Comprehensive Physiology Wiley Online Library

Regulation of Fatty Acid Biosynthesis and Lipolysis

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Pathways of De Novo Fatty Acid Biosynthesis and Lipolysis
1.1 Regulation in the Pathways for Lipogenesis and Lipolysis
1.2 Cellular Sites of Lipogenesis and Lipolysis
1.3 Isolated Cell Models for the Study of Lipogenesis and Lipolysis
2 Establishing Insulin and Glucagon as Regulators of Lipogenesis and Lipolysis
3 Molecular Mechanisms Involved in the Regulation of Lipogenesis and Lipolysis
3.1 Criteria for Evaluating Putative Regulatory Mechanisms
3.2 Regulated Steps
4 Summary
Figure 1. Figure 1.

Schematic representation of the pathway involved in conversion of glucose to fatty acids. Key reactions of lipogenesis are identified by numbers: 1, glucose‐6‐phosphate dehydrogenase; 2, 6‐phosphogluconate dehydrogenase; 3, malic enzyme; 4, citrate‐transport protein; 5, ATP‐citrate lyase; 6, acetyl‐CoA carboxylase; 7, fatty acid synthase; 8, reactions of chain elongation; 9, stearoyl‐CoA desaturase; 10, acyltransferases.

Figure 2. Figure 2.

Schematic representation of lipolysis in adipose tissue. Phosphorylation of hormone‐sensitive lipase regulates the activity of the first reaction of lipolysis. The P symbolizes phosphate and indicates that this enzyme is active when phosphorylated.

Figure 3. Figure 3.

Model for roles of insulin and glucagon in the regulation of acetyl‐CoA carboxylase. Acetyl‐CoA carboxylase (ACC) is phosphorylated on the indicated serines and converted to a less active form by AMP‐activated protein kinase (AMPK). Residues Ser79 and Ser1200 are phosphorylated by AMPK, which is itself regulated by phosphorylation and dephosphorylation. The (+) and (−) symbols indicate an activating or inhibiting effect, respectively, by insulin or glucagon. Question marks indicate that the mode of action of insulin activation or glucagon inhibition of this step has not been demonstrated definitively.

Figure 4. Figure 4.

Model for regulation of hormone‐sensitive lipase by phosphorylation and dephosphorylation. Phosphorylation of hormone‐sensitive lipase by protein kinase A increases activity of the enzyme. In contrast, phosphorylation by AMP‐activated protein kinase does not change the kinetic properties of hormone‐sensitive lipase but does inhibit further phosphorylation and activation by protein kinase A.



Figure 1.

Schematic representation of the pathway involved in conversion of glucose to fatty acids. Key reactions of lipogenesis are identified by numbers: 1, glucose‐6‐phosphate dehydrogenase; 2, 6‐phosphogluconate dehydrogenase; 3, malic enzyme; 4, citrate‐transport protein; 5, ATP‐citrate lyase; 6, acetyl‐CoA carboxylase; 7, fatty acid synthase; 8, reactions of chain elongation; 9, stearoyl‐CoA desaturase; 10, acyltransferases.



Figure 2.

Schematic representation of lipolysis in adipose tissue. Phosphorylation of hormone‐sensitive lipase regulates the activity of the first reaction of lipolysis. The P symbolizes phosphate and indicates that this enzyme is active when phosphorylated.



Figure 3.

Model for roles of insulin and glucagon in the regulation of acetyl‐CoA carboxylase. Acetyl‐CoA carboxylase (ACC) is phosphorylated on the indicated serines and converted to a less active form by AMP‐activated protein kinase (AMPK). Residues Ser79 and Ser1200 are phosphorylated by AMPK, which is itself regulated by phosphorylation and dephosphorylation. The (+) and (−) symbols indicate an activating or inhibiting effect, respectively, by insulin or glucagon. Question marks indicate that the mode of action of insulin activation or glucagon inhibition of this step has not been demonstrated definitively.



Figure 4.

Model for regulation of hormone‐sensitive lipase by phosphorylation and dephosphorylation. Phosphorylation of hormone‐sensitive lipase by protein kinase A increases activity of the enzyme. In contrast, phosphorylation by AMP‐activated protein kinase does not change the kinetic properties of hormone‐sensitive lipase but does inhibit further phosphorylation and activation by protein kinase A.

