Comprehensive Physiology Wiley Online Library

Cardiovascular Responses During Sepsis

Full Article on Wiley Online Library



Abstract

Sepsis is the life‐threatening organ dysfunction arising from a dysregulated host response to infection. Although the specific mechanisms leading to organ dysfunction are still debated, impaired tissue oxygenation appears to play a major role, and concomitant hemodynamic alterations are invariably present. The hemodynamic phenotype of affected individuals is highly variable for reasons that have been partially elucidated. Indeed, each patient's circulatory condition is shaped by the complex interplay between the medical history, the volemic status, the interval from disease onset, the pathogen, the site of infection, and the attempted resuscitation. Moreover, the same hemodynamic pattern can be generated by different combinations of various pathophysiological processes, so the presence of a given hemodynamic pattern cannot be directly related to a unique cluster of alterations. Research based on endotoxin administration to healthy volunteers and animal models compensate, to an extent, for the scarcity of clinical studies on the evolution of sepsis hemodynamics. Their results, however, cannot be directly extrapolated to the clinical setting, due to fundamental differences between the septic patient, the healthy volunteer, and the experimental model. Numerous microcirculatory derangements might exist in the septic host, even in the presence of a preserved macrocirculation. This dissociation between the macro‐ and the microcirculation might account for the limited success of therapeutic interventions targeting typical hemodynamic parameters, such as arterial and cardiac filling pressures, and cardiac output. Finally, physiological studies point to an early contribution of cardiac dysfunction to the septic phenotype, however, our defective diagnostic tools preclude its clinical recognition. © 2021 American Physiological Society. Compr Physiol 11:1605‐1652, 2021.

Figure 1. Figure 1. Relation between central venous pressure (CVP) and cardiac index (CI) in 46 medical septic patients drawn according to the data reported by Winslow and colleagues 581. Reused, with permission, from Winslow EJ, et al., (1973) 581.
Figure 2. Figure 2. Venous return curves built using a model with elements in series (A) or in parallel (B). The arrangement of the different elements is indicated by the inserts. For the in‐series model, Ra is arterial resistance, Rv venous resistance, SVR systemic vascular resistance, and RVR resistance to venous return, calculated according to Eq. 5. In (A) the control condition corresponds to VRC1 (Ra, Rv, SVR, and RVR are 16.7, 0.8, 17.5, and 1.1 mmHg min/liter, respectively). Halving of Ra causes SVR and RVR to decrease to 9.2 and 1.0 mmHg min/liter, respectively and rotates clockwise the venous return curve from VRC1 to VRC2. If Ra decreases four times relative to its control value but Rv doubles, SVR becomes 5.8 and RVR 1.7 mmHg min/liter, respectively, and the venous return curve rotates counterclockwise to VRC3. For the in parallel model, Ra is arterial resistance, Rv venous resistance, and C compliance. The subscripts 1 and 2 refer to the non‐compliant and to the compliant compartment, respectively. Fc is the percentage of cardiac output (CO) perfusing the compliant compartment. In (B) VRC1 was built using published data relative to a dog 84. Calculated SVR is 67 mmHg min/liter. If Ra of the non‐compliant compartment is halved and that of the compliant compartment is doubled, so that Fc decreases from 54% to 25%, SVR decreases (57 mmHg min/liter), and the slope of the venous return curve increases (VRC2). If Ra of the non‐compliant compartment is doubled and that of the compliant compartment is halved, so that Fc increases from 54% to 80%, SVR decreases to the same amount as before (57 mmHg min/liter) but the slope of the venous return curve decreases (VRC3).
Figure 3. Figure 3. Equilibrium diagram showing the effects of sepsis‐induced absolute or effective hypovolemia (A), vasodilation of resistive vessels (B), myocardial dysfunction (C), absolute or effective hypovolemia and myocardial dysfunction (D), vasodilation of resistive vessels, and myocardial dysfunction (E) and absolute or effective hypovolemia and vasodilation of resistive vessels (F). Thin lines correspond to the control conditions, thick lines indicate sepsis‐induced alterations of the cardiac and venous return curves. Reflex compensation is not shown.
Figure 4. Figure 4. Relation between the rate or norepinephrine infusion and mean systemic filling pressure (Pmsf), resistance to venous return index (RVRI), and systemic vascular resistance index (SVRI) in stable postoperative cardiac surgery patients (○) and septic shock patients (•). The values corresponding to zero norepinephrine were obtained by extrapolation. Data are from three unrelated studies performed separately on cardiac surgery patients 306,307 and septic shock patients 404. Reused, with permission, from Maas JJ, et al., (2009) 306, Maas JJ, et al., (2013) 307, Persichini R, et al., (2012) 404.
Figure 5. Figure 5. Guyton's equilibrium diagram representing the functional properties of the heart and of the systemic circulation of a healthy human subject before and after the injection of LPS. Before the injection, the intersection of the cardiac function curve (CFCc) and the venous return curve (VRCc) is at point A. After the injection, the equilibrium point moves from point A to point E. An increase of cardiac output (CO) without changes of central venous pressure (CVP) implies unequivocally a counterclockwise rotation of the cardiac function curve (to CFCe) but is compatible with different modifications of the vascular function curve. Either resistance to venous return (RVR) decreases proportionally more than mean systemic filling pressure (Pmsf) (A), or Pmsf increases proportionally more than RVR (B). The measured decrease of systemic vascular resistance (SVR) after bacterial lipopolysaccharide (LPS) administration suggests (but does not prove) that the possibility shown by (A) is more likely.
Figure 6. Figure 6. Glycocheck algorithm on endothelial perfused boundary region (PBR) determination and microvascular perfusion properties. (A) Red blood cells (RBC) are detected through reflection of light‐emitting diodes by hemoglobin. Images captured by the sidestream darkfield camera are sent to the computer for quality checks and assessment. The black contrast is the perfused lumen of the vessels. (B) In each recording, the software automatically places the vascular segments (green), every 10 mm along the vascular segments (black contrast). (C) After the acquisition, for the analysis, the software undergoes several quality checks in the first frame of each recording, to select vascular segments with sufficient quality for further analysis. Invalid vascular segments (yellow) are distinguished from the valid vascular segments (green). During the whole recording session of 40 frames, the percentage of time in which a particular valid vascular segment has RBCs present is used to calculate RBC filling percentage. (D) Depiction of the concept of glycocalyx thickness by lateral RBC movement is shown here. (E) For each vascular segment, the intensity profile is calculated to derive median RBC column width. (F) Then, the distribution of RBC column width is used to calculate the perfused diameter, median RBC column width, and subsequently the PBR. Reused, with permission under the terms of the Creative Commons Attribution License, from Lee DH, et al., (2014) 283.
Figure 7. Figure 7. Pressure volume (P‐V) relations (left) and P‐V‐area (right). Points at top left corners of loops are end‐systolic P‐V points. Line through points is end‐systolic pressure‐volume relation (ESPVR), and its slope and its volume‐axis intercept are Ees and V0, respectively. Effective arterial elastance (Ea) is slope of end‐systolic pressure‐stroke volume relation (ESPSVR). PVA is the area in P‐V diagram that is circumscribed by ESPVR, end‐diastolic P‐V relation curve, and systolic segments of P‐V trajectory (A‐B‐C‐D‐A, right). External work (EW) is the area within P‐V loop trajectory (A‐B‐C‐D‐A), and end‐systolic elastic potential energy (PE) is the area between ESPVR and end‐diastolic P‐V relation curve to left of EW. Reused, with permission © 1996, The American Physiological Society, from Seki K, et al., (1996) 477.
Figure 8. Figure 8. The end‐diastolic pressure‐volume relationship (EDPVR) is nonlinear, having a shallow slope at low left ventricular (LV) volume range and a steeper slope at higher LV volume range. At subphysiological (sub) volumes the EDPVR turns toward negative LV pressures. Reused, with permission © 2005, The American Physiological Society, from Burkhoff D, et al., (2005) 79.
Figure 9. Figure 9. Correlation between mean arterial blood pressure and muscle sympathetic nervous activity (MSNA) (A) or heart rate (B) of the endotoxin (, preinjection; ▪, postinjection) and placebo groups (Δ, preinjection; ∇, postinjection); (§§P < 0.01). Please note that physiologically the stimulus‐response curve of the baroreflex is rather sigmoid, not linear. However, linear regression helps to visualize the apparent differences of vascular baroreflex‐sensitivity (MSNA) and uncoupling of heart rate. The slope, y‐intercept and regression coefficient (R2) of the linear best‐fit lines are (A) , y = −2.0173 × +208.54; R2 = 0.9932; ▪, y = −0.7895 × +80.573; R2 = 0.8427; Δ, y = −1.8098 × +184.73; R2 = 0.9478; ∇, y = −2.1008 × +218.47; R2 = 0.9928. (B) , y = −0.9325 × +144.71; R2 = 0.9756; ▪, y = −0.0817 × +91.208; R2 = 0.0654; Δ, y = −1.1491 × +166.6; R2 = 0.9629; ∇, y = −1.4322 × +193.89; R2 = 0.9628. Reused, with permission, from Sayk F, et al., (2008) 465.
Figure 10. Figure 10. Sympathetic arterial baroreflex system in closed‐loop (A) and open‐loop (B) conditions. Pd indicates external disturbance to arterial pressure (AP). In open‐loop conditions, relationship between baroreceptor pressure (BRP) and sympathetic nerve activity (SNA) and that between SNA and systemic arterial pressure (SAP) can be quantitatively measured. When the two curves characterizing the two relationships are plotted on an equilibrium diagram, intersection of the two curves is supposed to be operating point of AP and SNA under closed‐loop conditions of the feedback system (C). Reused, with permission, from Sato T, et al., (1999) 464.
Figure 11. Figure 11. Open‐loop characteristics of the baroreflex under bacterial lipopolysaccharide (LPS). Open‐loop static characteristics of the total baroreflex arc (A), neural arc (B), peripheral arc (C), CSP to HR relationship (D), CSP to SVR relationship (E), CSP to CO relationship (F), SNA to SVR relationship (G), and SNA to CO relationship (H) obtained at baseline (dotted line with white circles, ○), and 60 min (thin solid line with diamonds, ◊) and 120 min after LPS (thick solid line with black circles, •). Data are expressed as means ± SEM (n = 10). CSP, carotid sinus pressure (mmHg); AP, arterial pressure (mmHg); SNA, sympathetic nerve activity (a.u.); HR, heart rate (bpm); SVR, systemic vascular resistance (mmHg min/mL); CO, cardiac output (mL/min). Reused, with permission under the terms of the Creative Commons Attribution License, from Tohyama T, et al., (2018) 523.
Figure 12. Figure 12. Baroreflex equilibrium diagram under bacterial lipopolysaccharide (LPS). Averaged baroreflex equilibrium diagram at baseline (dotted line with white circle, operating point a), and at 60 min (thin solid line with diamond, operating point b) and 120 min after LPS injection (thick solid line with black circle, operating point c). SNA, sympathetic nerve activity (a.u.); CSP, carotid sinus pressure (mmHg); AP, arterial pressure (mmHg). Reused, with permission under the terms of the Creative Commons Attribution License, from Tohyama T, et al., (2018) 523.


Figure 1. Relation between central venous pressure (CVP) and cardiac index (CI) in 46 medical septic patients drawn according to the data reported by Winslow and colleagues 581. Reused, with permission, from Winslow EJ, et al., (1973) 581.


Figure 2. Venous return curves built using a model with elements in series (A) or in parallel (B). The arrangement of the different elements is indicated by the inserts. For the in‐series model, Ra is arterial resistance, Rv venous resistance, SVR systemic vascular resistance, and RVR resistance to venous return, calculated according to Eq. 5. In (A) the control condition corresponds to VRC1 (Ra, Rv, SVR, and RVR are 16.7, 0.8, 17.5, and 1.1 mmHg min/liter, respectively). Halving of Ra causes SVR and RVR to decrease to 9.2 and 1.0 mmHg min/liter, respectively and rotates clockwise the venous return curve from VRC1 to VRC2. If Ra decreases four times relative to its control value but Rv doubles, SVR becomes 5.8 and RVR 1.7 mmHg min/liter, respectively, and the venous return curve rotates counterclockwise to VRC3. For the in parallel model, Ra is arterial resistance, Rv venous resistance, and C compliance. The subscripts 1 and 2 refer to the non‐compliant and to the compliant compartment, respectively. Fc is the percentage of cardiac output (CO) perfusing the compliant compartment. In (B) VRC1 was built using published data relative to a dog 84. Calculated SVR is 67 mmHg min/liter. If Ra of the non‐compliant compartment is halved and that of the compliant compartment is doubled, so that Fc decreases from 54% to 25%, SVR decreases (57 mmHg min/liter), and the slope of the venous return curve increases (VRC2). If Ra of the non‐compliant compartment is doubled and that of the compliant compartment is halved, so that Fc increases from 54% to 80%, SVR decreases to the same amount as before (57 mmHg min/liter) but the slope of the venous return curve decreases (VRC3).


Figure 3. Equilibrium diagram showing the effects of sepsis‐induced absolute or effective hypovolemia (A), vasodilation of resistive vessels (B), myocardial dysfunction (C), absolute or effective hypovolemia and myocardial dysfunction (D), vasodilation of resistive vessels, and myocardial dysfunction (E) and absolute or effective hypovolemia and vasodilation of resistive vessels (F). Thin lines correspond to the control conditions, thick lines indicate sepsis‐induced alterations of the cardiac and venous return curves. Reflex compensation is not shown.


Figure 4. Relation between the rate or norepinephrine infusion and mean systemic filling pressure (Pmsf), resistance to venous return index (RVRI), and systemic vascular resistance index (SVRI) in stable postoperative cardiac surgery patients (○) and septic shock patients (•). The values corresponding to zero norepinephrine were obtained by extrapolation. Data are from three unrelated studies performed separately on cardiac surgery patients 306,307 and septic shock patients 404. Reused, with permission, from Maas JJ, et al., (2009) 306, Maas JJ, et al., (2013) 307, Persichini R, et al., (2012) 404.


Figure 5. Guyton's equilibrium diagram representing the functional properties of the heart and of the systemic circulation of a healthy human subject before and after the injection of LPS. Before the injection, the intersection of the cardiac function curve (CFCc) and the venous return curve (VRCc) is at point A. After the injection, the equilibrium point moves from point A to point E. An increase of cardiac output (CO) without changes of central venous pressure (CVP) implies unequivocally a counterclockwise rotation of the cardiac function curve (to CFCe) but is compatible with different modifications of the vascular function curve. Either resistance to venous return (RVR) decreases proportionally more than mean systemic filling pressure (Pmsf) (A), or Pmsf increases proportionally more than RVR (B). The measured decrease of systemic vascular resistance (SVR) after bacterial lipopolysaccharide (LPS) administration suggests (but does not prove) that the possibility shown by (A) is more likely.


Figure 6. Glycocheck algorithm on endothelial perfused boundary region (PBR) determination and microvascular perfusion properties. (A) Red blood cells (RBC) are detected through reflection of light‐emitting diodes by hemoglobin. Images captured by the sidestream darkfield camera are sent to the computer for quality checks and assessment. The black contrast is the perfused lumen of the vessels. (B) In each recording, the software automatically places the vascular segments (green), every 10 mm along the vascular segments (black contrast). (C) After the acquisition, for the analysis, the software undergoes several quality checks in the first frame of each recording, to select vascular segments with sufficient quality for further analysis. Invalid vascular segments (yellow) are distinguished from the valid vascular segments (green). During the whole recording session of 40 frames, the percentage of time in which a particular valid vascular segment has RBCs present is used to calculate RBC filling percentage. (D) Depiction of the concept of glycocalyx thickness by lateral RBC movement is shown here. (E) For each vascular segment, the intensity profile is calculated to derive median RBC column width. (F) Then, the distribution of RBC column width is used to calculate the perfused diameter, median RBC column width, and subsequently the PBR. Reused, with permission under the terms of the Creative Commons Attribution License, from Lee DH, et al., (2014) 283.


Figure 7. Pressure volume (P‐V) relations (left) and P‐V‐area (right). Points at top left corners of loops are end‐systolic P‐V points. Line through points is end‐systolic pressure‐volume relation (ESPVR), and its slope and its volume‐axis intercept are Ees and V0, respectively. Effective arterial elastance (Ea) is slope of end‐systolic pressure‐stroke volume relation (ESPSVR). PVA is the area in P‐V diagram that is circumscribed by ESPVR, end‐diastolic P‐V relation curve, and systolic segments of P‐V trajectory (A‐B‐C‐D‐A, right). External work (EW) is the area within P‐V loop trajectory (A‐B‐C‐D‐A), and end‐systolic elastic potential energy (PE) is the area between ESPVR and end‐diastolic P‐V relation curve to left of EW. Reused, with permission © 1996, The American Physiological Society, from Seki K, et al., (1996) 477.


Figure 8. The end‐diastolic pressure‐volume relationship (EDPVR) is nonlinear, having a shallow slope at low left ventricular (LV) volume range and a steeper slope at higher LV volume range. At subphysiological (sub) volumes the EDPVR turns toward negative LV pressures. Reused, with permission © 2005, The American Physiological Society, from Burkhoff D, et al., (2005) 79.


Figure 9. Correlation between mean arterial blood pressure and muscle sympathetic nervous activity (MSNA) (A) or heart rate (B) of the endotoxin (, preinjection; ▪, postinjection) and placebo groups (Δ, preinjection; ∇, postinjection); (§§P < 0.01). Please note that physiologically the stimulus‐response curve of the baroreflex is rather sigmoid, not linear. However, linear regression helps to visualize the apparent differences of vascular baroreflex‐sensitivity (MSNA) and uncoupling of heart rate. The slope, y‐intercept and regression coefficient (R2) of the linear best‐fit lines are (A) , y = −2.0173 × +208.54; R2 = 0.9932; ▪, y = −0.7895 × +80.573; R2 = 0.8427; Δ, y = −1.8098 × +184.73; R2 = 0.9478; ∇, y = −2.1008 × +218.47; R2 = 0.9928. (B) , y = −0.9325 × +144.71; R2 = 0.9756; ▪, y = −0.0817 × +91.208; R2 = 0.0654; Δ, y = −1.1491 × +166.6; R2 = 0.9629; ∇, y = −1.4322 × +193.89; R2 = 0.9628. Reused, with permission, from Sayk F, et al., (2008) 465.


Figure 10. Sympathetic arterial baroreflex system in closed‐loop (A) and open‐loop (B) conditions. Pd indicates external disturbance to arterial pressure (AP). In open‐loop conditions, relationship between baroreceptor pressure (BRP) and sympathetic nerve activity (SNA) and that between SNA and systemic arterial pressure (SAP) can be quantitatively measured. When the two curves characterizing the two relationships are plotted on an equilibrium diagram, intersection of the two curves is supposed to be operating point of AP and SNA under closed‐loop conditions of the feedback system (C). Reused, with permission, from Sato T, et al., (1999) 464.


Figure 11. Open‐loop characteristics of the baroreflex under bacterial lipopolysaccharide (LPS). Open‐loop static characteristics of the total baroreflex arc (A), neural arc (B), peripheral arc (C), CSP to HR relationship (D), CSP to SVR relationship (E), CSP to CO relationship (F), SNA to SVR relationship (G), and SNA to CO relationship (H) obtained at baseline (dotted line with white circles, ○), and 60 min (thin solid line with diamonds, ◊) and 120 min after LPS (thick solid line with black circles, •). Data are expressed as means ± SEM (n = 10). CSP, carotid sinus pressure (mmHg); AP, arterial pressure (mmHg); SNA, sympathetic nerve activity (a.u.); HR, heart rate (bpm); SVR, systemic vascular resistance (mmHg min/mL); CO, cardiac output (mL/min). Reused, with permission under the terms of the Creative Commons Attribution License, from Tohyama T, et al., (2018) 523.


