Comprehensive Physiology Wiley Online Library
Home Browse Topics Latest Articles All Issues

Muscle Plasticity: Energy Demand and Supply Processes

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Goals and Fundamental Concepts
1.1 The Concept of Plasticity
1.2 The Concept of Protein Isoforms
1.3 The Concept of Protein Turnover
2 Organization of Muscle Cells into Functional Units Based on Patterns of Protein Expression
2.1 Cellular Processes Involved in Contraction and Relaxation: Role of Cross‐Bridge and Calcium Cycling Isoforms
2.2 Cellular Processes Involving Oxidative Metabolism
2.3 Cellular Processes Involving Anaerobic Metabolism and High‐Energy Phosphate Buffering
2.4 Interrelationships in Cellular Processes
3 Organelle Plasticity in Response to Interventions
3.1 Contractile Machinery
3.2 Mitochondria and Substrate Provision (Oxidative Processes)
3.3 Glycogenolytic Activity and Glucose Transport for Anaerobic Processes
3.4 Fatty Acid Transfer and Oxidation
3.5 Fiber‐Type Plasticity
4 Regulatory Factors
4.1 External to the Muscle
4.2 Internal to Muscle
5 Cunical Significance of Muscle Plasticity
6 Summary
Figure 1. Figure 1.

Diagram of intermediary steps involved in the transfer of substrates to and from skeletal muscle. Mit, mitochondria; FFA, free fatty acids; GLUT 4 is glucose transport protein 4.

Adapted from a review by Hoppeler and Billeter
Figure 2. Figure 2.

Enzymatic reactions designed to buffer ATP turnover independent of aerobic metabolic processes.

Figure 3. Figure 3.

Adaptive increases in mitochondrial enzymes to either treadmill running or chronic electrical stimulation.

Contributed by Zhen Yan
Figure 4. Figure 4.

Schematic overview of signal transduction pathways. TM, transmembrane; PL, phospholipases; DAG, diacylglycerol; InsP3, inositol 1,4,5‐triphosphate; PKA, protein kinase A; PKC, protein kinase C; MAP kinase, mitogen‐activated protein kinase.

Reprinted with permission from the publisher from Hug and Sarre
Figure 5. Figure 5.

Multiple steps in the pathway of gene expression are modulated by changes in the inherent contractile activity.



Figure 1.

Diagram of intermediary steps involved in the transfer of substrates to and from skeletal muscle. Mit, mitochondria; FFA, free fatty acids; GLUT 4 is glucose transport protein 4.

Adapted from a review by Hoppeler and Billeter


Figure 2.

Enzymatic reactions designed to buffer ATP turnover independent of aerobic metabolic processes.



Figure 3.

Adaptive increases in mitochondrial enzymes to either treadmill running or chronic electrical stimulation.

Contributed by Zhen Yan


Figure 4.

Schematic overview of signal transduction pathways. TM, transmembrane; PL, phospholipases; DAG, diacylglycerol; InsP3, inositol 1,4,5‐triphosphate; PKA, protein kinase A; PKC, protein kinase C; MAP kinase, mitogen‐activated protein kinase.

Reprinted with permission from the publisher from Hug and Sarre


Figure 5.

Multiple steps in the pathway of gene expression are modulated by changes in the inherent contractile activity.

