Comprehensive Physiology Wiley Online Library

Regulation of Protein Metabolism in Muscle

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Efficiency of Protein Synthesis: Translational Control
1.1 Role of Insulin in the Regulation of Translation Initiation
1.2 Interactive Roles of Insulin and Amino Acids in the Regulation of Translation Initiation
1.3 Interactive Roles of Insulin and Other Hormones in the Regulation of Protein Synthesis in Skeletal Muscle
2 Capacity for Protein Synthesis: Ribosomal Biogenesis
2.1 Role of Insulin in the Regulation of rRNA Gene Transcription
2.2 Role of Insulin in the Regulation of Synthesis of Ribosomal Proteins
3 Protein Degradation
3.1 The Lyosomal System
3.2 Calcium Activated Proteinases
3.3 The Ubiquitin‐Proteasome System
4 Future Perspectives
Figure 1. Figure 1.

Initiation of protein synthesis. The diagram highlights the two key regulatory steps in translation initiation: the binding of initiator methionyl‐tRNA (met‐tRNA1) to the 40 S ribosomal subunit, mediated by eukaryotic initiation factor 2 (eIF2) and the binding of mRNA to the 43 S preinitiation complex, mediated by eIF4E. In addition, the sequestration of eIF4E into an inactive complex with eIF4E‐binding protein 1 (4E‐BP1) is depicted.

Figure 2. Figure 2.

Potential signal‐transduction pathways in the regulation of translation initiation and rDNA transcription. The protein kinase signal‐transduction pathways activated in response to insulin and/or amino acids and the effect of activation on regulation of general or specific mRNA translation as well as RNA polymerase I are depicted. Whereas amino acids activate the mammalian target of rapamycin (mTOR), and thus stimulate RNA polymerase I and specific mRNA translation, they inhibit Gcn2p, resulting in a decrease in eukaryotic initiation factor 2α (eIF2α) phosphorylation and stimulation of general protein synthesis. PI, phosphatidylinositol; PKB, protein kinase B; GSK‐3, glycogen synthase kinase‐3; 4E‐BP1, eIF4E‐binding protein; Gcn2p, nutrient‐regulated eIF2α kinase.

Figure 3. Figure 3.

Regulatory elements involved in modulation of rDNA transcription. The diagram highlights the key regulatory elements in the control of rDNA transcription by insulin and/or amino acids. Details are provided in the text. UBF, upstream binding factor; SL1, selectivity factor 1.

Figure 4. Figure 4.

Schematic diagram of ubiquitin‐dependent proteolytic pathway. Refer to text for detailed explanation of the different steps involved in the degradation of proteins by this pathway. Ub, ubiquitin; El, ubiquitin‐activating enzyme El; E2, ubiquitin‐conjugating enzyme E2; E3; ubiquitin protein ligase E3.



Figure 1.

Initiation of protein synthesis. The diagram highlights the two key regulatory steps in translation initiation: the binding of initiator methionyl‐tRNA (met‐tRNA1) to the 40 S ribosomal subunit, mediated by eukaryotic initiation factor 2 (eIF2) and the binding of mRNA to the 43 S preinitiation complex, mediated by eIF4E. In addition, the sequestration of eIF4E into an inactive complex with eIF4E‐binding protein 1 (4E‐BP1) is depicted.



Figure 2.

Potential signal‐transduction pathways in the regulation of translation initiation and rDNA transcription. The protein kinase signal‐transduction pathways activated in response to insulin and/or amino acids and the effect of activation on regulation of general or specific mRNA translation as well as RNA polymerase I are depicted. Whereas amino acids activate the mammalian target of rapamycin (mTOR), and thus stimulate RNA polymerase I and specific mRNA translation, they inhibit Gcn2p, resulting in a decrease in eukaryotic initiation factor 2α (eIF2α) phosphorylation and stimulation of general protein synthesis. PI, phosphatidylinositol; PKB, protein kinase B; GSK‐3, glycogen synthase kinase‐3; 4E‐BP1, eIF4E‐binding protein; Gcn2p, nutrient‐regulated eIF2α kinase.



Figure 3.

Regulatory elements involved in modulation of rDNA transcription. The diagram highlights the key regulatory elements in the control of rDNA transcription by insulin and/or amino acids. Details are provided in the text. UBF, upstream binding factor; SL1, selectivity factor 1.



Figure 4.

Schematic diagram of ubiquitin‐dependent proteolytic pathway. Refer to text for detailed explanation of the different steps involved in the degradation of proteins by this pathway. Ub, ubiquitin; El, ubiquitin‐activating enzyme El; E2, ubiquitin‐conjugating enzyme E2; E3; ubiquitin protein ligase E3.

