Comprehensive Physiology Wiley Online Library

Energy Transduction Mechanisms (Animals and Plants)

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 The Animal Cell
1.1 General Pattern of the Energy Transductions
1.2 Substrate‐Level Phosphorylations
1.3 Respiratory Chain
1.4 H+‐ATP‐Synthase and H+‐ATPases
1.5 Na+/K+‐ATPase and Ca2+‐ATPase
1.6 Δμ̅H+ and Δμ̅Na+‐Driven Transports of Solutes
1.7 H+‐Nicotinamide Nucleotide‐Transhydrogenase
1.8 Δμ̅H+ as an Energy Source for Heat Production
1.9 Intracellular Power Transmission
2 The Plant Cell
2.1 General Pattern of the Energy Transductions
2.2 Photoredox Chain
2.3 H+‐ATP‐Synthase, H+‐ATPases and H+‐Pyrophosphatase
3 Conclusion
Figure 1. Figure 1.

ΔΨ (A) and ΔpH (B) between two compartments separated by a membrane (vertical septum).

Figure 2. Figure 2.

Localization of the energy transduction processes in the animal cell, (1) Respiratory chain pumps H+ from mitochondria. (2) H+ comes back performing chemical work (ATP synthesis) or “osmotic work” (uphill transport of metabolites). (3) ATP is formed by glycolysis. (4) Chemical, “osmotic,” and mechanical work is driven by ATP hydrolysis. (5) Na+ is extruded from the cell by Na+/K+‐ATPase. (6) Na+ comes into the cell via Na+, solute‐symporters of the outer cell membrane. (7) H+ is pumped to the secretory granules, lysosomes, etc. by H+‐ATPase of vacuolar type. (8) The H+ efflux from these vesicles supports “osmotic work.”

Figure 3. Figure 3.

Energy‐yielding metabolic pathways of the animal cell. 1–6, glycolysis (3‐PGA, 2‐PGA and PEP, 3‐phosphoglyceraldehyde, 2‐phosphoglycerate and phosphoenolpyruvate, respectively); 7, oxidative decarboxylation of pyruvate; 8–14, the citric acid cycle; 15, lipolysis of the neutral fat; 16, glycerol phosphorylation and oxidation; 17–19, β‐oxidation of fatty acid (R, remainder of the fatty acid hydrocarbon chain); 20, proteolysis; 21, conversion of various amino acids to pyruvate, acetyl CoA and the citric acid cycle intermediates; 22–24, the respiratory chain; 25, reduction of CoQ by FADH2 produced in reactions 12 and 17; 26, ATP formation by H+‐ATP‐synthase. Energy transductions, namely formation of or high‐energy ATP precursors takes place at stages 3, 4, 11, 22, 23, and 24.

Figure 4. Figure 4.

Glycolytic substrate‐level phosphorylations. E, remainder of glyceraldehyde 3‐phosphate dehydrogenase; ‐SH and B, Cys‐149 and His‐176 of this enzyme.

Figure 5. Figure 5.

Phosphorylation coupled to the oxidative decarboxylation of α‐ketoglutarate. TPT, thiamine pyrophosphate; L, remainder of lipoate; E, succinate thiokinase.

Figure 6. Figure 6.

Respiratory chain of mitochondria. AH2, A respiratory substrate; FeS11,2,3,4, corresponding iron‐sulfur centers of NADH‐CoQ reductase; bb and bb high‐ and low‐potential hemes of cytochrome b; FeSIII, iron‐sulfur protein of the complex III; c1, c, a, and a3, corresponding cytochromes.

Figure 7. Figure 7.

Electron microscopic analysis of single NADH‐CoQ reductase molecule from Neurospora crassa and its hydrophobic membranous fraction, (a) The average particle of the whole enzyme; (b) an average of the hydrophobic fraction; (c) the averaged particle of the whole enzyme superimposed by the averaged particle of the hydrophobic fraction. Bar, 20 nm. It is assumed that the hydrophobic subcomplex is plugged through the membrane whereas the hydrophilic subcomplex is protruded to the mitochrondrial matrix space

From Weiss et al. 208 with permission
Figure 8. Figure 8.

Projections of CoQH2‐cytochrome c reductase reconstructed by means of an electron microscopic study of membrane crystals. The white horizontal section represents the membrane bilayer, the upper dark area the matrix space of mitochondria and the lower dark area the intermembrane space

From Leonard et al. 105 with permission
Figure 9. Figure 9.

Structure of cyochrome c from tuna muscle mitochondria. Heme and its ligands are shown by black lines

From Salamma 160 with permission
Figure 10. Figure 10.

The X‐ray structure of bovine cytochrome c oxidase at 2.8 Å resolution. Schematic representation of metal and heme location

From Tsukihara et al. 195 with permission
Figure 11. Figure 11.

The negative staining of the inside‐out submitochrondrial vesicles. As can be seen, there are numerous knobs on the outer side of the membrane. These knobs are factors F1 of H+‐ATP synthase, protruding from the membrane (negative staining, electron microphotograph by L. E. Bakeeva).

Figure 12. Figure 12.

The structure of isolated beef heart mitochondrial factor F1. Final result of the image analysis of 379 projections of negatively stained F1 molecules

From Boekema et al. 19 with permission
Figure 13. Figure 13.

H+‐ATP synthase mechanism: translocation of two or three hydrogen ion (nH+) via F0 results in a conformation change in F1 which facilitates the release of the tightly‐bound ATP from the F1 catalytic site. Hydrogen ions passing F0 are not involved in H2O formation accompanying the ATP synthesis from ADP and Pi.

Figure 14. Figure 14.

Mitochondrial—cytosolic relationships: the transport cascade of the inner mitochondrial membrane. Respiratory chain pumps H+ from the matrix (1). , H+ symporter (2) and ADP3−/ATP4− antiporter (3) mediate the influx of and ADP and the efflux of ATP. /malate2− antiport (4) results in malate influx. Malate2−/(citrate3− + H+) antiport (5) gives rise to citrate accumulation in the matrix

After Pedersen and Wehrle, 142 with permission
Figure 15. Figure 15.

Mitochondria revealed in a living human fibroblast by means of the penetrating fluorescent cation ethylrhodamine

Photograph by D. B. Zorov
Figure 16. Figure 16.

A–E. Illumination by a narrow laser beam of a small part of mitochondrial filament results in ΔΨ collapse over the entire filament length. A cell of the primary culture of human fibroblasts was stained with ethylrhodamine, before (A) and after (B‐E) 100‐ms laser treatment. The laser light spot was commensurate with the mitochondrial filament thickness. A, B, Fluorescent microscopy. C, Phase‐contrast microscopy. D, the top view on model mitochondria in the fibroblast, reconstituted with the use of the serial section technique. Arrows show the place illuminated by laser. E, Electron microscopy; a part of the laser‐treated mitochondrion is seen

From Amchenkova et al. 1 with permission
Figure 17. Figure 17.

De‐energization of filamentous mitochondrion (fibroblast) or mitochondrial cluster (heart muscle cell) induced by local damage of the mitochondrial membrane. In the latter case, it is assumed that the mitochondrial junctions are H+ permeable.

From Skulachev, 180 with permission
Figure 18. Figure 18.

General pattern of the energy transductions in the plant cell. (1) Photoredox chain pumps H+ to the thylakoid interior. (2) H+‐ATP‐synthase forms ATP, which is coupled to the downhill H+ efflux from thylakoid. (3) H+ is pumped from the mitochondrial matrix space by the respiratory chain. (4) Downhill H+ influx to matrix is coupled to ATP synthesis or to performance and “osmotic” work (for example, uptake of solutes by mitochondria via H+, solute‐symporters). (5) ATP is formed by glycolysis. (6) ATP is utilized to perform chemical, “osmotic,” and mechanical work. (7) ATP is hydrolyzed by the plasma membrane H+‐ATPase which pumps H+ from the cell. (8) Downhill H+ movement supports “osmotic” work of the outer cell membrane. (9) Na+ is pumped from the cell by Na+/H+‐antiporter. (10) H+ is pumped to vacuole by the tonoplast H+‐ATPase. (11) Downhill H+ efflux from vacuole supports “osmotic” work.

From Skulachev, 182 with permission
Figure 19. Figure 19.