Figure 12. Baroreflex equilibrium diagram under bacterial lipopolysaccharide (LPS). Averaged baroreflex equilibrium diagram at baseline (dotted line with white circle, operating point a), and at 60 min (thin solid line with diamond, operating point b) and 120 min after LPS injection (thick solid line with black circle, operating point c). SNA, sympathetic nerve activity (a.u.); CSP, carotid sinus pressure (mmHg); AP, arterial pressure (mmHg). Reused, with permission under the terms of the Creative Commons Attribution License, from Tohyama T, et al., (2018) 523.
References
 1.Abraham E, Anzueto A, Gutierrez G, Tessler S, San Pedro G, Wunderink R, Dal Nogare A, Nasraway S, Berman S, Cooney R, Levy H, Baughman R, Rumbak M, Light RB, Poole L, Allred R, Constant J, Pennington J, Porter S. Double‐blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock. NORASEPT II Study Group. Lancet (London, England) 351: 929‐933, 1998. DOI: 10.1016/S0140‐6736(05)60602‐2.
 2.Abraham E, Bland RD, Cobo JC, Shoemaker WC. Sequential cardiorespiratory patterns associated with outcome in septic shock. Chest 85: 75‐80, 1984. DOI: 10.1378/chest.85.1.75.
 3.Ahmed AJ, Kruse JA, Haupt MT, Chandrasekar PH, Carlson RW. Hemodynamic responses to gram‐positive versus gram‐negative sepsis in critically ill patients with and without circulatory shock. Crit Care Med 19: 1520‐1525, 1991. DOI: 10.1097/00003246‐199112000‐00014.
 4.Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 101: 3765‐3777, 2003. DOI: 10.3109/9780203025956‐21.
 5.Aird WC. The hematologic system as a marker of organ dysfunction in sepsis. Mayo Clin Proc 78: 869‐881, 2003. DOI: 10.4065/78.7.869.
 6.Albert J, Radomski A, Soop A, Sollevi A, Frostell C, Radomski MW. Differential release of matrix metalloproteinase‐9 and nitric oxide following infusion of endotoxin to human volunteers. Acta Anaesthesiol Scand 47: 407‐410, 2003. DOI: 10.1034/j.1399‐6576.2003.00059.x.
 7.Albert M, Losser MR, Hayon D, Faivre V, Payen D. Systemic and renal macro‐ and microcirculatory responses to arginine vasopressin in endotoxic rabbits. Crit Care Med 32: 1891‐1898, 2004. DOI: 10.1097/01.CCM.0000139708.10718.E3.
 8.Alexander RS. Viscoelastic determinants of muscle contractility and “cardiac tone”. Fed Proc 21: 1001‐1005, 1962.
 9.Altemeier WA, Cole WR. Nature and treatment of septic shock. AMA Arch Surg 77: 498‐507, 1958. DOI: 10.1001/archsurg.1958.04370010030004.
 10.Amà R, Segers P, Roosens C, Claessens T, Verdonck P, Poelaert J. The effects of load on systolic mitral annular velocity by tissue Doppler imaging. Anesth Analg 99: 332‐328, table of contents, 2004. DOI: 10.1213/01.ANE.0000131972.99804.28.
 11.Anderson RR, Holliday RL, Driedger AA, Lefcoe M, Reid B, Sibbald WJ. Documentation of pulmonary capillary permeability in the adult respiratory distress syndrome accompanying human sepsis. Am Rev Respir Dis 119: 869‐877, 1979. DOI: 10.1164/arrd.1979.119.6.869.
 12.Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med 369: 840‐851, 2013. DOI: 10.1056/NEJMra1208623.
 13.Annane D, Bellissant E, Sebille V, Lesieur O, Mathieu B, Raphael J, Gajdos P. Impaired pressor sensitivity to noradrenaline in septic shock patients with and without impaired adrenal function reserve. Br J Clin Pharmacol 46: 589‐597, 2002. DOI: 10.1046/j.1365‐2125.1998.00833.x.
 14.Annane D, Renault A, Brun‐Buisson C, Megarbane B, Quenot J‐P, Siami S, Cariou A, Forceville X, Schwebel C, Martin C, Timsit J‐F, Misset B, Ali Benali M, Colin G, Souweine B, Asehnoune K, Mercier E, Chimot L, Charpentier C, François B, Boulain T, Petitpas F, Constantin J‐M, Dhonneur G, Baudin F, Combes A, Bohé J, Loriferne J‐F, Amathieu R, Cook F, Slama M, Leroy O, Capellier G, Dargent A, Hissem T, Maxime V, Bellissant E. Hydrocortisone plus fludrocortisone for adults with septic shock. N Engl J Med 378: 809‐818, 2018. DOI: 10.1056/NEJMoa1705716.
 15.Annane D, Sanquer S, Sébille V, Faye A, Djuranovic D, Raphaël JC, Gajdos P, Bellissant E. Compartmentalised inducible nitric‐oxide synthase activity in septic shock. Lancet 355: 1143‐1148, 2000. DOI: 10.1016/S0140‐6736(00)02063‐8.
 16.Annane D, Trabold F, Sharshar T, Jarrin I, Blanc AS, Raphael JC, Gajdos P. Inappropriate sympathetic activation at onset of septic shock: A spectral analysis approach. Am J Respir Crit Care Med 160: 458‐465, 1999. DOI: 10.1164/ajrccm.160.2.9810073.
 17.Archer SL, Huang JM, Hampl V, Nelson DP, Shultz PJ, Weir EK. Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin‐sensitive K channel by cGMP‐dependent protein kinase. Proc Natl Acad Sci 91: 7583‐7587, 1994. DOI: 10.1073/pnas.91.16.7583.
 18.Arnalich F, Hernanz A, Jiménez M, López J, Tato E, Vázquez JJ, Montiel C. Relationship between circulating levels of calcitonin gene‐related peptide, nitric oxide metabolites and hemodynamic changes in human septic shock. Regul Pept 65: 115‐121, 1996. DOI: 10.1016/0167‐0115(96)00080‐8.
 19.Asanoi H, Kameyama T, Ishizaka S, Miyagi K, Sasayama S. Ventriculoarterial coupling during exercise in normal human subjects. Int J Cardiol 36: 177‐186, 1992. DOI: 10.1016/0167‐5273(92)90005‐N.
 20.Asanoi H, Sasayama S, Kameyama T. Ventriculoarterial coupling in normal and failing heart in humans. Circ Res 65: 483‐493, 1989. DOI: 10.1161/01.RES.65.2.483.
 21.Astiz ME, DeGent GE, Lin RY, Rackow EC. Microvascular function and rheologic changes in hyperdynamic sepsis. Crit Care Med 23: 265‐271, 1995. DOI: 10.1097/00003246‐199502000‐00011.
 22.Astiz ME, Galera‐Santiago A, Rackow EC. Intravascular volume and fluid therapy for severe sepsis. New Horiz 1: 127‐136, 1993.
 23.Astiz ME, Rackow EC, Haydon P, Karras G, Weil MH. Skeletal muscle blood flow and venous capacitance in patients with severe sepsis and systemic hypoperfusion. Chest 96: 363‐366, 1989. DOI: 10.1378/chest.96.2.363.
 24.Astiz ME, Tilly E, Rackow ED, Weil MH. Peripheral vascular tone in sepsis. Chest 99: 1072‐1075, 1991. DOI: 10.1378/chest.99.5.1072.
 25.Baan J, Van der Velde ET. Sensitivity of left ventricular end‐systolic pressure‐volume relation to type of loading intervention in dogs. Circ Res 62: 1247‐1258, 1988. DOI: 10.1161/01.RES.62.6.1247.
 26.Bahador M, Cross AS. From therapy to experimental model: A hundred years of endotoxin administration to human subjects. J Endotoxin Res 13: 251‐279, 2007. DOI: 10.1177/0968051907085986.
 27.Baker CH, Sutton ET, Dietz JR. Endotoxin alteration of muscle microvascular renin‐angiotensin responses. Circ Shock 36: 224‐230, 1992.
 28.Baker CH, Wilmoth FR. Microvascular responses to E. coli endotoxin with altered adrenergic activity. Circ Shock 12: 165‐176, 1984.
 29.Bakker J, Grover R, McLuckie A, Holzapfel L, Andersson J, Lodato R, Watson D, Grossman S, Donaldson J, Takala J. Administration of the nitric oxide synthase inhibitor NG‐methyl‐L‐arginine hydrochloride (546C88) by intravenous infusion for up to 72 hours can promote the resolution of shock in patients with severe sepsis: Results of a randomized, double‐blind, placeb. Crit Care Med 32: 1‐12, 2004. DOI: 10.1097/01.CCM.0000105118.66983.19.
 30.Bannerman DD, Goldblum SE. Direct effects of endotoxin on the endothelium: Barrier function and injury. Lab Investig 79: 1181‐1199, 1999.
 31.Barlow RS, White RE. Hydrogen peroxide relaxes porcine coronary arteries by stimulating BK Ca channel activity. Am J Physiol Circ Physiol 275: H1283‐H1289, 1998. DOI: 10.1152/ajpheart.1998.275.4.H1283.
 32.Barraud D, Faivre V, Damy T, Welschbillig S, Gayat E, Heymes C, Payen D, Shah AM, Mebazaa A. Levosimendan restores both systolic and diastolic cardiac performance in lipopolysaccharide‐treated rabbits: Comparison with dobutamine and milrinone. Crit Care Med 35: 1376‐1382, 2007. DOI: 10.1097/01.CCM.0000261889.18102.84.
 33.Barrett LK, Orie NN, Taylor V, Stidwill RP, Clapp LH, Singer M. Differential effects of vasopressin and norepinephrine on vascular reactivity in a long‐term rodent model of sepsis. Crit Care Med 35: 2337‐2343, 2007. DOI: 10.1097/01.CCM.0000281861.72907.17.
 34.Baskurt OK, Gelmont D, Meiselman HJ. Red blood cell deformability in sepsis. Am J Respir Crit Care Med 157: 421‐427, 1998. DOI: 10.1164/ajrccm.157.2.9611103.
 35.Basu S, Frank LH, Fenton KE, Sable CA, Levy RJ, Berger JT. Two‐dimensional speckle tracking imaging detects impaired myocardial performance in children with septic shock, not recognized by conventional echocardiography. Pediatr Crit Care Med 13: 259‐264, 2012. DOI: 10.1097/PCC.0b013e3182288445.
 36.Bateman R, Sharpe M, Singer M, Ellis C. The effect of sepsis on the erythrocyte. Int J Mol Sci 18: 1932, 2017. DOI: 10.3390/ijms18091932.
 37.Bateman RM, Jagger JE, Sharpe MD, Ellsworth ML, Mehta S, Ellis CG. Erythrocyte deformability is a nitric oxide‐mediated factor in decreased capillary density during sepsis. Am J Physiol Circ Physiol 280: H2848‐H2856, 2001. DOI: 10.1152/ajpheart.2001.280.6.H2848.
 38.Bateman RM, Sharpe MD, Jagger JE, Ellis CG. Sepsis impairs microvascular autoregulation and delays capillary response within hypoxic capillaries. Crit Care 19: 1‐14, 2015. DOI: 10.1186/s13054‐015‐1102‐7.
 39.Belcher P, Boerboom LE, Olinger GN. Standardization of end‐systolic pressure‐volume relation in the dog. Am J Physiol Circ Physiol 249: H547‐H553, 1985. DOI: 10.1152/ajpheart.1985.249.3.H547.
 40.Bellissant E. Effect of hydrocortisone on phenylephrine – mean arterial pressure dose‐response relationship in septic shock. Clin Pharmacol Ther 68: 293‐303, 2000. DOI: 10.1067/mcp.2000.109354.
 41.Benedict CR, Rose JA. Arterial norepinephrine changes in patients with septic shock. Circ Shock 38: 165‐172, 1992.
 42.Benjamin N, Collier JG, Webb DJ. Angiotensin II augments sympathetically induced venoconstriction in man. Clin Sci 75: 337‐340, 1988. DOI: 10.1042/cs0750337.
 43.Bennett T, Mahajan RP, March JE, Kemp PA, Gardiner SM. Regional and temporal changes in cardiovascular responses to norepinephrine and vasopressin during continuous infusion of lipopolysaccharide in conscious rats. Br J Anaesth 93: 400‐407, 2004. DOI: 10.1093/bja/aeh214.
 44.Berger D, Moller PW, Weber A, Bloch A, Bloechlinger S, Haenggi M, Sondergaard S, Jakob SM, Magder S, Takala J. Effect of PEEP, blood volume, and inspiratory hold maneuvers on venous return. Am J Physiol Circ Physiol 311: H794‐H806, 2016. DOI: 10.1152/ajpheart.00931.2015.
 45.Bergmeier W, Hynes RO. Extracellular matrix proteins in hemostasis and thrombosis. Cold Spring Harb Perspect Biol 4: a005132, 2012. DOI: 10.1101/cshperspect.a005132.
 46.Berliner AS, Shapira I, Rogowski O, Sadees N, Rotstein R, Fusman R, Avitzour D, Cohen S, Arber N, Zeltser D. Combined leukocyte and erythrocyte aggregation in the peripheral venous blood during sepsis. An indication of commonly shared adhesive protein(s). Int J Clin Lab Res 30: 27‐31, 2000. DOI: 10.1007/s005990070030.
 47.Bernard GR, Wheeler AP, Russell JA, Schein R, Summer WR, Steinberg KP, Fulkerson WJ, Wright PE, Christman BW, Dupont WD, Higgins SB, Swindell BB. The effects of ibuprofen on the physiology and survival of patients with sepsis. N Engl J Med 336: 912‐918, 1997. DOI: 10.1056/NEJM199703273361303.
 48.Bersten AD, Hersch M, Cheung H, Rutledge FS, Sibbald WJ. The effect of various sympathomimetics on the regional circulations in hyperdynamic sepsis. Surgery 112: 549‐561, 1992. DOI: 10.5555/uri:pii:0039606092902607.
 49.Bertolini G, Iapichino G, Radrizzani D, Facchini R, Simini B, Bruzzone P, Zanforlin G, Tognoni G. Early enteral immunonutrition in patients with severe sepsis. Intensive Care Med 29: 834‐840, 2003. DOI: 10.1007/s00134‐003‐1711‐5.
 50.Bhagat K, Collier J, Vallance P. Local venous responses to endotoxin in humans. Circulation 94: 490‐497, 1996. DOI: 10.1161/01.cir.94.3.490.
 51.Blain CM, Anderson TO, Pietras RJ, Gunnar RM. Immediate hemodynamic effects of gram‐negative vs gram‐positive bacteremia in man. Arch Intern Med 126: 260‐265, 1970. DOI: 10.1001/archinte.1970.00310080066007.
 52.Blattberg B, Levy MN. Sites of extrahepatic pooling in early response to endotoxin. Am J Physiol 220: 1267‐1270, 1971. DOI: 10.1152/ajplegacy.1971.220.5.1267.
 53.Boczkowski J, Vicaut E, Aubier M. In vivo effects of Escherichia coli endotoxemia on diaphragmatic microcirculation in rats. J Appl Physiol 72: 2219‐2224, 1992. DOI: 10.1152/jappl.1992.72.6.2219.
 54.Boerma EC, Koopmans M, Konijn A, Kaiferova K, Bakker AJ, van Roon EN, Buter H, Bruins N, Egbers PH, Gerritsen RT, Koetsier PM, Kingma WP, Kuiper MA, Ince C. Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol: A double‐blind randomized placebo controlled trial. Crit Care Med 38: 93‐100, 2010. DOI: 10.1097/CCM.0b013e3181b02fc1.
 55.Boerma EC, Van Der Voort PHJ, Spronk PE, Ince C. Relationship between sublingual and intestinal microcirculatory perfusion in patients with abdominal sepsis. Crit Care Med 35: 1055‐1060, 2007. DOI: 10.1097/01.CCM.0000259527.89927.F9.
 56.Bohlen HG. Nitric oxide and the cardiovascular system. Compr Physiol 5: 803‐828, 2015. DOI: 10.1002/cphy.c140052.
 57.Boissier F, Razazi K, Seemann A, Bedet A, Thille AW, de Prost N, Lim P, Brun‐Buisson C, Mekontso Dessap A. Left ventricular systolic dysfunction during septic shock: The role of loading conditions. Intensive Care Med 43: 633‐642, 2017. DOI: 10.1007/s00134‐017‐4698‐z.
 58.Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates calcium‐dependent potassium channels in vascular smooth muscle. Nature 368: 850‐853, 1994. DOI: 10.1038/368850a0.
 59.Boly CA, Reesink KD, van den Tol MP, Jansen EK, Westerhof BE, Boer C, Bouwman RA. Minimally invasive intraoperative estimation of left‐ventricular end‐systolic elastance with phenylephrine as loading intervention. Br J Anaesth 111: 750‐758, 2013. DOI: 10.1093/bja/aet230.
 60.Bone RC, Balk R, Cerra F, Dellinger R, Fein A, Knaus W, Schein R, Sibbald W, The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 101: 1644‐1655, 1992. DOI: 10.1378/chest.101.6.1644.
 61.Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, Bricker TL, Jarman SD, Kreisel D, Krupnick AS, Srivastava A, Swanson PE, Green JM, Hotchkiss RS. Immunosuppression in patients who die of sepsis and multiple organ failure. J Am Med Assoc 306: 2594‐2605, 2011. DOI: 10.1001/jama.2011.1829.
 62.Bor‐Kucukatay M, Wenby RB, Meiselman HJ, Baskurt OK. Effects of nitric oxide on red blood cell deformability. Am J Physiol Circ Physiol 284: H1577‐H1584, 2003. DOI: 10.1152/ajpheart.00665.2002.
 63.Borlaug BA, Melenovsky V, Redfield MM, Kessler K, Chang H‐J, Abraham TP, Kass DA. Impact of arterial load and loading sequence on left ventricular tissue velocities in humans. J Am Coll Cardiol 50: 1570‐1577, 2007. DOI: 10.1016/j.jacc.2007.07.032.
 64.Bouhemad B, Nicolas‐Robin A, Arbelot C, Arthaud M, Féger F, Rouby JJ. Isolated and reversible impairment of ventricular relaxation in patients with septic shock. Crit Care Med 36: 766‐774, 2008. DOI: 10.1097/CCM.0B013E31816596BC.
 65.Bouhemad B, Nicolas‐Robin A, Arbelot C, Arthaud M, Féger F, Rouby JJ. Acute left ventricular dilatation and shock‐induced myocardial dysfunction. Crit Care Med 37: 441‐447, 2009. DOI: 10.1097/CCM.0b013e318194ac44.
 66.Brackett DJ, Schaefer CF, Tompkins P, Fagraeus L, Peters LJ, Wilson MF. Evaluation of cardiac output, total peripheral vascular resistance, and plasma concentrations of vasopressin in the conscious, unrestrained rat during endotoxemia. Circ Shock 17: 273‐284, 1985.
 67.Bradley SE, Chasis H, Goldring W, Smith HW. Hemodynamic alterations in normotensive and hypertensive subjects during the pyrogenic reaction. J Clin Invest 24: 749‐758, 1945. DOI: 10.1172/JCI101660.
 68.Breslow MJ, Miller CF, Parker SD, Walman AT, Traystman RJ. Effect of vasopressors on organ blood flow during endotoxin shock in pigs. Am J Physiol 252: H291‐H300, 1987. DOI: 10.1152/ajpheart.1987.252.2.H291.
 69.Brett SJ, Evans TW. Measurement of endogenous nitric oxide in the lungs of patients with the acute respiratory distress syndrome. Am J Respir Crit Care Med 157: 993‐997, 1998. DOI: 10.1164/ajrccm.157.3.9705060.
 70.Brienza N, Ayuse T, Revelly JP, O'Donnell CP, Robotham JL. Effects of endotoxin on isolated porcine liver: Pressure‐flow analysis. J Appl Physiol 78: 784‐792, 1995. DOI: 10.1152/jappl.1995.78.3.784.
 71.Brierley J, Peters MJ. Distinct hemodynamic patterns of septic shock at presentation to pediatric intensive care. Pediatrics 122: 752‐759, 2008. DOI: 10.1542/peds.2007‐1979.
 72.Brigham KL, Bowers R, Haynes J. Increased sheep lung vascular permeability caused by Escherichia coli endotoxin. Circ Res 45: 292‐297, 1979. DOI: 10.1161/01.RES.45.2.292.
 73.Brigham KL, Owen PJ, Bowers RE. Increased permeability of sheep lung vessels to proteins after Pseudomonas bacteremia. Microvasc Res 11: 415‐419, 1976. DOI: 10.1016/0026‐2862(76)90067‐4.
 74.Brigham KL, Woolverton WC, Blake LH, Staub NC. Increased sheep lung vascular permeability caused by Pseudomonas bacteremia. J Clin Invest 54: 792‐804, 1974. DOI: 10.1172/JCI107819.
 75.Bruegger D, Jacob M, Rehm M, Loetsch M, Welsch U, Conzen P, Becker BF. Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Circ Physiol 289: H1993‐H1999, 2005. DOI: 10.1152/ajpheart.00218.2005.
 76.Bruegger D, Schwartz L, Chappell D, Jacob M, Rehm M, Vogeser M, Christ F, Reichart B, Becker BF. Release of atrial natriuretic peptide precedes shedding of the endothelial glycocalyx equally in patients undergoing on‐ and off‐pump coronary artery bypass surgery. Basic Res Cardiol 106: 1111‐1121, 2011. DOI: 10.1007/s00395‐011‐0203‐y.
 77.Bucher M, Ittner KP, Hobbhahn J, Taeger K, Kurtz A. Downregulation of angiotensin II type 1 receptors during sepsis. Hypertension 38: 177‐182, 2001. DOI: 10.1161/01.HYP.38.2.177.
 78.Burkhoff D. Pressure‐volume loops in clinical research. J Am Coll Cardiol 62: 1173‐1176, 2013. DOI: 10.1016/j.jacc.2013.05.049.
 79.Burkhoff D, Mirsky I, Suga H. Assessment of systolic and diastolic ventricular properties via pressure‐volume analysis: A guide for clinical, translational, and basic researchers. Am J Physiol Circ Physiol 289: H501‐H512, 2005. DOI: 10.1152/ajpheart.00138.2005.
 80.Burkhoff D, Sagawa K. Ventricular efficiency predicted by an analytical model. Am J Physiol Integr Comp Physiol 250: R1021‐R1027, 1986. DOI: 10.1152/ajpregu.1986.250.6.R1021.
 81.Burkhoff D, Sugiura S, Yue DT, Sagawa K. Contractility‐dependent curvilinearity of end‐systolic pressure‐volume relations. Am J Physiol Circ Physiol 252: H1218‐H1227, 1987. DOI: 10.1152/ajpheart.1987.252.6.H1218.
 82.Cabrales P, Vázquez BYS, Tsai AG, Intaglietta M. Microvascular and capillary perfusion following glycocalyx degradation. J Appl Physiol 102: 2251‐2259, 2007. DOI: 10.1152/japplphysiol.01155.2006.
 83.Caironi P, Tognoni G, Masson S, Fumagalli R, Pesenti A, Romero M, Fanizza C, Caspani L, Faenza S, Grasselli G, Iapichino G, Antonelli M, Parrini V, Fiore G, Latini R, Gattinoni L. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med 370: 1412‐1421, 2014. DOI: 10.1056/NEJMoa1305727.
 84.Caldini P, Permutt S, Waddell JA, Riley RL. Effect of epinephrine on pressure, flow, and volume relationships in the systemic circulation of dogs. Circ Res 34: 606‐623, 1974. DOI: 10.1161/01.res.34.5.606.
