Comprehensive Physiology Wiley Online Library

Secretory Membranes and the Exocrine Storage Compartment

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Granule Formation and Storage
2 Granule Isolation and Preparation of Membrane Subfractions
2.1 Secretory Granules
2.2 Membrane Subfractions
3 Composition of Exocrine Granule Membranes
3.1 Membrane Lipids
3.2 Membrane Proteins
4 Storage Function and Biophysical Properties of Secretion Granules
4.1 Granule Packaging, Stability, and Osmotic Behavior
4.2 Ion Permeation of Granule Membranes
4.3 Intragranular pH and Buffering Capacity
4.4 Hydrogen‐ATPase Activity
5 Interactions With Cytoplasmic Proteins
5.1 Possible Roles of Microtubules
5.2 Microfilamentous Networks and Secretory Organelle Interactions
5.3 Other Polypeptides Binding to Secretory Membranes
5.4 Stimulus‐Enhanced Phosphorylation of Membrane and Associated Proteins
6 Exocytosis
7 Recycling, Turnover, and Sorting from Other Vesicular Traffic
7.1 Fate of Reinternalized Secretory Membrane
7.2 Secretory Membrane as a Plasmalemmal Protein Carrier
7.3 Secretory Membrane and Sorting Sites
Figure 1. Figure 1.

Low‐power electron micrograph of a rat parotid acinus consisting of functionally polarized secretory cells. Basolateral (BL) surfaces extend inward from the periphery and are separated from apical surfaces (A) by junctional complexes. Basal rough endoplasmic reticulum (ER) and centrally located extensive Golgi complexes (G) are evident. Secretory storage granules (SG; 1 μm diam) are collected near cell apices. Apical lumina are filled with discharged secretion. N, nucleus. Bar, 2 μm.

Figure 2. Figure 2.

Summary of an autoradiographic study of intracellular transport of newly synthesized secretory protein in rabbit parotid tissue. Tissue lobules were pulse labeled in vitro with [3H]leucine and subjected to chase incubation for the indicated times. Distributions of autoradiographic grains determined from electron‐macrograph autoradiograms are expressed as percent of total that were quantitated at each time point. Precursor‐product kinetic relationships between rough endoplasmic reticulum, Golgi complex, immature secretion granules, and mature secretion granules are apparent.

From Castle et al. 30
Figure 3. Figure 3.

Representative electron micrographs of a purified parotid secretion granule (A) and granule membrane fraction (B). With detailed consideration of the extent of contamination by residual mitochondria and incompletely removed secretory polypeptides as a basis, it is possible to estimate that 95% of the protein associated with the purified secretion granule membrane is bona fide granule membrane protein. Bars, 1 μm.

From Cameron and Castle 25
Figure 4. Figure 4.

Immunocytochemical demonstration of antigen distribution with heterologous antiserum to parotid secretory granule membranes. A, B: bars, 10 μm. Indirect immunofluorescent staining of 0.5‐μm‐thick frozen sections of parotid (A) and exocrine pancreas (B). Immunoreactivity is concentrated over secretion granule membrane profiles that are identified on the basis of their apical cytoplasmic location, size, and frequency. Staining is not detected in the basal cytoplasm, which contains abundant rough endoplasmic reticulum and mitochondria. C1–3: bar, 0.1 μm. Indirect immunolabeling with ferritin conjugates on isolated, aldehyde‐fixed parotid secretion granules. C2, ferritin decoration reveals that the granule membrane antiserum recognizes determinants on the cytosolic aspect of the granule membrane. No ferritin decorates secretory granules when preimmune serum (C1) or antiserum specific for content polypeptides (proline‐rich polypeptides (C3) is substituted for the membrane antiserum (C2). D‐F: bar, 10 μm. Indirect immunofluorescent staining of endocrine (epithelial and nonepithelial) and neural tissues with parotid granule membrane antibodies selected by adsorption for determinants on the cytoplasmic surface. For recovery of antibodies bound to intact parotid granules, granule suspensions were treated in 200 mM glycine (pH 2.8), and desorbed antibodies were recovered in supernate after sedimentation of granules through 0.75 M sucrose. Soluble IgG fractions served subsequently as the primary antiserum. D: 6‐μm‐thick frozen section of the CA3 region of rat hippocampus. SR, stratum radiatum; PL, pyramidal cell layer; SO, stratum oriens. Immunolabeling observed throughout the neuropile is particularly prominent adjacent to the pyramidal cell layer. Cell bodies and dendrites are unstained. E: 2‐μm‐thick frozen section of rat adrenal medulla. Chromaffin cells show a diffuse (or in some cases punctate) fluorescent pattern in the cytoplasm that is assumed to mark chromaffin granules. F: 4‐μm‐thick frozen section of rat liver. Label is associated with the bile canalicular surface and associated pericanalicular cellular organelles.

A and B from Cameron et al. 24
Figure 5. Figure 5.

Comparative two‐dimensional sodium dodecyl sulfate‐polyacrylamide gel electrophoretic analyses of purified exocrine secretory granule membrane polypeptides. Autoradiographic patterns obtained by parallel electrophoresis of radioiodinated (chloramine T) parotid and pancreas secretory granule membrane polypeptides. A: parotid pattern; 3 groups of polypeptides distinguished in the text on the basis of molecular weight are indicated by brackets (I‐III). B: solid arrow, position of pancreatic zymogen granule membrane protein GP‐2. Horizontal values, pH values; vertical values, molecular weight X 10−3.

From Cameron et al. 24
Figure 6. Figure 6.

Two‐dimensional electrophoretic analysis of rat liver Golgi secretory vesicle membranes. Autoradiogram of radioiodinated (chloramine T) membrane polypeptides from a sodium carbonate‐treated Golgi fraction 1 (GF1) fraction (A). Analogous polypeptides, especially 30,000‐Mr polypeptides, have similar (but not identical) mobilities. Even though this group of polypeptides are prominent radiolabeled species, they may not be such major constituents of the Golgi vesicle membrane as signified by their minor contributions to a Coomassie blue‐stained polypeptide profile (B). Horizontal values, pH values; vertical values, molecular weight X 10−3.

A from Ehrenreich et al. 55.


Figure 1.

Low‐power electron micrograph of a rat parotid acinus consisting of functionally polarized secretory cells. Basolateral (BL) surfaces extend inward from the periphery and are separated from apical surfaces (A) by junctional complexes. Basal rough endoplasmic reticulum (ER) and centrally located extensive Golgi complexes (G) are evident. Secretory storage granules (SG; 1 μm diam) are collected near cell apices. Apical lumina are filled with discharged secretion. N, nucleus. Bar, 2 μm.



Figure 2.

Summary of an autoradiographic study of intracellular transport of newly synthesized secretory protein in rabbit parotid tissue. Tissue lobules were pulse labeled in vitro with [3H]leucine and subjected to chase incubation for the indicated times. Distributions of autoradiographic grains determined from electron‐macrograph autoradiograms are expressed as percent of total that were quantitated at each time point. Precursor‐product kinetic relationships between rough endoplasmic reticulum, Golgi complex, immature secretion granules, and mature secretion granules are apparent.

From Castle et al. 30


Figure 3.