References
 1. Amaldi, F., and P. Pierandrei‐Amaldi. TOP genes: a translationally controlled class of genes including those coding for ribosomal proteins. Prog. Mol. Subcell. Biol. 18: 1–17, 1997.
 2. Ameil, S. A., R. S. Sherwin, R. L. Hintz, L. M. Gertner, C. M. Press, and W. V. Tamborlane. Effect of diabetes and its control on insulin‐like growth factors in the young subject with type I diabetes. Diabetes 33: 1175–1179, 1984.
 3. Antonetti, D. A., S. R. Kimball, R. L. Horetsky, and L. S. Jefferson. Regulation of rDNA transcription by insulin in primary cultures of rat hepatocytes. J. Biol. Chem. 268: 25277–25284, 1993.
 4. Ashford, A. J., and V. M. Pain. Effect of diabetes on the rates of synthesis and degradation of ribosomes in rat muscle and liver in vivo. J. Biol. Chem. 261: 4059–4065, 1986.
 5. Auclair, D., D. R. Garrel, A. C. Zerouala, and L. H. Ferland. Activation of the ubiquitin pathway in rat skeletal muscle by catabolic doses of glucocorticoids. Am. J. Physiol. 272 (Cell Physiol. 41): C1007–1016, 1997.
 6. Avni, D., S. Shama, F. Loreni, and O. Meyuhas. Vertebrate m‐RNAs with a 5'‐terminal pyrimidine tract are candidates for translational repression in quiescent cells: characterization of the translational cis‐regulatory element. Mol. Cell. Biol. 14: 3822–3833, 1994.
 7. Azpiaza, L, A. R. Saltiel, A. A. DePaoli‐Roach, and J. C. Lawrence. Regulation of both glycogen synthase and PHAS‐I by insulin in rat skeletal muscle involves MAP kinase‐independent and rapamycin‐sensitive pathways. J. Biol. Chem. 271: 5033–5039, 1996.
 8. Bach, L. A., and M. M. Rechler. Insulin‐like growth factors and diabetes. Diabetes Metab. Rev. 8: 229–257, 1992.
 9. Bark, T. H., M. S. McNurlan, C. H. Lang, and P. J. Garlick. Increased protein synthesis after acute IGF‐I or insulin infusion is localized to muscle in mice. Am. J. Physiol. 275 (Endocrinol. Meta‐b. 38): E118–E123, 1998.
 10. Bereket, A., C. H. Lang, S. L. Blethen, M. C. Gelato, J. Fan, R. A. Frost, and T. A. Wilson. Effect of insulin on the insulin‐like growth factor system in children with new‐onset insulin‐dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 80: 1312–1317, 1995.
 11. Bereket, A., C. H. Lang, S. L. Blethen, L. C. Ng, and T. A. Wilson. Insulin treatment normalizes reduced free insulin‐like growth factor‐I concentrations in diabetic children. Clin. Endocrinol. 45: 321–326, 1996.
 12. Bird, J. W., J. H. Carter, R. E. Triemer, R. M. Brooks, and A. M. Spanier. Proteases in cardiac and skeletal muscle. Federation Proc. 39: 20–25, 1980.
 13. Bogyo, M., J. S. McMaster, M. Gaczynska, D. Tortorella, A. C. Goldberg, and H. Bloegh. Covalent modification of the active site threonine of proteasomal beta subunits and the Escherichia coli homolog Hs1V by a new class of inhibitors. Proc. Natl. Acad. Sci. U.S.A. 94: 6629–6634, 1997.
 14. Brunn, G. J., C. C. Hudson, A. Sekulic, J. M. Williams, H. Hosoi, P. J. Houghton, J. C. Lawrence, and R. T. Abraham. Phosphorylation of the translational repressor PHAS‐I by the mammalian target of rapamycin. Science 277: 99–101, 1997.
 15. Brunn, G. J., J. Williams, C. Sabers, G. Wiederrecht, J. C. Lawrence, and R. T. Abraham. Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3‐kinase inhibitors, wortmannin and LY294002. EMBO J. 15: 5256–5267, 1996.
 16. Burkhard, S. J., and J. A. Traugh. Changes in ribosome function by cAMP‐dependent and cAMP‐independent phosphorylation of ribosomal protein S6. J. Biol. Chem. 258: 14003–14008, 1983.
 17. Calvo, V., C. M. Crews, T. A. Vik, and B. E. Bierer. Interleukin 2 stimulation of p70 S6 kinase activity is inhibited by the immunosuppressant rapamycin. Proc. Natl. Acad. Sci. U.S.A. 89: 7571–7575, 1992.
 18. Cassidy, B., R. Haglund, and L. I. Rothblum. Regions upstream from the core promoter of the rat ribosomal gene are required for the formation of a stable transcription initiation complex by RNA polymerase I in vitro. Biochim. Biophys. Acta 9: 133–144, 1987.
 19. Cesarone, C. F., C. Bolognesi, and L. Santi. Improved microfluorometric DNA determination in biological material using 33258 Hoechst. Anal. Biochem. 100: 188–197, 1979.
 20. Chang, P.‐Y., Y. Le Marchand‐Brustel, L. A. Cheatham, and D. E. Moller. Insulin stimulation of mitogen‐activated protein kinase, p90rsk, and p70 S6 kinase in skeletal muscle of normal and insulin‐resistant mice. Implications for the regulation of glycogen synthesis. J. Biol. Chem. 270: 29928–29935, 1995.
 21. Chang, Y. W. E., and J. A. Traugh. Phosphorylation of elongation factor 1 and ribosomal protein S6 by multipotential S6 kinase and insulin stimulation of translational elongation. J. Biol. Chem. 272: 28252–28257, 1997.
 22. Chieng, A., and J. F. Dice. Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J. Biol. Chem. 263: 6797–6805, 1988.
 23. Chu‐Ping, M., J. H. Vu, R. J. Proske, C. A. Slaughter, and G. N. DeMartino. Identification, purification, and characterization of a high molecular weight, ATP‐dependent activator (PA700) of the 20 S proteasome. J. Biol. Chem. 269: 3539–3547, 1994.
 24. Comai, L., J. C. Zomerdijk, H. Beckmann, S. Zhou, A. Admon, and R. Tjian. Reconstitution of transcription factor SL1: exclusive binding of TBP by SL1 or TFIID subunits. Science 266: 1966–1972, 1994.
 25. Coux, O., H. G. Nothwang, I. Silva‐Pererira, F. Recillas‐Targa, F. Bey, and K. Scherrer. Phylogenic relationships of the amino acid sequences of prosome (proteasome, MCP) subunits. Mol. Gen. Genet. 245: 769–780, 1994.
 26. Croall, D. E., and G. N. DeMartino. Calcium‐activated neutral protease (calpain) systems structure, function and regulation. Physiol. Rev. 71: 813–847, 1991.
 27. Dardevet, D., C. Sornet, T. C. Vary, and J. Grizard. Phosphatidylinositol 3‐kinase and p70 s6 kinase participate in the regulation of protein turnover in skeletal muscle by insulin and insulin‐like growth factor I. Endocrinology 137: 4087–4094, 1996.
 28. Dayton, W. R., W. S. Reville, D. E. Goll, and M. H. Stromer. A Ca2+ activated protease possibly involved in myofibrillar protein turnover. Partial characterization of purified protein. Biochemistry 15: 2159–2167, 1976.
 29. De Benedetti, A., S. Joshi‐Barve, C. Rinker‐Schaeffer, and R. E. Rhoads. Expression of antisense RNA against initiation factor eIF‐4E mRNA in HeLa cells results in lengthened cell division times, diminished translation rates, and reduced levels of both eIF‐4E and the p220 component of eIF‐4F. Mol. Cell. Biol. 11: 5435–5445, 1991.
 30. Del Grande, R. W., and J. A. Traugh. Phosphorylation of 40S ribosomal subunits by cAMP‐dependent, cGMP‐dependent, and protease‐activated kinases. Eur. J. Biochem. 123: 421–428, 1982.
 31. Denne, S. C., E. A. Liechty, Y. M. Lin, G. Brechitel, and A. D. Brown. Proteolysis in skeletal muscle and whole body in response to euglycemic hyperinsulinemia in normal adults. Am. J. Physiol. 261 (Endocrinol. Metab. 24): E809–E814, 1991.
 32. Denslow, N. D., L. P. Singh, A. R. Aroor, and A. J. Wahba. Phosphorylation of the rabbit reticulocyte guanine nucleotide exchange factor in vitro and in vivo by casein kinase I. FASEB J. 8: A1306, 1994.
 33. DePhilip, R. M., D. E. Chadwick, R. A. Ignotz, W. E. Lynch, and I. Lieberman. Rapid stimulation by insulin of ribosome synthesis in cultured chick embryo fibroblasts. Biochemistry 18: 4812–4817, 1979.