 85.Calvano SE, Coyle SM. Experimental human endotoxemia: A model of the systemic inflammatory response syndrome? Surg Infect 13: 293‐299, 2012. DOI: 10.1089/sur.2012.155.
 86.Cameron EM, Wang SY, Fink MP, Sellke FW. Mesenteric and skeletal muscle microvascular responsiveness in subacute sepsis. Shock 9: 184‐192, 1998. DOI: 10.1097/00024382‐199803000‐00005.
 87.Campbell M, Britt LD. Endotoxin has an indirect vasodilatory effect on isolated human muscle arterioles. Arch Surg 139: 652‐654, 2004. DOI: 10.1097/00024382‐200206001‐00087.
 88.Carabello BA. Ratio of end‐systolic stress to end‐systolic volume: Is it a useful clinical tool? J Am Coll Cardiol 14: 496‐498, 1989. DOI: 10.1016/0735‐1097(89)90207‐6.
 89.Carabello BA, Spann JF. The uses and limitations of end‐systolic indexes of left ventricular function. Circulation 69: 1058‐1064, 1984. DOI: 10.1161/01.CIR.69.5.1058.
 90.Cavanagh D, Rao PS. Endotoxin shock in the subhuman primate. I. Hemodynamic and biochemical changes. Arch Surg 99: 107‐112, 1969. DOI: 10.1001/archsurg.1969.01340130109022.
 91.Cecconi M, Aya HD, Geisen M, Ebm C, Fletcher N, Grounds RM, Rhodes A. Changes in the mean systemic filling pressure during a fluid challenge in postsurgical intensive care patients. Intensive Care Med 39: 1299‐1305, 2013. DOI: 10.1007/s00134‐013‐2928‐6.
 92.Ceneviva G, Paschall JA, Maffei F, Carcillo JA. Hemodynamic support in fluid‐refractory pediatric septic shock. Pediatrics 102, 1998. DOI: 10.1542/peds.102.2.e19.
 93.Chang WT, Lee WH, Lee WT, Chen PS, Su YR, Liu PY, Liu YW, Tsai WC. Left ventricular global longitudinal strain is independently associated with mortality in septic shock patients. Intensive Care Med 41: 1791‐1799, 2015. DOI: 10.1007/s00134‐015‐3970‐3.
 94.Chatterjee K. The Swan‐Ganz catheters: Past, present, and future. Circulation 119: 147‐152, 2009. DOI: 10.1161/CIRCULATIONAHA.108.811141.
 95.Chelazzi C, Villa G, Mancinelli P, De Gaudio AR, Adembri C. Glycocalyx and sepsis‐induced alterations in vascular permeability. Crit Care 19: 1‐7, 2015. DOI: 10.1186/s13054‐015‐0741‐z.
 96.Chen C‐H, Fetics B, Nevo E, Rochitte CE, Chiou K‐R, Ding P‐A, Kawaguchi M, Kass DA. Noninvasive single‐beat determination of left ventricular end‐systolic elastance in humans. J Am Coll Cardiol 38: 2028‐2034, 2001. DOI: 10.1016/S0735‐1097(01)01651‐5.
 97.Chen C‐H, Nakayama M, Nevo E, Fetics BJ, Maughan WL, Kass DA. Coupled systolic‐ventricular and vascular stiffening with age. J Am Coll Cardiol 32: 1221‐1227, 1998. DOI: 10.1016/S0735‐1097(98)00374‐X.
 98.Cheung M, Smallhorn J, Redington A, Vogel M. The effects of changes in loading conditions and modulation of inotropic state on the myocardial performance index: Comparison with conductance catheter measurements. Eur Heart J 25: 2238‐2242, 2004. DOI: 10.1016/j.ehj.2004.07.034.
 99.Chirinos JA. Ventricular–arterial coupling: Invasive and non‐invasive assessment. Artery Res 7: 2‐14, 2013. DOI: 10.1016/j.artres.2012.12.002.
 100.Cholley BP, Lang RM, Berger DS, Korcarz C, Payen D, Shroff SG. Alterations in systemic arterial mechanical properties during septic shock: Role of fluid resuscitation. Am J Physiol Circ Physiol 269: H375‐H384, 1995. DOI: 10.1152/ajpheart.1995.269.1.H375.
 101.Christ F, Gamble J, Gartside IB, Kox WJ. Increased microvascular water permeability in patients with septic shock, assessed with venous congestion plethysmography (VCP). Intensive Care Med 24: 18‐27, 1998. DOI: 10.1007/s001340050509.
 102.Copeland S, Warren HS, Lowry SF, Calvano SE, Remick D. Inflammation and the Host Response to Injury Investigators. Acute inflammatory response to endotoxin in mice and humans. Clin Diagn Lab Immunol 12: 60‐67, 2005. DOI: 10.1128/CDLI.12.1.60‐67.2005.
 103.Cortez A. Mechanism of inappropriate polyuria in septic patients. Arch Surg 112: 471‐476, 1977. DOI: 10.1001/archsurg.1977.01370040123019.
 104.Covell JW, Ross J. Systolic and diastolic function (mechanics) of the intact heart. In: Comprehensive Physiology, Supplement 6: Handbook of Physiology, The Cardiovascular System, The Heart. First published in print 2002, 2011, p. 741‐785. DOI: 10.1002/cphy.cp020120.
 105.Cryer HM, Garrison RN, Harris PD. Role of muscle microvasculature during hyperdynamic and hypodynamic phases of endotoxin shock in decerebrate rats. J Trauma Inj Infect Crit Care 28: 312‐318, 1988. DOI: 10.1097/00005373‐198803000‐00006.
 106.Cryer HM, Garrison RN, Kaebnick HW, Harris PD, Flint LM. Skeletal microcirculatory responses to hyperdynamic Escherichia coli sepsis in unanesthetized rats. Arch Surg 122: 86‐92, 1987. DOI: 10.1001/archsurg.1987.01400130092014.
 107.Cunnion RE, Schaer GL, Parker MM, Natanson C, Parrillo JE. The coronary circulation in human septic shock. Circulation 73: 637‐644, 1986. DOI: 10.1161/01.CIR.73.4.637.
 108.D'Angelo E, Koulouris NGNG, Della Valle P, Gentile G, Pecchiari M. The fall in exhaled nitric oxide with ventilation at low lung volumes in rabbits: An index of small airway injury. Respir Physiol Neurobiol 160: 215‐223, 2008. DOI: 10.1016/j.resp.2007.10.001.
 109.D'Orio V, Wahlen C, Naldi M, Fossion A, Juchmes J, Marcelle R. Contribution of peripheral blood pooling to central hemodynamic disturbances during endotoxin insult in intact dogs. Crit Care Med 17: 1314‐1319, 1989. DOI: 10.1097/00003246‐198912000‐00014.
 110.D'Orio V, Wahlen C, Rodriguez LM, Fossion A, Juchmes J, Halleux J, Marcelle R. A comparison of Escherichia coli endotoxin single bolus injection with low‐dose endotoxin infusion on pulmonary and systemic vascular changes. Circ Shock 21: 207‐216, 1987.
 111.da Silva AMT, Kaulbach HC, Chuidian FS, Lambert DR, Suffredini AF, Danner RL. Shock and multiple‐organ dysfunction after self‐administration of Salmonella endotoxin. N Engl J Med 328: 1457‐1460, 1993. DOI: 10.1056/NEJM199305203282005.
 112.Dahn MS, Lange P, Lobdell K, Hans B, Jacobs LA, Mitchell RA. Splanchnic and total body oxygen consumption differences in septic and injured patients. Surgery 101: 69‐80, 1987.
 113.Dane MJC, Khairoun M, Lee DH, van den Berg BM, Eskens BJM, Boels MGS, van Teeffelen JWGE, Rops ALWMM, van der Vlag J, van Zonneveld AJ, Reinders MEJ, Vink H, Rabelink TJ. Association of kidney function with changes in the endothelial surface layer. Clin J Am Soc Nephrol 9: 698‐704, 2014. DOI: 10.2215/CJN.08160813.
 114.Danner RL, Elin RJ, Hosseini JM, Wesley RA, Reilly JM, Parillo JE. Endotoxemia in human septic shock. Chest 99: 169‐175, 1991. DOI: 10.1378/chest.99.1.169.
 115.Danner RL, Natanson C, Elin RJ, Hosseini JM, Banks S, MacVittie TJ, Parrillo JE. Pseudomonas aeruginosa compared with Escherichia coli produces less endotoxemia but more cardiovascular dysfunction and mortality in a canine model of septic shock. Chest 98: 1480‐1487, 1990. DOI: 10.1378/chest.98.6.1480.
 116.Dantzker D. Oxygen delivery and utilization in sepsis. Crit Care Clin 5: 81‐98, 1989. DOI: 10.1016/s0749‐0704(18)30451‐2.
 117.Datta P, Magder S. Hemodynamic response to norepinephrine with and without inhibition of nitric oxide synthase in porcine endotoxemia. Am J Respir Crit Care Med 160: 1987‐1993, 1999. DOI: 10.1164/ajrccm.160.6.9808019.
 118.De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166: 98‐104, 2002. DOI: 12091178.
 119.de Castilho FM, Ribeiro ALP, da Silva JLP, Nobre V, de Sousa MR. Heart rate variability as predictor of mortality in sepsis: A prospective cohort study. PLoS One 12: e0180060, 2017. DOI: 10.1371/journal.pone.0180060.
 120.De Cruz SJ, Kenyon NJ, Sandrock CE. Bench‐to‐bedside review: The role of nitric oxide in sepsis. Expert Rev Respir Med 3: 511‐521, 2009. DOI: 10.1586/ers.09.39.
 121.De Geer L, Engvall J, Oscarsson A. Strain echocardiography in septic shock ‐ A comparison with systolic and diastolic function parameters, cardiac biomarkers and outcome. Crit Care 19: 122, 2015. DOI: 10.1186/s13054‐015‐0857‐1.
 122.de Oliveira YPA, Pontes‐de‐Carvalho LC, Couto RD, Noronha‐Dutra AA. Oxidative stress in sepsis. Possible production of free radicals through an erythrocyte‐mediated positive feedback mechanism. Braz. J Infect Dis 21: 19‐26, 2017. DOI: 10.1016/j.bjid.2016.11.004.
 123.De Tombe PP, Jones S, Burkhoff D, Hunter WC, Kass DA. Ventricular stroke work and efficiency both remain nearly optimal despite altered vascular loading. Am J Physiol Circ Physiol 264: H1817‐H1824, 1993. DOI: 10.1152/ajpheart.1993.264.6.H1817.
 124.de Werra I, Jaccard C, Corradin SB, Chiolero R, Yersin B, Gallati H, Assicot M, Bohuon C, Baumgartner J‐D, Glauser MP, Heumann D. Cytokines, nitrite/nitrate, soluble tumor necrosis factor receptors, and procalcitonin concentrations. Crit Care Med 25: 607‐613, 1997. DOI: 10.1097/00003246‐199704000‐00009.
 125.Deep A, Goonasekera CDA, Wang Y, Brierley J. Evolution of haemodynamics and outcome of fluid‐refractory septic shock in children. Intensive Care Med 39: 1602‐1609, 2013. DOI: 10.1007/s00134‐013‐3003‐z.
 126.Dhainaut JF, Huyghebaert MF, Monsallier JF, Lefevre G, Dall'Ava‐Santucci J, Brunet F, Villemant D, Carli A, Raichvarg D. Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75: 533‐541, 1987. DOI: 10.1161/01.CIR.75.3.533.
 127.Doctor A, Stamler JS. Nitric oxide transport in blood: A third gas in the respiratory cycle. Compr Physiol 1: 541‐568, 2011. DOI: 10.1002/cphy.c090009.
 128.Doerschug KC, Delsing AS, Schmidt GA, Haynes WG. Impairments in microvascular reactivity are related to organ failure in human sepsis. Am J Physiol Circ Physiol 293: H1065‐H1071, 2007. DOI: 10.1152/ajpheart.01237.2006.
 129.Doughty LA, Kaplan SS, Carcillo JA. Inflammatory cytokine and nitric oxide responses in pediatric sepsis and organ failure. Crit Care Med 24: 1137‐1143, 1996. DOI: 10.1097/00003246‐199607000‐00012.
 130.Downey GP, Worthen GS, Henson PM, Hyde DM. Neutrophil sequestration and migration in localized pulmonary inflammation. Capillary localization and migration across the interalveolar septum. Am Rev Respir Dis 147: 168‐176, 1993. DOI: 10.1164/ajrccm/147.1.168.
 131.Drost EM, Kassabian G, Meiselman HJ, Gelmont D, Fisher TC. Increased rigidity and priming of polymorphonuclear leukocytes in sepsis. Am J Respir Crit Care Med 159: 1696‐1702, 1999. DOI: 10.1164/ajrccm.159.6.9803061.
 132.Dubin A, Edul VSK, Pozo MO, Murias G, Canullán CM, Martins EF, Ferrara G, Canales HS, Laporte M, Estenssoro E, Ince C. Persistent villi hypoperfusion explains intramucosal acidosis in sheep endotoxemia. Crit Care Med 36: 535‐542, 2008. DOI: 10.1097/01.CCM.0000300083.74726.43.
 133.Dunham‐Snary KJ, Wu D, Sykes EA, Thakrar A, Parlow LRG, Mewburn JD, Parlow JL, Archer SL. Hypoxic pulmonary vasoconstriction. Chest 151: 181‐192, 2017. DOI: 10.1016/j.chest.2016.09.001.
 134.Ebelt H, Geißler I, Ruccius S, Otto V, Hoffmann S, Korth H, Klöckner U, Zhang Y, Li Y, Grossmann C, Rueckschloss U, Gekle M, Stieber J, Frantz S, Werdan K, Müller‐Werdan U, Loppnow H. Direct inhibition, but indirect sensitization of pacemaker activity to sympathetic tone by the interaction of endotoxin with HCN‐channels. Clin Exp Pharmacol Physiol 42: 874‐880, 2015. DOI: 10.1111/1440‐1681.12415.
 135.Edul VSK, Ince C, Navarro N, Previgliano L, Risso‐Vazquez A, Rubatto PN, Dubin A. Dissociation between sublingual and gut microcirculation in the response to a fluid challenge in postoperative patients with abdominal sepsis. Ann Intensive Care 4: 1‐9, 2014. DOI: 10.1186/s13613‐014‐0039‐3.
 136.Ellman H. Capillary permeability in septic patients. Crit Care Med 12: 629‐633, 1984. DOI: 10.1097/00003246‐198408000‐00004.
 137.Ellrodt AG, Riedinger MS, Kimchi A, Berman DS, Maddahi J, Swan HJC, Murata GH. Left ventricular performance in septic shock: Reversible segmental and global abnormalities. Am Heart J 110: 402‐409, 1985. DOI: 10.1016/0002‐8703(85)90163‐2.
 138.Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 13: 34‐45, 2013. DOI: 10.1038/nri3345.
 139.Epstein FH, Parrillo JE. Pathogenetic mechanisms of septic shock. N Engl J Med 328: 1471‐1477, 1993. DOI: 10.1056/NEJM199305203282008.
 140.Erbel R, Schweizer P, Krebs W, Langen H‐J, Meyer J, Effert S. Effects of heart rate changes on left ventricular volume and ejection fraction: A 2‐dimensional echocardiographic study. Am J Cardiol 53: 590‐597, 1984. DOI: 10.1016/0002‐9149(84)90036‐5.
 141.Ertmer C, Bone HG, Morelli A, Van Aken H, Erren M, Lange M, Traber DL, Westphal M. Methylprednisolone reverses vasopressin hyporesponsiveness in ovine endotoxemia. Shock 27: 281‐288, 2007. DOI: 10.1097/01.shk.0000235140.97903.90.
 142.Eskandari MK, Bolgos G, Miller C, Nguyen DT, DeForge LE, Remick DG. Anti‐tumor necrosis factor antibody therapy fails to prevent lethality after cecal ligation and puncture or endotoxemia. J Immunol 148: 2724‐2730, 1992.
 143.Esler M, Jennings G, Lambert G, Meredith I, Horne M, Eisenhofer G. Overflow of catecholamine neurotransmitters to the circulation: Source, fate, and functions. Physiol Rev 70: 963‐985, 1990. DOI: 10.1152/physrev.1990.70.4.963.
 144.Evans T, Carpenter A, Kinderman H, Cohen J. Evidence of increased nitric oxide production in patients with the sepsis syndrome. Circ Shock 41: 77‐81, 1993.
 145.Fang Y, Wu D, Birukov KG. Mechanosensing and mechanoregulation of endothelial cell functions. Compr Physiol 9: 873‐904, 2019. DOI: 10.1002/cphy.c180020.
 146.Farias S, Powers FM, Law WR. End‐diastolic pressure‐volume relationship in sepsis: Relative contributions of compliance and equilibrium chamber volume differ. J Surg Res 82: 172‐179, 1999. DOI: 10.1006/jsre.1998.5557.
 147.Farquhar I, Martin CM, Lam C, Potter R, Ellis CG, Sibbald WJ. Decreased capillary density in vivo in bowel mucosa of rats with normotensive sepsis. J Surg Res 61: 190‐196, 1996. DOI: 10.1006/jsre.1996.0103.
 148.Fenton KE, Parker MM. Cardiac function and dysfunction in sepsis. Clin Chest Med 37: 289‐298, 2016. DOI: 10.1016/j.ccm.2016.01.014.
 149.Fernandez‐Bustamante A, Easley RB, Fuld M, Mulreany D, Hoffman EA, Simon BA. Regional aeration and perfusion distribution in a sheep model of endotoxemic acute lung injury characterized by functional computed tomography imaging. Crit Care Med 37: 2402‐2411, 2009. DOI: 10.1097/CCM.0b013e3181a02354.
 150.Fink MP. Animal models of sepsis. Virulence 5: 143‐153, 2014. DOI: 10.4161/viru.26083.
 151.Fleming I. Biology of nitric oxide synthases. In: Comprehensive Physiology, Supplement 9: Handbook of Physiology, The Cardiovascular System, Microcirculation. First published in print 2008, 2011, p. 56‐80. DOI: 10.1002/cphy.cp020403.
 152.Flemming S, Burkard N, Renschler M, Vielmuth F, Meir M, Schick MA, Wunder C, Germer CT, Spindler V, Waschke J, Schlegel N. Soluble VE‐cadherin is involved in endothelial barrier breakdown in systemic inflammation and sepsis. Cardiovasc Res 107: 32‐44, 2015. DOI: 10.1093/cvr/cvv144.
 153.Fong YM, Marano MA, Moldawer LL, Wei H, Calvano SE, Kenney JS, Allison AC, Cerami A, Shires GT, Lowry SF. The acute splanchnic and peripheral tissue metabolic response to endotoxin in humans. J Clin Invest 85: 1896‐1904, 1990. DOI: 10.1172/JCI114651.
 154.Forfia PR, Zhang X, Ochoa F, Ochoa M, Xu X, Bernstein R, Sehgal PB, Ferreri NR, Hintze TH. Relationship between plasma NOx and cardiac and vascular dysfunction after LPS injection in anesthetized dogs. Am J Physiol 274: H193‐H201, 1998. DOI: 10.1152/ajpheart.1998.274.1.H193.
 155.Freeman GL, Colston JT. Evaluation of long‐term variance of left ventricular performance indexes in closed‐chest dogs. Am J Physiol Circ Physiol 257: H70‐H78, 1989. DOI: 10.1152/ajpheart.1989.257.1.H70.
 156.Freeman GL, Little WC, O'Rourke RA. The effect of vasoactive agents on the left ventricular end‐systolic pressure‐volume relation in closed‐chest dogs. Circulation 74: 1107‐1113, 1986. DOI: 10.1161/01.CIR.74.5.1107.
 157.Freeman GL, Little WC, O'Rourke RA. Influence of heart rate on left ventricular performance in conscious dogs. Circ Res 61: 455‐464, 1987. DOI: 10.1161/01.RES.61.3.455.
 158.Fries M, Weil MH, Sun S, Huang L, Fang X, Cammarata G, Castillo C, Tang W. Increases in tissue Pco2 during circulatory shock reflect selective decreases in capillary blood flow. Crit Care Med 34: 446‐452, 2006. DOI: 10.1097/01.CCM.0000196205.23674.23.
 159.Fujii T, Luethi N, Young PJ, Frei DR, Eastwood GM, French CJ, Deane AM, Shehabi Y, Hajjar LA, Oliveira G, Udy AA, Orford N, Edney SJ, Hunt AL, Judd HL, Bitker L, Cioccari L, Naorungroj T, Yanase F, Bates S, McGain F, Hudson EP, Al‐Bassam W, Dwivedi DB, Peppin C, McCracken P, Orosz J, Bailey M, Bellomo R. Effect of vitamin C, hydrocortisone, and thiamine vs hydrocortisone alone on time alive and free of vasopressor support among patients with septic shock. JAMA 323: 423‐431, 2020. DOI: 10.1001/jama.2019.22176.
 160.Fujimi S, Ogura H, Tanaka H, Koh T, Hosotsubo H, Nakamori Y, Kuwagata Y, Shimazu T, Sugimoto H. Activated polymorphonuclear leukocytes enhance production of leukocyte microparticles with increased adhesion molecules in patients with sepsis. J Trauma Inj Infect Crit Care 52: 443‐448, 2002. DOI: 10.1097/00005373‐200203000‐00005.
 161.Funk DJ, Parrillo JE, Kumar A. Sepsis and septic shock: A history. Crit Care Clin 25: 83‐101, 2009. DOI: 10.1016/j.ccc.2008.12.003.
 162.Furian T, Aguiar C, Prado K, Ribeiro RVP, Becker L, Martinelli N, Clausell N, Rohde LE, Biolo A. Ventricular dysfunction and dilation in severe sepsis and septic shock: Relation to endothelial function and mortality. J Crit Care 27: 319.e9‐319.e15, 2012. DOI: 10.1016/j.jcrc.2011.06.017.
 163.Gaieski DF, Edwards JM, Kallan MJ, Carr BG. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med 41: 1167‐1174, 2013. DOI: 10.1097/CCM.0b013e31827c09f8.
 164.Gamble J, Gartside IB, Christ F. A reassessment of mercury in silastic strain gauge plethysmography for microvascular permeability assessment in man. J Physiol 464: 407‐422, 1993. DOI: 10.1113/jphysiol.1993.sp019642.
 165.Gardiner EE, Andrews RK. Neutrophil extracellular traps (NETs) and infection‐related vascular dysfunction. Blood Rev 26: 255‐259, 2012. DOI: 10.1016/j.blre.2012.09.001.
 166.Gardiner SM, Kemp PA, March JE, Bennett T. Cardiac and regional haemodynamics, inducible nitric oxide synthase (NOS) activity, and the effects of NOS inhibitors in conscious, endotoxaemic rats. Br J Pharmacol 116: 2005‐2016, 1995. DOI: 10.1111/j.1476‐5381.1995.tb16405.x.
 167.Garrabou G, Morén C, López S, Tobías E, Cardellach F, Miró Ò, Casademont J. The effects of sepsis on mitochondria. J Infect Dis 205: 392‐400, 2012. DOI: 10.1093/infdis/jir764.
 168.Garrido AG, de Figueiredo LFP, e Silva MR. Experimental models of sepsis and septic shock: An overview. Acta Cir Bras 19: 82‐88, 2004. DOI: 10.1590/S0102‐86502004000200001.
 169.Gattinoni L, Vasques F, Camporota L, Meessen J, Romitti F, Pasticci I, Duscio E, Vassalli F, Forni LG, Payen D, Cressoni M, Zanella A, Latini R, Quintel M, Marini JJ. Understanding lactatemia in human sepsis. Potential impact for early management. Am J Respir Crit Care Med 200: 582‐589, 2019. DOI: 10.1164/rccm.201812‐2342OC.
 170.Gilbert RP. Mechanisms of the hemodynamic effects of endotoxin. Physiol Rev 40: 245‐279, 1960. DOI: 10.1152/physrev.1960.40.2.245.