Representative electron micrographs of a purified parotid secretion granule (A) and granule membrane fraction (B). With detailed consideration of the extent of contamination by residual mitochondria and incompletely removed secretory polypeptides as a basis, it is possible to estimate that 95% of the protein associated with the purified secretion granule membrane is bona fide granule membrane protein. Bars, 1 μm.

From Cameron and Castle 25


Figure 4.

Immunocytochemical demonstration of antigen distribution with heterologous antiserum to parotid secretory granule membranes. A, B: bars, 10 μm. Indirect immunofluorescent staining of 0.5‐μm‐thick frozen sections of parotid (A) and exocrine pancreas (B). Immunoreactivity is concentrated over secretion granule membrane profiles that are identified on the basis of their apical cytoplasmic location, size, and frequency. Staining is not detected in the basal cytoplasm, which contains abundant rough endoplasmic reticulum and mitochondria. C1–3: bar, 0.1 μm. Indirect immunolabeling with ferritin conjugates on isolated, aldehyde‐fixed parotid secretion granules. C2, ferritin decoration reveals that the granule membrane antiserum recognizes determinants on the cytosolic aspect of the granule membrane. No ferritin decorates secretory granules when preimmune serum (C1) or antiserum specific for content polypeptides (proline‐rich polypeptides (C3) is substituted for the membrane antiserum (C2). D‐F: bar, 10 μm. Indirect immunofluorescent staining of endocrine (epithelial and nonepithelial) and neural tissues with parotid granule membrane antibodies selected by adsorption for determinants on the cytoplasmic surface. For recovery of antibodies bound to intact parotid granules, granule suspensions were treated in 200 mM glycine (pH 2.8), and desorbed antibodies were recovered in supernate after sedimentation of granules through 0.75 M sucrose. Soluble IgG fractions served subsequently as the primary antiserum. D: 6‐μm‐thick frozen section of the CA3 region of rat hippocampus. SR, stratum radiatum; PL, pyramidal cell layer; SO, stratum oriens. Immunolabeling observed throughout the neuropile is particularly prominent adjacent to the pyramidal cell layer. Cell bodies and dendrites are unstained. E: 2‐μm‐thick frozen section of rat adrenal medulla. Chromaffin cells show a diffuse (or in some cases punctate) fluorescent pattern in the cytoplasm that is assumed to mark chromaffin granules. F: 4‐μm‐thick frozen section of rat liver. Label is associated with the bile canalicular surface and associated pericanalicular cellular organelles.

A and B from Cameron et al. 24


Figure 5.

Comparative two‐dimensional sodium dodecyl sulfate‐polyacrylamide gel electrophoretic analyses of purified exocrine secretory granule membrane polypeptides. Autoradiographic patterns obtained by parallel electrophoresis of radioiodinated (chloramine T) parotid and pancreas secretory granule membrane polypeptides. A: parotid pattern; 3 groups of polypeptides distinguished in the text on the basis of molecular weight are indicated by brackets (I‐III). B: solid arrow, position of pancreatic zymogen granule membrane protein GP‐2. Horizontal values, pH values; vertical values, molecular weight X 10−3.

From Cameron et al. 24


Figure 6.

Two‐dimensional electrophoretic analysis of rat liver Golgi secretory vesicle membranes. Autoradiogram of radioiodinated (chloramine T) membrane polypeptides from a sodium carbonate‐treated Golgi fraction 1 (GF1) fraction (A). Analogous polypeptides, especially 30,000‐Mr polypeptides, have similar (but not identical) mobilities. Even though this group of polypeptides are prominent radiolabeled species, they may not be such major constituents of the Golgi vesicle membrane as signified by their minor contributions to a Coomassie blue‐stained polypeptide profile (B). Horizontal values, pH values; vertical values, molecular weight X 10−3.

