Comprehensive Physiology Wiley Online Library

Macrophages in the Respiratory Tract

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Classes of Pulmonary Macrophages
2 Origin of Pulmonary Macrophages
3 Fate of Pulmonary Macrophages
4 Harvesting Pulmonary Macrophages
5 Role of Pulmonary Macrophages
5.1 Particle Clearance
5.2 Mucociliary Transport
5.3 Secretion and Regulation
6 Measuring the Phagocytic Properties of Pulmonary Macrophages
6.1 In Situ
6.2 In Vitro
7 Pathophysiology of Pulmonary Macrophages
7.1 Emphysema
7.2 Fibrosis
8 Conclusion
Figure 1. Figure 1.

Scanning electron micrograph showing human alveolar macrophage “climbing” over a capillary. Cell is clearly not part of the epithelial lining but is moving above it. The 5 cells in upper part of field with abundant microvilli are epithelial type II cells. × 3,700.

Micrograph courtesy of Dr. P. Gehr
Figure 2. Figure 2.

Alveolar macrophage tightly applied to alveolar epithelium of a dog lung fixed by intratracheal instillation. Macrophage has a trailing pseudopodium and appears to be migrating toward the left. Upper left shows a capillary containing 2 erythrocytes. Upper right reveals a capillary with part of a white cell in the lumen and the nucleus of an endothelial cell directly to the right. × 7,000.

Micrograph courtesy of Dr. P. Gehr
Figure 3. Figure 3.

Section of a human lung showing an interstitial macrophage in the center. To the right is the nucleus of an endothelial cell. Above and right of the macrophage is a bundle of collagen and elastin fibers, × 17,600.

Micrograph courtesy of Dr. P. Gehr
Figure 4. Figure 4.

Distribution of phagocytic ability in Syrian golden hamster macrophages. Cells were incubated in a balanced salt solution containing Ca2+ and Mg2+ (1 mM each) for 90 min; cells phagocytized an average of 4.3 particles per cell. Solid bars, theoretical fraction of cells with x particles as predicted by the Poisson formula. Open bars, fraction of cells with x particles actually observed.

From Parod and Brain
Figure 5. Figure 5.

Free alveolar macrophage in a mouse lung with chromosomes in its cytoplasm. Presence of such cells in mitosis shows that alveolar macrophages can divide and thus may help maintain the pool size of phagocytic cells. ×37,000.

Micrograph courtesy of Dr. M. Grant
Figure 6. Figure 6.

Human alveolar macrophage obtained by bronchoalveolar lavage of a smoker's lung. Compared to that of a non‐smoker, lysosomal compartment is greatly expanded and consists mainly of hetero‐lysosomes, some possessing clear lipid‐rich centers. × 11,000.

Micrograph courtesy of Dr. M. Grant
Figure 7. Figure 7.

Yield of cells per wash recovered from hamster lungs washed with either saline (0.85% NaCl) or BSS (balanced salt solution containing Ca2+ and Mg2+). Dashed line, 12 saline washes; solid line, 6 BSS washes followed by 6 saline washes. Means ± SE.

From Brain et al.
Figure 8. Figure 8.

Hamster alveolar macrophage recovered by bronchoalveolar lavage 1 day after the animal received an intratracheal instillation of magnetite (Fe3O4). These particles of iron oxide can be seen in phagosomes on left side of the cell; because they absorb electrons efficiently they appear black. Small pseudopods extend from the plasma membrane, × 12,400.

Micrograph courtesy of Dr. P. Gehr
Figure 9. Figure 9.

Scanning electron micrograph of horse lung revealing a macrophage moving on surface of the alveolar epithelium that overlies the capillaries. Note prominent ridge in the upper left. Two pseudo‐pods that are being extended can be seen. × 5,200.

Micrograph courtesy of Dr. P. Gehr
Figure 10. Figure 10.

Dose‐response curve for Λ‐assay 1 day after exposure to iron oxide, aluminum oxide, or α‐quartz. Fraction of gold ingested was measured 90 min after its instillation. Wilcoxon rank‐sum test used to compare experimental groups and saline‐only controls. Means ± SE. P < 0.01 for 0.75 and 3.75 mg α‐quartz, P < 0.01 for 0.75 mg aluminum oxide, P < 0.05 for 0.15 mg iron oxide; all other data points not significantly different from control value (P < 0.05).

From Beck, Brain, and Bohannon
Figure 11. Figure 11.

Effect of temperature and divalent cations on uptake of fluorescent latex particles as measured with a dual‐laser flow cytometer. Experiments performed by adding a 0.01 ml aliquot of cells (at 0 min) to 3 ml of balanced salt solution (BSS) containing particles. At indicated times, 1 aliquot of the cell‐particle suspension was analyzed. Closed symbols represent data from cells incubated in BSS containing Ca2+ and Mg2+ (1 mM each); open symbols represent data from cells incubated in BSS without added Ca2+ and Mg2+ and 0.1 mM ethylenediaminetetraacetic acid. Incubation temperatures: 37°C (circles), 24°C (triangles), and 3°C (squares). Each data point is mean of 4 experiments; SE averaged 10% of means.

From Parod and Brain


Figure 1.

Scanning electron micrograph showing human alveolar macrophage “climbing” over a capillary. Cell is clearly not part of the epithelial lining but is moving above it. The 5 cells in upper part of field with abundant microvilli are epithelial type II cells. × 3,700.

Micrograph courtesy of Dr. P. Gehr


Figure 2.

