Comprehensive Physiology Wiley Online Library

Microbiota and Metabolites as Factors Influencing Blood Pressure Regulation

Full Article on Wiley Online Library



Abstract

The study of microbes has rapidly expanded in recent years due to a surge in our understanding that humans host a plethora of commensal microbes, which reside in their bodies and depending upon their composition, contribute to either normal physiology or pathophysiology. This article provides a general foundation for learning about host‐commensal microbial interactions as an emerging area of research. The article is divided into two sections. The first section is dedicated to introducing commensal microbiota and its known effects on the host. The second section is on metabolites, which are biochemicals that the host and the microbes use for bi‐directional communication with each other. Together, the sections review what is known about how microbes interact with the host to impact cardiovascular physiology, especially blood pressure regulation. © 2021 American Physiological Society. Compr Physiol 11:1731‐1757, 2021.

Figure 1. Figure 1. Methods to evaluate the contribution of gut microbiota to host physiology. This figure illustrates the methods that are commonly used to investigate gut microbiota. (A) Antibiotics treatment to eliminate bacterial population. It is useful to simply demonstrate the involvement of gut microbiota in the phenotype of interest. However, this method generates a model with depletion of uncertain bacterial population, which makes it hard to interpret the exact role of bacteria in the observed phenotype. Reused, with permission, from Adnan S, et al., 2017 3, Mell B, et al., 2015 194, and Vanderpool C, et al., 2008 297. (B) Microbiota transplantation from donors to recipients. This method allows to investigate the role of gut microbiota as whole in the recipients. The observed phenotype is, at least partially, attributable to the gut microbiota of the donors. The lower efficiency in colonization of anaerobic bacteria in the recipients is a limitation. (C) Cecectomy is an invasive surgery to remove cecum from the host. This method efficiently removes all the bacteria in the cecum where active fermentation occurs. Therefore, the removal of cecectomy affects not only bacterial composition but also major fermentation‐derived metabolites. (D) Germ‐free (GF) rat is a powerful tool to investigate the role of gut microbiota. Monocolonization of bacteria enables the scientist to investigate the role of single bacterial species in the host. One drawback of GF is the incomplete immune system. Therefore, the observed phenotype of bacterial colonization may be relevant to how immature immunity develops and responds to the colonized bacteria.


Figure 1. Methods to evaluate the contribution of gut microbiota to host physiology. This figure illustrates the methods that are commonly used to investigate gut microbiota. (A) Antibiotics treatment to eliminate bacterial population. It is useful to simply demonstrate the involvement of gut microbiota in the phenotype of interest. However, this method generates a model with depletion of uncertain bacterial population, which makes it hard to interpret the exact role of bacteria in the observed phenotype. Reused, with permission, from Adnan S, et al., 2017 3, Mell B, et al., 2015 194, and Vanderpool C, et al., 2008 297. (B) Microbiota transplantation from donors to recipients. This method allows to investigate the role of gut microbiota as whole in the recipients. The observed phenotype is, at least partially, attributable to the gut microbiota of the donors. The lower efficiency in colonization of anaerobic bacteria in the recipients is a limitation. (C) Cecectomy is an invasive surgery to remove cecum from the host. This method efficiently removes all the bacteria in the cecum where active fermentation occurs. Therefore, the removal of cecectomy affects not only bacterial composition but also major fermentation‐derived metabolites. (D) Germ‐free (GF) rat is a powerful tool to investigate the role of gut microbiota. Monocolonization of bacteria enables the scientist to investigate the role of single bacterial species in the host. One drawback of GF is the incomplete immune system. Therefore, the observed phenotype of bacterial colonization may be relevant to how immature immunity develops and responds to the colonized bacteria.
References
 1.Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med 6: 237ra265, 2014.
 2.Adijiang A, Higuchi Y, Nishijima F, Shimizu H, Niwa T. Indoxyl sulfate, a uremic toxin, promotes cell senescence in aorta of hypertensive rats. Biochem Biophys Res Commun 399: 637‐641, 2010.
 3.Adnan S, Nelson JW, Ajami NJ, Venna VR, Petrosino JF, Bryan RM, Durgan DJ. Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics 49: 96‐104, 2017.
 4.Akira K, Imachi M, Hashimoto T. Investigations into biochemical changes of genetic hypertensive rats using 1H nuclear magnetic resonance‐based metabonomics. Hypertens Res 28: 425‐430, 2005.
 5.Akira K, Masu S, Imachi M, Mitome H, Hashimoto T. A metabonomic study of biochemical changes characteristic of genetically hypertensive rats based on (1)H NMR spectroscopic urinalysis. Hypertens Res 35: 404‐412, 2012.
 6.Alaei‐Shahmiri F, Soares MJ, Zhao Y, Sherriff J. The impact of thiamine supplementation on blood pressure, serum lipids and C‐reactive protein in individuals with hyperglycemia: A randomised, double‐blind cross‐over trial. Diabetes Metab Syndr 9: 213‐217, 2015.
 7.Alagacone S, Verga E, Verdolini R, Saifullah SM. The association between vitamin D deficiency and the risk of resistant hypertension. Clin Exp Hypertens 42: 177‐180, 2020.
 8.Al‐Asmakh M, Zadjali F. Use of germ‐free animal models in microbiota‐related research. J Microbiol Biotechnol 25: 1583‐1588, 2015.
 9.Amaretti A, Bernardi T, Tamburini E, Zanoni S, Lomma M, Matteuzzi D, Rossi M. Kinetics and metabolism of Bifidobacterium adolescentis MB 239 growing on glucose, galactose, lactose, and galactooligosaccharides. Appl Environ Microbiol 73: 3637‐3644, 2007.
 10.Andrade‐Oliveira V, Amano MT, Correa‐Costa M, Castoldi A, Felizardo RJ, de Almeida DC, Bassi EJ, Moraes‐Vieira PM, Hiyane MI, Rodas AC, Peron JP, Aguiar CF, Reis MA, Ribeiro WR, Valduga CJ, Curi R, Vinolo MA, Ferreira CM, Câmara NO. Gut bacteria products prevent AKI induced by ischemia‐reperfusion. J Am Soc Nephrol 26: 1877‐1888, 2015.
 11.Anhê FF, Pilon G, Roy D, Desjardins Y, Levy E, Marette A. Triggering Akkermansia with dietary polyphenols: A new weapon to combat the metabolic syndrome? Gut Microbes 7: 146‐153, 2016.
 12.Arboleya S, Watkins C, Stanton C, Ross RP. Gut bifidobacteria populations in human health and aging. Front Microbiol 7: 1204, 2016.
 13.Arnoldussen IAC, Wiesmann M, Pelgrim CE, Wielemaker EM, van Duyvenvoorde W, Amaral‐Santos PL, Verschuren L, Keijser BJF, Heerschap A, Kleemann R, Wielinga PY, Kiliaan AJ. Butyrate restores HFD‐induced adaptations in brain function and metabolism in mid‐adult obese mice. Int J Obes (Lond) 41: 935‐944, 2017.
 14.Aronov PA, Luo FJ, Plummer NS, Quan Z, Holmes S, Hostetter TH, Meyer TW. Colonic contribution to uremic solutes. J Am Soc Nephrol 22: 1769‐1776, 2011.
 15.Arsköld E, Lohmeier‐Vogel E, Cao R, Roos S, Rådström P, van Niel EW. Phosphoketolase pathway dominates in Lactobacillus reuteri ATCC 55730 containing dual pathways for glycolysis. J Bacteriol 190: 206‐212, 2008.
 16.Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz‐Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Doré J, Antolín M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama‐Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Mérieux A, Melo Minardi R, M'rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, Bork P, Consortium M. Enterotypes of the human gut microbiome. Nature 473: 174‐180, 2011.
 17.Aryal S, Alimadadi A, Manandhar I, Joe B, Cheng X. Machine learning strategy for gut microbiome‐based diagnostic screening of cardiovascular disease. Hypertension 76: 1555‐1562, 2020.
 18.Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K, Kim S, Fritz JV, Wilmes P, Ueha S, Matsushima K, Ohno H, Olle B, Sakaguchi S, Taniguchi T, Morita H, Hattori M, Honda K. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500: 232‐236, 2013.
 19.Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hori S, Ivanov II, Umesaki Y, Itoh K, Honda K. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331: 337‐341, 2011.