The non‐cyclic photosynthetic redox chain of chloroplasts. Tyrz, tyrosine‐161, electron donor of the photosystem II; Chl680, chlorophyll of the photosystem II; Pheo, pheophytin; PQA and PQB, plastoquinones bound to photosystem II; PQ, plastoquinone pool; bh and bh high‐ and low‐potential hemes of cytochrome b6; FeSIII iron‐sulfur cluster of b6f complex; f, cytochome f; PC, plastocyanin; Chl700 and Chl693, chlorophylls of photosystem I; FeSx, the primary stable electron acceptor of photosystem I; FeSA and FeSB, two iron‐sulfur clusters tightly bound to the photosystem I; Fd, ferredoxin.

Figure 20. Figure 20.

A tentative scheme of the photosystem I reaction center complex. 83, 82, 22, 19, and 9 kD, subunits of corresponding molecular masses; PC, water‐soluble protein plastocyanin; (Chl700)2 and Chl693, the photosystem I chlorophyll dimer and monomer, respectively; K1, tightly bound vitamin K1 (phylloquinone); FeSx, the 4Fe‐4S cluster operating as the primary stable electron acceptor; FeSB and FeSA, the 4Fe‐4S clusters taking part in the electron transfer from FeSx to Fd; Fd, water‐soluble protein ferredoxin containing 2Fe‐2S clusters; arrows, the electron transfer pathway.

Adapted from Knaff 91 with permission
Figure 21. Figure 21.

A tentative scheme of the photosystem II reaction center complex. 56, 52, 39.5, 39, 33, 23, 17, 9, and 4.5 kD, subunits of corresponding molecular mass; (Chl680)2 and Chl680, the photosystem II chlorophyll dimer and monomer, respectively; Pheo, pheophytin; PQA and PQB, bound plastoquinones; arrows, the electron transfer pathway

Adapted from Rutherford 155 with permission


Figure 1.

ΔΨ (A) and ΔpH (B) between two compartments separated by a membrane (vertical septum).



Figure 2.

Localization of the energy transduction processes in the animal cell, (1) Respiratory chain pumps H+ from mitochondria. (2) H+ comes back performing chemical work (ATP synthesis) or “osmotic work” (uphill transport of metabolites). (3) ATP is formed by glycolysis. (4) Chemical, “osmotic,” and mechanical work is driven by ATP hydrolysis. (5) Na+ is extruded from the cell by Na+/K+‐ATPase. (6) Na+ comes into the cell via Na+, solute‐symporters of the outer cell membrane. (7) H+ is pumped to the secretory granules, lysosomes, etc. by H+‐ATPase of vacuolar type. (8) The H+ efflux from these vesicles supports “osmotic work.”



Figure 3.

Energy‐yielding metabolic pathways of the animal cell. 1–6, glycolysis (3‐PGA, 2‐PGA and PEP, 3‐phosphoglyceraldehyde, 2‐phosphoglycerate and phosphoenolpyruvate, respectively); 7, oxidative decarboxylation of pyruvate; 8–14, the citric acid cycle; 15, lipolysis of the neutral fat; 16, glycerol phosphorylation and oxidation; 17–19, β‐oxidation of fatty acid (R, remainder of the fatty acid hydrocarbon chain); 20, proteolysis; 21, conversion of various amino acids to pyruvate, acetyl CoA and the citric acid cycle intermediates; 22–24, the respiratory chain; 25, reduction of CoQ by FADH2 produced in reactions 12 and 17; 26, ATP formation by H+‐ATP‐synthase. Energy transductions, namely formation of or high‐energy ATP precursors takes place at stages 3, 4, 11, 22, 23, and 24.



Figure 4.

Glycolytic substrate‐level phosphorylations. E, remainder of glyceraldehyde 3‐phosphate dehydrogenase; ‐SH and B, Cys‐149 and His‐176 of this enzyme.



Figure 5.

Phosphorylation coupled to the oxidative decarboxylation of α‐ketoglutarate. TPT, thiamine pyrophosphate; L, remainder of lipoate; E, succinate thiokinase.



Figure 6.

Respiratory chain of mitochondria. AH2, A respiratory substrate; FeS11,2,3,4, corresponding iron‐sulfur centers of NADH‐CoQ reductase; bb and bb high‐ and low‐potential hemes of cytochrome b; FeSIII, iron‐sulfur protein of the complex III; c1, c, a, and a3, corresponding cytochromes.



Figure 7.

Electron microscopic analysis of single NADH‐CoQ reductase molecule from Neurospora crassa and its hydrophobic membranous fraction, (a) The average particle of the whole enzyme; (b) an average of the hydrophobic fraction; (c) the averaged particle of the whole enzyme superimposed by the averaged particle of the hydrophobic fraction. Bar, 20 nm. It is assumed that the hydrophobic subcomplex is plugged through the membrane whereas the hydrophilic subcomplex is protruded to the mitochrondrial matrix space

From Weiss et al. 208 with permission


Figure 8.

Projections of CoQH2‐cytochrome c reductase reconstructed by means of an electron microscopic study of membrane crystals. The white horizontal section represents the membrane bilayer, the upper dark area the matrix space of mitochondria and the lower dark area the intermembrane space

From Leonard et al. 105 with permission


Figure 9.

Structure of cyochrome c from tuna muscle mitochondria. Heme and its ligands are shown by black lines

From Salamma 160 with permission


Figure 10.

The X‐ray structure of bovine cytochrome c oxidase at 2.8 Å resolution. Schematic representation of metal and heme location

From Tsukihara et al. 195 with permission


Figure 11.

The negative staining of the inside‐out submitochrondrial vesicles. As can be seen, there are numerous knobs on the outer side of the membrane. These knobs are factors F1 of H+‐ATP synthase, protruding from the membrane (negative staining, electron microphotograph by L. E. Bakeeva).



Figure 12.

The structure of isolated beef heart mitochondrial factor F1. Final result of the image analysis of 379 projections of negatively stained F1 molecules

From Boekema et al. 19 with permission


Figure 13.

H+‐ATP synthase mechanism: translocation of two or three hydrogen ion (nH+) via F0 results in a conformation change in F1 which facilitates the release of the tightly‐bound ATP from the F1 catalytic site. Hydrogen ions passing F0 are not involved in H2O formation accompanying the ATP synthesis from ADP and Pi.



Figure 14.

Mitochondrial—cytosolic relationships: the transport cascade of the inner mitochondrial membrane. Respiratory chain pumps H+ from the matrix (1). , H+ symporter (2) and ADP3−/ATP4− antiporter (3) mediate the influx of and ADP and the efflux of ATP. /malate2− antiport (4) results in malate influx. Malate2−/(citrate3− + H+) antiport (5) gives rise to citrate accumulation in the matrix

After Pedersen and Wehrle, 142 with permission


Figure 15.

Mitochondria revealed in a living human fibroblast by means of the penetrating fluorescent cation ethylrhodamine

Photograph by D. B. Zorov


Figure 16.

A–E. Illumination by a narrow laser beam of a small part of mitochondrial filament results in ΔΨ collapse over the entire filament length. A cell of the primary culture of human fibroblasts was stained with ethylrhodamine, before (A) and after (B‐E) 100‐ms laser treatment. The laser light spot was commensurate with the mitochondrial filament thickness. A, B, Fluorescent microscopy. C, Phase‐contrast microscopy. D, the top view on model mitochondria in the fibroblast, reconstituted with the use of the serial section technique. Arrows show the place illuminated by laser. E, Electron microscopy; a part of the laser‐treated mitochondrion is seen

From Amchenkova et al. 1 with permission


Figure 17.

De‐energization of filamentous mitochondrion (fibroblast) or mitochondrial cluster (heart muscle cell) induced by local damage of the mitochondrial membrane. In the latter case, it is assumed that the mitochondrial junctions are H+ permeable.

From Skulachev, 180 with permission


Figure 18.