 171.Gill SE, Rohan M, Mehta S. Role of pulmonary microvascular endothelial cell apoptosis in murine sepsis‐induced lung injury in vivo. Respir Res 16: 109, 2015. DOI: 10.1186/s12931‐015‐0266‐7.
 172.Gill SE, Taneja R, Rohan M, Wang L, Mehta S. Pulmonary microvascular albumin leak is associated with endothelial cell death in murine sepsis‐induced lung injury in vivo. PLoS One 9: e88501, 2014. DOI: 10.1371/journal.pone.0088501.
 173.Glembot TM, Britt LD, Hill MA. Lack of direct endotoxin‐induced vasoactive effects on isolated skeletal muscle arterioles. Shock 3: 216‐223, 1995. DOI: 10.1097/00024382‐199503000‐00010.
 174.Glower DD, Spratt JA, Snow ND, Kabas JS, Davis JW, Olsen CO, Tyson GS, Sabiston DC, Rankin JS. Linearity of the Frank‐Starling relationship in the intact heart: The concept of preload recruitable stroke work. Circulation 71: 994‐1009, 1985. DOI: 10.1161/01.CIR.71.5.994.
 175.Godin PJ, Fleisher LA, Eidsath A, Vandivier RW, Preas HL, Banks SM, Buchman TG, Suffredini AF. Experimental human endotoxemia increases cardiac regularity. Crit Care Med 24: 1117‐1124, 1996. DOI: 10.1097/00003246‐199607000‐00009.
 176.Goldstein DS, Eisenhofer G, Kopin IJ. Sources and significance of plasma levels of catechols and their metabolites in humans. J Pharmacol Exp Ther 305: 800‐811, 2003. DOI: 10.1124/jpet.103.049270.
 177.Gomez‐Jimenez J, Salgado A, Mourelle M, Martin MC, Segura RM, Peracaula R, Moncada S. L‐arginine: Nitric oxide pathway in endotoxemia and human septic shock. Crit Care Med 23: 253‐258, 1995. DOI: 10.1097/00003246‐199502000‐00009.
 178.Goode HF, Howdle PD, Walker BE, Webster NR. Nitric oxide synthase activity is increased in patients with sepsis syndrome. Clin Sci 88: 131‐133, 1995. DOI: 10.1042/cs0880131.
 179.Gow BS. Circulatory correlates: Vascular impedance, resistance, and capacity. In: Comprehensive Physiology, Supplement 7: Handbook of Physiology, The Cardiovascular System, Vascular Smooth Muscle. First published in print 1980, 2011, p. 353‐408. DOI: 10.1002/cphy.cp020214.
 180.Greer J. Pathophysiology of cardiovascular dysfunction in sepsis. BJA Educ 15: 316‐321, 2015. DOI: 10.1093/bjaceaccp/mkv003.
 181.Griffith TM. Endothelium‐dependent smooth muscle hyperpolarization: Do gap junctions provide a unifying hypothesis? Br J Pharmacol 141: 881‐903, 2004. DOI: 10.1038/sj.bjp.0705698.
 182.Grimmer B, Kuebler WM. The endothelium in hypoxic pulmonary vasoconstriction. J Appl Physiol 123: 1635‐1646, 2017. DOI: 10.1152/japplphysiol.00120.2017.
 183.Groeneveld ABJ. Redistribution of blood flow in hypovolemic and septic shock: Clinical and animal studies. Réanim Urgences 5: 224‐237, 1996. DOI: 10.1016/S1164‐6756(96)80034‐X.
 184.Groner W, Winkelman JW, Harris AG, Ince C, Bouma GJ, Messmer K, Nadeau RG. Orthogonal polarization spectral imaging: A new method for study of the microcirculation. Nat Med 5: 1209‐1212, 1999. DOI: 10.1038/13529.
 185.Grossman W, Braunwald E, Mann T, McLaurin LP, Green LH. Contractile state of the left ventricle in man as evaluated from end‐systolic pressure‐volume relations. Circulation 56: 845‐852, 1977. DOI: 10.1161/01.CIR.56.5.845.
 186.Groves AC, Griffiths J, Leunc F, Meek RN. Plasma catechofamines in patients with serious postoperative infection. Ann Surg 178: 102‐107, 1973. DOI: 10.1097/00000658‐197307000‐00020.
 187.Guarracino F, Bertini P, Pinsky MR. Cardiovascular determinants of resuscitation from sepsis and septic shock. Crit Care 23: 118, 2019. DOI: 10.1186/s13054‐019‐2414‐9.
 188.Guarracino F, Ferro B, Morelli A, Bertini P, Baldassarri R, Pinsky MR. Ventriculoarterial decoupling in human septic shock. Crit Care 18: R80, 2014. DOI: 10.1186/cc13842.
 189.Guenter CA, Fiorica V, Hinshaw LB. Cardiorespiratory and metabolic responses to liver E. coli and endotoxin in the monkey. J Appl Physiol 26: 780‐786, 1969. DOI: 10.1152/jappl.1969.26.6.780.
 190.Gunnar RM, Loeb HS, Winslow EJ, Blain C, Robinson J. Hemodynamic measurements in bacteremia and septic shock in man. J Infect Dis 128: S295‐S298, 1973. DOI: 10.1093/infdis/128.Supplement_1.S295.
 191.Guo S, Al‐Sadi R, Said HM, Ma TY. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR‐4 and CD14. Am J Pathol 182: 375‐387, 2013. DOI: 10.1016/j.ajpath.2012.10.014.
 192.Gupta K, Sondergaard S, Parkin G, Leaning M, Aneman A. Applying mean systemic filling pressure to assess the response to fluid boluses in cardiac post‐surgical patients. Intensive Care Med 41: 265‐272, 2015. DOI: 10.1007/s00134‐014‐3611‐2.
 193.Guyton AC, Jones CE, Coleman TG. Circulatory Physiology: Cardiac Output and Its Regulation. Philadelphia: WB Saunders, 1973.
 194.Guyton AC, Lindsey AW, Kaufmann BN. Effect of mean circulatory filling pressure and other peripheral circulatory factors on cardiac output. Am J Physiol Content 180: 463‐468, 1955. DOI: 10.1152/ajplegacy.1955.180.3.463.
 195.Guyton AC, Polizo D, Armstrong GG. Mean circulatory filling pressure measured immediately after cessation of heart pumping. Am J Physiol Content 179: 261‐267, 1954. DOI: 10.1152/ajplegacy.1954.179.2.261.
 196.Guzzetti S, Magatelli R, Borroni E, Mezzetti S. Heart rate variability in chronic heart failure. Auton Neurosci 90: 102‐105, 2001. DOI: 10.1016/S1566‐0702(01)00274‐0.
 197.Halbach JL, Prieto JM, Wang AW, Hawisher D, Cauvi DM, Reyes T, Okerblom J, Ramirez‐Sanchez I, Villarreal F, Patel HH, Bickler SW, Perdrizet GA, De Maio A. Early hyperbaric oxygen therapy improves survival in a model of severe sepsis. Am J Physiol Integr Comp Physiol 317: R160‐R168, 2019. DOI: 10.1152/ajpregu.00083.2019.
 198.Haney MF, A'Roch R, Johansson G, Poelaert J, Biber B. Beat‐to‐beat change in “myocardial performance index” related to load. Acta Anaesthesiol Scand 51: 545‐552, 2007. DOI: 10.1111/j.1399‐6576.2007.01287.x.
 199.Hansen DE, Cahill PD, DeCampli WM, Harrison DC, Derby GC, Mitchell RS, Miller DC. Valvular‐ventricular interaction: Importance of the mitral apparatus in canine left ventricular systolic performance. Circulation 73: 1310‐1320, 1986. DOI: 10.1161/01.CIR.73.6.1310.
 200.Harlan J, Smith E, Richardson T. Pressure‐volume curves of systemic and pulmonary circuit. Am J Physiol Content 213: 1499‐1503, 1967. DOI: 10.1152/ajplegacy.1967.213.6.1499.
 201.Haupt MT, Gilbert EM, Carlson RW. Fluid loading increases oxygen consumption in septic patients with lactic acidosis. Am Rev Respir Dis 131: 912‐916, 1985. DOI: 10.1164/arrd.1985.131.6.912.
 202.Hayabuchi Y, Nakaya Y, Matsuoka S, Kuroda Y. Hydrogen peroxide‐induced vascular relaxation in porcine coronary arteries is mediated by Ca2+‐activated K+ channels. Heart Vessel 13: 9‐17, 1998. DOI: 10.1007/BF02750638.
 203.Haywood GA, Tsao PS, von der Leyen HE, Mann MJ, Keeling PJ, Trindade PT, Lewis NP, Byrne CD, Rickenbacher PR, Bishopric NH, Cooke JP, McKenna WJ, Fowler MB. Expression of inducible nitric oxide synthase in human heart failure. Circulation 93: 1087‐1094, 1996. DOI: 10.1161/01.CIR.93.6.1087.
 204.Heemskerk S, Pickkers P, Bouw MPWJM, Draisma A, van der Hoeven JG, Peters WHM, Smits P, Russel FGM, Masereeuw R. Upregulation of renal inducible nitric oxide synthase during human endotoxemia and sepsis is associated with proximal tubule injury. Clin J Am Soc Nephrol 1: 853‐862, 2006. DOI: 10.2215/CJN.00490206.
 205.Helwig BG, Craig RA, Fels RJ, Blecha F, Kenney MJ. Central nervous system administration of interleukin‐6 produces splenic sympathoexcitation. Auton Neurosci 141: 104‐111, 2008. DOI: 10.1016/j.autneu.2008.04.008.
 206.Henein MY, Das SK, O'Sullivan C, Kakkar VV, Gillbe CE, Gibson DG. Effect of acute alterations in afterload on left ventricular function in patients with combined coronary artery and peripheral vascular disease. Heart 75: 151‐158, 1996. DOI: 10.1136/hrt.75.2.151.
 207.Hess ML, Hastillo A, Greenfield LJ. Spectrum of cardiovascular function during gram‐negative sepsis. Prog Cardiovasc Dis 23: 279‐298, 1981. DOI: 10.1016/0033‐0620(81)90017‐7.
 208.Hiesmayr M, Jansen JRC, Versprille A. Effects of endotoxin infusion on mean systemic filling pressure and flow resistance to venous return. Pflügers Arch Eur J Physiol 431: 741‐747, 1996. DOI: 10.1007/BF02253838.
 209.Hiltebrand LB, Krejci V, Banic A, Erni D, Wheatley AM, Sigurdsson GH. Dynamic study of the distribution of microcirculatory blood flow in multiple splanchnic organs in septic shock. Crit Care Med 28: 3233‐3241, 2000. DOI: 10.1097/00003246-200009000-00019.
 210.Hindmarsh EJ, Marks RM. Complement activation occurs on subendothelial extracellular matrix in vitro and is initiated by retraction or removal of overlying endothelial cells. J Immunol 160: 6128‐6136, 1998.
 211.Hingorani AD, Cross J, Kharbanda RK, Mullen MJ, Bhagat K, Taylor M, Donald AE, Palacios M, Griffin GE, Deanfield JE, MacAllister RJ, Vallance P. Acute systemic inflammation impairs endothelium‐dependent dilatation in humans. Circulation 102: 994‐999, 2000. DOI: 10.1161/01.CIR.102.9.994.
 212.Hinshaw LB, Cox BG. The fundamental mechanisms of shock. In: Proc Symposium Held in Oklahoma City. Plenum Press, 1971.
 213.Hinshaw LB, Gilbert RP, Kuida H, Visscher MB. Peripheral resistance changes and blood pooling after endotoxin in eviscerated dogs. Am J Physiol 195: 631‐634, 1958. DOI: 10.1152/ajplegacy.1958.195.3.631.
 214.Hollenberg SM, Cunnion RE, Zimmerberg J. Nitric oxide synthase inhibition reverses arteriolar hyporesponsiveness to catecholamines in septic rats. Am J Physiol Circ Physiol 264: H660‐H663, 1993. DOI: 10.1152/ajpheart.1993.264.2.H660.
 215.Hollenberg SM, Tangora JJ, Piotrowski MJ, Easington C, Parrillo JE. Impaired microvascular vasoconstrictive responses to vasopressin in septic rats. Crit Care Med 25: 869‐873, 1997. DOI: 10.1097/00003246‐199705000‐00025.
 216.Hotchkiss RS, Tinsley KW, Swanson PE, Karl IE. Endothelial cell apoptosis in sepsis. Crit Care Med 30: S225‐S228, 2002. DOI: 10.1097/00003246‐200205001‐00009.
 217.Huang SJ, Nalos M, McLean AS. Is early ventricular dysfunction or dilatation associated with lower mortality rate in adult severe sepsis and septic shock? A meta‐analysis. Crit Care 17: R96, 2013. DOI: 10.1186/cc12741.
 218.Humer MF, Phang PT, Friesen BP, Allard MF, Goddard CM, Walley KR. Heterogeneity of gut capillary transit times and impaired gut oxygen extraction in endotoxemic pigs. J Appl Physiol 81: 895‐904, 1996. DOI: 10.1152/jappl.1996.81.2.895.
 219.Hussain SNA, Abdul‐Hussain MN, El‐Dwairi Q. Exhaled nitric oxide as a marker for serum nitric oxide concentration in acute endotoxemia. J Crit Care 11: 167‐175, 1996. DOI: 10.1016/S0883‐9441(96)90027‐1.
 220.Hutchins NA, Wang F, Wang Y, Chung C‐S, Ayala A. Kupffer cells potentiate liver sinusoidal endothelial cell injury in sepsis by ligating programmed cell death ligand‐1. J Leukoc Biol 94: 963‐970, 2013. DOI: 10.1189/jlb.0113051.
 221.Huxley VH, Curry FE. Differential actions of albumin and plasma on capillary solute permeability. Am J Physiol Circ Physiol 260: H1645‐H1654, 1991. DOI: 10.1152/ajpheart.1991.260.5.H1645.
 222.Hwang TL, Lau YT, Huang SF, Chen MF, Liu MS. Changes of alpha 1‐adrenergic receptors in human liver during intraabdominal sepsis. Hepatology 20: 638‐642, 1994. DOI: 10.1002/hep.1840200314.
 223.Imperial ES, Levy MN, Zieske H. Outflow resistance as an independent determinant of cardiac performance. Circ Res 9: 1148‐1155, 1961. DOI: 10.1161/01.RES.9.6.1148.
 224.Ince C. Sidestream dark field imaging: An improved technique to observe sublingual microcirculation. Crit Care 9: S29, 2005. DOI: 10.1186/cc3064.
 225.Ince C, Boerma EC, Cecconi M, De Backer D, Shapiro NI, Duranteau J, Pinsky MR, Artigas A, Teboul JL, Reiss IKM, Aldecoa C, Hutchings SD, Donati A, Maggiorini M, Taccone FS, Hernandez G, Payen D, Tibboel D, Martin DS, Zarbock A, Monnet X, Dubin A, Bakker J, Vincent JL, Scheeren TWL. Second consensus on the assessment of sublingual microcirculation in critically ill patients: Results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med 44: 281‐299, 2018. DOI: 10.1007/s00134‐018‐5070‐7.
 226.Ince C, Mayeux PR, Nguyen T, Gomez H, Kellum JA, Ospina‐Tascón GA, Hernandez G, Murray P, De Backer D. The endothelium in sepsis. Shock 45: 259‐270, 2016. DOI: 10.1097/SHK.0000000000000473.
 227.Innocenti F, Palmieri V, Guzzo A, Stefanone VT, Donnini C, Pini R. SOFA score and left ventricular systolic function as predictors of short‐term outcome in patients with sepsis. Intern Emerg Med 13: 51‐58, 2018. DOI: 10.1007/s11739‐016‐1579‐3.
 228.Intaglietta M. Arteriolar vasomotion: Implications for tissue ischemia. Blood Vessels 28: 1‐7, 1991. DOI: 10.1159/000158912.
 229.Jacob TD, Ochoa JB, Udekwu AO, Wilkinson J, Murray T, Billiar TR, Simmons RL, Marion DW, Peitzman AB. Nitric oxide production is inhibited in trauma patients. J Trauma Inj Infect Crit Care 35: 590‐597, 1993. DOI: 10.1097/00005373‐199310000‐00015.
 230.Jacquet‐Lagrèze M, Allaouchiche B, Restagno D, Paquet C, Ayoub JY, Etienne J, Vandenesch F, Dauwalder O, Bonnet JM, Junot S. Gut and sublingual microvascular effect of esmolol during septic shock in a porcine model. Crit Care 19: 241, 2015. DOI: 10.1186/s13054‐015‐0960‐3.
 231.Jaffee W, Hodgins S, McGee WT. Tissue edema, fluid balance, and patient outcomes in severe sepsis: An organ systems review. J Intensive Care Med 33: 502‐509, 2018. DOI: 10.1177/0885066617742832.
 232.Jafri SM, Lavine S, Field BE, Ahorozian MT, Carlson RW. Left ventricular diastolic function in sepsis. Crit Care Med 18: 709‐714, 1990. DOI: 10.1097/00003246‐199007000‐00005.
 233.Jan K‐M, Chien S. Role of surface electric charge in red blood cell interactions. J Gen Physiol 61: 638‐654, 1973. DOI: 10.1085/jgp.61.5.638.
 234.Jansma G, de Lange F, Kingma WP, Vellinga NA, Koopmans M, Kuiper MA, Boerma EC. ‘Sepsis‐related anemia’ is absent at hospital presentation; a retrospective cohort analysis. BMC Anesthesiol 15: 55, 2015. DOI: 10.1186/s12871‐015‐0035‐7.
 235.Jardin F, Brun‐ney D, Auvert B, Beauchet A, Bourdarias JP. Sepsis‐related cardiogenic shock. Crit Care Med 18: 1055‐1060, 1990. DOI: 10.1097/00003246‐199010000‐00001.
 236.Jardin F, Fourme T, Page B, Loubieòres Y, Vieillard‐Baron A, Beauchet A, Bourdarias J‐P. Persistent preload defect in severe sepsis despite fluid loading. Chest 116: 1354‐1359, 1999. DOI: 10.1378/chest.116.5.1354.
 237.Jellinek H, Krenn H, Oczenski W, Veit F, Schwarz S, Fitzgerald RD. Influence of positive airway pressure on the pressure gradient for venous return in humans. J Appl Physiol 88: 926‐932, 2000. DOI: 10.1152/jappl.2000.88.3.926.
 238.Jianhui L, Rosenblatt‐Velin N, Loukili N, Pacher P, Feihl F, Waeber B, Liaudet L. Endotoxin impairs cardiac hemodynamics by affecting loading conditions but not by reducing cardiac inotropism. Am J Physiol Circ Physiol 299: H492‐H501, 2010. DOI: 10.1152/ajpheart.01135.2009.
 239.Johnson JM, Rowell LB, Niederberger M, Eisman MM. Human splanchnic and forearm vasoconstrictor responses to reductions of right atrial and aortic pressures. Circ Res 34: 515‐524, 1974. DOI: 10.1161/01.RES.34.4.515.
 240.Kandasamy K, Choudhury S, Singh V, Addison MP, Darzi SA, Kasa JK, Thangamalai R, Dash JR, Kumar T, Sultan F, Singh TU, Parida S, Mishra SK. Erythropoietin reverses sepsis‐induced vasoplegia to norepinephrine through preservation of α1D‐adrenoceptor mRNA expression and inhibition of GRK2‐mediated desensitization in mouse aorta. J Cardiovasc Pharmacol Ther 21: 100‐113, 2016. DOI: 10.1177/1074248415587968.
 241.Kandasamy K, Prawez S, Choudhury S, More AS, Ahanger AA, Singh TU, Parida S, Mishra SK. Atorvastatin prevents vascular hyporeactivity to norepinephrine in sepsis: Role of nitric oxide and α1‐adrenoceptor mRNA Expression. Shock 36: 76‐82, 2011. DOI: 10.1097/SHK.0b013e31821a4002.
 242.Karim F, Hainsworth R. Responses of abdominal vascular capacitance to stimulation of splachnic nerves. Am J Physiol Content 231: 434‐440, 1976. DOI: 10.1152/ajplegacy.1976.231.2.434.
 243.Kasai K, Hattori Y, Nakanishi N, Manaka K, Banba N, Motohashi S, Shimoda S. Regulation of inducible nitric oxide production by cytokines in human thyrocytes in culture. Endocrinology 136: 4261‐4270, 1995. DOI: 10.1210/endo.136.10.7545102.
 244.Kass DA, Beyar R, Lankford E, Heard M, Maughan WL, Sagawa K. Influence of contractile state on curvilinearity of in situ end‐systolic pressure‐volume relations. Circulation 79: 167‐178, 1989. DOI: 10.1161/01.CIR.79.1.167.
 245.Kass DA, Maughan WL. From “Emax” to pressure‐volume relations: A broader view. Circulation 77: 1203‐1212, 1988. DOI: 10.1161/01.CIR.77.6.1203.
 246.Kass DA, Maughan WL, Guo ZM, Kono A, Sunagawa K, Sagawa K. Comparative influence of load versus inotropic states on indexes of ventricular contractility: Experimental and theoretical analysis based on pressure‐volume relationships. Circulation 76: 1422‐1436, 1987. DOI: 10.1161/01.CIR.76.6.1422.
 247.Kato T, Murata A, Ishida H, Toda H, Tanaka N, Hayashida H, Monden M, Matsuura N. Interleukin 10 reduces mortality from severe peritonitis in mice. Antimicrob Agents Chemother 39: 1336‐1340, 1995. DOI: 10.1128/AAC.39.6.1336.
 248.Kaul DK, Koshkaryev A, Artmann G, Barshtein G, Yedgar S. Additive effect of red blood cell rigidity and adherence to endothelial cells in inducing vascular resistance. Am J Physiol Circ Physiol 295: H1788‐H1793, 2008. DOI: 10.1152/ajpheart.253.2008.
 249.Kelly RP, Ting CT, Yang TM, Liu CP, Maughan WL, Chang MS, Kass DA. Effective arterial elastance as index of arterial vascular load in humans. Circulation 86: 513‐521, 1992. DOI: 10.1161/01.CIR.86.2.513.
 250.Kempe DS, Akel A, Lang PA, Hermle T, Biswas R, Muresanu J, Friedrich B, Dreischer P, Wolz C, Schumacher U, Peschel A, Götz F, Döring G, Wieder T, Gulbins E, Lang F. Suicidal erythrocyte death in sepsis. J Mol Med 85: 273‐281, 2007. DOI: 10.1007/s00109‐006‐0123‐8.
 251.Kenney MJ, Ganta CK. Autonomic nervous system and immune system interactions. Compr Physiol 4: 1177‐1200, 2014. DOI: 10.1002/cphy.c130051.
 252.Kieft H, Roos AN, van Drunen JDE, Bindels AJGH, Bindels JG, Hofman Z. Clinical outcome of immunonutrition in a heterogeneous intensive care population. Intensive Care Med 31: 524‐532, 2005. DOI: 10.1007/s00134‐005‐2564‐x.
 253.Kim CH, Park JT, Kim EJ, Han JH, Han JS, Choi JY, Han SH, Yoo T‐H, Kim YS, Kang S‐W, Oh HJ. An increase in red blood cell distribution width from baseline predicts mortality in patients with severe sepsis or septic shock. Crit Care 17: R282, 2013. DOI: 10.1186/cc13145.
 254.Kjørstad KE, Korvald C, Myrmel T. Pressure‐volume‐based single‐beat estimations cannot predict left ventricular contractility in vivo. Am J Physiol Circ Physiol 282: H1739‐H1750, 2002. DOI: 10.1152/ajpheart.00638.2001.
 255.Klemm K, Moody FG. Regional intestinal blood flow and nitric oxide synthase inhibition during sepsis in the rat. Ann Surg 227: 126‐133, 1998. DOI: 10.1097/00000658‐199801000‐00018.
 256.Kohoutova M, Horak J, Jarkovska D, Martinkova V, Tegl V, Nalos L, Vistejnova L, Benes J, Sviglerova J, Kuncova J, Matejovic M, Stengl M. Vagus nerve stimulation attenuates multiple organ dysfunction in resuscitated porcine progressive sepsis. Crit Care Med 47: e461‐e469, 2019. DOI: 10.1097/CCM.0000000000003714.