 20.Bäckhed F, Fraser CM, Ringel Y, Sanders ME, Sartor RB, Sherman PM, Versalovic J, Young V, Finlay BB. Defining a healthy human gut microbiome: Current concepts, future directions, and clinical applications. Cell Host Microbe 12: 611‐622, 2012.
 21.Bagby SP, McDonald WJ, Mass RD. Serial renin‐angiotensin studies in spontaneously hypertensive and Wistar‐Kyoto normotensive rats. Transition from normal‐ to high‐renin status during the established phase of spontaneous hypertension. Hypertension 1: 347‐354, 1979.
 22.Baker WL, Kluger J, White CM, Dale KM, Silver BB, Coleman CI. Effect of magnesium L‐lactate on blood pressure in patients with an implantable cardioverter defibrillator. Ann Pharmacother 43: 569‐576, 2009.
 23.Banek CT, Gauthier MM, Van Helden DA, Fink GD, Osborn JW. Renal inflammation in DOCA‐salt hypertension. Hypertension 73: 1079‐1086, 2019.
 24.Banek CT, Knuepfer MM, Foss JD, Fiege JK, Asirvatham‐Jeyaraj N, Van Helden D, Shimizu Y, Osborn JW. Resting afferent renal nerve discharge and renal inflammation: Elucidating the role of afferent and efferent renal nerves in deoxycorticosterone acetate salt hypertension. Hypertension 68: 1415‐1423, 2016.
 25.Bartley A, Yang T, Arocha R, Malphurs WL, Larkin R, Magee KL, Vickroy TW, Zubcevic J. Increased abundance of lactobacillales in the colon of beta‐adrenergic receptor knock out mouse is associated with increased gut bacterial production of short chain fatty acids and reduced IL17 expression in circulating CD4. Front Physiol 9: 1593, 2018.
 26.Bartolomaeus H, Balogh A, Yakoub M, Homann S, Markó L, Höges S, Tsvetkov D, Krannich A, Wundersitz S, Avery EG, Haase N, Kräker K, Hering L, Maase M, Kusche‐Vihrog K, Grandoch M, Fielitz J, Kempa S, Gollasch M, Zhumadilov Z, Kozhakhmetov S, Kushugulova A, Eckardt KU, Dechend R, Rump LC, Forslund SK, Müller DN, Stegbauer J, Wilck N. Short‐chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation 139: 1407‐1421, 2019.
 27.Bastiaansen JA, Cheng T, Lei H, Gruetter R, Comment A. Direct noninvasive estimation of myocardial tricarboxylic acid cycle flux in vivo using hyperpolarized 13C magnetic resonance. J Mol Cell Cardiol 87: 129‐137, 2015.
 28.Basting T, Lazartigues E. DOCA‐Salt hypertension: An update. Curr Hypertens Rep 19: 32, 2017.
 29.Baughn AD, Malamy MH. The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 427: 441‐444, 2004.
 30.Bays HE, Rader DJ. Does nicotinic acid (niacin) lower blood pressure? Int J Clin Pract 63: 151‐159, 2009.
 31.Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, Consolandi C, Quercia S, Scurti M, Monti D, Capri M, Brigidi P, Candela M. Gut microbiota and extreme longevity. Curr Biol 26: 1480‐1485, 2016.
 32.Biancardi VC, Stern JE. Compromised blood‐brain barrier permeability: Novel mechanism by which circulating angiotensin II signals to sympathoexcitatory centres during hypertension. J Physiol 594: 1591‐1600, 2016.
 33.Bienenstock J, Kunze W, Forsythe P. Microbiota and the gut‐brain axis. Nutr Rev 73 (Suppl 1): 28‐31, 2015.
 34.Bier A, Braun T, Khasbab R, Di Segni A, Grossman E, Haberman Y, Leibowitz A. A high salt diet modulates the gut microbiota and short chain fatty acids production in a salt‐sensitive hypertension rat model. Nutrients 10 (9): 1154, 2018.
 35.Binah O, Rubinstein I, Bomzon A, Better OS. Effects of bile acids on ventricular muscle contraction and electrophysiological properties: Studies in rat papillary muscle and isolated ventricular myocytes. Naunyn Schmiedebergs Arch Pharmacol 335: 160‐165, 1987.
 36.Birchenough GM, Johansson ME, Gustafsson JK, Bergström JH, Hansson GC. New developments in goblet cell mucus secretion and function. Mucosal Immunol 8: 712‐719, 2015.
 37.Bjursell MK, Martens EC, Gordon JI. Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J Biol Chem 281: 36269‐36279, 2006.
 38.Blandino G, Inturri R, Lazzara F, Di Rosa M, Malaguarnera L. Impact of gut microbiota on diabetes mellitus. Diabetes Metab 42: 303‐315, 2016.
 39.Bolati D, Shimizu H, Higashiyama Y, Nishijima F, Niwa T. Indoxyl sulfate induces epithelial‐to‐mesenchymal transition in rat kidneys and human proximal tubular cells. Am J Nephrol 34: 318‐323, 2011.
 40.Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota‐gut‐brain axis. Front Neurosci 12: 49, 2018.
 41.Bose S, Ramesh V, Locasale JW. Acetate metabolism in physiology, cancer, and beyond. Trends Cell Biol 29: 695‐703, 2019.
 42.Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med 8: 42, 2016.
 43.Braniste V, Al‐Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, Korecka A, Bakocevic N, Ng LG, Guan NL, Kundu P, Gulyás B, Halldin C, Hultenby K, Nilsson H, Hebert H, Volpe BT, Diamond B, Pettersson S. The gut microbiota influences blood‐brain barrier permeability in mice. Sci Transl Med 6: 263ra158, 2014.
 44.Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P, Hansbro PM. Emerging pathogenic links between microbiota and the gut‐lung axis. Nat Rev Microbiol 15: 55‐63, 2017.
 45.Buemi M, Nostro L, Di Pasquale G, Cavallaro E, Sturiale A, Floccari F, Aloisi C, Ruello A, Calapai G, Corica F, Frisina N. Aquaporin‐2 water channels in spontaneously hypertensive rats. Am J Hypertens 17: 1170‐1178, 2004.
 46.Calderón‐Pérez L, Gosalbes MJ, Yuste S, Valls RM, Pedret A, Llauradó E, Jimenez‐Hernandez N, Artacho A, Pla‐Pagà L, Companys J, Ludwig I, Romero MP, Rubió L, Solà R. Gut metagenomic and short chain fatty acids signature in hypertension: A cross‐sectional study. Sci Rep 10: 6436, 2020.
 47.Campbell DJ, Duncan AM, Kladis A, Harrap SB. Angiotensin peptides in spontaneously hypertensive and normotensive Donryu rats. Hypertension 25: 928‐934, 1995.
 48.Cannon JP, Lee TA, Bolanos JT, Danziger LH. Pathogenic relevance of Lactobacillus: A retrospective review of over 200 cases. Eur J Clin Microbiol Infect Dis 24: 31‐40, 2005.
 49.Cantoni S, Galletti M, Zambelli F, Valente S, Ponti F, Tassinari R, Pasquinelli G, Galiè N, Ventura C. Sodium butyrate inhibits platelet‐derived growth factor‐induced proliferation and migration in pulmonary artery smooth muscle cells through Akt inhibition. FEBS J 280: 2042‐2055, 2013.
 50.Cardinale JP, Sriramula S, Mariappan N, Agarwal D, Francis J. Angiotensin II‐induced hypertension is modulated by nuclear factor‐κBin the paraventricular nucleus. Hypertension 59: 113‐121, 2012.
 51.Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 26: 26191, 2015.
 52.Carmichael CY, Wainford RD. Hypothalamic signaling mechanisms in hypertension. Curr Hypertens Rep 17: 39, 2015.
 53.Chakraborty S, Galla S, Cheng X, Yeo JY, Mell B, Singh V, Yeoh B, Saha P, Mathew AV, Vijay‐Kumar M, Joe B. Salt‐responsive metabolite, β‐hydroxybutyrate, attenuates hypertension. Cell Rep 25: 677‐689.e674, 2018.
