 52. Curtis, D. R., A. W. Duggan, D. Felix,and G. A. R. Johnston. Bicuculline, an antagonist of GABA and synaptic inhibition in the spinal cord of the cat. Brain Res. 32: 69–96, 1971.
 53. Curtis, D. R., C. J. A. Game, G. A. R. Johnston, R. M. McCulloch,and R. M. MacLachlan. Convulsive action of penicillin. Brain Res. 43: 242–245, 1972.
 54. Cushing, H. A note upon the faradic stimulation of the postcentral gyrus in conscious patients. Brain 32: 44–53, 1909.
 55. Daly, D. Ictal clinical manifestations of complex partial seizures. In: Advances in Neurology. Complex Partial Seizures and Their Treatment, edited by J. K. Penry and D. D. Daly. New York: Raven, 1975, vol. 11, p. 57–83.
 56. Delgado, J. M. R., and H. Hamlin. Surface and depth electrography of the frontal lobes in conscious patients. Electroencephalogr. Clin. Neurophysiol. 8: 371–384, 1956.
 57. Delgado, J. M. R., and H. Hamlin. Direct recording of spontaneous and evoked seizures in epileptics. Electroencephalogr. Clin. Neurophysiol. 10: 463–486, 1958.
 58. Delgado‐Escueta, A. V., F. E. Bacsal, and D. M. Treiman. Complex partial seizures in closed‐circuit television and EEG: a study of 691 attacks in 79 patients. Ann. Neurol. 11: 292–300, 1982.
 59. Delgado‐Escueta, A. V., R. H. Hattson, L. King, E. S. Goldensohn, H. Spiegel, J. Madsen, P. Crandall, F. Dreifuss, and R. J. Porter. Special report. The nature of aggression during epileptic seizures. N. Engl. J. Med. 305: 711–716, 1981.
 60. Deuel, R. K., and R. C. Collins. Recovery from unilateral neglect. Exp. Neurol. 81: 733–748, 1983.
 61. Deuel, R. K., and R. C. Collins. The functional anatomy of frontal lobe neglect in the monkey: behavioral and quantitative 2‐deoxyglucose studies. Ann. Neurol. 15: 521–529, 1984.
 62. Dichter, M., C. L. Herman, and M. Selzer. Silent calls during interictal discharges and seizures in hippocampal penicillin foci: evidence for the role of extracellular K+ in the transition from interictal state to seizures. Brain Res. 48: 173–183, 1972.
 63. Dichter, M., and W. A. Spencer. Penicillin‐induced interictal discharges from the cat hippocampus. I. Characteristics and topographical features. J. Neurophysiol. 32: 649–662, 1969.
 64. Dichter, M., and W. A. Spencer. Penicillin‐induced interictal discharges from the cat hippocampus. II. Mechanisms underlying origin and restriction. J. Neurophysiol. 32: 663–687, 1969.
 65. Dicks, D., R. E. Meyers, and A. Kling. Uncus and amygdala lesions: effects on social behavior in free‐ranging Rhesus monkey. Science Wash. DC 165: 69–71, 1972.
 66. Dingledine, R., and L. Gjerstad. Penicillin blocks hippocampal IPSPs unmasking prolonged EPSP. Brain Res. 168: 205–209, 1979.
 67. Dingledine, R., and L. Gjerstad. Reduced inhibition during epileptiform activity in the in vitro hippocampal slice. J. Physiol. Lond. 305: 297–313, 1980.
 68. Douglas, R. M. Long lasting synaptic potentiation in the rat dentate gyrus following brief high frequency stimulation. Brain Res. 126: 361–365, 1977.
 69. Ebersole, J. S., and A. B. Chatt. Toward a unified theory of focal penicillin epileptogenesis: an intracortical evoked potential investigation. Epilepsia 22: 347–363, 1981.
 70. Eccles, J. C. The modular operation of the cerebral neocortex considered as the material basis of mental events. Neuroscience 6: 1839–1856, 1981.
 71. Effron, R. Post‐epileptic paralysis: theoretical critique and report of a case. Brain 84: 381–398, 1961.
 72. Engel, J., Jr., D. E. Kuhl, M. E. Phelps, R. Rausch,and M. Nuwer. Local cerebral metabolism during partial seizures. Neurology 33: 400–413, 1983.
 73. Engel, J., Jr., L. Wolfson, and L. Brown. Anatomical correlates of electrical and behavioral events related to amygdala kindling. Ann. Neurol. 3: 538–544, 1978.
 74. Escueta, A. V., U. Kunze, G. Waddell, J. Boxley,and A. Nadel. Lapse of consciousness and automatisms in temporal lobe epilepsy: a videotape analysis. Neurology 27: 144–155, 1977.
 75. Falconer, M. A., M. V. Driver, and E. A. Serafetinides. Temporal lobe epilepsy due to distant lesions: two cases relieved by operation. Brain 85: 211–234, 1962.
 76. Fedio, P., and A. Martin. Ideative‐emotive behavioral characteristics of patients following left or right temporal lobectomy. Epilepsia 24, Suppl. 2: S117–S130, 1983.
 77. Fedio, P., and J. M. van Buren. Memory deficits during electrical stimulation of the speech cortex in conscious man. Brain Lang. 1: 29–42, 1974.
 78. Feindel, W., and W. Penfield. Localization of discharge in temporal lobe automatism. Arch. Neurol. Psychiatry 72: 605–630, 1954.
 79. Feldman, M. H. The decerebrate state in the primate. I. Studies in monkeys. Arch. Neurol. 25: 501–516, 1971.
 80. Feldman, M. H. The decerebrate state in the primate. II. Studies in man. Arch. Neurol. 25: 517–525, 1971.
 81. Fergerstein, L., and A. Roger. Frontal epileptogenic foci and their clinical correlations. Electroencephalogr. Clin. Neurophysiol. 13: 905–913, 1961.
 82. Ferguson, S. M., M. Rayport, R. Gardner, W. Kass, H. Weiner, and M. F. Reiser. Similarities in mental content of psychotic states. Spontaneous seizures, dreams, and responses to electrical brain stimulation in patients with temporal lobe epilepsy. Psychosom. Med. 31: 479–498, 1969.
 83. Ferrier, D. The localisation of function in the brain. Proc. R. Soc. Lond. B Biol. Sci. 22: 229–232, 1874.
 84. Ferrier, D. Experiments in the brain of monkeys—No. 1. Proc. R. Soc. Lond. B Biol. Sci. 23: 409–430, 1875.
 85. Fisher, R. S., T. A. Pedley, W. J. Moody, Jr., and D. A. Prince. The role of extracellular potassium in hippocampal epilepsy. Arch. Neurol. 33: 76–83, 1976.
 86. Flor‐Henry, P. Psychosis and temporal lobe epilepsy. A controlled investigation. Epilepsia 10: 363–395, 1969.
 87. Flor‐Henry, P. Schizophrenic‐like reactions and affective psychoses associated with temporal lobe epilepsy: etiological factors. Am. J. Psychiatry 126: 400–404, 1969.
 88. Flor‐Henry, P. Ictal and interictal psychiatric manifestations in epilepsy. Specific or nonspecific? Epilepsia 13: 773–783, 1972.