A from Ehrenreich et al. 55.
References
 1. Amsterdam, A., I. Ohad, and M. Schramm. Dynamic changes in the ultrastructure of the acinar cell of the rat parotid gland during the secretory cycle. J. Cell Biol. 41: 753–773, 1969.
 2. Amsterdam, A., M. Schramm, I. Ohad, Y. Salomon, and Z. Selinger. Concomitant synthesis of membrane protein and exportable protein of the secretory granule in rat parotid gland. J. Cell Biol. 50: 187–200, 1971.
 3. Anderson, R. G. W., and R. K. Pathak. Vesicles and cisternae in the trans.Golgi apparatus of human fibroblasts are acidic compartments. Cell 40: 635–643, 1985.
 4. Arvan, P., and J. D. Castle. Isolated secretion granules from parotid glands of chronically stimulated rats possess an alkaline internal pH and inward‐directed H+ pump activity. J. Cell Biol. 103: 1257–1267, 1986.
 5. Arvan, P., G. Rudnick, and J. D. Castle. Osmotic properties and internal pH of isolated rat parotid secretory granules. J. Biol. Chem. 259: 13567–13572, 1984.
 6. Arvan, P., G. Rudnick, and J. D. Castle. Relative lack of H+ translocase activity in isolated parotid secretory granules. J. Biol. Chem. 260: 14945–14952, 1985.
 7. Bader, M. F., and D. Aunis. The 97‐kdα‐actinin‐like protein in chromaffin granule membranes from adrenal medulla: evidence for localization on the cytoplasmic surface and for binding to actin filaments. Neuroscience 8: 165–181, 1983.
 8. Baines, A. J., and V. Bennett. Synapsin I is a spectrinbinding protein immunologically related to erythrocyte protein 4.1. Nature Lond. 315: 410–413, 1985.
 9. Baker, P. F., and D. E. Knight. Chemiosmotic hypothesis of exocytosis: a critique. Biosci. Rep. 4: 285–298, 1984.
 10. Bauduin, H., C. Stock, D. Vincent, and J. F. Grenier. Microfilamentous system and secretion of enzyme in the exocrine pancreas. Effect of cytochalasin B. J. Cell Biol. 66: 165–181, 1975.
 11. Bendayan, M. Ultrastructural localization of cytoskeletal proteins in pancreatic secretory cells. Can. J. Biochem. Cell Biol. 63: 680–690, 1985.
 12. Bendayan, M., J. Roth, A. Perrelet, and L. Orci. Quantitative immunocytochemical localization of pancreatic secretory proteins in subcellular compartments of the rat acinar cell. J. Histochem. Cytochem. 28: 149–160, 1980.
 13. Benedeczky, I., and A. D. Smith. Ultrastructural studies on the adrenal medulla of golden hamster: origin and fate of secretory granules. Z. Zellforsch. Mikrosk. Anat. 124: 367–386, 1972.
 14. Bieger, W., J. Seybold, and H. F. Kern. Studies in intracellular transport of secretory proteins in the rat exocrine pancreas. V. Kinetic studies on accelerated transport following caerulein infusion. Cell Tissue Res. 170: 203–219, 1976.
 15. Blaschko, H., H. Firemark, A. D. Smith, and H. Winkler. Lipids of the adrenal medulla. Lysolecithin, a characteristic constituent of chromaffin granules. Biochem. J. 104: 545–549, 1967.
 16. Boyd, A. E., III, W. E. Bolton, and B. R. Brinkley. Microtubules and beta cell function: effect of colchicine on microtubules and insulin secretion in vitro by mouse beta cells. J. Cell Biol. 92: 425–434, 1982.
 17. Brocklehurst, K. W., and J. C. Hutton. Involvement of protein kinase C in the phosphorylation of an insulin‐granule membrane protein. Biochem. J. 220: 283–290, 1984.
 18. Brockmeyer, T. F. Isolation and Subfractionation of a Zymogen Granule Fraction From the Rat Pancreas. New Haven, CT: Yale Univ., 1981. PhD thesis.
 19. Brownstein, M. J., J. T. Russell, and H. Gainer. Synthesis, transport, and release of posterior pituitary hormones. Science Wash. DC 207: 373–378, 1980.
 20. Buckley, K., and R. B. Kelly. Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J. Cell Biol. 100: 1284–1294, 1985.
 21. Burnham, D. B., P. Munowitz, N. Thorn, and J. A. Williams. Protein kinase activity associated with pancreatic zymogen granules. Biochem. J. 227: 743–751, 1985.
 22. Busson‐Mabilot, S., A.‐M. Chambaut‐Guerin, L. Ovtracht, P. Miller, and B. Rossignol. Microtubules and protein secretion in rat lacrimal glands: localization of short‐term effects of colchicine on the secretory process. J. Cell Biol. 95: 105–117, 1982.
 23. Butcher, F. R., and R. H. Goldman. Effect of cytochalasin B and colchicine on α‐amylase release from rat parotid tissue slices. Dependence of the effect on N.5,O.2'‐dibutyryl adenosine 3',5'‐cyclic monophosphate concentration. J. Cell Biol. 60: 519–523, 1974.
 24. Cameron, R. S., P. L. Cameron, and J. D. Castle. A common spectrum of polypeptides occurs in secretion granule membranes of different exocrine glands. J. Cell Biol. 103: 1299–1313, 1986.
 25. Cameron, R. S., and J. D. Castle. Isolation and compositional analysis of secretion granules and their membrane subfraction from the rat parotid gland. J. Membr. Biol. 79: 127–144, 1984.
 26. Campbell, C. R., J. B. Fishman, and R. E. Fine. Coated vesicles contain a phosphatidylinositol kinase. J. Biol. Chem. 260: 10948–10951, 1985.
 27. Caro, L. G., and G. E. Palade. Protein synthesis, storage, and discharge in the pancreatic acinar cell. A radioautographic study. J. Cell Biol. 20: 473–495, 1964.
 28. Carty, S. E., R. G. Johnson, and A. Scarpa, H+‐translocating ATPase and other membrane enzymes involved in the accumulation and storage of biological amines in chromaffin granules. In: The Enzymes of Biological Membranes. Membrane Transport (2nd ed.), edited by A. N. Martonosi. New York: Plenum, 1985, vol. 3, p. 449–495.
 29. Castle, J. D., R. S. Cameron, P. L. Patterson, and A. K. Ma. Identification of high molecular weight antigens structurally related to gamma‐glutamyl transferase in epithelial tissues. J. Membr. Biol. 87: 13–26, 1985.
 30. Castle, J. D., J. D. Jamieson, and G. E. Palade. Radioautographic analysis of the secretory process in the parotid acinar cell of the rabbit. J. Cell Biol. 53: 290–311, 1972.
 31. Castle, J. D., J. D. Jamieson, and G. E. Palade. Secretion granules of the rabbit parotid gland. Isolation, subfractionation, and characterization of the membrane and content subfractions. J. Cell Biol. 64: 182–210, 1975.
 32. Castle, J. D., and G. E. Palade. Secretion granules of the rabbit parotid. Selective removal of secretory contaminants from granule membranes. J. Cell Biol. 76: 323–340, 1978.
 33. Chandler, D. F., and J. E. Heuser. Arrest of membrane fusion events in mast cells by quick‐freezing. J. Cell Biol. 86: 666–674, 1980.
 34. Cockroft, S., J. A. Taylor, and J. D. Judah. Subcellular localization of inositol lipid kinases in rat liver. Biochim. Biophys. Acta 845: 163–170, 1985.
 35. Cohen, F. S., M. H. Akabas, and A. Finkelstein. Osmotic swelling of phospholipid vesicles causes them to fuse with a planar phospholipid bilayer membrane. Science Wash. DC 217: 458–460, 1982.