General pattern of the energy transductions in the plant cell. (1) Photoredox chain pumps H+ to the thylakoid interior. (2) H+‐ATP‐synthase forms ATP, which is coupled to the downhill H+ efflux from thylakoid. (3) H+ is pumped from the mitochondrial matrix space by the respiratory chain. (4) Downhill H+ influx to matrix is coupled to ATP synthesis or to performance and “osmotic” work (for example, uptake of solutes by mitochondria via H+, solute‐symporters). (5) ATP is formed by glycolysis. (6) ATP is utilized to perform chemical, “osmotic,” and mechanical work. (7) ATP is hydrolyzed by the plasma membrane H+‐ATPase which pumps H+ from the cell. (8) Downhill H+ movement supports “osmotic” work of the outer cell membrane. (9) Na+ is pumped from the cell by Na+/H+‐antiporter. (10) H+ is pumped to vacuole by the tonoplast H+‐ATPase. (11) Downhill H+ efflux from vacuole supports “osmotic” work.

From Skulachev, 182 with permission


Figure 19.

The non‐cyclic photosynthetic redox chain of chloroplasts. Tyrz, tyrosine‐161, electron donor of the photosystem II; Chl680, chlorophyll of the photosystem II; Pheo, pheophytin; PQA and PQB, plastoquinones bound to photosystem II; PQ, plastoquinone pool; bh and bh high‐ and low‐potential hemes of cytochrome b6; FeSIII iron‐sulfur cluster of b6f complex; f, cytochome f; PC, plastocyanin; Chl700 and Chl693, chlorophylls of photosystem I; FeSx, the primary stable electron acceptor of photosystem I; FeSA and FeSB, two iron‐sulfur clusters tightly bound to the photosystem I; Fd, ferredoxin.



Figure 20.

A tentative scheme of the photosystem I reaction center complex. 83, 82, 22, 19, and 9 kD, subunits of corresponding molecular masses; PC, water‐soluble protein plastocyanin; (Chl700)2 and Chl693, the photosystem I chlorophyll dimer and monomer, respectively; K1, tightly bound vitamin K1 (phylloquinone); FeSx, the 4Fe‐4S cluster operating as the primary stable electron acceptor; FeSB and FeSA, the 4Fe‐4S clusters taking part in the electron transfer from FeSx to Fd; Fd, water‐soluble protein ferredoxin containing 2Fe‐2S clusters; arrows, the electron transfer pathway.

Adapted from Knaff 91 with permission


Figure 21.

A tentative scheme of the photosystem II reaction center complex. 56, 52, 39.5, 39, 33, 23, 17, 9, and 4.5 kD, subunits of corresponding molecular mass; (Chl680)2 and Chl680, the photosystem II chlorophyll dimer and monomer, respectively; Pheo, pheophytin; PQA and PQB, bound plastoquinones; arrows, the electron transfer pathway