Alveolar macrophage tightly applied to alveolar epithelium of a dog lung fixed by intratracheal instillation. Macrophage has a trailing pseudopodium and appears to be migrating toward the left. Upper left shows a capillary containing 2 erythrocytes. Upper right reveals a capillary with part of a white cell in the lumen and the nucleus of an endothelial cell directly to the right. × 7,000.

Micrograph courtesy of Dr. P. Gehr


Figure 3.

Section of a human lung showing an interstitial macrophage in the center. To the right is the nucleus of an endothelial cell. Above and right of the macrophage is a bundle of collagen and elastin fibers, × 17,600.

Micrograph courtesy of Dr. P. Gehr


Figure 4.

Distribution of phagocytic ability in Syrian golden hamster macrophages. Cells were incubated in a balanced salt solution containing Ca2+ and Mg2+ (1 mM each) for 90 min; cells phagocytized an average of 4.3 particles per cell. Solid bars, theoretical fraction of cells with x particles as predicted by the Poisson formula. Open bars, fraction of cells with x particles actually observed.

From Parod and Brain


Figure 5.

Free alveolar macrophage in a mouse lung with chromosomes in its cytoplasm. Presence of such cells in mitosis shows that alveolar macrophages can divide and thus may help maintain the pool size of phagocytic cells. ×37,000.

Micrograph courtesy of Dr. M. Grant


Figure 6.

Human alveolar macrophage obtained by bronchoalveolar lavage of a smoker's lung. Compared to that of a non‐smoker, lysosomal compartment is greatly expanded and consists mainly of hetero‐lysosomes, some possessing clear lipid‐rich centers. × 11,000.

Micrograph courtesy of Dr. M. Grant


Figure 7.

Yield of cells per wash recovered from hamster lungs washed with either saline (0.85% NaCl) or BSS (balanced salt solution containing Ca2+ and Mg2+). Dashed line, 12 saline washes; solid line, 6 BSS washes followed by 6 saline washes. Means ± SE.

From Brain et al.


Figure 8.

Hamster alveolar macrophage recovered by bronchoalveolar lavage 1 day after the animal received an intratracheal instillation of magnetite (Fe3O4). These particles of iron oxide can be seen in phagosomes on left side of the cell; because they absorb electrons efficiently they appear black. Small pseudopods extend from the plasma membrane, × 12,400.

Micrograph courtesy of Dr. P. Gehr


Figure 9.

Scanning electron micrograph of horse lung revealing a macrophage moving on surface of the alveolar epithelium that overlies the capillaries. Note prominent ridge in the upper left. Two pseudo‐pods that are being extended can be seen. × 5,200.

Micrograph courtesy of Dr. P. Gehr


Figure 10.

Dose‐response curve for Λ‐assay 1 day after exposure to iron oxide, aluminum oxide, or α‐quartz. Fraction of gold ingested was measured 90 min after its instillation. Wilcoxon rank‐sum test used to compare experimental groups and saline‐only controls. Means ± SE. P < 0.01 for 0.75 and 3.75 mg α‐quartz, P < 0.01 for 0.75 mg aluminum oxide, P < 0.05 for 0.15 mg iron oxide; all other data points not significantly different from control value (P < 0.05).

From Beck, Brain, and Bohannon


Figure 11.

Effect of temperature and divalent cations on uptake of fluorescent latex particles as measured with a dual‐laser flow cytometer. Experiments performed by adding a 0.01 ml aliquot of cells (at 0 min) to 3 ml of balanced salt solution (BSS) containing particles. At indicated times, 1 aliquot of the cell‐particle suspension was analyzed. Closed symbols represent data from cells incubated in BSS containing Ca2+ and Mg2+ (1 mM each); open symbols represent data from cells incubated in BSS without added Ca2+ and Mg2+ and 0.1 mM ethylenediaminetetraacetic acid. Incubation temperatures: 37°C (circles), 24°C (triangles), and 3°C (squares). Each data point is mean of 4 experiments; SE averaged 10% of means.