 89. Foerster, O. The cerebral cortex of man. Lancet 2: 309–312, 1931.
 90. Foerster, O. The motor cortex in man in light of Hughlings Jackson's doctrines. Brain 59: 135–151, 1936.
 91. Fried, I., C. Mateer, G. Ojemann, R. Wohns,and P. Fedio. Organization of visuospatial functions in human cortex. Evidence from electrical stimulation. Brain 105: 349–371, 1982.
 92. Fritsch, G., and E. Hitzig. Über die Elektrische Erregbarkheit des Grosshirns. In: Some Papers on the Cerebral Cortex, translated and edited by G. von Bonin. Springfield, IL: Thomas, 1960, p. 73–96.
 93. Gabor, A. J., and R. P. Scobey. Spatial limits of epileptogenic cortex: its relationship to ectopic spike generation. J. Neuro‐physiol. 38: 395–404, 1975.
 94. Gabor, A. J., R. P. Scobey, and C. J. Wehrli. Relationship of epileptogenicity to cortical organization. J. Neurophysiol. 42: 1609–1625, 1979.
 95. Garant, D. S., and K. Gale. Lesions of the substantia nigra protect against experimentally induced seizures. Brain Res. 273: 156–161, 1983.
 96. Gascon, G. G., and C. T. Lombroso. Epileptic (gelastic) laughter. Epilepsia 12: 63–76, 1971.
 97. Gastaut, H. Fyodor Mikhailovitch Dostoevsky's involuntary contribution to the symptomatology and prognosis of epilepsy. Epilepsia 19: 186–201, 1978.
 98. Gastaut, H., J. L. Gastaut, G. E. Goncalves e Silva, and G. R. Fernandez Sanchez. Relative frequency of different types of epilepsy: a study employing the classification of the International League Against Epilepsy. Epilepsia 16: 457–461, 1975.
 99. Gastaut, H., and M. Vigoroux. Electro‐clinical correlations in 500 cases of psychomotor seizures. In: Temporal Lobe Epilepsy, edited by M. Baldwin and P. Bailey. Springfield, IL: Thomas, 1958, p. 118–128.
 100. Gatter, K. C., and T. P. S. Powell. The intrinsic connections of the cortex of area 4 of the monkey. Brain 101: 513–541, 1978.
 101. Gatter, K. C., J. J. Sloper, and T. P. S. Powell. An electron microscopic study of the termination of intracortical axons upon Betz cells in area 4 of the monkey. Brain 101: 543–553, 1978.
 102. Geschwind, N. Pathogenesis of behavioral change in temporal lobe epilepsy. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 61: 355–370, 1983.
 103. Gibbs, E. L., F. A. Gibbs, and B. Fuster. Psychomotor epilepsy. Arch. Neurol. Psychiatry 60: 331–339, 1948.
 104. Gibbs, F. A. Ictal and non‐ictal psychiatric disorders in temporal lobe epilepsy. J. Nerv. Ment. Dis. 113: 522–528, 1951.
 105. Gibbs, F., E. Gibbs, and W. Lennox. Cerebral dysrhythmias of epilepsy. Arch. Neurol. Psychiatry 39: 298–314, 1938.
 106. Glaser, G. H. The problem of psychosis in psychomotor temporal lobe epileptics. Epilepsia 5: 271–278, 1964.
 107. Glaser, G. H. Limbic epilepsy in childhood. J. Nerv. Ment. Dis. 144: 391–397, 1967.
 108. Glaser, G. H., J. K. Penry, and D. M. Woodbury. Anti‐epileptic Drugs: Mechanisms of Action. New York: Raven, 1980.
 109. Gloor, P. The pattern of conduction of amygdaloid seizure discharge. Arch. Neurol. Psychiatry 77: 247–258, 1957.
 110. Gloor, P. Amygdala. In: Handbook of Physiology. Neurophysiology, edited by J. Field and H. W. Magoun. Washington, DC: Am. Physiol. Soc, 1960, sect. 1, vol. II, chapt. 58, p. 1395–1420.
 111. Gloor, P. Temporal lobe epilepsy: its possible contribution to the understanding of the functional significance of the amygdala and of its interaction with neocortical‐temporal mechanisms. In: The Neurobiology of the Amygdala, edited by B. E. Eleftheriov. New York: Plenum, 1972, p. 423–457.
 112. Gloor, P., A. Olivier, and J. Ives. Loss of consciousness in temporal lobe seizures. Observations obtained with stereotactic depth electrode recordings and stimulations. In: Advances in Epileptology, edited by R. Canger, F. Angeleri, and J. K. Penry. New York: Raven, 1980, p. 349–353. (XI Epilepsy Int. Symp.).
 113. Gloor, P., A. Olivier, and L. F. Quesney. The role of the amygdala in the expression of psychic phenomena in temporal lobe seizures. In: The Amygdaloid Complex, edited by Y. Ben‐Ari. Amsterdam: Elsevier, 1981, p. 489–498.
 114. Gloor, P., A. Olivier, L. F. Quesney, F. Andermann,and S. Horowitz. The role of the limbic system in experiential phenomena of temporal lobe epilepsy. Ann. Neurol. 12: 129–144, 1982.
 115. Goddard, G. V. The continuing search for mechanism. In: Kindling 2, edited by J. A. Wada. New York: Raven, 1981, p. 1–14.
 116. Goddard, G. V., and R. M. Douglas. Does the engram of kindling model the engram of normal long term memory? Can. J. Neurol. Sci. 2: 385–394, 1975.
 117. Goddard, G. V., D. C. McIntyre, and C. K. Leech. A permanent change in brain functioning resulting from daily electrical stimulation. Exp. Neurol. 25: 295–330, 1969.
 118. Goldring, S. The role of prefrontal cortex in grand mal convulsion. Arch. Neurol. 26: 109–119, 1972.
 119. Goldring, S., E. Aras, and P. C. Weber. Comparative study of sensory input to motor cortex in animals and man. Electroencephalogr. Clin. Neurophysiol. 29: 537–550, 1970.
 120. Goldring, S., and R. Ratcheson. Human motor cortex: sensory input data from single neuron recordings. Science Wash. DC 175: 1493–1495, 1972.
 121. Gowers, W. R. Epilepsy and Other Chronic Convulsive Diseases: Their Causes, Symptoms and Treatment. New York: Dover, 1964, p. 5.
 122. Greenwood, R. S., M. Takato, and S. Goldring. Potassium activity and changes in glia and neuronal membrane potentials during initiation and spread of afterdischarge in cerebral cortex of cat. Brain Res. 218: 279–298, 1981.
 123. Grunbaum, A. S. F., and C. S. Sherrington. Observations in physiology of the cerebral cortex of some of the higher apes (Abstract). Proc. R. Soc. Lond. B Biol. Sci. 69: 206, 1901.
 124. Gutnick, M. J., and D. A. Prince. Thalamo‐cortical relay neurons: antidromic invasion of spikes from a cortical epileptogenic focus. Science Wash. DC 176: 424–426, 1972.
 125. Gutnick, M. J., and D. A. Prince. Effects of projected cortical epileptiform discharges on neuronal activities in cat VPL. I. Interictal discharge. J. Neurophysiol. 37: 1310–1327, 1974.
 126. Halgren, E. The anygdala‐contribution to emotion and memory: current studies in human. In: The Amygdaloid Complex, edited by Y. Ben‐Ari. Amsterdam: Elsevier, 1981, p. 395–408.
 127. Halgren, E., R. D. Walter, D. G. Cherlow,and P. H. Crandall. Mental phenomena evoked by electrical stimulation of the human hippocampal formation and amygdala. Brain 101: 83–117, 1978.
