Comprehensive Physiology Wiley Online Library

Aging: Current Concepts

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Aging at The Population Level
1.1 Life Tables
1.2 Survival Curves
1.3 Maximum Life Span
1.4 Age‐Specific Mortality Rates
1.5 Universality of Aging
2 Aging at the Individual Level
3 Concept of Primary Aging Processes
3.1 Classification of Theories of Aging
3.2 Genetic Programs Akin to Development and Morphogenesis
3.3 Homeostatic Failure
3.4 Current Status of the Concept of Primary Aging Processes
4 Evolutionary Biology of Aging
5 Manifestations of Aging Processes
5.1 Age‐Associated Disease Processes
5.2 Age‐Associated Physiological Changes
6 Summary and Conclusions
Figure 1. Figure 1.

Survival curves for United States population (men and women) in 1910 and 1970.

Reproduced from Fries and Crapo 41 with permission. Data for 1910 are from United States vital statistics reported in L. I. Dublin “The Possibility of Extending Human Life” in The Harvey Lectures, 1922–1923; data for 1970 are from Vital Statistics of the United States National Center for Health Statistics, 1970
Figure 2. Figure 2.

The age‐specific mortality rate (number of deaths per year per 1,000 individuals entering each age interval) is shown for year intervals from birth to 100 years for the United States population (men and women) in the years 1910 and 1970.

Reproduced from Fries and Crapo 41 with permission. Data for 1910 are from United States vital statistics reported in L. I. Dublin “The Possibility of Extending Human Life” in The Harvey Lectures, 1922–1923; data for 1970 are from Vital Statistics of the United States National Center for Health Statistics, 1970
Figure 3. Figure 3.

The age‐specific mortality rate (number of deaths per year per 100,000 white population) in females and males of the United States in 1976.

Reproduced from Hazzard 53 with permission
Figure 4. Figure 4.

Age changes in human physiological systems based on cross‐sectional studies.

Figure prepared by Shock 126. Reproduced with permission


Figure 1.

Survival curves for United States population (men and women) in 1910 and 1970.

Reproduced from Fries and Crapo 41 with permission. Data for 1910 are from United States vital statistics reported in L. I. Dublin “The Possibility of Extending Human Life” in The Harvey Lectures, 1922–1923; data for 1970 are from Vital Statistics of the United States National Center for Health Statistics, 1970


Figure 2.

The age‐specific mortality rate (number of deaths per year per 1,000 individuals entering each age interval) is shown for year intervals from birth to 100 years for the United States population (men and women) in the years 1910 and 1970.

Reproduced from Fries and Crapo 41 with permission. Data for 1910 are from United States vital statistics reported in L. I. Dublin “The Possibility of Extending Human Life” in The Harvey Lectures, 1922–1923; data for 1970 are from Vital Statistics of the United States National Center for Health Statistics, 1970


Figure 3.

The age‐specific mortality rate (number of deaths per year per 100,000 white population) in females and males of the United States in 1976.

Reproduced from Hazzard 53 with permission


Figure 4.

Age changes in human physiological systems based on cross‐sectional studies.