References
 1. Aarsaether, N., A. Aarsland, H. Kryvi, A. Nilsson, A. Svardal, P. M. Ueland and R. K. Berge. Changes in perioxisomes and mitochondria in liver of ethionine exposed rats: a biochemical and morphological investigation. Carcinogenesis 10: 987–994, 1989.
 2. Abu‐Shakra, S. R., A. J. Cole, and D. B. Drachman. Nerve stimulation and denervation induce differential patterns of immediate early gene raRNA expression in skeletal muscle. Mol. Brain Res. 18: 216–220, 1993.
 3. Acsadi, G., G. Dickson, D. R. Love, A. Jani, F. S. Walsh, A. Gurusinghe, J. A. Wolff, and K. E. Davies. Human dystrophin expression in mdx mice after intramuscluar injection of DNA constructs. Nature 352: 815–818, 1991.
 4. Acsadi, G., S. Jiao, A. Jani, D. Duke, P. Williams, W. Chong, and J. A. Wolff. Direct gene transfer and expression into rat heart in vivo. New Biol. 3: 71–81, 1991.
 5. Adams, G. R., F. Haddad, and K. M. Baldwin. Interaction of chronic creative depletion and hindlimb non‐weight bearing activity: effects on postural and locomotor muscles. J. Appl. Physiol. 77: 1198–1205, 1994.
 6. Adams, G. R., B. M. Hather, K. M. Baldwin, and G. A. Dudley. Skeletal muscle myosin heavy chain composition and resistance training. J. Appl. Physiol. 74: 911–915, 1993.
 7. Alessio, H. M. Exercise‐induced oxidative stress. Med. Sci. Sports Exerc. 25: 218–224, 1993.
 8. Alpert, N. R., and L. A. Mullieri. Functional consequences of altered cardiac myosin isoenzymes. Med. Sci. Sports Exerc. 18: 309–313, 1986.
 9. Annex, B. H., W. E. Kraus, G. L. Dohm, and R. S. Williams. Mitochondrial biogenesis in striated muscles: rapid induction of citrate synthase mRNA by nerve stimulation. Am. J. Physiol. 260 (Cell Physiol. 29): C266–C270, 1991.
 10. Antonio, J., and W. J. Gonyea. Skeletal muscle hyperplasia. Med. Sci. Sports Exerc. 25: 1333–1345, 1993.
 11. Arai, M., K. Otsu, D. H. MacLennan, and M. Periasamy. Regulation of sarcoplasmic reticulum gene expression during cardiac and skeletal muscle development. Am. J. Physiol. 262 (Cell Physiol. 31): C614–C620, 1992.
 12. Armstrong, R. B. Distribution of blood flow in the muscles of conscious animals during exercise. Am. J. Cardiol. 62: 9E–14E, 1988.
 13. Armstrong, R. B., and M. H. Laughlin. Exercise blood flow patterns within and among rat muscles after training. Am. J. Physiol. 246 (Heart Circ. Physiol. 15): H59–H68, 1984.
 14. Atha, J. Strengthening skeletal muscle. Exerc. Sport Sci. Rev. 9: 1–73, 1981.
 15. Atomi, Y., S. Yamada, and T. Nishida. Early changes of αB‐crystallin in rat skeletal muscle to mechanical tension and denervation. Biochem. Biophys. Res. Commun. 181: 1323–1330, 1991.
 16. Ausoni, S., L. Gorza, S. Schiaffino, K. Gundersen, and T. Lomo. Expression of myosin heavy chain isoforms in stimulated fast and slow rat muscles. J. Neurosci. 10: 153–160, 1990.
 17. Babij, P., and F. W. Booth. α‐Actin and cytochrome c m‐RNAs in atrophied adult rat skeletal muscle. Am. J. Physiol. 254 (Cell Physiol. 23): C651–C656, 1988.
 18. Baldwin, K. M., W. G. Cheadle, O. M. Martinez, and D. A. Cooke. Effect of functional overload on enzyme levels in different types of skeletal muscle. J. Appl. Physiol. 42: 312–317, 1977.
 19. Baldwin, K. M., R. E. Herrick, and E. Ilyina‐Kakeuva, and U. S. Oganov. Effects of zero gravity of myofibril content and isomyosin distribution in rodent skeletal muscle. FASEB J. 4: 79–83, 1990.
 20. Baldwin, K. M., R. R. Roy, R. D. Sacks, C. Blanco, and V. R. Edgerton. Relative independence of metabolic enzymes and neuromuscular activity. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 56: 1602–1607, 1984.
 21. Baldwin, K. M., V. Valdez, R. E. Herrick, A. M. Macintosh, and R. R. Roy. Biochemical properties of overloaded fast‐twitch skeletal muscle. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 52: 467–472, 1982.
 22. Baldwin, K. M., V. Valdez, L. F. Schrader, and R. E. Herrick. Effect of functional overload on substrate oxidation capacity of skeletal muscle. J. Appl. Physiol. 50: 1272–1276, 1981.
 23. Baldwin, K. M., W. W. Winder, and J. O. Holloszy. Adaptation of actomyosin ATPase in different types of muscle to endurance exercise. Am. J. Physiol. 229: 422–426, 1975.
 24. Baldwin, K. M., W. W. Winder, R. L. Terjung, and J. O. Holloszy. Glycolytic enzymes in different types of skeletal muscle. Am. J. Physiol. 225: 962–966, 1973.
 25. Barnard, R. J., and J. B. Peter. Effect of exercise on skeletal muscle. III. Cytochrome changes. J. Appl. Physiol. 31: 904–908, 1971.
 26. Barnard, R. J. and S. J. Wen. Exercise and diet in the prevention and control of the metabolic syndrome. Sports Med. 18: 218–228, 1994.
 27. Beck, I., R. Weinmann, and J. Caro. Characterization of hypoxia‐responsive enhancer in the human erythropoietin gene shows presence of hypoxia‐inducible 120‐Kd nuclear DNA‐binding protein in erythropoietin‐producing and nonproducing cells. Blood 82: 704–711, 1993.
 28. Berger, M., F. W. Kemmer, K. Becker, L. Herberg, M. Schwenen, A. Gjinavci, and P. Berchtold. Effect of physical training on glucose tolerance and on glucose metabolism of skeletal muscle in anaesthetized normal rats. Diabetologia 16: 179–184, 1979.
 29. Betz, H., and J. P. Changeux. Regulation of muscle acetylcholine receptor synthesis in vitro by cyclic nucleotide derivatives. Nature 278: 749–752, 1979.
 30. Bohm, M., H. Dorner, P. Htun, H. Lensche, D. Platt, and E. Erdmann. Effects of exercise on myocardial adenylate cyclase and Gi alpha expression in senescence. Am. J. Physiol. 264 (Heart Circ. Physiol. 33): H805–H814, 1993.
 31. Boissonneault, G., J. Gagnon, M. A. Ho‐Kim, and R. R. Tremblay. Lack of effect of anabolic steroids on specific mRNAs of skeletal muscle undergoing compensatory hypertrophy. Mol. Cell. Endocrinol. 51: 19–24, 1987.
 32. Booth, F. W. Cytochrome c protein synthesis rate in rat skeletal muscle. J. Appl. Physiol. 71: 1225–1230, 1991.
 33. Booth, F. W., and K. A. Narahara. Vastus lateralis cytochrome oxidase activity and its relationship to maximal oxygen consumption in man. Pflugers Arch. 349: 319–324, 1974.
 34. Booth, F. W., and D. B. Thomason. Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiol. Rev. 71: 541–585, 1991.
 35. Booth, F. W., and P. A. Watson. Control of adaptations in protein levels in response to exercise. Federation Proc. 44: 2293–2300, 1985.
 36. Borensztajn, J., M. S. Rone, S. P. Babirak, J. A. McGarr, and L. B. Oscai. Effect of exercise on lipoprotein lipase activity in rat heart and skeletal muscle. Am. J. Physiol. 229: 394–397, 1975.
 37. Braun, T., E. Bober, B. Winter, N. Rosenthal, and H. H. Arnold. Myf‐6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12. EMBO J. 9: 821–831, 1990.
 38. Braun, T., G. Buschhausen‐Denker, G. Bober, E. Tannich, and H. H. Arnold. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 8: 701–709, 1989.
 39. Brodie, C., M. Brody, and S. R. Simpson. Characterization of the relation between sodium channels and electrical activity in cultured rat skeletal myotubes: regulatory aspects. Brain Res. 488: 186–194, 1989.
 40. Brown, M. D., M. A. Cotter, O. Hudlicka, and G. Vrbova. The effects of different patterns of muscle activity on capillary density, mechanical properties and structure of slow and fast rabbit muscles. Pflugers Arch. 361: 241–250, 1976.
 41. Buchner, D. M., and E. H. Wagner. Preventing frail health. Clin. Geriatr. Med. 8: 1–17, 1992.
 42. Buckenmeyer, P. J., A. H. Goldfarb, J. S. Partilla, M. A. Pineyro, and E. M. Dax. Endurance training, not acute exercise, differentially alters beta receptors and cyclase in skeletal muscle fiber types. Am. J. Physiol. 258 (Endocrinol. Metab. 21): E71–E77, 1990.
 43. Caiozzo, V. J., M. J. Baker, R. E. Herrick, M. Tao, and K. M. Baldwin. Effect of spaceflight on skeletal muscle: mechanical properties and myosin isoform content of a slow antigravity muscle. J. Appl. Physiol. 76: 1764–1773, 1994.
 44. Caiozzo, V. J., F. Haddad, M. J. Baker, and K. M. Baldwin. The influence of mechanical loading on myosin heavy chain protein and mRNA expression. J. Appl. Physiol. (in press).
 45. Caiozzo, V. J., R. E. Herrick, and K. M. Baldwin. The influence of hyperthyroidism on the maximal shortening velocity and myosin isoform distribution in slow and fast skeletal muscle. Am. J. Physiol. 261 (Cell Physiol. 30): C285–C295, 1991.
 46. Caiozzo, V. J., R. E. Herrick, and K. M. Baldwin. Response of slow and fast skeletal muscle to hypothyroidism; maximal shortening velocity and myosin isoforms. Am. J. Physiol. 263 (Cell Physiol. 32): C86–C94, 1992.
 47. Caiozzo, V. J., E. Ma, S. A. McCue, R. E. Herrick, and K. M. Baldwin. A new animal model for modulating myosin isoform expression by mechanical activity. J. Appl. Physiol. 73: 1432–1440, 1992.
 48. Caiozzo, V. J., S. Swoap, M. Tao, R. Vandergriff, D. B. Menzel, and K. M. Baldwin. Quantitative single fiber analysis of type IIA myosin heavy chain distribution in hyper and hypothyroid soleus. Am. J. Physiol. 265 (Cell Physiol. 34): C842–C849, 1993.
 49. Carson, J. A., Z. Yan, R. J. Schwartz, F. W. Booth, and C. S. Stump. Regulation of skeletal α‐actin promotor in young chickens during hypertrophy caused by stretch overload. Am. J. Physiol. 268 (Cell Physiol. 37): C918–C929, 1995.
 50. Chahine, K. G., E. Baracchini, and D. Goldman. Coupling muscle electrical activity to gene expression via a cAMP‐dependent second messenger system. J. Biol. Chem. 268: 2893–2898, 1993.
 51. Chahine, K. G., W. Walke, and D. Goldman. A 102 base pair sequence of the nicotinic acetylcholine receptor delta‐subunit gene confers regulation by muscle electrical activity. Development 115: 213–219, 1992.
 52. Chalmers, G. R., R. R. Roy, and V. R. Edgerton. Adaptability of the oxidative capacity of motoneurons. Brain Res. 570: 1–10, 1992.
 53. Charron, M. J., F. C. Brosius, S. L. Alper, and H. F. Lodish. A glucose transport protein expressed predominately in insulin‐responsive tissues. Proc. Natl. Acad. Sci. U. S. A. 86: 2535–2539, 1989.
 54. Chesley, A., J. D. MacDougall, M. A. Tarnopolsky, S. A. Atkinson, and K. Smith. Changes in human muscle protein synthesis after resistance exercise. J. Appl. Physiol. 73: 1383–1388, 1992.
 55. Christensen, E. H., and O. Hansen. Arbeitsfahigkeit und ehrnahrung. Scand. Arch. Physiol. 81: 160–175, 1939.
 56. Clausen, J. P. Effect of physical training on cardiovascular adjustments to exercise in man. Physiol. Rev. 57: 779–815, 1977.
 57. Cleland, P. J., G. J. Appleby, S. Rattigan, and M. G. Clark. Exercise‐induced translocation of protein kinase C and production of diacylglycerol and phosphatic acid in rat skeletal muscle in vivo. J. Biol. Chem. 264: 17704–17711, 1989.