References
 1. Ashcroft, S. J. H.. The control of insulin release by sugars. CIBA Found. Symp. 41: 117–139, 1976.
 2. Back, D. W., M. J. Goldman, J. E. Fisch, R. S. Ochs, and A. G. Goodridge. The fatty acid synthase gene in avian liver. Two mRNAs are expressed and regulated in parallel by feeding, primarily at the level of transcription. J. Biol. Chem. 261: 4190–4197, 1986.
 3. Back, D. W., S. B. Wilson, S. M. Morris, and A. G. Goodridge. Hormonal regulation of lipogenic enzymes in chick embryo hepatocytes in culture. Thyroid hormone and glucagon regulate malic enzyme mRNA level at post‐transcriptional steps. J. Biol. Chem. 261: 12555–12561, 1986.
 4. Bagchi, S., L. S. Wise, M. L. Brown, D. Bregman, H. S. Sul, and C. S. Rubin. Structure and expression of murine malic enzyme mRNA. Differentiation‐dependent accumulation of two forms of malic enzyme mRNA in 3T3‐L1 cells. J. Biol. Chem. 262: 1558–1565, 1987.
 5. Barber, M. C., and M. T. Travers. Elucidation of a promoter activity that directs the expression of acetyl‐CoA carboxylase alpha with an alternative N‐terminus in a tissue‐restricted fashion. Biochem. J. 333: 17–25, 1998.
 6. Bartley, J. C., and S. Abraham. Hepatic lipogenesis in fasted, refed rats and mice: response to dietary fats of differing fatty acid composition. Biochim. Biophys. Acta 280: 258–266, 1972.
 7. Beaty, N. B., and M. D. Lane. Kinetics of activation of acetyl‐CoA carboxylase by citrate. Relationship to the rate of polymerization of the enzyme. J. Biol. Chem. 258: 13043–13050, 1983.
 8. Beaty, N. B., and M. D. Lane. The polymerization of acetyl‐CoA carboxylase. J. Biol. Chem. 258: 13051–13055, 1983.
 9. Benjamin, W. B., S. N. Pentyala, J. R. Woodgett, Y. Hod, and D. Marshak. ATP citrate‐lyase and glycogen synthase kinase‐3β in 3T3‐L1 cells during differentiation into adipocytes. Biochem. J. 300: 477–482, 1994.
 10. Berdanier, C. D., and D. Shubeck. Interaction of glucocorticoid and insulin in the responses of rats to starvation‐refeeding. J. Nutr. 109: 1766–1771, 1979.
 11. Berg, E. A., J. Y. Wu, L. Campbell, M. Kagey, and S. R. Stapleton. Insulin‐like effects of vanadate and selenate on the expression of glucose‐6‐phosphate dehydrogenase and fatty acid synthase in diabetic rats. Biochimie 77: 919–924, 1995.
 12. Bergot, M.‐O., M.‐J. M. Diaz‐Guerra, N. Puzenat, M. Raymond‐jean, and A. Kahn. Cis‐regulation of the L‐type pyruvate kinase gene promoter by glucose, insulin and cyclic AMP. Nucleic Acids Res. 20: 1871–1878, 1992.
 13. Bernlohr, D. A., M. A. Bolanowski, T. J. Kelly, Jr, and M. D. Lane. Evidence for an increase in transcription of specific mRNAs during differentiation of 3T3‐L1 preadipocytes. J. Biol. Chem. 260: 5563–5567, 1985.
 14. Beutler, I.. Glucose‐6‐phosphate dehydrogenase deficiency. In: The Metabolic Basis of Inherited Disease (4th ed.), edited by J. B. Stanbury, J. B. Wynsaarden, D. S. Fredrickson. New York: McGraw‐Hill, 1983 p. 1629–1953.
 15. Beynen, A. C., M. J. H. Geelen, and S. G. Van den Bergh. Short‐term control of hepatic lipogenesis by insulin. Trends Biochem. Sci. 5: 288–290, 1980.
 16. Bianchi, A., J. L. Evans, A. J. Iverson, A. C. Nordlund, T. D. Watts, and L. A. Witters. Identification of an isozymic form of acetyl‐CoA carboxylase. J. Biol. Chem. 265: 1502–1509, 1990.
 17. Bisaccia, F., A. De Palma, and F. Palmieri. Identification and purification of the tricarboxylate carrier from rat liver mitochondria. Biochim. Biophys. Acta 977: 171–176, 1989.
 18. Bisaccia, F., A. De Palma, G. Prezioso, and F. Palmieri. Kinetic characterization of the reconstituted tricarboxylate carrier from rat liver mitochondria. Biochim. Biophys. Acta 1019: 250–256, 1990.
 19. Brown, M. S., and J. L. Goldstein. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane‐bound transcription factor. Cell. 89: 331–340, 1997.
 20. Brown, S. B., M. Maloney, and W. B. Kinlaw. “Spot 14” protein functions at the pretranslational level in the regulation of hepatic metabolism by thyroid hormone and glucose. J. Biol. Chem. 272: 2163–2166, 1997.
 21. Brownsey, R. W., and D. G. Hardie. Regulation of acetyl‐CoA carboxylase: identity of sites phosphorylated in intact cells treated with adrenaline and in vitro by cyclic AMP‐dependent protein kinase. FEBS Lett. 120: 67–70, 1980.
 22. Brun, T., E. Roche, K. H. Kim, and M. Prentki. Glucose regulates acetyl‐CoA carboxylase gene expression in a pancreatic beta‐cell line (INS‐1). J. Biol. Chem. 268: 18905–18911, 1993.
 23. Burns, T. W., and P. E. Langley. Lipolysis by human adipose tissue: the role of cyclic 3',5'‐adenosine monophosphate and adrenergic receptor sites. J. Lab. Clin. Med. 75: 983–987, 1970.
 24. Cahill, G. F., M. G. Herrera, A. P. Morgan, J. S. Soeldner, J. Steinke, P. L. Levy, G. A. Reichard, Jr., and D. M. Kipnis. Hormone‐fuel interrelationships during fasting. J. Clin. Invest. 45: 1751–1769, 1966.
 25. Carlson, C. A., and K.‐H. Kim. Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. Arch. Biochem. Biophys. 164: 478–489, 1974.
 26. Casimir, D. A., and J. M. Ntambi. cAMP activates the expression of stearoyl‐CoA desaturase gene 1 during early preadipocyte differentiation. J. Biol. Chem. 271: 29847–29853, 1996.
 27. Clarke, B. A., and S. D. Clarke. Polymer‐protomer transition of acetyl‐CoA carboxylase as a regulator of lipogenesis in rat liver. Arch. Biochem. Biophys. 218: 92–100, 1982.
 28. Clarke, S. D., M. K. Armstrong, and D. B. Jump. Nutritional control of rat liver fatty acid synthase and S14 mRNA abundance. J. Nutr. 120: 218–224, 1990.
 29. Clarke, S. D., and B. L. Hillard. Suppression of hepatocyte fatty acid synthesis by albumin‐bound linoleate involves depolymerization of acetyl‐CoA carboxylase filaments. Lipids 16: 207–210, 1981.
 30. Clarke, S. D., and D. B. Jump. Polyunsaturated fatty acid regulation of hepatic gene transcription. Lipids 31: s7–s11, 1996.
 31. Clarke, S. D., and L. M. Salati. Fatty acid—mediated disaggregation of acetyl‐CoA carboxylase in isolated liver cells. Federation Proc. 44: 2458–2462, 1985.
 32. Clarke, S. D., P. A. Watkins, and M. D. Lane. Acute control of fatty acid synthesis by cyclic AMP in the chick liver cell: possible site of inhibition of citrate formation. J. Lipid Res. 20: 974–985, 1979.
 33. Claycombe, K. J., B. H. Jones, M. K. Standridge, Y. Guo, J. T. Chun, J. W. Taylor, and N. Moustaid‐Moussa. Insulin increases fatty acid synthase gene transcription in human adipocytes. Am. J. Physiol. 274 (Regulatory Integrative Comp. Physiol. 43): R1253–R1259, 1998.
 34. Cochary, E. F., Z. Kikinis, and K. E. Paulson. Positional and temporal regulation of lipogenic gene expression in mouse liver. Gene Expr. 3: 265–278, 1993.
 35. Cohen, P., and D. G. Hardie. The actions of cyclic AMP on biosynthetic processes are mediated indirectly by cyclic AMP‐dependent protein kinase. Biochim. Biophys. Acta 1094: 292–299, 1991.
 36. Cook, K. G., S. J. Yeaman, P. Stralfors, G. Fredrikson, and P. Belfrage. Direct evidence that cholesterol ester hydrolase is the same enzyme as hormone‐sensitive lipase from adipose tissue. Eur. J. Biochem. 125: 245–249, 1981.
 37. Craig, M. C., C. M. Nepokroeff, and M. R. Lakshmanan. Effect of dietary change on the rates of synthesis and degradation of rat liver fatty acid synthetase. Arch. Biochem. Biophys 152: 619–630, 1972.
 38. Craig, M. C., and J. W. Porter. Synthesis of fatty acid synthetase by isolated liver cells obtained from rats in different nutritional or hormonal states. Arch. Biochem. Biophys. 159: 606–614, 1973.
 39. Cunningham, B. A., M. Maloney, and W. B. Kinlaw. Spot 14 protein—protein interactions: evidence for both homo‐ and heterodimer formation in vivo. Endocrinology 138: 5184–5188, 1997.
 40. Daniel, S., and K. H. Kim. Spl mediates glucose activation of the acetyl‐CoA carboxylase promoter. J. Biol. Chem. 271: 1385–1392, 1996.
 41. Daniel, S., S. Y. Zhang, A. A. DePaoli‐Roach, and K. H. Kim. Dephosphorylation of Spl by protein phosphatase 1 is involved in the glucose‐mediated activation of the acetyl‐CoA carboxylase gene. J. Biol. Chem. 271: 14692–14697, 1996.
 42. Davies, S. P., D. Carling, and D. G. Hardie. Tissue distribution of the AMP‐activated protein kinase, and lack of activation by cyclic‐AMP‐dependent protein kinase, studied using a specific and sensitive peptide assay. Eur. J. Biochem. 186: 123–128, 1989.
 43. Davies, S. P., A. T. Sim, and D. G. Hardie. Location and function of three sites phosphorylated on rat acetyl‐CoA carboxylase by the AMP‐activated protein kinase. Eur. J. Biochem. 187: 183–190, 1990.
 44. Degerman, E., C. J. Smith, H. Tornqvist, V. Vasta, P. Belfrage, and V. C. Manganiello. Evidence that insulin and isoprenaline activate the cGMP‐inhibited low‐Km cAMP phosphodiesterase in rat fat cells by phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 87: 533–537, 1990.
 45. Denton, R. M., K. J. Heesom, S. K. Moule, N. J. Edgell, and P. Burnett. Signalling pathways involved in the stimulation of fatty acid synthesis by insulin. Biochem. Soc. Trans. 25: 1238–1242, 1997.
 46. Desvergne, B., K. J. Petty, and V. M. Nikodem. Functional characterization and receptor binding studies of the malic enzyme thyroid hormone response element. J. Biol. Chem. 266: 1008–1013, 1991.
 47. Diamant, S., E. Gorin, and E. Shafrir. Enzyme activities related to fatty‐acid synthesis in liver and adipose tissue of rats treated with triiodothyronine. Eur. J. Biochem. 26: 553–559, 1972.