From Parod and Brain
References
 1. Aalto, M., and E. Kulonen. Fractionation of connective‐tissue‐activating factors from the culture medium of silica‐treated macrophages. Acta Pathol. Microbiol. Scand. Sect. C 87: 241–250, 1979.
 2. Adams, D. O. Macrophage activation and secretion. Summary. Federation Proc. 41: 2193–2197, 1982.
 3. Agostoni, E. Mechanics of the pleural space. Physiol. Rev. 52: 57–128, 1972.
 4. Aho, S., and E. Kulonen. Effect of silica‐liberated macrophage factors on protein synthesis in cell‐free systems. Exp. Cell Res. 104: 31–38, 1977.
 5. Allison, A. C. Experimental methods—cell and tissue culture: effects of asbestos particles on macrophages, mesothelial cells and fibroblasts. In: Biological Effects of Asbestos, edited by P. Bogovski, J. C. Gilson, V. Timbrell, and J. C. Wagner. Lyons, France: IARC, 1973, p. 89–93.
 6. Allison, A. C. Pathogenic effects of inhaled particles and antigens. Ann. NY Acad. Sci. 221: 299–308, 1974.
 7. Allison, A. C. Mechanisms of macrophage damage in relation to the pathogenesis of some lung diseases. In: Lung Biology in Health and Disease. Respiratory Defense Mechanisms, edited by J. D. Brain, D. F. Proctor, and L. M. Reid. New York: Dekker, 1977, vol. 5, pt. 2, chapt. 26, p. 1075–1102.
 8. Allison, A. C., J. S. Harington, and M. Birbeck. An examination of the cytotoxic effects of silica on macrophages. J. Exp. Med. 124: 141–154, 1966.
 9. Babior, B. M. The role of oxygen radicals in microbial killing by phagocytes. In: The Reticuloendothelial System: A Comprehensive Treatise. Biochemistry and Metabolism, edited by A. J. Sbarra and R. R. Strauss. New York: Plenum, 1980, vol. 2, p. 339–354.
 10. Bateman, E. D., R. J. Emerson, and P. J. Cole. A study of macrophage‐mediated initiation of fibrosis by asbestos and silica using a diffusion chamber technique. Br. J. Exp. Pathol. 63: 414–425, 1982.
 11. Beck, B. D., J. D. Brain, and D. Bohannon. An in vivo hamster bioassay to assess the toxicity of particulates for the lungs. Toxicol. Appl. Pharmcol. 66: 9–29, 1982.
 12. Besterman, J. M., and R. B. Low. Endocytosis: a review of mechanisms and plasma membrane dynamics. Biochem. J. 210: 1–13, 1983.
 13. Bingham, E., E. A. Pfitzer, W. Barkley, and E. P. Radford. Alveolar macrophages: reduced number in rat after prolonged inhalation of lead sesquioxide. Science 162: 1297–1299, 1968.
 14. Blussé, A., and R. Van Furth. Origin, kinetics, and characteristics of pulmonary macrophages in the normal steady state. J. Exp. Med. 149: 1504–1518, 1979.
 15. Bowden, D. H. The alveolar macrophage. Curr. Top. Pathol. 55: 1–36, 1973.
 16. Bowden, D. H., and I. Y. R. Adamson. Adaptive responses of the pulmonary macrophagic system to carbon. I. Kinetic studies. Lab. Invest. 38: 422–431, 1978.
 17. Brain, J. D. Free cells in the lungs: some aspects of their role, quantitation, and regulation. Arch. Intern. Med. 126: 477–487, 1970.
 18. Brain, J. D. The effects of increased particles on the number of alveolar macrophages. In: Inhaled Particles III, edited by W. H. Walton. London: Unwin, 1971, p. 209–225.
 19. Brain, J. D., S. B. Bloom, P. A. Valberg, and P. Gehr. Behavior of magnetic dusts in the lungs of rabbits correlates with phagocytosis. Exp. Lung Res. 6: 115–131, 1984.
 20. Brain, J. D., and G. C. Corkery. The effect of increased particles on the endocytosis of radiocolloids by pulmonary macrophages in vivo: competitive and toxic effects. In: Inhaled Particles IV, edited by W. H. Walton. Oxford, UK: Pergamon, 1977, p. 551–564.
 21. Brain, J. D., and N. R. Frank. Recovery of free cells from rat lungs by repeated washings. J. Appl. Physiol. 25: 63–69, 1968.
 22. Brain, J. D., and N. R. Frank. The relation of age to the number of lung free cells, lung weight, and body weight in rats. J. Gerontol. 23: 58–62, 1968.
 23. Brain, J. D., and R. Frank. Alveolar macrophage adhesion: wash electrolyte composition and free cell yield. J. Appl. Physiol. 34: 75–80, 1973.
 24. Brain, J. D., P. Gehr, and R. I. Kavet. Airway macrophages: the importance of the fixation method. Am. Rev. Respir. Dis. 129: 823–826, 1984.
 25. Brain, J. D., J. J. Godleski, and S. P. Sorokin. Structure, origin and fate of the macrophage. In: Lung Biology in Health and Disease. Respiratory Defense Mechanisms, edited by J. D. Brain, D. F. Proctor, and L. M. Reid. New York: Dekker, 1977, vol. 5, pt. 2, chapt. 20, p. 849–852.
 26. Brain, J. D., D. W. Golde, G. M. Green, D. J. Massaro, P. A. Valberg, P. A. Ward, and Z. Werb. Biologic potential of pulmonary macrophages. Am. Rev. Respir. Dis. 118: 435–443, 1978.
 27. Brain, J. D., P. A. Valberg, S. P. Sorokin, and W. C. Hinds. An iron oxide aerosol suitable for animal exposures. Environ. Res. 7: 13–26, 1974.
 28. Brody, A. P., and G. S. Davis. Alveolar macrophage toxicology. In: Mechanisms in Respiratory Toxicology, edited by H. Witschi and P. Nettesheim. Boca Raton, FL: CRC, 1982, vol. 2, p. 3–28.