 128. Halgren, E., C. L. Wilson, N. K. Squires, J. Engel, Jr., R. D. Walter, and P. H. Crandall. Dynamics of the hippocampal contribution to memory. Stimulation and recording studies in humans. In: Neurobiology of the Hippocampus, edited by W. Seifert. New York: Academic, 1983, p. 529–572.
 129. Harris, A. B. Degeneration in experimental epileptic foci. Arch. Neurol. 26: 434–449, 1972.
 130. Harris, A. B., and J. S. Lockard. Absence of seizures or mirror foci in experimental epilepsy after excision of alumina and astrogliotic scar. Epilepsia 22: 107–122, 1981.
 131. Hecker, A., F. Andermann, and E. A. Rodin. Spitting automatism in temporal lobe seizures. Epilepsia 13: 767–772, 1972.
 132. Heinemann, U., H. D. Lux, and M. J. Gutnick. Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp. Brain Res. 27: 237–243, 1977.
 133. Herkenham, M. The connections of the nucleus reuniens thalami: evidence for a direct thalamo‐hippocampal pathway in the rat. J. Comp. Neurol. 177: 589–610, 1978.
 134. Herkenham, M. The afferent and efferent connections of the ventromedial thalamic nucleus in the rat. J. Comp. Neurol. 183: 487–518, 1979.
 135. Herkenham, M. Laminar organization of thalamic projection neurons to the rat neocortex. Science Wash. DC 207: 532–535, 1980.
 136. Hermann, B. P., S. Dikmen, M. S. Schwartz,and W. E. Karnes. Interictal psychopathology in patients with ictal fear: a quantitative investigation. Neurology 32: 7–11, 1982.
 137. Hermann, B. P., and P. Reil. Interictal personality and behavioral traits in temporal lobe and generalized epilepsy. Cortex 17: 125–128, 1981.
 138. Hess, R., K. Neglshi, and O. Creutzfeldt. The horizontal spread of intracortical inhibition in the visual cortex. Exp. Brain Res. 22: 415–419, 1975.
 139. Holmes, G. Local epilepsy. Lancet 1: 957–962, 1927.
 140. Horowitz, M. J., J. E. Adams, and B. B. Rutkin. Visual imagery on brain stimulation. Arch. Gen. Psychiatry 19: 469–486, 1968.
 141. Horsley, V. Brain surgery. Br. Med. J. 2: 670–675, 1886.
 142. Horton, J. C., and E. T. Hedley‐Whyte. Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 304: 255–272, 1984.
 143. Ishijima, B., T. Hori, N. Yoshimasu, T. Fukushima, K. Hirakawa, and H. Sekino. Neuronal activities in human epileptic foci and surrounding areas. Electroencephalogr. Clin. Neurophysiol. 39: 643–650, 1975.
 144. Jackson, J. H. On a particular variety of epilepsy (“intellectual aura”), one case with symptoms of organic brain disease. Brain 11: 179–207, 1888.
 145. Jackson, J. H. Case of epilepsy with tasting movements and “dreamy state”—very small patch of softening in the left uncinate gyrus. Brain 21: 580–590, 1898.
 146. Jackson, J. H. A study of convulsions. In: Selected Writings of John Hughlings Jackson, edited by J. Taylor. New York: Basic, 1958, p. 24–25.
 147. Jackson, J. H. Intellectual warnings of epileptic seizures. In: Selected Writings of John Hughlings Jackson, edited by J. Taylor. New York: Basic, 1958, p. 274–275.
 148. Jasper, H. H. Thalamic reticular system. In: Electrical Stimulation of the Brain, edited by D. E. Sheer. Austin: Univ. of Texas Press, 1961, p. 277–287.
 149. Jasper, H. H. Some physiological mechanisms involved in epileptic automatisms. Epilepsia 5: 1–20, 1964.
 150. Jasper, H. H., and J. Droogleever‐Fortuyn. Experimental studies on the functional anatomy of petit mal epilepsy. Res. Publ. Assoc. Res. New. Ment. Dis. 26: 272–298, 1947.
 151. Jasper, H. H., A. A. Ward, Jr., and A. Pope. Basic Mechanisms of the Epilepsies. Boston, MA: Little, Brown, 1969.
 152. Jeavons, P. M., and G. F. A. Harding. Photosensitive Epilepsy. London: Heinemann, 1975.
 153. Jennett, B. Epilepsy After Non‐Missile Head Injuries. Chicago, IL: Year Book, 1975.
 154. Jenny, A. B. Commissural projections of the cortical hand motor area in monkeys. J. Comp. Neurol. 188: 137–146, 1979.
 155. Johnston, D., and T. H. Brown. Giant synaptic potential hypothesis for epileptiform activity. Science Wash. DC 211: 294–297, 1981.
 156. Jones, E. G. Anatomy of cerebral cortex: columnar input‐output organization. In: The Organization of the Cerebral Cortex, edited by F. O. Schmitt, F. G. Worden, G. Adelman, and S. G. Dennis. Cambridge, MA: MIT Press, 1981, p. 199–236.
 157. Jones, E. G., J. D. Coulter, and S. H. C. Hendry. Intracortical connectivity of architectonic fields of the somatic sensory, motor, and parietal cortex of monkeys. J. Comp. Neurol. 181: 291–348, 1978.
 158. Jones, E. G., and T. P. S. Powell. An anatomic study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793–820, 1970.
 159. Kandel, E. R., and W. A. Spencer. Electrophysiology of hippocampal neurons. II. After‐potentials and repetitive firing. J. Neurophysiol. 24: 243–259, 1961.
 160. Kandel, E. R., and W. A. Spencer. Excitation and inhibition of single pyramidal cells during hippocampal seizures. Exp. Neurol. 4: 162–179, 1961.
 161. Kelley, A. E., V. B. Domesick, and W. J. H. Nauta. The amygdalostriatal projection in the rat—an anatomical study by anterograde and retrograde tracing methods. Neuroscience 1: 615–630, 1982.
 162. Kennedy, C., M. H. Des Rosiers, M. H. Jehle, J. W. Reivich, F. Sharp,and L. Sokoloff. Mapping of functional neural pathways by autoradiographic survey of local metabolic rate with [14C]deoxyglucose. Science Wash. DC 187: 850–853, 1975.
 163. King, D. W., and C. A. Marsan. Clinical features and ictal patterns in epileptic patients with EEG temporal lobe foci. Ann. Neurol. 2: 138–147, 1977.
 164. Kligman, D., and D. A. Goldberg. Temporal lobe epilepsy and aggression. J. Nerv. Ment. Dis. 160: 324–341, 1975.
 165. Kluver, H., and P. Bucy. An analysis of certain effects of bilateral temporal lobectomy in the Rhesus monkey with special reference to “psychic blindness.” J. Psychol. 5: 33–54, 1938.
 166. Kluver, H., and P. Bucy. Preliminary analysis of functions of the temporal lobes in monkeys. Arch. Neurol. Psychiatry 42: 979–1000, 1939.
 167. Kraus, V. M. B., R. M. Dasheiff, R. J. Fanelli,and J. O. McNamara. Benzodiazepine receptor declines in hippocampal formation following limbic seizures. Brain Res. 277: 305–309, 1983.
 168. Krettek, K. E., and J. L. Price. Projections from the amygdala complex and adjacent olfactory structures to the entorhinal cortex and to the subiculum in the rat and cat. J. Comp. Neurol. 172: 723–752, 1977.