 48. Dozin, B., M. A. Magnuson, and V. M. Nikodem. Thyroid hormone regulation of malic enzyme synthesis. Dual tissue‐specific control. J. Biol. Chem. 261: 10290–10292, 1986.
 49. Dozin, B., J. E. Rall, and V. M. Nikodem. Tissue‐specific control of rat malic enzyme activity and messenger RNA levels by a high carbohydrate diet. Proc. Natl. Acad. Sci. U.S.A. 83: 4705–4709, 1986.
 50. El Khadir‐Mounier, C., N. Le Fur, R. S. Powell, C. Diot, P. Langlois, J. Mallard, and M. Douaire. Cloning and characterization of the 5' end and promoter region of the chicken acetyl‐CoA carboxylase gene. Biochem. J. 314: 613–619, 1996.
 51. Elshourbagy, N. A., J. C. Near, P. J. Kmetz, G. M. Sathe, C. Southan, J. E. Strickler, M. Gross, J. F. Young, T. N. C. Wells, and P. H. E. Groot. Rat ATP citrate‐lyase. Molecular cloning and sequence analysis of a full‐length cDNA and mRNA abundance as a function of diet, organ, and age. J. Biol. Chem. 265: 1430–1435, 1990.
 52. Eriksson, H., M. Ridderstrale, E. Degerman, D. Ekholm, C. J. Smith, V. C. Manganiello, P. Belfrage, and H. Tornqvist. Evidence for the key role of the adipocyte cGMP‐inhibited cAMP phosphodiesterase in the antilipolytic action of insulin. Biochim. Biophys. Acta 1266: 101–107, 1995.
 53. Evans, C., O. Miyanaga, and G. L. Cottam. The long‐term effect of glucagon on pyruvate kinase activity in primary cultures of hepatocytes. Arch. Biochem. Biophys. 233: 617–623, 1984.
 54. Fain, J. N., and L. Rosenberg. Antilipolytic action of insulin on fat cells. Diabetes 21 (Suppl. 2): 414–425, 1972.
 55. Fang, M., and J. M. Lowenstein. Citrate and the conversion of carbohydrate into fat: the regulation of fatty acid synthesis by rat liver extracts. Biochem. J. 105: 803–811, 1967.
 56. Fischer, P. W. F., and A. G. Goodridge. Coordinate regulation of acetyl coenzyme A carboxylase and fatty acid synthetase in liver cells of the developing chick in vivo and in culture. Arch. Biochem. Biophys. 190: 332–344, 1978.
 57. Fischer, W., M. Ick, and N. R. Katz. Reciprocal distribution of hexokinase and glucokinase in the periportal and perivenous zone of the rat liver acinus. Hoppe Seylers Z. Physiol. Chem. 363: 375–380, 1982.
 58. Flatt, J. P., and E. G. Ball. Studies on the metabolism of adipose tissue. XV. An evaluation of the major pathways of glucose catabolism as influenced by insulin and epinephrine. J. Biol. Chem. 239: 675–685, 1964.
 59. Foretz, M., C. Pacot, I. Dugail, P. Lemarchand, C. Guichard, X. Le Liepvre, C. Berthelier‐Lubrano, B. Speigelman, J. P. Kim, P. Ferre, and F. Foufelle. ADD1/SREBP‐1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol. Cell. Biol. 19: 3760–3768, 1999.
 60. Foufelle, F., J. Girard, and P. Ferre. Regulation of lipogenic enzyme expression by glucose in liver and adipose tissue: is glucose 6‐phosphate the signalling metabolite? Biochem. Soc. Trans. 24: 372–378, 1996.
 61. Foufelle, F., B. Gouhot, J. P. Pegorier, D. Perdereau, J. Girard, and P. Ferre. Glucose stimulation of lipogenic enzyme gene expression in cultured white adipose tissue. A role for glucose 6‐phosphate. J. Biol. Chem. 267: 20543–20546, 1992.
 62. Foufelle, F., N. Lepetit, D. Bosc, N. Delzenne, J. Morin, M. Raymondjean, and P. Ferre. DNase I hypersensitivity sites and nuclear protein binding on the fatty acid synthase gene: identification of an element with properties similar to known glucose‐responsive elements. Biochem. J. 308: 521–527, 1995.
 63. Fredrikson, G., P. Strålfors, N. O. Nilsson, and P. Belfrage. Hormone‐sensitive lipase of rat adipose tissue. Purification and some properties. J. Biol. Chem. 256: 6311–6320, 1981.
 64. Fredrikson, G., H. Tornqvist, and P. Belfrage. Hormone‐sensitive lipase and monoacylglycerol lipase are both required for complete degradation of adipocyte triacylglycerol. Biochim. Biophys. Acta 876: 288–293, 1986.
 65. Fritz, R. S., D. J. Stumpo, and R. F. Kletzien. Glucose‐6‐phosphate dehydrogenase mRNA sequence abundance in primary cultures of rat hepatocytes. Effect of insulin and dexamethasone. Biochem. J. 237: 617–619, 1986.
 66. Fukuda, H., N. Iritani, A. Katsurada, and T. Noguchi. Insulin‐ and polyunsaturated fatty acid‐responsive region(s) of rat ATP citratelyase gene promoter. FEBS Lett. 380: 204–207, 1996.
 67. Fukuda, H., A. Katsurada, and N. Iritani. Effects of nutrients and hormones on gene expression of ATP citrate‐lyase in rat liver. Eur. J. Biochem. 209: 217–222, 1992.
 68. Fukuda, H., A. Katsurada, and N. Iritani. Nutritional and hormonal regulation of mRNA levels of lipogenic enzymes in primary cultures of rat hepatocytes. J. Biochem. 111: 25–30, 1992.
 69. Gamble, J., and G. D. Lopaschuk. Insulin inhibition of 5' adenosine monophosphate‐activated protein kinase in the heart results in activation of acetyl coenzyme A carboxylase and inhibition of fatty acid oxidation. Metabolism 46: 1270–1274, 1997.
 70. Garcia, D. R., and D. Holten. Inhibition of rat liver glucose‐6‐phosphate dehydrogenase synthesis by glucagon. J. Biol. Chem. 250: 3960–3965, 1975.
 71. García‐Jiménez, C., B. Benito, T. Jolin, and P. Santisteban. Insulin regulation of malic enzyme gene expression in rat liver: evidence for nuclear proteins that bind to two putative insulin response elements. Mol. Endocrinol. 8: 1363–1369, 1994.
 72. Garton, A. J., D. G. Campbell, D. Carling, D. G. Hardie, R. J. Colbran, and S. J. Yeaman. Phosphorylation of bovine hormone‐sensitive lipase by the AMP‐activated protein kinase. A possible antilipolytic mechanism. Eur. J. Biochem. 179: 249–254, 1989.
 73. Garton, A. J., D. G. Campbell, P. Cohen, and S. J. Yeaman. Primary structure of the site on bovine hormone‐sensitive lipase phosphorylated by cyclic AMP‐dependent protein kinase. FEBS Lett. 229: 68–72, 1988.
 74. Garton, A. J., and S. J. Yeaman. Identification and role of the basal phosphorylation site on hormone‐sensitive lipase. Eur. J. Biochem. 191: 245–250, 1990.
 75. Geelen, M. J. H., A. C. Beynen, R. Z. Christiansen, M. J. Lepreau‐Jose, and D. M. Gibson. Short‐term effects of insulin and glucagon on lipid synthesis in isolated rat hepatocytes. FEBS Lett. 95: 326–330, 1978.
 76. Geelen, M. J. H., and G. A. Hindriks. Studies on the substrate for hepatic lipogenesis in the rat. FEBS Lett. 175: 8–12, 1984.
 77. Geelen, M. J. H., and M. G. J. Schmitz. The role of citrate in the regulation of hepatic fatty acid synthesis by insulin and glucagon. Horm. Metab. Res. 25: 525–527, 1993.
 78. Geisler, R. W., and R. J. Hansen. Effects of insulin on the adaptation of glucose‐6‐phosphate dehydrogenase and 6‐phosphogluconate dehydrogenase in rat adipose tissue. Biochim. Biophys. Acta 279: 139–145, 1972.
 79. Gellhorn, A., and W. Benjamin. Lipid biosynthesis in adipose tissue during aging and diabetes. Ann. N.Y. Acad. Sci. 131: 344–356, 1965.
 80. Gharbi‐Chihi, J., T. Facchinetti, J. L. Bergé‐Lefranc, J. Bonne, and J. Torresani. Triiodothyronine control of ATP‐citrate lyase and malic enzyme during differentiation of a murine preadipocyte cell line. Horm. Metab. Res. 23: 423–427, 1991.
 81. Gibson, D. M.. The biosynthesis of fatty acids. J. Chem. Educ. 42: 236–243, 1965.
 82. Gibson, D. M., and D. D. Hubbard. Incorporation of malonyl CoA into fatty acids by liver in starvation and alloxan‐diabetes. Biochem. Biophys. Res. Commun. 3: 531–535, 1960.
 83. Gibson, D. M., R. T. Lyons, D. F. Scott, and Y. Muto. Synthesis and degradation of the lipogenic enzymes of rat liver. Adv. Enzyme Regul. 10: 187–204, 1972.
 84. Gifforn‐Katz, S., and N. R. Katz. Carbohydrate‐dependent induction of fatty acid synthase in primary cultures of rat hepatocytes. Eur. J. Biochem. 159: 513–518, 1986.
 85. Gifforn, S., and N. R. Katz. Glucose‐dependent induction of acetyl‐CoA carboxylase in rat hepatocyte cultures. Biochem. J. 221: 343–350, 1984.
 86. Glerum, D. M., D. Claeys, W. Mertens, and A. Azzi. The tricarboxylate carrier from rat liver mitochondria. Purification, reconstitution and kinetic characterization. Eur. J. Biochem. 194: 681–684, 1990.
 87. Glock, G. E., and P. McLean. A preliminary investigation of the hormonal control of the hexose monophosphate oxidative pathway. Biochem. J. 61: 390–397, 1955.
 88. Goldman, M. J., D. W. Back, and A. G. Goodridge. Nutritional regulation of the synthesis and degradation of malic enzyme messenger RNA in duck liver. J. Biol. Chem. 260: 4404–4408, 1985.
 89. Goodridge, A. G.. Regulation of fatty acid synthesis in isolated hepatocytes. Evidence for a physiological role for long chain fatty acyl coenzyme A and citrate. J. Biol. Chem. 248: 4318–4326, 1973.
 90. Goodridge, A. G., and T. G. Adelman. Regulation of malic enzyme synthesis by insulin, triiodothyronine, and glucagon in liver cells in culture. J. Biol. Chem. 251: 3027–3032, 1976.
 91. Goodridge, A. G., and E. G. Ball. Lipogenesis in the pigeon: in vitro studies. Am. J. Physiol. 211: 803–808, 1966.
 92. Greenbaum, A. L., K. A. Gumaa, and P. McLean. The distribution of hepatic metabolites and the control of pathways of carbohydrate metabolism in animals of different dietary and hormonal status. Arch. Biochem. Biophys. 143: 617–663, 1971.
 93. Greenberg, A. S., J. J. Egan, S. A. Wek, N. B. Garty, E. J. Blanchette Mackie, and C. Londos. Perilipin, a major hormonally regulated adipocyte‐specific phosphoprotein associated with the periphery of lipid storage droplets. J. Biol. Chem. 266: 11341–11346, 1991.