 58. Colmenares, C., and E. Stavnezer. The ski oncogene induces muscle differentiation in quail embryo cells. Cell 59: 293–303, 1989.
 59. Condon, K., L. Siberstein, H. M. Blau, and W. J. Thompson. Development of muscle fiber types in prenatal rat hindlimb. Dev. Biol. 138: 256–274, 1990.
 60. Condon, K., L. Silberstein, H. M. Blau, and W. J. Thompson. Differentiation of fiber‐types in aneural musculature of prenatal rat hindlimb. Dev. Biol. 138: 275–295, 1990.
 61. Cowan, D. B., R. D. Weisel, W. G. Williams, and D. A. G. Mickle. Identification of oxygen responsive elements in the 5′‐flanking region of the human glutathione peroxidase gene. J. Biol. Chem. 268: 26904–26910, 1993.
 62. Coyle, E. F., M. T. Hamilton, J. G. Alonso, S. J. Montain, and J. L. Ivy. Carbohydrate metabolism during intense exercise when hyperglycemic. J. Appl. Physiol. 70: 834–840, 1991.
 63. Craig, E. A., B. D. Gambill, and R. J. Nelson. Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol. Rev. 57: 402–414, 1993.
 64. Davies, H. L., R. G. Whalen, and B. A. Demeneix. Direct gene transfer into skeletal muscle in vivo: factors affecting efficiency of transfer and stabilty of expression. Hum. Gene Ther. 4: 151–159, 1993.
 65. Davies, K. J. A., L. Packer, and G. A. Brooks. Biochemical adaptation of mitochondria, muscle, and whole animal respiration to endurance training. Arch. Biochem. Biophys. 209: 539–554, 1981.
 66. Davies, K. J. A., A. T. Quintanilda, G. A. Brooks, and L. Packer. Free radicals and tissue damage produced by exercise. Biochem. Biophys. Res. Commun. 107: 1198–1205, 1982.
 67. Davis, R. L., H. Weintaub, and A. B. Lasser. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51: 987–1000, 1987.
 68. Denardi, C., S. Ausoni, P. Moretti, L. Gorza, M. Velleca, M. Buckingham, and S. Schiaffino. Type 2X‐myosin heavy chain is coded by a muscle fiber‐type‐specific and developmentally regulated gene. J. Cell Biol. 123: 823–835, 1993.
 69. de Quiroga, G. B. Brown fat thermogenesis and exercise: two examples of physiological oxidative stress? Free Rad. Biol. Med. 13: 325–340, 1992.
 70. De Vol, D. L., P. Rotwein, J. L. Sadow, J. Novakoski, and P. J. Bechtel. Activation of insulin‐like growth factor gene expression during work‐induced skeletal muscle growth. Am. J. Physiol. 259 (Endocrinol. Metab. 22): E89–E95, 1990.
 71. Diffee, G. M., V. J. Caiozzo, R. E. Herrick, and K. M. Baldwin. Contractile and biochemical properties of rat soleus and plantaris following hindlimb suspension. Am. J. Physiol. 260 (Cell Physiol. 29): C528–C534, 1991.
 72. Diffee, G. M., V. J. Caiozzo, S. A. McCue, R. E. Herrick, and K. M. Baldwin. Activity‐induced regulation of myosin isoform distribution: comparison of two contractile activity programs. J. Appl. Physiol. 74: 2509–2516, 1993.
 73. Diffee, G. M., F. Haddad, R. E. Herrick, and K. M. Baldwin. Control of myosin heavy chain expression: interaction of hypothyroidism and hindlimb suspension. Am. J. Physiol. 261 (Cell Physiol. 30): C1099–C1106, 1991.
 74. Diffee, G. M., S. McCue, A. La Rossa, R. E. Herrick, and K. M. Baldwin. Interaction of various activity models in the regulation of myosin heavy chain isoform expression. J. Appl. Physiol. 74: 2517–2522, 1993.
 75. Dillman, W. H. Diabetes mellitus and hypothyroidism induce changes in myosin isoenzyme distribution in the rat heart—do alterations in fuel flux mediate these changes? Adv. Exp. Med. Biol. 194: 469–479, 1986.
 76. Dix, D. J., and B. R. Eisenberg. Myosin mRNA accumulation and myofibrillogenesis at the myotendinous junction of stretched muscle fibers. J. Cell Biol. 111: 1885–1894, 1990.
 77. Dohm, G. L., E. B. Tapscott, and G. J. Kasperek. Protein degradation during endurance exercise and recovery. Med. Sci. Sports Exerc. 19: S166–S171, 1987.
 78. Douen, A. G., T. Ramlal, A. Klip, D. A. Young, G. D. Cartee, and J. O. Holloszy. Exercise‐induced increase in glucose transporters in plasma membranes of rat skeletal muscle. Endocrinology 124: 449–454, 1989.
 79. Douen, A. G., T. Ramlal, S. Rastogi, P. J. Bilan, G. D. Cartee, M. Vranic, J. O. Holloszy, and A. Klip. Exercise induces recruitment of the “insulin‐responsive glucose transporter.” J. Biol. Chem. 265: 13427–13430, 1990.
 80. Drachman, D. B., and F. Witzke. Trophic regulation of acetylcholine sensitivity of muscle: effect of electrical stimulation. Science 176: 514–516, 1972.
 81. Dudley, G. A., P. A. Tesch, B. J. Miller, and P. Buchannan. Importance of eccentric actions in performance adaptations to resistance training. Aviat. Space Environ. Med. 62: 543–550, 1991.
 82. Edgerton, V.R., and R. R. Roy. Regulation of skeletal muscle fiber size, shape and function. J. Biomech. 24 (Suppl. 1): 123–133, 1991.
 83. Edmondson, D. G., and E. N. Olson. A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activiate the muscle differentiation program. Genes Dev. 3: 628–640, 1989.
 84. Eftimie, E., H. R. Brenner, and A. Buonanno. Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc. Natl. Acad. Sci. U. S. A. 88: 1349–1353, 1991.
 85. Eisenberg, B. R., J. M. C. Brown, and S. Salmons. Restoration of fast muscle characteristics following cessation of chronic stimulation. Cell Tiss. Res. 238: 221–130, 1984.
 86. Eisenberg, B. R., J. M. Kennedy, M. P. Wenderoth, and D. J. Dix. Satellite cells, isomyosin switching and muscle growth. In: Cellular and Molecular Biology of Muscle Development. New York: Alan R. Liss, 1989, p. 451–460.
 87. Eppley, Z. A., J. Kim, and B. Russell. A myogenic regulatory gene, qmf1, is expressed by adult myonuclei after injury. Am. J. Physiol. 265 (Cell Physiol. 34): C397–C405, 1993.
 88. Esser, K. A., and E. C. Hardeman. Changes in contractile protein mRNA accumulation in response to spaceflight. Am. J. Physiol. 268 (Cell Physiol. 37): C466–C471, 1995.
 89. Essig, D. A., D. L. De Vol, P. J. Betchel, and T. J. Trannel. Expression of embryonic myosin heavy chain mRNA in stretched adult chicken skeletal muscle. Am. J. Physiol. 260 (Cell Physiol. 29): C1325–C1331, 1991.
 90. Essig, D. A., D. A. Jackson, and D. R. Borger. A heme oxygenase mRNA is induced in skeletal muscle following 3 hours of nerve stimulation. Med. Sci. Sports Exerc. 26: 594, 1994.
 91. Essig, D. A., J. M. Kennedy, and L. A. McNabney. Regulation of 5′‐aminolevulinate synthase activity in overloaded skeletal muscle. Am. J. Physiol. 259 (Cell Physiol. 28): C310–C314, 1990.
 92. Etgen, G. T., A. R. Memon, G. A. Thompson, Jr., and J. L. Ivy. Insulin‐ and contraction‐stimulated translocation of GTP‐binding proteins and GLUT4 protein in skeletal muscle. J. Biol. Chem. 268: 20164–20169, 1993.
 93. Falduto, M. T., A. P. Young, and R. C. Hickson. Exercise inhibits glucocorticoid‐induced glutamine synthatase expression in red skeletal muscles. Am. J. Physiol. 262 (Cell Physiol. 31): C214–C220, 1992.
 94. Falduto, M. T., A. P. Young, and R. C. Hickson. Exercise interrupts ongoing glucocorticoid‐induced muscle atrophy and gultamine synthetase induction. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E1157–E1163, 1992.
 95. Falduto, M. T., A. P. Young, G. Smyrniotis, and R. C. Hickson. Reduction of glutamine synthetase mRNA in hypertrophied skeletal muscle. Am. J. Physiol. 262 (Regulatory Integrative Comp. Physiol. 31): R1131–R1136, 1992.
 96. Fiatarone, M. A., E. F. O'neill, N. D. Ryan, K. M. Clements, G. R. Solares, M. E. Nelson, S. B. Roberts, J. J. Lipsitz, and W. J. Evans. Exercise training and nutritional supplements for physical frailty in very elderly people. N. Engl. J. Med. 330: 1769–1775, 1994.
 97. Fitch, C. D., M. Jellinek, R. H. Fitts, K. M. Baldwin, and J. O. Holloszy. Phosphorylated β‐guanidinopropionate as a substitute for phosphocreatine in rat muscle. Am. J. Physiol. 228: 1123–1125, 1975.
 98. Fitch, C. D., M. Jellinek, and E. J. Mueller. Experimental depletion of creatine and phosphocreatine from skeletal muscle. J. Biol. Chem. 249: 1060–1063, 1974.
 99. Fitts, R. H. Substrate supply and energy metabolism during brief high intensity exercise: importance in limiting performance. In: Perspectives in Exercise Science and Sports Medicine, edited by D. R. Lamb and C. V. Gisolfi. Indianapolis: Benchmark, 1992, p. 53–107.
 100. Fitts, R. H., D. L. Costill, and P. R. Gardetto. Effect of swim training on human muscle fiber function. J. Appl. Physiol. 66: 465–475, 1989.
 101. Fitts, R. H., W. W. Winder, M. H. Brooke, K. K. Kaiser, and J. O. Holloszy. Contractile, biochemical, and histochemical properties of thyrotoxic rat soleus muscle. Am. J. Physiol. 238 (Cell Physiol. 7): C15–C20, 1980.
 102. Fitzsimons, D. P., G. M. Diffee, R. E. Herrick, and K. M. Baldwin. Effect of endurance exercise on isomyosin patterns in fast‐ and slow‐twitch skeletal muscle. J. Appl. Physiol. 68: 1950–1955, 1990.
 103. Flink, I. L., J. G. Edwards, J. J. Bahl, C. C. Liaw, M. Sole, and E. Mortin. Characterization of a strong positive cis element of the human beta‐myosin heavy chain gene in fetal rat heart cells. J. Biol. Chem. 267: 9917–9924, 1992.
 104. Flink, I. L., and E. Mortin. Interaction of thyroid hormone receptors with strong and weak cis acting elements in human alpha‐myosin heavy chain gene promotor. J. Biol. Chem. 265: 11233–11237, 1990.
 105. Freidman, J. E., W. M. Sherman, M. J. Reed, C. W. Elton, and G. L. Dohm. Exercise training increases glucose transporter protein GLUT‐4 in skeletal muscle of obese Zucker (fa/fa) rats. FEBS Lett. 268: 13–16, 1990.
 106. Frenzel, H., B. Schwartzkopff, W. Holtermann, H. G. Schurch, A. Novi, and W. Hort. Regression of cardiac hypertrophy: morphometric and biochemical studies in rat heart after swimming training. J. Mol. Cell. Cardiol. 20: 737–751, 1988.
 107. Fushiki, T., J. A. Wells, E. B. Tapscott, and G. L. Dohm. Changes in glucose transporters in muscle in response to exercise. Am. J. Physiol. 256 (Endocrinol. Metab. 19): E580–E587, 1989.
 108. Glatz, J. F. C., and G. J. ver der Vusse. Intracellular transport of lipids. Mol. Cell. Biochem. 88: 37–44, 1989.
 109. Goldberg, A. L. Protein synthesis in tonic and phasic skeletal muscles. Nature 216: 1219–1220, 1967.
 110. Goldberg, A. L., and J. F. Dice. Intracellular protein degradation in mammalian and bacterial cells. Annu. Rev. Physiol. 43: 835–869, 1974.
 111. Goldberg, A. L., and H. M. Goodman. Relationship between cortisone and muscle work in determining muscle size. J. Physiol. (Lond.) 200: 667–675, 1969.
 112. Goldberg, M. A., S. P. Dunning, and H. F. Bunn. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242: 1412–1415, 1988.