 169. Krettek, K. E., and J. L. Price. Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat. J. Comp. Neurol. 178: 255–280, 1978.
 170. Krnjević, K. Loss of synaptic inhibition as a cause of hippocampal seizures. In: Physiology and Pharmacology of Epileptogenic Phenomena, edited by M. R. Klee, H. D. Lux, and E.‐J. Speckman. New York: Raven, 1982, p. 123–130.
 171. Kunzle, H. Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis. Brain Res. 88: 195–209, 1975.
 172. Kunzle, H. Cortico‐cortical efferents of primary motor and somatosensory regions of the cerebral cortex in Macaca fascicularis. Neuroscience 3: 25–39, 1978.
 173. Kwan, H. C., W. A. MacKay, J. T. Murphy,and Y. C. Wong. Spatial organization of precentral cortex in awake primates. II. Motor outputs. J. Neurophysiol. 41: 1120–1131, 1978.
 174. Landry, P., A. Labelle, and M. Deschênes. Intracortical distribution of axonal collaterals of pyramidal tract cells in the cat motor cortex. Brain Res. 191: 327–336, 1980.
 175. Leão, A. A. P. Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 7: 359–390, 1944.
 176. Leão, A. A. P., and R. S. Morison. Propagation of spreading cortical depression. J. Neurophysiol. 8: 33–45, 1945.
 177. Lende, R. A., and A. J. Popp. Sensory Jacksonian seizures. J. Neurosurg. 44: 706–711, 1976.
 178. Lewis, D. O., S. S. Shanok, J. H. Pincus,and G. H. Glaser. Violent juvenile delinquents: psychiatric, neurological, psychological and abuse factors. J. Am. Acad. Child Psychiatry 18: 307–319, 1979.
 179. Leyton, A. S. F., and C. S. Sherrington. Observations on the excitable cortex of the chimpanzee, Orang‐utan and gorilla. Q. J. Exp. Physiol. 11: 135–222, 1917.
 180. Libet, B. Electrical stimulation of cortex in human subjects and conscious sensory aspects. In: Handbook of Sensory Physiology. Somatosensory System, edited by A. Iggo. New York: Springer‐Verlag, 1973, vol. II, p. 744–790.
 181. Lieb, J. P., R. Rausch, J. Engel, Jr., W. Jann Brown, and P. H. Crandall. Changes in intelligence following temporal lobectomy: relationship to EEG activity, seizure relief, and pathology. Epilepsia 23: 1–13, 1982.
 182. Lieb, J. P., G. O. Walsh, T. L. Babb, R. D. Walter,and P. H. Crandall. A comparison of EEG seizure patterns recorded with surface and depth electrodes in patients with temporal lobe epilepsy. Epilepsia 17: 137–160, 1976.
 183. Lockard, J. S., and A. A. Ward, Jr. Epilepsy: A Window to Brain Mechanisms. New York: Raven, 1980.
 184. Lothman, E. W., and R. C. Collins. Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic, and neuropathological correlates. Brain Res. 218: 299–318, 1981.
 185. Lowrie, M. B., and G. Ettlinger. The development of independent secondary (“mirror”) discharges in the monkey: failure to replicate earlier findings. Epilepsia 21: 25–30, 1980.
 186. Ludwig, B. I., and C. Ajmone‐Marsan. Clinical ictal patterns in epileptic patients with occipital electroencephalo‐graphic foci. Neurology 25: 463–471, 1975.
 187. Ludwig, B. I., C. Ajmone‐Marsan, and J. Van Buren. Depth and direct cortical recording in seizure disorders of extratemporal origin. Neurology 26: 1085–1099, 1976.
 188. Lynch, J. C. The functional organization of posterior parietal association cortex. Behav. Brain Sci. 3: 485–534, 1980.
 189. MacDonald, R. L., and J. L. Barker. Pentylenetetrazol and penicillin are selective antagonists of GABA‐mediated postsynaptic inhibition in mammalian neurones. Nature Lond. 267: 720–721, 1977.
 190. MacDonald, R. L., and J. L. Barker. Specific antagonism of GABA‐mediated postsynaptic inhibition in cultured mammalian spinal cord neurons: a common mode of convulsant action. Neurology 28: 325–330, 1978.
 191. MacEwen, W. An address on the surgery of the brain and spinal cord. Br. Med. J. 2: 302–309, 1888.
 192. MacVicar, B. A., and F. E. Dudeck. Electrotonic coupling between pyramidal cells: a direct demonstration in rat hippocampal slices. Science Wash. DC 213: 782–785, 1981.
 193. Margerison, J. H., and J. A. N. Corsellis. Epilepsy and the temporal lobes. Brain 89: 499–530, 1966.
 194. Matsumoto, H., and C. Ajmone‐Marsan. Cortical cellular phenomena in experimental epilepsy: interictal manifestations. Exp. Neurol. 9: 286–304, 1964.
 195. Matsumoto, H., G. F. Ayala, and R. J. Gumnit. Cortical cellular phenomena in experimental epilepsy. Ictal manifestations. Exp. Neurol. 9: 305–326, 1964.
 196. Matsumoto, H., G. F. Ayala, and R. J. Gumnit. Neuronal behavior and triggering mechanism in cortical epileptic focus. J. Neurophysiol. 32: 688–703, 1969.
 197. Mauguire, F., and J. Courjon. Somatosensory epilepsy. A review of 127 cases. Brain 101: 307–332, 1978.
 198. Maycincigi, Y., and A. E. Walker. Experimental temporal lobe epilepsy. Brain 97: 423–446, 1974.
 199. Mayeux, R., J. Brandt, J. Rosen,and D. F. Benson. Interictal memory and language impairment in temporal lobe epilepsy. Neurology 30: 120–125, 1980.
 200. McIntyre, M. J., P. B. Pritchard, and C. T. Lombroso. Left and right temporal lobe epileptics: a controlled investigation of some psychological differences. Epilepsia 17: 377–386, 1976.
 201. McNamara, J. O., M. C. Byrne, R. M. Dasheiff,and J. G. Fitz. The kindling model of epilepsy: a review. Prog. Neurobiol. Oxf. 15: 139–159, 1980.
 202. McNamara, J. O., L. C. Rigsbee, and M. T. Galloway. Evidence that the substantia nigra is crucial to the neural network of kindled seizures. Eur. J. Pharmacol. 86: 485–486, 1983.
 203. Merzenich, M. M., and J. H. Kaas. Principles of organization of sensory‐perceptual systems in mammals. Prog. Psychobiol. Physiol. Psychol. 9: 1–42, 1980.
 204. Mesher, R. A., A. R. Wyler, and E. J. Neafsey. The effects of chronicity on burst structure in epileptogenic foci. Brain Res. 142: 467–476, 1978.
 205. Meyer, H., and D. Prince. Convulsant action of penicillin: effects on inhibitory mechanisms. Brain Res. 53: 477–483, 1973.
 206. Milner, B. Psychological defects produced by temporal lobe excision. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 36: 244–257, 1958.
 207. Milner, B. Psychological aspects of focal epilepsy and its neurosurgical management. In: Advances in Neurology. Neurosurgical Management of the Epilepsies, edited by D. P. Purpura, J. K. Penry, and R. D. Walter. New York: Raven, 1975, vol. 8, p. 299–321.