Figure prepared by Shock 126. Reproduced with permission
References
 1. Arking, R. Biology of Aging Observation and Principles. Englewood Cliffs, NJ: Prentice‐Hall, 1991.
 2. Arking, R., S. Buck, A. Berrios, S. Dwyer, and G. T. Baker. Elevated paraquat resistance can be used as a bioassay for longevity in a genetically based long‐lived strain of Drosophila. Dev. Genet. 12: 362–370, 1991.
 3. Austad, S. N. Retarded senescence in an insular population of Virginia opossums (Didelphis virginiana). J. Zool. 229: 695–708, 1993.
 4. Austad, S. N., and K. E. Fischer. Mammalian aging, metabolism and ecology: evidence from the bats and marsupials. J. Gerontol.: Biol. Sci. 46: B47–B53, 1991.
 5. Baker, G. T., III, and R. Sprott. Biomarkers of aging. Exp. Gerontol. 23: 223–239, 1988.
 6. Bell, G. Evolutionary and nonevolutionary theories of senescence. Am. Naturalist. 124: 600–603, 1984.
 7. Borkan, G. A., and A. H. Norris. Assessment of biological age using a profile of physical parameters. J. Gerontol. 35: 177–184, 1980.
 8. Bowden, D. M., and D. D. Williams. Aging. Adv. Vet. Sci. Comp. Med. 28: 305–341, 1984.
 9. Brody, J. A., and E. L. Schneider. Diseases and disorders of aging: a hypothesis. J. Chron. Dis. 39: 871–876, 1986.
 10. Brooks, A., G. J. Lithgow, and T. E. Johnson. Mortality rates in a genetically heterogeneous population of Caenorhabditis elegans. Science 263: 668–671, 1994.
 11. Burnet, M. Intrinsic Mutagenesis: A Genetic Approach for Aging. New York: Wiley, 1974.
 12. Cadenas, E. Biochemistry of oxygen toxicity. Annu. Rev. Biochem. 58: 79–110, 1989.
 13. Carey, J. R., P. Liedo, D. Orozco, and J. W. Vaupel. Slowing of mortality rates at older ages in large medfly cohorts. Science 258: 457–461, 1992.
 14. Carney, J. M., P. E. Starke‐Reed, C. N. Oliver, R. W. Landrum, M. S. Cheng, J. Wu, and R. A. Floyd. Reversal of age‐related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin‐trapping compound N‐tert‐butyl‐α‐phenylnitrone. Proc. Natl. Acad. Sci. USA 88: 3633–3636, 1991.
 15. Cerami, A. Hypothesis: glucose as a mediator of aging. J. Am. Geriatr. Soc. 33: 626–634, 1985.
 16. Charlesworth, B. Evolution in Age‐Structured Populations. Cambridge: Cambridge University Press, 1980.
 17. Clark, A. M., and M. A. Rubin. The modification by X‐irradiation of the life span of haploids and diploids of the wasp, Habrobracon Sp. Radiat. Res. 15: 244–253, 1961.
 18. Collins, K. J., and A. N. Exton‐Smith. Thermal homeostasis in old age. J. Am. Geriatr. Soc. 31: 519–524, 1983.
 19. Comfort, A. The Biology of Senescence (3rd ed.), London: Elsevier, 1979.
 20. Cortopassi, G. A., and N. Arnheim. Detection of a specific mitochondrial DNA deletion in tissue of older humans. Nucleic Acids Res. 18: 6927–6933, 1990.
 21. Costa, P. T., and R. R. Mccrae. Concepts of functional or biological age. In: Principles of Geriatric Medicine, edited by R. Andres, E. L. Bierman, and W. R. Hazzard. New York: McGraw‐Hill, 1984, p. 30–37.
 22. Covelli, V., D. Mouton, V. DiMajo, Y. Bouthillies, C. Bangrazi, J. Mevel, S. Rebessi, G. Doria, and G. Biozzi. Inheritance of immune responsiveness, life span, and disease incidence in interline crosses of mice selected for high or low multispecific antibody production. J. Immunol. 142: 1224–1234, 1989.
 23. Cristofalo, V. J. Overview of biological mechanism of aging. Annu. Rev. Gerontol. Geriatr. 10: 1–22, 1991.
 24. Cristofalo, V. J., and R. G. Allen. Additional thoughts on free radicals and life span. Aging: Clin. Exp. Res. 5: 239–240, 1992.
 25. Cristofalo, V. J., and R. J. Pignolo. Replicative senescence of human fibroblast‐like cells in culture. Physiol. Rev. 73: 617–638, 1993.
 26. Curtsinger, J. W., H. H. Fukui, D. R. Townsend, and J. W. Vaupel. Demography of genotypes: failure of the limited lifespan paradigm in Drosophila melanogaster. Science 258: 461–463, 1992.