 34. DePhilip, R. M., W. A. Rudert, and I. Lieberman. Preferential stimulation of ribosomal protein synthesis by insulin and in the absence of ribosomal and messenger ribonucleic acid formation. Biochemistry 19: 1662–1669, 1980.
 35. Dholakia, J. N., and A. J. Wahba. Phosphorylation of the guanine nucleotide exchange factor from rabbit reticulocytes regulates its activity in polypeptide chain initiation. Proc. Natl. Acad. Sci. U.S.A. 85: 51–54, 1988.
 36. Duckworth, W. C., R. G. Bennett, and F. G. Hamel. A direct inhibitory effect of insulin on a cytosolic proteolytic complex containing insulin‐degrading enzyme and multicatalytic proteinase. J. Biol. Chem. 269: 24575–24580, 1994.
 37. Duncan, R., S. C. Milburn, and J. W. Hershey. Regulated phosphorylation and low abundance of HeLa cell initiation factor eIF‐4F suggest a role in translational control. Heat shock effects on eIF‐4F. J. Biol. Chem. 262: 380–388, 1987.
 38. Evers, R., A. Smid, U. Rudloff, F. Lottspeich, and I. Grummt. Different domains of the murine RNA polymerase I‐specific termination factor mTTF‐I serve distinct functions in transcription termination. EMBO J. 14: 1248–1256, 1995.
 39. Fadden, P., T. A. J. Haystead, and J. C. Lawrence. Identification of phosphorylation sites in the translational regulator, PHAS‐I, that are controlled by insulin and rapamycin in rat adipocytes. J. Biol. Chem. 272: 10240–10247, 1997.
 40. Feigenblum, D., and R. J. Schneider. Cap‐binding protein (eukaryotic initiation factor 4E) and 4E‐inactivating protein BP‐1 independently regulate cap‐dependent translation. Mol. Cell. Biol. 16: 5450–5457, 1996.
 41. Fenteany, G., R. F. Standaert, W. S. Lane, S. Choi, E. J. Corey, and S. L. Schreiber. Inhibition of proteasome activities and subunit‐specific amino‐terminal threonine modification by lactacystin. Science 268: 726–731, 1995.
 42. Flaim, K. E., M. E. Copenhaver, and L. S. Jefferson. Effects of diabetes on protein synthesis in fast‐ and slow‐twitch rat skeletal muscle. Am. J. Physiol. 239 (Endocrinol. Metab. 2): E88–E95, 1980.
 43. Flynn, A., and C. G. Proud. Insulin and phorbol ester stimulate initiation factor eIF‐4E phosphorylation by distinct pathways in Chinese hamster ovary cells overexpressing the insulin receptor. Eur. J. Biochem. 236: 40–47, 1996.
 44. Flynn, A., and C. G. Proud. Insulin‐stimulated phosphorylation of initiation factor 4E is mediated by the MAP kinase pathway. FEBS Lett. 389: 162–166, 1996.
 45. Flynn, A., and C. G. Proud. The role of eIF‐4 in cell proliferation. Cancer Surv. 27: 293–310, 1996.
 46. Fox, H. L., S. R. Kimball, L. S. Jefferson, and C. J. Lynch. Amino acids stimulate phosphorylation of p70S6k and organization of rat adipocytes into multicellular clusters. Am. J. Physiol. 274 (Cell Physiol. 43): C206–C213, 1998.
 47. Fryburg, D. A.. Insulin‐like growth factor I exerts growth hormone‐and insulin‐like actions on human muscle protein metabolism. Am. J. Physiol. 267 (Endocrinol. Metab. 30) 267: E331–E336, 1994.
 48. Fryburg, D. A., L. A. Jahn, S. A. Hill, D. M. Oliveras, and E. K. Barrett. Insulin and insulin‐like growth factor‐I enhance human skeletal muscle protein anabolism during hyperaminoacidemia by different mechanisms. J. Clin. Invest. 96: 1722–1729, 1995.
 49. Fulks, R. M., J. B. Li, and A. L. Goldberg. Effects of insulin, glucose, and amino acids on protein turnover in rat diaphragm. J. Biol. Chem. 250: 290–298, 1975.
 50. Ganoth, D., E. Leshinsky, E. Eytan, and A. Hershko. A multicomponent system that degrades proteins conjugated to ubiquitin. Resolution of factors and evidence for ATP‐dependent complex formation. J. Biol. Chem. 263: 12412–12419, 1988.
 51. Gelfand, R. A., and E. J. Barrett. Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J. Clin. Invest. 80: 1–6, 1987.
 52. Gingras, A.‐C., S. G. Kennedy, M. A. O'Leary, N. Sonenberg, and H. Hay. 4E‐BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 12: 502–513, 1998.
 53. Gokal, P. K., A. H. Cavanaugh, and E. A. Thompson. The effects of cycloheximide upon transcription of rRNA, 5 S RNA, and tRNA genes. J. Biol. Chem. 261: 2536–2541, 1986.
 54. Goldberg, A. L., M. E. Tischler, G. DeMartino, and G. Griffin. Hormonal regulation of protein degradation and synthesis in skeletal muscle. Federation Proc. 39: 31–36, 1980.
 55. Goll, D. E., V. F. Thompson, R. G. Taylor, and T. Zalewska. Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin. Bioessays 14: 549–556, 1992.
 56. Goll, E. D., W. R. Dayton, E. Singh, and R. M. Robson. Studies of the α‐actinin factor interaction in the Z‐disk using calpain. J. Biol. Chem. 266: 8501–8510, 1991.
 57. Goodman, M. N.. Myofibrillar protein breakdown in skeletal muscle is diminished in rats with chronic streptozocin‐induced diabetes. Diabetes 36: 100–105, 1987.
 58. Goodman, M. N., and M. de Pilar Gomez. Decreased myofibrillar proteolysis after refeeding requires dietary protein or amino acids. Am. J. Physiol. 253 (Endocrinol. Metab. 16): E52–E58, 1987.
 59. Graves, L. M., K. E. Bornfeldt, G. M. Argast, E. G. Krebs, X. Kong, T. A. Lin, and J. C. Lawrence. cAMP‐ and rapamycin‐sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS‐I in aortic smooth muscle cells. Proc. Natl. Acad. Sci. U.S.A. 92: 7222–7226, 1995.
 60. Grziwa, A., W. Baumeister, B. Dahlmann, and F. Kopp. Localization of subunits in proteasomes from Thermoplasma acidophilum by immunoelectron microscopy. FEBS Lett. 290: 186–190, 1991.
 61. Hadari, T., J. V. Warms, I. A. Rose, and A. Hershko. A ubiquitin C‐terminal isopeptidase that acts on polyubiquitin chains. Role in protein degradation. J. Biol. Chem. 267: 719–727, 1992.
 62. Hamel, F. G., R. G. Bennett, K. S. Harmon, and W. C. Duckworth. Insulin inhibition of proteasome activity in intact cells. Biochem. Biophys. Res. Commun. 234: 671–674, 1997.
 63. Hammond, M. L., and L. H. Bowman. Insulin stimulates the translation of ribosomal proteins and the transcription of rDNA in mouse myoblasts. J. Biol. Chem. 263: 17785–17791, 1988.
 64. Hammond, M. L., W. Merrick, and L. H. Bowman. Sequences mediating the translation of mouse S16 ribosomal protein mRNA during myoblast differentiation and in vitro and possible control points for the in vitro translation. Genes Dev. 5: 1723–1736, 1991.
 65. Hanada, K., C. Z. Song, K. Yamamoto, K. Yano, Y. Maeda, K. Yamaguchi, and M. Muramatsu. RNA polymerase I associated factor 53 binds to the nucleolar transcription factor UBF and functions in specific rDNA transcription. EMBO J. 15: 2217–2226, 1996.
 66. Hannan, K. M., L. I. Rothblum, and L. S. Jefferson. Regulation of ribosomal DNA transcription by insulin. Am. J. Physiol. 275 (Cell Physiol. 44): C130–C138, 1998.
 67. Hannan, R. D., W. M. Hempel, A. Cavanaugh, T. Arino, S. I. Dimitrov, T. Moss, and L. I. Rothblum. Affinity purification of mammalian RNA polymerase I. Identification of an associated kinase. J. Biol. Chem. 273: 1257–1267, 1998.
 68. Hannan, R. D., and L. I. Rothblum. Regulation of ribosomal DNA transcription during neonatal cardiomyocyte hypertrophy. Cardiovasc. Res. 30: 501–510, 1995.
 69. Hannan, R. D., V. Stefanovsky, L. Taylor, T. Moss, and L. I. Rothblum. Overexpression of the transcription factor UBF1 is sufficient to increase ribosomal DNA transcription in neonatal cardiomyocytes: implications for cardiac hypertrophy. Proc. Natl. Acad. Sci. U.S.A. 93: 8750–8755, 1996.