 208. Mishkin, M. A memory system in the monkey. Philos. Trans. R. Soc. Lond. B Biol. Sci. 298: 85–95, 1982.
 209. Mishkin, M., and J. Aggleton. Multiple functional contributions of the amygdala in the monkey. In: The Amygdaloid Complex, edited by Y. Ben‐Ari. Amsterdam: Elsevier, 1981, p. 409–428.
 210. Morrell, F. Secondary epileptogenic lesions. Epilepsia 1: 538–560, 1959/60.
 211. Mountcastle, V. B. An organizing principle for cerebral function: the unit module and the distributed system. In: The Mindful Brain: Cortical Organization and the Group‐Selective Theory of Higher Brain Function, edited by G. E. Edelman and V. B. Mountcastle. Cambridge, MA: MIT Press, 1978, p. 7–50.
 212. Muakkassa, K. F., and P. L. Strick. Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized “premotor” areas. Brain Res. 177: 176–182, 1979.
 213. Mungas, D. Interictal behavior abnormality in temporal lobe epilepsy. A specific syndrome or nonspecific psychopathology. Arch. Gen. Psychiatry 39: 108–111, 1982.
 214. Murphy, J. T., H. C. Kwan, W. A. MacKay,and Y. C. Wong. Spatial organization of precentral motor cortex in awake primates. III. Input‐output coupling. J. Neurophysiol. 41: 1132–1139, 1978.
 215. Murphy, J. T., H. C. Kwan, W. A. MacKay,and Y. C. Wong. Physiologic basis for focal motor seizures and the Jacksonian “march” phenomena. Can. J. Neurol. Sci. 7: 79–85, 1980.
 216. Naquet, R., J. Cartier, and C. Menini. Neurophysiology of photically induced epilepsy in Papio papio. In: Primate Models of Neurological Disorders, edited by B. S. Meldrum and C. D. Marsden. New York: Raven, 1975, p. 107–118.
 217. Neafsey, E. J., and C. Sievert. A second forelimb motor area exists in rat frontal cortex. Brain Res. 232: 151–156, 1982.
 218. Nielsen, H., and O. Kristensen. Personality correlates of sphenoidal EEG‐foci in temporal lobe epilepsy. Acta Neurol. Scand. 64: 289–300, 1981.
 219. Noebels, J. L., and D. A. Prince. Development of focal seizures in cerebral cortex: role of axon terminal bursting. J. Neurophysiol. 41: 1267–1281, 1978.
 220. Noebels, J. L., and D. A. Prince. Excitability changes in thalamocortical relay neurons during synchronous discharges in cat neocortex. J. Neurophysiol. 41: 1282–1296, 1978.
 221. Novelly, R. A., E. A. Augustine, R. H. Mattson, G. H. Glaser, P. D. Williamson, D. D. Spencer,and S. S. Spencer. Selective memory improvement and impairment in temporal lobectomy for epilepsy. Ann. Neurol. 15: 64–67, 1984.
 222. Ojemann, G. Brain mechanisms for language. Observations during neurosurgery. In: Epilepsy: A Window to Brain Mechanisms, edited by J. Lockard and A. A. Ward, Jr. New York: Raven, 1980, p. 243–260.
 223. Ojemann, G. A., and A. A. Ward, Jr. Stereotaxic and other procedures for epilepsy. In: Neurosurgical Management of the Epilepsies, edited by D. P. Purpura, J. K. Penry, and R. D. Walter. New York: Raven, 1975, p. 241–263.
 224. O'Leary, J. L., and S. Goldring. Science and Epilepsy: Neurosience Gains in Epilepsy Research. New York: Raven, 1976.
 225. Olivier, A., P. Gloor, F. Andermann,and J. Ives. Occipitotemporal epilepsy studied with stereotaxically implanted depth electrodes and successfully treated with temporal reactions. Ann. Neurol. 11: 428–432, 1982.
 226. Olney, J. W., R. Sloviter, and R. C. Collins. Excitotoxic mechanisms of epileptic brain damage. In: Basic Mechanisms of Epilepsy, edited by A. V. Delgado‐Escueta, A. A. Ward, D. W. Woodbury, and R. J. Porter. New York: Raven, 1986, p. 857–877.
 227. Olsen, R. W., M. K. Ticku, P. C. Van Ness, and D. Greenlee. Effects of drugs on γ–aminobutyric acid receptors, uptake, release and synthesis in vitro. Brain Res. 139: 277–294, 1978.
 228. Ounsted, C. Aggression and epilepsy rage in children with temporal lobe epilepsy. J. Psychosom. Res. 13: 237–242, 1969.
 229. Panayiotopoulos, C. P. Inhibitory effect of central vision on occipital lobe seizures. Neurology 31: 1330–1333, 1981.
 230. Pappas, C. L., and P. L. Strick. Double representation of the distal forelimb in cat motor cortex. Brain Res. 167: 412–416, 1979.
 231. Penfield, W. Epileptic automatism and the centrencephalic integrating system. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 30: 513–528, 1952.
 232. Penfield, W. Epileptogenic lesions. Acta Neurol. Psychiatr. Belg. 56: 75–88, 1956.
 233. Penfield, W. G., and E. Boldrey. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60: 389–443, 1937.
 234. Penfield, W. G., and E. Boldrey. Cortical spread of epileptic discharge and the conditioning effect of habitual seizures. Am. J. Psychiatry 96: 256–281, 1939.
 235. Penfield, W. G., and T. C. Erickson. Epilepsy and Cerebral Localization. Springfield, IL: Thomas, 1941.
 236. Penfield, W. G., and L. Gage. Cerebral localization of epileptic manifestations. Arch. Neurol. Psychiatry 30: 709–727, 1933.
 237. Penfield, W., and S. Humphreys. Epileptogenic lesions of the brain. A histologic study. Arch. Neurol. Psychiatry 43: 240–259, 1940.
 238. Penfield, W., and H. H. Jasper. Highest level seizures. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 26: 252–272, 1945.
 239. Penfield, W., and H. Jasper. Epilepsy and the Functional Anatomy of the Human Brain. Boston, MA: Little, Brown, 1954.
 240. Penfield, W., and K. Kristiansen. Epileptic Seizure Patterns: A Study of the Localizing Value of Initial Phenomena in Focal Cortical Seizures. Springfield, IL: Thomas, 1951.
 241. Penfield, W., and G. Mathieson. Memory: autopsy findings and comments on the role of the hippocampus in experiential recall. Arch. Neurol. 31: 145–154, 1974.
 242. Penfield, W., and B. Milner. Memory deficit produced by bilateral lesions in the hippocampal zone. Arch. Neurol. Psychiatry 79: 475–497, 1958.
 243. Penfield, W., and P. Perot. The brain's record of auditory and visual experience. A final summary and discussion. Brain 86: 39–696, 1963.
 244. Penry, J. K., and D. D. Daly (editors). Advances in Neurology. Complex Partial Seizures and Their Treatment. New York: Raven, 1975, vol. 11.
 245. Perez, M. M., and M. R. Trimble. Epileptic psychosis—diagnostic comparison with process schizophrenia. Br. J. Psychiatry 137: 245–249, 1980.
 246. Phillips, C. G. Actions of antidromic pyramidal volleys on single Betz cells in the cat. Q. J. Exp. Physiol. 44: 1–25, 1959.
 247. Phillips, C. G. Cortical localization and “sensorimotor processes” at the “middle level” in primates. Proc. R. Soc. Med. 66: 987–1002, 1973.