 29. Brundelet, J. P. Experimental study of the dust clearance mechanism of the lung. I. Histological study in rats of the intrapulmonary bronchial route of elimination. Acta Pathol. Microbiol. Scand. Suppl. 175: 1–141, 1965. Dissertation.
 30. Burns, C. A., and A. Zarkower. Increased alveolar macrophage effector cell function after intratracheal instillation of particulates. J. Clin. Lab. Immunol. 10: 107–112, 1983.
 31. Burns, D. M., D. Shure, R. Francoz, M. Kalafer, J. Harrel, K. Witztum, and K. M. Moser. The physiologic consequences of saline lobar lavage in healthy human adults. Am. Rev. Respir. Dis. 127: 695–701, 1983.
 32. Burrell, R., and M. Anderson. The induction of fibrosis by silica‐treated alveolar macrophages. Environ. Res. 6: 389–394, 1973.
 33. Campbell, E. J. Human leukocyte elastase, cathepsin G, and lactoferrin: family of neutrophil granule glycoproteins that bind to an alveolar macrophage receptor. Proc. Natl. Acad. Sci. USA 79: 6941–6945, 1982.
 34. Campbell, E. J., R. R. White, R. M. Senior, and R. J. Rodriquez. Receptor‐mediated binding and internalization of leukocyte elastase by alveolar macrophages in vitro. J. Clin. Invest. 64: 824–833, 1979.
 35. Cohen, D., S. Arai, and J. D. Brain. Smoking impairs long‐term dust clearance from the lungs. Science 204: 514–517, 1979.
 36. Cohn, Z. A., and E. Wiener. The particulate hydrolases of macrophages. I. Comparative enzymology, isolation, and properties. J. Exp. Med. 18: 991–1008, 1963.
 37. Corstvet, R. E., J. A. Rummage, and J. T. Homer. Recovery of pulmonary alveolar macrophages from nonanesthetized calves. Am. J. Vet. Res. 43: 2253–2254, 1982.
 38. Dauber, J. H., A. Holian, M. E. Rosemiller, and R. P. Daniele. Separation of bronchoalveolar cells from the guinea pig on continuous density gradients of Percoll: morphology and cytochemical properties of fractionated lung macrophages. J. Reticuloendothel. Soc. 33: 119–126, 1983.
 39. Davies, P. Secretory functions of mononuclear phagocytes: overview and methods for preparing conditioned supernatants. In: Method for Studying Mononuclear Phagocytes, edited by D. O. Adams, P. J. Edelson, and H. Koren. New York: Academic, 1981, p. 549–560.
 40. Davis, G. S., M. S. Giancola, M. C. Costanza, and R. B. Low. Analyses of sequential bronchoalveolar lavage samples from healthy human volunteers. Am. Rev. Respir. Dis. 126: 611–616, 1982.
 41. Davis, J. K. G. Are ferruginous bodies an indication of atmospheric pollution by asbestos' In: Biological Effects of Asbestos, edited by P. Bogovski, J. C. Gilson, V. Timbrell, and J. C. Wagner. Lyons, France: IARC, 1973, chapt. 11, p. 238–242.
 42. De Shazo, R. D., D. E. Banks, J. E. Diem, J. A. Nordberg, Y. Baser, D. Bevier, and J. E. Salvaggio. Bronchoalveolar lavage cell—lymphocyte interactions in normal nonsmokers and smokers. Analysis with a novel system. Am. Rev. Respir. Dis. 127: 545–548, 1983.
 43. De Vries, C. R., P. Ingram, S. R. Walker, R. W. Linton, W. F. Gutknecht, and J. D. Shelburne. Acute toxicity of lead particulates on pulmonary alveolar macrophages. Ultra‐structural and microanalytical studies. Lab. Invest. 48: 35–44, 1983.
 44. Eckert, H., M. Lux, and B. Lachmann. The role of alveolar macrophages in surfactant turnover. Lung 161: 213–218, 1983.
 45. Elsbach, P., and J. Weiss. A reevaluation of the roles of the O2‐dependent and O2‐independent microbicidal systems of phagocytes. Rev Infect. Dis. 5: 843–853, 1983.
 46. Evans, R., and P. Alexander. Cooperation of immune lymphoid cells with macrophages in tumor immunity. Nature London 228: 620–622, 1972.
 47. Fels, A. O., N. A. Pawlowski, E. B. Cramer, T. K. C. King, Z. A. Cohn, and W. A. Scott. Human alveolar macrophages produce leukotriene B4. Proc. Natl. Acad. Sci. USA 79: 7866–7870, 1982.
 48. Ferin, J. Alveolar macrophage mediated pulmonary clearance suppressed by drug‐induced phospholipidosis. Exp. Lung Res. 4: 1–10, 1982.
 49. Fidler, I. J., and G. Poste. Macrophages and cancer metastasis. In: Macrophages and Natural Killer Cells, edited by S. J. Normann and E. Sorkin. New York: Plenum, 1982, p. 65–75.
 50. Franson, R. C., and M. Waite. Lysosomal phospholipases A1 and A2 of normal and bacillus Calmette Guerin‐induced alveolar macrophages. J. Cell Biol. 56: 621–627, 1973.
 51. Gee, J. B. L., P. T. Bodel, S. K. Zorn, L. M. Hinman, C. A. Stevens, and R. A. Matthay. Sarcoidosis and mononuclear phagocytes. Lung 155: 243–253, 1978.
 52. Gehr, P., J. D. Brain, and S. B. Bloom. Magnetometry: a tool to study intracellular movement (Abstract). J. Cell Biol. 97: 194a, 1983.
 53. Gehr, P., J. D. Brain, S. B. Bloom, and P. A. Valberg. Magnetic particles in the liver: a probe for cell function. Nature London 302: 336–338, 1983.
 54. Gehr, P., J. D. Brain, I. Nemoto, and S. B. Bloom. Behavior of magnetic particles in hamster lungs: estimates of clearance and cytoplasmic motility. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 55: 1196–1202, 1983.
