Comprehensive Physiology Wiley Online Library

Introduction

Full Article on Wiley Online Library



This article has no abstract.

References
 1. Wiggers CJ. Physiology in Health and Disease. Philadelphia: Lea and Febiger, 1944, p. 545.
 2. Gauer OH. Harvey: William Harvey. “Founders of Experimental Physiology”. J.F. Lehmanns Verlag Munchen, 1971, p. 111.
 3. Landis EM. The capillary circulation. In: Circulation of the Blood. Men and Ideas, eds Fishman AP and Richards DW. Bethesda, MD: American Physiological Society, 1982. Chapter VI.
 4. Hoole S. and Van Leeuwenhoek A. Select Works Containing His Microscopical Discoveries in Many of the Works of Nature, vol. 1. London: G. & W. Nicol, 1798, Translated by Samuel Hoole.
 5. Foster M. A Textbook of Physiology, 5th Edition. London and New York: Macmillan & Co, 1893. Part I.
 6. Pries AR, Neuhaus D and Gaehtgens P. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am J Physiol 263: H1770–H1778, 1992.
 7. Krogh A. Anatomy and Physiology of Capillaries. New Haven, Connecticut: Yale University Press, 1929.
 8. Popel AS, Torres Filho IP, Johnson PC and Bouskela E. A new scheme for hierarchical classification of anastomosing vessels. Int J Microcirc Clin Exp 7: 131–138, 1988.
 9. Wiedeman MP. Lengths and diameters of peripheral arterial vessels in the living animal. Circ Res 10: 686–690, 1962.
 10. Gaehtgens P, Ley K and Pries AR. Topological approach to the analysis of microvessel structure and hematocrit distribution. In: Microvascular Networks: Experimental and Theoretical Studies, eds Popel AS and Johnson PC. Karger: Basel, 1986, pp. 52–60.
 11. Strahler AN. Quantitative analysis of watershed morphology. Trans Am Geophys Union 38: 913–920, 1957.
 12. Torres Filho IP, Popel AS, Johnson PC, Cyrino FZGA and Bouskela E. Shape and orientation of arterial loops in cat sartorius muscle. Int J Microcirc: Clin Exp 9: 297–302, 1990.
 13. Joyner WL, Davis MJ and Gilmore JP. Intravascular pressure distribution and dimensional analysis of microvessels in hamsters with renovascular hypertension. Microvasc Res 22: 190–198, 1981.
 14. Kuo L, Davis MJ and Chilian WM. Myogenic activity in isolated subepicardial and subendocardial coronary arterioles. Am J Physiol 255: H1558–H1562, 1988.
 15. Sakai H, Hara H, Tsai AG, Tsuchida E and Intaglietta M. Constriction of resistance arteries determines 1‐NAME‐induced hypertension in a conscious hamster model. Microvasc Res 60: 21–27, 2000.
 16. Rhodin JAG. The ultrastructure of mammalian arterioles and precapillary sphincters. J Ultrastruct Res 18: 181–223, 1967.
 17. Schmid‐Schoenbein GW, Skalak TC, Engelson ET and Zweifach BW. Microvascular network anatomy in rat skeletal muscle. In: Microvascular Networks: Experimental and Theoretical Studies. eds Popel AS and Johnson PC. Karger: Basel, 1986, pp. 38–51.
 18. Sullivan SM and Johnson PC. Effect of oxygen on arteriolar dimensions and blood flow in cat sartorius muscle. Am J Physiol 241: H547–H556, 1981.
 19. Smaje L, Zweifach BW and Intaglietta M. Micropressures and capillary filtration coefficients in single vessels of the cremaster muscle of the rat. Microvasc Res 2: 96–110, 1970.
 20. Chambers R and Zweifach BW. Topography and function of the mesenteric capillary circulation. Am J Anat 75: 173–206, 1944.
 21. Fuxe K and Sedvall G. The distribution of adrenergic nerve fibres to the blood vessels in skeletal muscle. Acta Physiol Scand 64: 75–86, 1965.