 248. Phillips, C. G. Laying the ghost of “muscles versus movements.” Can. J. Neurol. Sci. 2: 209–218, 1975.
 249. Phillips, C. G., and R. Porter. Corticospinal Neurones: Their Role in Movement. New York: Academic, 1977.
 250. Pincus, J. H. Can violence be a manifestation of epilepsy? Neurology 30: 304–307, 1980.
 251. Pinel, J. P. J., D. Treit, and L. I. Rovmer. Temporal lobe aggression in rats. Science Wash. DC 197: 1088–1089, 1977.
 252. Poggio, G. F., A. E. Walker, and O. J. Andy. Propagation of cortical afterdischarge through subcortical structures. Arch. Neurol. Psychiatry 75: 350–361, 1956.
 253. Powell, T. P. S., and V. B. Mountcastle. Some aspects of the functional organization of the cortex of the post central gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull. Johns Hopkins Hosp. 105: 133–162, 1959.
 254. Prince, D. A. Inhibition in “epileptic” neurons. Exp. Neurol. 21: 307–321, 1968.
 255. Prince, D. A. The depolarization shift in “epileptic” neurons. Exp. Neurol. 21: 467–485, 1968.
 256. Prince, D. A. Cortical cellular activities during cyclically occurring interictal epileptiform discharges. Electroencephalogr. Clin. Neurophysiol. 31: 469–484, 1971.
 257. Prince, D. A. Neurophysiology of epilepsy. Annu. Rev. Neurosci. 1: 395–415, 1978.
 258. Prince, D. A., B. W. Connors, and L. S. Bernardo. Mechanisms underlying interictal‐ictal transitions. In: Advances in Neurology. Status Epilepticus: Mechanisms of Brain Damage and Disease, edited by A. V. Delgado‐Escueta, C. G. Wasterlain, D. M. Treiman,and R. J. Porter. New York: Raven, 1983, vol. 34, p. 177–187.
 259. Prince, D. A., and K. J. Futamachi. Intracellular recordings from chronic epileptogenic foci in the monkey. Electroencephalogr. Clin. Neurophysiol. 29: 496–510, 1970.
 260. Prince, D. A., and B. J. Wilder. Control mechanisms in cortical epileptogenic foci. “Surround” inhibition. Arch. Neurol. 16: 194–202, 1967.
 261. Proust, M. Remembrance of Things Past. New York: Vintage, 1982, vol. I.
 262. Purpura, D. P., J. K. Penry, D. B. Tower, D. M. Woodbury,and R. D. Walter (editors). Experimental Models of Epilepsy. New York: Raven, 1972.
 263. Racine, R. J. Modification of seizure activity by electrical stimulation: cortical areas. Electroencephalogr. Clin. Neurophysiol. 38: 1–12, 1975.
 264. Racine, R. J. Kindling: the first decade. Neurosurgery 3: 234–252, 1980.
 265. Racine, R. J., J. G. Gartner, and W. M. Burnham. Epileptiform activity and neural plasticity in limbic structures. Brain Res. 47: 262–268, 1972.
 266. Racine, R. J., L. Tuff, and J. Zaide. Kindling, unit discharge patterns and neural plasticity. Can. J. Neurol. Sci. 2: 395–405, 1975.
 267. Raisman, G., W. M. Cowan, and T. P. S. Powell. The intrinsic afferent, commissural and association fibers of the hippocampus. Brain 88: 963–995, 1965.
 268. Rasmussen, T. Cortical resection in the treatment of focal epilepsy. In: Advances in Neurology. Neurosurgical Management of the Epilepsies, edited by D. P. Purpura, J. K. Penry, and R. D. Walter. New York: Raven, 1975, vol. 8, p. 139–154.
 269. Rasmussen T. Characteristics of a pure culture of frontal lobe epilepsy. Epilepsia 24: 482–493, 1983.
 270. Rausch, R., and P. H. Crandall. Psychological status related to surgical control of temporal lobe seizures. Epilepsia 23: 191–202, 1982.
 271. Rausch, R., J. P. Leib, and P. H. Crandall. Neuropsychological correlates of depth spike activity in epileptic patients. Arch. Neurol. 35: 699–706, 1978.
 272. Réemillard, G. M., F. Andermann, P. Gloor, A. Olivier,and J. B. Martin. Water‐drinking as ictal behavior in complex partial seizures. Neurology 31: 117–124, 1981.
 273. Rémillard, G. M., F. Andermann, G. F. Testa, P. Gloor, M. Aube, J. B. Martin, W. Feindel, A. Guberman, and C. Simpson. Sexual ictal manifestations predominate in women with temporal lobe epilepsy: a finding suggesting sexual dimorphism in the human brain. Neurology 33: 323–330, 1983.
 274. Ribak, C. E., R. M. Bradburne, and A. B. Harris. A preferential loss of GABAergic, symmetric synapses in epileptic foci: a quantitative ultrastructural analysis of monkey neocortex. J. Neurosci. 2: 1725–1735, 1982.
 275. Ribak, C. E., A. B. Harris, J. E. Vaughn,and E. Robert. Inhibitory, GABAergic nerve terminals decrease at sites of focal epilepsy. Science Wash. DC 205: 211–240, 1979.
 276. Ribak, C. E., and R. J. Reiffenstein. Selective inhibitory synapse loss in chronic cortical slabs: a morphological basis for epileptic susceptibility. Can. J. Physiol. Pharmacol. 60: 864–870, 1982.
 277. Roberts, J., M. M. Robertson, and M. R. Trimble. The lateralizing significance of hypergraphia in temporal lobe epilepsy. J. Neurol. Neurosurg. Psychiatry 45: 131–138, 1982.
 278. Rosen, A. D., E. F. Vastola, and Z. J. M. Hildebrand. Visual radiation activity during a cortical penicillin discharge. Exp. Neurol. 40: 1–11, 1973.
 279. Rosen, I., and H. Asanuma. Peripheral afferent inputs to the forelimb area of the monkey motor cortex: input‐output relations. Exp. Brain Res. 14: 257–273, 1972.
 280. Russell, W. R., and C. W. M. Whitty. Studies in traumatic epilepsy. 2. Focal motor and somatic sensory fits: a study of 85 cases. J. Neurol. Neurosurg. Psychiatry 16: 73–97, 1953.
 281. Scheibel, M. E., and A. B. Scheibel. Hippocampal pathology in temporal lobe epilepsy. A golgi study. In: Epilepsy: Its Phenomena in Man, edited by M. A. B. Brazier. New York: Academic, 1973, p. 315–335.
 282. Schmitt, F. O., F. G. Worden, G. Adelman,and S. G. Dennis (editors). The Organization of the Cerebral Cortex. Cambridge, MA: MIT Press, 1981.
 283. Schraeder, P. L., and G. C. Celesia. The effects of epileptogenic activity on auditory evoked potentials in cats. Arch. Neurol. 34: 677–682, 1967.
 284. Schwartzkroin, P. A. Mechanisms of cell synchronization in epileptiform activity. Trends Neurosci. 6: 157–161, 1983.
 285. Schwartzkroin, P. A., K. J. Futamachi, J. L. Noebels,and D. A. Prince. Transcallosal effects of a cortical epileptiform focus. Brain Res. 99: 59–68, 1975.