 55. Gersing, R., and H. Schumacher. Experimentelle Untersuchungen über die Staubphagozytose. Beitr. Silikose‐Forsch. 25: 31–34, 1955.
 56. Godleski, J. J., and J. D. Brain. The origin of alveolar macrophages in mouse radiation chimeras. J. Exp. Med. 136: 630–643, 1972.
 57. Godleski, J. J., and J. D. Brain. Natural and induced antisera specific for pulmonary macrophages. Lung. In press.
 58. Golde, D. W., M. Territo, T. N. Finley, and M. C. Cline. Defective lung macrophages in pulmonary alveolar proteinosis. Ann. Intern. Med. 85: 304–309, 1976.
 59. Goldstein, E., M. C. Eagle, and P. D. Hoeprich. Effect of nitrogen dioxide on pulmonary bacterial defense mechanisms. Arch. Environ. Health 26: 202–204, 1973.
 60. Goldstein, E., W. Lippert, and D. Warshauer. Pulmonary alveolar macrophage. Defender against bacterial infection of the lung. J. Clin. Invest. 54: 519–528, 1974.
 61. Gorer, P. A. Some recent work on tumour immunity. Adv. Cancer Res. 4: 149–169, 1956.
 62. Granger, G. A., and R. S. Weiser. Homograft target cells: contact destruction in vitro by immune macrophages. Science 151: 97–99, 1966.
 63. Grant, M. M., S. P. Sorokin, and J. D. Brain. Lysosomal enzyme activities in pulmonary macrophages from rabbits breathing iron oxide. Am. Rev. Respir. Dis. 120: 1003–1012, 1979.
 64. Green, G. M., and E. Goldstein. A method for quantitating intrapulmonary bacterial inactivation in individual animals. J. Lab. Clin. Med. 68: 669–677, 1966.
 65. Green, G. M., and E. H. Kass. Factors influencing the clearance of bacteria by the lung. J. Clin. Invest. 43: 769–776, 1964.
 66. Green, G. M., and E. H. Kass. The role of the alveolar macrophage in the clearance of bacteria from the lung. J. Exp. Med. 119: 167–176, 1964.
 67. Green, G. M., and E. H. Kass. The influence of bacterial species on pulmonary resistance to infection in mice subjected to hypoxia, cold stress and ethanolic intoxication. Br. J. Exp. Pathol. 46: 360–366, 1965.
 68. Gross, P., R. T. P. Detreville, E. B. Tolker, M. Kaschak, and M. A. Babyak. The pulmonary macrophage response to irritants. An attempt at quantitation. Arch. Environ. Health 18: 174–185, 1969.
 69. Harbison, M. L., J. J. Godleski, M. Mortara, and J. D. Brain. Correlation of age and surface antigen in hamster alveolar macrophages. Lab. Invest. 50: 653–658, 1984.
 70. Harington, J. S., and A. C. Allison. Tissue and cellular reactions to particles, fibers, and aerosols retained after inhalation. In: Handbook of Physiology. Reactions to Environmental agents, edited by D. H. K. Lee, H. L. Falk, and S. D. Murphy. Bethesda, MD: Am. Physiol. Soc., 1977, sect. 9, chapt. 17, p. 263–283.
 71. Harington, J. S., M. Ritchie, P. C. King, and K. Miller. The in vitro effects of silica‐treated hamster macrophages on collagen production by hamster fibroblasts. J. Pathol. 109: 21–37, 1973.
 72. Heppleston, A. G., and J. A. Styles. Activity of a macrophage factor in collagen formation by silica. Nature London 214: 521–524, 1967.
 73. Hibbs, J. B., Jr., L. H. Lambert, Jr., H. Lewis, and J. S. Remington. Possible role of macrophage mediated nonspecific cytotoxicity in tumour resistance. Nature London New Biol. 235: 48–50, 1972.
 74. Hinman, L. J., C. A. Stevens, R. A. Matthay, and B. L. Gee. Elastase and lysozyme activities in human alveolar macrophages. Am. Rev. Respir. Dis. 121: 263–271, 1980.
 75. Hocking, W. G., and D. W. Golde. The pulmonary‐alveolar macrophage (first of two parts). N. Engl. J. Med. 301: 580–587, 1979.
 76. Hocking, W. G., and D. W. Golde. The pulmonary‐alveolar macrophage (second of two parts). N Engl. J. Med. 301: 639–645, 1979.
 77. Holian, A., J. H. Dauber, M. S. Diamond, and R. P. Daniele. Separation of bronchoalveolar cells from the guinea pig on continuous gradients of Percoll: functional properties of fractionated lung macrophages. J. Reticuloendothel. Soc. 33: 157–164, 1983.
 78. Hunninghake, G. W., J. E. Gadek, S. V. Szapiel, I. J. Strumpf, O. Kawanami, V. J. Ferrans, B. A. Keogh, and R. G. Crystal. The human alveolar macrophage. In: Methods in Cell Biology, edited by C. C. Harris, B. F. Trump, and G. D. Stoner. New York: Academic, 1980, vol. 21, p. 95–112.
 79. Janoff, A., L. Raju, and R. Dearing. Levels of elastase activity in bronchoalveolar lavage fluids of healthy smokers and nonsmokers. Am. Rev. Respir. Dis. 127: 540–544, 1983.
 80. Johanson, W. G., Jr., and A. K. Pierce. Effects of elastase, collagenase, and papain on structure and function of rat lungs in vitro. J. Clin. Invest. 51: 288–293, 1972.
 81. Kaplan, P. D., C. Kuhn, and J. A. Pierce. The induction of emphysema with elastase. I. The evolution of the lesion and the influence of serum. J. Lab. Clin. Med. 82: 349–356, 1973.
 82. Kavet, R. I., and J. D. Brain. Phagocytosis: quantification of rates and intercellular heterogeneity. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 432–437, 1977.