 54.Chakraborty S, Mandal J, Cheng X, Galla S, Hindupur A, Saha P, Yeoh BS, Mell B, Yeo JY, Vijay‐Kumar M, Yang T, Joe B. Diurnal timing dependent alterations in gut microbial composition are synchronously linked to salt‐sensitive hypertension and renal damage. Hypertension. HYPERTENSIONAHA12014830, 76 (1): 59‐72, 2020.
 55.Chakraborty S, Mandal J, Yang T, Cheng X, Yeo JY, McCarthy CG, Wenceslau CF, Koch LG, Hill JW, Vijay‐Kumar M, Joe B. Metabolites and hypertension: Insights into hypertension as a metabolic disorder: 2019 Harriet Dustan Award. Hypertension. HYPERTENSIONAHA12013896, 75 (6): 1386‐1396, 2020.
 56.Chambers ES, Morrison DJ, Frost G. Control of appetite and energy intake by SCFA: What are the potential underlying mechanisms? Proc Nutr Soc 74: 328‐336, 2015.
 57.Chang Y, Chen Y, Zhou Q, Wang C, Chen L, Di W, Zhang Y. Short‐chain fatty acids accompanying changes in the gut microbiome contribute to the development of hypertension in patients with preeclampsia. Clin Sci (Lond) 134: 289‐302, 2020.
 58.Charach G, Argov O, Geiger K, Charach L, Rogowski O, Grosskopf I. Diminished bile acids excretion is a risk factor for coronary artery disease: 20‐year follow up and long‐term outcome. Therap Adv Gastroenterol 11: 1756283X17743420, 2018.
 59.Charach G, Grosskopf I, Rabinovich A, Shochat M, Weintraub M, Rabinovich P. The association of bile acid excretion and atherosclerotic coronary artery disease. Therap Adv Gastroenterol 4: 95‐101, 2011.
 60.Cheema MU, Pluznick JL. Gut microbiota plays a central role to modulate the plasma and fecal metabolomes in response to angiotensin II. Hypertension 74: 184‐193, 2019.
 61.Chen L, He FJ, Dong Y, Huang Y, Wang C, Harshfield GA, Zhu H. Modest sodium reduction increases circulating short‐chain fatty acids in untreated hypertensives: A randomized, double‐blind, placebo‐controlled trial. Hypertension 76: 73‐79, 2020.
 62.Chow J, Lee SM, Shen Y, Khosravi A, Mazmanian SK. Host‐bacterial symbiosis in health and disease. Adv Immunol 107: 243‐274, 2010.
 63.Claesson MJ, Cusack S, O'Sullivan O, Greene‐Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O'Connor M, Harnedy N, O'Connor K, Henry C, O'Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O'Toole PW. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 108 (Suppl 1): 4586‐4591, 2011.
 64.Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez‐Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JA. The phylogeny of the genus Clostridium: Proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44: 812‐826, 1994.
 65.Colombari E, Sato MA, Cravo SL, Bergamaschi CT, Campos RR, Lopes OU. Role of the medulla oblongata in hypertension. Hypertension 38: 549‐554, 2001.
 66.Consortium HMP. Structure, function and diversity of the healthy human microbiome. Nature 486: 207‐214, 2012.
 67.Crawford PA, Crowley JR, Sambandam N, Muegge BD, Costello EK, Hamady M, Knight R, Gordon JI. Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation. Proc Natl Acad Sci USA 106: 11276‐11281, 2009.
 68.Crost EH, Tailford LE, Le Gall G, Fons M, Henrissat B, Juge N. Utilisation of mucin glycans by the human gut symbiont Ruminococcus gnavus is strain‐dependent. PLoS One 8: e76341, 2013.
 69.Crowley SD, Frey CW, Gould SK, Griffiths R, Ruiz P, Burchette JL, Howell DN, Makhanova N, Yan M, Kim HS, Tharaux PL, Coffman TM. Stimulation of lymphocyte responses by angiotensin II promotes kidney injury in hypertension. Am J Physiol Renal Physiol 295: F515‐F524, 2008.
 70.Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffiths R, Kumar AP, Kim HS, Smithies O, Le TH, Coffman TM. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci USA 103: 17985‐17990, 2006.
 71.Dahl LK, Heine M. Primary role of renal homografts in setting chronic blood pressure levels in rats. Circ Res 36: 692‐696, 1975.
 72.Dai ZL, Wu G, Zhu WY. Amino acid metabolism in intestinal bacteria: Links between gut ecology and host health. Front Biosci (Landmark Ed) 16: 1768‐1786, 2011.
 73.Dan X, Mushi Z, Baili W, Han L, Enqi W, Huanhu Z, Shuchun L. Differential analysis of hypertension‐associated intestinal microbiota. Int J Med Sci 16: 872‐881, 2019.
 74.Dao MC, Everard A, Aron‐Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L, Dumas ME, Rizkalla SW, Doré J, Cani PD, Clément K, Consortium M‐O. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut 65: 426‐436, 2016.
 75.Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr 133: 2485S‐2493S, 2003.
 76.De Angelis M, Gobbetti M. Environmental stress responses in Lactobacillus: A review. Proteomics 4: 106‐122, 2004.
 77.De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107: 14691‐14696, 2010.
 78.de Kloet AD, Krause EG, Shi PD, Zubcevic J, Raizada MK, Sumners C. Neuroimmune communication in hypertension and obesity: A new therapeutic angle? Pharmacol Ther 138: 428‐440, 2013.
 79.de la Cuesta‐Zuluaga J, Mueller NT, Álvarez‐Quintero R, Velásquez‐Mejía EP, Sierra JA, Corrales‐Agudelo V, Carmona JA, Abad JM, Escobar JS. Higher fecal short‐chain fatty acid levels are associated with gut microbiome dysbiosis, obesity, hypertension and cardiometabolic disease risk factors. Nutrients 11 (1): 51, 2018.
 80.De Spiegeleer A, Elewaut D, Van Den Noortgate N, Janssens Y, Debunne N, Van Langenhove S, Govindarajan S, De Spiegeleer B, Wynendaele E. Quorum sensing molecules as a novel microbial factor impacting muscle cells. Biochim Biophys Acta Mol Basis Dis 1866: 165646, 2020.
 81.de Vries W, Stouthamer AH. Fermentation of glucose, lactose, galactose, mannitol, and xylose by bifidobacteria. J Bacteriol 96: 472‐478, 1968.
 82.Derkach A, Sampson J, Joseph J, Playdon MC, Stolzenberg‐Solomon RZ. Effects of dietary sodium on metabolites: The dietary approaches to stop hypertension (DASH)‐sodium feeding study. Am J Clin Nutr 106: 1131‐1141, 2017.
 83.Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin‐degrading bacterium. Int J Syst Evol Microbiol 54: 1469‐1476, 2004.
 84.Desai MS, Mathur B, Eblimit Z, Vasquez H, Taegtmeyer H, Karpen SJ, Penny DJ, Moore DD, Anakk S. Bile acid excess induces cardiomyopathy and metabolic dysfunctions in the heart. Hepatology 65: 189‐201, 2017.
 85.Diaz Heijtz R, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108: 3047‐3052, 2011.
 86.Dinan TG, Cryan JF. Gut‐brain axis in 2016: Brain‐gut‐microbiota axis—Mood, metabolism and behaviour. Nat Rev Gastroenterol Hepatol 14 (2): 69‐70, 2017.
 87.Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14: 20‐32, 2016.
 88.Donlan RM. Biofilms: Microbial life on surfaces. Emerg Infect Dis 8: 881‐890, 2002.
 89.Duncan SH, Aminov RI, Scott KP, Louis P, Stanton TB, Flint HJ. Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov. and Roseburia inulinivorans sp. nov., based on isolates from human faeces. Int J Syst Evol Microbiol 56: 2437‐2441, 2006.
 90.Duncan SH, Hold GL, Barcenilla A, Stewart CS, Flint HJ. Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate‐producing bacterium from human faeces. Int J Syst Evol Microbiol 52: 1615‐1620, 2002.
 91.Duncan SH, Hold GL, Harmsen HJ, Stewart CS, Flint HJ. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol 52: 2141‐2146, 2002.
 92.Duncan SH, Louis P, Flint HJ. Lactate‐utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70: 5810‐5817, 2004.
 93.Durgan DJ, Ganesh BP, Cope JL, Ajami NJ, Phillips SC, Petrosino JF, Hollister EB, Bryan RM. Role of the gut microbiome in obstructive sleep apnea‐induced hypertension. Hypertension 67: 469‐474, 2016.