 257.Komatsu T, Kimura T, Nishiwaki K, Fujiwara Y, Sawada K, Shimada Y. Recovery of heart rate variability profile in patients after coronary artery surgery. Anesth Analg 85: 713‐718, 1997. DOI: 10.1097/00000539‐199710000‐00001.
 258.Kono A, Maughan WL, Sunagawa K, Hamilton K, Sagawa K, Weisfeldt ML. The use of left ventricular end‐ejection pressure and peak pressure in the estimation of the end‐systolic pressure‐volume relationship. Circulation 70: 1057‐1065, 1984. DOI: 10.1161/01.CIR.70.6.1057.
 259.Koyama S, Manning JW. Role of sympathetic nerve activity in endotoxin induced hypotension in cats. Cardiovasc Res 19: 32‐37, 1985. DOI: 10.1093/cvr/19.1.32.
 260.Krejci V, Hiltebrand LB, Sigurdsson GH. Effects of epinephrine, norepinephrine, and phenylephrine on microcirculatory blood flow in the gastrointestinal tract in sepsis. Crit Care Med 34: 1456‐1463, 2006. DOI: 10.1097/01.CCM.0000215834.48023.57.
 261.Kreymann G, Grosser S, Buggisch P, Gottschall C, Matthaei S, Greten H. Oxygen consumption and resting metabolic rate in sepsis, sepsis syndrome, and septic shock. Crit Care Med 21: 1012‐1019, 1993. DOI: 10.1097/00003246‐199307000‐00015.
 262.Ku NS, Kim H, Oh HJ, Kim YC, Kim MH, Song JE, Oh DH, Ahn JY, Kim SB, Jeong SJ, Han SH, Kim CO, Song YG, Kim JM, Choi JY. Red blood cell distribution width is an independent predictor of mortality in patients with gram‐negative bacteremia. Shock 38: 123‐127, 2012. DOI: 10.1097/SHK.0b013e31825e2a85.
 263.Kubes P, Suzuki M, Granger DN. Nitric oxide: An endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A 88: 4651‐4655, 1991. DOI: 10.1073/pnas.88.11.4651.
 264.Kuida H, Gilbert RP, Hinshaw LB, BJ G, Visscher MB. Species differences in effect of gram‐negative endotoxin on circulation. Am J Physiol 200: 1197‐1202, 1961. DOI: 10.1152/ajplegacy.1961.200.6.1197.
 265.Kumar A, Anel R, Bunnell E, Habet K, Neumann A, Wolff D, Rosenson R, Cheang M, Parrillo J. Effect of large volume infusion on left ventricular volumes, performance and contractility parameters in normal volunteers. Intensive Care Med 30: 1361‐1369, 2004. DOI: 10.1007/s00134‐004‐2191‐y.
 266.Kumar A, Bunnell E, Lynn M, Anel R, Habet K, Neumann A, Parrillo JE. Experimental human endotoxemia is associated with depression of load‐independent contractility indices. Chest 126: 860‐867, 2004. DOI: 10.1378/chest.126.3.860.
 267.Kuo JH, Chen SJ, Shih CC, Lue WM, Wu CC. Abnormal activation of potassium channels in aortic smooth muscle of rats with peritonitis‐induced septic shock. Shock 32: 74‐79, 2009. DOI: 10.1097/SHK.0b013e31818bc033.
 268.Kurjiaka DT, Segal SS. Conducted vasodilation elevates flow in arteriole networks of hamster striated muscle. Am J Physiol Circ Physiol 269: H1723‐H1728, 1995. DOI: 10.1152/ajpheart.1995.269.5.H1723.
 269.Laitio TT, Huikuri HV, Kentala ESH, Mäkikallio TH, Jalonen JR, Helenius H, Sariola‐Heinonen K, Yli‐Mäyry S, Scheinin H. Correlation properties and complexity of perioperative RR‐interval dynamics in coronary artery bypass surgery patients. Anesthesiology 93: 69‐80, 2000. DOI: 10.1097/00000542‐200007000‐00015.
 270.Lam C, Tyml K, Martin C, Sibbald W. Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest 94: 2077‐2083, 1994. DOI: 10.1172/JCI117562.
 271.Lambden S. Bench to bedside review: Therapeutic modulation of nitric oxide in sepsis—An update. Intensive Care Med Exp 7: 64, 2019. DOI: 10.1186/s40635‐019‐0274‐x.
 272.Lambden S, Creagh‐Brown BC, Hunt J, Summers C, Forni LG. Definitions and pathophysiology of vasoplegic shock. Crit Care 22: 174, 2018. DOI: 10.1186/s13054‐018‐2102‐1.
 273.Landesberg G, Jaffe AS, Gilon D, Levin PD, Goodman S, Abu‐Baih A, Beeri R, Weissman C, Sprung CL, Landesberg A. Troponin elevation in severe sepsis and septic shock. Crit Care Med 42: 790‐800, 2014. DOI: 10.1097/CCM.0000000000000107.
 274.Landry DW, Levin HR, Gallant EM, Ashton RC, Seo S, D'Alessandro D, Oz MC, Oliver JA. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation 95: 1122‐1125, 1997. DOI: 10.1161/01.CIR.95.5.1122.
 275.Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med 345: 588‐595, 2001. DOI: 10.1056/NEJMra002709.
 276.Langenberg C, Bellomo R, May C, Wan L, Egi M, Morgera S. Renal blood flow in sepsis. Crit Care 9: R363‐R374, 2005. DOI: 10.1186/cc3540.
 277.Langenfeld JE, Machiedo GW, Lyons M, Rush BF, Dikdan G, Lysz TW. Correlation between red blood cell deformability and changes in hemodynamic function. Surgery 116: 859‐867, 1994.
 278.Langheinrich AC, Ritman EL. Quantitative imaging of microvascular permeability in a rat model of lipopolysaccharide‐induced sepsis. Invest Radiol 41: 645‐650, 2006. DOI: 10.1097/01.rli.0000227494.17444.64.
 279.Lankadeva YR, Booth LC, Kosaka J, Evans RG, Quintin L, Bellomo R, May CN. Clonidine restores pressor responsiveness to phenylephrine and angiotensin II in ovine sepsis. Crit Care Med 43: e221‐e229, 2015. DOI: 10.1097/CCM.0000000000000963.
 280.Lankadeva YR, Kosaka J, Evans RG, Bailey SR, Bellomo R, May CN. Intrarenal and urinary oxygenation during norepinephrine resuscitation in ovine septic acute kidney injury. Kidney Int 90: 100‐108, 2016. DOI: 10.1016/j.kint.2016.02.017.
 281.Le Tulzo Y, Seguin P, Gacouin A, Camus C, Suprin E, Jouannic I, Thomas R. Effects of epinephrine on right ventricular function in patients with severe septic shock and right ventricular failure: A preliminary descriptive study. Intensive Care Med 23: 664‐670, 1997.
 282.LeDoux D, Astiz ME, Carpati CM, Rackow EC. Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28: 2729‐2732, 2000. DOI: 10.1097/00003246‐200008000‐00007.
 283.Lee DH, Dane MJC, Van Den Berg BM, Boels MGS, Van Teeffelen JW, De Mutsert R, Den Heijer M, Rosendaal FR, Van Der Vlag J, Van Zonneveld AJ, Vink H, Rabelink TJ. Deeper penetration of erythrocytes into the endothelial glycocalyx is associated with impaired microvascular perfusion. PLoS One 9: 1‐8, 2014. DOI: 10.1371/journal.pone.0096477.
 284.Lee JM, Ogundele O, Pike F, Pinsky MR. Effect of acute endotoxemia on analog estimates of mean systemic pressure. J Crit Care 28: 880.e9‐880.e15, 2013. DOI: 10.1016/j.jcrc.2013.04.007.
 285.Lee S, Choi S, Kim S, Jeong Y, Lee K, Hur S, Lee SR, Lee E, Sin M, Kim N, Song J. Validation of three‐dimensional echocardiographic principal strain analysis for assessing left ventricular contractility: An animal study. Med Phys 46: 2137‐2144, 2019. DOI: 10.1002/mp.13509.
 286.Leinhardt DJ, Arnold J, Shipley KA, Mughal MM, Little RA, Irving MH. Plasma NE concentrations do not accurately reflect sympathetic nervous system activity in human sepsis. Am J Physiol Metab 265: E284‐E288, 1993. DOI: 10.1152/ajpendo.1993.265.2.E284.
 287.Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent J‐L, Ramsay G. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med 31: 1250‐1256, 2003. DOI: 10.1097/01.CCM.0000050454.01978.3B.
 288.Levy MN. The cardiac and vascular factors that determine systemic blood flow. Circ Res 44: 739‐747, 1979. DOI: 10.1161/01.RES.44.6.739.
 289.Ley K. The microcirculation in inflammation. In: Comprehensive Physiology, Supplement 9: Handbook of Physiology, The Cardiovascular System, Microcirculation. First published in print 2008, 2011, p. 387‐448. DOI: 10.1002/cphy.cp020409.
 290.Li N, Soop A, Sollevi A, Hjemdahl P. Multi‐cellular activation in vivo by endotoxin in humans‐‐limited protection by adenosine infusion. Thromb Haemost 84: 381‐387, 2000. DOI: 10.1055/s‐0037‐1614032.
 291.Li S, Wan X, Laudanski K, He P, Yang L. Left sided ventricular‐arterial coupling and volume responsiveness in septic shock patients. Shock 52: 577‐582, 2019. DOI: 10.1097/SHK.0000000000001327.
 292.Libert C, Ayala A, Bauer M, Cavaillon J‐M, Deutschman C, Frostell C, Knapp S, Kozlov AV, Wang P, Osuchowski MF, Remick DG. Part II: Minimum quality threshold in preclinical sepsis studies (MQTIPSS) for types of infections and organ dysfunction endpoints. Shock 51: 23‐32, 2019. DOI: 10.1097/SHK.0000000000001242.
 293.Lipowsky HH, Cram LE, Justice W, Eppihimer MJ. Effect of erythrocyte deformability on in vivo red cell transit time and hematocrit and their correlation with in vitro filterability. Microvasc Res 46: 43‐64, 1993. DOI: 10.1006/mvre.1993.1034.
 294.Little WC. The left ventricular dP/dtmax‐end‐diastolic volume relation in closed‐chest dogs. Circ Res 56: 808‐815, 1985. DOI: 10.1161/01.RES.56.6.808.
 295.Little WC, Cheng CP, Mumma M, Igarashi Y, Vinten‐Johansen J, Johnston WE. Comparison of measures of left ventricular contractile performance derived from pressure‐volume loops in conscious dogs. Circulation 80: 1378‐1387, 1989. DOI: 10.1161/01.CIR.80.5.1378.
 296.Little WC, Oh JK. Echocardiographic evaluation of diastolic function can be used to guide clinical care. Circulation 120: 802‐809, 2009. DOI: 10.1161/CIRCULATIONAHA.109.869602.
 297.López A, Lorente JA, Steingrub J, Bakker J, McLuckie A, Willatts S, Brockway M, Anzueto A, Holzapfel L, Breen D, Silverman MS, Takala J, Donaldson J, Arneson C, Grove G, Grossman S, Grover R. Multiple‐center, randomized, placebo‐controlled, double‐blind study of the nitric oxide synthase inhibitor 546C88: Effect on survival in patients with septic shock. Crit Care Med 32: 21‐30, 2004. DOI: 10.1097/01.CCM.0000105581.01815.C6.
 298.Lowry SF. Human endotoxemia: A model for mechanistic insight and therapeutic targeting. Shock 24 (Suppl 1): 94‐100, 2005. DOI: 10.1097/01.shk.0000191340.23907.a1.
 299.Lubbe AS, Garrison RN, Cryer HM, Alsip NL, Harris PD. EDRF as a possible mediator of sepsis‐induced arteriolar dilation in skeletal muscle. Am J Physiol Circ Physiol 262: H880‐H887, 1992. DOI: 10.1152/ajpheart.1992.262.3.H880.
 300.Luce JM. Pathogenesis and management of septic shock. Chest 91: 883‐888, 1987. DOI: 10.1378/chest.91.6.883.
 301.Lugon JR, Boim MA, Ramos OL, Ajzen H, Schor N. Renal function and glomerular hemodynamics in male endotoxemic rats. Kidney Int 36: 570‐575, 1989. DOI: 10.1038/ki.1989.232.
 302.Luiking YC, Poeze M, Deutz NE. A randomized‐controlled trial of arginine infusion in severe sepsis on microcirculation and metabolism. Clin Nutr 39: 1764‐1773, 2020. DOI: 10.1016/j.clnu.2019.08.013.
 303.Luiking YC, Poeze M, Ramsay G, Deutz NE. Reduced citrulline production in sepsis is related to diminished de novo arginine and nitric oxide production. Am J Clin Nutr 89: 142‐152, 2009. DOI: 10.3945/ajcn.2007.25765.
 304.Lundberg JON, Farkas‐Szallasi T, Weitzberg E, Rinder J, Lidholm J, Änggåard A, Hökfelt T, Lundberg JM, Alving K. High nitric oxide production in human paranasal sinuses. Nat Med 1: 370‐373, 1995. DOI: 10.1038/nm0495‐370.
 305.Ma TS, Bozkurt B, Paniagua D, Kar B, Ramasubbu K, Rothe CF. Central venous pressure and pulmonary capillary wedge pressure: Fresh clinical perspectives from a new model of discordant and concordant heart failure. Tex Heart Inst J 38: 627‐638, 2011.
 306.Maas JJ, Geerts BF, van den Berg PCM, Pinsky MR, Jansen JRC. Assessment of venous return curve and mean systemic filling pressure in postoperative cardiac surgery patients. Crit Care Med 37: 912‐918, 2009. DOI: 10.1097/CCM.0b013e3181961481.
 307.Maas JJ, Pinsky MR, de Wilde RB, de Jonge E, Jansen JR. Cardiac output response to norepinephrine in postoperative cardiac surgery patients. Crit Care Med 41: 143‐150, 2013. DOI: 10.1097/CCM.0b013e318265ea64.
 308.Maas JJ, Pinsky MR, Geerts BF, de Wilde RB, Jansen JR. Estimation of mean systemic filling pressure in postoperative cardiac surgery patients with three methods. Intensive Care Med 38: 1452‐1460, 2012. DOI: 10.1007/s00134‐012‐2586‐0.
 309.Macarthur H, Westfall TC, Riley DP, Misko TP, Salvemini D. Inactivation of catecholamines by superoxide gives new insights on the pathogenesis of septic shock. Proc Natl Acad Sci USA 97: 9753‐9758, 2000. DOI: 10.1073/pnas.97.17.9753.
 310.Machiedo GW, Powell RJ, Rush BF, Swislocki NI, Dikdan G. The incidence of decreased Red Blood Cell deformability in sepsis and the association with oxygen free radical damage and multiple‐system organ failure. Arch Surg 124: 1386‐1389, 1989. DOI: 10.1001/archsurg.1989.01410120032007.
 311.MacLean LD, Mulligan WG, McLean AP, Duff JH. Patterns of septic shock in man‐‐a detailed study of 56 patients. Ann Surg 166: 543‐562, 1967. DOI: 10.1097/00000658‐196710000‐00004.
 312.Macnaul KL, Hutchinson NI. Differential expression of iNOS and cNOS mRNA in human vascular smooth muscle cells and endothelial cells under normal and inflammatory conditions. Biochem Biophys Res Commun 196: 1330‐1334, 1993. DOI: 10.1006/bbrc.1993.2398.
 313.Magder S, Famulari G, Gariepy B. Periodicity, time constants of drainage, and the mechanical determinants of peak cardiac output during exercise. J Appl Physiol 127: 1611‐1619, 2019. DOI: 10.1152/japplphysiol.00688.2018.
 314.Magder S, Vanelli G. Circuit factors in the high cardiac output of sepsis. J Crit Care 11: 155‐166, 1996.
 315.Magder S, Veerassamy S, Bates JHT. A further analysis of why pulmonary venous pressure rises after the onset of LV dysfunction. J Appl Physiol 106: 81‐90, 2009. DOI: 10.1152/japplphysiol.90618.2008.
 316.Mancia G, Mark AL. Arterial baroreflexes in humans. In: Comprehensive Physiology, Supplement 8: Handbook of Physiology, The Cardiovascular System, Peripheral Circulation and Organ Blood Flow. First published in print 1983, 2011, p. 755‐793. DOI: 10.1002/cphy.cp020320.
 317.Margarson MP, Soni NC. Effects of albumin supplementation on microvascular permeability in septic patients. J Appl Physiol 92: 2139‐2145, 2002. DOI: 10.1152/japplphysiol.00201.2001.
 318.Marik P, Bellomo R. A rational approach to fluid therapy in sepsis. Br J Anaesth 116: 339‐349, 2016. DOI: 10.1093/bja/aev349.
 319.Marik PE. The physiology of volume resuscitation. Curr Anesthesiol Rep 4: 353‐359, 2014. DOI: 10.1007/s40140‐014‐0080‐7.
 320.Marik PE, Mohedin M. The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyperdynamic sepsis. JAMA 272: 1354‐1357, 1994.
 321.Marik PE, Zaloga GP. Adrenal insufficiency during septic shock. Crit Care Med 31: 141‐145, 2003. DOI: 10.1097/00003246‐200301000‐00022.
 322.Martens RJH, Vink H, van Oostenbrugge RJ, Staals J. Sublingual microvascular glycocalyx dimensions in lacunar stroke patients. Cerebrovasc Dis 35: 451‐454, 2013. DOI: 10.1159/000348854.
 323.Martich GD, Parker MM, Cunnion RE, Suffredini AF. Effects of ibuprofen and pentoxifylline on the cardiovascular response of normal humans to endotoxin. J Appl Physiol 73: 925‐931, 1992. DOI: 10.1152/jappl.1992.73.3.925.
 324.Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348: 1546‐1554, 2003. DOI: 10.1056/nejmoa022139.
 325.Martin L, Derwall M, Al Zoubi S, Zechendorf E, Reuter DA, Thiemermann C, Schuerholz T. The septic heart. Chest 155: 427‐437, 2019. DOI: 10.1016/j.chest.2018.08.1037.
 326.Masson GS, Nair AR, Dange RB, Silva‐Soares PP, Michelini LC, Francis J. Toll‐like receptor 4 promotes autonomic dysfunction, inflammation and microglia activation in the hypothalamic paraventricular nucleus: Role of endoplasmic reticulum stress. PLoS One 10: e0122850, 2015. DOI: 10.1371/journal.pone.0122850.
 327.Mathru M, Pollard V, He G, Varma TK, Ahmad M, Prough DS. Left ventricular diastolic filling characteristics are not impaired but systolic performance was augmented in the early hours of experimental endotoxemia in humans. Shock 25: 338‐343, 2006. DOI: 10.1097/01.shk.0000209523.05249.27.
 328.Matsushita A, Iwase M, Kato Y, Ichihara S, Ichihara G, Kimata H, Hayashi K, Hashimoto K, Yokoi T, Noda A, Koike Y, Yokota M, Nagata K. Differential cardiovascular effects of endotoxin derived from Escherichia coli or Pseudomonas aeruginosa. Exp Anim 56: 339‐348, 2007. DOI: 10.1538/expanim.56.339.
 329.Maughan WL, Sunagawa K, Burkhoff D, Sagawa K. Effect of arterial impedance changes on the end‐systolic pressure‐volume relation. Circ Res 54: 595‐602, 1984. DOI: 10.1161/01.RES.54.5.595.
 330.Mckay RG, Aroesty JM, Heller GV, Royal H, Anthony Parker J, Silverman KJ, Kolodny GM, Grossman W. Left ventricular pressure‐volume diagrams and end‐systolic pressure‐volume relations in human beings. J Am Coll Cardiol 3: 301‐312, 1984. DOI: 10.1016/S0735‐1097(84)80013‐3.
 331.McLay JS, Chatterjee P, Nicolson AG, Jardine AG, McKay NG, Ralston SH, Grabowski P, Haites NE, MacLeod AM, Hawksworth GM. Nitric oxide production by human proximal tubular cells: A novel immunomodulatory mechanism? Kidney Int 46: 1043‐1049, 1994. DOI: 10.1038/ki.1994.365.
 332.McMillan M, Chernow B, Roth BL. Hepatic alpha1‐adrenergic receptor alteration in a rat model of chronic sepsis. Circ Shock 19: 185‐193, 1986.
 333.Megens RTA, Reitsma S, Schiffers PHM, Hilgers RHP, De Mey JGR, Slaaf DW, oude Egbrink MGA, van Zandvoort MAMJ. Two‐photon microscopy of vital murine elastic and muscular arteries. J Vasc Res 44: 87‐98, 2007. DOI: 10.1159/000098259.
 334.Mehta S, Javeshghani D, Datta P, Levy RD, Magder S. Porcine endotoxemic shock is associated with increased expired nitric oxide. Crit Care Med 27: 385‐393, 1999. DOI: 10.1097/00003246‐199902000‐00047.
 335.Mellander S. Comparative studies on the adrenergic neuro‐hormonal control of resistance and capacitance blood vessels in the cat. Acta Physiol Scand Suppl 50: 1‐86, 1960.
 336.Michaeli B, Martinez A, Revelly J‐P, Cayeux M‐C, Chioléro RL, Tappy L, Berger MM. Effects of endotoxin on lactate metabolism in humans. Crit Care 16: R139, 2012. DOI: 10.1186/cc11444.
 337.Michel CC, Phillips ME, Turner MR. The effects of native and modified bovine serum albumin on the permeability of frog mesenteric capillaries. J Physiol 360: 333‐346, 1985. DOI: 10.1113/jphysiol.1985.sp015620.
 338.Michelson AD, Barnard MR, Hechtman HB, MacGregor H, Connolly RJ, Loscalzo J, Valeri CR. In vivo tracking of platelets: Circulating degranulated platelets rapidly lose surface P‐selectin but continue to circulate and function. Proc Natl Acad Sci 93: 11877‐11882, 1996. DOI: 10.1073/pnas.93.21.11877.
 339.Mink SN, Kasian K, Santos Martinez LE, Jacobs H, Bose R, Cheng Z‐Q, Light RB. Lysozyme, a mediator of sepsis that produces vasodilation by hydrogen peroxide signaling in an arterial preparation. Am J Physiol Circ Physiol 294: H1724‐H1735, 2008. DOI: 10.1152/ajpheart.01072.2007.
 340.Mirsky I, Tajimi T, Peterson KL. The development of the entire end‐systolic pressure‐volume and ejection fraction‐afterload relations: A new concept of systolic myocardial stiffness. Circulation 76: 343‐356, 1987. DOI: 10.1161/01.CIR.76.2.343.
 341.Mitzner W, Goldberg H. Effects of epinephrine on resisitive and compliant properties of the canine vasculature. J Appl Physiol 39: 272‐280, 1975. DOI: 10.1152/jappl.1975.39.2.272.
 342.Miura K, Yamanaka S, Ebara T, Okumura M, Imanishi M, Kim S, Nakatani T, Iwao H. Effects of nitric oxide scavenger, carboxy‐PTIO on endotoxin‐induced alterations in systemic hemodynamics in rats. Jpn J Pharmacol 82: 261‐264, 2000. DOI: 10.1254/jjp.82.261.
 343.Mohandas N, Chasis JA. Red blood cell deformability, membrane material properties and shape: Regulation by transmembrane, skeletal and cytosolic proteins and lipids. Semin Hematol 30: 171‐192, 1993.