 83. Kavet, R. I., and J. D. Brain. Methods to quantify endocytosis: a review. J. Reticuloendothel. Soc. 27: 201–221, 1980.
 84. Kavet, R. I., J. D. Brain, and D. J. Levens. Characteristics of pulmonary macrophages lavaged from hamsters exposed to iron oxide aerosols. Lab. Invest. 38: 312–319, 1978.
 85. Keller, R. Mechanisms by which activated macrophages destroy syngeneic rat tumor cells in vitro. Cytokinetics, non‐involvement of T‐lymphocytes and effects of metabolic inhibitors. Immunology 27: 285–291, 1974.
 86. Kikkawa, Y., and K. Koneda. The type II epithelial cell of the lung. I. Method of isolation. Lab. Invest. 30: 76–84, 1974.
 87. Kilburn, K. H. Functional morphology of the distal lung. Int. Rev. Cytol. 37: 153–270, 1974.
 88. Kim, M., E. Goldstein, J. P. Lewis, W. Lippert, and D. Warshauer. Murine pulmonary alveolar macrophages: rates of bacterial ingestion, inactivation and destruction. J. Infect. Dis. 133: 310–320, 1976.
 89. Kirkpatrick, C. H., and H. Y. Reynolds (editors). Lung Biology in Health and Disease. Immunologic and Infectious Reactions in the Lung. New York: Dekker, 1976, vol. 1.
 90. Klebanoff, S. J. Myeloperoxidase‐mediated cytotoxic systems. In: The Reticuloendothelial System: A Comprehensive Treatise. Biochemistry and Metabolism, edited by A. J. Sbarra and R. R. Strauss. New York: Plenum, 1980, p. 279–308.
 91. Krahl, V. E. Microstructure of the lung. Arch. Environ. Health 6: 43–51, 1963.
 92. Kuhn, C., III, and R. M. Senior. The role of elastase in the development of emphysema. Lung 155: 188–197, 1978.
 93. Kuhn, C., III, R. M. Senior, and J. A. Pierce. The pathogenesis of emphysema. In: Mechanisms in Respiratory Toxicology, edited by H. Witschi and P. Nettesheim. Boca Raton, FL: CRC, 1982, vol. 2, p. 155–211.
 94. La Belle, C. W., and H. Brieger. Synergistic effects or aerosols. II. Effects on rate of clearance from the lung. Arch. Indust. Health 20: 100–105, 1959.
 95. La Belle, C. W., and H. Brieger. The fate of inhaled particles in the early post‐exposure period. Arch. Environ. Health 1: 432–437, 1960.
 96. Laurell, C. B., and S. Eriksson. The electrophoretic α1‐globulin pattern of serum in α1‐antitrypsin deficiency. Scand. J. Clin. Lab. Invest. 15: 132–140, 1963.
 97. Laurenzi, G. A., L. Berman, M. First, and E. H. Kass. A quantitative study of the deposition and clearance of bacteria in the murine lung. J. Clin. Invest. 43: 759–768, 1964.
 98. Laurenzi, G. A., J. J. Guarneri, R. B. Endriga, and J. P. Carey. Clearance of bacteria by the lower respiratory tract. Science 142: 1572–1573, 1963.
 99. Laurenzi, G. A., R. T. Potter, and E. H. Kass. Bacteriological flora of the lower respiratory tract. N. Engl. J. Med. 265: 173–178, 1961.
 100. Leake, E. S., D. Gonzales‐Ojeda, and Q. N. Myrvik. Enzymatic differences between normal alveolar macrophages and oil‐induced peritoneal macrophages obtained from rabbits. Exp. Cell Res. 35: 553–561, 1964.
 101. Le Blanc, P. A., S. W. Russell, and S.‐M. T. Chang. Mouse mononuclear phagocyte antigenic heterogeneity detected by monoclonal antibodies. J. Reticuloendothel. Soc. 32: 219–231, 1982.
 102. Leibovich, S. J., and R. Ross. A macrophage‐dependent factor that stimulates the proliferation of fibroblasts in vitro. Am. J. Pathol. 84: 501–514, 1976.
 103. Leith, D. E. Cough. In: Lung Biology in Health and Disease. Respiratory Defense Mechanisms, edited by J. D. Brain, D. F. Proctor, and L. M. Reid. New York: Dekker, 1977, vol. 5, pt. 2, chapt. 15, p. 545–592.
 104. Levy, M. H., and E. F. Wheelock. The role of macrophages in defense against neoplastic disease. Adv. Cancer Res. 20: 131–163, 1974.
 105. Lieberman, J. Involvement of leukocytic proteases in emphysema and antitrypsin deficiency. Arch. Environ. Health 27: 196–200, 1973.
 106. Lieberman, J., and M. A. Gawad. Inhibitors and activators of leukocytic proteases in purulent sputum: digestion of human lung and inhibition by alpha1‐antitrypsin. J. Lab. Clin. Med. 77: 713–727, 1971.
 107. Low, R. B., G. S. Davis, and M. S. Giancola. Biochemical analyses of bronchoalveolar lavage fluids of normal healthy volunteers. Am. Rev. Respir. Dis. 118: 863–876, 1978.
 108. Lucas, A. M., and L. C. Douglas. Principles underlying ciliary activity in the respiratory tract. II. A comparison of nasal clearance in man, monkey, and other mammals. Arch. Otolaryngol. 20: 518–541, 1934.
 109. Maroudas, N. G. Chemical and mechanical requirements for fibroblast adhesion. Nature London 244: 353–354, 1973.
 110. Mass, B., I. Ikeda, D. R. Meranze, G. Weinbaum, and P. Kimbel. Induction of experimental emphysema: cellular and species specificity. Am. Rev. Respir. Dis. 106: 384–391, 1974.
 111. McGowan, S. E., P. J. Stone, J. D. Calore, G. L. Snider, and C. Franzblau. The fate of neutrophil elastase incorporated by human alveolar macrophages. Am. Rev. Respir. Dis. 127: 449–455, 1983.