 22. Dodd LR and Johnson PC. Diameter changes in arteriolar networks of contracting skeletal muscle. Am J Physiol 260: H662–H670. 1991.
 23. Segal SS. Integration of blood flow control to skeletal muscle: key role of feed arteries. Acta Physiol Scand 168: 511–518, 2000.
 24. Emerson GG and Segal SS. Electrical activation of endothelium evokes vasodilation and hyperpolarization along hamster feed arteries. Am J Physiol 280: H160–H167, 2001.
 25. Rhodin JA. Ultrastructure of mammalian venous capillaries, venules and small collecting veins. J Ultrastructure Res 25: 452–500, 1968.
 26. Majno G. Ultrastructure of the vascular membrane. In: Handbook of Physiology, Circulation, Vol. III. ed. Hamilton WF. Washington. DC: American Physiological Society. 1965, pp. 2293–2375, Chapter 64, Section 2.
 27. Reilly FD, McCuskey RS and Cilento EV. Hepatic microvascular regulatory mechanisms: I. Adrenergic mechanisms. Microvasc Res 21: 103–116, 1981.
 28. Eriksson E and Mryhage R. Microvascular dimensions and blood flow in skeletal muscle. Acta Physiol Scand 86: 211–222, 1972.
 29. Bassingthwaite JB, Yipintsoi T and Harvey RB. Microvasculature of the dog left ventricular myocardium. Microvasc Res 7: 229–249, 1974.
 30. Altman P. Blood and Other Body Fluids, eds Ditmer D and Washington DC. FASEB, 1961, p. 119.
 31. Ley K, Pries AR and Gaehtgens P. Topological structure of the rat mesenteric microvessel networks. Microvasc Res 32: 315–332, 1986.
 32. Clark ER and Clark EL. Observations on living arterio‐venous anastomoses as seen in transparent chambers introduced into the rabbit's ear. Am J Anat 54: 229–286, 1934.
 33. House SD and Johnson PC. Diameter and blood flow of skeletal muscle venules during local flow regulation. Am J Physiol 250: H828–H837, 1986.
 34. Koller A, Dawant B, Popel AS and Johnson PC. Quantitative analysis of arteriolar network architecture in cat sartorius muscle. Am J Physiol 253: H154–H164, 1987.
 35. Marshall JM and Hebert MT. Differential effect of changes in sympathetic activity on consecutive sections of microcirculation of mesentery and skeletal muscle. In: Microvascular Networks: Experimental and Theoretical Studies, eds Popel AS and Johnson PC. Karger: Basel, 1986, pp. 123–133.
 36. Bohlen HG and Gore RW. Comparison of microvascular pressures and diameters in the innervated and denervated rat intestine. Microvasc Res 14: 251–264, 1977.
 37. Pappenheimer JR. Contributions to microvascular research of Jean Leonard Marie Poiseulle. In: Handbook of Physiology, Section 2: The Cardiovascular System, Volume IV, eds Renkin EM and Michel CC. Washington: American Physiological Society, 1984, Chapter 1, Microcirculation, Part I.
 38. Mall JP. Die Blut und Lymphwege im Dunndarm des Hundes. Abhandlungen der mathematischphysischen Classe der konigl. Sachischen Gesellschaft der Wissenschaften 14 (3), 1887.
 39. Schlier J. Der energieverbrauch in der blutbahn. Pfl uegers Archiv fuer die gesamte Physiologie des Menschen und der Tiere 173: 172–204, 1918.
 40. Green HD. “Medical Physics”, ed. Glasser O. Chicago: Year Book Publ. 1944.
 41. Fronek K and Zweifach BW. Microvascular pressure distribution in skeletal muscle and the effect of vasodilatation. Am J Physiol 228: 791–796, 1975.
 42. Schmid‐Schoenbein GW and Muakami H. Blood flow in contracting arterioles. Int J Microcirc Clin Exp 4: 311–328, 1981, 1985.
 43. Johnson PC. Landis Award Lecture 1976. The myogenic response and the microcirculation. Microvasc Res 13: 1–18, 1977.
 44. Smiesko V, Lang DJ and Johnson PC. Dilator response of rat mesenteric arcading arterioles to increased flow. Am J Physiol 257: H1958–H1965, 1989.