 344.Moine P, Abraham E. Immunomodulation and sepsis: Impact of the pathogen. Shock 22: 297‐308, 2004. DOI: 10.1097/01.shk.0000140663.80530.73.
 345.Molnar RG, Wang P, Ayala A, Ganey PE, Roth RA, Chaudry IH. The role of neutrophils in producing hepatocellular dysfunction during the hyperdynamic stage of sepsis in rats. J Surg Res 73: 117‐122, 1997. DOI: 10.1006/jsre.1997.5216.
 346.Monge García MI, Gracia Romero M, Gil Cano A, Rhodes A, Grounds RM, Cecconi M. Impact of arterial load on the agreement between pulse pressure analysis and esophageal Doppler. Crit Care 17: R113, 2013. DOI: 10.1186/cc12785.
 347.Monge García MI, Guijo González P, Gracia Romero M, Gil Cano A, Oscier C, Rhodes A, Grounds RM, Cecconi M. Effects of fluid administration on arterial load in septic shock patients. Intensive Care Med 41: 1247‐1255, 2015. DOI: 10.1007/s00134‐015‐3898‐7.
 348.Monge Garcia MI, Jian Z, Settels JJ, Hatib F, Cecconi M, Pinsky MR. Reliability of effective arterial elastance using peripheral arterial pressure as surrogate for left ventricular end‐systolic pressure. J Clin Monit Comput 33: 803‐813, 2019. DOI: 10.1007/s10877‐018‐0236‐y.
 349.Morelli A, Lange M, Ertmer C, Broeking K, Van Aken H, Orecchioni A, Rocco M, Bachetoni A, Traber DL, Landoni G, Pietropaoli P, Westphal M. Glibenclamide dose response in patients with septic shock. Shock 28: 530‐535, 2007. DOI: 10.1097/shk.0b013e3180556a3c.
 350.Morin MJ, Unno N, Hodin RA, Fink MP. Differential expression of inducible nitric oxide synthase messenger RNA along the longitudinal and crypt‐villus axes of the intestine in endotoxemic rats. Crit Care Med 26: 1258‐1264, 1998. DOI: 10.1097/00003246‐199807000‐00031.
 351.Morris SM, Billiar TR. New insights into the regulation of inducible nitric oxide synthesis. Am J Physiol 266: E829‐E839, 1994. DOI: 10.1152/ajpendo.1994.266.6.e829.
 352.Mosad E, Elsayh KI, Eltayeb AA. Tissue factor pathway inhibitor and P‐selectin as markers of sepsis‐induced non‐overt disseminated intravascular coagulopathy. Clin Appl Thromb 17: 80‐87, 2011. DOI: 10.1177/1076029609344981.
 353.Moser KM, Perry RB, Luchsinger PC. Cardiopulmonary consequences of pyrogen‐induced hyperpyrexia in man. J Clin Invest 42: 626‐634, 1963. DOI: 10.1172/JCI104753.
 354.Moshage H, Kok B, Huizenga JR, Jansen PLM. Nitrite and nitrate determinations in plasma: A critical evaluation. Clin Chem 41: 892‐896, 1995. DOI: 10.1093/clinchem/41.6.892.
 355.Mulders TA, Nieuwdorp M, Stroes ES, Vink H, Pinto‐Sietsma S‐J. Non‐invasive assessment of microvascular dysfunction in families with premature coronary artery disease. Int J Cardiol 168: 5026‐5028, 2013. DOI: 10.1016/j.ijcard.2013.07.166.
 356.Munt B, Jue J, Gin K, Fenwick J, Tweeddale M. Diastolic filling in human severe sepsis. Crit Care Med 26: 1829‐1833, 1998. DOI: 10.1097/00003246‐199811000‐00023.
 357.Murakami J, Maeda N, Kon K, Shiga T. A contribution of calmodulin to cellular deformability of calcium‐loaded human erythrocytes. Biochim Biophys Acta Biomembr 863: 23‐32, 1986. DOI: 10.1016/0005‐2736(86)90383‐4.
 358.Murphy ME, Brayden JE. Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP‐sensitive potassium channels. J Physiol 486: 47‐58, 1995. DOI: 10.1113/jphysiol.1995.sp020789.
 359.Murray DR, Freeman GL. Tumor necrosis factor‐α induces a biphasic effect on myocardial contractility in conscious dogs. Circ Res 78: 154‐160, 1996. DOI: 10.1161/01.RES.78.1.154.
 360.Myers PR, Wright TF, Tanner MA, Adams HR. EDRF and nitric oxide production in cultured endothelial cells: Direct inhibition by E. coli endotoxin. Am J Physiol Circ Physiol 262: H710‐H718, 1992. DOI: 10.1152/ajpheart.1992.262.3.H710.
 361.Naeije R. Pulmonary vascular resistance. Intensive Care Med 29: 526‐529, 2003. DOI: 10.1007/s00134‐003‐1693‐3.
 362.Nagendran M, Russell JA, Walley KR, Brett SJ, Perkins GD, Hajjar L, Mason AJ, Ashby D, Gordon AC. Vasopressin in septic shock: An individual patient data meta‐analysis of randomised controlled trials. Intensive Care Med 45: 844‐855, 2019. DOI: 10.1007/s00134‐019‐05620‐2.
 363.Nagler AL, Thomas L, Zweifach BW. The role of epinephrine in the reactions produced by the endotoxins of gram‐negative bacteria. II. The changes produced by endotoxin in the vascular reactivity to epinephrine, in the rat mesoappendix and the isolated, perfused rabbit ear. J Exp Med 104: 881‐896, 1956. DOI: 10.1084/jem.104.6.881.
 364.Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino P, Oh JK, Alexandru Popescu B, Waggoner AD. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29: 277‐314, 2016. DOI: 10.1016/j.echo.2016.01.011.
 365.Namgung B, Ng YC, Leo HL, Rifkind JM, Kim S. Near‐wall migration dynamics of erythrocytes in vivo: Effects of cell deformability and arteriolar bifurcation. Front Physiol 8: Article 963, 2017. DOI: 10.3389/fphys.2e017.00963.
 366.Natanson C, Danner RL, Elin RJ, Hosseini JM, Peart KW, Banks SM, MacVittie TJ, Walker RI, Parrillo JE. Role of endotoxemia in cardiovascular dysfunction and mortality. Escherichia coli and Staphylococcus aureus challenges in a canine model of human septic shock. J Clin Invest 83: 243‐251, 1989. DOI: 10.1172/JCI113866.
 367.Neviere R, Mathieu D, Chagnon JL, Lebleu N, Millien JP, Wattel F. Skeletal muscle microvascular blood flow and oxygen transport in patients with severe sepsis. Am J Respir Crit Care Med 153: 191‐195, 1996. DOI: 10.1164/ajrccm.153.1.8542115.
 368.Ng PY, Sin WC, Ng AK‐Y, Chan WM. Speckle tracking echocardiography in patients with septic shock: A case control study (SPECKSS). Crit Care 20: 145, 2016. DOI: 10.1186/s13054‐016‐1327‐0.
 369.Nivatpumin T, Katz S, Scheuer J. Peak left ventricular ratio: A sensitive detector of left ventricular disease. Am J Cardiol 43: 969‐974, 1979. DOI: 10.1016/0002‐9149(79)90361‐8.
 370.Nizamuddin J, Mahmood F, Tung A, Mueller A, Brown SM, Shaefi S, O'Connor M, Talmor D, Shahul S. Interval changes in myocardial performance index predict outcome in severe sepsis. J Cardiothorac Vasc Anesth 31: 957‐964, 2017. DOI: 10.1053/j.jvca.2016.11.007.
 371.Norris SL, King EG, Grace M, Weir B. Thermodilution cardiac output‐an in vitro model of low flow states. Crit Care Med 14: 57‐59, 1986. DOI: 10.1097/00003246‐198601000‐00013.
 372.Nowak RM, Reed BP, Nanayakkara P, DiSomma S, Moyer ML, Millis S, Levy P. Presenting hemodynamic phenotypes in ED patients with confirmed sepsis. Am J Emerg Med 34: 2291‐2297, 2016. DOI: 10.1016/j.ajem.2016.08.031.
 373.Nussler AK, Di Silvio M, Billiar TR, Hoffman RA, Geller DA, Selby R, Madariaga J, Simmons RL. Stimulation of the nitric oxide synthase pathway in human hepatocytes by cytokines and endotoxin. J Exp Med 176: 261‐264, 1992. DOI: 10.1084/jem.176.1.261.
 374.Ochoa JB, Udekwu AO, Billiar TR, Curran RD, Cerra FB, Simmons RL, Peitzman AB. Nitrogen oxide levels in patients after trauma and during sepsis. Ann Surg 214: 621‐626, 1991. DOI: 10.1097/00000658‐199111000‐00013.
 375.Ognibene FP, Parker MM, Natanson C, Shelhamer JH, Parrillo JE. Depressed left ventricular performance. Response to volume infusion in patients with sepsis and septic shock. Chest 93: 903‐910, 1988. DOI: 10.1378/chest.93.5.903.
 376.Ogura H, Kawasaki T, Tanaka H, Koh T, Tanaka R, Ozeki Y, Hosotsubo H, Kuwagata Y, Shimazu T, Sugimoto H. Activated platelets enhance microparticle formation and platelet‐leukocyte interaction in severe trauma and sepsis. J Trauma Inj Infect Crit Care 50: 801‐809, 2001. DOI: 10.1097/00005373‐200105000‐00005.
 377.Ogura H, Tanaka H, Koh T, Fujita K, Fujimi S, Nakamori Y, Hosotsubo H, Kuwagata Y, Shimazu T, Sugimoto H. Enhanced production of endothelial microparticles with increased binding to leukocytes in patients with severe systemic inflammatory response syndrome. J Trauma Inj Infect Crit Care 56: 823‐831, 2004. DOI: 10.1097/01.TA.0000084517.39244.46.
 378.Oki T, Fukuda K, Tabata T, Mishiro Y, Yamada H, Abe M, Onose Y, Wakatsuki T, Iuchi A, Ito S. Effect of an acute increase in afterload on left ventricular regional wall motion velocity in healthy subjects. J Am Soc Echocardiogr 12: 476‐483, 1999. DOI: 10.1016/S0894‐7317(99)70084‐2.
 379.Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: A comparative simultaneous Doppler‐catheterization study. Circulation 102: 1788‐1794, 2000. DOI: 10.1161/01.cir.102.15.1788.
 380.Oonishi T, Sakashita K, Uyesaka N. Regulation of red blood cell filterability by Ca 2+ influx and cAMP‐mediated signaling pathways. Am J Physiol Physiol 273: C1828‐C1834, 1997. DOI: 10.1152/ajpcell.1997.273.6.C1828.
 381.Oppert M, Schindler R, Husung C, Offermann K, Gräf K‐J, Boenisch O, Barckow D, Frei U, Eckardt K‐U. Low‐dose hydrocortisone improves shock reversal and reduces cytokine levels in early hyperdynamic septic shock. Crit Care Med 33: 2457‐2464, 2005. DOI: 10.1097/01.CCM.0000186370.78639.23.
 382.Orde SR, Pulido JN, Masaki M, Gillespie S, Spoon JN, Kane GC, Oh JK. Outcome prediction in sepsis: Speckle tracking echocardiography based assessment of myocardial function. Crit Care 18: R149, 2014. DOI: 10.1186/cc13987.
 383.Ospina‐Tascon G, Neves AP, Occhipinti G, Donadello K, Büchele G, Simion D, Chierego M‐L, Silva TO, Fonseca A, Vincent J‐L, De Backer D. Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med 36: 949‐955, 2010. DOI: 10.1007/s00134‐010‐1843‐3.
 384.Osuchowski MF, Ayala A, Bahrami S, Bauer M, Boros M, Cavaillon JM, Chaudry IH, Coopersmith CM, Deutschman CS, Drechsler S, Efron P, Frostell C, Fritsch G, Gozdzik W, Hellman J, Huber‐Lang M, Inoue S, Knapp S, Kozlov AV, Libert C, Marshall JC, Moldawer LL, Radermacher P, Redl H, Remick DG, Singer M, Thiemermann C, Wang P, Wiersinga WJ, Xiao X, Zingarelli B. Minimum quality threshold in pre‐clinical sepsis studies (MQTIPSS): An international expert consensus initiative for improvement of animal modeling in sepsis. Shock 50: 377‐380, 2018. DOI: 10.1097/SHK.0000000000001212.
 385.Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87: 315‐424, 2007. DOI: 10.1152/physrev.00029.2006.
 386.Pagani M, Somers V, Furlan R, Dell'Orto S, Conway J, Baselli G, Cerutti S, Sleight P, Malliani A. Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension 12: 600‐610, 1988. DOI: 10.1161/01.HYP.12.6.600.
 387.Pajk W, Stadlbauer KH, Kleinsasser A, Kotzinger O, Ulmer H, Hasibeder W, Knotzer H. The impact of endotoxin on jejunal tissue oxygenation. Microcirculation 24: e12379, 2017. DOI: 10.1111/micc.12379.
 388.Palmer RMJ, Bridge L, Foxwell NA, Moncada S. The role of nitric oxide in endothelial cell damage and its inhibition by glucocorticoids. Br J Pharmacol 105: 11‐12, 1992. DOI: 10.1111/j.1476‐5381.1992.tb14202.x.
 389.Palmieri V, Innocenti F, Guzzo A, Guerrini E, Vignaroli D, Pini R. Left ventricular systolic longitudinal function as predictor of outcome in patients with sepsis. Circ Cardiovasc Imaging 8: e003865, 2015. DOI: 10.1161/CIRCIMAGING.115.003865.
 390.Palmieri V, Russo C, Arezzi E, Pezzullo S, Sabatella M, Minichiello S, Celentano A. Relations of longitudinal left ventricular systolic function to left ventricular mass, load, and Doppler stroke volume. Eur J Echocardiogr 7: 348‐355, 2006. DOI: 10.1016/j.euje.2005.07.007.
 391.Pålsson J, Ricksten SE, Delle M, Lundin S. Changes in renal sympathetic nerve activity during experimental septic and endotoxin shock in conscious rats. Circ Shock 24: 133‐141, 1988.
 392.Park C‐S, Park R, Krishna G. Constitutive expression and structural diversity of inducible isoform of nitric oxide synthase in human tissues. Life Sci 59: 219‐225, 1996. DOI: 10.1016/0024‐3205(96)00287‐1.
 393.Park JW, Piknova B, Nghiem K, Lozier JN, Schechter AN. Inhibitory effect of nitrite on coagulation processes demonstrated by thrombelastography. Nitric Oxide 40: 45‐51, 2014. DOI: 10.1016/j.niox.2014.05.006.
 394.Parker MM, McCarthy KE, Ognibene FP, Parrillo JE. Right ventricular dysfunction and dilatation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest 97: 126‐131, 1990. DOI: 10.1378/chest.97.1.126.
 395.Parker MM, Ognibene FP, Parrillo JE. Peak systolic pressure/end‐systolic volume ratio, a load‐independent measure of ventricular function, is reversibly decreased in human septic shock. Crit Care Med 22: 1955‐1959, 1994. DOI: 10.1097/00003246-199422120-00011.
 396.Parker MM, Parrillo JE. Septic shock. Hemodynamics and pathogenesis. JAMA 250: 3324‐3327, 1983. DOI: 10.1001/jama.250.24.3324.
 397.Parker MM, Shelhamer JH, Bacharach SL, Green MV, Natanson C, Frederick TM, Damske BA, Parrillo JE. Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100: 483‐490, 1984. DOI: 10.7326/0003‐4819‐100‐4‐483.
 398.Parker MM, Shelhamer JH, Natanson C, Alling DW, Parrillo JE. Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: Heart rate as an early predictor of prognosis. Crit Care Med 15: 923‐929, 1987. DOI: 10.1097/00003246‐198710000‐00006.
 399.Parker MM, Suffredini AF, Natanson C, Ognibene FP, Shelhamer JH, Parrillo JE. Responses of left ventricular function in survivors and nonsurvivors of septic shock. J Crit Care 4: 19‐25, 1989. DOI: 10.1016/0883‐9441(89)90087‐7.
 400.Parkin WG, Leaning MS. Therapeutic control of the circulation. J Clin Monit Comput 22: 391‐400, 2008. DOI: 10.1007/s10877‐008‐9147‐7.
 401.Parratt JR. Myocardial and circulatory effects of E. coli endotoxin; modification of responses to catecholamines. Br J Pharmacol 47: 12‐25, 1973. DOI: 10.1111/j.1476‐5381.1973.tb08154.x.
 402.Parthasarathi K, Lipowsky HH. Capillary recruitment in response to tissue hypoxia and its dependence on red blood cell deformability. Am J Physiol Circ Physiol 277: H2145‐H2157, 1999. DOI: 10.1152/ajpheart.1999.277.6.H2145.
 403.Pasipoularides A. Right and left ventricular diastolic pressure–volume relations: A comprehensive review. J Cardiovasc Transl Res 6: 239‐252, 2013. DOI: 10.1007/s12265‐012‐9424‐1.
 404.Persichini R, Silva S, Teboul J‐L, Jozwiak M, Chemla D, Richard C, Monnet X. Effects of norepinephrine on mean systemic pressure and venous return in human septic shock. Crit Care Med 40: 3146‐3153, 2012. DOI: 10.1097/CCM.0b013e318260c6c3.
 405.Petrache I, Verin AD, Crow MT, Birukova A, Liu F, Garcia JGN. Differential effect of MLC kinase in TNF‐α‐induced endothelial cell apoptosis and barrier dysfunction. Am J Physiol Cell Mol Physiol 280: L1168‐L1178, 2001. DOI: 10.1152/ajplung.2001.280.6.L1168.
 406.Piagnerelli M, Boudjeltia KZ, Brohee D, Piro P, Carlier E, Vincent JL, Lejeune P, Vanhaeverbeek M. Alterations of red blood cell shape and sialic acid membrane content in septic patients. Crit Care Med 31: 2156‐2162, 2003. DOI: 10.1097/01.CCM.0000079608.00875.14.
 407.Piagnerelli M, Boudjeltia KZ, Gulbis B, Vanhaeverbeek M, Vincent J‐L. Anemia in sepsis: The importance of red blood cell membrane changes. Transfus Altern Transfus Med 9: 143‐149, 2007. DOI: 10.1111/j.1778‐428X.2007.00072.x.
 408.Piagnerelli M, Zouaoui‐Boudjeltia K, Vanhaeverbeek M, Vincent JL. Red blood cell rheology in sepsis. Intensive Care Med 29: 1052‐1061, 2003. DOI: 10.1007/978‐3‐642‐28233‐1_14.
 409.Pinsky MR, Matuschak GM. Cardiovascular determinants of the hemodynamic response to acute endotoxemia in the dog. J Crit Care 1: 18‐31, 1986. DOI: 10.1016/S0883‐9441(86)80113‐7.
 410.Pinsky MR, Rico P. Cardiac contractility is not depressed in early canine endotoxic shock. Am J Respir Crit Care Med 161: 1087‐1093, 2000. DOI: 10.1164/ajrccm.161.4.9904033.
 411.Pleiner J, Heere‐Ress E, Langenberger H, Sieder AE, Bayerle‐Eder M, Mittermayer F, Fuchsjäger‐Mayrl G, Böhm J, Jansen B, Wolzt M. Adrenoceptor hyporeactivity is responsible for Escherichia coli endotoxin‐induced acute vascular dysfunction in humans. Arterioscler Thromb Vasc Biol 22: 95‐100, 2002. DOI: 10.1161/hq0102.101818.
 412.Pleiner J, Mittermayer F, Schaller G, MacAllister RJ, Wolzt M. High doses of vitamin C reverse Escherichia coli endotoxin–induced hyporeactivity to acetylcholine in the human forearm. Circulation 106: 1460‐1464, 2002. DOI: 10.1161/01.CIR.0000030184.70207.FF.
 413.Pober JS. Physiology and pathobiology of microvascular endothelium. In: Comprehensive Physiology, Supplement 9: Handbook of Physiology, The Cardiovascular System, Microcirculation. First published in print 2008, 2011, p. 37‐55. DOI: 10.1002/cphy.cp020402.
 414.Poelaert J, Declerck C, Vogelaers D, Colardyn F, Visser CA. Left ventricular systolic and diastolic function in septic shock. Intensive Care Med 23: 553‐560, 1997. DOI: 10.1007/s001340050372.
 415.Pollack MM, Fields AI, Ruttimann UE. Distributions of cardiopulmonary variables in pediatric survivors and nonsurvivors of septic shock. Crit Care Med 13: 454‐459, 1985. DOI: 10.1097/00003246-198506000-00002.
 416.Powell RJ, Machiedo GW, Rush BF, Dikdan G Jr. Oxygen free radicals: Effect on red cell deformability in sepsis. Crit Care Med 19: 732‐735, 1991. DOI: 10.1097/00003246‐199105000‐00022.
 417.Pradhan RK, Chakravarthy VS. Informational dynamics of vasomotion in microvascular networks: A review. Acta Physiol 201: 193‐218, 2011. DOI: 10.1111/j.1748‐1716.2010.02198.x.
 418.Pries A. Blood flow resistance during hemodilution: Effect of plasma composition. Cardiovasc Res 37: 225‐235, 1998. DOI: 10.1016/S0008‐6363(97)00226‐5.
 419.Pries AR, Secomb TW. Blood flow in microvascular networks. In: Comprehensive Physiology, Supplement 9: Handbook of Physiology, The Cardiovascular System, Microcirculation. First published in print 2008, 2011, p. 3‐36. DOI: 10.1002/cphy.cp020401.
 420.Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflügers Arch Eur J Physiol 440: 653‐666, 2000. DOI: 10.1007/s004240000307.
 421.Pulido JN, Afessa B, Masaki M, Yuasa T, Gillespie S, Herasevich V, Brown DR, Oh JK. Clinical spectrum, frequency, and significance of myocardial dysfunction in severe sepsis and septic shock. Mayo Clin Proc 87: 620‐628, 2012. DOI: 10.1016/j.mayocp.2012.01.018.
 422.Quayle JM, Nelson MT, Standen NB. ATP‐sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev 77: 1165‐1232, 1997. DOI: 10.1152/physrev.1997.77.4.1165.
 423.Rackow EC, Kaufman BS, Falk JL, Astiz ME, Weil MH. Hemodynamic response to fluid repletion in patients with septic shock: Evidence for early depression of cardiac performance. Circ Shock 22: 11‐22, 1987.
 424.Rain S, Handoko ML, Trip P, Gan CT‐J, Westerhof N, Stienen GJ, Paulus WJ, Ottenheijm CAC, Marcus JT, Dorfmüller P, Guignabert C, Humbert M, MacDonald P, dos Remedios C, Postmus PE, Saripalli C, Hidalgo CG, Granzier HL, Vonk‐Noordegraaf A, van der Velden J, de Man FS. Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation 128: 2016‐2025, 2013. DOI: 10.1161/CIRCULATIONAHA.113.001873.
 425.Ramanathan KB, Erwin SW, Sullivan JM. Relationship of peak systolic pressure/end systolic volume ratio to standard ejection phase indices and ventricular function curves in coronary disease. Am J Med Sci 288: 162‐168, 1984. DOI: 10.1097/00000441‐198411000‐00003.
 426.Ramchandra R, Wan L, Hood SG, Frithiof R, Bellomo R, May CN. Septic shock induces distinct changes in sympathetic nerve activity to the heart and kidney in conscious sheep. Am J Physiol Integr Comp Physiol 297: R1247‐R1253, 2009. DOI: 10.1152/ajpregu.00437.2009.