 36. Couch, C. B., and W. J. Strittmatter. Rat myoblast fusion requires metalloprotease activity. Cell 32: 257–265, 1983.
 37. Creutz, C. E., L. G. Dowling, E. M. Kyger, and R. C. Franson. Phosphatidylinositol‐specific phospholipase C activity of chromaffin granule‐binding proteins. J. Biol. Chem. 260: 7171–7173, 1985.
 38. Creutz, C. E., L. G. Dowling, J. J. Sando, C. Villar‐Pilasi, J. H. Whipple, and W. J. Zaks. Characterization of chromobindins. Soluble proteins that bind to the chromaffin granule membrane in the presence of Ca2+. J. Biol. Chem. 258: 14664–14674, 1983.
 39. Creutz, C. E., C. J. Pazoles, and H. B. Pollard. Identification and purification of an adrenal medulla protein (synexin) that causes calcium‐dependent aggregation of isolated chromaffin granules. J. Biol. Chem. 253: 2858–2866, 1978.
 40. Cruz, J., B. I. Posner, and J. J. M. Bergeron. Receptor‐mediated endocytosis of [125I]insulin into pancreatic acinar cells in vivo. Endocrinology 115: 1996–2008, 1984.
 41. De Camilli, P., R. S. Cameron, and P. Greengard. Synapsin I (protein I), a nerve terminal‐specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluoresence in frozen and plastic sections. J. Cell Biol. 96: 1337–1354, 1983.
 42. De Camilli, P., D. Peluchetti, and J. Meldolesi. Dynamic changes of the luminal plasmalemma in stimulated parotid acinar cells. A freeze fracture study. J. Cell Biol. 70: 59–74, 1976.
 43. De Lisle, R. C., and U. Hopfer. Electrolyte permeabilities of pancreatic zymogen granules: implications for pancreatic secretion. Am. J. Physiol. 250 (Gastrointest. Liver Physiol.13): G489–G496, 1986.
 44. De Lisle, R. C., I. Schulz, T. Tyrakowski, W. Haase, and U. Hopfer. Isolation of stable pancreatic zymogen granules. Am. J. Physiol. 246 (Gastrointest. Liver Physiol.9): G411–G418, 1984.
 45. De Lorenzo, R. J., S. D. Freedman, W. B. Yohe, and S. C. Maurer. Stimulation of Ca2+‐dependent neurotransmitter release and presynaptic nerve terminal protein phosphorylation by calmodulin and a calmodulin‐like protein isolated from synaptic vesicles. Proc. Natl. Acad. Sci. USA 76: 1838–1842, 1979.
 46. De Oliveira Filgueiras, O. M., A. M. H. P. Van den Besselaar, and H. Van den Bosch. Localization of lysophosphatidylcholine in bovine chromaffin granules. Biochim. Biophys. Acta 558: 73–84, 1979.
 47. De Oliveira Filgueiras, O. M., H. Van den Bosch, R. G. Johnson, S. E. Carty, and A. Scarpa. Phospholipid composition of some amine storage granules. FEBS Lett. 129: 309–313, 1981.
 48. Deutsch, J. W., and R. B. Kelly. Lipids of synaptic vesicles: relevance to the mechanism of membrane fusion. Biochemistry 20: 378–385, 1981.
 49. Dolais‐Kitabgi, J., and R. L. Perlman. The stimulation of catecholamine release from chromaffin granules by valinomycin. Mol. Pharmacol. 11: 745–750, 1975.
 50. Douglas, W. W. Involvement of calcium in exocytosis and the exocytosis‐vesiculation sequence. Calcium and cell regulation. Biochem. Soc. Symp. 39: 1–28, 1974.
 51. Drenckhahn, D., and H. G. Mannherz. Distribution of actin and the actin‐associated proteins myosin, tropomyosin, alpha‐actinin, vinculin, and villin in rat and bovine exocrine glands. Eur. J. Cell Biol. 30: 167–176, 1983.
 52. Dreyfus, H., D. Aunis, S. Harth, and P. Mandel. Gangliosides and phospholipids of the membranes from bovine adrenal medullary chromaffin granules. Biochim. Biophys. Acta 489: 89–97, 1977.
 53. Duello, T., T. M. Nett, and M. G. Farquhar. Fate of a gonadotropin‐releasing hormone agonist internalized by rat pituitary gonadotrophs. Endocrinology 112: 1–10, 1983.
 54. Duong, L. T., P. J. Fleming, and J. T. Russell. An identical cytochrome b.561 is present in bovine adrenal chromaffin vesicles and posterior pituitary neurosecretory vesicles. J. Biol. Chem. 259: 4885–4889, 1984.
 55. Ehrenreich, J. H., J. J. M. Bergeron, P. Siekevitz, and G. E. Palade. Golgi fractions prepared from rat liver homogenates. I. Isolation procedure and morphological characterization. J. Cell Biol. 59: 45–72, 1973.
 56. Ehrlich, H. P., R. Ross, and P. Bornstein. Effects of antimicrotubular agents on the secretion of collagen. A biochemical and morphological study. J. Cell Biol. 62: 390–405, 1974.
 57. Emmelin, N. Nervous control of mammalian salivary glands. Philos. Trans. R. Soc. Lond. B Biol. Sci. 296: 27–35, 1981.
 58. Farquhar, M. G. Recovery of surface membrane in anterior pituitary cells. Variations in traffic detected with anionic and cationic ferritin. J. Cell Biol. 77: R35–R42, 1978.
 59. Farquhar, M. G., J. J. Reid, and L. W. Daniell. Intracellular transport and packaging of prolactin: a quantitative electron microscopic autoradiographic study of mammotrophs dissociated from rat pituitaries. Endocrinology 102: 296–311, 1978.
 60. Feinstein, H., and M. Schramm. Energy production in rat parotid gland. Eur. J. Biochem. 13: 158–163, 1970.
 61. Fletcher, D. J., J. P. Quigley, G. E. Bauer, and B. D. Noe. Characterization of proinsulin‐ and proglucagon‐converting activities in isolated islet secretory granules. J. Cell Biol. 90: 312–322, 1981.
 62. Forte, T. M., T. E. Machen, and J. G. Forte. Ultrastructural changes in oxyntic cells associated with secretory function: a membrane‐recycling hypothesis. Gastroenterology 73: 941–955, 1977.
 63. Fowler, V. M., and H. B. Pollard. Chromaffin granule membrane‐F‐actin interactions are calcium sensitive. Nature Lond. 295: 336–339, 1982.
 64. Fricker, L. D., and S. H. Snyder. Enkephalin convertase: purification and characterization of a specific enkephalin‐synthesizing carboxypeptidase localized to adrenal chromaffin granules. Proc. Natl. Acad. Sci. USA 79: 3886–3890, 1982.
 65. Fujiki, Y., A. L. Hubbard, S. Fowler, and P. B. Lazarow. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J. Cell Biol. 93: 97–102, 1982.
 66. Gardner, J. D., and R. T. Jensen. Regulation of pancreatic enzyme secretion in vitro. In: Physiology of the Gastrointestinal Tract, edited by L. R. Johnson. New York: Raven, 1981, vol. 2, p. 831–869.
 67. Geisow, M. J., and R. D. Burgoyne. Cation‐dependent lysis of chromaffin granules—an alternative hypothesis for osmotically driven exocytosis. Cell Biol. Int. Rep. 6: 353–359, 1982.
 68. Geisow, M. J., and R. D. Burgoyne. Recruitment of cytosolic proteins to a secretory granule membrane depends on Ca2+‐calmodulin. Nature Lond. 301: 432–435, 1983.
 69. Geisow, M. J., R. D. Burgoyne, and A. Harris. Interaction of calmodulin with adrenal chromaffin granule membranes. FEBS Lett. 143: 69–72, 1982.
 70. Giannattasio, G., A. Zanini, and J. Meldolesi. Molecular organization of rat prolactin granules. I. In vitro stability of intact and “membraneless” granules. J. Cell Biol. 64: 246–251, 1975.
 71. Gilbert, S. P., R. D. Allen, and R. D. Sloboda. Translocation of vesicles from squid axoplasm on flagellar microtubules. Nature Lond. 315: 245–248, 1985.