 94. Greenspan, M. D., and J. M. Lowenstein. Effects of magnesium ions, adenosine triphosphate, palmitoylcarnitine, and palmitoyl coenzyme A on acetyl coenzyme A carboxylase. J. Biol. Chem. 243: 6273–6280, 1968.
 95. Ha, J., S. Daniel, S. S. Broyles, and K. H. Kim. Critical phosphorylation sites for acetyl‐CoA carboxylase activity. J. Biol. Chem. 269: 22162–22168, 1994.
 96. Halestrap, A. P., and R. M. Denton. Insulin and the regulation of adipose tissue acetyl‐coenzyme A carboxylase. Biochem. J. 132: 509–517, 1973.
 97. Halperin, M. L., B. H. Robinson, and I. B. Fritz. Effects of palmitoyl CoA on citrate and malate transport by rat liver mitochondria. Proc. Natl. Acad. Sci. U.S.A. 69: 1003–1007, 1972.
 98. Haystead, T. A. J., D. G. Campbell, and D. G. Hardie. Analysis of sites phosphorylated on acetyl‐CoA carboxylase in response to insulin in isolated adipocytes. Comparison with sites phosphorylated by casein kinase‐2 and the calmodulin‐dependent multiprotein kinase. Eur. J. Biochem. 175: 347–354, 1988.
 99. Haystead, T. A. J., and D. G. Hardie. Both insulin and epidermal growth factor stimulate lipogenesis and acetyl‐CoA carboxylase activity in isolated adipocytes. Biochem. J. 234: 279–284, 1986.
 100. Haystead, T. A. J., and D. G. Hardie. Evidence that activation of acetyl‐CoA carboxylase by insulin in adipocytes is mediated by a low‐Mr effector and not by increased phosphorylation. Biochem. J. 240: 99–106, 1986.
 101. Haystead, T. A. J., F. Moore, P. Cohen, and D. G. Hardie. Roles of the AMP‐activated and cyclic‐AMP‐dependent protein kinases in the adrenaline‐induced inactivation of acetyl‐CoA carboxylase in rat adipocytes. Eur. J. Biochem. 187: 199–205, 1990.
 102. Haystead, T. A. J., A. T. Sim, D. Carling, R. C. Honnor, Y. Tsukitani, P. Cohen, and D. G. Hardie. Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature 337: 78–81, 1989.
 103. Heesom, K. J., S. K. Moule, and R. M. Denton. Purification and characterisation of an insulin‐stimulated protein‐serine kinase which phosphorylates acetyl‐CoA carboxylase. FEBS Lett. 422: 43–46, 1998.
 104. Hillgartner, F. B., T. Charron, and K. A. Chesnut. Alterations in nutritional status regulate acetyl‐CoA carboxylase expression in avian liver by a transcriptional mechanism. Biochem. J. 319: 263–268, 1996.
 105. Hillgartner, F. B., T. Charron, and K. A. Chesnut. Triiodothyronine stimulates and glucagon inhibits transcription of the acetyl‐CoA carboxylase gene in chick embryo hepatocytes. Glucose and insulin amplify the effect of triiodothyronine. Arch. Biochem. Biophys. 337: 159–168, 1997.
 106. Hillgartner, F. B., L. M. Salati, and A. G. Goodridge. Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiol. Rev. 76: 47–76, 1995.
 107. Hodge, D. L., and L. M. Salati. Nutritional regulation of the glucose‐6‐phosphate dehydrogenase gene is mediated by a nuclear posttranscriptional mechanism. Arch. Biochem. Biophys. 348: 303–312, 1997.
 108. Hodnett, D. W., D. A. Fantozzi, D. C. Thurmond, S. A. Klautky, K. G. MacPhee, S. T. Estrem, G. Xu, and A. G. Goodridge. The chicken malic enzyme gene: structural organization and identification of triiodothyronine response elements in the 5'‐flanking DNA. Arch. Biochem. Biophys. 334: 309–324, 1996.
 109. Honnor, R. C., G. S. Dhillon, and C. Londos. cAMP‐dependent protein kinase and lipolysis in rat adipocytes. II. Definition of steady‐state relationship with lipolytic and antilipolytic modulators. J. Biol. Chem. 260: 15130–15138, 1985.
 110. Horton, J. D., Y. Bashmakov, I. Shimomura, and H. Shimano. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc. Natl. Acad. Sci. U.S.A. 95: 5987–5992, 1998.
 111. Hutchinson, J. S., L. Winberry, R. Nakoyama, and D. Holten. Kinetics for changes in enzyme synthesis and mRNA content and hormones required for induction of 6‐phosphogluconate dehydrogenase in hepatocytes. Biochim. Biophys. Acta 781: 30–38, 1984.
 112. Iverson, A. J., A. Bianchi, A. C. Nordlund, and L. A. Witters. Immunological analysis of acetyl‐CoA carboxylase mass, tissue distribution and subunit composition. Biochem. J. 269: 365–371, 1990.
 113. Jamil, H., and N. B. Madsen. Phosphorylation state of acetyl‐coenzyme A carboxylase. I. Linear inverse relationship to activity ratios at different citrate concentrations. J. Biol. Chem. 262: 630–637, 1987.
 114. Janski, A. M., P. A. Srere, N. W. Cornell, and R. L. Veech. Phosphorylation of ATP citrate lyase in response to glucagon. J. Biol. Chem. 254: 9365–9368, 1979.
 115. Jensen, M. D., M. Caruso, V. Heiling, and J. M. Miles. Insulin regulation of lipolysis in nondiabetic and IDDM subjects. Diabetes 38: 1595–1601, 1989.
 116. Jump, D. B., A. Bell, and V. Santiago. Thyroid hormone and dietary carbohydrate interact to regulate rat liver S14 gene transcription and chromatin structure. J. Biol. Chem. 265: 3474–3478, 1990.
 117. Jump, D. B., S. D. Clarke, A. Thelen, and M. Liimatta. Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids. J. Lipid Res. 35: 1076–1084, 1994.
 118. Kaestner, K. H., J. M. Ntambi, T. J. Kelly, Jr, and M. D. Lane. Differentiation‐induced gene expression in 3T3‐L1 preadipocytes. A second differentially expressed gene encoding stearoyl‐CoA desaturase. J. Biol. Chem. 264: 14755–14761, 1989.
 119. Kaiser, F. E., C. N. Mariash, H. L. Schwartz, and J. H. Oppenheimer. Inhibition of malic enzyme induction by triiodothyronine in the diabetic rat: reversal by fructose feeding. Metabolism 29: 767–772, 1980.
 120. Kaplan, R. S.. Mitochondrial transport processes. In: Molecular Biology of Membrane Transport Disorders, edited by S. G. Schultz, Andreoli, T. E. Brown, A. M. Then. New York: Plenum, 1996 p. 277–302.
 121. Kaplan, R. S., and J. A. Mayor. Structure, function and regulation of the tricarboxylate transport protein from rat liver mitochondria. J. Bioenerg. Biomembr. 25: 503–514, 1993.
 122. Kaplan, R. S., J. A. Mayor, R. Blackwell, R. H. Maughon, and G. L. Wilson. The effect of insulin supplementation on diabetes‐induced alterations in the extractable levels of functional mitochondrial anion transport proteins. Arch. Biochem. Biophys. 287: 305–311, 1991.
 123. Kaplan, R. S., J. A. Mayor, R. Blackwell, G. L. Wilson, and S. W. Schaffer. Functional levels of mitochondrial anion transport proteins in non‐insulin‐dependent diabetes mellitus. Mol. Cell. Biochem. 107: 79–86, 1991.
 124. Kaplan, R. S., J. A. Mayor, N. Johnston, and D. L. Oliveira. Purification and characterization of the reconstitutively active tricarboxylate transporter from rat liver mitochondria. J. Biol. Chem. 265: 13379–13385, 1990.
 125. Kaplan, R. S., J. A. Mayor, and D. O. Wood. The mitochondrial tricarboxylate transport protein: cDNA cloning, primary structure, and comparison with other mitochondrial transport proteins. J. Biol. Chem. 268: 13682–13690, 1993.
 126. Kaplan, R. S., D. L. Oliveira, and G. L. Wilson. Streptozotocin‐induced alterations in the levels of functional mitochondrial anion transport proteins. Arch. Biochem. Biophys. 280: 181–191, 1990.
 127. Kastrouni, E., T. Pegiou, P. Gardiki, and A. Trakatellis. Activity changes of glucose‐6‐phosphate dehydrogenase in response to diet and insulin. Int. J. Biochem. 16: 1353–1358, 1984.
 128. Katsurada, A., N. Iritani, H. Fukuda, Y. Matsumura, N. Nishimoto, T. Noguchi, and T. Tanaka. Effects of nutrients and hormones on transcriptional and post‐transcriptional regulation of acetyl‐CoA carboxylase in rat liver. Eur. J. Biochem. 190: 435–441, 1990.
 129. Katsurada, A., N. Iritani, H. Fukuda, Y. Matsumura, T. Noguchi, and T. Tanaka. Effects of nutrients and insulin on transcriptional and post‐transcriptional regulation of glucose‐6‐phosphate dehydrogenase synthesis in rat liver. Biochim. Biophys. Acta 1006: 104–110, 1989.
 130. Katz, J., and R. Rognstad. The metabolism of tritiated glucose by rat adipose tissue. J. Biol. Chem. 241: 3600–3610, 1966.
 131. Katz, N. R., and S. Gifforn. Glucose‐and insulin‐dependent induction of ATP citrate lyase in primary cultures of rat hepatocytes. Biochem. J. 212: 65–71, 1983.
 132. Katz, N. R., and M. Ick. Induction of acetyl‐CoA carboxylase in primary rat hepatocyte cultures by glucose and insulin. Biochem. Biophys. Res. Commun. 100: 703–709, 1981.
 133. Kim, J. B., P. Sarraf, M. Wright, K. M. Yao, E. Mueller, G. Solanes, B. B. Lowell, and B. M. Spiegelman. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J. Clin. Invest. 101: 1–9, 1998.
 134. Kim, K. H.. Regulation of acetyl‐CoA carboxylase. Curr. Top. Cell. Regul. 22: 143–176, 1983.
 135. Kim, K. H., and H. J. Tae. Pattern and regulation of acetyl‐CoA carboxylase gene expression. J. Nutr. 124: 1273s–1283s, 1994.
 136. Kim, K.‐S., S.‐W. Park, and Y.‐S. Kim. Regulation of ATP‐citrate lyase at transcriptional and post‐transcriptional levels in rat liver. Biochem. Biophys. Res. Commun. 189: 264–271, 1992.
 137. Kim, K.‐S., S.‐W. Park, Y.‐A. Moon, and Y.‐S. Kim. Organization of the 5' region of the rat ATP citrate lyase gene. Biochem. J. 302: 759–764, 1994.
 138. Kim, T.‐S., P. Leahy, and H. C. Freake. Promoter usage determines tissue specific responsiveness of the rat acetyl‐CoA carboxylase gene. Biochem. Biophys. Res. Commun. 225: 647–653, 1996.