Adapted from Rutherford 155 with permission
References
 1. Amchenkova, A. A., L. E. Bakeeva, Yu. S. Chentsov, and V. P. Skulachev. Coupling membranes as energy‐transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes. J. Cell. Biol. 107: 481–495, 1988.
 2. Amchenkova, A. A., L. E. Bakeeva, V. A. Drachev, D. B. Zorov, V. P. Skulachev, and Yu. S. Chentsov. Mitochondrial electric cable. Vestnik MGU. ser. biol. 3: 3–15, 1986 (Russ.).
 3. Anderson, W. M. and R. R. Fisher. The subunit structure of bovine heart mitochondrial transhydrogenase. Biochim. Biophys. Acta 635: 194–199, 1981.
 4. Andreev, I. M., V. Yu. Artzatbanov, A. A. Konstantinov, and V. P. Skulachev. Cyanide binding with ferricytochrome a3 in rat liver mitochondria. Dokl. Acad. Nauk SSSR 244: 1013–1018, 1979 (Russ.).
 5. Andreyev, A. Yu., T. O. Bondareva, V. I. Dedukhova, E. N. Mokhova, V. P. Skulachev, and N. I. Volkov. Carboxyatractylate inhibits the uncoupling effect of free fatty acids. FEBS Lett. 226: 265–269, 1988.
 6. Andreyev, A. Yu., T. O. Bondareva, V. I. Dedukhova, E. N. Mokhova, V. P. Skulachev, L. M. Tsofina, N. I. Volkov, and T. V. Vygodina. The ATP/ADP‐antiporter is involved in the uncoupling effect of fatty acids on mitochondria. Eur. J. Biochem. 182: 585–592, 1989.
 7. Arai, H., G. Terres, S. Pink, and M. Forgas. Topography and subunit stoichiometry of the coated vesicle proton pump. J. Biol. Chem. 263: 8796–8802, 1988.
 8. Artzatbanov, V. Yu., A. A. Konstantinov, and V. P. Skulachev. Involvement of intramitochondrial protone in redox reactions of cytochrome a. FEBS Lett. 87: 180–185, 1978.
 9. Azzi, A. and M. Müller. Cytochrome c oxidases: polypeptide composition, role of subunits, and location of active metal centers. Arch. Biochem. Biophys. 280: 242–251, 1990.
 10. Babcock, G. T. and M. Wikström. Oxygen activation and the conservation of energy in cell respiration. Nature 356: 301–309, 1992.
 11. Bakeeva, L. E., Yu. S. Chentsov, and V. P. Skulachev. Mitochondrial framework (Reticulum mitochondriale) in rat diaphragm muscle. Biochim. Biophys. Acta 501: 349–369, 1978.
 12. Bakeeva, L. E., Yu. S. Chentsov, and V. P. Skulachev. Ontogenesis of mitochondrial reticulum in rat diaphragm muscle. Eur. J. Cell Biol. 25: 175–181, 1981.
 13. Bakeeva, L. E., Yu. S. Chentsov, and V. P. Skulachev. Intermitochondrial contacts in myocardiocytes. J. Mol. Cell. Cardiol. 15: 413–420, 1983.
 14. Bakeeva, L. E., A. A. Shevelev, Yu. S. Chentsov, and V. P. Skulachev. A freeze‐fracture study of mitochondrial junctions in rat cardiomyocites. Biol. membrany 1: 133–143, 1985 (Russ.).
 15. Bakeeva, L. E., V. P. Skulachev, and Yu. S. Chentsov. Mitochondrial reticulum: organization and possible functions of a novel intracellular structure in the muscle tissue. Vestnik MGU, ser. biol. 3: 23–28, 1977 (Russ.).
 16. Bazhenov, Yu. I. Thermogenesis and Muscle Activity in the Cold Adaptation. Leningrad: Nauka, 1981 (Russ.).
 17. Bianchet, M., X. Ysern, J. Hullihen, P. L. Pedersen, and L. M. Amzel. Mitochondrial ATP synthase. J. Biol. Chem. 266: 21197–21201, 1991.
 18. Blankenship, R. E. and R. C. Prince. Excited‐state redox potentials and the Z scheme of photosynthesis. Trends Biochem. Sci. 10: 382–383, 1985.
 19. Boekema, E. J., J. A. Berden, and M. G. Van Heel. Structure of mitochondrial F1‐ATPase studied by electron microscopy and image processing. Biochim. Biophys. Acta 851: 353–360, 1986.
 20. Bouilland, F., D. Ricquier, T. Gulik‐Krzywicki, and C. M. Gary‐Bobo. The possible proton translocating activity of the mitochondrial uncoupling protein of brown adipose tissue. FEBS Lett. 164: 272–276, 1983.
 21. Boyer, P. D. A perspective of the binding change mechanism for ATP synthesis. FASEB J. 3: 2164–2178, 1989.
 22. Boyer, P. D., R. L. Cross, and W. Momsen. A new concept for energy coupling in oxidative phosphorylation based on a molecular explanation of the oxygen exchange reactions. Proc. Natl. Acad. Sci. USA 70: 2837–2839, 1973.
 23. Bragg, P. D. The ATPase complex of Escherichia coli. Can. J. Biochem. Cell Biol. 62: 1190–1197, 1984.
 24. Bränden, C. I. and H. Eklund. Structure and mechanism of liver alcohol dehydrogenase, lactate dehydrogenase and glyceraldehyde‐3‐phosphate dehydrogenase. In: Dehydrogenases Requiring Nicotinamide Coenzymes, edited by J. Jeffery. Basel: Birkhäuser Verlag, 1990, pp. 41–84.
 25. Brown, G. C. and M. D. Brand. Proton/electron stoichiometry of mitochondrial complex I estimated from the equilibrium thermodynamic force ratio. Biochem. J 252: 473–479, 1988.
 26. Brustovetsky, N. N., V. I. Dedukhova, M. V. Yegorova, E. N. Mokhova, and V. P. Skulachev. Inhibitors of the ATP/ADP antiporter suppress stimulation of mitochondrial respiration and H+ permeability by palmitate and anionic detergents. FEBS Lett. 272: 187–189, 1990a.
 27. Brustovetsky, N. N., Z. G. Amerkanov, M. V. Yegorova, E. N. Mokhova, and V. P. Skulachev. Carboxylate‐sensitive uncoupling in liver mitochondria from ground squrrels during hibernation and arousal. FEBS Lett. 272: 190–192, 1990b.
 28. Bubenzer, H.‐J. Die dünnen und die dicken Muskelfasern des Zwerchfells der Ratte. Z. Zellforsch. 69: 520–550, 1966.
 29. Burton, M. and Moore, J. The mitochondric n of the flagellate, Polymelia agilis. Ultrastruct. Res. 48: 414–419, 1974.
 30. Canaani, O. and M. Havaux. Evidence for a biological role in photosynthesis for cytochrome b−559—component of photosystem II reaction center. Proc. Natl. Acad. Sci USA 87: 9295–9299, 1990.
 31. Capitanio, N., G. Capitanio, E. De Nitto, G. Villani, and S. Papa. H+/ē stoichiometry of mitochondrial cytochrome complexes reconstituted in liposomes. FEBS Let. 288: 179–182, 1991.
 32. Carafoli, E. Intracellular calcium regulation, with special attention to the role of the plasma membrane calcium pump. J. Cardiovasc. Pharmacol 12: S77–S84, 1988.
 33. Carafoli, E., G. Inesi, and B. P. Rosen. Calcium transport across biological membranes. In: Metal Ions in Biological Systems, edited by H. Sigel. New York: Marcel Dekke Inc., 1984, v. 17, pp. 130–186.
 34. Casey, R. P. Membrane reconstitution of the energy‐conserving enzymes of oxidative phosphorylation. Biochim. Biophys. Acta 768: 319–347, 1984.
 35. Chanson, A., J. Fichmann, D. Spear, and L. Taiz. Pyrophosphate‐driven proton transport by nicrosomal membranes of corn coleoptiles. Plant Physiol. 79: 159–164, 1985.
 36. Chen, L. B., I. C. Summerhayes, L. V. Johnson, M. L. Walsh, S. D. Bernal, and T. J. Lampidis. Probing mitochondria in living cells with rhodamine 123. Cold Spring Harbor Symp. Quant Biol. 46: 141–155, 1982.
 37. Cidon, S., H. Ben‐David, and N. Nelson. ATP‐driven proton fluxes across membranes of secretory organel es. J. Biol. Chem. 258: 11684–11688, 1983.
 38. Cidon, S., and N. Nelson. Novel ATPase in the chromaffin granule membrane. J. Biol. Chem. 258: 2892–2898, 1983.
 39. Cidon, S., and N. Nelson. Purification of N‐ethylmaleimidesensitive ATPase from chromaffin granule membranes. J. Biol. Chem. 261: 9222–9227, 1986.
 40. Clark, R. D., and G. Hind. Isolation of a five‐polypeptide cytochrome b—f complex from spinach chloroplasts. J. Biol. Chem. 258: 10348–10354, 1983.
 41. Clark, R. D., and G. Hind. Spectrally distinct cytochrome b‐563 components in a chloroplast cytochrome b—f complex: interaction with a hydroxyquinoline N‐oxide. Proc. Natl. Acad. Sci. USA 80: 6249–6253, 1983.
 42. Colowick, S. P., N. O. Kaplan, E. F. Neufield, and M. M. Ciotti. Pyridine nucleotide transhydrogenase. I. Indirect evidence for the reaction and purification of the enzyme. J. Biol. Chem. 195: 95–106, 1952.
 43. Cramer, W. A., W. R. Widger, R. G. Herrmann, and A. Trebst. Topography and function of thylakoid menbrane proteins. Trends Biochem. Sci. 10: 125–129, 1985.