 113. Goldman, D., H. R. Brenner, and S. Heineman. Acetylcholine receptor α‐, β‐, γ‐, and δ‐subunit mRNA levels are regulated by muscle activity. Neuron 1: 329–333, 1988.
 114. Goldman, D., B. M. Carlson, and J. Staple. Induction of adult‐type nicotinic acetylcholine receptor gene expression in noninnervated regenerating muscle. Neuron 7: 649–658, 1991.
 115. Goldspink, D. F. Exercise‐related changes in protein turnover in mammalian striated muscle. J. Exp. Biol. 160: 127–148, 1991.
 116. Gollnick, P. D. Energy metabolism and prolonged exercise. In: Perspectives in Exercise Science and Sports in Medicine. Prolonged Exercise, edited by D. R. Lamb and R. Murray. Indianapolis: Benchmark, 1988, p. 1–37.
 117. Gollnick, P. D., R. B. Armstrong, C. W. Saubert, K. Piehl, and B. Saltin. Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. J. Appl. Physiol. 33: 312–319, 1972.
 118. Gonyea, W. J., D. G. Sale, F. B. Gonyea, and A. Mikesky. Exercise induced increases in muscle fiber number. Eur. J. Physiol. 55: 137–141, 1986.
 119. Goodyear, L. J., P. A. King, M. F. Hirshman, C. M. Thompson, E. D. Horton, and E. S. Horton. Contractile activity increases plasma membrane glucose transporters in absence of insulin. Am. J. Physiol. 258 (Endocrinol. Metab. 21): E667–E672, 1990.
 120. Gopalakrishnan, L., and R. C. Scarpulla. Differential regulation of respiratory subunits by a CREB‐dependent signal transduction pathway. J. Biol. Chem. 269: 105–113, 1994.
 121. Gordon, T., and M. Pattullo. Plasticity of muscle fiber and motor unit types. Exerc. Sports Sci. Rev. 21: 331–362, 1993.
 122. Gosselink, K. L., R. E. Grindeland, R. R. Roy, V. R. Muukku, R. J. Talmadge, V. R. Edgerton, and J. K. Linderman. Effects of growth hormone and insulin‐like growth factor‐I with or without exercise on hypophysectomized hindlimb suspended rats. Am. J. Physiol. 267 (Regulator Integrative Comp. Physiol. 38): R365–R371, 1994.
 123. Gould, G. W., and G. D. Holman. The glucose transporter family: structure, function and tissue‐specific expression. Biochem. J. 295: 329–341, 1993.
 124. Green, H. J., H. Helyar, M. Ball‐Burnett, N. Kowalchuk, S. Symon, and B. Farrance. Metabolic adaptations to training precede changes in muscle mitochondrial capacity. J. Appl. Physiol. 72: 484–491, 1992.
 125. Green, H. J., G. A. Klug, H. Reichman, U. Seedorf, W. Wiehrer, and D. Pette. Exercise‐induced fiber‐type transitions with regard to myosin, parvalbumin, and sarcoplasmic reticulum in muscles of the rat. Pflugers Arch. 400: 432–438, 1984.
 126. Haddad, F., R. E. Herrick, G. R. Adams, and K. M. Baldwin. Myosin heavy chain expression in rodent skeletal muscle: Effects of exposure to zero gravity. J. Appl. Physiol. 75: 2471–2477, 1993.
 127. Hall, Z. W., and E. Ralston. Nuclear domains in muscle cells. Cell 59: 771–772, 1989.
 128. Hartner, K. T., B. J. Kirschbaum, and D. Pette. The multiplicity of troponin T isoforms. Distribution on normal rabbit muscles and effects of chronic stimulation. Eur. J. Biochem. 179: 31–38, 1989.
 129. Hartner, K. T., and D. Pette. Fast and slow isoforms of troponin I and troponin C. Distribution in normal rabbit muscles and effects of chronic stimulation. Eur. J. Biochem. 188: 261–267, 1990.
 130. Heilig, A., and D. Pette. Albumin in rabbit skeletal muscle. Origin, distribution and regulation by contractile activity. Eur. J. Biochem. 171: 503–508, 1988.
 131. Henriksen, E. J., R. E. Bourey, K. J. Rodnick, L. Koranyi, M. A. Permutt, and J. O. Holloszy. Glucose transporter protein content and glucose transport capacity in rat skeletal muscles. Am. J. Physiol. 259 (Endocrinol. Metab. 22): E593–E598, 1990.
 132. Henriksen, E. J., K. J. Rodnick, and J. O. Holloszy. Activation of glucose transport in skeletal muscle by phospholipase C and phorbol ester. Evaluation of the regulatory roles of protein kinase C and calcium. J. Biol. Chem. 264: 21536–21543, 1989.
 133. Henriksson, J. Effects of physical training on the metabolism of skeletal muscle. Diabetes Care 15 (Suppl. 4): 1701–1711, 1992.
 134. Henriksson, J., M. M.‐Y. Chi, C. S. Hintz, D. A. Young, K. K. Kaiser, S. Salmons, and O. H. Lowry. Chronic stimulation of mammalian muscle: changes in enzymes of six metabolic pathways. Am. J. Physiol. 251 (Cell Physiol. 20): C614–C632, 1986.
 135. Hermansen, L., E. Hultman, and B. Saltin. Muscle glycogen during prolonged exercise. Acta Physiol. Scand. 71: 129–139, 1967.
 136. Hershko, A., and A. Ciechanover. The ubiquitin system for protein degradation. Annu. Rev. Biochem. 61: 761–807, 1992.
 137. Hickson, R. C. Interference of strength development by simultaneously training for strength and endurance. Eur. J. Appl. Physiol. 45: 255–263, 1980.
 138. Hickson, R. C., and J. R. Marone. Exercise and inhibition of glucocorticoid induced muscle atrophy. Exerc. Sport Sci. Rev. 21: 135–167, 1993.
 139. Hirshman, M. F., H. Wallberg‐Henriksson, L. J. Wardzala, E. D. Horton, and E. S. Horton. Acute exercise increases the number of plasma membrane glucose transporters in rat skeletal muscle. FEBS Lett. 238: 235–239, 1988.
 140. Hodin, R. A., M. A. Lazar, W. W. Chin. Differential and tissue‐specific regulation of the multiple rat c‐erbA messenger RNA species by thyroid hormone. J. Clin. Invest. 85: 101–105, 1990.
 141. Hodin, R. A., M. A. Lazar, B. I. Wintman, D. S. Darling, R. J. Koenig, P. R. Larsen, D. D. Moore, W. W. Chin. Identification of a thyroid hormone receptor that is pituitary‐specific. Science 244: 76–79, 1989.
 142. Hoffman, S. J., R. R. Roy, C. E. Blanco, and V. R. Edgerton. Enzyme profiles of single muscle fibers never exposed to neuromuscular activity. J. Appl. Physiol. 69: 1150–1158, 1990.
 143. Holloszy, J. O. Biochemical adaptations in muscle: effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J. Biol. Chem. 242: 2278–2282, 1967.
 144. Holloszy, J. O., and F. W. Booth. Biochemical adaptations to endurance exercise in muscle. Annu. Rev. Biochem. 38: 273–291, 1976.
 145. Holloszy, J. O., S. H. Constable, and D. A. Young. Activation of glucose transport in muscle by exercise. Diabetes Metab. Rev. 1: 409–423, 1986.
 146. Holloszy, J. O., and E. F. Coyle. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J. Appl. Physiol. 56: 831–838, 1984.
 147. Holloszy, J. O., L. B. Oscai, I. J. Don, and P. A. Mole. Mitochondrial citric acid cycle and related enzymes: adaptive response to exercise. Biochem. Biophys. Res. Commun. 40: 1368–1373, 1970.
 148. Holloszy, J. O., and W. W. Winder. Induction of δ‐aminolevulinic acid synthetase in muscle by exercise or thyroxine. Am. J. Physiol. 236 (Regulatory Integrative Conp. Physiol. 5): R180–R14, 1979.
 149. Holm, J., P. Bjorntorp, and T. Schersten. Metabolic activity in rat skeletal muscle. Eur. J. Clin. Invest. 3: 279–283, 1973.
 150. Hood, D. A., J. A. Simoneau, A. M. Kelly, and D. Pette. Effect of thyroid status on the expression of metabolic enzymes during chronic stimulation. Am. J. Physiol. 263 (Cell Physiol. 32): C788–C793, 1992.
 151. Hood, D. A., R. Zak, and D. Pette. Chronic stimulation of rat skeletal muscle induces coordinate increases in mitochondrial and nuclear mRNAs of cytochrome‐c‐oxidase subunits. Eur. J. Biochem. 179: 275–280, 1989.
 152. Hoppeler, H., and R. Billeter. Conditions for oxygen and substrate transport in muscles of exercising mammals. J. Exp. Biol. 160: 263–283, 1991.
 153. Hoppeler, H., and S. R. Kayar. Capillary and oxidative capacity of muscles. News Physiol. Sci. 3: 113–116, 1988.
 154. Howard, G., J. M. Steffen, and T. E. Geoghegan. Transcriptional regulation of decreased protein synthesis during skeletal muscle unloading. J. Appl. Physiol. 66: 1093–1098, 1989.
 155. Huang, C. F., J. Tong, and J. Schmidt. Protein kinase C couples membrane excitation to acetylcholine receptor gene inactivation in chick skeletal muscle. Neuron 9: 671–678, 1992.
 156. Hudlicka, O., M. Brown, and S. Egginton. Angiogenesis in skeletal and cardiac muscle. Physiol. Rev. 72: 369–417, 1992.
 157. Hug, H., and T. F. Sarre. Protein kinase isoenzymes: divergence in signal transduction? Biochem. J. 291: 329–343, 1993.
 158. Ianuzzo, C. D., and V. Chen. Metabolic character of hypertrophied rat muscle. J. Appl. Physiol. 46: 738–742, 1979.
 159. Ianuzzo, C. D., N. Hamilton, and B. Li. Competitive control of myosin expression: hypertrophy and hyperthyroidism. J. Appl. Physiol. 70: 2328–2330, 1991.
 160. Ianuzzo, C. D., N. Hamilton, P. J. O'brien, C. Desrosiers, and R. Chur. Biochemical transformations of canine skeletal muscle for use in cardiac‐assist devices. J. Appl. Physiol. 68: 1481–1485, 1990.
 161. Imamura, S., R. Matsuoka, E. Hiratsuka, M. Kimura, T. Nakanishi, T. Nishikawa, Y. Furutani, and A. Takao. Adaptational changes of MHC gene expression and isozyme transition in cardiac overloading. Am. J. Physiol. 260 (Heart Circ. Physiol. 29): H73–H79, 1991.
 162. Ivy, J. L. The insulin‐like effect of muscle contraction. Exerc. Sport Sci. Rev. 15: 29–51, 1987.
 163. Izawa, T., T. Komabayashi, K. Suda, Y. Kunisada, S. Shinoda, and M. Tsuboi. An acute exercise‐induced translocation of beta‐adrenergic receptors in rat myocardium. J. Biochem. (Tokyo) 105: 110–113, 1989.
 164. Izumo, S., B. Nadal‐Ginard, and V. Mahdavi. All members of the MHC multigene family respond to thyroid hormone in a highly tissue specific fashion. Science 231: 597–600, 1986.
 165. Jacobs‐El, J., M.‐Y. Zhou, and B. Russell. MRF4, myf4 and myogenin mRNAs in the adaptive responses of mature rat muscle. Am. J. Physiol. 268 (Cell Physiol. 37): C1045–C1052, 1995.
 166. James, D. E., E. W. Kraegen, and D. J. Chisholm. Effects of exercise training on in vivo insulin action in individual tissues of the rat. J. Clin. Invest. 76: 657–666, 1985.
 167. James, D. E., M. Strube, and M. Mueckler. Molecular cloning and characterization of an insulin‐regulatable glucose transporter. Nature 338: 83–87, 1989.
 168. Janssen, Y. M. W., B. Van Houten, P. J. A. Borm, and B. T. Mossman. Biology of disease. Cell and tissue responses to oxidative damage. Lab. Invest. 69: 261–274, 1993.
 169. Jansson, E., C. Sylven, and E. Nordevang. Myoglobin in the quadriceps femoris muscle of competitive cyclists and untrained men. Acta Physiol. Scand. 114: 627–629, 1982.
 170. Jeffery, S., C. D. Kelly, N. Carter, M. Kaufmann, A. Termin, and D. Pette. Chronic stimulation‐induced effects point to a coordinated expression of carbonic anhydrase III and slow myosin heavy chain in skeletal muscle. FEBS Lett. 262: 225–227, 1990.