 139. Kinlaw, W. B., J. L. Church, J. Harmon, and C. N. Mariash. Direct evidence for a role of the “spot 14” protein in the regulation of lipid synthesis. J. Biol. Chem. 270: 16615–16618, 1995.
 140. Kinlaw, W. B., P. Tron, and A. S. Friedmann. Nuclear localization and hepatic zonation of rat “spot 14” protein: immunohistochemical investigation employing anti‐fusion protein antibodies. Endocrinology 131: 3120–3122, 1992.
 141. Klain, G. J.. In vivo effects of glucagon on fatty acid synthesis in fasted and refed rats. J. Nutr. 107: 942–948, 1977.
 142. Kletzien, R. F., C. R. Prostko, D. J. Stumpo, J. K. McClung, and K. L. Dreher. Molecular cloning of DNA sequences complementary to rat liver glucose‐6‐phosphate dehydrogenase mRNA. Nutritional regulation of mRNA levels. J. Biol. Chem. 260: 5621–5624, 1985.
 143. Kurtz, J. W., and W. W. Wells. Induction of glucose‐6‐phosphate dehydrogenase in primary cultures of adult rat hepatocytes. Requirement for insulin and dexamethasone. J. Biol. Chem. 256: 10870–10875, 1981.
 144. Lakshmanan, M. R., C. M. Nepokroeff, and J. W. Porter. Control of the synthesis of fatty‐acid synthetase in rat liver by insulin, glucagon, and adenosine 3,5'‐cyclic monophosphate. Proc. Natl. Acad. Sci. U.S.A. 69: 3516–3519, 1972.
 145. Langin, D., C. Holm, and M. LaFontan. Adipocyte hormone‐sensitive lipase: a major regulator of lipid metabolism. Proc. Nutr. Soc. 55: 93–109, 1996.
 146. Lee, C. Y., S. M. Lee, S. Lewis, and F. M. Johnson. Identification and biochemical analysis of mouse mutants deficient in cytoplasmic malic enzyme. Biochemistry 19: 5098–5103, 1980.
 147. Lent, B. A., K.‐H. Lee, and K.‐H. Kim. Regulation of rat liver acetyl‐CoA carboxylase. Stimulation of phosphorylation and subsequent inactivation of liver acetyl‐CoA carboxylase by cyclic 3':5' monophosphate and effect on the structure of the enzyme. J. Biol. Chem. 253: 8149–8156, 1978.
 148. Li, Q., M. S. Chua, and C. F. Semenkovich. Properties and purification of a glucose‐inducible human fatty acid synthase mRNA‐binding protein. Am. J. Physiol. 274 (Endocrinol. Metab. 37): E577–E585, 1998.
 149. Liu, Z., K. S. Thompson, and H. C. Towle. Carbohydrate regulation of the rat L‐type pyruvate kinase gene requires two nuclear factors: LF‐A1 and a member of the c‐myc family. J. Biol. Chem. 268: 12787–12795, 1993.
 150. Londos, C., R. C. Honnor, and G. S. Dhillon. cAMP‐dependent protein kinase and lipolysis in rat adipocytes. III. Multiple modes of insulin regulation of lipolysis and regulation of insulin responses by adenylate cyclase regulators. J. Biol. Chem. 260: 15139–15145, 1985.
 151. Lopez‐Casillas, F., and K.‐H. Kim. Heterogeneity at the 5' end of rat acetyl‐coenzyme A carboxylase mRNA. Lipogenic conditions enhance synthesis of an unique mRNA in liver. J. Biol. Chem. 264: 7176–7184, 1989.
 152. Lopez‐Casillas, F., X. C. Luo, I. S. Kong and K.‐H. Kim. Characterization of different forms of rat mammary gland acetyl‐CoA carboxylase mRNA: analysis of heterogeneity in the 5'‐end. Gene 83: 311–319, 1989.
 153. Lorenzo, M., I. Fabregat, and M. Benito. Hormonal regulation of malic enzyme expression in primary cultures of foetal brown adipocytes. Biochem. Biophys. Res. Commun. 163: 341–347, 1989.
 154. Lornitzo, F. A., S. S. Katijar, R. N. Puri, and J. W. Porter. Demonstration of the occurrence of inactive fatty acid synthetase in rat liver by immunotitration and its in vitro partial activation. J. Biol. Chem. 256: 8498–8505, 1981.
 155. Loten, E. G., and J. G. Sneyd. An effect of insulin on adipose‐tissue adenosine 3': 5'‐cyclic monophosphate phosphodiesterase. Biochem. J. 120: 187–193, 1970.
 156. Luo, X., and K.‐H. Kim. An enhancer element in the housekeeping promoter for acetyl‐CoA carboxylase gene. Nucleic Acids Res. 18: 3249–3254, 1990.
 157. Luo, X. C., K. Park, F. Lopez‐Casillas, and K. H. Kim. Structural features of the acetyl‐CoA carboxylase gene: mechanisms for the generation of mRNAs with 5' end heterogeneity. Proc. Natl. Acad. Sci. U.S.A. 86: 4042–4046, 1989.
 158. Luzzatto, L., and A. Mehta. Glucose‐6‐phosphate dehydrogenase deficiency. In: The Metabolic Basis of Inherited Disease (6th ed.), edited by C. R. Scriver, A. Beaudet, W. Sly, and D. Valle. New York: McGraw‐Hill, p. 2237–2266.
 159. Ma, X.‐J., and A. G. Goodridge. Nutritional regulation of nucleosomal structure at the chicken malic enzyme promoter in liver. Nucleic Acids Res. 20: 4997–5002, 1992.
 160. Ma, X.‐J., L. M. Salati, S. E. Ash, D. A. Mitchell, S. A. Klautky, D. A. Fantozzi, and A. G. Goodridge. Nutritional regulation and tissue‐specific expression of the malic enzyme gene in the chicken. Transcriptional control and chromatin structure. J. Biol. Chem. 265: 18435–18441, 1990.
 161. Mabrouk, G. M., I. M. Helmy, K. G. Thampy, and S. J. Wakil. Acute hormonal control of acetyl‐CoA carboyxlase. The roles of insulin, glucagon and epinephrine. J. Biol. Chem. 265: 6330–6338, 1990.
 162. Mackall, J. C., A. K. Student, S. E. Polakis, and M. D. Lane. Induction of lipogenesis during differentiation in a “preadipocyte” cell line. J. Biol. Chem. 251: 6462–6464, 1976.
 163. Majerus, P. W., and E. Kilburn. Acetyl coenzyme A carboxylase. The roles of synthesis and degradation in regulation of enzyme levels in rat liver. J. Biol. Chem. 244: 6254–6262, 1969.
 164. Manganiello, V., and M. Vaughan. An effect of insulin on cyclic adenosine 3': 5'‐monophosphate phosphodiesterase activity in fat cells. J. Biol. Chem. 248: 7164–7170, 1973.
 165. Mann, D. J., A. J. Strain, and E. Bailey. Hormonal induction of malic enzyme in rat hepatocytes cultured on laminin‐rich gels. J. Mol. Endocrinol. 8: 235–242, 1992.
 166. Manos, P., R. Nakayama, and D. Holten. Regulation of glucose‐6‐phosphate dehydrogenase synthesis and mRNA abundance in cultured rat hepatocytes. Biochem. J. 276: 245–250, 1991.
 167. Mariash, C. N., F. E. Kaiser, H. L. Schwartz, H. C. Towle, and J. H. Oppenheimer. Synergism of thyroid hormone and high carbohydrate diet in the induction of lipogenic enzymes in the rat. Mechanisms and implications. J. Clin. Invest. 65: 1126–1134, 1980.
 168. Mariash, C. N., and J. H. Oppenheimer. Stimulation of malic enzyme formation in hepatocyte culture by metabolites: evidence favoring a nonglycolytic metabolite as the proximate induction signal. Metabolism 33: 545–552, 1983.
 169. Martins, R. N., G. B. Stokes, and C. L. Masters. Regulation of the multiple molecular forms of rat liver glucose 6‐phosphate dehydrogenase by insulin and dietary restriction. Biochem. Biophys. Res. Commun. 127: 136–142, 1985.
 170. McDonald, B. E., and B. C. Johnson. Metabolic response to realimentation following chronic starvation in the adult male rat. J. Nutr. 87: 161–167, 1965.
 171. Meredith, M. J., and M. D. Lane. Acetyl‐CoA carboxylase. Evidence for polymeric filament to protomer transition in the intact avian liver cell. J. Biol. Chem. 253: 3381–3383, 1978.
 172. Miksicek, R. J., and H. C. Towle. Changes in the rates of synthesis and messenger RNA levels of hepatic glucose‐6‐phosphate and 6‐phosphogluconate dehydrogenases following induction by diet or thyroid hormone. J. Biol. Chem. 257: 11829–11835, 1982.
 173. Miksicek, R. J., and H. C. Towle. Use of a cloned cDNA sequence to measure changes in 6‐phosphogluconate dehydrogenase mRNA levels caused by thyroid hormone and dietary carbohydrate. J. Biol. Chem. 258: 9575–9579, 1983.
 174. Moir, A. M. B., and V. A. Zammit. Changes in the properties of cytosolic acetyl‐CoA carboxylase studied in cold‐clamped liver samples from fed, starved and starved‐refed rats. Biochem. J. 272: 511–517, 1990.
 175. Molero, C., M. Benito, and M. Lorenzo. Glucose‐6‐phosphate dehydrogenase gene expression in fetal hepatocyte primary cultures under nonproliferative and proliferative conditions. Exp. Cell. Res. 210: 26–32, 1994.
 176. Moore, F., J. Weekes, and D. G. Hardie. Evidence that AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP‐activated protein kinase. A sensitive mechanism to protect the cell against ATP depletion. Eur. J. Biochem. 199: 691–697, 1991.
 177. Morikawa, N., R. Nakayama, and D. Holten. Dietary induction of glucose‐6‐phosphate dehydrogenase synthesis. Biochem. Biophys. Res. Commun. 120: 1022–1029, 1984.
 178. Morris, S. M., J. H. Nilson, R. A. Jenik, L. K. Winberry, M. A. McDevitt, and A. G. Goodridge. Molecular cloning of gene sequences for avian fatty acid synthase and evidence for nutritional regulation of fatty acid synthase mRNA concentration. J. Biol. Chem. 257: 3225–3229, 1982.
 179. Mounier, C., W. Chen, S. A. Klautky, and A. G. Goodridge. Cyclic AMP‐mediated inhibition of transcription of the malic enzyme gene in chick‐embryo hepatocytes in culture. Characterization of a cis‐acting element far upstream of the promoter. J. Biol. Chem. 272: 23606–23615, 1997.
 180. Moustaid, N., R. S. Beyer, and H. S. Sul. Identification of an insulin response element in the fatty acid synthase promoter. J. Biol. Chem. 269: 5629–5634, 1994.
 181. Moustaid, N., B. H. Jones, and J. W. Taylor. Insulin increases lipogenic enzyme activity in human adipocytes in primary culture. J. Nutr. 126: 865–870, 1996.
 182. Moustaid, N., K. Sakamoto, S. Clarke, R. S. Beyer, and H. S. Sul. Regulation of fatty acid synthase gene transcription. Sequences that confer a positive insulin effect and differentiation‐dependent expression in 3T3–L1 preadipocytes are present in the 332 bp promoter. Biochem. J. 292: 767–772, 1993.
