Comprehensive Physiology Wiley Online Library

Molecular Biology of Na+/Glucose Symport

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Biochemical Identification of Na+/Glucose Symporter Subunit
2 Expression Cloning of Intestinal Na+/Glucose Symporter Subunit
3 Sequence Homologies with Renal Na+/Glucose Symporter
4 Chromosomal Localization
5 Subunit Structure
6 Regulation of Gene Expression
Figure 1. Figure 1.

A: hydropathy plot of Na+ /glucose symporter amino acid sequence. Postulated membrane‐spanning segments are numbered 1–11. B: model for orientation of Na+ /glucose symporter in membrane. G indicates potential N‐linked glycosylation sites.

[From Hediger et al. 10. Reprinted by permission from Nature. Copyright 1987, Macmillan Magazines Ltd.]


Figure 1.

A: hydropathy plot of Na+ /glucose symporter amino acid sequence. Postulated membrane‐spanning segments are numbered 1–11. B: model for orientation of Na+ /glucose symporter in membrane. G indicates potential N‐linked glycosylation sites.

[From Hediger et al. 10. Reprinted by permission from Nature. Copyright 1987, Macmillan Magazines Ltd.]
References
 1. Amsler, K., and J. S. Cook. Development of Na + ‐dependent hexose transport in a cultured line of porcine kidney cells. Am. J. Physiol. 242 (Cell Physiol. 11): C94–C101, 1982.
 2. Beliveau, R., M. Demeule, H. Ibnoul‐Khatib, M. Bergeron, G. Beauregard, and M. Potier. Radiation‐inactivation studies on brush‐border membrane vesicles. General considerations and application to the glucose and phosphate carriers. Biochem. J. 252: 807–813, 1988.
 3. Birnir, B., D. D. F. Loo, H. S. Lee, M. J. Coady, M. A. Hediger, and E. M. Wright. Currents associated with the Na + / glucose cotransporter cloned from rabbit intestine. Kidney Int. 35: 151, 1989.
 4. Brot‐Laroche, E., M.‐A. Serrano, B. Delhomme, and F. Alvarado. Temperature sensitivity and substrate specificity of two distinct Na +‐activated D‐glucose transport systems in guinea pig jejunal brush border membrane vesicles. J. Biol. Chem. 261: 6168–6176, 1986.
 5. Crane, R. K. The gradient hypothesis and other models of carrier‐mediated active transport. Rev. Physiol. Biochem. Pharmacol. 78: 99–159, 1977.
 6. Crane, R. K., P. Malathi, and H. Prieser. Reconstitution of specific Na +‐dependent D‐glucose transport in liposomes by Triton X‐100‐extracted proteins from purified brush border membranes of rabbit kidney cortex. FEBS Lett. 67: 214–216, 1976.
 7. Ferguson, D. R., and K. A. Burton. Reconstitution in phospholipid vesicles of a glucose transport system from pig small intestine. Nature Lond. 265: 639–642, 1977.
 8. Gibbs, E. M., M. Hosang, B. F. X. Reber, G. Semenza, and D. F. Diedrich. 4‐Azidophlorizin, a high‐affinity probe and photoaffinity label for the glucose transporter in brush border membranes. Biochim. Biophys. Acta 688: 547–556, 1982.
 9. Hediger, M. A., M. L. Budarf, B. S. Emanuel, T. K. Mohandas, and E. M. Wright. Assignment of the human intestinal Na +/glucose cotransporter gene (SGLT1) to the q11.2—qter region of chromosome 22. Genomics 4: 297–300, 1989.
 10. Hediger, M. A., M. J. Coady, T. S. Ikeda, and E. M. Wright. Expression cloning and cDNA sequencing of the Na + /glucose co‐transporter. Nature Lond. 330: 379–381, 1987.
 11. Hediger, M. A., T. Ikeda, M. Coady, C. B. Gunderson, and E. M. Wright. Expression of size‐selected mRNA encoding the intestinal N + +/glucose cotransporter in Xenopus laevis oocytes. Proc. Natl. Acad. Sci. USA 84: 2634–2637, 1987.
 12. Hediger, M. A., E. Turk, A. M. Pajor, T. K. Mohandas, and E. M. Wright. The human renal Na + /glucose cotransporters. Federation Proc. 3: A561, 1989.
 13. Hediger, M. A., E. Turk, A. Pajor, and E. M. Wright. Molecular genetics of the eucaryotic Na +/glucose cotransporter. Third Forefront Symp. Int. Soc. Nephrol., Arolla, Switzerland, 1989, p. A37.
 14. Hediger, M. A., E. Turk, and E. M. Wright. Homology of the human intestinal Na +/glucose and Escherichia coli Na +/proline cotransporters. Proc. Natl. Acad. Sci. USA 86: 5748–5752, 1989.
 15. Hosang, M., E. M. Gibbs, D. F. Diedrich, and G. Semenza. Photoaffinity labeling and identification of (a component of) the small intestinal Na +, D‐glucose transporter using 4‐azidophlorizin. FEBS Lett. 130: 244–247, 1981.
 16. Ikeda, T. S., E. S. Hwang, M. J. Coady, B. A. Hirayama, M. A. Hediger, and E. M. Wright. Characterization of a Na + / glucose cotransporter cloned from rabbit small intestine. J. Membr. Biol. 110: 87–95, 1989.