 72. Glembotski, C. C., B. A. Eipper, and R. E. Mains. Characterization of a peptide α‐amidation activity from rat anterior pituitary. J. Biol. Chem. 259: 6385–6392, 1984.
 73. Glenney, J. Phospholipid‐dependent Ca2+ binding by the 36‐kDa tyrosine kinase substrate (calpactin) and its 33‐kDa core. J. Biol. Chem. 261: 7247–7252, 1986.
 74. Glickman, J., K. Croen, S. Kelly, and Q. Al‐Awqati. Golgi membranes contain an electrogenic H+ pump in parallel to a chloride conductance. J. Cell Biol. 97: 1303–1308, 1983.
 75. Gonatas, N. K., A. Stieber, W. F. Hickey, S. H. Herbert, and J. O. Gonatas. Endosomes and Golgi vesicles in adsorptive and fluid phase endocytosis. J. Cell Biol. 99: 1379–1390, 1984.
 76. Gumbiner, B., and R. B. Kelly. Secretory granules of an anterior pituitary cell line, AtT‐20, contain only mature forms of corticotropin and β‐lipotropin. Proc. Natl. Acad. Sci. USA 78: 318–322, 1981.
 77. Hand, A. R. Morphology and cytochemistry of the Golgi apparatus of the rat salivary gland acinar cells. Am. J. Anat. 130: 141–157, 1971.
 78. Havinga, J. R., G. J. A. M. Strous, and C. Poort. Biosynthesis of the major glycoprotein associated with zymogengranule membranes in the pancreas. Eur. J. Biochem. 133: 449–454, 1983.
 79. Herzog, V., and M. G. Farquhar. Luminal membrane retrieved after exocytosis reaches most Golgi cisternae in secretory cells. Proc. Natl. Acad. Sci. USA 74: 5073–5077, 1977.
 80. Herzog, V., and H. Reggio. Pathways of endocytosis from luminal plasma membrane in rat exocrine pancreas. Eur. J. Cell Biol. 21: 141–150, 1980.
 81. Hirakawa, N. Cross‐linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick‐freeze, deep‐etching method. J. Cell Biol. 94: 129–142, 1982.
 82. Hokin, L. E. Isolation of the zymogen granules of dog pancreas and a study of their properties. Biochim. Biophys. Acta 18: 379–388, 1955.
 83. Holtzman, E., and R. Dominitz. Cytochemical studies of lysosomes, Golgi apparatus and endoplasmic reticulum in secretion and protein uptake by adrenal medulla cells of the rat. J. Histochem. Cytochem. 16: 320–336, 1968.
 84. Holz, R. W. Measurement of membrane potential of chromaffin granules by the accumulation of triphenylmethylphosphonium cation. J. Biol. Chem. 254: 6703–6709, 1979.
 85. Holz, R. W., R. A. Senter, and R. R. Sharp. Evidence that H+ electrochemical gradient across membranes of chromaffin granules is not involved in exocytosis. J. Biol. Chem. 258: 7506–7513, 1983.
 86. Hong, K., N. Duzgunes, and D. Papahadjopoulos. Role of synexin in membrane fusion. J. Biol. Chem. 256: 3641–3644, 1981.
 87. Hooper, J. E., and R. B. Kelly. Calmodulin is tightly associated with synaptic vesicles independent of calcium. J. Biol. Chem. 259: 148–153, 1984.
 88. Hoppe, C. A., T. P. Connolly, and A. L. Hubbard. Transcellular transport of polymeric IgA in rat hepatocyte: biochemical and morphological characterization of the transport pathway. J. Cell Biol. 101: 2113–2123, 1985.
 89. Howell, K. E., and G. E. Palade. Hepatic Golgi fractions resolved into membrane and content polypeptides. J. Cell Biol. 92: 822–832, 1982.
 90. Huttner, W. B., L. J. DeGennaro, and P. Greengard. Differential phosphorylation of multiple sites in purified protein I by cyclic AMP‐dependent and calcium‐dependent protein kinases. J. Biol. Chem. 256: 1482–1488, 1981.
 91. Huttner, W. B., N. Schiebler, P. Greengard, and P. De Camilli. Synapsin I (protein I), a nerve terminal‐specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J. Cell Biol. 96: 1374–1388, 1983.
 92. Ishikawa, A. Fine structural changes in response to hormonal stimulation of the perfused canine pancreas. J. Cell Biol. 24: 369–385, 1965.
 93. Jamieson, J. D., and G. E. Palade. Intracellular transport of secretory proteins in the pancreatic exocrine cells. I. Role of the peripheral elements of the Golgi complex. J. Cell Biol. 34: 577–596, 1967.
 94. Jamieson, J. D., and G. E. Palade. Intracellular transport of secretory proteins in the pancreatic exocrine cell. IV. Metabolic requirements. J. Cell Biol. 39: 589–603, 1968.
 95. Jamieson, J. D., and G. E. Palade. Condensing vacuole conversion and zymogen granule discharge in pancreatic exocrine cells: metabolic studies. J. Cell Biol. 48: 503–522, 1971.
 96. Kachadorian, W. A., J. Muller, and A. Finkelstein. Role of osmotic forces in exocytosis: studies of ADH‐induced fusion in toad urinary bladder. J. Cell Biol. 91: 584–588, 1981.
 97. Kaplan, J., D. M. Ward, and H. S. Wiley. Phenylarsine oxide‐induced increase in alveolar macrophage surface receptors: evidence for fusion of internal receptor pools with the cell surface. J. Cell Biol. 101: 121–129, 1985.
 98. Keenan, T. W., and D. J. Morre. Phospholipid class and fatty acid composition of Golgi apparatus isolated from rat liver and comparison with other cell fractions. Biochemistry 9: 19–25, 1970.
 99. Kelly, R. B. Pathways of protein secretion in eukaryotes. Science Wash. DC 230: 25–32, 1985.
 100. Knight, D. E., and P. F. Baker. Calcium‐dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electron fields. J. Membr. Biol. 68: 107–140, 1982.
 101. Knight, D. E., and M. C. Scrutton. Cyclic nucleotides control a system which regulates Ca2+ sensitivity of platelet secretion. Nature Lond. 309: 66–68, 1984.
 102. Koike, H., and J. Meldolesi. Post‐stimulation retrieval of luminal surface membrane in parotid acinar cells is calcium‐dependent. Exp. Cell Res. 134: 377–388, 1981.
 103. Kondor‐Koch, C., R. Bravo, S. D. Fuller, D. Cutler, and H. Garoff. Exocytotic pathways exist to both the apical and the basolateral cell surface of the polarized epithelial cell MDCK. Cell 43: 297–306, 1985.
 104. Kousvelari, E., F. G. Oppenheim, and L. S. Cutler. Ultrastructural localization of salivary acidic proline‐rich proteins from Macaca fascicularis. J. Histochem. Cytochem. 30: 274–278, 1982.
 105. Kraehenbuhl, J.‐P., L. Racine, and J. D. Jamieson. Cytochemical localization of secretory proteins in bovine pancreatic exocrine cells. J. Cell Biol. 72: 406–423, 1977.
 106. Kreibich, G., P. Debey, and D. D. Sabatini. Selective release of content from microsomal vesicles without membrane disassembly. I. Permeability changes induced by low detergent concentrations. J. Cell Biol. 58: 436–462, 1973.
 107. Kremmer, T., M. H. Wisher, and W. H. Evans. The lipid composition of plasma membrane subfractions originating from the three major functional domains of the rat hepatocyte cell surface. Biochim. Biophys. Acta 455: 655–664, 1976.
 108. Lagunoff, D., and E. Y. Chi. Effect of colchicine on rat mast cells. J. Cell Biol. 71: 182–195, 1976.
 109. Lasek, R. J., and S. T. Brady. Attachment of transported vesicles to microtubules in axoplasm is facilitated by AMP‐PNP. Nature Lond. 316: 645–647, 1985.