 44. Crofts, A. R. and Wraight, C. A. The electrochemical domain of photosynthesis. Biochim. Biophys. Acta 426: 149–185, 1983.
 45. Cross, R. L. and P. D. Boyer. Evidence for detection of AT32P bound at the coupling sites of mitochondrial oxidative phosphorylation. Biochem. Biophys. Res. Commun. 51: 56–59, 1973.
 46. Danielson, L. and L. Ernster. Energy‐dependent reduction of triphosphopyridine nucleotide by reduced diphosphopyridine nucleotide, coupled to the energy‐transfer system of the respiratory chain. Biochem. Z. 338: 188–205, 1963.
 47. Deisenhofer, J., O. Epp, K. Miki, R. Huber, and H. Michel. X‐ray structure analysis of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J. Mol. Biol. 180: 385–398, 1984.
 48. Dimroth, P. Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria. Microbiol. Rev. 51: 320–340, 1987.
 49. Dontsov, A. E., L. L. Grinius, A. A. Jasaitis, I. I. Severina, and V. P. Skulachev. A study on the mechanism of energy coupling in the redox chain. I. Transhydrogenase: the fourth site of the redox chain energy coupling. J. Bioenerg. Biomembr. 3: 277–303, 1972.
 50. Drachev, L. A., A. A. Kondrashin, A. Yu. Semenov, and V. P. Skulachev. Reconstitution of biological molecular generators of electric current. Transhydrogenase. Eur. J. Biochem. 113: 213–218, 1980.
 51. Drachev, V. A., and D. B. Zorov. Mitochondrion as an electric cable. Experimental verification of the hypothesis. Dokl. Akad. Nauk. SSSR 287: 1237–1238, 1986 (Russ.).
 52. Dracheva, S. M., L. A. Drachev, A. A. Konstantinov, A. Yu. Semenov, V. P. Skulachev, A. M. Arutjunjan, V. A. Shuvalov, and S. Zaberezhnaya. Electrogenic steps in the redox reactions catalyzed by photosynthetic center complexes from Rhodopseudomonas viridis. Eur. J. Biochem. 171: 253–264, 1988.
 53. Duel, D. H., and M. B. Thorn. Effects of 2,3‐dimercaptopropanol and antimycin on absorption spectra of heart‐muscle preparations. Biochim. Biophys. Acta 59: 426–436, 1962.
 54. Ewart, G. D., Y.‐Z. Zhang, and R. A. Capaldi. Switching of bovine cytochrome c oxidase subunit VIa isoforms in skeletal muscle during development. FEBS Lett. 292: 79–84, 1991.
 55. Feldman, R. I. and D. S. Sigman. The synthesis of enzyme‐bound ATP by a soluble chloroplast coupling factor 1. J. Biol. Chem. 257: 1676–1683, 1982.
 56. Feldman, R. I. and D. S. Sigman. The synthesis of ATP by the membrane‐bound ATP synthase complex from medium 32Pi under completely uncoupled conditions. J. Biol. Chem. 258: 12178–12183, 1983.
 57. Foster, D. O. Quantitative contribution of brown adipose tissue thermogenesis to overall metabolism. Can. J. Biochem. 62: 618–622, 1984.
 58. Frangione, B., E. Rosenwasser, H. S. Penefsky, and M. E. Pullman. Amino acid sequences of the protein inhibitor of mitochondrial adenosine triphosphatase. Proc. Natl. Acad. Sci. USA 78: 7403–7407, 1981.
 59. Garlid, K. D. New insights into mechanisms of anion uniport through the uncoupling protein of brown adipose tissue mitochondria. Biochim. Biophys. Acta 1018: 151–154, 1990.
 60. Gauthier, G. F. On the relationship of ultrastructural and cytochemical features to color in mammalian skeletal muscle. J. Zellforsch. Mikrosk. Anat. 95: 462–482, 1969.
 61. Gauthier, G. F. and H. A. Padykula. Cytological studies of fiber types in skeletal muscle. A comparative study of the mammalian diaphragm. J. Cell Biol. 28: 333–354, 1966.
 62. Gillespie, J., S. Ozanne, J. Percy, M. Warren, J. Haywood, and D. Apps. The vacuolar H+‐translocating ATPase of renal tubules contains a 115‐kDa glycosylated subunit. FEBS Lett. 282: 69–72, 1991.
 63. Glaser, E., B. Norling, J. Kopecky, and L. Ernster. Comparison of the effects of oligomycin and dicyclohexylcarbodiimide on mitochondrial ATPase and related reactions. Eur. J. Biochem. 121: 525–531, 1982.
 64. Gluck, S., and J. Caldwell. Proton‐translocating ATPase from bovine kidney medulla: partial purification and reconstitution. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F71–F79, 1988.
 65. Gogol, E. P., U. Lucken, and R. A. Capaldi. The stalk connecting the F1 and F0 domains of ATP synthase visualized by electron microscopy of unstained specimens. FEBS Lett. 219: 274–278, 1987.
 66. Grinius, L. L., A. A. Jasaitis, J. P. Kadziauskas, E. A. Liberrnan, V. P. Skulachev, V. P. Topali, and M A. Vladimirova. Conversion of biomembrane‐produced energy into electric form. I. Submitochondrial particles. Biochim. Biophys. Acta 216: 1–12, 1970.
 67. Grubmeyer, C., H. S. Penefsky. Cooperativity between catalytic sites in the mechanism of action of beef heart mitochondrial adenosine triphosphatase. J. Biol. Chem. 256: 3728–3734, 1981.
 68. Hara, Y., J. Yamada, and M. Nakao. Proton transport catalyzed by the sodium pump. Ouabain‐sensitive ATPase activity and the phosphorylation of Na,K‐ATPase in the absence of sodium ions. J. Biochem. 99: 531–539, 1986.
 69. Harnisch, U., H. Weiss, and W. Sebald. The primary structure of the iron‐sulfur subunit of ubiquinol‐cytochrome c reductase from Neurospora determined by cDNA and gene sequencing. Eur. J. Biochem. 149: 95–99, 1985.
 70. Hearst, L. E. and K. Sauer. Protein sequence homologies between portions of the L and M subunit of reaction centers of Rhodopseudomonas capsulata and the QB‐protein of chloroplast thylakoid membranes; a proposed relation to quinone‐binding sites. Z. Naturforsch. 39c: 421–424, 1984.
 71. Hennig, J. and R. C. Herrmann. Chloroplast ATP synthase of spinach contains nine nonidentical subunit species, six of which are encoded by plastid chromosomes in two operon in a phylogenetically conserved arrangement. Mol. Gen. Genet 203: 117–128, 1986.
 72. Hill, R. and F. Rendall. Function of the two cytochrome components in chloroplasts: a working hypothesis. Nature 186: 136–137, 1960.
 73. Hoek, J. B. and J. Rydström. Physiological roles of nicotinamide nucleotide transhydrogenase. Biochem. J. 254: 1–10, 1988.
 74. Horvath, L. I., M. Drecs, M. Klingenberg, and D. Marsh. Lipid‐protein interactions in ADP‐ATP carrier/egg phosphatidylcholine recombinants: studies by spin‐label ESP spectroscopy. Biochemistry 29: 10664–10669, 1990.
 75. Hüther, F.‐J. and B. Kadenbach. Specific effects of ATP on the kinetics of reconstituted bovine heart cytochrome‐c oxidase. FEBS Lett. 207: 89–94, 1986.
 76. Hüther, F.‐J., B. Kadenbach. Intraliposomal nucleotides change the kinetics of reconstituted cytochrome c oxidase from bovine heart but not from Paracoccus denitrificans. Biochem. Biophys. Res. Commun. 153: 525–534, 1988.
 77. Jackson, J. B. The proton‐translocating nicotinamide adenine dinucleotide transhydrogenase. J. Bioenerg. Biomembr. 23: 715–741, 1991.
 78. Jezek, P. and Garlid, K. D. New substrates and competitive inhibitors of the CI− translocating pathway of the uncoupling protein of brown adipose tissue mitochondria. J. Biol. Chem. 265: 19303–19311, 1990.
 79. Jezek, P., D. E. Orosz, and K. D. Garlid. Reconstitution of the protein of brown adipose tissue mitochondria. J. Biol. Chem. 265: 19296–19302, 1990.
 80. Johannes, H. Beitrage zur Vitalfarbung von Pilzmycelien. II. Die Inturbanz der Farbung mit Rhodaminen. Protoplama 36: 181–194, 1941.
 81. Kadenbach, B. Regulation of respiration and ATP synthesis in higher organisms: hypothesis. J. Bioenerg. Biomembr. 18: 39–54, 1986.
 82. Kadenbach, B., M. Ungibauer, J. Jarausch, U. Bugé, and L. Kuhn‐Nantwig. The complexity of respiratory complexes. Trends Biochem. Sci. 7: 398–400, 1983.
 83. Kadenbach, B., A. Stroh, F.‐J. Hüther, A. Reimann, and D. Steverding. Evolutionary aspects of cytochrome c oxidase. J. Bioenerg. Biomembr. 23: 321–334, 1991.