 183. Munday, M. R., D. G. Campbell, D. Carling, and D. G. Hardie. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl‐CoA carboxylase. Eur. J. Biochem. 175: 331–338, 1988.
 184. Nakamura, T., K. Yoshimoto, K. Aoyama, and A. Ichihara. Hormonal regulations of glucose‐6‐phosphate dehydrogenase and lipogenesis in primary cultures of rat hepatocytes. J. Biochem. (Tokyo) 91: 681–693, 1982.
 185. Nakanishi, S., T. Tanabe, S. Horikawa, and S. Numa. Dietary and hormonal regulation of the content of acetyl coenzyme A carboxylase‐synthesizing polysomes in rat liver. Proc. Natl. Acad. Sci. U.S.A. 73: 2304–2307, 1976.
 186. Nepokroeff, C. M., K. Adachi, C. Yan, and J. W. Porter. Cloning of DNA complementary to rat liver fatty acid synthetase mRNA. Eur. J. Biochem. 140: 441–445, 1984.
 187. Nepokroeff, C. M., M. R. Lakshmanan, G. C. Ness, R. A. Muesing, D. A. Kleinsek, and J. W. Porter. Coordinate control of rat liver lipogenic enzymes by insulin. Arch. Biochem. Biophys. 162: 340–344, 1974.
 188. Ntambi, J. M.. Dietary regulation of stearoyl‐CoA desaturase 1 gene expression in mouse liver. J. Biol. Chem. 267: 10925–10930, 1992.
 189. Ntambi, J. M.. The regulation of stearoyl‐CoA desaturase (SCD). Prog. Lipid Res. 34: 139–150, 1995.
 190. Ntambi, J. M., S. A. Buhrow, K. H. Kaestner, R. J. Christy, E. Sibley, T. J. Kelly, Jr, and M. D. Lane. Differentiation‐induced gene expression in 3T3–L1 preadipocytes. Characterization of a differentially expressed gene encoding stearoyl‐CoA desaturase. J. Biol. Chem. 263: 17291–17300, 1988.
 191. Ntambi, J. M., A. M. Sessler, and T. Takova. A model cell line to study regulation of stearoyl‐CoA desaturase gene 1 expression by insulin and polyunsaturated fatty acids. Biochem. Biophys. Res. Commun. 220: 990–995, 1996.
 192. O'Hea, E. K., and G. A. Leveille. Lipogenesis in isolated adipose tissue of the domestic chick (Gallus domesticus). Comp. Biochem. Physiol. 26: 111–120, 1968.
 193. Olsson, H., and P. Belfrage. The regulatory and basal phosphorylation sites of hormone‐sensitive lipase are dephosphorylated by protein phosphatase‐1, 2A and 2C but not by protein phosphatase‐2B. Eur. J. Biochem. 168: 399–405, 1987.
 194. Olsson, H., P. Strålfors, and P. Belfrage. Direct evidence for protein phosphatase‐catalyzed dephosphorylation/deactivation of hormone‐sensitive lipase from adipose tissue. Biochim. Biophys. Acta. 794: 488–491, 1984.
 195. Owen, O. E., G. A. Reichard, M. S. Patel, and G. Boden. Energy metabolism in feasting and fasting. Adv. Exp. Med. Biol. 111: 119–188, 1979.
 196. Pape, M. E., and K. H. Kim. Transcriptional regulation of acetyl coenzyme A carboxylase gene expression by tumor necrosis factor in 30A‐5 preadipocytes. Mol. Cell. Biol. 9: 974–982, 1989.
 197. Park, K., and K. H. Kim. Regulation of acetyl‐CoA carboxylase gene expression. Insulin induction of acetyl‐CoA carboxylase and differentiation of 30A5 preadipocytes require prior cAMP action on the gene. J. Biol. Chem. 266: 12249–12256, 1991.
 198. Park, K., and K. H. Kim. The site of cAMP action in the insulin induction of gene expression of acetyl‐CoA carboxylase is AP‐2. J. Biol. Chem. 268: 17811–17819, 1993.
 199. Paulauskis, J. D., and H. S. Sul. Cloning and expression of mouse fatty acid synthase and other specific mRNAs. Developmental and hormonal regulation in 3T3‐L1 cells. J. Biol. Chem. 263: 7049–7054, 1988.
 200. Paulauskis, J. D., and H. S. Sul. Hormonal regulation of mouse fatty acid synthase gene transcription in liver. J. Biol. Chem. 264: 574–577, 1989.
 201. Peavy, D. E., and R. J. Hansen. Immunological titration of rat liver glucose‐6‐phosphate dehydrogenase from animals fed high and low carbohydrate diets. Biochem. Biophys. Res. Commun. 66: 1106–1111, 1975.
 202. Peavy, D. E., and R. J. Hansen. Influence of diet on the in vivo turnover of glucose‐6‐phosphate dehydrogenase in rat liver. Biochim. Biophys. Acta 586: 22–30, 1979.
 203. Pentyala, S. N., and W. B. Benjamin. Effect of oxaloacetate and phosphorylation on ATP‐citrate lyase activity. Biochemistry 34: 10962–10969, 1995.
 204. Petty, K. J., B. Desvergne, T. Mitsuhashi, and V. M. Nikodem. Identification of a thyroid hormone response element in the malic enzyme gene. J. Biol. Chem. 265: 7395–7400, 1990.
 205. Pierce, M. W., J. L. Palmer, H. T. Keutmann, and J. Avruch. ATP‐citrate lyase. Structure of a tryptic peptide containing the phosphorylation site directed by glucagon and the cAMP dependent protein kinase. J. Biol. Chem. 256: 8867–8870, 1981.
 206. Plée‐Gautier, E., J. Grober, E. Duplus, D. Langin, and C. Forest. Inhibition of hormone‐sensitive lipase gene expression by cAMP and phorbol esters in 3T3‐F442A and BFC‐1 adipocytes. Biochem. J. 318: 1057–1063, 1996.
 207. Prasad, M. R., and V. C. Joshi. Regulation of rat hepatic stearoyl coenzyme A desaturase. The roles of insulin and carbohydrate. J. Biol. Chem. 254: 997–999, 1979.
 208. Price, D. J., R. A. Nemenoff, and J. Avruch. Purification of a hepatic S6 kinase from cycloheximide‐treated rats. J. Biol. Chem. 264: 13825–13833, 1989.
 209. Prip‐Buus, C., D. Perdereau, F. Foufelle, J. Maury, P. Ferre, and J. Girard. Induction of fatty‐acid‐synthase gene expression by glucose in primary culture of rat hepatocytes. Dependency upon glucokinase activity. Eur. J. Biochem. 230: 30–315, 1995.
 210. Procsal, D., L. Winberry, and D. Holten. Dietary regulation of 6‐phosphogluconate dehydrogenase synthesis. J. Biol. Chem. 251: 3539–3544, 1976.
 211. Prostko, C. R., R. S. Fritz, and R. F. Kletzien. Nutritional regulation of hepatic glucose‐6‐phosphate dehydrogenase. Transient activation of transcription. Biochem. J. 258: 295–299, 1989.
 212. Ramakrishna, S., G. D'Angelo, and W. B. Benjamin. Sequence of sites on ATP‐citrate lyase and phosphatase inhibitor 2 phosphorylated by multifunctional protein kinase (a glycogen synthase kinase 3 like kinase). Biochemistry 29: 7617–7624, 1990.
 213. Ramakrishna, S., K. S. Murthy, and W. B. Benjamin. Effect of insulin on ATP‐citrate lyase phosphorylation: regulation of peptide A and peptide B phosphorylations. Biochemistry 28: 856–860, 1989.
 214. Ramakrishna, S., D. L. Pucci, and W. B. Benjamin. Insulin stimulates the dephosphorylation of phosphothreonine from fat‐pad ATP‐citrate lyase. Biochem. Biophys. Res. Comm. 122: 1047–1056, 1984.
 215. Rangan, V. S., B. Oskouian, and S. Smith. Identification of an inverted CCAAT box motif in the fatty‐acid synthase gene as an essential element for mediation of transcriptional regulation by cAMP. J. Biol. Chem. 271: 2307–2312, 1996.
 216. Rizack, M. A.. An epinephrine‐sensitive lipolytic activity in adipose tissue. J. Biol. Chem. 236: 657–662, 1961.
 217. Roder, K., H. Klein, H. Kranz, K. F. Beck, and M. Schweizer. The tripartite DNA element responsible for diet‐induced rat fatty acid synthase (FAS) regulation. Gene 144: 189–195, 1994.
 218. Roder, K., S. S. Wolf, K. F. Beck, and M. Schweizer. Cooperative binding of NF‐Y and Sp1 at the DNase I‐hypersensitive site, fatty acid synthase insulin‐responsive element 1, located at ‐500 in the rat fatty acid synthase promoter. J. Biol. Chem. 272: 21616–21624, 1997.
 219. Rognstad, R., and J. Katz. Effects of 2,4‐dihydroxybutyrate on lipogenesis in rat hepatocytes. J. Biol. Chem. 254: 11969–11972, 1979.
 220. Rudack, D., E. M. Chisholm, and D. Holten. Rat liver glucose 6‐phosphate dehydrogenase. Regulation by carbohydrate diet and insulin. J. Biol. Chem. 246: 1249–1254, 1971.
 221. Saddik, M., J. Gamble, L. A. Witters, and G. D. Lopaschuk. Acetyl‐CoA carboxylase regulation of fatty acid oxidation in the heart. J. Biol. Chem. 268: 25836–25845, 1993.
 222. Sakai, T., W. J. Thompson, V. R. Lavis, and R. H. Williams. Cyclic nucleotide phosphodiesterase activities from isolated fat cells: correlation of subcellular distribution with effects of nucleotides and insulin. Arch. Biochem. Biophys. 162: 331–339, 1974.
 223. Salati, L. M., B. Adkins‐Finke, and S. D. Clarke. Free fatty acid inhibition of the insulin induction of glucose‐6‐phosphate dehydrogenase in rat hepatocyte monolayers. Lipids 23: 36–41, 1988.
 224. Salati, L. M., and S. D. Clarke. Fatty acid inhibition of hormonal induction of acetyl‐coenzyme A carboxylase in hepatocyte monolayers. Arch. Biochem. Biophys. 246: 82–89, 1986.
 225. Salati, L. M., and A. G. Goodridge. Fatty acid synthesis in eukaryotes. In: Biochemistry of Lipids, Lipoproteins and Membranes, edited by D. E. Vance and J. E. Vance. Amsterdam: Elsevier, 1996 p. 101–127.
 226. Salati, L. M., X‐J. Ma, C. C. McCormick, S. R. Stapleton, and A. G. Goodridge. Triiodothyronine stimulates and cyclic AMP inhibits transcription of the gene for malic enzyme in chick embryo hepatocytes in culture. J. Biol. Chem. 266 4010–4016, 1991.
 227. Saltiel, A. R., A. Doble, S. Jacobs, and P. Cuatrecasas. Putative mediators of insulin action regulate hepatic acetyl CoA carboxylase activity. Biochem. Biophys. Res. Commun. 110: 789–795, 1983.
 228. Schmitz, G., Hohage, H., and K. Ullrich. Glucose‐6‐phosphate: a key compound in glycogenesis I and favism leading to hyper‐ or hypolipidaemia. Eur. J. Pediatr. 152 (Suppl. 1): S77–S84, 1993.
 229. Semenkovich, C. F., T. Coleman, and F. T. Fiedorek, Jr.. Human fatty acid synthase mRNA: tissue distribution, genetic mapping, and kinetics of decay after glucose deprivation. J. Lipid Res. 36: 1507–1521, 1995.