 171. Jelkmann, W. Erythropoietin: structure, control of production and function. Physiol. Rev. 72: 449–489, 1992.
 172. Ji, L. L., D. L. F. Lennon, R. G. Kochan, F. J. Nagle, and H. A. Lardy. Enzymatic adaptation to physical training under β‐blockade in the rat. Evidence of a β2‐adrenergic mechanism in skeletal muscle. J. Clin. Invest. 78: 771–778, 1986.
 173. Jiang, B., Y. Ohira, R. R. Roy, Q. Nguyen, E. Ilyina‐Kakueva, V. Oganov, and V. R. Edgerton. Adaptation of fibers in fast twitch muscle of rats to space flight and hindlimb suspension. J. Appl. Physiol. 73 (Suppl.): 585–655, 1992.
 174. Jiang, B., R. R. Roy, and V. R. Edgerton. Enzymatic plasticity of medial gastrocnemius fibers in the adult chronic spinal cat. Am. J. Physiol. 259 (Cell Physiol. 28): C507–C514, 1990.
 175. Kandarian, S., S. O'brien, K. Thomas, L. Schulte, and J. Navarro. Regulation of skeletal muscle dihydropyridine recptor gene expression by biomechanical unloading. J. Appl. Physiol. 72: 2510–2514, 1992.
 176. Kandarian, S. C., and J. H. Williams. Contractile properties of skinned fibers from hypertrophied skeletal muscle. Med. Sci. Sports Exerc. 25: 999–1004, 1993.
 177. Kaufmann, M., J.‐A. Simoneau, J. H. Veerkamp, and D. Pette. Electrostimulation‐induced increases in fatty acid‐binding protein and myoglobin in rat fast‐twitch muscle and comparison with tissue levels in heart. FEBS Lett. 245: 181–184, 1989.
 178. Kern, M., J. A. Wells, J. M. Stephens, C. W. Elton, J. E. Friedman, E. B. Tapscott, P. H. Pekala, and G. L. Dohm. Insulin responsiveness in skeletal muscle is determined by glucose transporter (GLUT4) protein level. Biochem. J. 270: 397–400, 1990.
 179. Keyser, B., H. Hoppeler, H. Clausen, and P. Cerretelli. Muscle structure and performance capacity of Himalayan Sherpas. J. Appl. Physiol. 70: 1938–1942, 1991.
 180. Kilgore, J. L., B. F. Timson, D. K. Saunders, R. R. Kraemer, R. D. Klemm, and C. R. Ross. Stress protein induction in skeletal muscle: comparison of laboratory models to naturally occurring hypertrophy. J. Appl. Physiol. 76: 598–601, 1994.
 181. King, P. A., M. F. Hirshman, E. D. Horton, and E. S. Horton. Glucose transport in skeletal muscle vesicles from control and exercised rats. Am. J. Physiol. 257 (Cell Physiol. 26): C1128–C1134, 1989.
 182. Kirschbaum, B. J., A. Heilig, K. T. Hartner, and D. Pette. Electrostimulation‐induced fast‐to‐slow transitions of myosin light and heavy chains in rabbit fast‐twitch muscle at the mRNA level. FEBS Lett. 243: 123–126, 1989.
 183. Kirschbaum, B. J., S. Schneider, S. Izumo, V. Mahdavi, B. Nadal‐Ginard, and D. Pette. Rapid and reversible changes in myosin heavy chain expression in response to increased neuromuscular activity of rat fast‐twitch muscle. FEBS Lett. 268: 75–78, 1990.
 184. Kirschbaum, B. J., J. A. Simoneau, P. J. R. Barton, M. E. Buckingham, and D. Pette. Chronic stimulation‐induced changes of myosin light chains at the mRNA level and protein levels in rat fast‐twitch muscle. Eur. J. Biochem. 179: 23–29, 1989.
 185. Kirschbaum, B. J., J. A. Simoneau, A. Bar, P. J. Barton, M. E. Buckingham, and D. Pette. Chronic stimulation‐induced changes of myosin light chains at the mRNA and protein levels in rat fast‐twitch muscle. Eur. J. Biochem. 179: 23–29, 1989.
 186. Kirschbaum, B. J., H. B. Kucher, A. Termin, A. M. Kelley, and D. Pette. Antagonistic effects of chronic low frequency stimulation and thyroid hormone on myosin expression in rat fast‐twitch muscle. J. Biol. Chem. 265: 13974–13980, 1990
 187. Kitsis, R. N., P. M. Buttrick, E. M. McNally, M. L. Kaplan, and L. A. Leinwand. Hormonal modulation of a gene injected into rat heart in vivo. Proc. Natl. Acad. Sci. U. S. A. 88: 4138–4142, 1991.
 188. Kjaer, M. Exercise effects on adrenergic regulation of energy metabolism. Perspect. Exerc. Sci. Sports Med. 5: 345–381, 1992.
 189. Klarsfeld, A., and J.‐P. Changeux. Activity regulates the levels of acetylcholine receptor α‐subunit mRNA in cultured chicken myotubes. Proc. Natl. Acad. Sci. U. S. A. 82: 4558–4562, 1985.
 190. Klug, G., H. Reichman, and D. Pette. Rapid reduction in parvalbumin concentration during chronic stimulation of rabbit fast‐twitch muscle. FEBS Lett. 152: 180–182, 1983.
 191. Koivisto, V. A., R. E. Bourey, H. Vuorinen‐Markkola, and L. Koranyi. Exercise reduces muscle glucose transport protein (GLUT‐4) mRNA in type 1 diabetic patients. J. Appl. Physiol. 74: 1755–1760, 1993.
 192. Kornig, R. J., R. L. Warne, G. A. Brent, J. W. Harney, P. R. Larsen, and D. D. Moore. Isolation of a cDNA clone encoding a biologically active thyroid hormone receptor. Proc. Natl. Acad. Sci. U. S. A. 85: 5031–5035, 1988.
 193. Koskinen, P. J., and K. Alitalo. Role of myc amplification and overexpression in cell growth, differentiation and death. Semin. Cancer Biol. 4: 3–12, 1993.
 194. Kourembanas, S., R. L. Hannan, and D. V. Faller. Oxygen tension regulates the expression of the platelet‐derived growth factor‐B chain gene in human endothelial cells. J. Clin. Invest. 86: 670–674, 1990.
 195. Kourembanas, S., P. A. Marsden, L. P. McQuillan, and D. V. Faller. Hypoxia induces endothelin gene expression and secretion in cultured human endothelium. J. Clin. Invest. 88: 1054–1057, 1991.
 196. Kraemer, W. J., J. F. Patton, S. E. Gordon, E. A. Harman, M. R. Deschenes, K. Reynolds, R. U. Newton, N. T. Triplett, and J. E. Dziados. Compatibility of high intensity strength and endurance training on hormonal and skeletal muscle adaptations. J. Appl. Physiol. 78: 976–989, 1995.
 197. Kraus, W. E., T. S. Bernard, and R. S. Williams. Interactions between sustained contractile activity and β‐adrenergic receptors in regulation of gene expression in skeletal muscles. J. Appl. Physiol. 256 (Cell Physiol. 25): C506–C514, 1989.
 198. Kraus, W. E., J. P. Longabaugh, and S. B. Liggett. Electrical pacing induces adenylyl cyclase in skeletal muscle independent of the β‐adrenergic receptor. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E226–E230, 1992.
 199. Ku, Z., and D. B. Thomason. Soleus muscle nascent polypeptide chain elongation slows protein synthesis rate during non‐weightbearing. Am. J. Physiol. (in press).
 200. Kubo, K., and J. E. Foley. Rate‐limiting steps for insulin‐mediated glucose uptake into perfused rat hindlimb. Am. J. Physiol. 250 (Endocrinol. Metab. 13): E100–E102, 1986.
 201. Ladoux, A., and C. Frelin. Hypoxia is a strong inducer of vascular endothelial growth factor mRNA expression in the heart. Biochem. Biophys. Res. Commun. 195: 1005–1010, 1993.
 202. Ladu, M. J., H. Kapsas, and W. K. Palmer. Regulation of lipoprotein lipase in muscle and adipose tissue during exercise. J. Appl. Physiol. 71: 404–409, 1991.
 203. Lai, M. M., and F. W. Booth. Cytochrome c mRNA and β‐actin mRNA in muscles of rats fed β‐GPA. J. Appl. Physiol. 69: 843–848, 1990.
 204. Larson, L., L. Edstrom, B. Lindergren, L. Gorza, and S. Schiaffino. MHC composition and enzyme‐histochemical and physiological properties of a novel fast‐twitch motor unit type. Am. J. Physiol. 261 (Cell Physiol. 30): C93–C101, 1991.
 205. Laughlin, M. H., and R. B. Armstrong. Muscle blood flow during locomotory exercise. Exerc. Sports Sci. Rev. 13: 95–136, 1985.
 206. Laurent, G. J., M. P. Sparrow, P. C. Bates, and D. J. Millward. Turnover of muscle protein in the fowl. Changes in rates of protein synthesis and breakdown during hypertrophy of the anterior and posterior latissimus dorsi muscles. Biochem. J. 176: 407–417, 1978.
 207. Lazar, M. A., R. A. Hodin, and W. W. Chin. Human carboxyl‐terminal variant of alpha‐type c‐erbA inhibits transactivation by thyroid hormone receptors without binding thyroid hormone. Proc. Natl. Acad. Sci. U. S. A. 86: 7771–7774, 1989.
 208. Lazar, M. A., R. A. Hodin, D. S. Darling, and W. W. Chin. A novel member of the thyroid/steroid hormone receptor family is encoded by the opposite strand of the rat c‐erbA alpha transcriptional unit. Mol. Cell. Biol. 9: 1128–1136, 1989.
 209. Leberer, E., K. T. Hartner, C. Brande, J. Fujii, M. Tada, D. MacLennan, and D. Pette. Slow/cardiac sarcoplasmic reticulum calcium ATPase and phospholamban mRNAs are expressed in chronically stimulated rabbit fast‐twitch muscle. Eur. J. Biochem. 185: 51–54, 1989.
 210. Leberer, E., U. Seedorf, and D. Pette. Neural contol of gene expression in skeletal muscle. Calcium‐sequestering proteins in developing and chronically stimulated rabbit skeletal muscles. Biochem. J. 239: 195–300, 1986.
 211. Leeuw, T., and D. Pette. Coordinate changes in the expression of troponin subunit and myosin heavy‐chain isoforms during fast‐to‐slow transition of low‐frequency‐stimulated rabbit muscle. Eur. J. Biochem. 213: 1039–1046, 1993.
 212. Li, Y., C. Magarian, J. K. Teumer, and E. Stavnezer. Unique sequence, ski, in Sloan‐Kettering avian retroviruses with properties of a new cell‐derived oncogene. J. Virol. 57: 1065–1072, 1986.
 213. Locke, M., E. G. Noble, and B. G. Atkinson. Exercising mammals synthesize stress proteins. Am. J. Physiol. 258 (Cell Physiol. 27): C723–C729, 1990.
 214. Locke, M., E. G. Noble, and B. G. Atkinson. Inducible isoform of HSP70 is constitutively expressed in a muscle fiber type specific pattern. Am. J. Physiol. 261 (Cell Physiol. 30): C774–C779, 1991.
 215. Lomo, T., and J. Rosenthal. Control of ACh sensitivity by muscle activity in the rat. J. Physiol. (Lond.) 221: 493–513, 1972.
 216. Luginbuhl, A. J., G. A. Dudley, and R. S. Staron. Fiber type changes in rat skeletal muscle after intense interval training. Histochemistry 81: 55–58, 1984.
 217. MacDougall, J. D., D. G. Sale, J. R. Moroz, G. C. B. Elder, J. R. Sutton, and H. Howald. Mitochondrial volume density in human skeletal muscle following heavy resistance training. Med. Sci. Sports Exerc. 11: 164–166, 1979.
 218. MacDougall, J. D., M. A. Tarnopoolsky, A. Chesley, and S. A. Atkinson. Changes in muscle protein synthesis following heavy exercise in humans: a pilot study. Acta Physiol. Scand. 146: 403–404, 1992.
 219. Mahdavi, V., S. Izumo, and B. Nadal‐Ginard. Development and hormonal regulation of sarcomeric myosin heavy chain gene family. Circ. Res. 60: 804–814, 1987.
 220. Manthorpe, M., F. Cornefert‐Jensen, J. Hartkka, J. Feigner, A. Rundell, M. Margalith, and V. Dwarki. Gene therapy by intramuscular injection of plasmid DNA: studies on firefly luciferase gene expression in mice. Hum. Gene Ther. 4: 419–431, 1993.
 221. Marshall, B. W., J.‐M. Ren, D. W. Johnson, E. M. Gibbs, J. S. Lillquist, W. C. Soeller, J. O. Holloszy, and M. Mueckler. Germline manipulation of glucose homeostasis via alteration of glucose transporter levels in skeletal muscle. J. Biol. Chem. 268: 18442–18445, 1993.