 70. Hara, K., K. Yonezawa, Q.‐P. Weng, M. T. Kozlowski, C. Belham, and J. Avruch. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF‐4E BP1 through a common effector mechanism. J. Biol. Chem. 273: 14484–14494, 1998.
 71. Heesom, K. J., M. B. Avison, T. A. Diggle, and R. M. Denton. Insulin‐stimulated kinase from rat fat cells that phosphorylates initiation factor 4E‐binding protein 1 on the rapamycin‐insensitive site (serine‐111). Biochem. J. 336: 39–48, 1998.
 72. Hershey, J. W. B.. Protein phosphorylation controls translation rates. J. Biol. Chem. 264: 20823–20826, 1989.
 73. Heydrick, S. J., B. R. Lardeux, and G. E. Mortimore. Uptake and degradation of cytoplasmic RNA by hepatic lysosomes. Quantitative relationship to RNA turnover. J. Biol. Chem. 266: 8790–8796, 1991.
 74. Hiremath, L. S., S. T. Hiremath, W. Rychlik, S. Joshi, L. L. Domier, and R. E. Rhoads. In vitro synthesis, phosphorylation, and localization on 48S initiation complexes of human protein synthesis initiation factor 4E. J. Biol. Chem. 264: 1132–1138, 1989.
 75. Hirsch, C. A., and H. H. Hiatt. Turnover of liver ribosomes in fed and in fasted rats. J. Biol. Chem. 241: 5936–5940, 1966.
 76. Hough, R., G. Pratt, and M. Rechsteiner. Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J. Biol. Chem. 262: 8303–8313, 1987.
 77. Huang, J., and N. E. Forsberg. Role of calpain in skeletal‐muscle protein degradation. Proc. Natl. Acad. Sci. U.S.A. 95: 12100–12105, 1998.
 78. Ignotz, G. G., S. Hokari, R. M. DePhilip, K. Tsukada, and I. Liberman. Lodish model and regulation of ribosomal protein synthesis by insulin‐deficient chick embryo fibroblasts. Biochemistry 20: 2550–2558, 1981.
 79. Ilian, M. A., and N. E. Forsberg. Gene expression of calpains and their specific endogenous inhibitor, calpastatin, in skeletal muscle of fed and fasted rabbits. Biochem. J. 287: 163–171, 1992.
 80. Jacob, R., X. Hu, D. Niederstock, S. Hasan, P. H. McNulty, R. S. Sherwin, and L. H. Young. IGF‐I stimulation of muscle protein synthesis in the awake rat: permissive role of insulin and amino acids. Am. J. Physiol. 270 (Endocrinol. Metab. 33): E60–E66, 1996.
 81. Jacob, S. T.. Regulation of ribosomal gene transcription. Biochem. J. 306: 617–626, 1995.
 82. Jantzen, H. M., A. M. Chow, D. S. King, and R. Tjian. Multiple domains of the RNA polymerase I activator hUBF interact with the TATA‐binding protein complex hSL1 to mediate transcription. Genes Dev. 6: 1950–1963, 1992.
 83. Jefferies, H. B., S. Fumagalli, P. B. Dennis, C. Reinhard, R. B. Pearson, and G. Thomas. Rapamycin suppresses 5'TOP mRNA translation through inhibition of p70s6k. EMBO J. 16: 3693–3704, 1997.
 84. Jefferies, H. B., C. Reinhard, S. C. Kozma, and G. Thomas. Rapamycin selectively represses translation of the “polypyrimidine tract” mRNA family. Proc. Natl. Acad. Sci. U.S.A. 91: 4441–4445, 1994.
 85. Jefferies, H. B. J., and G. Thomas. Ribosomol Protein S6 Phosphorylation and Signal Transduction. In: Translational Control, edited by J. W. B. Hershey, M. B. Matthews, and N. Sonenberg. Cold Spring Harbor, NY: Cold Spring Harbor Lab., 1996 p. 389–409.
 86. Jefferson, L. S., J. R. Fabian, and S. R. Kimball. Glycogen synthase kinase‐3 is the predominant insulin‐regulated eukaryotic initiation factor 2B kinase in skeletal muscle. Int. J. Biochem. Cell Biol. 31: 191–200, 1999.
 87. Jefferson, L. S., J. B. Li, and S. R. Rannels. Regulation by insulin of amino acid release and protein turnover in the perfused rat hemicorpus. J. Biol. Chem. 252: 1476–1482, 1977.
 88. Jefferson, L. S., D. E. Rannels, B. L. Munger, and H. E. Morgan. Insulin in the regulation of protein turnover in heart and skeletal muscle. Federation Proc. 33: 1098–1104, 1974.
 89. Johnson, P.. Calpains (intracellular calcium‐activated cystein proteinases) structure, activity, relationships, and involvement in normal and abnormal cellular metabolism. Int. J. Biochem. 22: 811–822, 1990.
 90. Joshi, B., A.‐L. Cai, B. D. Keiper, W. B. Minich, R. Mendez, C. M. Beach, J. Stepinski, R. Stolarski, E. Darzynkiewicz, and R. E. Rhoads. Phosphorylation of eukaryotic protein synthesis initiation factor 4E at Ser‐209. J. Biol. Chem. 270: 14597–14603, 1995.
 91. Jurasinski, C. V., and T. C. Vary. Insulin‐like growth factor I accelerates protein synthesis in skeletal muscle during sepsis. Am. J. Physiol. 269 (Endocrinol. Metab. 32): E977–E981, 1995.
 92. Kania, M. A., G. DeMartino, W. Braumeister, and A. L. Goldberg. The proteasome subunit, C2, contains an important site for binding of the PA18 (115) activator. FEBS Lett. 236: 510–516, 1996.
 93. Karinch, A. M., S. R. Kimball, and L. S. Jefferson. In Alternations in Protein Metabolism and Diabetes Mellitus: Joslin's Diabetes Mellitus (13th ed.), edited by C. R. Kahn and G. C. Weir. Philadelphia: Lea and Febiger, 1993 p. 116–138.
 94. Karinch, A. M., S. R. Kimball, T. C. Vary, and L. S. Jefferson. Regulation of eukaryotic initiation factor 2B activity in muscle of diabetic rats. Am. J. Physiol. 264 (Endocrinol. Metab. 27): E101–E108, 1993.
 95. Katze, M. G.. In Translational Control in Cells Infected with Influenza Virus and Reovirus Translational Control, edited by J. W. B. Hershey, M. B. Mathews, and N. Sonenberg. Cold Spring Harbor, NY: Cold Spring Harbor Lab., 1996 p. 607–630.
 96. Kawasome, H., P. Papst, S. Webb, G. M. Keller, G. L. Johnson, E. W. Gelfand, and N. Terada. Targeted disruption of the p70S6k defines its role in protein synthesis and rapamycin sensitivity. Proc. Natl. Acad. Sci. U.S.A. 95: 5033–5038, 1998.
 97. Kelly, F. J., and L. S. Jefferson. Control of peptide‐chain initiation in rat skeletal muscle. Development of methods for preparation of native ribosomal subunits and analysis of the effect of insulin on formation of 40 S initiation complexes. J. Biol. Chem. 260: 6677–6683, 1985.
 98. Kent, J. D., S. R. Kimball, and L. S. Jefferson. Effect of diabetes and insulin treatment of diabetic rats on total RNA, poly(A) RNA, and mRNA in skeletal muscle. Am. J. Physiol. 260 (Cell Physiol. 29): C409–C416, 1991.
 99. Kettelhut, I. C., S. S. Wing, and A. L. Goldberg. Endocrine regulation of protein breakdown in skeletal muscle. Diabetes Metab. Rev. 8: 751–772, 1988.
 100. Kimball, S. R., R. L. Horetsky, and L. S. Jefferson. Implication of eIF2B rather than eIF4E in the regulation of global protein synthesis by amino acids in L6 myoblasts. J. Biol. Chem. 273: 30945–30953, 1998.
 101. Kimball, S. R., R. L. Horetsky, and L. S. Jefferson. Signal transduction pathways involved in the regulation of protein synthesis by insulin in L6 myoblasts. Am. J. Physiol. 274 (Cell Physiol. 43): C221–C228, 1998.
 102. Kimball, S. R., and L. S. Jefferson. Effect of diabetes on guanine nucleotide exchange factor activity in skeletal muscle and heart. Biochem. Biophys. Res. Commun. 156: 706–711, 1988.
 103. Kimball, S. R., and L. S. Jefferson. Mechanism of inhibition of peptide chain initiation by amino acid deprivation in perfused rat liver. Regulation involving inhibition of eukaryotic initiation factor 2α phosphatase activity. J. Biol. Chem. 266: 1969–1976, 1991.
 104. Kimball, S. R., L. S. Jefferson, P. Fadden, T. A. J. Haystead, and J. C. Lawrence. Insulin and diabetes cause reciprocal changes in the association of eIF‐4E and PHAS‐I in rat skeletal muscle. Am. J. Physiol. 270 (Cell Physiol. 39): C705–C709, 1996.