 84. Kagawa, Y. H+ ‐ATP synthetase from a thermophilic bacterium In: Chemiosmotic Proton Circuits in Biological Membranes, edited by V. P. Skulachev and P. C. Hinkle, London: Addison‐Wesley, 1981, pp. 421–434.
 85. Kagawa, Y. Proton motive ATP synthesis. In: Bioenergetics, edited by Ernster, Amsterdam: Elsevier Science Publishers, 1984, pp. 149–157.
 86. Kagawa, Y., S. Ohta, and Y. Otawara‐Hamamoto. α3β3 complex of thermophilic ATP synthase. Catalysis without the γ‐subunit. FEBS Lett. 249: 67–69, 1989.
 87. Kagawa, Y. and E. Racker. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXV. Reconstitution of vesicles catalyzing 32P1‐adenosine triphosphate exchange. J. Biol. Chem. 246: 5477–5487, 1971.
 88. Kaunitz, J. D., G. Sachs. Identification of a vanadate‐sensitive potassium dependent proton pump from rabbit colon. J. Biol. Chem. 26: 14005–14010, 1986.
 89. Klaus, S., L. Casteilla, F. Bouillaud, and D. Ricquier. The uncoupling protein UCP: a membraneous mitochondrial ion carrier exclusively expressed in brown adipose tissue. Int. J. Biochem. 23: 791–801, 1991.
 90. Klingenberg, M. The ADP‐ATP translocation in mitochondrial membrane potential controlled transport. J. Membr. Biol. 56: 97–105, 1980.
 91. Knaff, D. B. The photosystem I reaction centre. Trends Biochem. Sci. 13: 460–461, 1988.
 92. Knaff, D. B. and M. Hirasawa. Ferredoxin‐dependent chloroplast enzymes. Biochim. Biophys. Acta. 1056: 93–125, 1991.
 93. Konstantinov, A. A. Vectorial electron and proton transfer steps in the cytochrome bc1 complex. Biochim. Biophys. Acta 1018: 138–141, 1990.
 94. Konstantinov, A. A. and E. K. Ruuge. Semoquinone Q in the respiratory chain of electron transfer particles. FEBS Lett. 81: 137–141, 1977.
 95. Kotlyar, A. B., V. D. Sled, D. Sh. Burbaev, I. A. Moroz, and A. D. Vinogradov. Coupling site I and the rotenone‐sensitive ubisemiquinone in tightly coupled submitochondrial particles. FEBS Lett. 264: 17–20, 1990.
 96. Kotyk, A. Coupling of secondary active transport with ΔμH+. J. Bioenerg. Biomembr. 15: 307–319, 1983.
 97. Kozlov, I. A. and B. V. Chernyak. Regulation of H+‐ATPases in oxidative and photophosphorylation. Trends Biochem. Sci. 11: 32–35, 1986.
 98. Kozlov, I. A., V. P. Skulachev. H+‐ATPase and membrane energy coupling. Biochim. Biophys. Acta 463: 29–89, 1977.
 99. Kozlov, I. A. and V. P. Skulachev. An H+‐ATP synthase: a substrate translocation concept. Curr. Top. Membr. Trans. 16: 285–301, 1972.
 100. Kuhn, N., B. Kadenbach. Isolation and properties of cytochrome c oxidase from rat liver and quantification of immunological differences between isozymes from various rat tissues with subunit‐specific antisera. Eur. J. Biochem. 149: 147–158, 1985.
 101. Kunz, W. S., A. A. Konstantinov, L. M. Tsofina, E. A. Liberman. Localization of a ferricyanide‐reactive site of cytochrome b‐c1 complex, possibly of cytochrome b or ubisemiquinone, at the outer face of submitochondrial particles. FEBS Lett. 172: 261–266, 1984.
 102. Labonia, N., M. Müller, and A. Azzi. The effect of non‐esterified fatty acids on the proton‐pumping cytochrome c oxidase reconstituted into liposomes. Biochem. J. 254: 139–145, 1988.
 103. Lay, S., J. C. Watson, J. N. Hansen, and H. Sze. Molecular cloning and sequencing of cDNAs encoding the proteolipid subunit of the vacuolar H+ ‐ATPase from a higher plant. J. Biol. Chem. 266: 16078–16084, 1991.
 104. Larsen, R. W., L.‐P. Pan, S. M. Musser, Z. L. Chan, and S. I. Chan. Could CuB be the site of redox linkage in cytocirome c oxidase? Proc. Natl. Acad. Sci. USA 89: 723–727, 1992.
 105. Leonard, K., H. Haiker, and H. Weiss. Three‐dimensional structure of NADH: ubiquinone reductase (complex I) from Neurospora mitochondria determined by electron microscopy of membrane crystals. J. Mol. Biol. 194: 277–286, 1987.
 106. Levachev, M. M., E. A. Mishukova, V. G. Sivlcova, and Skulachev, V. P. Energetics of pigeon at self‐warming after hypothermia. Biokhimiya 30: 864–874, 1965 (Russ.).
 107. Liberman, E. A. and V. P. Skulachev. Conversion of biomembrane‐produced energy into electric form. IV. General discussion. Biochim. Biophys. Acta 216: 30–42, 1970.
 108. Lill, H., G. Althoff, and W. Junge. Analysis of ionic channels by a flash spectrometric technique applicable to thylakoid membranes: CF0, the proton channel of the chloroplast ATP synthase, and, for comparison, gramicidin. J. Membr. Biol. 98: 69–78, 1987.
 109. Lukacs, G. L., O. D. Rotstein, and S. Grinstsin. Phagosomal acidification is mediated by a vacuolar‐type H+‐ATPase in murine macrophages. J. Biol. Chem. 265: 21099–21107, 1990.
 110. Maeshima, M. Oligomeric structure of H+‐translocating inorganic pyrophsphatase of plant vacuoles. Biochem. Biophys. Res. Commun. 168: 1157–1162, 1990.
 111. Malatesta, F., G. Antonini, P. Sarti and M. Brunoru. Modulation of cytochrome oxidase activity by inorgenic and organic phosphate. Biochem. J. 248: 161–165, 1987.
 112. Maloney, P. C., and T. H. Wilson. The evolution of ion pumps. Bioscience 35: 43–48, 1985.
 113. Mandel‐Hartvig, I. and B. D. Nelson. Comparative study of the peptide composition of complex III (quinal‐cytochrome c reductase). J. Bioenerg. Biomembr. 15: 289–299, 1983.
 114. Marra, E. and A. Ballarin‐Denti. The proto pumps of the plasmalemma and the tonoplast of higher plants. J. Bioenerg. Biomembr. 17: 1–21, 1985.
 115. Matsui, H. Na+, K+‐ATPase: conformational change and interaction with sodium and potassium ions. In: Transport and Bioenergetics in Biomembranes, edited by R. Sato and Y. Kagawa, Tokyo: Japan. Sci. Soc. Press, 1982, pp. 165–187.
 116. Metz, J. G., P. J. Nixon, M. Rogner, G. W. Brudvig, B. A. Dinner. Directed alteration of the D1 polypeptide of photosystem II: evidence that tyrosine‐161 is the redo component, Z, connecting the oxygen‐evolving complex to the primary electron donor, P680. Biochemistry 28: 6960–6969, 1989.
 117. Milgrom, Ya. M. and M. B. Murataliev. Mitochondrial F1‐ATPase: the alterations of Pi‐binding properties and catalytic activity are caused by ADP redistribution between nucleotide binding sites, the process including the nucleotide release and rebinding steps. Biol, membrany 3: 781–791, 1986 (Russ.).
 118. Minkov, I. B., E. A. Vasilyeva, A. F. Fitin, and A. D. Vinogradov. Differential effects of ADP on ATPase and oxidative phosphophorylation in submitochondrial particles. Biochem. Intern. 1: 478–485, 1980.
 119. Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemiomostic type of mechanism. Nature 191: 144–148, 1961.
 120. Mitchell, P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 41: 445–502, 1966.
 121. Mitchell, P. Possible molecular mechanisms of the proton motive function of cytochrome systems. J. Theor. Biol. 62: 327–367, 1976.
 122. Mitchell, P., R. Mitchell, A. J. Moody, I. C. West, H. Baum, and J. M. Wrigglesworth. Chemiosmotic coupling in cytochrome oxidase. Possible protonmotive O loop and O cycle mechanisms. FEBS Lett. 188: 1–7, 1985.
 123. Moriyama, Y. and N. Nelson. Lysosomal H+‐translocating ATPase has a similar subunit structure to chromaffin granule H+‐ATPase complex. Biochim. Biophys. Acta 980: 241–247, 1989.
 124. Murphy, D. J. The molecular organization of the photosynthetic membranes of higher plants. Biochim. Biophys. Acta 864: 33–94, 1986.
 125. Nakao, M. Molecular biological approaches in Na+,K+‐ATPase and H+,K+‐ATPase pump studies. In: New Era in Bioenergetics, edited by Y. Mukohata, Tokyo: Acad. Press, 1991, p. 1.
 126. Nedergaard, J., B. Cannon. Thermogenic mitochondria. In: Bioenergetics, edited by L. Ernster, Amsterdam: Elsevier Science Publishers, 1984, pp 291–314.
 127. Nelson, N. Structure, function, and evolution of proton‐ATPases. Plant Physiol. 86: 1–3, 1988.