 27. Curtsinger, J. W., H. H. Fukui, L. Xiu, A. Khazaeli, and S. Fletcher. Rates of mortality in populations of Caenorhabditis elegans. Science 266: 826, 1994.
 28. Cutler, R. G., Dysdifferentiation and aging. In: Molecular Biology of Aging: Gene Stability and Gene Expression, edited by R. S. Sohal, L. Birnbaum, and R. G. Cutler. New York: Raven Press, 1985, p. 307–340.
 29. Dannon, D. B., and N. J. Holbrook. Alterations in gene expression with aging. In: Handbook of the Biology of Aging (3rd ed.), edited by E. L. Schneider and J. W. Rowe. San Diego: Academic Press, 1990, p. 97–115.
 30. Denckla, W. D. Role of pituitary and thyroid glands in the decline of minimal O2 consumption with age. J. Clin. Invest. 53: 572–581, 1974.
 31. Dice, J. F. Cellular and molecular mechanisms of aging. Physiol. Rev. 73: 149–159, 1993.
 32. Dix, D. The role of aging in cancer incidence: an epidemiological study. J. Gerontol. 44: 10–18, 1989.
 33. Domning, J. P. Marching teeth of the manatee. Nat. Hist. 92: 8–10, 1983.
 34. Draye, X., P. Bullens, and F. A. Lints. Geographic variations of life history strategies in Drosophila melanogaster. I Analysis of wild caught populations. Exp. Gerontol. 29: 205–222, 1994.
 35. Fabris, N. A. neuroendocrine‐immune theory of aging. Int. J. Neurosci. 51: 373–375, 1990.
 36. Fearon, E. R., and B. A. Vogelstein. Genetic model for colorectal tumorigenesis. Cell 61: 759–767, 1990.
 37. Finch, C. E. Neural and endocrine approaches to the resolution of time as a dependent variable in the aging processes in mammals. Gerontologist 28: 29–42, 1988.
 38. Finch, C. E. Longevity, Senescence and the Genome. Chicago: University of Chicago Press, 1990.
 39. Finch, C. E., and P. W. Landfield. Neuroendocrine and autonomic functions in aging mammals. In: Handbook of the Biology of Aging (2nd ed.), edited by C. E. Finch and E. L. Schneider. New York: Van Nostrand Reinhold, 1985, p. 567–594.
 40. Finch, C. E., M. C. Pike, and M. Witten. Slow mortality rate accelerations during aging in some animals approximate that of humans. Science 249: 902–905, 1990.
 41. Fries, J. F., and L. M. Crapo. Vitality and Aging. San Francisco: W. H. Freeman, 1981.
 42. Gafni, A. Altered protein metabolism in aging. Annu. Rev. Gerontol. Geriatr. 10: 117–131, 1991.
 43. Gavrilov, L. A., and N. S. Gavrilova. The Biology of Life Span: A Quantitative Approach. Chur, Switzerland: Harwood Academic Publications, 1990.
 44. Gee, E. M., and J. E. Veevers. Accelerating sex differential in mortality: an analysis of contributing factors. Soc. Biol. 30: 75–85, 1983.
 45. Harman, D. Aging: a theory based on free radical and radiation biology. J. Gerontol. 11: 298–300, 1956.
 46. Hart, R. W., and F. B. Daniel. Genetic stability in vitro and in vivo. Adv. Pathobiol. 7: 123–141, 1980.
 47. Hart, R. W., and R. B. Setlow. Correlation between deoxyribonucleic acid excision repair and lifespan in a number of mammalian species. Proc. Natl. Acad. Sci. USA 71: 2169–2173, 1974.
 48. Hart, R. W., and A. Turturro. Theories of aging. In: Review of Biological Research in Aging, edited by M. Rothstein. New York: Alan R. Liss, 1985, vol. 1, p. 5–18.
 49. Hastie, N. D., M. Dempster, M. G. Dunlop, A. M. Thompson, D. K. Green, and R. C. Allshire. Telomere reduction in human colorectal carcinoma and with aging. Nature 346: 866–868, 1990.
 50. Hattori, K., M. Tanaka, S. Sugiyama, T. Obayashi, I. Takayuki, T. Satake, Y. Hanaki, J. Asai, M. Nagano, and T. Ozawa. Age‐dependent increase in deleted mitochondrial DNA in the human heart: possible contributing factor to presbycardia. Am. Heart J. 121: 1735–1742, 1991.
 51. Hayflick, L. Theories of biological aging. Exp. Gerontol. 20: 145–159, 1985.