 105. Kimball, S. R., C. V. Jurasinski, J. C. Lawrence, and L. S. Jefferson. Insulin stimulates protein synthesis in skeletal muscle by enhancing the association of eIF‐4E and eIF‐4G. Am. J. Physiol. 272 (Cell Physiol. 41): C754–C759, 1997.
 106. Kimball, S. R., L. M. Shantz, R. L. Horetsky, and L. S. Jefferson. Leucine regulates translation of specific mRNAs in L6 myoblasts through mTOR‐mediated changes in availability of eIF4E and phosphorylation of ribosomal protein S6. J. Biol. Chem. 274: 11647–11652, 1999.
 107. Kimball, S. R., T. C. Vary, and L. S. Jefferson. Regulation of protein synthesis by insulin. Annu. Rev. Biochem. 56: 321–348, 1994.
 108. Kleijn, M., G. C. Scheper, H. O. Voorma, and A. A. M. Thomas. Regulation of translation initiation factors by signal transduction. Eur. J. Biochem. 253: 531–544, 1998.
 109. Kuhn, A., R. Voit, R. Stefanovsky, R. Evers, M. Bianchi, and I. Grummt. Functional differences between the two splice variants of the nucleolar transcription factor UBF: the second HMG box determines specificity; of DNA binding and transcriptional activity. EMBO J. 13: 416–424, 1994.
 110. Lang, C. H., J. Fan, R. Cooney, and T. C. Vary. IL‐1 receptor antagonist attenuates sepsis‐induced alterations in the IGF system and protein synthesis. Am. J. Physiol. 270 (Endocrinol. Metab. 33): E430–E437, 1996.
 111. Larson, D. E., P. Zahradka, and B. H. Sells. Control points in eucaryotic ribosome biogenesis. Biochem. Cell Biol. 69: 5–22, 1991.
 112. Leblanc, B., C. Read, and T. Moss. Recognition of the Xenopus ribosomal core promoter by the transcription factor xUBF involves multiple HMG box domains and leads to an xUBF interdomain interaction. EMBO J. 12: 513–525, 1993.
 113. Levy, S., D. Avni, N. Hariharan, R. P. Perry, and O. Meyuhas. Oligopyrimidine tract at the 5' end of mammalian ribosomal protein mRNAs is required for their translational control. Proc. Natl. Acad. Sci. U.S.A. 88: 3319–3323, 1991.
 114. Li, J. B., J. E. Higgins, and L. S. Jefferson. Changes in protein turnover in skeletal muscle in response to fasting. Am. J. Physiol. 236 (Endocrinol. Metab. Gastrointest. Physiol. 5): E222–E228, 1979.
 115. Li, J. B., and S. J. Wassner. Effects of food deprivation and refeeding on total protein and actomyosin degradation. Am. J. Physiol. 246 (Endocrinol. Metab. 9): E32–E37, 1984.
 116. Lin, T.‐A., X. Kong, T.A.J. Haystead, A. Pause, G. Belsham, N. Sonenberg, and J. C. Lawrence. PHAS‐I as a link between mitogen‐activated protein kinase and translation initiation. Science 266: 653–656, 1994.
 117. Lin, T.‐A., X. Kong, A. R. Saltiel, P. J. Blackshear, and J. C. Lawrence. Control of PHAS‐I by insulin in 3T3‐L1 adipocytes. Synthesis, degradation, and phosphorylation by a rapamycin‐sensitive and mitogen‐activated protein kinase‐independent pathway. J. Biol. Chem. 270: 18531–18538, 1995.
 118. Lin, T. A., and J. C. Lawrence, Jr.. Control of the translational regulators PHAS‐I and PHAS‐II by insulin and cAMP in 3T3‐L1 adipocytes. J. Biol. Chem. 271: 30199–30204, 1996.
 119. Louard, R. J., R. Bhushan, R. A. Gelfand, E. J. Barrett, and R. S. Sherwin. Glucocorticoids antagonize insulin's antiproteolytic action on skeletal muscle in man. J. Clin. Endocrinol. Metab. 79: 278–284, 1994.
 120. Louard, R. J., D. A. Fryburg, R. A. Gelfand, and E. J. Barrett. Insulin sensitivity of protein and glucose metabolism in human forearm skeletal muscle. J. Clin. Invest. 90: 2348–2354, 1992.
 121. Lowe, J., D. Stock, B. Jap, P. Zwickl, W. Baumeister, and R. Huber. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268: 533–539, 1995.
 122. Lowell, B. B., N. B. Ruderman, and M. N. Goodman. Evidence that lyosomes are not involved in degradation of myofibrillar protein in rat skeletal muscle. Biochem. J. 234: 237–240, 1986.
 123. Lowell, B. B., N. B. Ruderman, and M. N. Goodman. Regulation of myofibrillar protein degradation in rat skeletal muscle during brief and prolonged starvation. Metabolism 35: 1121–1127, 1986.
 124. Lupas, A., A. J. Koster, and W. Baumeister. Structural features of 26S and 20S proteasomes. Enzyme Prot. 47: 252–273, 1993.
 125. Ma, C. P., P. J. Willy, C. A. Slaughter, and D. N. Demartino. PA28, an activator of the 20S proteosome, is inactivated by proteolytic modification at its carboxyl terminus. J. Biol. Chem. 268: 22514–22519, 1993.
 126. Maki, M., E. Takano, H. Mori, A. Sato, T. Murachi, and M. Hatanaka. All four internally repetitive domains of pig calpastatin possess inhibitory activities against calpains I and II. FEBS Lett. 223: 174–180, 1987.
 127. Maki, M., E. Takano, T. Osawa, T. Ooi, J. Murachi, and M. Hatanaka. Analysis of structure‐function relationship of pig calpastatin by expression of mutated cDNAs in Escherichia coli. J. Biol. Chem. 263: 10254–10261, 1988.
 128. Makkinje, A., H. Xiong, and Z. Damuni. Phosphorylation of eukaryotic protein synthesis initiation factor 4E by insulin‐stimulated protamine kinase. J. Biol. Chem. 270: 14824–14828, 1995.
 129. Manzella, J. M., W. Rychlik, R. E. Rhoads, J. W. B. Hershey, and P. J. Blackshear. Insulin induction of ornithine decarboxylase. Importance of mRNA secondary structure and phosphorylation of eucaryotic initiation factors eIF‐4B and eIF‐4E. J. Biol. Chem. 266: 2383–2389, 1991.
 130. Marchesini, G., G. Forlani, M. Zoli, P. Vannini, and E. Pisi. Muscle protein breakdown in uncontrolled diabetes as assessed by urinary 3‐methylhistidine excretion. Diabetologia 23: 456–458, 1982.
 131. Mason, S. W., E. E. Sander, and I. Grummt. Identification of a transcript release activity acting on ternary transcription complexes containing murine RNA polymerase I. EMBO J. 16: 163–172, 1997.
 132. Matsui, T., T. Onishi, and M. Muramatsu. Nucleolar DNA‐dependent RNA polymerase from rat liver. 1. Purification and subunit structure. Eur. J. Biochem. 71: 351–360, 1976.
 133. McStay, B., C. H. Hu, C. S. Pikaard, and R. H. Reeder. xUBF and Rib 1 are both required for formation of a stable polymerase I promoter complex in X. laevis. EMBO J. 10: 2297–2303, 1991.
 134. Medina, R., S. S. Wing, and A. L. Goldberg. Increase in levels of polyubiquitin and proteasome mRNA in skeletal muscle during starvation and denervation atrophy. Biochem. J. 307: 631–637, 1995.
 135. Medina, R., S. S. Wing, A. Haas, and A. L. Goldberg. Activation of the ubiquitin‐ATP‐dependent proteolytic system in skeletal muscle during fasting and denervation atrophy. Biochim. Biophys. Acta 50: 347–356, 1991.
 136. Medina, R., S. S. Wing, I. Kettelhut, and A. L. Goldberg. Regulation of different proteolytic systems in muscle by insulin and food intake. In: Protein Metabolism in Diabetes Mellitus, edited by K. S. Nair. London: Smith Gordon, 1992 p. 111–123.
 137. Meyuhas, O., D. Avni, and S. Shama. In Translational Control of Ribosomal Protein mRNAs in Eukaryotes. In: Translational Control, edited by J. W. B. Hershey, M. B. Mathews, and N. Sonenberg. Cold Spring Harbor, NY: Cold Spring Harbor Lab., 1996 p. 363–388.
 138. Miller, K. G., J. Tower, and B. Sollner‐Webb. A complex control region of the mouse rRNA gene directs accurate initiation by RNA polymerase I. Mol. Cell. Biol. 5: 554–562, 1985.