 128. Nelson, H., S. Mandiyan, T. Noumi, Y. Moriyama, M. C. Miedel, and N. Nelson. Molecular cloning of cDNA encoding the c subunit of H+‐ATPase from bovine chromaffin granules. J. Biol. Chem. 265: 20390–20393, 1990.
 129. Nicholls, D. G. Brown adipose tissue mitochondria. Biochim. Biophys. Acta 549: 1–22, 1979.
 130. Nicholls, D. G. Bioenergetics. Introduction to the Chemiosmotic Theory. London: Academic Press, 1982.
 131. Nicholls, D. G. and R. M. Locke. Heat generation by mitochondria. In: Chemiosmotic Proton Circuits in Biological Membranes, edited by V. P. Skulachev and P. C. Hinkle, London: Addison‐Wesley, 1981, pp. 567–576.
 132. Nicholls, D. G. and R. M. Locke. Thermogenic mechanisms in brown fat. Physiol. Rev. 64: 1–64, 1984.
 133. Nitschke, W. and A. W. Rutherford. Photosynthetic reaction centers: variations on a common structural theme? Trends Biochem. Sci. 16: 241–245, 1991.
 134. Njus, D. The chromaffin vesicle and the energetics of storage organelles. J. Auton. Nerv. Syst. 7: 35–40, 1983.
 135. Nylund, A., N. J. Komarova, P. R. Rumyanstsev, A. Tjonneland, and S. Okland. Heart ultrastructure in Petrobius brevistylis (Archaeognatha: Microcoryphia) Entomol. Gener. 11: 263–272, 1986.
 136. Ogata, T. and F. Murata. Cytological features of three fiber types in human striated muscle. Tohoku J. Exp. Med. 99: 225–245, 1969.
 137. Ovchinnikov, Yu. A., V. V. Demin, A. N. Barnakov, A. P. Kuzin, A. V. Lunev, N. N. Modyanov, and K. N. Dzhandzhugazyan. Three‐dimensional structure of (Na+ + K+)‐ATPase revealed by electron microscopy of two‐dimensional crystals. FEBS Lett. 190: 73–76, 1985.
 138. Ovchinnikov, Yu. A., N. N. Modyanov, N. Broude, K. E. Petrukhin, A. V. Grishin, N. M. Arzamazova, N. A. Aldanova, G. F. Monastyrskaya, and E. D. Sverdlov. Pig kidney Na+,K+‐ATPase. Primary structure and spatial organization. FEBS Lett. 201: 237–245, 1986.
 139. Ovchinnikov, Yu. A., N. N. Modyanov, V. A. Grinkevich, N. A. Aldanova, O. E. Trubetskaya, I. V. Nazimov, T. Hundal, and L. Ernster. Amino acid sequence of the oligomycin sensitivity‐conferring protein (OSCP) of beef‐heart mitochondria and its homology with the δ‐subunit of the F1‐ATPase of Escherichia coli. FEBS Lett. 166: 19–22, 1984.
 140. Papa, S., N. Capitanio, G. Capitanio, E. De Nitto, and M. Minuto. The cytochrome chain of mitochondria exhibits variable H+/ē stoichiometry. FEBS Lett. 288: 183–186, 1991.
 141. Parry, R. V., J. C. Turner, and P. A. Rea. High purity preparations of higher plant vacuolar H−‐ATPase reveal additional subunits. J. Biol. Chem. 264: 20025–20032, 1989.
 142. Pedersen, P. L. and J. P. Wehrle. Phosphate transport processes of animal cells. In: Membranes and Transport, edited by A. N. Martonosi, New York: Plenum Press, 1982, Vol. 1, pp. 645–669.
 143. Pennington, R. M. and R. R. Fisher. Reconstituted mitochondrial transhydrogenase is a transmembrane protein. FEBS Lett. 164: 345–349, 1983.
 144. Perham, R. N. Domains motifs, and linkers in 2‐oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry 30: 8501–8512, 1991.
 145. Phillips, A. L. and J. C. Gray. Isolation and characterization of a cytochrome b—f complex from pea chloroplasts. Eur. J. Biochem. 137: 553–560, 1983.
 146. Racker, E. Mechanisms in Bioenergetics. London: Academic Press. 1965.
 147. Racker, E. A New Look at Mechanisms in Bioenergetics. New York: Academic Press, 1976.
 148. Ragan, C. I. Structure of NADH‐ubiquinone reductase (complex I). In: Curr. Top. Bioenerg., edited by C. P. Lee, San Diego: Academic Press, 1987, pp. 1–36.
 149. Ragan, C. I. Structure and function of an archetypal respiratory chain complex: NADH‐ubiquinone reductase. Biochem. Soc. Trans. 18: 515–516, 1990.
 150. Ragan, I. and P. C. Hinkle. Ion transport and respiratory control in vesicles formed from reduced nicotinamide adenine dinucleotide coenzyme Q reductase and phospholipids, J. Biol. Chem. 250: 8472–8476, 1975.
 151. Rambourg, A. and D. Segretain. Three‐dimensional electron microscopy of mitochondria and endoplasmic reticulum in the red muscle fiber of the rat diaphragm. Anat. Rec. 197: 33–48, 1980.
 152. Rea, P. A. and R. J. Poole. Proton‐translocating inorganic pyrophosphatase in red beet (Beta vulgaris L.) tonoplast vesicles. Plant Physiol. 77: 46–52, 1985.
 153. Reimann, A. and B. Kadenbach. Stoichiometric binding of 2′ (or 3′)‐O‐(2,4,6‐trinitrophenyl)‐adenosine 5′‐triphosphate to bovine heart cytochrome c oxidase. FEBS Lett. 307: 294–296, 1992.
 154. Ricquier, D., J. Thibault, F. Bouilland, and Y. Kuster. Molecular approach to thermogenesis in brown adipose tissue. J. Biol. Chem. 258: 6675–6677, 1983.
 155. Rutherford, A. W. Photosystem II, the water‐splitting enzyme. Trends Biochem. Sci. 14: 227–232, 1989.
 156. Rydström, J., C.‐P. Lee, and L. Ernster. Energy‐linked nicotinamide nucleotide transhydrogenase. In: Chemiosmotic Proton Circuits in Biological Membranes, edited by V. P. Skulachev and P. C. Hinkle, London: Addison‐Wesley, 1981, pp. 483–508.
 157. Rydström, J., B. Persson, and H.‐I. Tang. Mitochondrial nicotinamide nucleotide transhydrogenase. In: Bioenergetics, edited by L. Ernster, Amsterdam: Elsevier Science Publishers, 1984, pp. 297–319.
 158. Sachs, G., H. R. Koelz, T. Berglindh, E. Rabon and G. Saccomani. Aspects of gastric proton‐transport ATPase. In: Membranes and Transport, edited by A. N. Martonosi, N.Y. London: Plenum Press, 1982, Vol. 1, pp. 633–643.
 159. Sakamoto, J. and Y. Tonomura. Synthesis of enzyme‐bound ATP by mitochondrial soluble F1‐ATPase in the presence of dimethylsulfoxide. J. Biochem. 93: 1601–1614, 1983.
 160. Salamma, F. R. Structure and function of cytochromes. Annu. Rev. Biochem. 46: 299–330, 1977.
 161. Sankaram, M. B., P. J. Brophy, W. Jordi, and D. Marsh. Fatty acid pH titration and the selectivity of interaction with extrinsic proteins in dimyristoylphosphatidylglycerol dispersions. Biochim. Biophys. Acta 1021: 63–69, 1990.
 162. Sarafian, V. and R. J. Poole. Purification of an H+‐translocating inorganic pyrophosphatase from vacuole membranes of red beet. Plant Physiol. 91: 34–38, 1989.
 163. Saraste, M. Location of haem‐binding sites in the mitochondrial cytochrome b. FEBS Lett. 166: 367–372, 1984.
 164. Sato, M. H., M. Maeshima, Y. Ohsumi, and M. Yoshida. Dimeric structure of H+‐translocating pyrophosphatase from pumpkin vacuolar membranes. FEBS Lett. 290: 177–180, 1991.
 165. Schagger, H., H. Borcheert, H. Aquila, T. A. Link, and G. Von Jagow. Isolation and amino acid sequence of the smallest subunit of beef heart bc1 complex. FEBS Lett. 190: 89–94, 1985.
 166. Schatz, G. and E. Racker. Partial resolution of the enzymes catalyzing oxidative phosphorylation. VII. Oxidative phosphorylation in the diphosphopyridine nucleotide‐cytochrome b segment of the respiratory chain: assay and properties of submitochondrial particles. J. Biol. Chem. 241: 1429–1437, 1966.
 167. Schwartz, A. and J. H. Collins. Na+/K+‐ATPase. Structure of the enzyme and mechanism of action of digitalis. In: Membranes and Transport, edited by A. N. Martonosi, New York: Plenum Press, 1982, Vol. 1, pp. 521–527.
 168. Schönfeld, P. Does the function of adenine nucleotide translocase in fatty acid uncoupling depend on the type of mitochondria? FEBS Lett. 264: 246–248, 1990.
 169. Senior, A. E. ATP synthesis by oxidative phosphorylation. Physiol. Rev. 68: 177–231, 1988.
 170. Serrano, R. Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochim. Biophys. Acta 947: 1–28, 1988.
 171. Severina, I. I. and V. P. Skulachev. Ethylrhodamine as a fluorescent penetrating cation and a membrane potential‐sensitive probe in cyanobacterial cells. FEBS Lett. 165: 67–71, 1984.