 222. Martin, T. P., V. R. Edgerton, and R. E. Grindeland. Influence of spaceflight on rat skeletal muscle. J. Appl. Physiol. 65: 2318–2325, 1988.
 223. Mayne, C. N., T. Morkrush, C. Jarvis, J. J. Gilroy, and S. Salmons. Stimulation induced expression of slow muscle myosin in a fast muscle of the rat. FEBS Lett. 327: 297–300, 1993.
 224. McMahon, A. P., and A. Bradley. The nt‐1 (int‐1) protooncogene is required for development of a large region of the mouse brain. Cell 62: 1073–1085, 1990.
 225. Meichle, A., A. Philipp, and M. Filers. The functions of Myc proteins. Biochim. Biophys. Acta 1114: 129–146, 1992.
 226. Merlie, J. P., and J. M. Kornhauser. Neural regulation of gene expression by an acetylcholine receptor promoter in muscle of transgenic mice. Neuron 2: 1295–1300, 1989.
 227. Merlie, J. P., J. Mudd, T. S. Cheng, and E. N. Olsen. Myogenin and acetylcholine receptor α gene promoters mediate transcriptional regulation in response to motor innervation. J. Biol. Chem. 269: 2461–2467, 1994.
 228. Metzger, J. M. Mechanism of chemomechanical coupling in skeletal muscle during work. In: Perspectives in Exercise Science and Sports Medicine, edited by D. R. Lamb and C. V. Gisolfi. Indianapolis: Benchmark, 1992, p. 1–52.
 229. Mikesky, A. E., W. Mathews, C. J. Giddings, and W. S. Gonyea. Muscle enlargement and exercise performance in the cat. J. Appl. Sport Sci. Res. 3: 85–92, 1989.
 230. Milano, C. A., L. F. Allen, H. A. Rockman, P. C. Dolber, T. R. McMinn, K. R. Chien, T. D. Johnson, R. A. Bond, and R. J. Lefkowitz. Enhanced myocardial function in transgenic mice overexpressing the beta 2‐adrenergic receptor. Science 264: 582–586, 1994.
 231. Miller, W. C., R. C. Hickson, and N. B. Bass. Fatty acid binding protein in the three types of rat skeletal muscle. Proc. Soc. Exp. Biol. Med. 189: 183–188, 1988.
 232. Millward, D. J. Protein turnover in cardiac and skeletal muscle during normal growth and hypertrophy. In: Degradative Processes in Heart and Skeletal Muscle, edited by K. Wildenthal, Amersterdam: Elsevier/North Holland, 1980, p. 161–199.
 233. Miner, J. H., and B. Wold. Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc. Natl. Acad. Sci. V. S. A. 87: 1089–1093, 1990.
 234. Mitsuhashi, T., G. E. Tennyson, and V. M. Nikodem. Alternative splicing generates messages encoding rat c‐erbA proteins that do not bind thyroid hormone. Proc. Natl. Acad. Sci. U. S. A. 85: 5804–5808, 1988.
 235. Moerland, T. S., N. G. Wolfe, and M. J. Kushmenck. Administration of a creatine analogue induces isomyosin transitions in muscle. Am. J. Physiol. 257 (Cell Physiol. 26): C810–C816, 1989.
 236. Mole, P. A., L. B. Oscai, and J. O. Holloszy. Adaptation to exercise: increase in levels of palmityl CoA synthetase, carnitine palmityltransferase, and palmityl CoA dehydrogenase, and in the capacity to oxidase fatty acids. J. Clin. Invest. 50: 2323–2330, 1971.
 237. Mondon, C. E., C. B. Dolkas, and G. M. Reaven. Site of enhanced insulin sensitivity in exercise‐trained rats at rest. Am. J. Physiol. 239 (Endocrinol. Metab. 2): E169–E177, 1980.
 238. Morrison, P. R., R. B. Biggs, and F. W. Booth. Daily running for 2 wk and mRNAs for cytochrome c and α‐actin raRNA. Am. J. Physiol. 257 (Cell Physiol. 26): C936–C939, 1989.
 239. Morrison, P. R., J. A. Montgomery, T. S. Wong, and F. W. Booth. Cytochrome c protein‐synthesis rates and raRNA contents during atrophy and recovery in skeletal muscle. Biochem. J. 241: 257–263, 1987.
 240. Morrison, P. R., G. W. Muller, and F. W. Booth. Actin synthesis rate and mRNA level increase during early recovery of atrophied muscle. Am. J. Physiol. 253 (Cell Physiol. 22): C205–C209, 1987.
 241. Morrow, N. G., W. E. Kraus, J. W. Moore, R. S. Williams, and J. L. Swain. Increased expression of fibroblast growth factors in a rabbit muscle model of exercise conditioning. J. Clin. Invest. 85: 1816–1820, 1990.
 242. Murray, M. B., N. D. Zilz, N. L. McCreary, M. J. MacDonald, and H. C. Towle. Isolation and characterization of rat cDNA clones for two distinct thyroid hormone receptors. J. Biol. Chem. 263: 12770–12777, 1988.
 243. Murre, C., P. Schonleber McCaw, H. Vaessin, M. Caudy, L. Y. Jan, Y. N. Jan, C. V. Buskin, S. D. Hauschka, A. B. Lasser, H. Weintaub, and D. Baltimore. Interactions between heterologous helix‐loop‐helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58: 537–544, 1989.
 244. Neufer, P. D., and G. L. Dohm. Exercise induces a transient increase in transcription of the GLUT‐4 gene in skeletal muscle. Am. J. Physiol. 265 (Cell Physiol. 34): C1597–C1603, 1993.
 245. Neupert, W., and N. Pfanner. Roles of molecular chaperones in protein targeting to mitochondria. Philos. Trans. R. Soc. Lond. Biol. 339: 355–361, 1993.
 246. O'doherty, R. M., D. P. Bracy, H. Osawa, D. H. Wasserman, and D. K. Granner. Rat skeletal muscle hexokinase II mRNA and activity are increased by a single bout of exercise. Am. J. Physiol. 266 (Endocrinol. Metab. 29): E171–E178, 1994.
 247. Ohira, Y., B. Jiang, R. R. Roy, V. Oganov, E. Ilyina‐Kakueva, J. F. Marine, and V. R. Edgerton. Rat soleus muscle fiber responses to 14 days of spaceflight and hindlimb suspension. J. Appl. Physiol. 73 (Suppl.): 515–575, 1992.
 248. Ojamaa, K., and I. Klein. Thyroid hormone regulation of alpha‐myosin heavy chain promoter activity assessed by in vivo DNA transfer in rat heart. Biochem. Biophys. Res. Commun. 179: 1269–1275, 1991.
 249. Olson, E. N. MyoD family: a paradigm for development? Genes Dev. 4: 2104–2111, 1990.
 250. Packer, L. Protective role of vitamin E in biological systems. Am. J. Clin. Nutr. 53: 1050S–1055S, 1991.
 251. Patapoutian, A., J. H. Miner, G. E. Lyons, and B. Wold. Isolated sequences from the linked Myf‐5 and MRF4 genes drive distinct patterns of muscle‐specific expression intransgenic mice. Development 118: 61–68, 1993.
 252. Pattengale, P. K., and J. O. Holloszy. Augmentation of skeletal muscle myoglobin by a program of treadmill running. Am. J. Physiol. 213: 783–785, 1967.
 253. Periasamy, M., P. Gregory, B. J. Martin, and W. S. Stirewalt. Regulation of myosin heavy chain gene expression during skeletal‐muscle hypertrophy. Biochem. J. 257: 691–698, 1989.
 254. Pette, D. Activity induced fast to slow transitions in mammalian muscle. Med. Sci. Sports Exerc. 16: 517–528, 1984.
 255. Pette, D., and R. S. Staron. Cellular and molecular diversities of mammalian muscle fibers. Rev. Physiol. Biochem. Pharmacol. 116: 1–76, 1990.
 256. Ploug, T., H. Galbo, and E. A. Richter. Increased muscle glucose uptake during contractions: no need for insulin. Am. J. Physiol. 247 (Endocrinol. Metab. 10): E726–E731, 1984.
 257. Ploug, T., B. M. Stallknecht, O. Petersen, B. B. Kahn, T. Ohkuwa, J. Vinten, and H. Galbo. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle. Am. J. Physiol. 259 (Endocrinol. Metab. 22): E778–E786, 1990.
 258. Plourde, G., S. Rousseau‐Migneron, and A. Nadeau. Effect of endurance training on β‐adrenergic system in three different skeletal muscles. J. Appl. Physiol. 74: 1641–1646, 1993.
 259. Powers, S. K., D. Criswell, J. Lawler, L. L. Ji, D. Martin, R. A. Herb, and G. Dudley. Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am. J. Physiol. 266 (Regulatory Integrative Comp. Physiol. 35): R375–R380, 1994.
 260. Reichmann, H., R. Wast, J.‐A. Simineau, and D. Pette. Enzyme activities of fatty acid oxidation and the respiratory chain in chronically stimulated fast‐twitch muscle of the rabbit. Pflugers Arch. 418: 572–574, 1991.
 261. Reiser, P. J., R. L. Moss, G. G. Giulian, and M. L. Greaser. Shortening velocity in single fibers from adult rabbit soleus muscle is correlated with myosin heavy chain composition. J. Biol. Chem. 260: 9077–9080, 1985.
 262. Ren, J.‐M., B. A. Marshall, E. A. Gulve, J. Gao, D. W. Johnson, J. O. Holloszy, and M. Mueckler. Evidence from transgenic mice that glucose transport is rate‐limiting for glycogen deposition and glycolysis in skeletal muscle. J. Biol. Chem. 268: 16113–16115, 1993.
 263. Ren, J.‐M., C. F. Semenkovich, and J. O. Holloszy. Adaptation of muscle to creatine depletion: effect on GLUT4 glucose transporter expression. Am. J. Physiol. 264 (Cell Physiol. 33): C146–C150, 1993.
 264. Rhodes, S. J., and S. F. Konieczny. Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev. 3: 2050–2061, 1989.
 265. Richter, E. A., P. J. Cleland, S. Rattigan, and M. G. Clark. Contraction‐associated translocation of protein kinase C in rat skeletal muscle. FEBS Lett. 217: 232–236, 1987.
 266. Riley, D. A., J. L.W. Bain, S. Ellis, and A. L. Haas. Quantitation and immunocytochemical localization of ubiquitin conjugates within rat red and white skeletal muscles. J. Histochem. Cytochem. 36: 621–632, 1988.
 267. Riley, D. A., S. Ellis, C. S. Giometti, J. F. Y. Hoh, E. I. Ilyina‐Kakueka, V. S. Organov, G. R. Slocum, L. W. Bain, and F. R. Sedlak. Muscle sarcomere lesions and thrombosis after spaceflight and suspension unloading. J. Appl. Physiol. 73: 33S–43S, 1992.
 268. Riley, D. A., E. I. Ilyina‐Kakueva, S. Ellis, J.L.W. Bain, G. R. Slocum, and F. R. Sedlar. Skeletal muscle fiber, nerve, and blood vessel breakdown in space‐flown rats. FASEB J. 4: 84–91, 1990.
 269. Rios, E., and G. Pizarro. Voltage sensor of excitation‐contraction coupling in skeletal muscle. Physiol. Rev. 71: 849–908, 1991.
 270. Rindt, H., J. Gulick, S. Knotts, J. Neumann, and J. Robbins. In vivo analysis of the murine beta‐myosin heavy chain gene promoter. J. Biol. Chem. 268: 5332–5338, 1993.
 271. Rodnick, K. J., E. J. Henriksen, D. E. James, and J. O. Holloszy. Exercise training, glucose transporters, and glucose transport in rat skeletal muscles. Am. J. Physiol. 262 (Cell Physiol. 31): C9–C14, 1992.
 272. Rodnick, K. J., J. O. Holloszy, C. E. Mondon, and D. E. James. Effects of training on insulin‐regulatable glucose‐transporter protein levels in rat skeletal muscle. Diabetes 39: 1425–1429, 1990.
 273. Rodnick, K. J., G. M. Reaven, S. Azhar, M. H. Goodman, and C. E. Mondon. Effects of insulin on carbohydrate and protein metabolism in voluntary running rats. Am. J. Physiol. 259 (Endocrinol Metab. 22): E706–E714, 1990.
 274. Rottman, J. N., W. R. Thompson, B. Nadal‐Ginard, and V. Mahdavi. Myosin heavy chain gene expression: interplay of cis and trans factors determines hormonal and tissue specificity. In: Dynamic State of Muscle Fibers, edited by D. Pette, New York: Walter de Gruyter and Co., 1990, p. 3–16.
 275. Rowell, L. B. Muscle blood flow in humans: how high can it go? Med. Sci. Sports Exerc. 20: S97–S103, 1988.