 139. Minich, W. B., M. L. Balasta, D. J. Goss, and R. E. Rhoads. Chromatographic resolution of in vivo phosphorylated and nonphosphorylated eukaryotic translation initiation factor eIF‐4E:increased cap affinity of the phosphorylated form. Proc. Natl. Acad. Sci. U.S.A. 91: 7668–7672, 1994.
 140. Mitch, W. E., and A. L. Goldberg. Mechanisms of muscle wasting. The role of the ubiquitin‐proteasome pathway. N. Engl. J. Med. 335: 1897–1905, 1996.
 141. Morley, S. J., and J. A. Traugh. Differential stimulation of phosphorylation of initiation factors eIF‐4F, eIF‐4B, eIF‐3, and ribosomal protein S6 by insulin and phorbol esters. J. Biol. Chem. 265: 10611–10616, 1990.
 142. Morley, S. J., and J. A. Traugh. Stimulation of translation in 3T3‐L1 cells in response to insulin and phorbol ester is directly correlated with increased phosphate labelling of initiation factor (eIF‐)4F and ribosomal protein S6. Biochimie 75: 985–989, 1993.
 143. Moss, T., and V. Y. Stefanovsky. Promotion and regulation of ribosomal transcription in eukaryotes by RNA polymerase I. Prog. Nucleic Acid Res. Mol. Biol. 50: 25–66, 1995.
 144. Mykes, D. L., and M. F. Hairo. Branched‐chain amino acid γ‐referring peptidase activity of the lobster multicatalytic proteinase (proteasome) and the degradation of myofibrillar proteins. Biochem. J. 306: 285–291, 1995.
 145. Mykles, D. L., and M. F. Haire. Sodium dodecyl sulfate and heat induce two distinct forms of lobster muscle multicatalytic proteinase: the heat‐activated form degrades myofibrillar proteins. Arch. Biochem. Biophys. 288: 543–551, 1991.
 146. Nair, K. S., G. C. Ford, K. Ekberg, E. Fennquist‐Forbes, and J. Wahren. Protein dynamics in whole body and in splanchnic and leg tissues in type I diabetic patients. J. Clin. Invest. 95: 2926–2937, 1980.
 147. Nair, K. S., G. C. Ford, and D. Halliday. Effect of intravenous insulin treatment on in vivo whole body leucine kinetics and oxygen consumption in insulin‐deprived type I diabetic patients. Metab. Clin. Exp. 36: 491–495, 1987.
 148. Nakhooda, A. F., C. N. Wei, and E. B. Marliss. Muscle protein catabolism in diabetes: 3‐methylhistidine excretion in the spontaneously diabetic “BB” rat. Metab. Clin. Exp. 29: 1272–1277, 1980.
 149. Oehri, M., R. Ninnis, J. Girard, F. J. Frey, and U. Keller. Effects of growth hormone and IGF‐I on glucocorticoid‐induced protein catabolism in humans. Am. J. Physiol. 270 (Endrocrinol. Metab. 33): E552–E558, 1996.
 150. Oldfield, S., and C. G. Proud. Purification, phosphorylation and control of the guanine‐nucleotide‐exchange factor from rabbit reticulocyte lysates. Eur. J. Biochem. 208: 73–81, 1992.
 151. Orino, E., K. Tanaka, T. Tamura, S. Sone, T. Ogura, and A. Ichihara. ATP‐dependent reversible association of proteasomes with multiple protein components to form 26S complexes that degrade ubiquitinated proteins in human HL‐60 cells. FEBS Lett. 284: 206–210, 1991.
 152. Pain, V. M., and P. J. Garlick. Effect of streptozotocin diabetes and insulin treatment on the rate of protein synthesis in tissues of the rat in vivo. J. Biol. Chem. 249: 4510–4514, 1974.
 153. Patti, M.‐E., E. Brambilla, L. Luzi, E. J. Landaker, and C. R. Kahn. Bidirectional modulation of insulin action by amino acids. J. Clin. Invest. 101: 1519–1529, 1998.
 154. Paule, M. R.. Transcription of ribosomal RNA by eukaryotic RNA polymers In: Transcription: Mechanisms and Regulation, edited by R. C. Conaway and J. W. Conway. New York: Raven, 1994 p. 83–106.
 155. Pause, A., G. J. Belsham, A.‐C. Gingras, O. Donze, T.‐A. Lin, J. C. Lawrence, and N. Sonenberg. Insulin‐dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'‐cap function. Nature 371: 762–767, 1994.
 156. Pepato, M. T., R. H. Migliorini, A. L. Goldberg, and I. C. Kettelhut. Role of different proteolytic pathways in degradation of muscle protein from streptozotocin‐diabetic rats. Am. J. Physiol. 271 (Endocrinol. Metab. 34): E340–E347, 1996.
 157. Poulin, F., A.‐C. Gingras, H. Olsen, S. Chevalier, and N. Sonenberg. 4E‐BP3, a new member of the eukaryotic initiation factor 4E‐binding protein family. J. Biol. Chem. 273: 14002–14007, 1998.
 158. Pozefsky, T., P. Felig, J. D. Tobin, J. S. Soeldner, and G. F. Cahil. Amino acid balance across tissues of the forearm in postabsorptive man. Effects of insulin at two dose levels. J. Clin. Invest. 48: 2273–2282, 1969.
 159. Price, D. J., J. R. Grove, V. Calvo, J. Avruch, and B. E. Bierer. Rapamycin‐induced inhibition of the 70‐kilodalton S6 protein kinase. Science 257: 973–977, 1992.
 160. Price, S. R., J. L. Bailey, X. Wang, C. Jurkovitz, B. K. England, X. Ding, L. S. Phillips, and W. E. Mitch. Muscle wasting in insulino‐penic rats results from activation of the ATP‐dependent, ubiquitin‐proteasome proteolytic pathway by a mechanism including gene transcription. J. Clin. Invest. 98: 1703–1708, 1996.
 161. Puhler, G., S. Weinkauf, L. Bachman, S. Muller, A. Engel, R. Hegerl, and W. Baumeister. Subunit stoichiometry and three‐dimensional arrangement in proteasomes from Thermoplasma acidophilum. EMBO J. 11: 1607–1616, 1992.
 162. Radebaugh, C. A., J. L. Matthews, G. K. Geiss, F. Liu, J. M. Wong, E. Bateman, S. Camier, A. Sentenac, and M. R. Paule. TATA box‐binding protein (TBP) is a constituent of the polymerase I‐specific transcription initiation factor TIF‐IB (SL1) bound to the rRNA promoter and shows differential sensitivity to TBP‐directed reagents in polymerase I, II, and III transcription factors. Mol. Cell. Biol. 14: 597–605, 1994.
 163. Rannels, D. E., R. Kao, and H. E. Morgan. Effect of insulin on protein turnover in heart muscle. J. Biol. Chem. 250: 1694–1701, 1975.
 164. Rannels, S. R., and L. S. Jefferson. Effects of glucocorticoids on muscle protein turnover in perfused rat hemicorpus. Am. J. Physiol. 238 (Endocrinol. Metab. 1): E564–E572, 1980.
 165. Rannels, S. R., D. E. Rannels, A. E. Pegg, and L. S. Jefferson. Glucocorticoid effects on peptide‐chain initiation in skeletal muscle and heart. Am. J. Physiol. 235 (Endocrinol. Metab. Gastrointest. Physiol. 4): E134–E139, 1978.
 166. Realini, C., W. Dubiel, G. Pratt, K. Ferrell, and M. Rechsteiner. Molecular cloning and expression of a gamma‐interferon‐inducible activator of the multicatalytic protease. J. Biol. Chem. 269: 20727–20732, 1994.
 167. Reeder, R. H.. Regulation of transcription by RNA polymers In: Transcription Regulation, edited by S. C. McKnight and K. R. Yamamoto. Cold Spring Harbor, NY: Cold Spring Harbor Lab. 1992 p. 315–345.
 168. Reeder, R. H.. rRNA synthesis in the nucleolus. Trends Genet. 6: 390–395, 1990.
 169. Rhoads, R. E., B. Joshi, and W. B. Minich. Participation of initiation factors in the recruitment of mRNA to ribosomes. Biochimie 76: 831–838, 1994.
 170. Rinker‐Schaeffer, C. W., V. Austin, S. Zimmer, and R. E. Rhoads. ras transformation of cloned rat embryo fibroblasts results in increased rates of protein synthesis and phosphorylation of eukaryotic initiation factor 4E. J. Biol. Chem. 267: 10659–10664, 1992.
 171. Rudolf, M. C., R. S. Sherwin, R. Markowitz, S. E. Bates, M. Genel, J. Hochstadt, and W. Tamborlane. Effect of intensive insulin treatment on linear growth in the young diabetic patient. J. Pediatr. 101: 333–339, 1982.
 172. Russell‐Jones, D. L., A. M. Umpleby, T. R. Hennessy, S. B. Bowes, F. Shojaee‐Moraide, K. D. Hopkins, N. C. Jackson, J. M. Kelly, R. H. Jones, and P. H. Sonksen. Use of a leucine clamp to demonstrate that IGF‐I actively stimulates protein synthesis in normal humans. Am. J. Physiol. 267 (Endocrinol. Metab. 30): E591–E598, 1994.