 94.Edwards JM, Roy S, Tomcho JC, Schreckenberger ZJ, Chakraborty S, Bearss NR, Saha P, McCarthy CG, Vijay‐Kumar M, Joe B, Wenceslau CF. Microbiota are critical for vascular physiology: Germ‐free status weakens contractility and induces sex‐specific vascular remodeling in mice. Vascul Pharmacol 125–126: 106633, 2020.
 95.Edwards KM, Wilson KL, Sadja J, Ziegler MG, Mills PJ. Effects on blood pressure and autonomic nervous system function of a 12‐week exercise or exercise plus DASH‐diet intervention in individuals with elevated blood pressure. Acta Physiol (Oxf) 203: 343‐350, 2011.
 96.El Idrissi A, Okeke E, Yan X, Sidime F, Neuwirth LS. Taurine regulation of blood pressure and vasoactivity. Adv Exp Med Biol 775: 407‐425, 2013.
 97.Elsaghier AA, Brazier JS, James EA. Bacteraemia due to Bacteroides fragilis with reduced susceptibility to metronidazole. J Antimicrob Chemother 51: 1436‐1437, 2003.
 98.Erdogan A, Rao SS. Small intestinal fungal overgrowth. Curr Gastroenterol Rep 17: 16, 2015.
 99.Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren‐Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, Schwierzeck V, Utermöhlen O, Chun E, Garrett WS, McCoy KD, Diefenbach A, Staeheli P, Stecher B, Amit I, Prinz M. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18: 965‐977, 2015.
 100.Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, de Vos WM, Cani PD. Cross‐talk between Akkermansia muciniphila and intestinal epithelium controls diet‐induced obesity. Proc Natl Acad Sci USA 110: 9066‐9071, 2013.
 101.Falagas ME, Siakavellas E. Bacteroides, Prevotella, and Porphyromonas species: A review of antibiotic resistance and therapeutic options. Int J Antimicrob Agents 15: 1‐9, 2000.
 102.Feng W, Ao H, Peng C. Gut microbiota, short‐chain fatty acids, and herbal medicines. Front Pharmacol 9: 1354, 2018.
 103.Flemming HC, Wuertz S. Bacteria and archaea on Earth and their abundance in biofilms. Nat Rev Microbiol 17: 247‐260, 2019.
 104.Foditsch C, Pereira RV, Ganda EK, Gomez MS, Marques EC, Santin T, Bicalho RC. Oral administration of Faecalibacterium prausnitzii decreased the incidence of severe diarrhea and related mortality rate and increased weight gain in preweaned dairy heifers. PLoS One 10: e0145485, 2015.
 105.Ford AC, Quigley EM, Lacy BE, Lembo AJ, Saito YA, Schiller LR, Soffer EE, Spiegel BM, Moayyedi P. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: Systematic review and meta‐analysis. Am J Gastroenterol 109: 1547‐1561; quiz 1546, 1562, 2014.
 106.Foss JD, Fiege J, Shimizu Y, Collister JP, Mayerhofer T, Wood L, Osborn JW. Role of afferent and efferent renal nerves in the development of AngII‐salt hypertension in rats. Physiol Rep 6 (3): e13602, 2018.
 107.Franke T, Deppenmeier U. Physiology and central carbon metabolism of the gut bacterium Prevotella copri. Mol Microbiol 109: 528‐540, 2018.
 108.Fung TC, Bessman NJ, Hepworth MR, Kumar N, Shibata N, Kobuley D, Wang K, Ziegler CGK, Goc J, Shima T, Umesaki Y, Sartor RB, Sullivan KV, Lawley TD, Kunisawa J, Kiyono H, Sonnenberg GF. Lymphoid‐tissue‐resident commensal bacteria promote members of the IL‐10 cytokine family to establish mutualism. Immunity 44: 634‐646, 2016.
 109.Galla S, Chakraborty S, Cheng X, Yeo J, Mell B, Zhang H, Mathew AV, Vijay‐Kumar M, Joe B. Disparate effects of antibiotics on hypertension. Physiol Genomics 50: 837‐845, 2018.
 110.Galla S, Chakraborty S, Cheng X, Yeo JY, Mell B, Chiu N, Wenceslau CF, Vijay‐Kumar M, Joe B. Exposure to amoxicillin in early life is associated with changes in gut microbiota and reduction in blood pressure: Findings from a study on rat dams and offspring. J Am Heart Assoc 9: e014373, 2020.
 111.Ganesh BP, Nelson JW, Eskew JR, Ganesan A, Ajami NJ, Petrosino JF, Bryan RM, Durgan DJ. Prebiotics, probiotics, and acetate supplementation prevent hypertension in a model of obstructive sleep apnea. Hypertension 72: 1141‐1150, 2018.
 112.Giuffrè A, Borisov VB, Arese M, Sarti P, Forte E. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim Biophys Acta 1837: 1178‐1187, 2014.
 113.Gomez‐Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Dekker Nitert M, Group ST. Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and butyrate production in early pregnancy. Hypertension 68: 974‐981, 2016.
 114.Grobe JL, Buehrer BA, Hilzendeger AM, Liu X, Davis DR, Xu D, Sigmund CD. Angiotensinergic signaling in the brain mediates metabolic effects of deoxycorticosterone (DOCA)‐salt in C57 mice. Hypertension 57: 600‐607, 2011.
 115.Guarner F, Malagelada JR. Gut flora in health and disease. Lancet 361: 512‐519, 2003.
 116.Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C, Harrison DG. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 204: 2449‐2460, 2007.
 117.Haack D, Möhring J, Möhring B, Petri M, Hackenthal E. Comparative study on development of corticosterone and DOCA hypertension in rats. Am J Phys 233: F403‐F411, 1977.
 118.Haffke M, Fehlmann D, Rummel G, Boivineau J, Duckely M, Gommermann N, Cotesta S, Sirockin F, Freuler F, Littlewood‐Evans A, Kaupmann K, Jaakola VP. Structural basis of species‐selective antagonist binding to the succinate receptor. Nature 574: 581‐585, 2019.
 119.Hajri T, Ibrahimi A, Coburn CT, Knapp FF, Kurtz T, Pravenec M, Abumrad NA. Defective fatty acid uptake in the spontaneously hypertensive rat is a primary determinant of altered glucose metabolism, hyperinsulinemia, and myocardial hypertrophy. J Biol Chem 276: 23661‐23666, 2001.
 120.Haro C, Garcia‐Carpintero S, Alcala‐Diaz JF, Gomez‐Delgado F, Delgado‐Lista J, Perez‐Martinez P, Rangel Zuñiga OA, Quintana‐Navarro GM, Landa BB, Clemente JC, Lopez‐Miranda J, Camargo A, Perez‐Jimenez F. The gut microbial community in metabolic syndrome patients is modified by diet. J Nutr Biochem 27: 27‐31, 2016.
 121.Hayashi H, Shibata K, Sakamoto M, Tomita S, Benno Y. Prevotella copri sp. nov. and Prevotella stercorea sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 57: 941‐946, 2007.
 122.Heeney DD, Gareau MG, Marco ML. Intestinal Lactobacillus in health and disease, a driver or just along for the ride? Curr Opin Biotechnol 49: 140‐147, 2018.
 123.Hernández MAG, Canfora EE, Jocken JWE, Blaak EE. The short‐chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients 11, 2019.
 124.Hill‐Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen ZD, Peddada SD, Factor SA, Molho E, Zabetian CP, Knight R, Payami H. Parkinson's disease and Parkinson's disease medications have distinct signatures of the gut microbiome. Mov Disord 32: 739‐749, 2017.
 125.Ho NT, Li F, Lee‐Sarwar KA, Tun HM, Brown BP, Pannaraj PS, Bender JM, Azad MB, Thompson AL, Weiss ST, Azcarate‐Peril MA, Litonjua AA, Kozyrskyj AL, Jaspan HB, Aldrovandi GM, Kuhn L. Meta‐analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat Commun 9: 4169, 2018.
 126.Hold GL, Schwiertz A, Aminov RI, Blaut M, Flint HJ. Oligonucleotide probes that detect quantitatively significant groups of butyrate‐producing bacteria in human feces. Appl Environ Microbiol 69: 4320‐4324, 2003.