 230. Semenkovich, C. F., T. Coleman, and R. Goforth. Physiologic concentrations of glucose regulate fatty acid synthase activity in HepG2 cells by mediating fatty acid synthase mRNA stability. J. Biol. Chem. 268: 6961–6970, 1993.
 231. Shih, H.‐M., and H. C. Towle. Definition of the carbohydrate response element of the rat S‐14 gene. Evidence for a common factor required for carbohydrate regulation of hepatic genes. J. Biol. Chem. 267: 13222–13228, 1992.
 232. Shimano, H., J. D. Horton, R. E. Hammer, I. Shimomura, M. S. Brown, and J. L. Goldstein. Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP‐1a. J. Clin. Invest. 98: 1575–1584, 1996.
 233. Silpananta, P., and A. G. Goodridge. Synthesis and degradation of malic enzyme in chick liver. J. Biol. Chem. 246: 5754–5761, 1971.
 234. Sim, A. T., and D. G. Hardie. The low activity of acetyl‐CoA carboxylase in basal and glucagon‐stimulated hepatocytes is due to phosphorylation by the AMP‐activated protein kinase and not cyclic AMP‐dependent protein kinase. FEBS Lett. 233: 294–298, 1988.
 235. Sirito, M., Q. Lin, T. Maity, and M. Sawadogo. Ubiquitous expression of the 43‐ and 44‐kDa forms of transcription factor USF in mammalian cells. Nucleic Acids Res. 22: 427–433, 1994.
 236. Slavin, B. G., J. M. Ong, and P. A. Kern. Hormonal regulation of hormonesensitive lipase activity and mRNA levels in isolated rat adipocytes. J. Lipid Res. 35: 1535–1541, 1994.
 237. Small, C. A., J. A. Goodacre, and S. J. Yeaman. Hormone‐sensitive lipase is responsible for the neutral cholesterol ester hydrolase activity in macrophages. FEBS Lett. 247: 205–208, 1989.
 238. Smith, C. J., V. Vasta, E. Degerman, P. Belfrage, and V. C. Manganiello. Hormone‐sensitive cyclic GMP‐inhibited cyclic AMP phosphodiesterase in rat adipocytes. Regulation of insulin‐ and cAMP‐dependent activation by phosphorylation. J. Biol. Chem. 266: 13385–13390, 1991.
 239. Solomon, S. S., C. M. Heckemeyer, J. A. Barker, and W. C. Duckworth. Hormonal control of lipolysis in perfused adipocytes from diabetic rats. Endocrinology. 117: 1350–1354, 1985.
 240. Sommercorn, J., J. A. Mulligan, F. J. Lozeman, and E. G. Krebs. Activation of casein kinase II in response to insulin and to epidermal growth factor. Proc. Natl. Acad. Sci. U.S.A. 84: 8834–8838, 1987.
 241. Soncini, M., S. F. Yet, Y. H. Moon, J. Y. Chun, and H. S. Sul. Hormonal and nutritional control of the fatty acid synthase promoter in transgenic mice. J. Biol. Chem. 270: 30339–30343, 1995.
 242. Song, M.‐K. H., B. Dozin, D. Grieco, J. E. Rall, and V. M. Nikodem. Transcriptional activation and stabilization of malic enzyme mRNA precursor by thyroid hormone. J. Biol. Chem. 263: 17970–17974, 1988.
 243. Spence, J. T., and H. C. Pitot. Induction of lipogenic enzymes in primary cultures of rat hepatocytes: relationship between lipogenesis and carbohydrate metabolism. Eur. J. Biochem. 128: 15–20, 1982.
 244. Spence, J. T., H. C. Pitot, and G. Zalitis. Regulation of ATP‐citrate lyase in primary cultures of adult rat hepatocytes. J. Biol. Chem. 254: 12169–12173, 1979.
 245. Spiegelman, B. M., and H. Green. Cyclic AMP‐mediated control of lipogenic enzyme synthesis during adipose differentiation of 3T3 cells. Cell 24: 503–510, 1981.
 246. Stabile, L. P., D. L. Hodge, S. A. Klautky, and L. M. Salati. Post‐transcriptional regulation of glucose‐6‐phosphate dehydrogenase by dietary polyunsaturated fat. Arch. Biochem. Biophys. 332: 269–279, 1996.
 247. Stabile, L. P., S. A. Klautky, S. M. Minor, and L. M. Salati. Polyunsaturated fatty acids inhibit the expression of the glucose‐6‐phosphate dehydrogenase gene in primary rat hepatocytes by a nuclear posttranscriptonal mechanism. J. Lipid Res. 39: 1951–1963, 1998.
 248. Stapleton, S. R., D. A. Mitchell, L. M. Salati, and A. G. Goodridge. Triiodothyronine stimulates transcription of the fatty acid synthase gene in chick embryo hepatocytes in culture. Insulin and insulinlike growth factor amplify that effect. J. Biol. Chem. 265: 18442–18446, 1990.
 249. Steinberg, D., and M. Vaughan. Release of free fatty acids from adipose tissue in vitro In relation to rates of triglyceride synthesis and degradation. In: Handbook of Physiology. Adipose Tissue, edited by A. E. Renold and G. F. Cahill, Jr. Wahington, D.C.: Am. Physiol. Soc., 1965 sect. 5, p. 335–360.
 250. Strâlfors, P., and P. Belfrage. Phosphorylation of hormone‐sensitive lipase by cyclic AMP—dependent protein kinase. J. Biol. Chem. 258: 15146–15152, 1983.
 251. Strålfors, P., P. Bjorgell, and P. Belfrage. Hormonal regulation of hormone‐sensitive lipase in intact adipocytes: identification of phosphorylated sites and effects on the phosphorylation by lipolytic hormones and insulin. Proc. Natl. Acad. Sci. U.S.A. 81: 3317–3321, 1984.
 252. Stumpo, D. J., and R. F. Kletzien. Regulation of glucose‐6‐phosphate dehydrogenase mRNA by insulin and the glucocorticoids in primary cultures of rat hepatocytes. Eur. J. Biochem. 144: 497–502, 1984.
 253. Sul, H. S., L. S. Wise, M. L. Brown, and C. S. Rubin. Cloning of cDNA sequences for murine ATP‐citrate lyase. Construction of recombinant plasmids using an immunopurified mRNA template and evidence for the nutritional regulation of ATP‐citrate lyase mRNA content in mouse liver. J. Biol. Chem. 259: 1201–1205, 1984.
 254. Sullivan, J. E., K. J. Brocklehurst, A. E. Marley, F. Carey, D. Carling, and R. K. Beri. Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell‐permeable activator of AMP‐activated protein kinase. FEBS Lett. 353: 33–36, 1994.
 255. Sutherland, C., I. A. Leighton, and P. Cohen. Inactivation of glycogen synthase kinase‐3α by phosphorylation: new kinase connections in insulin and growth‐factor signalling. Biochem. J. 296: 15–19, 1993.
 256. Swenson, T. L., and J. W. Porter. Mechanism of glucagon inhibition of liver acetyl‐CoA carboxylase. Interrelationship of the effects of phosphorylation, polymer‐protomer transition, and citrate on enzyme activity. J. Biol. Chem. 260: 3791–3797, 1985.
 257. Swierczynski, J., D. A. Mitchell, D. S. Reinhold, L. M. Salati, S. R. Stapleton, S. A. Klautky, A. E. Struve, and A. G. Goodridge. Triiodothyronine‐induced accumulations of malic enzyme, fatty acid synthase, acetyl‐coenzyme A carboxylase, and their mRNAs are blocked by protein kinase inhibitors. Transcription is the affected step. J. Biol. Chem. 266: 7459–7466, 1991.
 258. Sztalryd, C., and F. B. Kraemer. Regulation of hormone‐sensitive lipase during fasting. Am. J. Physiol. 266 (Endocrinol. Metab. 29): E179–E185, 1994.
 259. Sztalryd, C., and F. B. Kraemer. Regulation of hormone‐sensitive lipase in streptozotocin‐induced diabetic rats. Metabolism 44: 1391–1396, 1995.
 260. Tabor, D. E., J. B. Kim, B. M. Spiegelman, and P. A. Edwards. Transcriptional activation of the stearoyl‐CoA desaturase 2 gene by sterol regulatory element‐binding protein/adipocyte determination and differentiation factor 1. J. Biol. Chem. 273: 22052–22058, 1998.
 261. Tabor, D. E., J. B. Kim, B. M. Spiegelman, and P. A. Edwards. Identification of conserved cis‐elements and transcription factors required for sterol‐regulated transcription of stearoyl‐CoA desaturase 1 and 2. J. Biol. Chem. 274: 20603–20610, 1999.
 262. Tae, H.‐J., X. Luo, and K. H. Kim. Roles of CCAAT/enhancer‐binding protein and its binding site on repression and derepression of acetyl‐CoA carboxylase gene. J. Biol. Chem. 269: 10475–10484, 1994.
 263. Tae, H.‐J., S. Zhang, and K.‐H. Kim. cAMP activation of CAAT enhancer‐binding protein‐α gene expression and promoter I of acetyl‐CoA carboxylase J. Biol. Chem. 270: 21487–21494, 1995.
 264. Tepperman, H. M., and J. Tepperman. Effects of antecedent food intake pattern on hepatic lipogenesis. Am. J. Physiol. 193: 55–64, 1958.
 265. Tepperman, H. M., and J. Tepperman. Patterns of dietary and hormonal induction of certain NADP‐linked liver enzymes. Am. J. Physiol. 206: 357–361, 1964.
 266. Thampy, K. G.. Formation of malonyl coenzyme A in rat heart. Identification and purification of an isozyme of acetyl‐coenzyme A carboxylase from rat heart. J. Biol. Chem. 264: 17631–17634, 1989.
 267. Thampy, K. G., and S. J. Wakil. Regulation of acetyl‐coenzyme A carboxylase. I. Purification and properties of two forms of acetyl‐coenzyme A carboxylase from rat liver. J. Biol. Chem. 263: 6447–6453, 1988.
 268. Thampy, K. G., and S. J. Wakil. Regulation of acetyl‐coenzyme A carboxylase. II. Effect of fasting and refeeding on the activity, phosphate content, and aggregation state of the enzyme. J. Biol. Chem. 263: 6454–6458, 1988.
 269. Thiede, M. A., and P. Strittmatter. The induction and characterization of rat liver stearoyl‐CoA desaturase mRNA. J. Biol. Chem. 260: 14459–14463, 1985.
 270. Tipper, J. P., G. W. Bacon, and L. A. Witters. Phosphorylation of acetyl‐coenzyme A carboxylase by casein kinase I and casein kinase II. Arch. Biochem. Biophys. 227: 386–396, 1983.
 271. Tipper, J. P., and L. A. Witters. In vitro phosphorylation and inactivation of rat liver acetyl‐CoA carboxylase purified by avidin affinity chromatography. Biochim. Biophys. Acta 715: 162–169, 1982.
 272. Tomita, Y., S. Abraham, C. Noda, and A. Ichihara. Pyruvate stimulates hormonal induction of lipogenic enzymes in primary cultured rat hepatocytes. Biochim. Biophys. Acta 1170: 253–257, 1993.