 45. Christensen KL and Mulvany MJ. Location of resistance arteries. J Vasc Res 38: 1–12, 2001.
 46. Clifford PS and Hellsten Y. Vasodilatory mechanisms in contracting skeletal muscle. J Appl Physiol 97: 393–403, 2004.
 47. Hester RL and Hammer LW. Venular‐arteriolar communication in the regulation of blood flow. Am J Physiol 282: R1280–R1285, 2002.
 48. Tigno XT, Ley K, Pries AR and Gaehtgens P. Venulo‐arteriolar communication and propagated response. A possible mechanism for local control of blood flow. Pflugers Arch 414: 450–456, 1989.
 49. Zweifach BW. The structure and reaction of small blood vessels in amphibia. Am J Anat 60: 473–514, 1937.
 50. Clark ER and Clark EL. Caliber changes in minute blood vessels observed in the living mammal. Am J Anat 73: 215–250, 1943.
 51. Gorcznski RJ, Klitzman B and Duling BR. Interrelations between contracting striated muscle and precapillary microvessels. Am J Physiol 235: H494–H504, 1978.
 52. Zweifach BW. The microcirculatory module, myth or reality? In: Microvascular Networks: Experimental and Theoretical Studies, eds Popel AS and Johnson PC. Karger: Basel, 1986, pp. 1–11.
 53. Mayrovitz HN. Hemodynamic significance of microvascular arteriolar anastomosing. In: Microvascular Networks: Experimental and Theoretical Studies, eds Popel AS and Johnson PC. Karger: Basel, 1986. pp. 197–209.
 54. Renkin EM. Control of circulation and blood‐tissue exchange (Chapter 14). In: Handbook of Physiology, Section 2: The Cardiovascular System Vol IV Microcirculation, Part 2, eds Renkin EM and Michel CC. Bethesda: American Physiological Society, 1984.
 55. Stromberg DD and Fox JR. Pressures in the pial arterial microcirculation of the cat during changes in systemic arterial blood pressure. Circ Res 31: 229–239, 1972.
 56. Schretzenmayr A. Uber kreislaufregulatorische Vorgange an den grossen Arterien bei der Muskelarbeit. Pfluegers Arch 232: 743–748, 1933.
 57. Hilton S. A peripheral arterial conducting mechanism underlying dilation of the femoral artery and concerned in functional vasodilatation in skeletal muscle. J Physiol Lond 149: 93–111, 1959.
 58. Khayutin V, Melkumyants AM, Rogoza AN, Veselova ES, Balashov SA and Nikolsky VP. Flow‐induced control of the arterial lumen. Acta Physiol Hung 68: 241–251, 1986.
 59. Rubanyi GM, Romero CJ and Vanhoutte PM. Flow‐induced release of endothelium‐derived relaxing factor. Am J Physiol 250: H1145–H1149, 1986.
 60. Pries AR, Secomb TW, Jacobs H, Sperandio M, Osterloh K and Gaehtgens P. Microvascular flow resistance: role of endothelial surface layer. Am J Physiol 273: H2272–H2279, 1997.
 61. Cabel M, Meiselman HJ, Popel AS and Johnson PC. Contribution of red blood cell aggregation to venous vascular resistance in skeletal muscle. Am J Physiol 272: H1020–H1032, 1997.
 62. Kuo L, Arko F, Chilian WM and Davis MJ. Coronary venular responses to flow and pressure. Circ Res 72: 607–615, 1993.
 63. Bishop JJ, Nance PR, Popel AS, Intaglietta M and Johnson PC. Diameter changes in skeletal muscle venules during arterial pressure reduction. Am J Physiol 279: H47–H57, 2000.
 64. Laughlin HM and Joyner M. Closer to the edge? Contractions, pressures, waterfalls and blood flow to contracting skeletal muscle. J Appl Physiol 94: 3–5, 2003.
 65. Krogh A. Supply of oxygen to the tissues and the regulation of the capillary circulation. J Physiol (Lond) 52: 457–474, 1919.