 127.Holle J, Querfeld U, Kirchner M, Anninos A, Okun J, Thurn‐Valsassina D, Bayazit A, Niemirska A, Canpolat N, Bulut IK, Duzova A, Anarat A, Shroff R, Bilginer Y, Caliskan S, Candan C, Harambat J, Özcakar ZB, Soylemezoglu O, Tschumi S, Habbig S, Yilmaz E, Balat A, Zurowska A, Cakar N, Kranz B, Ertan P, Melk A, Azukaitis K, Schaefer F. Indoxyl sulfate associates with cardiovascular phenotype in children with chronic kidney disease. Pediatr Nephrol 34: 2571‐2582, 2019.
 128.Honour J. The possible involvement of intestinal bacteria in steroidal hypertension. Endocrinology 110: 285‐287, 1982.
 129.Honour JW. Historical perspective: Gut dysbiosis and hypertension. Physiol Genomics 47: 443‐446, 2015.
 130.Honour JW, Borriello SP, Ganten U, Honour P. Antibiotics attenuate experimental hypertension in rats. J Endocrinol 105: 347‐350, 1985.
 131.Hou E, Sun N, Zhang F, Zhao C, Usa K, Liang M, Tian Z. Malate and aspartate increase L‐arginine and nitric oxide and attenuate hypertension. Cell Rep 19: 1631‐1639, 2017.
 132.Hsu CN, Chang‐Chien GP, Lin S, Hou CY, Tain YL. Targeting on gut microbial metabolite trimethylamine‐N‐oxide and short‐chain fatty acid to prevent maternal high‐fructose‐diet‐induced developmental programming of hypertension in adult male offspring. Mol Nutr Food Res 63: e1900073, 2019.
 133.Hsu CN, Lin YJ, Hou CY, Tain YL. Maternal administration of probiotic or prebiotic prevents male adult rat offspring against developmental programming of hypertension induced by high fructose consumption in pregnancy and lactation. Nutrients 10, 2018.
 134.Hu W, Huang Y. Targeting the platelet‐derived growth factor signalling in cardiovascular disease. Clin Exp Pharmacol Physiol 42: 1221‐1224, 2015.
 135.Huart J, Leenders J, Taminiau B, Descy J, Saint‐Remy A, Daube G, Krzesinski JM, Melin P, de Tullio P, Jouret F. Gut microbiota and fecal levels of short‐chain fatty acids differ upon 24‐hour blood pressure levels in men. Hypertension 74: 1005‐1013, 2019.
 136.Huc T, Drapala A, Gawrys M, Konop M, Bielinska K, Zaorska E, Samborowska E, Wyczalkowska‐Tomasik A, Pączek L, Dadlez M, Ufnal M. Chronic, low‐dose TMAO treatment reduces diastolic dysfunction and heart fibrosis in hypertensive rats. Am J Physiol Heart Circ Physiol 315: H1805‐H1820, 2018.
 137.Hugon P, Dufour JC, Colson P, Fournier PE, Sallah K, Raoult D. A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect Dis 15: 1211‐1219, 2015.
 138.Huo Y, Li J, Qin X, Huang Y, Wang X, Gottesman RF, Tang G, Wang B, Chen D, He M, Fu J, Cai Y, Shi X, Zhang Y, Cui Y, Sun N, Li X, Cheng X, Wang J, Yang X, Yang T, Xiao C, Zhao G, Dong Q, Zhu D, Ge J, Zhao L, Hu D, Liu L, Hou FF, Investigators C. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: The CSPPT randomized clinical trial. JAMA 313: 1325‐1335, 2015.
 139.Inoue K, Shirai T, Ochiai H, Kasao M, Hayakawa K, Kimura M, Sansawa H. Blood‐pressure‐lowering effect of a novel fermented milk containing gamma‐aminobutyric acid (GABA) in mild hypertensives. Eur J Clin Nutr 57: 490‐495, 2003.
 140.Isolauri E. Microbiota and obesity. Nestle Nutr Inst Workshop Ser 88: 95‐105, 2017.
 141.Iyer A, Chan V, Brown L. The DOCA‐salt hypertensive rat as a model of cardiovascular oxidative and inflammatory stress. Curr Cardiol Rev 6: 291‐297, 2010.
 142.Jadoon A, Mathew AV, Byun J, Gadegbeku CA, Gipson DS, Afshinnia F, Pennathur S, for the Michigan Kidney Translational Core CPROBE Investigator Group. Gut microbial product predicts cardiovascular risk in chronic kidney disease patients. Am J Nephrol 48: 269‐277, 2018.
 143.Jauhiainen T, Vapaatalo H, Poussa T, Kyrönpalo S, Rasmussen M, Korpela R. Lactobacillus helveticus fermented milk lowers blood pressure in hypertensive subjects in 24‐h ambulatory blood pressure measurement. Am J Hypertens 18: 1600‐1605, 2005.
 144.Jobin K, Stumpf NE, Schwab S, Eichler M, Neubert P, Rauh M, Adamowski M, Babyak O, Hinze D, Sivalingam S, Weisheit C, Hochheiser K, Schmidt SV, Meissner M, Garbi N, Abdullah Z, Wenzel U, Hölzel M, Jantsch J, Kurts C. A high‐salt diet compromises antibacterial neutrophil responses through hormonal perturbation. Sci Transl Med 12, 2020.
 145.Joe B. Dr Lewis Kitchener Dahl, the Dahl rats, and the “inconvenient truth” about the genetics of hypertension. Hypertension 65: 963‐969, 2015.
 146.Joe B, McCarthy CG, Edwards JM, Cheng X, Chakraborty S, Yang T, Golonka RM, Mell B, Yeo JY, Bearss NR, Furtado J, Saha P, Yeoh BS, Vijay‐Kumar M, Wenceslau CF. Microbiota introduced to germ‐free rats restores vascular contractility and blood pressure. Hypertension 76: 1847‐1855, 2020.
 147.Johansson ME, Ambort D, Pelaseyed T, Schütte A, Gustafsson JK, Ermund A, Subramani DB, Holmén‐Larsson JM, Thomsson KA, Bergström JH, van der Post S, Rodriguez‐Piñeiro AM, Sjövall H, Bäckström M, Hansson GC. Composition and functional role of the mucus layers in the intestine. Cell Mol Life Sci 68: 3635‐3641, 2011.
 148.Julius S, Majahalme S. The changing face of sympathetic overactivity in hypertension. Ann Med 32: 365‐370, 2000.
 149.Jun JY, Zubcevic J, Qi Y, Afzal A, Carvajal JM, Thinschmidt JS, Grant MB, Mocco J, Raizada MK. Brain‐mediated dysregulation of the bone marrow activity in angiotensin II‐induced hypertension. Hypertension 60: 1316‐1323, 2012.
 150.Juraschek SP, Guallar E, Appel LJ, Miller ER. Effects of vitamin C supplementation on blood pressure: A meta‐analysis of randomized controlled trials. Am J Clin Nutr 95: 1079‐1088, 2012.
 151.Karbach SH, Schönfelder T, Brandão I, Wilms E, Hörmann N, Jäckel S, Schüler R, Finger S, Knorr M, Lagrange J, Brandt M, Waisman A, Kossmann S, Schäfer K, Münzel T, Reinhardt C, Wenzel P. Gut microbiota promote angiotensin II‐induced arterial hypertension and vascular dysfunction. J Am Heart Assoc 5 (9): e003698, 2016.
 152.Kasahara K, Krautkramer KA, Org E, Romano KA, Kerby RL, Vivas EI, Mehrabian M, Denu JM, Bäckhed F, Lusis AJ, Rey FE. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol 3: 1461‐1471, 2018.
 153.Kaye DM, Shihata WA, Jama HA, Tsyganov K, Ziemann M, Kiriazis H, Horlock D, Vijay A, Giam B, Vinh A, Johnson C, Fiedler A, Donner D, Snelson M, Coughlan MT, Phillips S, Du XJ, El‐Osta A, Drummond G, Lambert GW, Spector TD, Valdes AM, Mackay CR, Marques FZ. Deficiency of prebiotic fiber and insufficient signaling through gut metabolite‐sensing receptors leads to cardiovascular disease. Circulation 141: 1393‐1403, 2020.