 286. Schwartzkroin, P. A., R. Mutani, and D. A. Prince. Orthodromic and antidromic effects of a cortical epileptiform focus on ventrolateral nucleus of the cat. J. Neurophysiol. 38: 795–811, 1975.
 287. Schwartzkroin, P. A., and M. Slawsky. Probable calcium spike in hippocampal neurons. Brain Res. 135: 157–161, 1977.
 288. Schwartzkroin, P. A., and A. R. Wyler. Mechanisms underlying epileptiform burst discharge. Ann. Neurol. 7: 95–107, 1979.
 289. Scobey, R. P., and A. J. Gabor. Ectopic action‐potential generation in epileptogenic cortex. J. Neurophysiol. 38: 383–394, 1975.
 290. Scobey, R. P., and A. J. Gabor. Properties of epileptogenic focus: activation field. J. Neurophysiol. 40: 1199–1213, 1977.
 291. Scoville, W. B., and B. Milner. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20: 11–21, 1957.
 292. Serafetinides, E. A. Aggressiveness in temporal lobe epileptics and its relation to cerebral dysfunction and environmental factors. Epilepsia 6: 33–42, 1965.
 293. Serafetinides, E. A. Epilepsy, cerebral dominance, and behavior. In: Limbic Epilepsy and the Dyscontrol Syndrome, edited by M. Girgis and L. G. Koloh. New York: Elsevier/ North‐Holland, 1980, p. 29–41.
 294. Shukla, G. D., O. N. Srivastava, and B. C. Katiyar. Sexual disturbances in temporal lobe epilepsy: a controlled study. Br. J. Psychiatry 134: 288–292, 1979.
 295. Sillito, A. M. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J. Physiol. Lond. 250: 305–329, 1975.
 296. Sillito, A. M. Inhibitory processes underlying the directional specificity of simple, complex and hypercomplex cells in the cat's visual cortex. J. Physiol. Lond. 271: 699–720, 1977.
 297. Slater, E., and A. W. Beard. The schizophrenia‐like psychosis of epilepsy. I. Psychiatric aspects. Br. J. Psychiatry 109: 95–112, 1963.
 298. Sloper, J. J., P. Johnson, and T. P. S. Powell. Selective degeneration of interneurons in the motor cortex of infant monkeys following controlled hypoxia: a possible cause of epilepsy. Brain Res. 198: 204–209, 1980.
 299. Sloper, J. J., and T. P. S. Powell. Dendro‐dendritic and reciprocal synapses in the primate motor cortex. Proc. R. Soc. Lond. B Biol. Sci. 203: 23–38, 1978.
 300. Sloper, J. J., and T. P. S. Powell. Gap junctions between dendrites and somata of neurones in primate sensori‐motor cortex. Proc. R. Soc. Lond. B Biol. Sci. 203: 39–47, 1978.
 301. Sloviter, R. S. “Epileptic” brain damage in rats induced by sustained electrical stimulation of the perforant path. I. Acute electrophysiological and light microscopic studies. Brain Res. Bull. 10: 675–697, 1983.
 302. Spencer, S. S., D. D. Spencer, P. D. Williamson,and R. H. Mattson. Sexual automatisms in complex partial seizures. Neurology 33: 527–533, 1983.
 303. Stefanis, C, and H. Jasper. Recurrent collateral inhibition in pyramidal tract neurons. J. Neurophysiol. 27: 855–877, 1964.
 304. Stevens, J. R. Interictal clinical manifestations of complex partial seizures. In: Advances in Neurology. Complex Partial Seizures and Their Treatment, edited by J. K. Penry and D. D. Daly. New York: Raven, 1975, vol. 11, p. 85–112.
 305. Stevens, J. R. Risk factors for psychopathology in individuals with epilepsy. Adv. Biol. Psychiatry 8: 56–80, 1982.
 306. Stevens, J. R., and B. P. Hermann. Temporal lobe epilepsy, psychopathology and violence: the state of the evidence. Neurology 31: 1127–1132, 1981.
 307. Strick, P. L., and J. B. Preston. Two representations of the hand in area 4 of a primate. I. Motor output organization. J. Neurophysiol. 48: 139–149, 1982.
 308. Strick, P. L., and J. B. Preston. Two representations of the hand in area 4 of a primate. II. Somatosensory input organization. J. Neurophysiol. 48: 150–159, 1982.
 309. Swanson, L. W., and W. M. Cowan. An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J. Comp. Neurol. 172: 49–84, 1977.
 310. Swanson, L. W., J. M. Wyss, and W. M. Cowan. An autoradiographic study of the organization of intrahippocampal association pathways in the rat. J. Comp. Neurol. 181: 681–716, 1978.
 311. Szentagothai, J. The neurone network of the cerebral cortex: a functional interpretation. Proc. R. Soc. Lond. B Biol. Sci. 121: 219–248, 1978.
 312. Taylor, D. C. Factors influencing the occurrence of schizophrenialike psychosis in patients with temporal lobe epilepsy. Psychol. Med. 5: 249–254, 1975.
 313. Temkin, O. The Falling Sickness. Baltimore, MD: Johns Hopkins Press, 1971.
 314. Theodore, W. H., M. E. Newmark, S. Sato, R. Brooks, N. Patronas, R. De La Paz, G. Dichiro, R. M. Kessler, R. Margolin, R. G. Manning, M. Channing,and R. J. Porter. [18F]Flurodeoxyglucose positron emission tomography in refractory complex partial seizures. Ann. Neurol. 14: 429–437, 1983.
 315. Theodore, W. H., R. J. Porter, and J. K. Penry. Complex partial seizures: clinical characteristics and differential diagnosis. Neurology 33: 1115–1121, 1983.
 316. Traub, R. D., and R. Llinas. Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis. J. Neurophysiol. 42: 476–496, 1979.
 317. Traub, R. D., and R. K. S. Wong. Synchronized burst discharge in disinhibited hippocampal slice. II. Model of cellular mechanisms. J. Neurophysiol. 49: 459–471, 1983.
 318. Tuff, L. P., R. J. Racine, and R. K. Mishra. The effects of kindling on GABA‐mediated inhibition in the dentate gyrus of the rat. II. Receptor binding. Brain Res. 277: 91–98, 1983.
 319. Turner, B. H., M. Mishkin, and M. Knapp. Organization of the amygdalopetal projections from modality‐specific cortical association areas in the monkey. J. Comp. Neurol. 191: 515–543, 1980.
 320. Udvarhelyi, G. B., and A. E. Walker. Dissemination of acute focal seizures in the monkey. I. From cortical foci. Arch. Neurol. 12: 333–356, 1965.
 321. Van Buren, J. M. Sensory, motor and autonomic effects of mesial temporal stimulation in man. J. Neurosurg. 18: 273–288, 1961.
 322. Van Buren, J. M. The abdominal aura: a study of abdominal sensations occurring in epilepsy and produced by depth stimulation. Electroencephalogr. Clin. Neurophysiol. 15: 1–19, 1963.
 323. Van Essen, D. C, and J. H. R. Maunsell. Hierarchical organization and functional streams of the visual cortex. Trends Neurosci. 6: 370–375, 1983.
 324. Van Hoesen, G. W. The differential distribution, diversity and sprouting of cortical projections to the amygdala in the Rhesus monkey. In: The Amygdaloid Complex, edited by Y. Ben‐Ari. Amsterdam: Elseviers, 1981, p. 77–90.