 66. Duling BR and Berne RM. Longitudinal gradients in periarteriolar oxygen tension: Possible mechanism for the participation of oxygen in local regulation of blood flow. Circ Res 27: 669–678, 1970.
 67. Tsai AG, Friesnecker B, Mazzoni MD, Kerger H, Buerk DG, Johnson PC and Intaglietta M. Microvascular and tissue oxygen gradients in the rat mesentery, Proc Natl Acad Sci USA 95: 6590–6595, 1998.
 68. Tsai AG, Johnson PC and Intaglietta M. Oxygen gradients in the microcirculation. Physiol Rev 83: 933–963, 2003.
 69. Wagner PD. Diffusional resistance to O2 transport in muscle. Acta Physiol Scand 168: 609–614, 2000.
 70. Starling E. On the absorption of fluids from the connective tissue spaces. J Physiol (Lond) 19: 312–326, 1896.
 71. Landis EM. Mirco‐injection studies of capillary permeability: II the relation between capillary pressure and the rate at which fluid passes through the walls of single capillaries. Am J Physiol 82: 217–238, 1927.
 72. Pappenheimer JR and Soto Rivera A. Effective osmotic pressure of the plasma proteins and other quantities associated with the capillary circulation in the hindlimbs of cats and dogs. Am J Physiol 152: 471–491, 1948.
 73. Guyton AC. A concept of negative interstitial pressure based on pressures in implanted perforated capsules. Circ Res 12: 399–414, 1963.
 74. Wiederhielm CA and Weston BV. Microvascular, lymphatic and tissue pressures in the unanesthetized mammal. Am J Physiol 225: 992–996, 1973.
 75. Johnson PC. Effect of venous pressure on mean capillary pressure and vascular resistance in the intestine. Circ Res 16: 294–300, 1965.
 76. Mortillaro NA and Taylor AE. Interaction of capillary and tissue forces in the cat small intestine. Circ Res 39: 348–358, 1976.
 77. Chambers R and Zweifach BW. Intercellular cement and capillary permeability. Physiol Rev 27: 436–463, 1947.
 78. Pappenheimer JR, Renkin EM and Borrero JM. Filtration diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillaray permeability. Am J Physiol 167: 13–46, 1951.
 79. Michel CC and Curry FE. Microvascular permeability. Physiol Rev 79: 703–761, 1999.
 80. Levick JR. Capillary filtration‐absorption balance reconsidered in light of dynamic extravascular factors. Exp Physiol 76: 825–857, 1991.
 81. Wolf MD and Watson PD. Measurement of osmotic reflection coefficient for small molecules in cat hindlimbs. Am J Physiol 256: H282–H290, 1989.
 82. Grotte G. Passage of dextran molecules across the blood‐lymph barrier. Acta Chir Scand 211 (Suppl.): 1–84, 1956.
 83. Palade GE. Transport in quanta across the endothelium of blood capillaries. Anat Rec 136: 254, 1960, (abstract).
 84. Majno G, Palade GE and Schoefl G. Studies on inflammation II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J Biophys Biochem Cytol 11: 607–626, 1961.
 85. Yuan Y, Chilian WM, Granger HJ and Zaweija DC. Flow modulates coronary venular permeability by a nitric oxide‐related mechanism. Am J Physiol 263: H641–H646, 1992.
 86. Dutrochet H. Recherches anatomiques et physiologiques sur la structure intime des animaux et des végetaux, et sur leur motilité. Paris: Bailliere et fils, 1824.
 87. Ohashi KL, Tung K‐L, Wilson J, Zweifach BW and Schmid‐Schoenbein G. Transvascular and Interstitial migration of neutrophils in rat mesentery. Microcirculation 3: 199–210, 1996.
 88. Tsai MA, Frank RS and Waugh RE. Passive mechanical behavior of human neutrophils: power‐law fluid. Biophys J 65: 2078–2088, 1994.