 154.Khalesi S, Sun J, Buys N, Jayasinghe R. Effect of probiotics on blood pressure: A systematic review and meta‐analysis of randomized, controlled trials. Hypertension 64 (4): 897‐903, 2014.
 155.Kim JJ, Khan WI. Goblet cells and mucins: Role in innate defense in enteric infections. Pathogens 2: 55‐70, 2013.
 156.Kim S, Goel R, Kumar A, Qi Y, Lobaton G, Hosaka K, Mohammed M, Handberg EM, Richards EM, Pepine CJ, Raizada MK. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci (Lond) 132 (6): 701‐718, 2018.
 157.Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A, Tsujimoto G. Short‐chain fatty acids and ketones directly regulate sympathetic nervous system via G protein‐coupled receptor 41 (GPR41). Proc Natl Acad Sci USA 108: 8030‐8035, 2011.
 158.Koh A, De Vadder F, Kovatcheva‐Datchary P, Bäckhed F. From dietary fiber to host physiology: Short‐chain fatty acids as key bacterial metabolites. Cell 165: 1332‐1345, 2016.
 159.Kohashi N, Katori R. Decrease of urinary taurine in essential hypertension. Jpn Heart J 24: 91‐102, 1983.
 160.Kootte RS, Vrieze A, Holleman F, Dallinga‐Thie GM, Zoetendal EG, de Vos WM, Groen AK, Hoekstra JB, Stroes ES, Nieuwdorp M. The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Obes Metab 14: 112‐120, 2012.
 161.Koskey AM, Fisher JC, Eren AM, Ponce‐Terashima R, Reis MG, Blanton RE, McLellan SL. Blautia and Prevotella sequences distinguish human and animal fecal pollution in Brazil surface waters. Environ Microbiol Rep 6: 696‐704, 2014.
 162.Kovatcheva‐Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, Hallen A, Martens E, Björck I, Bäckhed F. Dietary fiber‐induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab 22: 971‐982, 2015.
 163.Krinos CM, Coyne MJ, Weinacht KG, Tzianabos AO, Kasper DL, Comstock LE. Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature 414: 555‐558, 2001.
 164.Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, Takami H, Morita H, Sharma VK, Srivastava TP, Taylor TD, Noguchi H, Mori H, Ogura Y, Ehrlich DS, Itoh K, Takagi T, Sakaki Y, Hayashi T, Hattori M. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14: 169‐181, 2007.
 165.Kurtz TW, Morris RC. Biological variability in Wistar‐Kyoto rats. Implications for research with the spontaneously hypertensive rat. Hypertension 10: 127‐131, 1987.
 166.La Reau AJ, Suen G. The Ruminococci: Key symbionts of the gut ecosystem. J Microbiol 56: 199‐208, 2018.
 167.Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology 151: 363‐374, 2017.
 168.Latham MJ, Wolin MJ. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl Environ Microbiol 34: 297‐301, 1977.
 169.Legg JW. On the Bile, Jaundice and Bilious Diseases. New York: D. Appleton & Co., 1880, p. xvi, 719 pages, 714 leaves of plates.
 170.Leiby JS, McCormick K, Sherrill‐Mix S, Clarke EL, Kessler LR, Taylor LJ, Hofstaedter CE, Roche AM, Mattei LM, Bittinger K, Elovitz MA, Leite R, Parry S, Bushman FD. Lack of detection of a human placenta microbiome in samples from preterm and term deliveries. Microbiome 6: 196, 2018.
 171.Levin SA, Carpenter SR. The Princeton Guide to Ecology. Princeton: Princeton University Press, 2009, p. 1. online resource (xiii, 809 pages, 816 pages of plates).
 172.Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T, Juncker AS, Manichanh C, Chen B, Zhang W, Levenez F, Wang J, Xu X, Xiao L, Liang S, Zhang D, Zhang Z, Chen W, Zhao H, Al‐Aama JY, Edris S, Yang H, Hansen T, Nielsen HB, Brunak S, Kristiansen K, Guarner F, Pedersen O, Doré J, Ehrlich SD, Bork P, Consortium M. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32: 834‐841, 2014.
 173.Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, Wu S, Liu W, Cui Q, Geng B, Zhang W, Weldon R, Auguste K, Yang L, Liu X, Chen L, Yang X, Zhu B, Cai J. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5: 14, 2017.
 174.Li SG, Lawler JE, Randall DC, Brown DR. Sympathetic nervous activity and arterial pressure responses during rest and acute behavioral stress in SHR versus WKY rats. J Auton Nerv Syst 62: 147‐154, 1997.
 175.Lin CJ, Wu CJ, Wu PC, Pan CF, Wang TJ, Sun FJ, Liu HL, Chen HH, Yeh HI. Indoxyl sulfate impairs endothelial progenitor cells and might contribute to vascular dysfunction in patients with chronic kidney disease. Kidney Blood Press Res 41: 1025‐1036, 2016.
 176.Liu C, Finegold SM, Song Y, Lawson PA. Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 58: 1896‐1902, 2008.
 177.Liu R, Mi B, Zhao Y, Li Q, Yan H, Dang S. Effect of B vitamins from diet on hypertension. Arch Med Res 48: 187‐194, 2017.
 178.Lloyd‐Price J, Abu‐Ali G, Huttenhower C. The healthy human microbiome. Genome Med 8: 51, 2016.
 179.López P, Gueimonde M, Margolles A, Suárez A. Distinct Bifidobacterium strains drive different immune responses in vitro. Int J Food Microbiol 138: 157‐165, 2010.
 180.Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12: 661‐672, 2014.
 181.Lundberg R, Toft MF, August B, Hansen AK, Hansen CH. Antibiotic‐treated versus germ‐free rodents for microbiota transplantation studies. Gut Microbes 7: 68‐74, 2016.
 182.Ma P, Li T, Ji F, Wang H, Pang J. Effect of GABA on blood pressure and blood dynamics of anesthetic rats. Int J Clin Exp Med 8: 14296‐14302, 2015.
 183.Madhi SA, Adrian P, Kuwanda L, Jassat W, Jones S, Little T, Soininen A, Cutland C, Klugman KP. Long‐term immunogenicity and efficacy of a 9‐valent conjugate pneumococcal vaccine in human immunodeficient virus infected and non‐infected children in the absence of a booster dose of vaccine. Vaccine 25: 2451‐2457, 2007.
 184.Maki KA, Burke LA, Calik MW, Watanabe‐Chailland M, Sweeney D, Romick‐Rosendale LE, Green SJ, Fink AM. Sleep fragmentation increases blood pressure and is associated with alterations in the gut microbiome and fecal metabolome in rats. Physiol Genomics 52: 280‐292, 2020.
 185.Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res 114: 1804‐1814, 2014.
 186.Margulis L, Fester R. Bellagio conference and book. Symbiosis as Source of Evolutionary Innovation: Speciation and Morphogenesis. Conference – June 25‐30, 1989, Bellagio Conference Center, Italy. Symbiosis 11: 93‐101, 1991.
 187.Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M, Tan JK, Kuruppu S, Rajapakse NW, El‐Osta A, Mackay CR, Kaye DM. High‐fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135: 964‐977, 2017.
 188.Marsland AL, Gianaros PJ, Prather AA, Jennings JR, Neumann SA, Manuck SB. Stimulated production of proinflammatory cytokines covaries inversely with heart rate variability. Psychosom Med 69: 709‐716, 2007.
 189.Martín R, Miquel S, Benevides L, Bridonneau C, Robert V, Hudault S, Chain F, Berteau O, Azevedo V, Chatel JM, Sokol H, Bermúdez‐Humarán LG, Thomas M, Langella P. Functional characterization of novel. Front Microbiol 8: 1226, 2017.
 190.Masuda Y. Role of the parasympathetic nervous system and interaction with the sympathetic nervous system in the early phase of hypertension. J Cardiovasc Pharmacol 36 (Suppl 2): S61‐S64, 2000.
 191.McBurney MI, Davis C, Fraser CM, Schneeman BO, Huttenhower C, Verbeke K, Walter J, Latulippe ME. Establishing what constitutes a healthy human gut microbiome: State of the science, regulatory considerations, and future directions. J Nutr 149: 1882‐1895, 2019.
 192.Medina M, Izquierdo E, Ennahar S, Sanz Y. Differential immunomodulatory properties of Bifidobacterium logum strains: Relevance to probiotic selection and clinical applications. Clin Exp Immunol 150: 531‐538, 2007.