 325. Van Hoesen, G. W. The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends Neurosci. 5: 345–350, 1982.
 326. Van Hoesen, G. W., and D. N. Pandya. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res. 95: 1–24, 1975.
 327. Van Hoesen, G. W., D. N. Pandya, and N. Butters. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents. Brain Res. 95: 25–38, 1975.
 328. Van Hoesen, G. W., and D. N. Pandya. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections. Brain Res. 95: 39–59, 1975.
 329. Vergnes, M., and P. Karli. Effets de la stimulation de l'hypothalamus latéral, de l'amygdale et de l'hippocampe sur le comportement d'aggression interspécifique rat‐souris. Physiol. Behav. 4: 889–894, 1969.
 330. Vogt, B. A., and D. N. Pandya. Cortico‐cortical connections of somatic sensory cortex (areas 3, 1 and 2) in the Rhesus monkey. J. Comp. Neurol. 177: 179–192, 1978.
 331. Voskuil, P. H. A. The epilepsy of Fyodor Mikhailovitch Dostoevsky (1821–1881). Epilepsia 24: 658–667, 1983.
 332. Wada, J., and M. Sato. Effects of unilateral lesion in the midbrain reticular formation on kindled amygdaloid convulsion in cats. Epilepsia 16: 693–697, 1975.
 333. Walker, A. E., C. Marshall, and E. N. Beresford. Electrocorticographic characteristics of the cerebrum in post‐traumatic epilepsy. Res. Publ. Assoc. Res. New. Ment. Dis. 26: 502–512, 1947.
 334. Walker, A. E., G. F. Poggio, and O. J. Andy. Structural spread of cortically‐induced epileptic discharges. Neurology 6: 616–626, 1956.
 335. Walker, A. E., and G. B. Udvarhelyi. The generalization of a seizure. J. Nerv. Ment. Dis. 140: 252–271, 1956.
 336. Walker, A. E., and G. B. Udvarhelyi. Dissemination of acute focal seizures in the monkey. II. From subcortical foci. Arch. Neurol. 12: 357–380, 1965.
 337. Walshe, F. M. R. The mode of representation of movements in the motor cortex, with special reference to “convulsions beginning unilaterally.” Brain 66: 104–139, 1943.
 338. Ward, A. A., Jr. The epileptic neuron: chronic foci in animals and man. In: Basic Mechanism of the Epilepsies, edited by H. H. Jasper, A. A. Ward, Jr., and A. Pope. Boston, MA: Little, Brown, 1969, p. 263–288.
 339. Ward, A. A., Jr., J. K. Penry,and D. P. Purpura (editors). Epilepsy. New York: Raven, 1983.
 340. Waxman, S. G.,and N. Geschwind. Hypergraphia in temporal lobe epilepsy. Neurology 24: 629–636, 1974.
 341. Waxman, S. G., and N. Geschwind. The interictal behavioral syndrome of temporal lobe epilepsy. Arch. Gen. Psychiatry 32: 1580–1586, 1975.
 342. Weil, A. A. Ictal emotions occurring in temporal lobe dysfunction. Arch. Neurol. 101–111, 1959.
 343. Westrum, L. E., L. E. White, Jr., and A. A. Ward, Jr. Morphology of the experimental epileptic focus. J. Neurosurg. 21: 1033–1046, 1964.
 344. Wieser, H. G. Temporal lobe or psychomotor status epilepticus. A case report. Electroencephalogr. Clin. Neurophysiol. 48: 558–572, 1980.
 345. Wieser, H. G. Electroclinical Features of the Psychomotor Seizure: A stereoelectroencephalographic Study of Ictal Symptoms and Chronotopographical Seizure Patterns Including Clinical Aspects of Intracerebral Stimulation. New York: Butter‐worths, 1983.
 346. Wilder, B. J., and R. P. Schmidt. Propagation of epileptic discharge from chronic neocortical foci in monkey. Epilepsia 6: 297–309, 1965.
 347. Wilkins, A. J., F. Andermann, and J. Ives. Stripes, complex cells and seizures. Brain 98: 365–380, 1975.
 348. Wilkins, A. J., C. E. Darby, and C. D. Binnel. Neurophysiological aspects of pattern‐sensitive epilepsy. Brain 102: 1–25, 1979.
 349. Wilson, C. L., T. L. Babb, E. Halgren,and P. H. Crandall. Visual receptive fields and response properties of neurons in human temporal lobe and visual pathways. Brain 106: 473–502, 1983.
 350. Wilson, D. H., C. Culver, M. Waddington,and M. Gazzaniga. Disconnection of the cerebral hemispheres. Neurology 25: 1149–1153, 1975.
 351. Wilson, D. H., A. Reeves, and M. Gazzaniga. Division of the corpus callosum for uncontrolled epilepsy. Neurology 28: 649–653, 1978.
 352. Winfield, D. A., K. C. Gatter, and T. P. S. Powell. An electron microscopic study of the types and proportions of neurons in the cortex of the motor and visual areas of the cat and rat. Brain 103: 245–258, 1980.
 353. Wong, R. K. S., and D. A. Prince. Participation of calcium spikes during intrinsic burst firing in hippocampal neurons. Brain Res. 159: 385–390, 1978.
 354. Wong, R. K. S., and D. A. Prince. Dendritic mechanisms underlying penicillin‐induced epileptiform activity. Science Wash. DC 204: 1228–1231, 1979.
 355. Wong, Y. C, H. C. Kwan, W. A. MacKay,and J. T. Murphy. Spatial organization of precentral cortex in awake primates. I. Somatosensory inputs. J. Neurophysiol. 41: 1107–1119, 1978.
 356. Woolsey, C. N., P. H. Settlage, D. R. Meyer, W. Spencer, T. Pinto Hamuy, and A. M. Travis. Patterns of localization in precentral and “supplementary” motor areas and their relation to the concept of a premotor area. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 30: 238–264, 1952.
 357. Wyler, A. R. Single unit analysis of “mirror foci” in chronic epileptic monkeys. Brain Res. 150: 201–204, 1978.
 358. Wyler, A. R., K. J. Burchiel, and A. A. Ward, Jr. Chronic epileptic foci in monkeys: correlation between seizure frequency and proportion of pacemaker epileptic neurons. Epilepsia 19: 475–483, 1978.
 359. Wyler, A. R., E. E. Fetz, and A. A. Ward, Jr. Spontaneous firing patterns of epileptic neurons in the monkey motor cortex. Exp. Neurol. 40: 567–585, 1973.
 360. Wyler, A. R., E. E. Fetz, and A. A. Ward, Jr. Firing patterns of epileptic and normal neurons in the chronic alumina focus in undrugged monkeys during different behavioral states. Brain Res. 98: 1–20, 1975.
 361. Wyler, A. R., G. A. Ojemann, and A. A. Ward, Jr. Neurons in human epileptic cortex: correlation between unit and EEG activity. Ann. Neurol. 11: 301–308, 1982.
 362. Wyler, A. R., and A. A. Ward, Jr. Epileptic neurons. In: Epilepsy: A Window to Brain Mechanisms, edited by J. S. Lockard and A. A. Ward, Jr. New York: Raven, 1980, p. 51–68.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Robert C. Collins. Epilepsy: Insights into Higher Brain Functions in Humans. Compr Physiol 2011, Supplement 5: Handbook of Physiology, The Nervous System, Higher Functions of the Brain: 811-841. First published in print 1987. doi: 10.1002/cphy.cp010520