 110. LeBel, D., and M. Beattie. The integral and peripheral proteins of the zymogen granule membrane. Biochim. Biophys. Acta 769: 611–621, 1984.
 111. Lewis, D. S., and R. A. Ronzio. An assessment of the role of protein kinase and zymogen granule phosphorylation during secretion by the rat exocrine pancreas. Biochim. Biophys. Acta 583: 422–433, 1979.
 112. Lillie, J. H., and S. S. Han. Secretory protein synthesis in the stimulated parotid gland. Temporal dissociation of the maximal response from secretion. J. Cell Biol. 59: 708–721, 1973.
 113. Livne, E., and C. Oliver. Internalization of cationized ferritin by isolated pancreatic acinar cells. J. Histochem. Cytochem. 34: 167–176, 1986.
 114. Llinás, R., T. L. McGuinness, C. S. Leonard, M. Sugimori, and P. Greengard. Intraterminal injection of synapsin I or calcium/calmodulin‐dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc. Natl. Acad. Sci. USA 82: 3035–3039, 1985.
 115. Louvard, D., H. Reggio, and G. Warren. Antibodies to the Golgi complex and the rough endoplasmic reticulum. J. Cell Biol. 92: 92–107, 1982.
 116. Malaisse, W. J., F. Malaisse‐Lage, M. O. Walker, and P. E. Lacy. The stimulus‐secretion coupling of glucose‐induced insulin release. V. The participation of a microtubular‐microfilamentous system. Diabetes 20: 257–265, 1971.
 117. Matlin, K., and K. Simons. Sorting of a plasma membrane glycoprotein occurs before it reaches the cell surface in cultured epithelial cells. J. Cell Biol. 99: 2131–2139, 1984.
 118. Matthew, W. D., L. Tsavaler, and L. F. Reichardt. Identification of a synaptic vesicle‐specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J. Cell Biol. 91: 257–269, 1981.
 119. Meldolesi, J. Dynamics of cytoplasmic membranes in guinea pig pancreatic acinar cells. I. Synthesis and turnover of membrane proteins. J. Cell Biol. 61: 1–13, 1974.
 120. Meldolesi, J., P. De Camilli, and D. Peluchetti. The membrane of secretory granules: structure, composition and turnover. In: Secretory Mechanisms of Exocrine Glands, edited by N. A. Thorn and O. H. Peterson. Copenhagen: Munksgaard, 1974, p. 137–148.
 121. Meldolesi, J., J. D. Jamieson, and G. E. Palade. Composition of cellular membranes in the pancreas of the guinea pig. Isolation of membrane fractions. J. Cell Biol. 49: 109–129, 1971.
 122. Merritt, J. E., and R. P. Rubin. Pancreatic amylase secretion and cytoplasmic free calcium. Biochem. J. 230: 151–159, 1985.
 123. Michaelson, D. M., G. Barkai, and Y. Barenholz. Asymmetry of lipid organization in cholinergic synaptic vesicle membranes. Biochem. J. 211: 155–162, 1983.
 124. Michener, M., W. B. Dawson, and C. E. Creutz. Phosphorylation of a chromaffin granule‐binding protein in stimulated chromaffin cells. J. Biol. Chem. 261: 6548–6555, 1986.
 125. Miller, C., P. Arvan, J. N. Telford, and E. Racker. Ca2+‐induced fusion of proteoliposomes. Dependence on transmembrane osmotic gradient. J. Membr. Biol. 30: 271–282, 1976.
 126. Miller, R. H., and R. J. Lasek. Cross‐bridges mediate anterograde and retrograde vesicle transport along microtubules in squid axoplasm. J. Cell Biol. 101: 2181–2193, 1985.
 127. Moore, H.‐P. H., and R. B. Kelly. Secretory protein targeting in a pituitary cell line: differential transport of foreign secretory proteins to distinct secretory pathways. J. Cell Biol. 101: 1773–1781, 1985.
 128. Mostov, K. E., and N. E. Simister. Transcytosis. Cell 43: 389–390, 1985.
 129. Mroz, E. A., and C. Lechene. Pancreatic zymogen granules differ markedly in protein composition. Science Wash. DC 232: 871–874, 1986.
 130. Navonne, F., P. Greengard, and P. De Camilli. Synapsin I in nerve terminals: selective association with small synaptic vesicles. Science Wash. DC 226: 1209–1215, 1985.
 131. Nestler, E. J., and P. Greengard. Nerve impulses increase the phosphorylation state of Protein I in rabbit superior cervical ganglion. Nature Lond. 296: 452–454, 1982.
 132. Njus, D., J. Knoth, and M. Zallakian. Proton‐linked transport in chromaffin granules. Curr. Top. Bioenerg. 11: 107–147, 1981.
 133. Novick, P., and D. Botstein. Phenotypic analysis of temperature‐sensitive yeast actin mutants. Cell 40: 405–416, 1985.
 134. Novick, P., C. Field, and R. Schekman. Identification of 23 complementation groups required for post‐translational events in the yeast secretory pathway. Cell 21: 205–215, 1980.
 135. Novick, P., and R. Schekman. Export of major cell surface proteins is blocked in yeast secretory mutants. J. Cell Biol. 96: 541–547, 1983.
 136. Novikoff, A. B., M. Mori, N. Quintana, and A. Yam. Studies of the secretory process in the mammalian exocrine pancreas. I. The condensing vacuole. J. Cell Biol. 75: 148–165, 1977.
 137. Oliver, C., and A. R. Hand. Enzyme modulation of the Golgi apparatus and GERL: a cytochemical study of parotid acinar cells. J. Histochem. Cytochem. 31: 1041–1048, 1983.
 138. Orci, L., M. Ravazzola, M. Arherdt, O. Madsen, J. D. Vassali, and A. Perrelet. Direct identification of prohormone conversion in insulin‐secretory cells. Cell 42: 203–219, 1985.
 139. Oron, Y., Y. Sharoni, H. Lefkovitz, and Z. Selinger. Phosphatidylinositol kinase and diphosphoinositide kinase in the rat parotid gland. In: Cyclitols and Phosphoinositides, edited by W. W. Wells and F. Eisenberg. New York: Academic, 1978, p. 383–397.
 140. Palade, G. E. Intracisternal granules in the exocrine cells of the pancreas. J. Biophys. Biochem. Cytol. 2: 417–425, 1956.
 141. Palade, G. E. Intracellular aspects of the process of protein synthesis. Science Wash. DC 189: 347–358, 1975.
 142. Pandol, S. J., M. S. Schoeffield, G. Sachs, and S. Muallem. Role of free cytosolic calcium in secretagogue‐stimulated amylase release from dispersed acini from guinea pig pancreas. J. Biol. Chem. 260: 10081–10086, 1985.
 143. Patzak, A., and H. Winkler. Exocytotic exposure and recycling of membrane antigens of chromaffin granules: ultrastructural evaluation after immunolabeling. J. Cell Biol. 102: 510–515, 1986.
 144. Patzelt, C., D. Brown, and B. Jeanrenaud. Inhibitory effect of colchicine on amylase secretion by the rat parotid glands. Possible localization in the Golgiarea. J. Cell Biol. 73: 578–593, 1977.
 145. Pavelka, M., and A. Ellinger. Effect of colchicine on the Golgi complex of rat pancreatic acinar cells. J. Cell Biol. 97: 737–748, 1983.
 146. Pazoles, C., and H. B. Pollard. Evidence for stimulation of anion transport in ATP‐evoked transmitter release from isolated secretory vesicles. J. Biol. Chem. 253: 3962–3969, 1978.
 147. Peiffer, A., C. Gagnon, and S. Heisler. Phosphorylation of zymogen granule proteins in intact rat pancreatic acinar cells. Biochem. Biophys. Res. Commun. 122: 413–419, 1984.