 193.Mell B, Jala VR, Mathew AV, Byun J, Waghulde H, Zhang Y, Haribabu B, Vijay‐Kumar M, Pennathur S, Joe B. Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genomics 47: 187‐197, 2015.
 194.Miquel S, Martín R, Rossi O, Bermúdez‐Humarán LG, Chatel JM, Sokol H, Thomas M, Wells JM, Langella P. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol 16: 255‐261, 2013.
 195.Mitsuoka T. Establishment of intestinal bacteriology. Biosci Microbiota Food Health 33: 99‐116, 2014.
 196.Morris DJ, Brem AS. Role of gut metabolism of adrenal corticosteroids and hypertension: Clues gut‐cleansing antibiotics give us. Physiol Genomics 51: 83‐89, 2019.
 197.Nagao‐Kitamoto H, Kamada N. Host‐microbial cross‐talk in inflammatory bowel disease. Immune Netw 17: 1‐12, 2017.
 198.Natarajan N, Hori D, Flavahan S, Steppan J, Flavahan NA, Berkowitz DE, Pluznick JL. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein‐coupled receptor 41. Physiol Genomics 48: 826‐834, 2016.
 199.Nealson KH, Hastings JW. Bacterial bioluminescence: Its control and ecological significance. Microbiol Rev 43: 496‐518, 1979.
 200.Nemet I, Saha PP, Gupta N, Zhu W, Romano KA, Skye SM, Cajka T, Mohan ML, Li L, Wu Y, Funabashi M, Ramer‐Tait AE, Naga Prasad SV, Fiehn O, Rey FE, Tang WHW, Fischbach MA, DiDonato JA, Hazen SL. A cardiovascular disease‐linked gut microbial metabolite acts via adrenergic receptors. Cell 180: 862‐877.e822, 2020.
 201.Newman JC, Verdin E. β‐Hydroxybutyrate: A signaling metabolite. Annu Rev Nutr 37: 51‐76, 2017.
 202.Nicola S, Amoruso A, Deidda F, Pane M, Allesina S, Mogna L, Del Piano M, Mogna G. Searching for the perfect homeostasis: Five strains of Bifidobacterium longum from centenarians have a similar behavior in the production of cytokines. J Clin Gastroenterol 50 (Suppl 2, Proceedings from the 8th Probiotics, Prebiotics & New Foods for Microbiota and Human Health meeting held in Rome, Italy on September 13‐15, 2015): S126‐S130, 2016.
 203.Niwa T, Shimizu H. Indoxyl sulfate induces nephrovascular senescence. J Ren Nutr 22: 102‐106, 2012.
 204.Nouvenne A, Ticinesi A, Tana C, Prati B, Catania P, Miraglia C, De' Angelis GL, Di Mario F, Meschi T. Digestive disorders and Intestinal microbiota. Acta Biomed 89: 47‐51, 2018.
 205.O'Donaughy TL, Qi Y, Brooks VL. Central action of increased osmolality to support blood pressure in deoxycorticosterone acetate‐salt rats. Hypertension 48: 658‐663, 2006.
 206.O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 7: 688‐693, 2006.
 207.Ohno H, Tsunemine S, Isa Y, Shimakawa M, Yamamura H. Oral administration of Bifidobacterium bifidum G9‐1 suppresses total and antigen specific immunoglobulin E production in mice. Biol Pharm Bull 28: 1462‐1466, 2005.
 208.Oliphant K, Allen‐Vercoe E. Macronutrient metabolism by the human gut microbiome: Major fermentation by‐products and their impact on host health. Microbiome 7: 91, 2019.
 209.Onyszkiewicz M, Gawrys‐Kopczynska M, Sałagaj M, Aleksandrowicz M, Sawicka A, Koźniewska E, Samborowska E, Ufnal M. Valeric acid lowers arterial blood pressure in rats. Eur J Pharmacol 877: 173086, 2020.
 210.Opdebeeck B, D'Haese PC, Verhulst A. Molecular and cellular mechanisms that induce arterial calcification by indoxyl sulfate and P‐cresyl sulfate. Toxins (Basel) 12 (1): 58, 2020.
 211.Ottman N, Geerlings SY, Aalvink S, de Vos WM, Belzer C. Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Pract Res Clin Gastroenterol 31: 637‐642, 2017.
 212.Ouellette AJ, Selsted ME. Paneth cell defensins: Endogenous peptide components of intestinal host defense. FASEB J 10: 1280‐1289, 1996.
 213.Ouwehand AC, Isolauri E, He F, Hashimoto H, Benno Y, Salminen S. Differences in Bifidobacterium flora composition in allergic and healthy infants. J Allergy Clin Immunol 108: 144‐145, 2001.
 214.Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, van den Brandt PA, Stobberingh EE. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118: 511‐521, 2006.
 215.Perez‐Muñoz ME, Arrieta MC, Ramer‐Tait AE, Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: Implications for research on the pioneer infant microbiome. Microbiome 5: 48, 2017.
 216.Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, Petersen KF, Kibbey RG, Goodman AL, Shulman GI. Acetate mediates a microbiome‐brain‐β‐cell axis to promote metabolic syndrome. Nature 534: 213‐217, 2016.
 217.Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2: 328‐339, 2007.
 218.Peti‐Peterdi J, Gevorgyan H, Lam L, Riquier‐Brison A. Metabolic control of renin secretion. Pflugers Arch 465: 53‐58, 2013.
 219.Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, Brunet I, Wan LX, Rey F, Wang T, Firestein SJ, Yanagisawa M, Gordon JI, Eichmann A, Peti‐Peterdi J, Caplan MJ. Olfactory receptor responding to gut microbiota‐derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA 110: 4410‐4415, 2013.
 220.Prescott SL. History of medicine: Origin of the term microbiome and why it matters. Hum Microbiome J 4: 24‐25, 2017.
 221.Proctor LM. The national institutes of health human microbiome project. Semin Fetal Neonatal Med 21: 368‐372, 2016.
 222.Puchalska P, Crawford PA. Multi‐dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab 25: 262‐284, 2017.
 223.Pucino V, Bombardieri M, Pitzalis C, Mauro C. Lactate at the crossroads of metabolism, inflammation, and autoimmunity. Eur J Immunol 47: 14‐21, 2017.
 224.Qi Y, Aranda JM, Rodriguez V, Raizada MK, Pepine CJ. Impact of antibiotics on arterial blood pressure in a patient with resistant hypertension ‐ A case report. Int J Cardiol 201: 157‐158, 2015.
 225.Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz‐Ponten T, Turner K, Zhu H, Yu C, Jian M, Zhou Y, Li Y, Zhang X, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, MetaHIT Consortium, Bork P, Ehrlich SD, Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59‐65, 2010.
 226.Quinn EM, Slattery H, Walsh D, Joshi L, Hickey RM. Bifidobacterium longum subsp. infantis ATCC 15697 and Goat Milk Oligosaccharides Show Synergism In Vitro as Anti-Infectives against Campylobacter jejuni. Foods 9 (3): 348, 2020.
 227.Rahman MM, Park HM, Kim SJ, Go HK, Kim GB, Hong CU, Lee YU, Kim SZ, Kim JS, Kang HS. Taurine prevents hypertension and increases exercise capacity in rats with fructose‐induced hypertension. Am J Hypertens 24: 574‐581, 2011.
 228.Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol 28 (Suppl 4): 9‐17, 2013.
 229.Rapp JP. Age‐related pathologic changes, hypertension, and 18‐hydroxydeoxycorticosterone in rats selectively bred for high or low juxtaglomerular granularity. Lab Invest 28: 343‐351, 1973.
 230.Rapp JP, Dahl LK. Possible role of 18‐hydroxy‐deoxycorticosterone in hypertension. Nature 237: 338‐339, 1972.
 231.Reikvam DH, Erofeev A, Sandvik A, Grcic V, Jahnsen FL, Gaustad P, McCoy KD, Macpherson AJ, Meza‐Zepeda LA, Johansen FE. Depletion of murine intestinal microbiota: Effects on gut mucosa and epithelial gene expression. PLoS One 6: e17996, 2011.