 276. Rowell, L. B. Human Cardiovascular Control. New York: Oxford University Press, 1993.
 277. Rowell, L. B., B. Saltin, B. Kiens, and N. J. Christensen. Is peak quadriceps blood flow in humans even higher during exercise with hypoxemia? Am. J. Physiol. 251 (Heart Circ. Physiol. 20): H1038–H1044, 1986.
 278. Roy, R. R., K. M. Baldwin, and V. R. Edgerton. The plasticity of skeletal muscle: effects of neuromuscular activity. Exerc. Sports Sci. Rev. 19: 269–312, 1991.
 279. Roy, R. R., K. M. Baldwin, T. P. Martin, S. P. Cimarusti, and V. R. Edgerton. Biochemical and physiological changes in overloaded rat fast‐and‐slow‐twitch ankle extensors. J. Appl. Physiol. 59: 639–640, 1985.
 280. Roy, R. R., I. D. Meadows, K. M. Baldwin, and V. R. Edgerton. Functional significance of compensatory overloaded rat fast muscle. J. Appl. Physiol. 52: 473–478, 1982.
 281. Roy, R. R., R. D. Sacks, K. M. Baldwin, M. Short, and V. R. Edgerton. Interrelationships of contraction time, Vmax and myosin ATPase after spinal transection. J. Appl. Physiol. 56: 1594–1601, 1984.
 282. Sadoshima, J., and S. Izumo. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J. 12: 1681–1692, 1993.
 283. Sadoshima, J., Y. Xu, H. S. Slayter, and S. Izumo. Autocrine release of angiotensin II mediates stretch‐induced hypertrophy of cardiac myocytes in vitro. Cell 75: 977–984, 1993.
 284. Salmons, S., and J. Henriksson. Tha adaptive response of skeletal muscle to increased use. Muscle Nerve 4: 94–105, 1981.
 285. Salo, D. C., C. M. Donovan, and K. J. A. Davies. HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Rad. Biol. Med. 11: 239–246, 1991.
 286. Saltin, B. Hemodynamic adaptations to exercise. Am. J. Cardiol. 55: 42D–47D, 1985.
 287. Saltin, B., and P. D. Gollnick. Skeletal muscle adaptability: significance for metabolism and performance. In: Handbook of Physiology, Skeletal Muscle, Skeletal Muscle, edited by L. D. Peachey. Bethesda, MD: Am. Physiol. Soc., 1985, p. 555–631.
 288. Saltin, B. Capacity of blood flow delivery to exercising skeletal muscle in humans. Am J. Cardiol. 62: 30E–35E, 1988.
 289. Salviati, G., R. Betto, D. Danieli‐Betto, and M. Zeviani. Myofibrillar‐protein isoforms and sarcoplasmic reticulum calcium transport activity of single human muscle fibers. Biochem. J. 224: 215–225, 1983.
 290. Sassoon, D., G. Lyons, W. E. Wright, V. Lin, A. Lasser, H. Weintaub, and M. Buckingham. Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis. Nature 341: 303–307, 1989.
 291. Sayer, M. R., K. K. Rohrer, and W. W. Dillman. Thyroid hormone response of slow and fast‐sarcoplasmic reticulum calcium ATPase in RNA in striated muscle. Mol. Cell. Endocrinol. 87: 87–93, 1992.
 292. Schantz, P., R. Billeter, J. Henriksson, and E. Jansson. Training induced increase in myfibrillar ATPase intermediate fibers in human skeletal muscle. Muscle Nerve 5: 628–636, 1982.
 293. Schiaffino, S., L. Gorza, S. Sartore, L. Saggin, S. Ausoni, M. Vianello, K. Gundersen, and T. Lomo. Three myosin heavy chains isoforms in type 2 skeletal muscle fibers. J. Muscle Res. Cell Motil. 10: 197–205, 1989.
 294. Schimke, R. E. Regulation of protein degradation in mammalian tissues. In: Mammalian Protein Metabolism, Vol. IV, edited by H. N. Munro. New York: Academic Press, 1970, p. 177–228.
 295. Schulte, L. M., J. Navarro, and S. C. Kandarian. Regulation of sarcoplasmic reticulum calcium pump gene expression by hindlimb unweighting. Am. J. Physiol. 264 (Cell Physiol. 33): C1308–C1315, 1993.
 296. Schwerzmann, K., H. Hoppeler, S. R. Kayar, and E. R. Weibel. Oxidative capacity of muscle and mitochondria: correlation of physiological, biochemical, and morphometric characteristics. Proc. Natl. Acad. Sci. U. S. A. 86: 1583–1587, 1989.
 297. Seedorf, U., E. Leberer, B. J. Kirschbaum, and D. Pette. Neural control of gene expression in skeletal muscle. Effects of chronic stimulation on lactate dehydrogenase isoenzymes and citrate synthase. Biochem J. 239: 115–120, 1986.
 298. Segal, S. S. Convection, diffusion and mitochondrial utilization of oxygen during exercise. Perspect. Exerc. Sci. Sports Med. 5: 269–344, 1992.
 299. Semenza, G. L., and G. L. Wang. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12: 5447–5454, 1992.
 300. Sherman, S. J., and W. A. Catterall. Electrical activity and cytosolic calcium regulate levels of tetrodotoxin‐sensitive sodium channels in cultured rat muscle cells. Proc. Natl. Acad. Sci. U. S. A. 81: 262–266, 1984.
 301. Sherman, S. J., J. Chriva, and W. A. Catterall. Cyclic adenosine 3′:5′‐monophosphate and cytosolic calcium exert opposing effects on biosynthesis of tetrodotoxin‐sensitive sodium channels in rat muscle cells. J. Neurosci. 5: 1570–1576, 1985.
 302. Shimizu, N., E. Dizon, and R. Zak. Both muscle specific and ubiquitous nuclear factors are required for muscle specific expression of myosin heavy chain beta‐gene in cultured cells. Mol. Cell. Biol. 12: 619–630, 1992.
 303. Shimomura, I., K. Tokunaga, K. Kotani, Y. Keno, M. Yanase‐Fujiwara, K. Kanosue, S. Jiao, T. Funahashi, T. Kobatake, T. Yamamoto, and Y. Matsuzawa. Marked reduction of acyl CoA synthetase activity and mRNA in intra‐abdominal visceral fat by physical exercise. Am. J. Physiol. 265 (Endocrinol. Metab. 28): E44–E50, 1993.
 304. Shoubridge, E. A., A. J. Collins, D. J. Hayes, and G. K. Radda. Biochemical adaptation in the skeletal muscle of rats depleted of creatine with the substrate analogue β‐guanidinopropionic acid. Biochem. J. 232: 125–131, 1985.
 305. Shreeniwas, R., S. Koga, M. Karaurum, D. Pinsky, E. Kaiser, J. Brett, B. A. Wolitzky, C. Norton, J. Piocinski, D. K. Burns, A. Goldstein, and D. Stern. Hypoxia‐mediated induction of endothelial cell interleukin‐1α. J. Clin. Invest. 90: 2333–2339, 1992.
 306. Shweiki, D., A. Itin, D. Soffer, and E. Keshet. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia‐initiated angiogenesis. Nature 359: 843–845, 1992.
 307. Simoneau, J.‐A., M. Kaufmann, and D. Pette. Asynchronous increases in oxidative capacity and resistance to fatigue of electrostimulated muscles of rat and rabbit. J. Physiol. (Lond.) 460: 573–580, 1993.
 308. Simonides, W. S., G. C. van der Linden, and C. van Hardeveld. Thyroid hormone differentially affects mRNA levels of calcium ATPase isozymes of sarcoplasmic reticulum in fast and slow skeletal muscles. FEBS Lett. 278: 73–76, 1990.
 309. Sjodin, B., Y. H. Westing, and F. S. Apple. Biochemical mechanisms for oxygen free radical formation during exercise. Sports Med. 10: 236–254, 1990.
 310. Staron, R. S., M. J. Leonardi, D. L. Karapondo, E. S. Molicky, J. E. Folkel, F. C. Hagerman, and R. S. Hikida. Strength and skeletal muscle adaptations in heavy‐resistance‐trained women after detraining and retraining. J. Appl. Physiol. 70: 631–640, 1991.
 311. Sternlicht, E., R. J. Barnard, and G. K. Grimditch. Exercise and insulin stimulate skeletal muscle glucose transport through different mechanisms. Am. J. Physiol. (Endocrinol. Metab. 19) 256: E227–E230, 1989.
 312. Stockdale, F. E., and J. B. Miller. The cellular basis of myosin heavy chain isoform expression during development of avian skeletal muscles. Dev. Biol. 123: 1–9, 1987.
 313. Sugiura, T., H. Miyata, Y. Kawai, H. Matoba, and N. Murakami. Changes in myosin heavy chain isoform expression of overloaded rat skeletal muscle. Int. J. Biochem. 25: 1609–1613, 1993.
 314. Sullivan, M. J., P. F. Binkley, D. V. Unverferth, J.‐H. Ren, H. Boudoulas, T. M. Bashore, A. J. Merola, and C. V. Leier. Prevention of bedrest‐induced physical deconditioning by daily dobutamine infusions. J. Clin. Invest. 76: 1632–1642, 1985.
 315. Sundberg, C. J. Exercise and training during graded leg ischemia in healthy man. Acta Physiol. Scand. 150 (Suppl.): 615, 1994
 316. Sutrave, P., A. M. Kelly, and S. H. Hughes. ski can cause selective growth of skeletal muscle in transgenic mice. Genes Dev. 4: 1462–1472, 1990.
 317. Sutton, J. R., and P. Farell. Endocrine responses to prolonged exercise. In: Perspectives in Exercise Science and Sports Medicine, edited by R. Lamb and R. Murray, Indianapolis: Benchmark, 1988, p. 153–212.
 318. Swoap, S. J., F. Haddad, P. Bodell, and K. M. Baldwin. Effect of chronic energy deprivation on cardiac thyroid receptor and myosin isoform expression. Am. J. Physiol. 266 (Endocrinol. Metab. 29): E254–E260, 1994.
 319. Swoap, S. J., F. Haddad, V. J. Caiozzo, R. E. Herrick, S. A. McCue, and K. M. Baldwin. Interaction of thyroid hormone and functional overload on skeletal muscle isomyosin expression. J. Appl. Physiol. 77: 621–629, 1994.
 320. Takeda, S., D. L. North, M. M. Labich, S. D. Russell, and R. G. Whalen. A possible regulatory role for conserved promotor motifs in an adult‐specific muscle myosin gene from mouse. J. Biol. Chem. 267: 16957–16967, 1992.
 321. Thomason, D. B., R. B. Biggs, and F. W. Booth. Protein metabolism and β‐myosin heavy‐chain mRNA in unweighted soleus muscle. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 26): R300–R305, 1989.
 322. Thomason, D. B., R. E. Herrick, D. Surdyka, and K. M. Baldwin. Alteration of soleus muscle contractile proteins during hindlimb suspension and subsequent recovery. J. Appl. Physiol. 63: 130–137, 1987.
 323. Thomason, D. B., P. R. Morrison, V. Oganov, E. Ilyina‐Kakueka, F. W. Booth, and K. M. Baldwin. Altered actin and myosin expression in muscle during exposure to microgravity. J. Appl. Physiol. 73 (Suppl.): 90S–93S, 1992.
 324. Thompson, C. C., C. Weinberger, R. Lebo, and R. M. Evans. Identification of a novel thyroid hormone receptor expressed in the mammalian central nervous system. Science 237: 1610–1614, 1987.
 325. Thompson, W. R., B. Nadal‐Ginard, and V. Mahdevi. A myo D‐1 independent muscle specific enhancer controls the expression of the beta myosin heavy chain gene in skeletal muscle and cardiac muscles. J. Biol. Chem. 266: 22678–22688, 1991.
 326. Timson, B. F. Evaluation of animal models for the study of exercise‐induced muscle enlargement. J. Appl. Physiol. 69: 1935–1945, 1990.
 327. Tomita, T., T. Murakami, T. Iwase, K. Nagai, J. Fujita, and S. Sasayamma. Chronic dynamic exercise improves a functional abnormality of the G stimulatory protein in cardiomyopathetic BIO 53.58 Syrian hamsters. Circulation 89: 836–845, 1994.
 328. Torgan, C. E., J. T. Brozinick, E. A. Banks, M. Y. Cortez, R. E. Wilcox, and J. L. Ivy. Exercise training and clenbuterol reduced insulin resistance of obese Zucker rats. Am. J. Physiol. 264 (Endocrinol. Metab. 27): E373–E379, 1993.