 148. Perrin, D., and D. Aunis. Reorganization of α‐fodrin induced by stimulation in secretory cells. Nature Lond. 315: 589–592, 1985.
 149. Peters, A., S. L. Palay, and H. F. Webster. Synapses. In: The Fine Structure of the Nervous System: The Neurons and Supporting Cells. Philadelphia, PA: Saunders, 1976, p. 156–157.
 150. Pfeiffer, S., S. D. Fuller, and K. Simons. Intracellular sorting and basolateral appearance of the G protein of vesicular stomatitis virus in Madin‐Darby canine kidney cells. J. Cell Biol. 101: 470–476, 1985.
 151. Phillips, J. H. Phosphatidylinositol kinase. A component of the chromaffin‐granule membrane. Biochem. J. 136: 579–587, 1973.
 152. Phillips, J. H. Passive ion permeability of the chromaffingranule membrane. Biochem. J. 168: 289–297, 1977.
 153. Phillips, J. H., K. Burridge, S. P. Wilson, and N. Kirshner. Visualization of the exocytosis/endocytosis secretory cycle in cultured adrenal chromaffin cells. J. Cell Biol. 97: 1906–1917, 1983.
 154. Putney, J. W., J. S. McKinney, D. L. Aub, and B. A. Leslie. Phorbol ester‐induced protein secretion in rat parotid gland. Mol. Pharmacol. 26: 261–266, 1984.
 155. Rand, R. Interacting phospholipid bilayers: measured forces and induced structural changes. Annu. Rev. Biophys. Bioeng. 10: 277–314, 1981.
 156. Reaven, E. P., and G. M. Reaven. Evidence that microtubules play a permissive role in hepatocyte very low density lipoprotein secretion. J. Cell Biol. 84: 28–39, 1980.
 157. Redman, C. M., D. Banerjee, K. Howell, and G. E. Palade. Colchicine inhibition of plasma protein release from rat hepatocytes. J. Cell Biol. 66: 42–59, 1975.
 158. Reggio, H., and J. C. Dagorn. Ionic interaction between bovine chymotrypsinogen A and chondroitin sulfate A, B, C. A possible novel model for molecular aggregation in zymogen granules. J. Cell Biol. 78: 951–954, 1978.
 159. Rodriguez‐Boulan, E., D. E. Misek, D. V. Salas, P. J. I. Salas, and E. Bard. Protein sorting in the secretory pathway. Curr. Top. Membr. Transp. 24: 251–294, 1985.
 160. Rogalski, A. A., J. E. Bergmann, and S. J. Singer. Effect of microtubule assembly states on the intracellular processing and surface expression of an integral protein of the plasma membrane. J. Cell Biol. 99: 1101–1109, 1984.
 161. Rogalski, A. A., and S. J. Singer. Associations of elements of the Golgi apparatus with microtubules. J. Cell Biol. 99: 1092–1100, 1984.
 162. Rohlich, P., P. Anderson, and B. Uvnas. Electron microscope observations on compound 48/80‐induced degranulation in rat mast cells. Evidence for sequential exocytosis of storage granules. J. Cell Biol. 51: 465–483, 1971.
 163. Ronzio, R. A., K. E. Kronquist, D. S. Lewis, R. J. Mac‐Donald, S. H. Mohrlok, and J. J. O'Donnell, Jr. Glycoprotein synthesis in the adult rat pancreas. IV. Subcellular distribution of membrane glycoproteins. Biochim. Biophys. Acta 508: 65–84, 1978.
 164. Roth, J. Subcellular organization of glycosylation: results from in situ immuno electron microscopy. In: Glycoconjugates, edited by E. A. Davidson, J. C. Williams, and N. M. Di Ferrante. New York: Praeger, 1985, p. 497–498. (Proc. 8th Intern. Symp.).
 165. Roth, J., D. J. Taatjes, J. M. Lucocq, J. Weinstein, and J. C. Paulson. Demonstration of an extensive trans‐tubular network continuous with the Golgi apparatus stack that may function in glycosylation. Cell 43: 287–295, 1985.
 166. Rudnick, G. ATP‐driven H+ pumping into intracellular organelles. Annu. Rev. Physiol. 48: 403–413, 1986.
 167. Russell, J. T., and R. W. Holz. Measurement of ΔpH and membrane potential in isolated neurosecretory vesicles from bovine neurohypophyses. J. Biol. Chem. 256: 5950–5953, 1981.
 168. Russell, J. T., M. Levine, and D. Njus. Electron transfer across posterior pituitary neurosecretory vesicle membranes. J. Biol. Chem. 260: 226–231, 1985.
 169. Scheele, G. A. Regulation of gene expression in the exocrine pancreas. In: The Exocrine Pancreas: Biology, Pathology, and Diseases, edited by V. L. W. Go. New York: Raven, 1986, p. 60–65.
 170. Scheele, G., and A. Tartakoff. Exit of nonglycosylated secretory proteins from the rough endoplasmic reticulum is asynchronous in the exocrine pancreas. J. Biol. Chem. 260: 926–931, 1985.
 171. Scheffer, R. C. T., C. Poort, and J. W. Slot. Fate of the major zymogen granule membrane‐associated glycoproteins from rat pancreas. A biochemical and immunocytochemical study. Eur. J. Cell Biol. 23: 122–128, 1980.
 172. Scheid, A., and P. W. Choppin. Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai.virus. Virology 57: 475–490, 1974.
 173. Scherman, D., and J. Nordman. Internal pH of isolated newly formed and aged neurohypophyseal granules. Proc. Natl. Acad. Sci. USA 79: 476–479, 1982.
 174. Schramm, M., and D. Danon. The mechanism of enzyme secretion by the cell. I. Storage of amylase in the zymogen granules of the rat parotid gland. Biochim. Biophys. Acta 50: 102–112, 1961.
 175. Schramm, M., and Z. Selinger. The functions of cyclic AMP and calcium as alternative second messengers in parotid gland and pancreas. J. Cyclic Nucleotide Res. 1: 181–192, 1975.
 176. Schroer, T. A., S. T. Brady, and R. B. Kelly. Fast axonal transport of foreign synaptic vesicles in squid axoplasm. J. Cell Biol. 101: 568–572, 1985.
 177. Schwartz, G. H., and Q. Al‐Awqati. Regulation of transepithelial H+ transport by exocytosis and endocytosis. Annu. Rev. Physiol. 48: 153–162, 1986.
 178. Schwoch, G., S. M. Lohman, U. Walter, and U. Jung. Determination of cyclic AMP‐dependent protein kinase sub‐units by an immunoassay reveals a different subcellular distribution of the enzyme in rat parotid than does determination of the enzyme activity. J. Cyclic Nucleotide Protein Phosphorylation Res. 10: 247–258, 1985.
 179. Smith, C. D., and W. W. Wells. Phosphorylation of rat liver nuclear envelopes. J. Biol. Chem. 258: 9368–9373, 1983.
 180. Smith, D. S., U. Jarlfors, and R. Beranek. The organization of synaptic axoplasm in the lamprey central nervous system. J. Cell Biol. 46: 199–219, 1970.
 181. Snider, M. D., and Rogers, O. C. Membrane traffic in animal cells: cellular glycoproteins return to the site of Golgi mannosidase I. J. Cell Biol. 103: 265–276, 1986.
 182. Solari, R., and J.‐P. Kraehenbuhl. Biosynthesis of the IgA antibody receptor: a model for the transepithelial sorting of a membrane glycoprotein. Cell 36: 61–71, 1984.
 183. Spearman, T. N., K. P. Hurley, R. Olivas, R. G. Ulrich, and F. R. Butcher. Subcellular localization of stimulus‐affected endogeneous phosphoproteins in the rat parotid gland. J. Cell Biol. 99: 1354–1363, 1984.
 184. Spudich, J. A., S. J. Kron, and M. P. Sheetz. Movement of myosin‐coated beads on oriented filaments reconstituted from purified actin. Nature Lond. 315: 584–586, 1985.