 112. Myrvik, Q. N., E. S. Leake, and B. Fariss. Studies on pulmonary alveolar macrophages from the normal rabbit: a technique to procure them in a high state of purity. J. Immunol. 86: 128–132, 1961.
 113. Myrvik, Q. N., E. S. Leake, and B. Fariss. Lysozyme content of alveolar and peritoneal macrophages from the rabbit. J. Immunol. 86: 133–136, 1961.
 114. Nakane, P. K., and G. B. Pierce. Enzyme‐labeled antibodies: preparation and application for the localization of antigens. J. Histochem. Cytochem. 14: 929–931, 1966.
 115. Parod, R. J., and J. D. Brain. Uptake of latex particles by macrophages: characterization using flow cytometry. Am. J. Physiol. 245 (Cell Physiol. 14): C220–C226, 1983.
 116. Parod, R. J., and J. D. Brain. Uptake of latex particles by pulmonary macrophages: role of calcium. Am. J. Physiol. 245 (Cell Physiol. 14): C227–C234, 1983.
 117. Patterson‐Delafield, J., D. Szlarek, R. J. Martinez, and R. I. Lehrer. Microbicidal cationic proteins of rabbit alveolar macrophages: amino acid composition and functional attributes. Infect. Immun. 31: 723–731, 1981.
 118. Permar, H. H. The development of the mononuclear phagocyte of the lung. J. Med. Res. 42: 147–162, 1920.
 119. Plowman, P. N. The pulmonary macrophage population of human smokers. Ann. Occup. Hyg. 25: 393–405, 1982.
 120. Pofit, J. F., and P. R. Strauss. Membrane transport by macrophages in suspension and adherent to glass. J. Cell Physiol. 92: 249–255, 1977.
 121. Pratt, S. A., M. H. Smith, A. J. Ladman, and T. N. Finley. The ultrastructure of alveolar macrophages from human cigarette smokers and nonsmokers. Lab. Invest. 24: 331–338, 1971.
 122. Reiser, K. M., and J. A. Last. Silicosis and fibrogenesis: fact and artifact. Toxicology 13: 51–72, 1979.
 123. Richards, R. J., and T. G. Morris. Collagen and mucopolysaccharide production in growing lung fibroblasts exposed to chrysotile asbestos. Life Sci. 12: 441–451, 1973.
 124. Rodgers, B. C., and C. A. Mims. Role of macrophage activation and interferon in the resistance of alveolar macrophages from infected mice to influenza virus. Infect. Immun. 36: 1154–1159, 1982.
 125. Rodriguez, R. J., R. R. White, R. M. Senior, and E. A. Levine. Elastase release from human alveolar macrophages: comparison between smokers and non‐smokers. Science 198: 313–314, 1977.
 126. Rose, R. M., C. Crumpacker, J. L. Waner, and J. D. Brain. Murine cytomegalovirus pneumonia: description of a model and investigation of pathogenesis. Am. Rev. Respir. Dis. 125: 568–573, 1982.
 127. Rose, R. M., C. Crumpacker, J. L. Waner, and J. D. Brain. Treatment of murine cytomegalovirus pneumonia with acyclovir and interferon. Am. Rev. Respir. Dis. 127: 198–203, 1983.
 128. Ross, R., N. B. Everett, and R. Tyler. Wound healing and collagen formation. VI. The origin of the wound fibroblast studied in parabiosis. J. Cell Biol. 44: 645–654, 1970.
 129. Sackner, M. A. Bronchofiberscopy. Am. Rev. Respir. Dis. 111: 62–88, 1975.
 130. Schaffner, T., H. U. Keller, M. W. Hess, and H. Cottier. Macrophage functions in antimicrobial defense. Klin. Wochenschr. 60: 720–726, 1982.
 131. Schiller, E. Inhalation, retention, and elimination of dusts from dogs' and rats' lungs with special reference to the alveolar phagocytes and bronchial epithelium. In: Inhaled Particles and Vapours, edited by C. N. Davies. London: Pergamon, 1961, p. 342–344.
 132. Senior, R. M., E. J. Campbell, and B. Villiger. Obtaining and culturing human and animal alveolar macrophages. In: Methods for Studying Mononuclear Phagocytes, edited by E. O. Adams, P. J. Edelson, and H. Koren. New York: Academic, 1982, p. 69–84.
 133. Sethi, K. K. Intracellular killing of parasites by macrophages. Clin. Immunol. Allergy 2: 541–565, 1982.
 134. Shellito, J., J. L. Caldwell, and H. B. Kaltreider. Immune functions of murine alveolar macrophages: binding of lymphocytes and support of lymphocyte proliferation. Exp. Lung Res. 4: 93–107, 1983.
 135. Slauson, D. O. The mediation of pulmonary inflammatory injury. In: Advances in Veterinary Science and Comparative Medicine, edited by C. E. Cornelius, C. F. Simpson, and D. L. Dungworth. New York: Academic, 1982, vol. 26, p. 99–153.
 136. Snider, G. L. Emphysema. Clin. Chest. Med. 4: 327–499. Philadelphia, PA: Saunders, 1983.
 137. Snider, G. L., J. A. Hayes, C. Franzblau, H. M. Kagan, P. S. Stone, and A. L. Korthy. Relationship between elastolytic activity and experimental emphysema‐inducing properties of papain preparations. Am. Rev. Respir. Dis. 110: 254–262, 1974.
 138. Sorber, W. A., E. S. Leake, and Q. N. Myrvik. Isolation and characterization of hydrolase‐containing granules from rabbit lung macrophages. J. Reticuloendothel. Soc. 16: 184–192, 1974.
 139. Sorokin, S. P. Dynamics of lysosomal elements in pulmonary alveolar macrophages. I. The postactivation lysosomal cycle. Anat. Rec. 206: 117–143, 1983.