 427.Ratz PH. Mechanics of vascular smooth muscle. Compr Physiol 6: 111‐168, 2015. DOI: 10.1002/cphy.c140072.
 428.Reade MC, Clark MF, Young JD, Boyd CAR. Increased cationic amino acid flux through a newly expressed transporter in cells overproducing nitric oxide from patients with septic shock. Clin Sci (Lond) 102: 645‐650, 2002. DOI: 10.1042/CS20010329.
 429.Reade MC, Millo JL, Young JD, Boyd CAR. Nitric oxide synthase is downregulated, while haem oxygenase is increased, in patients with septic shock. Br J Anaesth 94: 468‐473, 2005. DOI: 10.1093/bja/aei082.
 430.Reddi BA, Beltrame JF, Young RL, Wilson DP. Calcium desensitisation in late polymicrobial sepsis is associated with loss of vasopressor sensitivity in a murine model. Intensive Care Med Exp 3: 1‐15, 2015. DOI: 10.1186/s40635‐014‐0036‐8.
 431.Rees DD, Cunha FQ, Assreuy J, Herman AG, Moncada S. Sequential induction of nitric oxide synthase by Corynebacterium parvum in different organs of the mouse. Br J Pharmacol 114: 689‐693, 1995. DOI: 10.1111/j.1476‐5381.1995.tb17193.x.
 432.Reiling N, Ulmer AJ, Duchrow M, Ernst M, Flad H‐D, Hauschildt S. Nitric oxide synthase: mRNA expression of different isoforms in human monocytes/macrophages. Eur J Immunol 24: 1941‐1944, 1994. DOI: 10.1002/eji.1830240836.
 433.Reitsma S, Slaaf DW, Vink H, Van Zandvoort MAMJ, Oude Egbrink MGA. The endothelial glycocalyx: Composition, functions, and visualization. Pflugers Arch Eur J Physiol 454: 345‐359, 2007. DOI: 10.1007/s00424‐007‐0212‐8.
 434.Remick DG, Newcomb DE, Bolgos GL, Call DR. Comparison of the mortality and inflammatory response of two models of sepsis: Lipopolysaccharide vs. cecal ligation and puncture. Shock 13: 110‐116, 2000. DOI: 10.1097/00024382‐200013020‐00004.
 435.Repessé X, Charron C, Fink J, Beauchet A, Deleu F, Slama M, Belliard G, Vieillard‐Baron A. Value and determinants of the mean systemic filling pressure in critically ill patients. Am J Physiol Heart Circ Physiol 309: H1003‐H1007, 2015. DOI: 10.1152/ajpheart.00413.2015.
 436.Revelly J‐P, Ayuse T, Brienza N, Fessler HE, Robotham JL. Endotoxic shock alters distribution of blood flow within the intestinal wall. Crit Care Med 24: 1345‐1351, 1996. DOI: 10.1097/00003246‐199608000‐00013.
 437.Rhee C, Jones TM, Hamad Y, Pande A, Varon J, O'Brien C, Anderson DJ, Warren DK, Dantes RB, Epstein L, Klompas M. Prevalence, underlying causes, and preventability of sepsis‐associated mortality in US acute care hospitals. JAMA Netw Open 2: e187571, 2019. DOI: 10.1001/jamanetworkopen.2018.7571.
 438.Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche J‐D, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent J‐L, Wiersinga WJ, Zimmerman JL, Dellinger RP. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43: 304‐377, 2017. DOI: 10.1007/s00134‐017‐4683‐6.
 439.Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol 8: 776‐787, 2008. DOI: 10.1038/nri2402.
 440.Rittirsch D, Hoesel LM, Ward PA. The disconnect between animal models of sepsis and human sepsis. J Leukoc Biol 81: 137‐143, 2007. DOI: 10.1189/jlb.0806542.
 441.Robinson JA, Klondnycky ML, Loeb HS, Racic MR, Gunnar RM. Endotoxin, prekallikrein, complement and systemic vascular resistance. Sequential measurements in man. Am J Med 59: 61‐67, 1975. DOI: 10.1016/0002‐9343(75)90322‐8.
 442.Robotham JL, Takata M, Berman M, Harasawa Y. Ejection fraction revisited. Anesthesiology 74: 172‐183, 1991. DOI: 10.1097/00000542‐199101000‐00026.
 443.Roddie IC, Sheperd JT. The effects of carotid artery compression in man with special reference to changes in vascular resistance in the limbs. J Physiol 139: 377‐384, 1957. DOI: 10.1113/jphysiol.1957.sp005898.
 444.Rogausch H, Vo NT, Del Rey A, Besedovsky HO. Increased sensitivity of the baroreceptor reflex after bacterial endotoxin. Ann N Y Acad Sci 917: 165‐168, 2000. DOI: 10.1111/j.1749-6632.2000.tb05380.x.
 445.Rothe CF. Mean circulatory filling pressure: Its meaning and measurement. J Appl Physiol 74: 499‐509, 1993. DOI: 10.1152/jappl.1993.74.2.499.
 446.Rothe CF. Venous system: Physiology of the capacitance vessels. In: Comprehensive Physiology, Supplement 8: Handbook of Physiology, The Cardiovascular System, Peripheral Circulation and Organ Blood Flow. First published in print 1983, 2011, p. 397‐452. DOI: 10.1002/cphy.cp020313.
 447.Rovas A, Seidel LM, Vink H, Pohlkötter T, Pavenstädt H, Ertmer C, Hessler M, Kümpers P. Association of sublingual microcirculation parameters and endothelial glycocalyx dimensions in resuscitated sepsis. Crit Care 23: 1‐11, 2019. DOI: 10.1186/s13054‐019‐2542‐2.
 448.Rücker M, Strobel O, Vollmar B, Roesken F, Menger MD. Vasomotion in critically perfused muscle protects adjacent tissues from capillary perfusion failure. Am J Physiol Heart Circ Physiol 279: 550‐558, 2000. DOI: 10.1152/ajpheart.2000.279.2.h550.
 449.Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, Colombara DV, Ikuta KS, Kissoon N, Finfer S, Fleischmann‐Struzek C, Machado FR, Reinhart KK, Rowan K, Seymour CW, Watson RS, West TE, Marinho F, Hay SI, Lozano R, Lopez AD, Angus DC, Murray CJL, Naghavi M. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 395: 200‐211, 2020. DOI: 10.1016/S0140‐6736(19)32989‐7.
 450.Rudiger A, Singer M. Mechanisms of sepsis‐induced cardiac dysfunction. Crit Care Med 35: 1599‐1608, 2007. DOI: 10.1097/01.CCM.0000266683.64081.02.
 451.Russell JA. Bench‐to‐bedside review: Vasopressin in the management of septic shock. Crit Care 15: 1‐19, 2011. DOI: 10.1186/cc8224.
 452.Rygård SL, Butler E, Granholm A, Møller MH, Cohen J, Finfer S, Perner A, Myburgh J, Venkatesh B, Delaney A. Low‐dose corticosteroids for adult patients with septic shock: A systematic review with meta‐analysis and trial sequential analysis. Intensive Care Med 44: 1003‐1016, 2018. DOI: 10.1007/s00134‐018‐5197‐6.
 453.Sadaka F, O'Brien J, Prakash S. Red cell distribution width and outcome in patients with septic shock. J Intensive Care Med 28: 307‐313, 2013. DOI: 10.1177/0885066612452838.
 454.Sagawa K. The ventricular pressure‐volume diagram revisited. Circ Res 43: 677‐687, 1978. DOI: 10.1161/01.RES.43.5.677.
 455.Sagawa K, Suga H, Shoukas AA, Bakalar KM. End‐systolic pressure/volume ratio: A new index of ventricular contractility. Am J Cardiol 40: 748‐753, 1977. DOI: 10.1016/0002‐9149(77)90192‐8.
 456.Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent‐microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32: 1825‐1831, 2004. DOI: 10.1097/01.CCM.0000138558.16257.3F.
 457.Sakurai H, Kohsaka H, Liu MF, Higashiyama H, Hirata Y, Kanno K, Saito I, Miyasaka N. Nitric oxide production and inducible nitric oxide synthase expression in inflammatory arthritides. J Clin Invest 96: 2357‐2363, 1995. DOI: 10.1172/JCI118292.
 458.Salmon AH, Satchell SC. Endothelial glycocalyx dysfunction in disease: Albuminuria and increased microvascular permeability. J Pathol 226: 562‐574, 2012. DOI: 10.1002/path.3964.
 459.Salvemini D, Korbut R, Anggard E, Vane J. Immediate release of a nitric oxide‐like factor from bovine aortic endothelial cells by Escherichia coli lipopolysaccharide. Proc Natl Acad Sci 87: 2593‐2597, 1990. DOI: 10.1073/pnas.87.7.2593.
 460.Sánchez M, Jiménez‐Lendínez M, Cidoncha M, Asensio MJ, Herrero E, Collado A, Santacruz M. Comparison of fluid compartments and fluid responsiveness in septic and non‐septic patients. Anaesth Intensive Care 39: 1022‐1029, 2011. DOI: 10.1177/0310057X1103900607.
 461.Sanfilippo F, Corredor C, Arcadipane A, Landesberg G, Vieillard‐Baron A, Cecconi M, Fletcher N. Tissue Doppler assessment of diastolic function and relationship with mortality in critically ill septic patients: A systematic review and meta‐analysis. Br J Anaesth 119: 583‐594, 2017. DOI: 10.1093/bja/aex254.
 462.Sanfilippo F, Corredor C, Fletcher N, Landesberg G, Benedetto U, Foex P, Cecconi M. Diastolic dysfunction and mortality in septic patients: A systematic review and meta‐analysis. Intensive Care Med 41: 1004‐1013, 2015. DOI: 10.1007/s00134‐015‐3748‐7.
 463.Sanfilippo F, Corredor C, Fletcher N, Tritapepe L, Lorini FL, Arcadipane A, Vieillard‐Baron A, Cecconi M. Left ventricular systolic function evaluated by strain echocardiography and relationship with mortality in patients with severe sepsis or septic shock: A systematic review and meta‐analysis. Crit Care 22: 183, 2018. DOI: 10.1186/s13054‐018‐2113‐y.
 464.Sato T, Kawada T, Inagaki M, Shishido T, Takaki H, Sugimachi M, Sunagawa K. New analytic framework for understanding sympathetic baroreflex control of arterial pressure. Am J Physiol 276: H2251‐H2261, 1999. DOI: 10.1152/ajpheart.1999.276.6.H2251.
 465.Sayk F, Vietheer A, Schaaf B, Wellhoener P, Weitz G, Lehnert H, Dodt C. Endotoxemia causes central downregulation of sympathetic vasomotor tone in healthy humans. Am J Physiol Integr Comp Physiol 295: R891‐R898, 2008. DOI: 10.1152/ajpregu.90444.2008.
 466.Scalia GM, Greenberg NL, McCarthy PM, Thomas JD, Vandervoort PM. Noninvasive assessment of the ventricular relaxation time constant (τ) in humans by doppler echocardiography. Circulation 95: 151‐155, 1997. DOI: 10.1161/01.CIR.95.1.151.
 467.Schaller MD, Waeber B, Nussberger J, Brunner HR. Angiotensin II, vasopressin, and sympathetic activity in conscious rats with endotoxemia. Am J Physiol Circ Physiol 249: H1086‐H1092, 1985. DOI: 10.1152/ajpheart.1985.249.6.H1086.
 468.Schipke JD, Heusch G, Sanii AP, Gams E, Winter J. Static filling pressure in patients during induced ventricular fibrillation. Am J Physiol Circ Physiol 285: H2510‐H2515, 2003. DOI: 10.1152/ajpheart.00604.2003.
 469.Schlegel N, Baumer Y, Drenckhahn D, Waschke J. Lipopolysaccharide‐induced endothelial barrier breakdown is cyclic adenosine monophosphate dependent in vivo and in vitro. Crit Care Med 37: 1735‐1743, 2009. DOI: 10.1097/CCM.0b013e31819deb6a.
 470.Schmidt C, Kurt B, Höcherl K, Bucher M. Inhibition of NF‐κB activity prevents downregulation of α1‐adrenergic receptors and circulatory failure during CLP‐induced sepsis. Shock 32: 239‐246, 2009. DOI: 10.1097/SHK.0b013e3181994752.
 471.Schmidt H, Müller‐Werdan U, Hoffmann T, Francis DP, Piepoli MF, Rauchhaus M, Prondzinsky R, Loppnow H, Buerke M, Hoyer D, Werdan K. Autonomic dysfunction predicts mortality in patients with multiple organ dysfunction syndrome of different age groups. Crit Care Med 33: 1994‐2002, 2005. DOI: 10.1097/01.CCM.0000178181.91250.99.
 472.Schnitzer JE, Pinney E. Quantitation of specific binding of orosomucoid to cultured microvascular endothelium: Role in capillary permeability. Am J Physiol Circ Physiol 263: H48‐H55, 1992. DOI: 10.1152/ajpheart.1992.263.1.H48.
 473.Schrottmaier WC, Kral JB, Zeitlinger M, Salzmann M, Jilma B, Assinger A. Platelet activation at the onset of human endotoxemia is undetectable in vivo. Platelets 27: 479‐483, 2016. DOI: 10.3109/09537104.2015.1119814.
 474.Schuster DP, Anderson C, Kozlowski J, Lange N. Regional pulmonary perfusion in patients with acute pulmonary edema. J Nucl Med 43: 863‐870, 2002.
 475.Scott EC, Ho HC, Yu M, Chapital AD, Koss W, Takanishi DM. Pre‐existing cardiac disease, troponin I elevation and mortality in patients with severe sepsis and septic shock. Anaesth Intensive Care 36: 51‐59, 2008. DOI: 10.1177/0310057X0803600109.
 476.Secomb TW. Hemodynamics. Compr Physiol 6: 975‐1003, 2016. DOI: 10.1002/cphy.c150038.
 477.Seki K, Katayama K, Sakai H, Yonezawa T, Kunichika H, Saeki Y, Hiro T, Matsuzaki M, Seki H, Katayama K, Sakai H, Yonezawa T, Kunichika H, Saeki Y, Hiro T, Matsuzaki M, Seki K, Katayama K, Sakai H, Yonezawa T, Kunichika H, Saeki Y, Hiro T, Matsuzaki M. Effect of dobutamine of ventriculoarterial coupling in acute regional myocardial ischemia in dogs. Am J Physiol Circ Physiol 270: H1279‐H1286, 1996. DOI: 10.1152/ajpheart.1996.270.4.H1279.
 478.Seo J‐S, Kim D‐H, Kim W‐J, Song J‐M, Kang D‐H, Song J‐K. Peak systolic velocity of mitral annular longitudinal movement measured by pulsed tissue Doppler imaging as an index of global left ventricular contractility. Am J Physiol Heart Circ Physiol 298: H1608‐H1615, 2010. DOI: 10.1152/ajpheart.01231.2009.
 479.Sevilla Berrios RA, O'Horo JC, Velagapudi V, Pulido JN. Correlation of left ventricular systolic dysfunction determined by low ejection fraction and 30‐day mortality in patients with severe sepsis and septic shock: A systematic review and meta‐analysis. J Crit Care 29: 495‐499, 2014. DOI: 10.1016/j.jcrc.2014.03.007.
 480.Seybold J, Thomas D, Witzenrath M, Boral Ş, Hocke AC, Bürger A, Hatzelmann A, Tenor H, Schudt C, Krüll M, Schütte H, Hippenstiel S, Suttorp N. Tumor necrosis factor‐α‐dependent expression of phosphodiesterase 2: Role in endothelial hyperpermeability. Blood 105: 3569‐3576, 2005. DOI: 10.1182/blood‐2004‐07‐2729.
 481.Seymour CW, Rea TD, Kahn JM, Walkey AJ, Yealy DM, Angus DC. Severe sepsis in pre‐hospital emergency care: Analysis of incidence, care, and outcome. Am J Respir Crit Care Med 186: 1264‐1271, 2012. DOI: 10.1164/rccm.201204‐0713OC.
 482.Sharawy N. Vasoplegia in septic shock: Do we really fight the right enemy? J Crit Care 29: 83‐87, 2014. DOI: 10.1016/j.jcrc.2013.08.021.
 483.Sharpey‐Schafer EP. Venous tone: Effects of reflex changes, humoral agents and exercise. Br Med Bull 19: 145‐148, 1963. DOI: 10.1093/oxfordjournals.bmb.a070034.
 484.Shen XF, Cao K, Jiang JP, Guan WX, Du JF. Neutrophil dysregulation during sepsis: An overview and update. J Cell Mol Med 21: 1687‐1697, 2017. DOI: 10.1111/jcmm.13112.
 485.Shepherd JT. Circulation to skeletal muscle. In: Comprehensive Physiology, Supplement 8: Handbook of Physiology, The Cardiovascular System, Peripheral Circulation and Organ Blood Flow. First published in print 1983, 2011, p. 397‐452. DOI: 10.1002/cphy.cp020313.
 486.Shi Y, Li H, Shen C, Wang J, Qin S, Liu R, Pan J. Plasma nitric oxide levels in newborn infants with sepsis. J Pediatr 123: 435‐438, 1993. DOI: 10.1016/S0022‐3476(05)81753‐6.
 487.Shih H, Hillel Z, Declerck C, Anagnostopoulos C, Kuroda M, Thys D. An algorithm for real‐time, continuous evaluation of left ventricular mechanics by single‐beat estimation of arterial and ventricular elastance. J Clin Monit 13: 157‐170, 1997.
 488.Shishido T, Hayashi K, Shigemi K, Sato T, Sugimachi M, Sunagawa K. Single‐beat estimation of end‐systolic elastance using bilinearly approximated time‐varying elastance curve. Circulation 102: 1983‐1989, 2000. DOI: 10.1161/01.CIR.102.16.1983.
 489.Singer M, Deutschman CS, Seymour CW, Shankar‐Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche J‐D, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent J, Angus DC. The third international consensus definitions for sepsis and septic shock (sepsis‐3). JAMA 315: 801‐810, 2016. DOI: 10.1001/jama.2016.0287.
 490.Sjövall F, Morota S, Åsander Frostner E, Hansson MJ, Elmér E. Cytokine and nitric oxide levels in patients with sepsis – temporal evolvement and relation to platelet mitochondrial respiratory function. PLoS One 9: e97673, 2014. DOI: 10.1371/journal.pone.0097673.
 491.Slutsky R, Karliner J, Gerber K, Battler A, Froelicher V, Gregoratos G, Peterson K, Ashburn W. Peak systolic blood pressure/end‐systolic volume ratio: Assessment at rest and during exercise in normal subjects and patients with coronary heart disease. Am J Cardiol 46: 813‐820, 1980. DOI: 10.1016/0002‐9149(80)90433‐6.
 492.Sodums MT, Badke FR, Starling MR, Little WC, O'Rourke RA. Evaluation of left ventricular contractile performance utilizing end‐systolic pressure‐volume relationships in conscious dogs. Circ Res 54: 731‐739, 1984. DOI: 10.1161/01.RES.54.6.731.
 493.Soop A, Sollevi A, Weitzberg E, Lundberg JON, Palm J, Albert J. Exhaled NO and plasma cGMP increase after endotoxin infusion in healthy volunteers. Eur Respir J 21: 594‐599, 2003. DOI: 10.1183/09031936.03.00008603.
 494.Spinale FG. Assessment of cardiac function‐basic principles and approaches. Compr Physiol 5: 1911‐1946, 2015. DOI: 10.1002/cphy.c140054.
 495.Spratt JA, Tyson GS, Glower DD, Davis JW, Muhlbaier LH, Olsen CO, Rankin JS. The end‐systolic pressure‐volume relationship in conscious dogs. Circulation 75: 1295‐1309, 1987. DOI: 10.1161/01.CIR.75.6.1295.
 496.Starling MR. Left ventricular‐arterial coupling relations in the normal human heart. Am Heart J 125: 1659‐1666, 1993. DOI: 10.1016/0002‐8703(93)90756‐Y.
 497.Stein PK, Kleiger RE. Insights from the study of heart rate variability. Annu Rev Med 50: 249‐261, 1999. DOI: 10.1146/annurev.med.50.1.249.
 498.Stein PK, Nelson P, Rottman JN, Howard D, Ward SM, Kleiger RE, Senior RM. Heart rate variability reflects severity of COPD in PiZ α1‐antitrypsin deficiency. Chest 113: 327‐333, 1998. DOI: 10.1378/chest.113.2.327.
 499.Stephan F, Novara A, Tournier B, Maillet JM, London GM, Safar ME, Fagon JY. Determination of total effective vascular compliance in patients with sepsis syndrome. Am J Respir Crit Care Med 157: 50‐56, 1998. DOI: 10.1164/ajrccm.157.1.9704077.
 500.Steppan J, Hofer S, Funke B, Brenner T, Henrich M, Martin E, Weitz J, Hofmann U, Weigand MA. Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalix. J Surg Res 165: 136‐141, 2011. DOI: 10.1016/j.jss.2009.04.034.
 501.Stewart TE, Valenza F, Ribeiro SP, Wener AD, Volgyesi G, Mullen JB, Slutsky AS. Increased nitric oxide in exhaled gas as an early marker of lung inflammation in a model of sepsis. Am J Respir Crit Care Med 151: 713‐718, 1995. DOI: 10.1164/ajrccm.151.3.7533602.
 502.Stoclet JC, Martínez MC, Ohlmann P, Chasserot S, Schott C, Kleschyov AL, Schneider F, Andriantsitohaina R. Induction of nitric oxide synthase and dual effects of nitric oxide and cyclooxygenase products in regulation of arterial contraction in human septic shock. Circulation 100: 107‐112, 1999. DOI: 10.1161/01.CIR.100.2.107.
 503.Stohlawetz P, Folman CC, von dem Borne AE, Pernerstorfer T, Eichler HG, Panzer S, Jilma B. Effects of endotoxemia on thrombopoiesis in men. Thromb Haemost 81: 613‐617, 1999. DOI: 10.1055/s‐0037‐1614534.
 504.Stohlawetz PJ, Folman CC, von dem Borne AEGK, Pernerstorfer T, Hollenstein U, Knechtelsdorfer M, Eichler H‐G, Jilma B. Effects of anticoagulation on thrombopoietin release during endotoxemia. J Lab Clin Med 137: 64‐69, 2001. DOI: 10.1067/mlc.2001.111468.
 505.Strand ØA, Leone A, Giercksky K‐E, Kirkebøen KA. Nitric oxide indices in human septic shock. Crit Care Med 28: 2779‐2785, 2000. DOI: 10.1097/00003246‐200008000‐00017.
 506.Suffredini AF, Fromm RE, Parker MM, Brenner M, Kovacs JA, Wesley RA, Parrillo JE, editors. The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med 321: 280‐287, 1989. DOI: 10.1056/NEJM198908033210503.
 507.Suga H. Ventricular energetics. Physiol Rev 70: 247‐277, 1990. DOI: 10.1152/physrev.1990.70.2.247.
 508.Suga H, Sagawa K. Instantaneous pressure‐volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res 35: 117‐126, 1974. DOI: 10.1161/01.RES.35.1.117.
 509.Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol Circ Physiol 245: H773‐H780, 1983. DOI: 10.1152/ajpheart.1983.245.5.H773.