 52. Hayflick, L., and P. S. Moorhead. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25: 585–621, 1961.
 53. Hazzard, W. R. Biological basis of the sex differential in lon‐gevity. J. Am. Geriatr. Soc. 34: 455–471, 1986.
 54. Hirsch, A. G., R. J. Williams, and P. Mehl. Kinetics of medfly mortality. Exp. Gerontol. 29: 197–204, 1994.
 55. Hirsch, H. R. Can an improved environment cause maximum lifespan to decrease? Comments on lifespan criteria and longitudinal Gompertzian analysis. Exp. Gerontol. 29: 119–137, 1994.
 56. Hutchinson, E. W., and M. R. Rose. Quantitative genetic analysis of postponed aging in Drosophila melanogaster. In: Genetic Effects in Aging II, edited by D. E. Harrison. Caldwell, NJ: Telford Press, 1990, p. 66–87.
 57. Ikebe, S., M. Tanaka, K. Ohno, W. Sato, K. Hatori, T. Kondo, Y. Mizuno, and T. Ozawa. Increase of deleted mitochondrial DNA relative to normal DNA in Parkinsonian striatum by kinetic PCR analysis. Biochem. Biophys. Res. Commun. 172: 483–489, 1990.
 58. Johnson, T. E. Increased life‐span of age‐1 mutants in Caenorhabditis elegans and lower Gompertz rate of aging. Science 249: 908–912, 1990.
 59. Johnson, T. E. Rates of mortality in populations of Caenorhabditis elegans. Science 266: 828, 1994.
 60. Kadenbach, B., and J. Höcker‐Müller. Mutations of mitochondrial DNA and human death. Naturwissenschaften 77: 221–225, 1990.
 61. Kirkwood, T. B. L., The disposable soma theory of aging. In: Genetic Effects on Aging II, edited by D. E. Harrison. Caldwell, NJ: Telford Press, 1990, p. 9–19.
 62. Kirkwood, T. B. L., and T. Cremer. Cytogerontology since 1881: a reappraisal of August Weismann and a review of modern progress. Hum. Genet. 60: 101–121, 1982.
 63. Kloeden, P. E., R. Rössler, and O. E. Rössler. Does a centralized clock for ageing exist? Gerontology 36: 314–322, 1990.
 64. Kowald, A., and T. B. L. Kirkwood. Explaining fruit fly longevity. Science 260: 1664–1665, 1993.
 65. Kristal, B. S., and B. P. Yu. An emerging hypothesis: synergistic induction of aging by free radicals and Maillard reactions. J. Gerontol.: Biol. Sci. 47: B107–B114, 1992.
 66. Lack, D. The Natural Regulation of Animal Numbers. Oxford: Clarendon Press, 1954.
 67. Laws, R. M. Dentition and ageing of the hippopotamus. E. Afr. Wildlife J. 6: 19–52, 1968.
 68. Linnane, A. W. Mitochondria and aging: the universality of bioenergetic disease. Aging Clin. Exp. Res. 4: 267–271, 1992.
 69. Linnane, A. W., A. Baumer, R. J. Maxwell, H. Preston, C. Zhang, and S. Marzuki. Mitochondrial gene mutation: the ageing process and degenerative disease. Biochem. Int. 22: 1067–1079, 1990.
 70. Linnane, A. W., S. Marzuki, T. Ozawa, and M. Tanaka. Mitochondrial DNA mutations as a major contributor to aging and degenerative diseases. Lancet 1: 642–645, 1989.
 71. Lipsitz, A., and A. L. Goldberger. Loss of “complexity” and aging. Potential applications of fractals and chaos theory to senescence. J. Am. Med. Assoc. 267: 1806–1809, 1992.
 72. Martin, G. M. Clonal attenuation: causes and consequences. J. Gerontol.: Biol. Sci. 48: B171–B172, 1993.
 73. Martinez, D. E., and J. S. Levinton. Asexual metazoans undergo senescence. Proc. Natl. Acad. Sci. USA 89: 9920–9923, 1992.
 74. Masoro, E. J. Metabolism, In: Handbook of the Biology of Aging (2nd ed.), edited by C. E. Finch and E. L. Schneider. New York: Van Nostrand Reinhold, 1985, p. 540–563.
 75. Masoro, E. J. Physiological system markers of aging. Exp. Gerontol. 23: 391–394, 1988.
 76. Masoro, E. J. Biology of aging: facts, thoughts, and experimental approaches. Lab. Invest. 66: 500–510, 1991a.
 77. Masoro, E. J. Use of rodents as models for the study of “normal aging”: conceptual and practical issues. Neurobiol. Aging 12: 639–643, 1991b.