 17. Im, W. B., K. Y. Ling, and R. G. Faust. Partial purification of the Na + ‐dependent D‐glucose transport system from renal brush border membranes. J. Membr. Biol. 65: 131–137, 1982.
 18. Kano‐Kameyama, A., and T. Hoshi. Purification and reconstitution of Na + /D‐glucose cotransport carriers from guinea pig small intestine. Jpn. J. Physiol. 33: 955–970, 1983.
 19. Kessler, M., and G. Semenza. The small intestinal Na +, D‐glucose cotransporter: an asymmetric gated channel (or pore) responsive to delta psi. J. Membr. Biol. 76: 27–56, 1983.
 20. Klip, A., S. Grinstein, and G. Semenza. Partial purification of the sugar carrier of intestinal brush border membranes. Enrichment of the phlorizin‐binding component by selective extractions. J. Membr. Biol. 51: 47–73, 1979.
 21. Koepsell, H., H. Menuhr, I. Ducis, and T. F. Wissmuller. Partial purification and reconstitution of the Na + ‐D‐glucose cotransport protein from pig renal proximal tubules. J. Biol. Chem. 258: 1888–1894, 1983.
 22. Lin, J. T., K. Szwarc, R. Kinne, and C. Y. Jung. Structural state of the Na +/D‐glucose cotransporter in calf kidney brush border membranes. Target size analysis of Na + ‐dependent phlorizin binding and Na + ‐dependent D‐glucose transport. Biochim. Biophys. Acta 777: 201–208, 1984.
 23. Malathi, P., and H. Preiser. Isolation of the Na +‐dependent D‐glucose transport protein from brush border membranes. Biochim. Biophys. Acta 735: 314–324, 1983.
 24. Mendlein, J., M. Hediger, M. Coady, and E. M. Wright. In vitro translation and glycosylation of the intestinal Na +‐glucose transporter. FASEB J. 2: A1021, 1988.
 25. Neeb, M., U. Kunz, and H. Koepsell. Identification of D‐glucose‐binding polypeptides which are components of the renal Na +‐D‐glucose cotransporter. J. Biol. Chem. 262: 10718–10727, 1987.
 26. Peerce, B. E., and E. M. Wright. Evidence for tyrosyl residues at the Na + site on the intestinal Na +/glucose cotransporter. J. Biol. Chem. 260: 6026–6031, 1985.
 27. Schmidt, U. M., B. Eddy, C. M. Fraser, J. C. Venter, and G. Semenza. Isolation of (a subunit of) the Na +/D‐glucose cotransporter(s) of rabbit intestinal brush border membranes using monoclonal antibodies. FEBS Lett. 161: 279–283, 1983.
 28. Semenza, G., M. Kessler, M. Hosang, J. Weber, and U. Schmidt. Biochemistry of the Na +, Dglucose cotransporter of the small intestinal brush‐border membrane. The state of the art in 1984. Biochim. Biophys. Acta 779: 343–379, 1984.
 29. Silverman, M., and P. Speight. Isolation and partial purification of a Na + ‐dependent phlorizin receptor from dog kidney proximal tubule. J. Biol. Chem. 261: 13820–13826, 1986.
 30. Takahashi, M., P. Malathi, H. Preiser, and C. Y. Jung. Radiation inactivation studies on the rabbit kidney sodium‐dependent glucose transporter. J. Biol. Chem. 260: 10551–10556, 1985.
 31. Turner, R. J., and E. S. Kempner. Radiation inactivation studies of the renal brush‐border membrane phlorizin binding protein. J. Biol. Chem. 257: 10794–10797, 1982.
 32. Turner, R. J., and A. Moran. Further studies of proximal tubule brush border membrane D‐glucose transport heterogeneity. J. Membr. Biol. 70: 37–45, 1982.
 33. Weiss, E. R., and J. S. Cook. Separation of hexose‐transporting from nontransporting LLC‐PK1 cells on density gradients. Am. J. Physiol. 250 (Cell Physiol. 19): C199–C206, 1986.
 34. Wu, J.‐S. R., and J. E. Lever. Monoclonal antibodies which bind the renal Na +/glucose symport system. I. Identification. Biochemistry 26: 5783–5790, 1987.
 35. Wu, J.‐S. R., and J. E. Lever. Monoclonal antibodies which bind the renal Na +/glucose symport system. II. Stabilization of the active conformation. Biochemistry 26: 5790–5796, 1987.
 36. Wu, J.‐S. R., and J. E. Lever. Purification and reconstitution of a 75 kD protein identified as a component of the renal Na + / glucose symporter. Biochemistry 26: 5958–5962, 1987.
 37. Wu, J.‐S. R., and J. E. Lever. A developmentally regulated 75 kD protein expressed in LLC‐PK1 cultures is a component of the renal Na +/glucose cotransport system. J. Cell. Biochem. 40: 83–89, 1989.
 38. Yoneyama, Y., and J. E. Lever. Modulation of a differentiated phenotype in cell culture: induction of microvillar hydrolase activities by cell density and exogenous differentiation inducers in an established kidney epithelial cell line (LLC‐PK1). J. Cell. Physiol. 121: 64–73, 1984.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Julia E. Lever. Molecular Biology of Na+/Glucose Symport. Compr Physiol 2011, Supplement 19: Handbook of Physiology, The Gastrointestinal System, Intestinal Absorption and Secretion: 405-409. First published in print 1991. doi: 10.1002/cphy.cp060417