 173. Rychlik, W., P. R. Gardner, T. C. Vanaman, and R. E. Rhoads. Structural analysis of the messenger RNA cap‐binding protein. Presence of phosphate, sulfhydryl, and disulfide groups. J. Biol. Chem. 261: 71–75, 1986.
 174. Rychlik, W., J. S. Rush, R. E. Rhoads, and C. J. Waechter. Increased rate of phosphorylation‐dephosphorylation of the translational initiation factor eIF‐4E correlates with the induction of protein and glycoprotein biosynthesis in activated B lymphocytes. J. Biol. Chem. 265: 19467–19471, 1990.
 175. Sameshima, M., S. A. Liebhaber, and D. Schlessinger. Dual pathways for ribonucleic acid turnover in WI‐38 but not in I‐cell human diploid fibroblasts. Mol. Cell. Biol. 1: 75–81, 1981.
 176. Saudek, C. D., and P. Felig. The metabolic events of starvation. Am. J. Med. 60: 117–126, 1976.
 177. Schnapp, A., C. Pfeiderer, R. Rosenbauer, and I. Grummt. A growth‐dependent transcription initiation factor (TIF‐IA) interacting with RNA polymerase I regulates mouse ribosomal RNA synthesis. EMBO J. 9: 2857–2863, 1990.
 178. Schnapp, A., G. Schnapp, B. Erny, and I. Grummt. Function of the growth‐regulated transcription initiation factor TIF‐IA in initiation complex formation at the murine ribosomal gene promoter. Mol. Cell. Biol. 13: 6723–6732, 1993.
 179. Schnapp, G., A. Schnapp, H. Rosenbauer, and I. Grummt. TIF‐IC, a factor involved in both transcription initiation and elongation of RNA polymerase I. EMBO J. 13: 4028–4035, 1994.
 180. Schwartz, L. B., and R. G. Roeder. Purification and subunit structure of deoxyribonucleic acid‐dependent ribonucleic acid polymerase I from the mouse myeloma, MOPC 315. J. Biol. Chem. 249: 5898–5906, 1974.
 181. Scott, P. H., G. J. Brunn, A. D. Kohn, R. A. Roth, and J. C. Lawrence. Evidence of insulin‐stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc. Natl. Acad. Sci. U.S.A. 95: 7772–7777, 1998.
 182. Sentenac, A., M. Riva, P. Thuriaux, J.‐M. Buhler, I. Treich, C. Carles, M. Werner, A. Ruet, J. Huet, C. Mann, N. Chiannikulchai, S. Stettler, and S. Mariotte. Yeast RNA polymerase subunits and genes In: Transcription Regulation, edited by S. L. McKnight and K. R. Yamamoto. Cold Spring Harbor, NY: Cold Spring Harbor Lab., 1992 p. 22–54.
 183. Shigemitsu, K., Y. Tsujishita, K. Hara, M. Nanahoshi, J. Avruch, and K. Yonezawa. Regulation of translational effectors by amino acids and mammalian target of rapamycin signaling pathways. Possible involvement of autophagy in cultured hepatoma cells. J. Biol. Chem. 274: 1058–1065, 1999.
 184. Shoji, S., and R. J. Pennington. The effect of cortisol on protein breakdown and synthesis in rat skeletal muscle. Mol. Cell. Endocrinol. 6: 159–169, 1977.
 185. Singh, L. P., A. R. Aroor, and A. J. Wahba. Phosphorylation of the guanine nucleotide exchange factor and eukaryotic initiation factor 2 by casein kinase II regulates guanine nucleotide binding and GDP/GTP exchange. Biochemistry 33: 9152–9157, 1994.
 186. Singh, L. P., N. D. Denslow, and A. J. Wahba. Modulation of rabbit reticulocyte guanine nucleotide exchange factor activity by casein kinases 1 and 2 and glycogen synthase kinase 3. Biochemistry 35: 3206–3212, 1996.
 187. Smid, A., M. Finsterer, and I. Grummt. Limited proteolysis unmasks specific DNA‐binding of the murine RNA polymerase I‐specific transcription termination factor TTFI. J. Biol. Chem. 227: 635–647, 1992.
 188. Smith, O. L., C. Y. Wong, and R. A. Gelfand. Skeletal muscle proteolysis in rats with acute streptozocin‐induced diabetes. Diabetes 38: 1117–1122, 1989.
 189. Smith, S. D., S. Hong, H.‐F. Yang‐Yen, E. Oriahi, D. Lowe, and L. I. Rothblum. Purification and characterization of RNA polymerase I transcription factors in the mechanisms of control of gene expression In: Mechanisms of Control of Gene Expression, New Series, edited by B. Cullen. New York: Alan R. Liss, 1989, p. 117–124.
 190. Smith, S. D., D. J. O'Mahony, B. T. Kinsella, and L. I. Rothblum. Transcription from the rat 45S ribosomal DNA promoter does not require the factor UBF. Gene Expr. 3: 229–236, 1993.
 191. Sollner‐Webb, B., and E. B. Mougey. News from the nucleolus: rRNA gene expression. Trends Biochem. Sci. 16: 58–62, 1991.
 192. Sollner‐Webb, B., and J. Tower. Transcription of cloned eukaryotic ribosomal RNA genes. Annu. Rev. Biochem. 55: 801–830, 1986.
 193. Soloman, V., V. Baracos, P. Sarraf, and A. L. Goldberg. Rates of ubiquitin conjugation when muscles atrophy, largely, through activation of N‐end rule pathway. Proc. Natl. Acad. Sci. U.S.A. 95: 12602–12607, 1998.
 194. Soloman, V., S. H. Lecker, and A. L. Goldberg. The N‐end rule pathway catalyzes a major fraction of the protein degradation in skeletal muscle. J. Biol. Chem. 273: 25216–25222, 1998.
 195. Sonenberg, N.. Regulation of translation and cell growth by eIF‐4E. Biochimie 76: 839–846, 1994.
 196. Song, C. Z., K. Hanada, K. Yano, Y. Maeda, K. Yamamoto, and M. Muramatsu. High conservation of subunit composition of RNA polymerase I(A) between yeast and mouse and the molecular cloning of mouse RNA polymerase I 40‐kDa subunit RPA40. J. Biol. Chem. 269: 26976–26981, 1994.
 197. Sorimadri, H., S. Imajoh‐Ohmi, Y. Emori, H. Kowasaki, S. Ohno, Y. Mirrami, and K. Suzuki. Molecular cloning of novel mammalian calcium‐dependent protease distinct from both m‐ and μ‐type: specific expression of the mRNA in skeletal muscle. J. Biol. Chem. 264: 20106–20111, 1989.
 198. Stirewalt, W. S., and R. B. Low. Effects of insulin in vitro on protein turnover in rat epitrochlearis muscle. Biochem. J. 210: 323–330, 1983.
 199. Stirewalt, W. S., R. B. Low, and J. M. Slaiby. Insulin sensitivity and responsiveness of epitrochlearis and soleus muscles from fed and starved rats. Recognition of differential changes in insulin sensitivities of protein synthesis and glucose incorporation into glycogen. Biochem. J. 227: 355–362, 1985.
 200. Surmacz, E., L. Kaczmarek, O. Ronning, and R. Baserga. Activation of the ribosomal DNA promoter in cells exposed to insulin‐like growth factor I. Mol. Cell. Biol. 7: 657–663, 1987.
 201. Suzuki, N., M. Kobayashi, K. Sakata, T. Suzuki, and T. Hosoya. Synergistic stimulatory effect of glucocorticoid, EGF and Insulin on the synthesis of ribosomal RNA and phosphorylation of nucleolin in primary cultured rat hepatocytes. Biochim. Biophys. Acta 1092: 367–375, 1991.
 202. Svanberg, E., L. S. Jefferson, K. Lundholm, and S. R. Kimball. Postprandial stimulation of muscle protein synthesis is independent of changes in insulin. Am. J. Physiol. 272 (Endocrinol. Metab.: E841–E847, 1997.
 203. Svanberg, E., H. Zachrisson, C. Ohlsson, B.‐M. Iresjo, and K. G. Lundholm. Role of insulin and IGF‐I in activation of muscle protein synthesis after oral feeding. Am. J. Physiol. 270 (Endocrinol. Metab. 33): E614–E620, 1996.
 204. Svitkin, Y. V., L. P. Ovchinnikov, G. Dreyfuss, and N. Sonenberg. General RNA binding proteins render translation cap dependent. EMBO J. 15: 7147–7155, 1996.
 205. Tawa, N. E., R. Odessey, and A. L. Goldberg. Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles. J. Clin. Invest. 100: 197–203, 1997.
 206. Terada, N., H. R. Patel, K. Takase, K. Kohno, A. C. Nairn, and E. W. Gelfand. Rapamycin selectively inhibits translation of m‐RNAs encoding elongation factors and ribosomal proteins. Proc. Natl. Acad. Sci. U.S.A. 91: 11477–11481, 1994.