 78. Masoro, E. J. The role of animal models in meeting the gerontologic challenge for the twenty‐first century. Gerontologist 32: 627–633, 1992.
 79. Masoro, E. J., and R. J. M. Mccarter. Aging as a consequence of fuel utilization. Aging: Clin. Exp. Res. 3: 117–128, 1991.
 80. Mcgue, M., J. W. Vaupel, N. Holm, and B. Harvold. Longevity is moderately heritable in a sample of Danish twins born 1870–1880. J. Gerontol.: Biol. Sci. 48: B237–B244, 1993.
 81. Mckerrow, J. Nonenzymatic post translational amino acid modifications in aging: a brief review. Mech. Ageing Dev. 10: 371–377, 1979.
 82. Medawar, P. B. An Unsolved Problem of Biology. London: H. K. Lewis, 1952.
 83. Medvedev, Z. A. An attempt at a rational clarification of theories of aging. Biol. Rev. 65: 375–398, 1990.
 84. Miller, R. A. Gerontology as oncology. Research on aging as the key to the understanding of cancer. Cancer 68: 2496–2501, 1991.
 85. Miquel, J. An update on the mitochondrial‐DNA mutation hypothesis of cell aging. Mutat. Res. 275: 209–216, 1992.
 86. Miquel, J. A., A. C. Economos, J. Fleming, and J. E. Johnson, Jr.. Mitochondrial roles in cell aging. Exp. Gerontol. 15: 575–591, 1980.
 87. Miquel, J., and J. E. Fleming. A two step hypothesis on the mechanism of in vitro cell aging. Cell differentiation followed by intrinsic mitochondrial mutagenesis. Exp. Gerontol. 19: 31–36, 1984.
 88. Monnier, V. M. Nonenzymatic glycosylation, the Maillard reaction and the aging processes. J. Gerontol.: Biol. Sci. 45: B105–B111, 1990.
 89. Müller‐Höcker, J. Mitochondria and ageing. Brain Pathol. 2: 148–158, 1992.
 90. Nakanishi, K., A. Shima, J. Fukuda, and S. Fujita. Age‐associated increase of single‐stranded regions in the DNA of mouse brain and liver cells. Mech. Ageing Dev. 10: 273–281, 1979.
 91. Nesse, R. M. Life table tests of evolutionary theories of aging. Exp. Gerontol. 23: 445–453, 1988.
 92. Nusbaum, T. J., J. L. Graves, L. D. Mueller, and M. R. Rose. Fruit fly aging and mortality. Science 260: 1567, 1993.
 93. Olshansky, S. J., B. A. Carnes, and C. K. Cassel. Fruit fly aging and mortality. Science 260: 1565–1567, 1993.
 94. Olson, C. B. A review of why and how we age: a defense of multifactorial aging: Mech. Ageing Dev. 41: 1–28, 1987.
 95. Orgel, L. E. The maintenance of the accuracy of protein synthesis and its relevance to aging. Proc. Natl. Acad. Sci. USA 49: 512–517, 1963.
 96. Orr, W. C., and R. S. Sohal. Extension of life span by over‐expression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263: 1128–1130, 1994.
 97. Partridge, L., and N. H. Barton. Optimality, mutation and the evolution of ageing. Nature 362: 305–311, 1993.
 98. Pitot, H. C. Aging and cancer: some general thoughts. J. Gerontol.: Biol. Sci. (special issue) 44: 5–9, 1989.
 99. Porter, M. B., and J. R. Smith. Role of endogenous proteins as negative growth modulators during in vitro cellular aging of human diploid fibroblasts. Annu. Rev. Gerontol. Geriatr. 10: 53–70, 1991.
 100. Promislow, D. E. L. Senescence in natural populations of mammals: a comparative study. Evolution 45: 1869–1887, 1991.
 101. Promislow, D. E. L. On size and survival: progress and pitfalls in the allometry of life span. J. Gerontol.: Biol. Sci. 48: B115–B123, 1993.
 102. Raff, M. C. Social controls on cell survival and cell death. Nature 356: 397–399, 1992.
 103. Reveillaud, I., A. Niedzwiecki, K. G. Benscfy, and J. E. Fleming. Expression of bovine superoxide dismutase in Drosophila melanogaster augments resistance to oxidative stress. Mol. Cell Biol. 11: 632–640, 1991.
 104. Richardson, A., and I. Semsei. Effect of aging on translation and transcription. In: Review of Biological Research in Aging, edited by M. Rothstein. New York: Alan R. Liss, 1987, vol. 3, p. 467–483.