 329. Town, G. P., and D. A. Essig. Cytochrome oxidase in muscle of endurance‐trained rats: subunit mRNA contents and heme synthesis. J. Appl. Physiol. 74: 192–196, 1993.
 330. Tseng, B. S., C. E. Kasper, and V. R. Edgerton. Cytoplasmic‐to‐myonucleus ratios and succinate dehydrogenase activities in adult rat slow and fast muscle fibers. Cell Tiss. Res. 247: 39–49, 1994.
 331. Tseng, B. S., D. R. Marsh, M. T. Hamilton, and F. W. Booth. Strength and aerobic training attenuates muscle wasting and improves resistance to the development of disability with aging. J. Gerontol. (in press, 1995).
 332. Tsika, R. W., S. D. Hauschka, and L. Gao. M‐creatine kinase gene in mechanically overloaded skeletal muscle of transgenic mice. Am. J. Physiol. 269 (Cell Physiol. 38): C665–C674, 1995.
 333. Tsika, R. W., and L. Y. Gao. Metabolic and contractile protein adaptations in response to increased mechanical loading. In: Biochemistry of Exercise. Champaign, IL: Human Kinetics.
 334. Tsika, R. W., R. E. Herrick, and K. M. Baldwin. Time‐course adaptations in rat skeletal muscle isomyosins during compensatory growth regression. J. Appl. Physiol. 63: 2111–2120, 1987.
 335. Tullson, P. C., and R. L. Terjung. Adenine nucleotide metabolism in contracting muscle. Exerc. Sports Sci. Rev. 19: 507–538, 1991.
 336. Ulmer, J. B., J. J. Donnelly, S. E. Parker, G. H. Rhodes, P. L. Feigner, V. J. Dwarki, S. H. Gromkowski, R. R. Deck, C. M. De Witt, A. Friedman, L. A. Hawe, K. R. Leander, D. Martinez, H. C. Perry, J. W. Shiver, D. L. Montgomery, and M. A. Liu. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259: 1745–1749, 1993.
 337. Underwood, L. E., and R. S. Williams. Pretranslational regulation of myoglobin gene expression. Am. J. Physiol. 252 (Cell Physiol. 21): C450–C453, 1987.
 338. van Deursen, J., A. Heerschap, F. Oerlemans, W. Ruitenbeek, P. Jap, H. ter Laak, and B. Wieringa. Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity. Cell 74: 621–631, 1993.
 339. van Breda, E., H. A. Keizer, M. M. Vork, D. A. M. Surtel, Y. F. de Jong, G. J. van der Vusse, and J. F. C. Glatz. Modulation of fatty‐acid‐binding protein content of rat heart and skeletal muscle by endurance training and testosterone treatment. Pflugers Arch. 421: 274–279, 1992.
 340. Vestergaard, H., P. Andersen, S. Lund, O. Schitz, S. Junker, and O. Pederson. Pre‐ and posttranslational upregulation of muscle‐specific glycogen synthase in athletes. Am. J. Physiol. 266 (Endocrinol. Metab. 29): E92–E101, 1994.
 341. Vincent, C. K., A. Gualberto, C. V. Patel, and K. Walsh. Different regulatory sequences control creatine kinase‐M gene expression in directly injected skeletal and cardiac muscle. Mol. Cell. Biol. 13: 1264–1272, 1993.
 342. Virbasius, J. V., and R. C. Scarpulla. The cytochrome c oxidase subunit IV gene family: tissue‐specific and hormonal differences in subunit IV and cytochrome c mRNA expression. Nucleic Acids Res. 18: 6581–8586, 1990.
 343. von Harsdorf, R., R. J. Schott, Y.‐T. Shen, S. F. Vatner, V. Mahdavi, and B. Nadal‐Ginard. Gene injection into canine myocardium as a useful model for studying gene expression in the heart of large mammals. Circ. Res. 72: 688–695, 1993.
 344. Wake, S. A., J. A. Sowden, L. H. Storlien, D. E. James, P. W. Clark, J. Shine, D. J. Chisholm, and E. W. Kraegen. Effects of exercise training and dietary manipulation on in‐sulin‐regulatable glucose‐transporter mRNA in rat muscle. Diabetes 40: 275–279, 1991.
 345. Wallberg‐Henriksson, H., and J. O. Holloszy. Contractile activity increases glucose uptake by muscle in severely diabetic rats. J. Appl. Physiol. 57: 1045–1049, 1984.
 346. Walmsley, B., J. A. Hodgson, and R. E. Burke. Forces produced by medical gastrocnemius and moving cats. J. Neurophysiol. 41: 1203–1215, 1978.
 347. Wang, G. L., and G.I. Semenza. General involvement of hypoxia‐inducible factor 1 in transcriptional response to hypoxia. Proc. Natl. Acad. Sci. U. S. A. 90: 4304–4308, 1993.
 348. Watson, P. A., J. P. Stein, and F. W. Booth. Changes in actin synthesis and α‐actin‐mRNA content in rat muscle during immobilization. Am. J. Physiol. 247 (Cell Physiol. 16): C39–C44, 1984.
 349. Watson, P. A. Accumulation of cAMP and calcium in S49 mouse lymphoma cells following hyposmotic swelling. J. Biol. Chem. 264: 14735–14740, 1989.
 350. Watson, P. A. Function follows form: generation of intracellular signals by cell deformation. FASEB J. 5: 2013–2019, 1991.
 351. Weber, J.‐M. Pathways for oxidative fuel provision to working muscles: ecological consequences of maximal supply limitations. Experimentia 48: 557–564, 1992.
 352. Webster, K. A. Regulation of glycolytic enzyme RNA transcriptional rates by oxygen availability in skeletal muscle cells. Mol. Cell. Biochem. 77: 19–28, 1987.
 353. Weibel, E. R., C. R. Taylor, and H. Hoppler. The concept of symmorphosis: a testable hypothesis of structure‐function relationship. Proc. Natl. Acad. Sci. U. S. A. 88: 10357–10361, 1991.
 354. Wiedenman, J. L., I. Rivera‐Rivera, D. Vyas, G. Tsika, L. Gao, K. Sheriff‐Carter, L. T. Kwan, and R. W. Tsika. Induction of β‐myosin heavy chain and slow myosin light chain transgenes in mechanically overloaded fast‐twitch muscle of transgenic mice. Am. J. Physiol. (Cell Physiol) (in press).
 355. Weinberger, C., C. C. Thompson, E. S. Ong, R. Lebo, D. J. Gruol, and R. M. Evans. The c‐erb‐A gene encodes a thyroid hormone receptor. Nature 324: 641–646, 1986.
 356. Weintaub, H., R. Davis, S. Tapscott, M. Thayer, M. Krause, R. Benezra, T. K. Blackwell, T. Turner, D. Rupp, R. Rupp, S. Hollenberg, Y. Zhuang, and A. Lasser. The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251: 761–766, 1991.
 357. Welch, W. J. Heat shock proteins functioning as molecular chaperones: their roles in normal and stressed cells. Philos. Trans. R. Soc. Lond. Biol. 339: 327–333, 1993.
 358. Wells, D. J., and G. Goldspink. Age and sex influence of plasmid DNA directly injected into mouse skeletal muscle. FEBS Lett. 306: 203–205, 1992.
 359. Whitelaw, P. A., and J. E. Hesketh. Expression of c‐myc and c‐fos in rat skeletal muscle. Evidence for increased levels of c‐myc mRNA during hypertrophy. Biochem. J. 281: 143–147, 1992.
 360. Williams, R. S., M. G. Caron, and K. Daniel. Skeletal muscle β‐adrenegic receptors: variations due to fiber type and training. Am. J. Physiol. 246 (Endocrinol. Metab. 9): E160–E167, 1984.
 361. Williams, R. S., M. Garcia‐Moll, J. Mellor, S. Salmons, and W. Harlan. Adaptations of skeletal muscle to increased contractile activity. J. Biol. Chem. 262: 2764–2767, 1987.
 362. Winder, W. W., K. M. Baldwin, and J. O. Holloszy. Enzymes involved in ketone utilization in different types of muscle: adaptation to exercise. Eur. J. Biochem. 47: 461–467, 1974.
 363. Witt, E. H., A. Z. Reznick, C. A. Viguie, P. Starke‐Reed, and L. Packer. Exercise, oxidative damage and effects of antioxidant manipulation. Am. J. Nutr. 122: 766–773, 1992.
 364. Wolff, J. A., M. E. Dowty, S. Jiao, G. Repetto, R. K. Berg, J. T. Ludtke, and P. Williams. Expression of naked plasmids by cultured myotubes and entry of plasmids into T tubules and caveolae of mammalian skeletal muscle. J. Cell Sci. 103: 1249–1259, 1992.
 365. Wolff, J. A., R. W. Malone, P. Williams, W. Chong, G. Acsadi, A. Jani, and P. L. Feigner. Direct gene transfer into mouse muscle in vivo. Science 247: 1465–1468, 1990.
 366. Wolff, J. A., P. Williams, G. Acsadi, S. Jiao, A. Jani, and W. Chong. Conditions affecting direct gene transfer into rodent muscle in vivo. Biotechniques 11: 474–485, 1991.
 367. Wong, T. S., and F. W. Booth. Protein metabolism in rat gastrocnemius muscle after stimulated chronic concentric exercise. J. Appl. Physiol. 69: 1709–1717, 1990.
 368. Wong, T. S., and F. W. Booth. Protein metabolism in rat tibialis anterior muscle after stimulated chronic eccentric exercise. J. Appl. Physiol. 69: 1718–1724, 1990.
 369. Wright, W. E., D. A. Sassoon, and V. K. Lin. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD1. Cell 56: 607–617, 1989.
 370. Wu, K. D., and J. Lytton. Molecular cloning and quantitation of sarcoplasmic reticulum Ca2+ ATPase isoforms in rat muscles. Am. J. Physiol. 264 (Cell Physiol. 33): C333–C341, 1993.
 371. Yamada, S., N. Buffinger, J. Di Mario, and R. C. Strohman. Fibroblast growth factor is stored in fiber extracellular matrix and plays a role in regulating muscle hypertrophy. Med. Sci. Sports Exerc. 21: S173–S180, 1989.
 372. Yamazaki, T., K. Tobe, E. Hoh, K. Maemura, T. Kaida, I. Komuro, H. Tanemoto, T. Kadowaki, R. Nagai, and Y. Yazaki. Mechanical loading activates mitogen‐activated protein kinase and S6 peptide kinase in cultured rat cardiac myocytes. J. Biol. Chem. 268: 12069–12076, 1993.
 373. Yan, Z., and F. W. Booth. Potential role of the 3′‐untranslated region in cytochrome c gene expression in slow red and fast white skeletal muscle (in press).
 374. Yan, Z., Y. Dang, S. Salmons, and F. W. Booth. Skeletal muscle contractile activity increases cytochrome c gene expression: a potential role of decreased RNA‐protein interaction in the 3′ untranslated region.
 375. Yan, Z., S. Salmons, J. Jarvis, and F. W. Booth. Increased carnitine palmitoyltransferase mRNA after increased contractile activity. Am. J. Physiol. 1995.
 376. Yasheski, K. E., V. Aroniadou, and P. W. R. Lemon. Effect of heavy resistance training on skeletal muscle hypertrophy in rats (Abstract). Med. Sci. Sports Exerc. 19: 515, 1987.
 377. Yarasheski, K. E., J. A. Campbell, K. Smith, M. J. Rennie, J. O. Holloszy, and D. M. Bier. Effect of growth hormone and resistance exercise on muscle growth in young men. Am. J. Physiol. 262 (Endocrinol. Metab. 25): E26–E267, 1992.
 378. Yen, P. M., D. S. Darling, R. L. Cortez, M. Forgione, P. U. Umeda, and W. W. Chin. T3 decreases binding to DNA by receptor homodymers, but not receptor‐auxiliary protein heterodimers. J. Biol. Chem. 267: 3565–3568, 1992.
 379. Yokota, S. Immunoelectron microscopic localization of albumin in smooth and striated muscle tissues of rat. Histochemistry 74: 379–386, 1982.
 380. Zemen, R. J., R. Ludeman, T. G. Easton, and J. D. Etlinger. Slow to fast alterations in skeletal muscle fibers caused by clenbuterol, a beta 2‐receptor agonist. Am. J. Physiol. 254 (Endocrinol. Metab. 17): E726–E732, 1988.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Frank W. Booth, Kenneth M. Baldwin. Muscle Plasticity: Energy Demand and Supply Processes. Compr Physiol 2011, Supplement 29: Handbook of Physiology, Exercise: Regulation and Integration of Multiple Systems: 1075-1123. First published in print 1996. doi: 10.1002/cphy.cp120124