 207. Tessari, P., S. Inchiostro, G. Biolo, E. Vincenti, and L. Sabadin. Effects of acute systemic hyperinsulinemia on forearm muscle proteolysis in healthy man. J. Clin. Invest. 88: 27–33, 1991.
 208. Tomas, F. M., S. E. Knowles, P. C. Owens, L. C. Read, C. S. Chandler, S. E. Gargosky, and F. J. Ballard. Increased weight gain, nitrogen retention and muscle protein synthesis following treatment of diabetic rats with insulin‐like growth factor (IGF)‐I and des(1–3)IGF‐I. Biochem. J. 276: 547–554, 1991.
 209. Tomas, F. M., A. J. Murray, and L. M. Jones. Interactive effects of insulin and corticosterone on myofibrillar protein turnover in rats as determined by N tau‐methylhistidine excretion. Biochem. J. 220: 469–479, 1984.
 210. Tower, J., and B. Sollner‐Webb. Transcription of mouse rDNA is regulated by an activated subform of RNA polymerase I. Cell 50: 873–883, 1987.
 211. Tsurugi, K., T. Morita, and K. Ogata. Mode of degradation of ribosomes in regenerating rat liver in vivo. Eur. J. Biochem. 45: 119–126, 1974.
 212. Tuazon, P. T., W. C. Merrick, and J. A. Traugh. Comparative analysis of phosphorylation of translational initiation and elongation factors by seven protein kinases. J. Biol. Chem. 264: 2773–2777, 1989.
 213. Vary, T. C., D. Dardevet, J. Grizard, L. Voisin, C. Buffiere, P. Denis, D. Brueille, and C. Obled. Differential regulation of skeletal muscle protein turnover by insulin and IGF‐I after bacteremia. Am. J. Physiol. 275 (Endocrinol. Metab. 38): E584–E593, 1998.
 214. Verhallen, P. F., E. M. Bevers, P. Comfurius, and R. F. Zwaal. Correlation between calpain‐mediated cytoskeletal degradation and expression of platelet procoagulant activity. Biochim. Biophys. Acta 903: 206–217, 1987.
 215. Vignati, L., R. J. Finley, S. Haag, and T. Aoki. Protein conservation during prolonged fast: a function of triiodothyronine levels. Trans. Assoc. Am. Phys. 91: 169–170, 1978.
 216. von Manteuffel, S. R, P. B. Dennis, N. Pullen, A. C. Gingras, N. Sonenberg, and G. Thomas. The insulin‐induced signalling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin‐sensitive point immediately upstream of p70(S6k). Mol. Cell. Biol. 17: 5426–5436, 1997.
 217. von Manteuffel, S. R., A.‐C. Gingras, X.‐F. Ming, N. Sonenberg, and G. Thomas. 4E‐BP1 phosphorylation is mediated by FRAP‐p70S6k pathway and is independent of mitogen‐activated protein kinase. Proc. Natl. Acad. Sci. U.S.A. 93: 4076–4080, 1996.
 218. Wang, X., L. E. Campbell, C. M. Miller, and C. G. Proud. Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem. J. 334: 261–267, 1998.
 219. Wang, X., A. Flynn, A. J. Waskiewicz, B. L. J. Webb, R. G. Vries, I. A. Baines, J. A. Cooper, and C. G. Proud. The phosphorylation of eukaryotic initiation factor eIF4E in response to phorbol esters, cell stresses, and cytokines is mediated by distinct MAP kinase pathways. J. Biol. Chem. 273: 9373–9377, 1998.
 220. Waskiewicz, A. J., A. Flynn, C. G. Proud, and J. A. Cooper. Mitogen‐activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 16: 1909–1920, 1997.
 221. Waxman, L., J. M. Fagan, and A. L. Goldberg. Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates. J. Biol. Chem. 262: 2451–2457, 1987.
 222. Webb, M. L., J. F. Mealey‐Cavender, and S. T. Jacob. Glucocorticoid‐induced stimulation of ribosomal gene transcription in rat hepatoma cells is mediated by modification of RNA polymerase I or an associated factor. Mol. Endocrinol. 3: 1861–1868, 1989.
 223. Welsh, G. I., E. J. Foulstone, S. W. Young, J. M. Tavare, and C. G. Proud. Wortmannin inhibits the effects of insulin and serum on the activities of glycogen synthase kinase‐3 and mitogen‐activated protein kinase. Biochem. J. 303: 15–20, 1994.
 224. Welsh, G. I., and C. G. Proud. Glycogen synthase kinase‐3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF‐2B. Biochem. J. 294: 625–629, 1993.
 225. Welsh, G. I., and C. G. Proud. Regulation of protein synthesis in Swiss 3T3 fibroblasts. Rapid activation of the guanine nucleotide exchange factor by insulin and growth factors. Biochem. J. 284: 19–23, 1992.
 226. Welsh, G. I., C. M. Stokes, X. Wang, H. Sakaue, W. Ogawa, M. Kasuga, and C. G. Proud. Activation of translation initiation factor eIF2B by insulin requires phosphatidyl inositol 3‐kinase. FEBS Lett. 410: 418–422, 1997.
 227. Wilkinson, K. D., V. L. Tashayev, L. B. O'Connor, C. N. Larsen, E. Kaspereil, and C. M. Pickart. Metabolism of the polyubiquitin degradation signal: structure, mechanism, and role of isopeptidase T. Biochemistry 34: 14535–14546, 1995.
 228. Wing, S. S., and D. Banville. 14kDa ubiquitin‐conjugation enzyme: structure of rat gene and regulation upon fasting and by insulin. Am. J. Physiol. 267 (Endocrinol. Metab. 30): E39–E48, 1994.
 229. Wing, S. S., A. L. Chiang, A. L. Goldberg, and J. F. Dice. Proteins containing peptide sequences related to lys‐phe‐glu‐arg‐gln are selectively depleted in liver and heart but not skeletal muscle of fasted rats. Biochem. J. 275: 165–169, 1991.
 230. Wing, S. S., and A. L. Goldberg. Glucocorticoids activate the ATP‐ubiquitin‐dependent proteolytic system in skeletal muscle during fasting. Am. J. Physiol. 264 (Endocrinol. Metab. 27): E668–E676, 1993.
 231. Wing, S. S., A. L. Haas, and A. L. Goldberg. Increase in ubiquitin‐protein conjugates concomitant with the increase in proteolysis in rat skeletal muscle during starvation and atrophy denervation. Biochem. J. 305: 125–132, 1995.
 232. Wool, I. G.. Incorporation of 14C‐amino acids into protein of isolated diaphrams: role of the adrenal steroids. Am. J. Physiol. 197: 1089–1092, 1959.
 233. Xu, G., G. Kwon, C. A. Marshall, T.‐A. Lin, J. C. Lawrence, and M. L. McDaniel. Branched‐chain amino acids are essential in the regulation of PHAS‐I and p70 S6 kinase by pancreatic β‐cells. A possible role in protein translation and mitogenic signaling. J. Biol. Chem. 273: 28178–28184, 1998.
 234. Xu, G., C. A. Marshall, T.‐A. Lin, G. Kwon, R. B. Munivenketappa, J. R. Hill, J. C. Lawrence, and M. L. McDaniel. Insulin mediates glucose‐stimulated phosphorylation of PHAS‐I by pancreatic beta cells. An insulin‐receptor mechanism for autoregulation of protein synthesis by translation. J. Biol. Chem. 273: 4485–4491, 1998.
 235. Yoshizawa, F., S. R. Kimball, T. C. Vary, and L. S. Jefferson. Effect of dietary protein on translation initiation in rat skeletal muscle and liver. Am. J. Physiol. 275 (Endocrinol. Metab. 38): E814–E820, 1998.
 236. Young, V. R., and H. N. Munro. N‐tau‐methylhistidine (3‐methylhistidine) and muscle protein turnover: an overview. Federation. Proc. 37: 2291–2300, 1978.
 237. Zwicki, P., A. Grziwa, G. Puhler, B. Dahlmann, F. Lottspeich, and W. Braumeister. Primary structure of the thermoplasma proteasome and its implications for structure, function, and evolution of multicatalytic proteinase. Biochemistry 31: 964–972, 1992.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Leonard S. Jefferson, Thomas C. Vary, Scot R. Kimball. Regulation of Protein Metabolism in Muscle. Compr Physiol 2011, Supplement 21: Handbook of Physiology, The Endocrine System, The Endocrine Pancreas and Regulation of Metabolism: 529-552. First published in print 2001. doi: 10.1002/cphy.cp070216