 185. Stadler, H., and E. M. Fenwick. Cholinergic synaptic vesicles from Torpedo marmorata.contain an atractyloside‐binding protein related to the mitochondrial ADP/ATP carrier. Eur. J. Biochem. 136: 377–382, 1983.
 186. Steinman, R. M., I. S. Mellman, W. A. Muller, and Z. A. Cohn. Endocytosis and the recycling of plasma membrane. J. Cell Biol. 96: 1–27, 1983.
 187. Stossel, T. P. Actin filaments and secretion. The macrophage model. Methods Cell Biol. 23: 215–245, 1981.
 188. Strous, G. J., A. D. Maine, J. E. Zijderhand‐Bleekemolen, J. W. Slot, and A. L. Schwartz. Effect of lysosomotropic amines on the secretory pathway and on the recycling of the asialoglycoprotein receptor in human hepatoma cells. J. Cell Biol. 101: 531–539, 1985.
 189. Strous, G. J. A. M., R. Willemsen, P. Van Keckhof, J. W. Slot, H. J. Geuze, and H. F. Lodish. Vesicular stomatitis virus glycoprotein, albumin, and transferrin are transported to the cell surface via the same Golgi vesicles. J. Cell Biol. 97: 1815–1822, 1983.
 190. Summers, T. A., and C. E. Creutz. Phosphorylation of a chromaffin granule‐binding protein by protein kinase C. J. Biol. Chem. 260: 2437–2443, 1985.
 191. Suprenant, K. A., and W. L. Dentler. Association between endocrine pancreatic secretory granules and in vitro‐assembled microtubules is dependent upon microtubule‐associated proteins. J. Cell Biol. 93: 164–174, 1982.
 192. Sztul, E. S., K. E. Howell, and G. E Palade. Biogenesis of the polymeric IgA receptor in rat hepatocytes. II. Localization of its intracellular forms by cell fractionation studies. J. Cell Biol. 100: 1255–1261, 1985.
 193. Tandler, B., and R. A. Erlandson. Ultrastructure of baboon parotid gland. Anat. Rec. 184: 115–132, 1975.
 194. Tartakoff, A., P. Vassali, and M. Détraz. Comparative studies of intracellular transport of secretory proteins. J. Cell Biol. 79: 694–707, 1978.
 195. Tartakoff, A. M., P. Vassalli, and M. Détraz. Plasma cell immunoglobulin secretion. Arrest is accompanied by alterations of the Golgi complex. J. Exp. Med. 146: 1332–1345, 1977.
 196. Tougard, C., D. Louvard, R. Picart, and A. Tixier‐Vidal. The rough endoplasmic reticulum and the Golgi apparatus visualized using specific antibodies in normal and tumoral prolactin cells in culture. J. Cell Biol. 96: 1197–1207, 1983.
 197. Tougard, C., D. Louvard, R. Picart, and A. Tixier‐Vidal. Immunocytochemical identification of membrane compartments involved in secretory process and endocytosis in prolactin cells. In: Prolactin. Basic and Clinical Correlates, edited by R. M. Macleod, M. O. Thorner, and U. Scapagnini. Padua, Italy: Livania, 1985, vol. 1, p. 37–44. (Fidia Res. Ser.).
 198. Treiman, M., W. Weber, and M. Gratzl. 3',5'‐Cyclic adenosine monophosphate and Ca2+‐calmodulin‐dependent endogenous protein phosphorylation activity in membranes of the bovine chromaffin secretory vesicles: identification of two phosphorylated components as tyrosine hydroxylase and protein kinase regulatory subunit Type II. J. Neurochem. 40: 661–669, 1983.
 199. Uvnas, B. Histamine storage and release. Federation Proc. 33: 2172–2176, 1974.
 200. Vale, R. D., B. J. Schnapp, T. Mitchison, E. Steuer, T. S. Reese, and M. P. Sheetz. Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell 43: 623–632, 1985.
 201. Vale, R. D., B. J. Schnapp, T. S. Reese, and M. P. Sheetz. Movement of organelles along filaments dissociated from the axoplasm of the squid giant axon. Cell 40: 449–454, 1985.
 202. Walker, J. H., J. Obrocki, and T. C. Sudhof. Calelectrin, a calcium‐dependent membrane‐binding protein associated with secretory granules in Torpedo.cholinergic electromotor nerve endings and rat adrenal medulla. J. Neurochem. 41: 139–145, 1983.
 203. Wall, D. A., and A. L. Hubbard. Receptor‐mediated endocytosis of asialoglycoproteins by rat liver hepatocytes: biochemical characterization of the endosomal compartments. J. Cell Biol. 101: 2104–2112, 1985.
 204. Wallach, D. The secretory granule of the parotid gland. In: The Secretory Granule, edited by A. Poisner and J. M. Trifaro. New York: Elsevier, 1982, p. 247–276.
 205. Wallach, D., N. Kirschner, and M. Schramm. Non‐parallel transport of membrane proteins and content proteins during assembly of the secretory granule in rat parotid gland. Biochim. Biophys. Acta 375: 87–105, 1975.
 206. Weber, A., E. W. Westhead, and H. Winkler. Specificity and properties of the nucleotide carrier in chromaffin granules from bovine adrenal medulla. Biochem. J. 210: 789–794, 1983.
 207. Weinstock, M., and C. P. Leblond. Elaboration of the matrix glycoprotein of enamel by the secretory ameloblasts of the rat incisor as revealed by radioautography after galactose‐3H injection. J. Cell Biol. 51: 26–51, 1971.
 208. White, J. M., M. Kielien, and A. Helenius. Membrane fusion proteins of envelopal viruses. Q. Rev. Biophys. 16: 151–195, 1983.
 209. Williams, J. A. Effects of antimitotic agents on ultrastructure and intracellular transport of protein in pancreatic acini. Methods Cell Biol. 23: 247–258, 1981.
 210. Williams, M. A., and G. H. Cope. A system for the study of zymogen granule genesis in rabbit parotid gland tissue in vitro. J. Anat. 116: 431–444, 1973.
 211. Williams, M. A., M. K. Pratten, J. W. Turner, and G. M. Cope. Comparative studies on the nature of purified cytomembranes of the rabbit parotid gland. Histochem. J. 11: 19–50, 1979.
 212. Wilson, I. A., J. J. Skehel, and D. C. Wiley. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature Lond. 289: 366–373, 1981.
 213. Winkler, H. The composition of adrenal chromaffin granules: an assessment of controversial results. Neuroscience 1: 65–80, 1976.
 214. Winkler, H. The biogenesis of the adrenal chromaffin granules. Neuroscience 2: 657–683, 1977.
 215. Woods, J. W., M. Doriaux, and M. G. Farquhar. Transferrin receptors recycle to cis and middle as well as trans Golgi cisternae in Ig‐secretory myeloma cells. J. Cell Biol. 103: 277–286, 1986.
 216. Zastrow, M. V., T. R. Tritton, and J. D. Castle. Identification of L‐ascorbic acid in secretion granules of the rat parotid gland. J. Biol. Chem. 259: 11746–11750, 1984.
 217. Zimmerberg, J., C. Sardet, and D. Epel. Exocytosis of sea urchin egg cortical vesicles in vitro is retarded by hyperosmotic sucrose: kinetics of fusion monitored by quantitative light‐scattering microscopy. J. Cell Biol. 101: 2398–2410, 1985.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Richard S. Cameron, Peter Arvan, J. David Castle. Secretory Membranes and the Exocrine Storage Compartment. Compr Physiol 2011, Supplement 18: Handbook of Physiology, The Gastrointestinal System, Salivary, Gastric, Pancreatic, and Hepatobiliary Secretion: 107-126. First published in print 1989. doi: 10.1002/cphy.cp060307