 89. Burns AR, Walker DC, Brown ES, Thurmon LT, Bowden RA, Keese CR, Simon SI, Entman ML and Smith CW. Neutrophil transendothelial migration is independent of tight junctions and occurs preferentially at tricellular corners. J Immunol 159: 2893–2903. 1997.
 90. Damon DH and Duling BR. Distribution of capillary blood flowin the microcirculation of the hamster. An in vivo study using epifluo‐rescent microscopy. Microvasc Res 27: 81–95, 1984.
 91. Unthank JL, Lash JM, Nixon J, Snider RA and Bohlen HG. Evaluation of carbocyanine‐labeled erythrocytes for microvascular measurements. Microvasc Res 45: 193–210, 1993.
 92. Tangelder GJ, Slaaf DW, Muijtjens AMM, Arts T, oude Egbrink MGA and Reneman RS. Velocity profiles of blood platelets and red blood cells flowing in arterioles of the rabbit mesentery. Circ Res 59: 505–514, 1986.
 93. Paques M, Boval B, Richard S, Tadayoni R, Massin P, Mundler O, Gaudric A and Vicaut E. Evaluation of fluorescein‐labeled autologous leukocytes for examination of retinal circulation in humans. Curr Eye Res 21: 560–565, 2000.
 94. Adamson RH, Lenz JF and Curry FE. Quantitative laser scanning confocal microscopy on single capillaries: permeability measurement. Microcirculation 1: 251–265, 1994.
 95. Chaigneau E, Oheim M, Audinat E and Charpak S. Two‐photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc Natl Acad Sci USA 100: 13081–13086, 2003.
 96. Beacham WS, Konishi A and Hunt CC. Observations of the microcirculatory bed in rat mesocecum using differential interference contrast microscopy in vivo and electron microscopy. Am J Anat 146: 385–425, 1976.
 97. Trache A and Meininger GA. Atomic force‐multi‐optical imaging integrated microscope for monitoring molecular dynamics in live cells. J Biomed Opt 10, 2005, 064023.
 98. Messmer K, Sunder‐Plassmann L, Jesch F, Gornandt L, Sinagowitz E and Kessler M. Oxygen supply to the tissues during limited normovolemic hemodilution. Res Exp Med (Berl) 159: 152–166, 1973.
 99. Whalen WJ, Riley J and Nair P. Microelectrode for measuring intracellular PO2. J Appl Physiol 23: 798–801, 1967.
 100. Lund N, Sjoberg F, Guldbrand H, Walfridsson H and Edwall G. A multipoint micro antimony pH electrode for tissue surface measurements. Int J Clin Monit Comput 1: 147–153, 1984.
 101. Bohlen HG. Mechanism of increased vessel wall nitric oxide concentrations during intestinal absorption. Am J Physiol 275: H542–H550, 1998.
 102. Buerk DG, Riva CE and Cranstoun. Nitric oxide has a vasodilatory role in cat optic nerve head during flicker stimuli. Microvasc Res 52: 13–26, 1996.
 103. Pittman RN. Microvessel blood oxygen measurement techniques. In: “Microcirulatory Technology”, eds Baker CH and Nastuk WL. Orlando Fl: Academic. 1987, pp. 367–390.
 104. Mayhan WG. Nitric oxide accounts for histamine‐induced increases in macromolecular extravasation. Am J Physiol 266: H2369–H2373, 1994.
 105. Wilson DF. Measuring oxygen using oxygen dependent quenching of phosphorescence: A status report. Adv Exp Med Bio 333: 225–232, 1993.
 106. Zheng L, Golub AS and Pittman RN. Determination of pO2 and its heterogeneity in single capillaries. Am J Physiol 271: H365–H372, 1996.
 107. Torres Filho IP and Intaglietta M. Microvessel pO2 measurements by phosphorescence decay method. Am J Physiol 265: H1434–H1438, 1993.
 108. Buerk DG, Tsai AG, Intaglietta M and Johnson PC. In vivo tissue pO2 measurements in hamster skinfold by recessed pO2 micro‐electrodes and phosphorescence quenching are in agreement. Microcirculation 5: 219–225, 1998.