 172. Shiota, M. and S. Masumi. Effect of norepinephrine on consumption of oxygen in perfused skeletal muscle from coldexposed rats. Am. J. Physiol. 245 (Endocrinol. Metab. 17): E482–E489, 1988.
 173. Shrago, E., J. McTigue, S. Kathiyar, and G. Woldegiorgis. Preparation of a highly purified reconstituted uncoupling protein to study biochemical mechanism(s) of prolon conductance. In: Hormones, Thermogenesis, and Obesity, edited by H. Lardy and F. Stratman, Amsterdam: Elsevier, 1989, pp. 129–136.
 174. Skulachev, V. P. Regulation of the coupling of oxidation and phosphorylation. Proc. 5th Intern. Biochem. Congr. 5: 365–374, 1963.
 175. Skulachev, V. P. Energy Accumulation Process in the Cell. Moscow: Nauka, 1969 (Russ.).
 176. Skulachev, V. P. Energy transformation in the respiratory chain. Curr. Top. Bioenerg. 4: 127–190, 1971.
 177. Skulachev, V. P. Energy Transduction in Biomembranes. Moscow: Nauka, 1972 (Russ.).
 178. Skulachev, V. P. Integrating functions of biomembranes. Problems of lateral transport of energy, metabolites and electrons. Biochim. Biophys. Acta 604: 297–320, 1980.
 179. Skulachev, V. P. Membrane Bioenergetics, Berlin: Springer‐Verlag, 1988.
 180. Skulachev, V. P. Power transmission along biological membranes. J. Membr. Biol. 114: 97–112, 1990.
 181. Skulachev, V. P. Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett. 294: 158–162, 1991.
 182. Skulachev, V. P. The laws of cell energetics. Eur. J. Biochem. 208: 203–209, 1992.
 183. Skulachev, V. P., V. V. Chistyakov, A. A. Jasaitis, and E. G. Smirnova. Inhibition of the respiratoiy chain by zinc ions. Biochem. Biophys. Res. Commun. 26: 1–6, 1967.
 184. Skulachev, V. P. and S. P. Maslov. Role of non phosphorylating oxidation in thermoregulation. Biokhimiya 25: 1058–1064, 1960 (Russ.).
 185. Skulachev, V. P., S. P. Maslov, V. G. Sivkora, L. P. Kalinichenko, and G. M. Maslova. Cold‐induced iricoupling of oxidation and phosphorylation in the muscles of white mice. Biokhimiya 28: 70–79, 1963 (Russ.).
 186. Smith, R. E. and B. A. Horwitz. Brown fat and thermogenesis. Physiol. Rev. 49: 330–425, 1969.
 187. Soumarmon, A. and M.J.M. Lewin. Gastric (H+,K+)‐ATPase. Biochemie 68: 1287–1291, 1986.
 188. Spitsberg, V. L., N. E. Pfeiffer, B. Partridge, D. E. Wylie, S. M. Schuster. Isolation and antigenic characterization of corn mitochondrial F1‐ATPase. Plant Physiol. 77: 339–345, 1986.
 189. Srügger, S. Die vitalfarbung des Protoplasmas mit Rhodamine B and 6G. Protoplasma 30: 85–100, 1938.
 190. Strieleman, P. J., K. L. Schalinske, and E. Shrago. Fatty acid activation of the reconstituted brown adipose tissue mitochondria uncoupling protein. J. Biol. Chem. 260: 13402–13405, 1985.
 191. Strotmann, H., and D. Lohse. Determination of the H+/ATP ratio of the H+ transport‐coupled reversible chloroplast ATPase reaction by equilibrium studies. FEBS Lett. 229: 308–312, 1988.
 192. Sun, S.‐Z., X.‐S. Xie, and D. K. Stone. Isolation and reconstitution of the dicyclohexylcarbodiimide‐sensitive proton pore of the clathrin‐coated vesicle proton translocating complex. J. Biol. Chem. 262: 14790–14794, 1987.
 193. Toth, P. P., K. J. Sumerix, S. Ferguson‐Miller, and C. H. Suelter. Respiratory control and ADP: O coupling ratios of isolated chick heart mitochondria. Arch. Biochim. Biophys. 276: 199–211, 1990.
 194. Trumpower, B. L. Cytochrome bc1 complexe; of microorganisms. Microbiol. Rev. 54: 101–129, 1990.
 195. Tsukihara, T., H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa‐Itoh, R. Nakashima, R. Yaono, and S. Yoshikawa. Structure of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å. Science 269: 1069–1074, 1995.
 196. Valcarce, C. and M. Cuezva. Interaction of adenine nucleotides with the adenine nucleotide translocase regulates the developmental changes in proton conductance of the inner mitochondrial membrane. FEBS Lett. 294: 225–228, 1991.
 197. Van Belzen, R. and S.P.J. Albracht. The pathway of electron transfer in NADH:Q oxidoreductase. Biochim. Biophys. Acta 974: 311–320, 1989.
 198. Vignais, P. V., M. R. Block, F. Boulay, G. Brandolin, and G.J.M. Lauquin. Functional and topological aspects of the mitochondrial adenine‐nucleotide carrier. In: Membranes and Transport, edited by A. N. Martonosi, New York: Plenum Press, 1982, Vol. 1, pp. 405–414.
 199. Vorobjev, I. A. and D. B. Zorov. Diazepam inhibits cell respiration and induces fragmentation of mitochondrial reticulum. FEBS Lett. 163: 311–314, 1983.
 200. Wakabayashi, S., H. Matsubara, C. H. Kim, K. Kawai, T. E. King. The complete amino acid sequence of bovine heart cytochrome c1. Biochem. Biophys. Res. Commun. 97: 1548–1554, 1980.
 201. Walker, J. E., A. L. Cozens, M. Dyer, I. M. Fearnley, S. Powell, M. J. Runswick, and L. J. Tybulewicz. Genes for ATP synthases from photosynthetic bacteria, chloroplasts and mitochondria. EBEC 4: 1, 1986.
 202. Walker, J. E., M. J. Runswick, and L. Poulter. ATP synthase from bovine mitochondria. The characterization and sequence analysis of two membrane‐associated subunits and of the corresponding cDNAs. J. Mol. Biol. 197: 89–100, 1987.
 203. Walker, J. E., M. J. Runswick, M. Saraste. Subunit equivalence in Escherichia coli and bovine heart mitochondrial F1F0 AT‐Pases. FEBS Lett. 146: 393–396, 1982.
 204. Walker, J. E., I. M. Fearnley, N. J. Gay, B. W. Gibson, F. D. Northrop, S. J. Powell, M. J. Runswick, M. Saraste, and L. J. Tybulewicz. Primary structure and subunit stoichiometry of Fr1‐ATPase from bovine mitochondria. J. Mol. Biol. 184: 677–701, 1985.
 205. Walsh, M. L., J. Jen, and L. B. Chen. Transport of serum components into structures similar to mitochondria. Cold Spring Harbor Conf. Proliferation 6: 513–520, 1979.
 206. Webb, M. R., C. Grubmeyer, H S. Penefsky, and D. R. Trenthams. The stereochemical course of phosphoric residue transfer catalyzed by beef heart mitochondrial ATPase. J. Biol. Chem. 255: 11637–11639, 1980.
 207. Weis, J. K., L.N.Y. Wu, and R. R. Fisher. The orientation of transhydrogenase in the inner mitochondrial membrane in rat liver. Arch. Biochem. Biophys. 257 424–429, 1937.
 208. Weiss, H. and T. Friedrich. Redox‐linked proton translocation by NADH‐ubiquinone reductase (complex I). J. Bioenerg. Biomembr. 23: 743–754, 1991.
 209. Weiss, H., T. Friedrich, G. Hofhaus, and D. Preis. The respiratorychain NADH dehydrogenase (complex I) of mitochondria. Europ. J. Biochem. 197: 563–576, 1991.
 210. Wikström, M. Proton pump coupled to cytochrome c oxidase in mitochondria. Nature 266: 271–273, 1977.
 211. Wikström, M., K. Krab, and M. Saraste. Cytochrome Oxidase—A Synthesis. London: Academic Press, 1981.
 212. Wikström, M., and M. Saraste. The mitochondrial respiratory chain. In: Bioenergetics. edited by L. Ernster, Amsterdam: Elsevier Science Publishers, 1984, pp. 49–94.
 213. Wikström, M., M. Saraste, and T. Penttila. Relationships between structure and function in cytochrome oxidase. In: The Enzymes of Biological Membranes, edited by A. N. Martonosi, London: Plenum Press, 1985, Vol 4, pp. 111–148.
 214. Witt, H. T. Functional mechanism of water splitting photosynthesis. Photosynt. Res. 29: 55–77, 1991.
 215. Yang, Z., and B. L. Trumpower. Protonmotive Q cycle pathway of electron transfer and energy transduction in the three‐subunit ubiquinol‐cytochrome c oxidoreduction complex of Paracoccus denitrificans. J. Biol. Chem. 263: 11962–11970, 1988.
 216. Yeaman, S. J. The 2‐oxo acid dehydrogenase complexes: recent advances. Biochem. J. 257: 625–632, 1989.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Vladimir Skulachev. Energy Transduction Mechanisms (Animals and Plants). Compr Physiol 2011, Supplement 31: Handbook of Physiology, Cell Physiology: 76-116. First published in print 1997. doi: 10.1002/cphy.cp140104