 105. Rivnay, B., S. Bergman, M. Shinitzky, and A. Globerson. Correlations between membrane viscosity, serum cholesterol, lymphocyte activation and aging in man. Mech. Ageing Dev. 12: 119–126, 1980.
 106. Robine, J. M, and K. Ritchie. Explaining fruit fly longevity. Science 260: 1665, 1993.
 107. Rockstein, M., Biology of aging insects. In: Topics in the Biology of Aging, edited by P. L. Krohn. New York: John Wiley, 1966, p. 43–61.
 108. Rockstein, M., and H. M. Lieberman. A life table for the common housefly, Musca domestica. Gerontologia 3: 23–36, 1959.
 109. Rockstein, M., J. Chesky, and M. Sussman. Comparative biology and evolution of aging. In: Handbook of the Biology of Aging, edited by C. E. Finch and L. Hayflick. New York: Van Nostrand Reinhold, 1977 p. 3–34.
 110. Rose, M. R. Laboratory evaluation of postponed senescence in Drosophila melanogaster. Evolution 38: 1004–1010, 1984.
 111. Rose, M. R. Evolutionary Biology of Aging. New York: Oxford University Press, 1991.
 112. Roth, G. S. Are free radicals causes or effects of aging? The entropy theory. Aging: Clin. Exp. Res. 5: 241–242, 1993.
 113. Rothstein, M., Evidence for and against the error catastrophe hypothesis. In: Modern Biological Theories of Aging, edited by H. R. Warner, R. N. Butler, R. L. Sprott, and E. L. Schneider. New York: Raven Press, 1987, p. 139–154.
 114. Rowe, J. W., and R. L. Kahn. Human aging: usual and successful. Science 237: 143–149, 1987.
 115. Rowe, J. W., S. Y. Wang, and D. Elahi. Design, conduct, and analysis of human aging research. In: Handbook of the Biology of Aging (3rd ed.), edited by E. L. Schneider and J. W. Rowe. San Diego: Academic Press, 1990, p. 63–71.
 116. Rubner, M. Das Problem der Lebansdauer und Seine Beziehungen Zum Wachstum und Ernäbrung. Munich: Oldenburg, 1908.
 117. Rudman, D., A. G. Feller, H. S. Nagraj, G. A. Gergans, P. Y. Lalitha, A. F. Goldberg, R. A. Schlenker, L. Cohn, I. W. Rudman, and D. E. Mattson. Effects of human growth hormone in men over 60 years old. N. Engl. J. Med. 323: 1–6, 1990.
 118. Sabatino, F., E. J. Masoro, C. A. McMahan, and R. W. Kuhn. Assessment of the role of the glucocorticoid system in the aging processes and in the action of food restriction. J. Gerontol.: Biol. Sci. 46: B171–B179, 1991.
 119. Sacher, G. A., Life table modification and life prolongation. In: Handbook of the Biology of Aging, edited by C. E. Finch and L. Hayflick. New York: Van Nostrand Reinhold, 1977, p. 582–638.
 120. Sacher, G. A., and E. Trucco. The stochastic theory of mortality. Ann. N. Y. Acad. Sci. 96: 985–1007, 1962.
 121. Sager, R. Tumor suppressor genes: the puzzle and the promise. Science 246: 1406–1412, 1989.
 122. Sapolsky, R. M., L. C. Krey, and B. S. McEwen. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr. Rev. 7: 284–301, 1986.
 123. Schneider, E. L., Theories of aging, a perspective. In: Modern Biological Theories of Aging edited by H. R. Warner, R. N. Butler, R. L. Sprott, and E. L. Schneider. New York: Raven Press, 1987, p. 1–4.
 124. Sen, S., G. Talukder, and A. Sharma. Age‐related alterations in human chromosome composition and DNA content in vitro during senescence. Biol. Rev. 62: 25–44, 1987.
 125. Severinghaus, C. W. Tooth development and wear as criteria of age in white‐tailed deer. J. Wildlife Mgt. 13: 195–216, 1949.
 126. Shock, N. W. The science of gerontology. In: Proceedings of Seminars 1959–61, edited by E. C. Jeffers. Durham, NC: Council on Gerontology, Duke University Press, 1962.
 127. Shock, N. W. (Editor) Normal Human Aging: The Baltimore Longitudinal Study of Aging (NIH Publ. No. 84‐2450), Washington, D. C: U.S. Government Printing Office, 1984.