 109. Toth A, Tischler ME, Pal M, Koller A and Johnson PC. A multipurpose instrument for quantitative intravital microscopy. J Appl Physiol 73: 296–306, 1992.
 110. Loutzenhiser RD. In situ studies of renal arteriolar function using the in vitro‐perfused hydronephrotic rat kidney. Int Rev Exp Pathol 36: 145–160, 1996.
 111. Munro PAG. Methods for measuring the velocity of moving particles under the microscope. In: Advances in Optical and Electron Microscopy, vol. 1, eds Barer R and Cosslett VE. New York: Academic, 1966. pp. 1–40.
 112. Bloch EH. Quantitative study of the hemodynamics in the living microvascular system. Am J Anat 110: 125–153, 1962.
 113. Intaglietta M and Tompkins WR. On‐line measurement of microvascular dimensions by television microscopy. J Appl Physiol 32: 546–551, 1983.
 114. Wayland H and Johnson PC. Erythrocyte velocity measurement in microvessels by a two‐slit photometric method. J Appl Physiol 22: 333–337, 1967.
 115. Intaglietta M and Tompkins WR. System for the measurement of velocity of microscopic particles in liquids. IEEE Trans Biomed 18: 376–377, 1971.
 116. Baker M and Wayland H. On‐line volume flow rate velocity profile measurement for blood in microvessels. Microvasc Res 7: 131–143, 1974.
 117. Davis MJ. Determination of volumetric flow in capillary tubes using an optical Doppler velocimeter. Microvasc Res 34: 223–230, 1987.
 118. Bishop JJ, Nance PR, Popel AS, Intaglietta M and Johnson PC. Relationship between erythrocyte aggregate size and flow rate in skeletal muscle venules. Am J Physiol 286: H113–H120, 2004.
 119. Sarelius IH and Duling BR. Direct measurement of microvessel hematocrit, red cell flux, velocity and transit time. Am. J. Physiol 243: H1018–H1026, 1982.
 120. Bishop JJ, Nance PR, Popel AS, Intaglietta M and Johnson PC. Effect of erythrocyte aggregation on velocity profiles in venules. Am. J. Physiol 280: H222–H236, 2001.
 121. Smith ML, Long DS, Damiano ER and Ley K. Near wall k:PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophys. J 85: 637–645, 2003.
 122. Roy CS and Brown JG. The blood pressure and its variations in the arterioles, capillaries and veins. J. Physiol (Land) 2: 323–359. 1880.
 123. Landis EM. The capillary pressure in frog mesentery as determined by micro‐injection methods. Am J Physiol 75: 548–570, 1926.
 124. Wiederhielm CA, Woodbury JW, Kirk S and Rushmer RF. Pulsatile pressures in the microcirculation of the frog's mesentery. Am J Physiol 207: 173–176, 1964.
 125. Intaglietta M and Tompkins WR. Micropressure measurement with 1 micron and smaller cannulae. Microvasc Res 3: 211–214. 1971.
 126. Segal SS and Beny JL. Intracellular recording and dye transfer in arterioles during blood flow control. Am J Physiol 263: H1–H7, 1992.
 127. Beach JM, McC\Gahren EF, Xia J and Duling BR. Ratiometric measurement of endothelial depolarization in arterioles with a potential‐sensitive dye. Am J Physiol 270: H2216–H2227, 1996.
 128. Nicoll PA and Webb RL. Vascular patterns and active vasomotion as determiners of flow through minute vessels. Angiology 6: 291–308, 1955.
 129. Microcirculatory Research Methods. Microvascular Research 5: 229–435, 1973.
 130. Baez S. An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy. Microvasc Res 5: 384–394, 1973.
 131. Hill MA, Simpson BE and Meininger GA. Altered cremaster muscle hemodynamics due to disruption of the deferential feed vessels. Microvasc Res 39: 349–363, 1990.
 132. Gore RW. Mesenteric preparations for quantitative microcirculatory studies. Microvasc Res 5: 368–375, 1973.
 133. Frasher WG, Jr., Attached floating cat mesentery preparation for vital microscopy. Microvasc Res 5: 376–383, 1973.
 134. Gray SD. Rat spinotrapezius muscle preparation for microscopic observation of the terminal vascular bed. Microvasc Res 5: 395–400, 1973.