 510.Sunagawa K, Maughan WL, Sagawa K. Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res 56: 586‐595, 1985. DOI: 10.1161/01.RES.56.4.586.
 511.Suzuki Y, Nakajima T, Shiga T, Maeda N. Influence of 2,3‐diphosphoglycerate on the deformability of human erythrocytes. Biochim Biophys Acta Biomembr 1029: 85‐90, 1990. DOI: 10.1016/0005‐2736(90)90439‐U.
 512.Szabó C, Mitchell JA, Thiemermann C, Vane JR. Nitric oxide‐mediated hyporeactivity to noradrenaline precedes the induction of nitric oxide synthase in endotoxin shock. Br J Pharmacol 108: 786‐792, 1993. DOI: 10.1111/j.1476‐5381.1993.tb12879.x.
 513.Szakmany T, Hauser B, Radermacher P. N‐acetylcysteine for sepsis and systemic inflammatory response in adults. Cochrane Database Syst Rev: CD006616, 2012. DOI: 10.1002/14651858.CD006616.pub2.
 514.Taccone FS, Su F, Pierrakos C, He X, James S, Dewitte O, Vincent JL, De Backer D. Cerebral microcirculation is impaired during sepsis: An experimental study. Crit Care 14: R140, 2010. DOI: 10.1186/cc9205.
 515.Takeuchi M, Igarashi Y, Tomimoto S, Odake M, Hayashi T, Tsukamoto T, Hata K, Takaoka H, Fukuzaki H. Single‐beat estimation of the slope of the end‐systolic pressure‐volume relation in the human left ventricle. Circulation 83: 202‐212, 1991. DOI: 10.1161/01.CIR.83.1.202.
 516.Tarpey SB, Bennett T, Randall MD, Gardiner SM. Differential effects of endotoxaemia on presser and vasoconstrictor actions of angiotensin II and arginine vasopressin in conscious rats. Br J Pharmacol 123: 1367‐1374, 1998. DOI: 10.1038/sj.bjp.0701751.
 517.ten Brinke EA, Burkhoff D, Klautz RJ, Tschope C, Schalij MJ, Bax JJ, van der Wall EE, Dion RA, Steendijk P. Single‐beat estimation of the left ventricular end‐diastolic pressure‐volume relationship in patients with heart failure. Heart 96: 213‐219, 2010. DOI: 10.1136/hrt.2009.176248.
 518.ten Oever J, Mandon J, Netea MG, van Deuren M, Harren FJM, Cristescu SM, Pickkers P. Pulmonary infection, and not systemic inflammation, accounts for increased concentrations of exhaled nitric oxide in patients with septic shock. J Breath Res 7: 036003, 2013. DOI: 10.1088/1752‐7155/7/3/036003.
 519.Thomas L. Germs. N Engl J Med 287: 553‐555, 1972. DOI: 10.1056/NEJM197209142871109.
 520.Thorin‐Trescases N, Hamilton CA, Reid JL, McPherson KL, Jardine E, Berg G, Bohr D, Dominiczak AF. Inducible L‐arginine/nitric oxide pathway in human internal mammary artery and saphenous vein. Am J Physiol Circ Physiol 268: H1122‐H1132, 1995. DOI: 10.1152/ajpheart.1995.268.3.H1122.
 521.Tiao G, Rafferty J, Ogle C, Fischer JE, Hasselgren PO. Detrimental effect of nitric oxide synthase inhibition during endotoxemia may be caused by high levels of tumor necrosis factor and interleukin‐6. Surgery 116: 332‐337; discussion 337‐338, 1994.
 522.Titheradge MA. Nitric oxide in septic shock. Biochim Biophys Acta Bioenerg 1411: 437‐455, 1999. DOI: 10.1016/S0005‐2728(99)00031‐6.
 523.Tohyama T, Saku K, Kawada T, Kishi T, Yoshida K, Nishikawa T, Mannoji H, Kamada K, Sunagawa K, Tsutsui H. Impact of lipopolysaccharide‐induced acute inflammation on baroreflex‐controlled sympathetic arterial pressure regulation. PLoS One 13: e0190830, 2018. DOI: 10.1371/journal.pone.0190830.
 524.Top APC, Ince C, de Meij N, van Dijk M, Tibboel D. Persistent low microcirculatory vessel density in nonsurvivors of sepsis in pediatric intensive care. Crit Care Med 39: 8‐13, 2011. DOI: 10.1097/CCM.0b013e3181fb7994.
 525.Torres Filho I. Hemorrhagic shock and the microvasculature. Compr Physiol 8: 61‐101, 2017. DOI: 10.1002/cphy.c170006.
 526.Torres Filho IP, Torres LN, Salgado C, Dubick MA. Plasma syndecan‐1 and heparan sulfate correlate with microvascular glycocalyx degradation in hemorrhaged rats after different resuscitation fluids. Am J Physiol Circ Physiol 310: H1468‐H1478, 2016. DOI: 10.1152/ajpheart.00006.2016.
 527.Tracey KJ, Fong Y, Hesse DG, Manogue KR, Lee AT, Kuo GC, Lowry SF, Cerami A. Anti‐cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330: 662‐664, 1987. DOI: 10.1038/330662a0.
 528.Triulzi M, Gillam LD, Gentile F, Newell JB, Weyman AE. Normal adult cross‐sectional echocardiographic values: Linear dimensions and chamber areas. Echocardiography 1: 403‐426, 1984. DOI: 10.1111/j.1540‐8175.1984.tb00173.x.
 529.Truwit JD, Bernard GR, Steingrub J, Matthay MA, Liu KD, Albertson TE, Taylor TB. Rosuvastatin for sepsis‐associated acute respiratory distress syndrome. N Engl J Med 370: 2191‐2200, 2014. DOI: 10.1056/NEJMoa1401520.
 530.Trzeciak S, Glaspey LJ, Dellinger RP, Durflinger P, Anderson K, Dezfulian C, Roberts BW, Chansky ME, Parrillo JE, Hollenberg SM. Randomized controlled trial of inhaled nitric oxide for the treatment of microcirculatory dysfunction in patients with sepsis. Crit Care Med 42: 2482‐2492, 2014. DOI: 10.1097/CCM.0000000000000549.
 531.Trzeciak S, McCoy JV, Dellinger RP, Arnold RC, Rizzuto M, Abate NL, Shapiro NI, Parrillo JE, Hollenberg SM. Early increases in microcirculatory perfusion during protocol‐directed resuscitation are associated with reduced multi‐organ failure at 24 h in patients with sepsis. Intensive Care Med 34: 2210‐2217, 2008. DOI: 10.1007/s00134‐008‐1193‐6.
 532.Tschöpe C, Paulus WJ. Doppler echocardiography yields dubious estimates of left ventricular diastolic pressures. Circulation 120: 810‐820, 2009. DOI: 10.1161/CIRCULATIONAHA.109.869628.
 533.Tsuneyoshi I, Kanmura Y, Yoshimura N. Nitric oxide as a mediator of reduced arterial responsiveness in septic patients. Crit Care Med 24: 1083‐1086, 1996. DOI: 10.1097/00003246‐199606000‐00033.
 534.Tyml K, Wang X, Lidington D, Ouellette Y. Lipopolysaccharide reduces intercellular coupling in vitro and arteriolar conducted response in vivo. Am J Physiol Circ Physiol 281: H1397‐H1406, 2017. DOI: 10.1152/ajpheart.2001.281.3.h1397.
 535.Uemura K, Kawada T, Sunagawa K, Sugimachi M. Peak systolic mitral annulus velocity reflects the status of ventricular‐arterial coupling—theoretical and experimental analyses. J Am Soc Echocardiogr 24: 582‐591, 2011. DOI: 10.1016/j.echo.2011.01.010.
 536.Uemura K, Sugimachi M, Kawada T, Kamiya A, Jin Y, Kashihara K, Sunagawa K. A novel framework of circulatory equilibrium. Am J Physiol Circ Physiol 286: H2376‐H2385, 2004. DOI: 10.1152/ajpheart.00654.2003.
 537.Ujhelyi MR, Miller AW, Raibon S, Corley J, Robinson VJB, Sims JJ, Tonnessen T, Burke G, Ilebekk A, Rutlen DL. Endotoxemia alters splanchnic capacitance. Shock 14: 68‐72, 2000. DOI: 10.1097/00024382‐200014010‐00012.
 538.Ullian ME. The role of corticosteroids in the regulation of vascular tone. Cardiovasc Res 41: 55‐64, 1999. DOI: 10.1016/S0008‐6363(98)00230‐2.
 539.Ullrich R, Bloch KD, Ichinose F, Steudel W, Zapol WM. Hypoxic pulmonary blood flow redistribution and arterial oxygenation in endotoxin‐challenged NOS2‐deficient mice. J Clin Invest 104: 1421‐1429, 1999. DOI: 10.1172/JCI6590.
 540.Umans JG, Wylam ME, Samsel RW, Edwards J, Schumacker PT. Effects of endotoxin in vivo on endothelial and smooth‐muscle function in rabbit and rat aorta. Am Rev Respir Dis 148: 1638‐1645, 1993. DOI: 10.1164/ajrccm/148.6_Pt_1.1638.
 541.Vallance P, Collier J, Moncada S. Effects of endothelium‐derived nitric oxide on peripheral arteriolar tone in man. Lancet 334: 997‐1000, 1989. DOI: 10.1016/S0140‐6736(89)91013‐1.
 542.van Eijk LTGJ, Pickkers P, Smits P, van den Broek W, Bouw MPWJM, van der Hoeven JG. Microvascular permeability during experimental human endotoxemia: An open intervention study. Crit Care 9: R157‐R164, 2005. DOI: 10.1186/cc2533.
 543.van Grondelle A, Ditchey RV, Groves BM, Wagner WW, Reeves JT. Thermodilution method overestimates low cardiac output in humans. Am J Physiol Circ Physiol 245: H690‐H692, 1983. DOI: 10.1152/ajpheart.1983.245.4.H690.
 544.van Haaren PMA, VanBavel E, Vink H, Spaan JAE. Localization of the permeability barrier to solutes in isolated arteries by confocal microscopy. Am J Physiol Circ Physiol 285: H2848‐H2856, 2003. DOI: 10.1152/ajpheart.00117.2003.
 545.Vayssettes‐Courchay C, Bouysset F, Verbeuren TJ. Sympathetic activation and tachycardia in lipopolysaccharide treated rats are temporally correlated and unrelated to the baroreflex. Auton Neurosci 120: 35‐45, 2005. DOI: 10.1016/j.autneu.2005.03.002.
 546.Venkata C, Kashyap R, Farmer JC, Afessa B. Thrombocytopenia in adult patients with sepsis: Incidence, risk factors, and its association with clinical outcome. J Intensive Care 1: 9, 2013. DOI: 10.1186/2052‐0492‐1‐9.
 547.Venkatesh B, Finfer S, Cohen J, Rajbhandari D, Arabi Y, Bellomo R, Billot L, Correa M, Glass P, Harward M, Joyce C, Li Q, McArthur C, Perner A, Rhodes A, Thompson K, Webb S, Myburgh J. Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med 378: 797‐808, 2018. DOI: 10.1056/NEJMoa1705835.
 548.Verdant CL, De Backer D, Bruhn A, Clausi CM, Su F, Wang Z, Rodriguez H, Pries AR, Vincent JL. Evaluation of sublingual and gut mucosal microcirculation in sepsis: A quantitative analysis. Crit Care Med 37: 2875‐2881, 2009. DOI: 10.1097/CCM.0b013e3181b029c1.
 549.Vieillard Baron A, Schmitt JM, Beauchet A, Augarde R, Prin S, Page B, Jardin F. Early preload adaptation in septic shock? A transesophageal echocardiographic study. Anesthesiology 94: 400‐406, 2001. DOI: 10.1097/00000542‐200103000‐00007.
 550.Vieillard‐Baron A. Septic cardiomyopathy. Ann Intensive Care 1: 6, 2011. DOI: 10.1186/2110‐5820‐1‐6.
 551.Vieillard‐Baron A, Caille V, Charron C, Belliard G, Page B, Jardin F. Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med 36: 1701‐1706, 2008. DOI: 10.1097/CCM.0b013e318174db05.
 552.Vieillard‐Baron A, Prin S, Chergui K, Dubourg O, Jardin F. Hemodynamic instability in sepsis. Am J Respir Crit Care Med 168: 1270‐1276, 2003. DOI: 10.1164/rccm.200306‐816CC.
 553.Villalpando S, Gopal J, Balasubramanyam A, Bandi VP, Guntupalli K, Jahoor F. In vivo arginine production and intravascular nitric oxide synthesis in hypotensive sepsis. Am J Clin Nutr 84: 197‐203, 2006. DOI: 10.1093/ajcn/84.1.197.
 554.Villazón SA, Sierra UA, López SF, Rolando MA. Hemodynamic patterns in shock and critically ill patients. Crit Care Med 3: 215‐221, 1975. DOI: 10.1097/00003246‐197511000‐00002.
 555.Vincent J‐L, Abraham E. The last 100 years of sepsis. Am J Respir Crit Care Med 173: 256‐263, 2006. DOI: 10.1164/rccm.200510‐1604OE.
 556.Vincent JL, Opal SM, Marshall JC, Tracey KJ. Sepsis definitions: Time for change. Lancet 381: 774‐775, 2013. DOI: 10.1016/S0140‐6736(12)61815‐7.
 557.Vincent J‐L, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, Moreno R, Carlet J, Le Gall J‐R, Payen D. Sepsis in European intensive care units: Results of the SOAP study. Crit Care Med 34: 344‐353, 2006. DOI: 10.1097/01.CCM.0000194725.48928.3A.
 558.Vincent J‐L, Zhang H, Szabo C, Preiser J‐C. Effects of nitric oxide in septic shock. Am J Respir Crit Care Med 161: 1781‐1785, 2000. DOI: 10.1164/ajrccm.161.6.9812004.
 559.Vink H, Duling BR. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res 79: 581‐589, 1996. DOI: 10.1161/01.RES.79.3.581.
 560.Vlahu CA, Lemkes BA, Struijk DG, Koopman MG, Krediet RT, Vink H. Damage of the endothelial glycocalyx in dialysis patients. J Am Soc Nephrol 23: 1900‐1908, 2012. DOI: 10.1681/ASN.2011121181.
 561.Voorhees AP, Han H‐C. Biomechanics of cardiac function. Compr Physiol 5: 1623‐1644, 2015. DOI: 10.1002/cphy.c140070.
 562.Waage A, Halstensen A, Espevik T. Association between tumour necrosis factor in serum and fatal outcome in patients with meningococcal disease. Lancet 329: 355‐357, 1987. DOI: 10.1016/S0140‐6736(87)91728‐4.
 563.Wagner DA, Schultz DS, Deen WM, Young VR, Tannenbaum SR. Metabolic fate of an oral dose of 15N‐labeled nitrate in humans: Effect of diet supplementation with ascorbic acid. Cancer Res 43: 1921‐1925, 1983.
 564.Waisbren BA. Gram‐negative shock and endotoxin shock. Am J Med 36: 819‐824, 1964. DOI: 10.1016/0002‐9343(64)90111‐1.
 565.Walley KR. Heterogeneity of oxygen delivery impairs oxygen extraction by peripheral tissues: Theory. J Appl Physiol 81: 885‐894, 1996. DOI: 10.1152/jappl.1996.81.2.885.
 566.Wang L, Mehta S, Ahmed Y, Wallace S, Pape MC, Gill SE. Differential mechanisms of septic human pulmonary microvascular endothelial cell barrier dysfunction depending on the presence of neutrophils. Front Immunol 9: Article 1743, 2018. DOI: 10.3389/fimmu.2018.01743.
 567.Wang P, Ba ZF, Chaudry IH. Endothelium‐dependent relaxation is depressed at the macro‐ and microcirculatory levels during sepsis. Am J Physiol Integr Comp Physiol 269: R988‐R994, 1995. DOI: 10.1152/ajpregu.1995.269.5.r988.
 568.Warrillow S, Egi M, Bellomo R. Randomized, double‐blind, placebo‐controlled crossover pilot study of a potassium channel blocker in patients with septic shock. Crit Care Med 34: 980‐985, 2006. DOI: 10.1097/01.CCM.0000206114.19707.7C.
 569.Watson D, Grover R, Anzueto A, Lorente J, Smithies M, Bellomo R, Guntupalli K, Grossman S, Donaldson J, Le Gall JR. Cardiovascular effects of the nitric oxide synthase inhibitor N G‐methyl‐L‐arginine hydrochloride (546C88) in patients with septic shock: Results of a randomized, double‐blind, placebo‐controlled multicenter study (study no. 144‐002). Crit Care Med 32: 13‐20, 2004. DOI: 10.1097/01.CCM.0000104209.07273.FC.
 570.Weil MH. The shock syndrome associated with bacteremia due to gram‐negative bacilli. Arch Intern Med 101: 184‐193, 1958. DOI: 10.1001/archinte.1958.00260140016004.
 571.Weil MH, Maclean LD, Spink WW, Visscher MB. Studies on the circulatory changes in the dog produced by endotoxin from gram‐negative microorganisms. J Clin Invest: 35, 1191‐1198, 1956. DOI: 10.1172/jci103373.
 572.Weil MH, Nishjima H, Nishijima H. Cardiac output in bacterial shock. Am J Med 64: 920‐922, 1978. DOI: 10.1016/0002‐9343(78)90444‐8.
 573.Weiss JL, Frederiksen JW, Weisfeldt ML. Hemodynamic determinants of the time‐course of fall in canine left ventricular pressure. J Clin Invest 58: 751‐760, 1976. DOI: 10.1172/JCI108522.
 574.Weng L, Liu Y, Du B, Zhou J, Guo X, Peng J, Hu X, Zhang S, Fang Q, Zhu W. The prognostic value of left ventricular systolic function measured by tissue Doppler imaging in septic shock. Crit Care 16: R71, 2012. DOI: 10.1186/cc11328.
 575.Whitworth PW, Cryer HM, Garrison RN, Baumgarten TE, Harris PD. Hypoperfusion of the intestinal microcirculation without decreased cardiac output during live Escherichia coli sepsis in rats. Circ Shock 27: 111‐122, 1989.
 576.Wijnberge M, Sindhunata DP, Pinsky MR, Vlaar AP, Ouweneel E, Jansen JR, Veelo DP, Geerts BF. Estimating mean circulatory filling pressure in clinical practice: A systematic review comparing three bedside methods in the critically ill. Ann Intensive Care 8: 73, 2018. DOI: 10.1186/s13613‐018‐0418‐2.
 577.Wiles JB, Cerra FB, Siegel JH, Border JR. The systemic septic response: Does the organism matter? Crit Care Med 8: 55‐60, 1980. DOI: 10.1097/00003246‐198002000‐00001.
 578.William Tank A, Lee Wong D. Peripheral and central effects of circulating catecholamines. Compr Physiol 5: 1‐15, 2014. DOI: 10.1002/cphy.c140007.
 579.Wilson RF, Chiscano AD, Quadros E, Tarver M. Some observations on 132 patients with septic shock. Anesth Analg 46: 751‐763, 1967. DOI: 10.1213/00000539‐196711000‐00013.
 580.Wilson RF, Sibbald WJ, Jaanimagi JL. Hemodynamic effects of dopamine in critically ill septic patients. J Surg Res 20: 163‐172, 1976. DOI: 10.1016/0022‐4804(76)90135‐9.
 581.Winslow EJ, Loeb HS, Rahimtoola SH, Kamath S, Gunnar RM. Hemodynamic studies and results of therapy in 50 patients with bacteremic shock. Am J Med 54: 421‐432, 1973. DOI: 10.1016/0002‐9343(73)90038‐7.
 582.Wolff SM. Biological effects of bacterial endotoxins in man. J Infect Dis 128 (Suppl): 259‐264, 1973. DOI: 10.1093/infdis/128.supplement_1.s259.
 583.Wong HR, Carcillo JA, Burckart G, Shah N, Janosky JE. Increased serum nitrite and nitrate concentrations in children with the sepsis syndrome. Crit Care Med 23: 835‐842, 1995. DOI: 10.1097/00003246‐199505000‐00010.
 584.Wyler F, Forsyth RP, Nies AS, Neutze JM, Melmon KL. Endotoxin‐induced regional circulatory changes in the unanesthetized monkey. Circ Res 24: 777‐786, 1969. DOI: 10.1161/01.RES.24.6.777.
 585.Yoseph BP, Klingensmith NJ, Liang Z, Breed ER, Burd EM, Mittal R, Dominguez JA, Petrie B, Ford ML, Coopersmith CM. Mechanisms of intestinal barrier dysfunction in sepsis. Shock 46: 52‐59, 2016. DOI: 10.1097/SHK.0000000000000565.
 586.Young JD, Cameron EM. Dynamics of skin blood flow in human sepsis. Intensive Care Med 21: 669‐674, 1995. DOI: 10.1007/BF01711546.
 587.Yu W‐K, McNeil JB, Wickersham NE, Shaver CM, Bastarache JA, Ware LB. Vascular endothelial cadherin shedding is more severe in sepsis patients with severe acute kidney injury. Crit Care 23: 18, 2019. DOI: 10.1186/s13054‐019‐2315‐y.
 588.Zaky A, Deem S, Bendjelid K, Treggiari MM. Characterization of cardiac dysfunction in sepsis. Shock 41: 12‐24, 2014. DOI: 10.1097/SHK.0000000000000065.
 589.Zaky A, Gill EA, Lin CP, Paul CP, Bendjelid K, Treggiari MM. Characteristics of sepsis‐induced cardiac dysfunction using speckle‐tracking echocardiography: A feasibility study. Anaesth Intensive Care 44: 65‐76, 2016. DOI: 10.1177/0310057X1604400111.
 590.Zarbock A, Polanowska‐Grabowska RK, Ley K. Platelet‐neutrophil‐interactions: Linking hemostasis and inflammation. Blood Rev 21: 99‐111, 2007. DOI: 10.1016/j.blre.2006.06.001.
 591.Zeng Y, Adamson RH, Curry F‐RE, Tarbell JM. Sphingosine‐1‐phosphate protects endothelial glycocalyx by inhibiting syndecan‐1 shedding. Am J Physiol Circ Physiol 306: H363‐H372, 2014. DOI: 10.1152/ajpheart.00687.2013.
 592.Zhang H, Sun GY. LPS induces permeability injury in lung microvascular endothelium via AT 1 receptor. Arch Biochem Biophys 441: 75‐83, 2005. DOI: 10.1016/j.abb.2005.06.022.
 593.Zhang H‐M, Wang X‐T, Zhang L‐N, He W, Zhang Q, Liu D‐W. Left Ventricular longitudinal systolic function in septic shock patients with normal ejection fraction: A case‐control study. Chin Med J 130: 1169‐1174, 2017. DOI: 10.4103/0366‐6999.205856.
 594.Zhang R‐Y, Liu Y‐Y, Li L, Cui W, Zhao K‐J, Huang W‐C, Gu X‐W, Liu W, Wu J, Min D, Mao E‐Q, Tang Y‐Q. Increased levels of soluble vascular endothelial Cadherin are associated with poor outcome in severe sepsis. J Int Med Res 38: 1497‐1506, 2010. DOI: 10.1177/147323001003800433.
 595.Zhou ZZ, Wurster RD, Qi M, Jones SB. Sympathoadrenal activation in sinoaortic‐denervated rats following endotoxin. Am J Physiol 260: R739‐R746, 1991. DOI: 10.1152/ajpregu.1991.260.4.R739.
 596.Zoller RP, Mark AL, Abboud FM, Schmid PG, Heistad DD. The role of low pressure baroreceptors in reflex vasoconstrictor responses in man. J Clin Invest 51: 2967‐2972, 1972. DOI: 10.1172/JCI107121.
 597.Zorn‐Pauly K, Pelzmann B, Lang P, Machler H, Schmidt H, Ebelt H, Werdan K, Koidl B, Muller‐Werdan U. Endotoxin impairs the human pacemaker current If. Shock 28: 655‐661, 2007. DOI: 10.1097/shk.0b013e31812386bf.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Matteo Pecchiari, Konstantinos Pontikis, Emmanouil Alevrakis, Ioannis Vasileiadis, Maria Kompoti, Antonia Koutsoukou. Cardiovascular Responses During Sepsis. Compr Physiol 2021, 11: 1605-1652. doi: 10.1002/cphy.c190044