 140. Sorokin, S. P. Dynamics of lysosomal elements in pulmonary alveolar macrophages. II. Transitory intracytoplasmic events in activated cells. Anat. Rec. 206: 145–170, 1983.
 141. Sorokin, S. P., and J. D. Brain. Pathways of clearance in mouse lungs exposed to iron oxide aerosols. Anat. Rec. 181: 581–626, 1975.
 142. Spritzer, A. A., J. A. Watson, J. A. Auld, and M. A. Guetthoff. Pulmonary macrophage clearance. The hourly rates of transfer of pulmonary macrophages to the oropharynx of the rat. Arch. Environ. Health 17: 726–730, 1968.
 143. Spurgash, A., R. Ehrlich, and R. Petzold. Effect of cigarette smoke on resistance to respiratory infection. Arch. Environ. Health 16: 385–390, 1968.
 144. Steinman, R. M., I. S. Mellman, W. A. Muller, and Z. A. Cohn. Endocytosis and the recycling of plasma membrane. J. Cell Biol. 96: 1–27, 1983.
 145. Turino, G. M., J. R. Rodriguez, L. M. Greenbaum, and I. Mandl. Mechanisms of pulmonary injury. Am. J. Med. 57: 493–505, 1974.
 146. Unanue, E. R. Symbiotic relationships between macrophages and lymphocytes. In: Macrophages and Natural Killer Cells, edited by S. J. Normann and E. Sorkin. New York: Plenum, 1982, p. 49–63.
 147. Valberg, P. A. Endosome motion and rheology in lung macrophages after maghemite phagocytosis (Abstract). J. Cell Biol. 97: 426a, 1983.
 148. Valberg, P. A. Magnetometry of ingested particles in pulmonary macrophages. Science. 224: 513–516, 1984.
 149. Valberg, P. A., and J. D. Brain. Generation and use of three types of iron‐oxide aerosol. Am. Rev. Respir. Dis. 120: 1013–1024, 1979.
 150. Valberg, P. A., J. D. Brain, and D. Kane. Effects of colchicine or cytochalasin B on pulmonary macrophage endocytosis in vivo. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 621–629, 1981.
 151. Valberg, P. A., B.‐H. Chen, and J. D. Brain. Endocytosis of colloidal gold by pulmonary macrophages. Exp. Cell Res. 141: 1–14, 1982.
 152. Wahl, L. M., S. M. Wahl, S. E. Mergenhagen, and G. R. Martin. Collagenase production by lymphokine‐activated macrophages. Science 187: 261–263, 1975.
 153. Wang, N. The regional differences of pleural mesothelial cells in rabbits. Am. Rev. Respir. Dis. 110: 623–633, 1974.
 154. Warner, A. P., and J. D. Brain. Intravascular pulmonary macrophages in ruminants actively participate in reticuloendothelial clearance of particles (Abstract). Federation Proc. 43: 1001, 1984.
 155. Watson, A. Y., and J. D. Brain. Uptake of iron oxide aerosols by mouse airway epithelium. Lab. Invest. 40: 450–459, 1979.
 156. Watson, A. Y., and J. D. Brain. The effect of SO2 on the uptake of particles by mouse bronchial epithelium. Exp. Lung Res. 1: 67–87, 1980.
 157. Weinbaum, G., V. Marco, T. Ikeda, B. Mass, D. R. Meranze, and P. Kimbel. Enzymatic production of experimental emphysema in the dog. Route of exposure. Am. Rev. Respir. Dis. 109: 351–357, 1974.
 158. Weitberg, A. B., S. A. Weitzman, M. Destrempes, S. A. Latt, and T. P. Stossel. Stimulated human phagocytes produce cytogenetic changes in cultured mammalian cells. N. Engl. J. Med. 308: 25–29, 1983.
 159. Werb, Z. How the macrophage regulates its extracellular environment. Am. J. Anat. 166: 237–256, 1983.
 160. Werb, Z., and S. Gordon. Elastase secretion by stimulated macrophages. Characterization and regulation. J. Exp. Med. 142: 361–377, 1975.
 161. Wharton, W. Human macrophage‐like cell line U937–1 elaborates mitogenic activity for fibroblasts. J. Reticuloendothel. Soc. 33: 151–156, 1983.
 162. White, R., A. Janoff, R. Gordon, and E. Campbell. Evidence for in vivo internalization of human leukocyte elastase by alveolar macrophages. Am. Rev. Respir. Dis. 125: 779–781, 1982.
 163. White, R., D. Lee, G. S. Habicht, and A. Janoff. Secretion of alpha‐1–protease inhibitor by cultured rat alveolar macrophages. Am. Rev. Respir. Dis. 123: 447–449, 1981.
 164. White, R., H. S. Lin, and C. Kuhn III. Elastase secretion by peritoneal exudative and alveolar macrophages. J. Exp. Med. 146: 802–808, 1977.
 165. Yarborough, D. J., O. T. Meyer, A. M. Dannenberg, Jr., and B. Pearson. Histochemistry of macrophage hydrolases. III. Studies of β‐galactosidase, β‐glucuronidase and aminopeptidase with indolyl and naphthyl substrates. J. Reticuloendothel. Soc. 4: 390–408, 1967.
 166. Yeager, H., Jr., D. A. Russo, M. Yanez, D. Gerardi, R. P. Nolan, E. Kagan, and A. M. Langer. Cytotoxicity of a short‐fiber chrysotile asbestos for human alveolar macrophages: preliminary observations. Environ. Res. 30: 224–232, 1983.
 167. Yevich, P. P. Lung structure—relation to response to particulate. Arch. Environ. Health 10: 37–43, 1965.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Joseph D. Brain. Macrophages in the Respiratory Tract. Compr Physiol 2011, Supplement 10: Handbook of Physiology, The Respiratory System, Circulation and Nonrespiratory Functions: 447-471. First published in print 1985. doi: 10.1002/cphy.cp030114