 273. Towle, H. C., E. N. Kaytor, and H. M. Shih. Metabolic regulation of hepatic gene expression. Biochem. Soc. Trans. 24: 364–368, 1996.
 274. Towle, H. C., C. N. Mariash, and J. H. Oppenheimer. Changes in the hepatic levels of messenger ribonucleic acid for malic enzyme during induction by thyroid hormone or diet. Biochemistry 19: 579–585, 1980.
 275. Usala, S. J., W. D. Young, H. Morioka, and V. M. Nikodem. The effect of thyroid hormone on the chromatin structure and expression of the malic enzyme gene in hepatocytes. Mol. Endocrinol. 2: 619–626, 1988.
 276. Valverde, A. M., M. Benito, and M. Lorenzo. Hormonal regulation of malic enzyme and glucose‐6‐phosphate‐dehydrogenase expression in fetal brown‐adipocyte primary cultures under non‐proliferative conditions. Eur. J. Biochem. 203: 313–319, 1992.
 277. Vaughan, M., J. E. Berger, and D. Steinberg. Hormone‐sensitive lipase and monoglyceride lipase activities in adipose tissue. J. Biol. Chem. 239: 401–109, 1964.
 278. Volpe, J. J., and J. C. Marasa. Hormonal regulation of fatty acid synthetase, acetyl‐CoA carboxylase and fatty acid synthesis in mammalian adipose tissue and liver. Biochim. Biophys. Acta 380: 454–472, 1975.
 279. Volpe, J. J., and P. R. Vagelos. Regulation of mammalian fatty acid synthetase. The roles of carbohydrate and insulin. Proc. Natl. Acad. Sci. U.S.A. 71: 889–893, 1974.
 280. Wang, D., and H. S. Sul. Upstream stimulatory factors bind to insulin response sequence of the fatty acid synthase promoter—USF1 is regulated. J. Biol. Chem. 270: 28716–28722. 1995.
 281. Wang, D., and H. S. Sul. Upstream stimulatory factors bind to insulin response sequence of the fatty acid synthase promoter—USF1 is regulated. A correction. J. Biol. Chem. 271: 7873, 1996.
 282. Wang, D., and H. S. Sul. Upstream stimulatory factor binding to the E‐box at ‐65 is required for insulin regulation of the fatty acid synthase promoter. J. Biol. Chem. 272: 26367–26374, 1997.
 283. Waters, K. M., and J. M. Ntambi. Insulin and dietary fructose induce stearoyl‐CoA desaturase 1 gene expression of diabetic mice. J. Biol. Chem. 269: 27773–27777, 1994.
 284. Watkins, P. A., D. M. Tarlow, and M. D. Lane. Mechanism for acute control of fatty acid synthesis by glucagon and 3': 5'‐cyclic AMP in the liver cell. Proc. Natl. Acad. Sci. U.S.A. 74: 1497–1501, 1977.
 285. Watson, J. A., and J. M. Lowenstein. Citrate and the conversion of carbohydrate into fat: fatty acid synthesis by a combination of cytoplasm and mitochondria. J. Biol. Chem. 245: 5993–6002, 1970.
 286. Weiner, F. R., P. J. Smith, S. Wertheimer, and C. S. Rubin. Regulation of gene expression by insulin and tumor necrosis factor alpha in 3T3‐L1 cells. Modulation of the transcription of genes encoding acyl‐CoA synthetase and stearoyl‐CoA desaturase‐1. J. Biol. Chem. 266: 23525–23528, 1991.
 287. Weiss, G. H., O. M. Rosen, and C. S. Rubin. Regulation of fatty acid synthetase concentration and activity during adipocyte differentiation. J. Biol. Chem. 255: 4751–4757, 1980.
 288. Welsh, G. I., and C. G. Proud. Glycogen synthase kinase‐3 is rapidly inactivated in response to insulin and phosphorylated eukaryotic initiation factor eIF‐2B. Biochem. J. 294: 625–629, 1993.
 289. Widmer, J., K. S. Fassihi, S. C. Schlichter, K. S. Wheeler, B. E. Crute, N. King, N. Nutile‐McMenemy, W. W. Noll, S. Daniel, J. Ha, K. H. Kim, and L. A. Witters. Identification of a second human acetyl‐CoA carboxylase gene. Biochem. J. 316: 915–922, 1996.
 290. Wieland, O., I. Nevfeldt, S. Numa, and F. Lynen. Zür Störung der Fettsäure Synthase bei Hunger and Alloxandiabetes II. Fettsäure‐synthase in der leber alloxan diabetischer Ratten. Biochem. Z. 336: 455–459, 1963.
 291. Wilson, E. J., and W. C. McMurray. Insulin and cortisol increase the response of rat hepatocytes in primary culture to 3,3',5 triiodothyronine. Biochem. Biophys. Res. Commun. 93: 179–185, 1980.
 292. Wilson, E. J., and W. C. McMurray. Regulation of malic enzyme and mitochondrial alpha‐glycerophosphate dehydrogenase by thyroid hormones, insulin, and glucocorticoids in cultured hepatocytes. J. Biol. Chem. 256: 11657–11662, 1981.
 293. Wilson, S. B., D. W. Back, S. M. Morris, Jr, J. Swierczynski, and A. G. Goodridge. Hormonal regulation of lipogenic enzymes in chick embryo hepatocytes in culture. Expression of the fatty acid synthase gene is regulated at both translational and pretranslational steps. J. Biol. Chem. 261: 15179–15182, 1986.
 294. Winberry, L., and D. Holten. Rat liver glucose‐6‐P dehydrogenase. Dietary regulation of the rate of synthesis. J. Biol. Chem. 252: 7796–7801, 1977.
 295. Winberry, L., R. Nakayama, R. Wolfe, and D. Holten. Regulation of glucose‐6‐P dehydrogenase activity in primary rat hepatocyte cultures. Biochem. Biophys. Res. Commun. 96: 748–755, 1980.
 296. Winz, R., D. Hess, R. Aebersold, and R. W. Brownsey. Unique structural features and differential phosphorylation of the 280‐kDa component (isozyme) of rat liver acetyl‐CoA carboxylase. J. Biol. Chem. 269: 14438–14445, 1994.
 297. Wise, E. M., and E. G. Ball. Malic enzyme and lipogenesis. Proc. Natl. Acad. Sci. U.S.A. 52: 1255–1263, 1964.
 298. Wise, L. S., H. S. Sul, and C. S. Rubin. Coordinate regulation of the biosynthesis of ATP‐citrate lyase and malic enzyme during adipocyte differentiation. Studies on 3T3‐L1 cells. J. Biol. Chem. 259: 4827–4832, 1984.
 299. Witters, L. A., and B. E. Kemp. Insulin activation of acetyl‐CoA carboxylase accompanied by inhibition of the 5'‐AMP‐activated protein kinase. J. Biol. Chem. 267: 2864–2867, 1992.
 300. Witters, L. A., D. Moriarity, and D. B. Martin. Regulation of hepatic acetyl coenzyme A carboxylase by insulin and glucagon. J. Biol. Chem. 254: 6644–6649, 1979.
 301. Witters, L. A., J. P. Tipper, and G. W. Bacon. Stimulation of site‐specific phosphorylation of acetyl conenzyme A carboxylase by insulin and epinephrine. J. Biol. Chem. 258: 5643–5648, 1983.
 302. Witters, L. A., and T. D. Watts. An autocrine factor from Reuber hepatoma cells that stimulates DNA synthesis and acetyl‐CoA carboxylase. Characterization of biologic activity and evidence for a glycan structure. J. Biol. Chem. 263: 8027–8036, 1988.
 303. Witters, L. A., T. D. Watts, D. L. Daniels, and J. L. Evans. Insulin stimulates the dephosphorylation and activation of acetyl‐CoA carboxylase. Proc. Natl. Acad. Sci. U.S.A. 85: 5473–5477, 1988.
 304. Wolf, S. S., G. Hofer, K. F. Beck, K. Roder, and M. Schweizer. Insulin‐responsive regions of the rat fatty acid synthase gene promoter. Biochem. Biophys. Res. Commun. 203: 943–950, 1994.
 305. Wood, S. L., N. Emmison, A. C. Borthwick, and S. J. Yeaman. The protein phosphatases responsible for dephosphorylation of hormone‐sensitive lipase in isolated rat adipocytes. Biochem. J. 295: 531–535, 1993.
 306. Worgall, T. S., S. L. Sturley, T. Seo, T. F. Osborne, and R. J. Deckelbaum. Polyunsaturated fatty acids decrease expression of promoters with sterol regulatory elements by decreasing levels of mature sterol regulatory element‐binding protein. J. Biol. Chem. 273: 25537–25540, 1998.
 307. Xu, J., M. T. Nakamura, H. P. Cho, and S. D. Clarke. Sterol regulatory element binding protein‐I expression is suppressed by dietary polyunsaturated fatty acids. A mechanism for the coordinate suppression of lipogenic genes by polyunsaturated fats. J. Biol. Chem. 274: 23577–23583, 1999.
 308. Yeaman, S. J.. Hormone‐sensitive lipase—a multipurpose enzyme in lipid metabolism. Biochim. Biophys. Acta 1052: 128–132, 1990.
 309. Yeaman, S. J., G. M. Smith, C. A. Jepson, S. L. Wood, and N. Emmison. The multifunctional role of hormone‐sensitive lipase in lipid metabolism. Adv. Enzyme Regul. 34: 355–370, 1994.
 310. Yin, D., S. D. Clarke, J. L. Peters, and T. D. Etherton. Somatotropin‐dependent decrease in fatty acid synthase mRNA abundance in 3T3‐F442A adipocytes is the result of a decrease in both gene transcription and mRNA stability. Biochem. J. 331: 815–820, 1998.
 311. Yoshimoto, K., T. Nakamura, and A. Ichihara. Reciprocal effects of epidermal growth factor on key lipogenic enzymes in primary cultures of adult rat hepatocytes. Induction of glucose‐6‐phosphate dehydrogenase and suppression of malic enzyme and lipogenesis. J. Biol. Chem. 258: 12355–12360, 1983.
 312. Yoshimoto, K., T. Nakamura, S. Niimi, and A. Ichihara. Hormonal regulation of translatable mRNA of glucose‐6‐phosphate dehydrogenase in primary cultures of adult rat hepatocytes. Biochim. Biophys. Acta 741: 143–149, 1983.
 313. Yu, K.‐T., W. B. Benjamin, S. Ramakrishna, N. Khalaf, and M. P. Czech. An insulin‐sensitive cytosolic protein kinase accounts for the regulation of ATP citrate‐lyase phosphorylation. Biochem. J. 268: 53–545, 1990.
 314. Zarra, V., and G. V. Gnoni. Effect of starvation on the activity of the mitochondrial tricarboxylate carrier. Biochim. Biophys. Acta 1239: 33–38, 1995.
 315. Zinman, B., and C. H. Hollenberg. Effect of insulin and lipolytic agents on rat adipocyte low Km cyclic adenosine 3': 5'‐monophosphate phosphodiesterase. J. Biol. Chem. 249: 2182–2187, 1974.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Lisa M. Salati. Regulation of Fatty Acid Biosynthesis and Lipolysis. Compr Physiol 2011, Supplement 21: Handbook of Physiology, The Endocrine System, The Endocrine Pancreas and Regulation of Metabolism: 495-527. First published in print 2001. doi: 10.1002/cphy.cp070215