 128. Smith, C. D., J. M. Carney, P. E. Starke‐Reed, C. N. Oliver, E. R. Stadtman, and R. A. Floyd. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer's disease. Proc. Natl. Acad. Sci. USA 88: 10540–10543, 1991.
 129. Smith, J. R. DNA synthesis inhibitors in cellular senescence. J. Gerontol.: Biol. Sci. 45: B32–B35, 1990.
 130. Sohal, R. S. The free radical hypothesis of aging: an appraisal of the current status. Aging Clin. Exp. Res. 5: 3–17, 1993.
 131. Stadtman, E. Protein modifications in aging. J. Gerontol.: Biol. Sci. 43: B112–B120, 1988.
 132. Stadtman, E. R. Protein oxidation and aging. Science 257: 1220–1224, 1992.
 133. Stanbridge, E. J., and P. C. Nowell. Origins of human cancer revisited. Cell 63: 867–874, 1990.
 134. Strehler, B. L., and A. S. Mildvan. General theory of mortality and aging. Science 132: 14–21, 1960.
 135. Strehler, B., G. Hirsch, D. Gusseck, R. Johnson, and M. Bick. Codon‐restriction theory of aging and development. J. Theor. Biol. 33: 429–474, 1971.
 136. Szilard, L. On the nature of the aging process. Proc. Natl. Acad. Sci. USA 45: 30–45, 1959.
 137. Tice, R. R., and R. B. Setlow. DNA repair and replication in aging organisms and cells. In: Handbook of the Biology of Aging (2nd ed.), edited by C. E. Finch and E. L. Schneider. New York: Van Nostrand Reinhold, 1985, p. 173–224.
 138. Vaupel, J. W., and J. R. Carey. Compositional interpretations of medfly mortality. Science 260: 1666–1667, 1993.
 139. Vaupel, J. W., T. E. Johnson, and G.J. Lithgow. Rates of mortality in populations of Caenorhabditis elegans. Science 266: 824, 1994.
 140. Vijg, J. DNA sequence changes in aging: how frequent, how important? Aging: Clin. Exp. Res. 2: 105–123, 1990.
 141. Vijg, J., and D. L. Knook. DNA repair in relation to aging processes. J. Am. Geriatr. Soc. 35: 532–541, 1987.
 142. Walford, R. L. The Immunologic Theory of Aging. Copenhagen: Munksgaard, 1969.
 143. Wallace, D. C. Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256: 628–632, 1992.
 144. Wang, J.‐L., H‐G Müller, W. B. Capra, and J. R. Carey. Rates of mortality in populations of Caenorhabditis elegans. Science 266: 827–828, 1994.
 145. Weismann, A., Life and death. In: Essays on Heredity and Kin dred Biological Problems, edited by E. B. Poulton, S. Schonland, and A. E. Shipley. Oxford: Clarendon Press, 1889, p. 1–66.
 146. Whitehead, I., and T. A. Grigliatti. A correlation between DNA repair and longevity in adult Drosophila melanogaster. J. Gerontol: Biol. Sci. 48: B124–B132, 1993.
 147. Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11: 398–411, 1957.
 148. Williams, G. C., and R. M. Nesse. The dawn of Darwinian medicine. Quart. Rev. Biol. 66: 1–22, 1991.
 149. Wilson, V. L., R. A. Smith, S. Ma, and R. G. Cutler. Genomic 5‐methyldeoxycytidine decrease with age. J. Biol. Chem. 262: 9948–9951, 1987.
 150. Witten, M. A return to time, cells, systems, and aging: III Gompertzian models of biological aging and some possible roles for critical elements. Mech. Ageing Dev. 32: 141–177, 1985.
 151. Wright, W. E., and J. W. Shay. Telomere positional effects and the regulation of cellular senescence. Trends Genet. 8: 193–197, 1992.
 152. Yen, T.‐C., J.‐H. Su, K.‐H. King, and Y.‐H. Wei. Aging‐associated 5 kb deletion in human liver mitochondrial DNA. Biochem. Biophys. Res. Commun. 178: 124–131, 1991.
 153. Yu, B. P. Need the free radical theory of aging be linked to the metabolic rate theory? Aging: Clin. Exp. Res. 5: 243–244, 1993.
 154. Yu, B. P., D. W. Lee, C. G. Marler, and J. H. Choi. Mechanisms of food restriction: protection of cellular homeostasis. Proc. Soc. Exp. Biol. Med. 193: 13–22, 1990.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Edward J. Masoro. Aging: Current Concepts. Compr Physiol 2011, Supplement 28: Handbook of Physiology, Aging: 3-21. First published in print 1995. doi: 10.1002/cphy.cp110101