 135. Klotz KF, Pries AR, Jepsen H, Gossrau R and Gaehtens P. A new approach to videomicroscopy of rat spinotrapezius muscle. Int J Microcirc Clin Exp 10: 205–218, 1991.
 136. Zweifach BW and Intaglietta M. Mechanics of fluid movement across single capillaries in the rabbit. Microvasc Res 1: 83–101, 1968.
 137. Lindbom L and Arfors KE. Mechanisms and site of control for variation in the number of perfused capillaries in skeletal muscle. Int J Microcirc Clin Exp 4: 19–30, 1985.
 138. Burton KM. Cat sartorius muscle: an istolated perfused skeletal muscle preparation for microvascular research. Microvasc Res 5: 401–409, 1973.
 139. Stromberg DD and Shapiro HM. Preparation of the cat cerebral cortical surface for microvascular pressure measurements. Microvasc Res 5: 410–416, 1973.
 140. Duling BR. The preparation and use of the hamster cheek pouch for studies of the microcirculation. Microvasc Res 5: 423–429, 1973.
 141. Sullivan SM and Pttman RN. Hamster retractor muscle: a new preparation for intravital microscopy. Microvasc Res 23: 329–335, 1982.
 142. Wiedeman MP. Preparation of the bat wing for in vivo microscopy. Microvasc Res 5: 417–422, 1973.
 143. Papenfuss HD, Gross JF, Intaglietta M and Treese FA. A transparent access chamber for the rat dorsal skin fold. Microvasc Res 18: 311–318, 1979.
 144. Endrich B, Asaishi K, Götz A and Messmer K. Technical report — a new chamber technique for microvascular studies in unanesthetized hamsters. Res Exp Med (Berl) 177: 125–134, 1980.
 145. Menger MD, Jäger S, Walter P, Hammersen F and Messmer K. A novel technique for studies on the microvasculature of transplanted islets of Langerhans in vivo. Int J Microcirc Clin Exp 9: 103–117, 1990.
 146. Wiedeman MP. Patterns of the arteriovenous pathways. In: Handbook of Physiology. vol. 11, eds Hamilton WF, Dow P and Washington DC. American Physiological Society, 1963, pp. 891–933. section 2.
 147. Carpentier P and Franco A. L'angioscopie conjunctivale DELTACOM. France: Boulogne‐billancourt, 1985.
 148. Fagrell B, Fronek A and Intaglietta M. A microscope‐television system for studying flow velocity in human skin capillaries. Am J Physiol 233: H318–hH321, 1977.
 149. Seifert H, Jäger K and Bollinger A. Laser‐Doppler probes for the evaluation of arterial ischemia. Adv Exp Med Biol 220: 227–229, 1987.
 150. Slaaf DW, Tangelder GJ, Reneman RS, Jager K and Bollinger A. A versatile incident illuminator for intravital microcscopy. Int J Microcirc Clin Exp 6: 391–397. 1987.
 151. Mathura KR, Vollebregt KC, Boer K, De Graaff JC, Ubbink DT and Ince C. Comparison of OPS imaging and conventional capillary microscopy to study the human microcirculation. J Appl Physiol 91: 74–78, 2001.
 152. Huch A, Franzeck UK, Huch R and Bollinger A. A transparent transcutaneous oxygen electrode for simultaneous studies of skin capillary morphology, flow dynamics and oxygenation. Int J Microcirc Clin Exp 2: 103–108, 1983.
 153. Kubli S, Waeber B, Dalle‐Ave A and Feihl F. Reproducibility of laser Doppler imaging of skin blood flow as a tool to assess endothelial function. J Cardiovasc Pharmacol 36: 640–648, 2000.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Paul C Johnson. Introduction. Compr Physiol 2011, Supplement 9: Handbook of Physiology, The Cardiovascular System, Microcirculation: 11-24. First published in print 2008. doi: 10.1002/cphy.cp0204fm02