 232.Rios‐Covian D, Arboleya S, Hernandez‐Barranco AM, Alvarez‐Buylla JR, Ruas‐Madiedo P, Gueimonde M, de los Reyes‐Gavilan CG. Interactions between Bifidobacterium and Bacteroides species in cofermentations are affected by carbon sources, including exopolysaccharides produced by bifidobacteria. Appl Environ Microbiol 79: 7518‐7524, 2013.
 233.Rios‐Covian D, Sánchez B, Salazar N, Martínez N, Redruello B, Gueimonde M, de Los Reyes‐Gavilán CG. Different metabolic features of Bacteroides fragilis growing in the presence of glucose and exopolysaccharides of bifidobacteria. Front Microbiol 6: 825, 2015.
 234.Robles‐Vera I, de la Visitación N, Toral M, Sánchez M, Romero M, Gómez‐Guzmán M, Yang T, Izquierdo‐García JL, Guerra‐Hernández E, Ruiz‐Cabello J, Raizada MK, Pérez‐Vizcaíno F, Jiménez R, Duarte J. Probiotic Bifidobacterium breve prevents DOCA‐salt hypertension. FASEB J 34 (10): 13626‐13640, 2020.
 235.Robles‐Vera I, Toral M, de la Visitación N, Sánchez M, Gómez‐Guzmán M, Romero M, Yang T, Izquierdo‐Garcia JL, Jiménez R, Ruiz‐Cabello J, Guerra‐Hernández E, Raizada MK, Pérez‐Vizcaíno F, Duarte J. Probiotics prevent dysbiosis and the rise in blood pressure in genetic hypertension: Role of short‐chain fatty acids. Mol Nutr Food Res 64: e1900616, 2020.
 236.Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, Avershina E, Rudi K, Narbad A, Jenmalm MC, Marchesi JR, Collado MC. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 26: 26050, 2015.
 237.Roediger WE. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83: 424‐429, 1982.
 238.Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, Costea PI, Godneva A, Kalka IN, Bar N, Shilo S, Lador D, Vila AV, Zmora N, Pevsner‐Fischer M, Israeli D, Kosower N, Malka G, Wolf BC, Avnit‐Sagi T, Lotan‐Pompan M, Weinberger A, Halpern Z, Carmi S, Fu J, Wijmenga C, Zhernakova A, Elinav E, Segal E. Environment dominates over host genetics in shaping human gut microbiota. Nature 555: 210‐215, 2018.
 239.Roy CC, Kien CL, Bouthillier L, Levy E. Short‐chain fatty acids: Ready for prime time? Nutr Clin Pract 21: 351‐366, 2006.
 240.Royall D, Wolever TM, Jeejeebhoy KN. Clinical significance of colonic fermentation. Am J Gastroenterol 85: 1307‐1312, 1990.
 241.Rup L. The human microbiome project. Indian J Microbiol 52: 315, 2012.
 242.Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants' life: A systematic review. BMC Gastroenterol 16: 86, 2016.
 243.Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva‐Datchary P, Myronovych A, Karns R, Wilson‐Pérez HE, Sandoval DA, Kohli R, Bäckhed F, Seeley RJ. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 509: 183‐188, 2014.
 244.Sadagopan N, Li W, Roberds SL, Major T, Preston GM, Yu Y, Tones MA. Circulating succinate is elevated in rodent models of hypertension and metabolic disease. Am J Hypertens 20: 1209‐1215, 2007.
 245.Saito S, Shimizu H, Yisireyili M, Nishijima F, Enomoto A, Niwa T. Indoxyl sulfate‐induced activation of (pro)renin receptor is involved in expression of TGF‐β1 and α‐smooth muscle actin in proximal tubular cells. Endocrinology 155: 1899‐1907, 2014.
 246.Salonen A, Lahti L, Salojärvi J, Holtrop G, Korpela K, Duncan SH, Date P, Farquharson F, Johnstone AM, Lobley GE, Louis P, Flint HJ, de Vos WM. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J 8: 2218‐2230, 2014.
 247.Salyers AA. Bacteroides of the human lower intestinal tract. Annu Rev Microbiol 38: 293‐313, 1984.
 248.Santisteban MM, Ahmari N, Carvajal JM, Zingler MB, Qi Y, Kim S, Joseph J, Garcia‐Pereira F, Johnson RD, Shenoy V, Raizada MK, Zubcevic J. Involvement of bone marrow cells and neuroinflammation in hypertension. Circ Res 117: 178‐191, 2015.
 249.Santisteban MM, Qi Y, Zubcevic J, Kim S, Yang T, Shenoy V, Cole‐Jeffrey CT, Lobaton GO, Stewart DC, Rubiano A, Simmons CS, Garcia‐Pereira F, Johnson RD, Pepine CJ, Raizada MK. Hypertension‐linked pathophysiological alterations in the gut. Circ Res 120: 312‐323, 2017.
 250.Scheiman J, Luber JM, Chavkin TA, MacDonald T, Tung A, Pham LD, Wibowo MC, Wurth RC, Punthambaker S, Tierney BT, Yang Z, Hattab MW, Avila‐Pacheco J, Clish CB, Lessard S, Church GM, Kostic AD. Meta‐omics analysis of elite athletes identifies a performance‐enhancing microbe that functions via lactate metabolism. Nat Med 25: 1104‐1109, 2019.
 251.Schneeberger M, Everard A, Gómez‐Valadés AG, Matamoros S, Ramírez S, Delzenne NM, Gomis R, Claret M, Cani PD. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep 5: 16643, 2015.
 252.Schulz R, Kappeler C, Coenen H, Bockisch A, Heusch G. Positron emission tomography analysis of [1‐(11)C] acetate kinetics in short‐term hibernating myocardium. Circulation 97: 1009‐1016, 1998.
 253.Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl‐CoA synthetase 2. Proc Natl Acad Sci USA 103: 10224‐10229, 2006.
 254.Scott KP, Martin JC, Campbell G, Mayer CD, Flint HJ. Whole‐genome transcription profiling reveals genes up‐regulated by growth on fucose in the human gut bacterium “Roseburia inulinivorans”. J Bacteriol 188: 4340‐4349, 2006.
 255.Sefik E, Geva‐Zatorsky N, Oh S, Konnikova L, Zemmour D, McGuire AM, Burzyn D, Ortiz‐Lopez A, Lobera M, Yang J, Ghosh S, Earl A, Snapper SB, Jupp R, Kasper D, Mathis D, Benoist C. MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349: 993‐997, 2015.
 256.Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev 90: 859‐904, 2010.
 257.Selye H, Hall CE, Rowley EM. Malignant hypertension produced by treatment with desoxycorticosterone acetate and sodium chloride. Can Med Assoc J 49: 88‐92, 1943.
 258.Shah HN, Collins DM. Prevotella, a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides. Int J Syst Bacteriol 40: 205‐208, 1990.
 259.Shan Z, Zubcevic J, Shi P, Jun JY, Dong Y, Murça TM, Lamont GJ, Cuadra A, Yuan W, Qi Y, Li Q, Paton JF, Katovich MJ, Sumners C, Raizada MK. Chronic knockdown of the nucleus of the solitary tract AT1 receptors increases blood inflammatory‐endothelial progenitor cell ratio and exacerbates hypertension in the spontaneously hypertensive rat. Hypertension 61: 1328‐1333, 2013.
 260.Sharma RK, Yang T, Oliveira AC, Lobaton GO, Aquino V, Kim S, Richards EM, Pepine CJ, Sumners C, Raizada MK. Microglial cells impact gut microbiota and gut pathology in angiotensin II‐induced hypertension. Circ Res 124 (5): 727‐736, 2019.
 261.Shea MK, Booth SL, Weiner DE, Brinkley TE, Kanaya AM, Murphy RA, Simonsick EM, Wassel CL, Vermeer C, Kritchevsky SB, Study HA. Circulating vitamin K is inversely associated with incident cardiovascular disease risk among those treated for hypertension in the health, aging, and body composition study (health ABC). J Nutr 147: 888‐895, 2017.
 262.Shi P, Diez‐Freire C, Jun JY, Qi Y, Katovich MJ, Li Q, Sriramula S, Francis J, Sumners C, Raizada MK. Brain microglial cytokines in neurogenic hypertension. Hypertension 56: 297‐303, 2010.
 263.Shi Z, Yuan B, Taylor AW, Dai Y, Pan X, Gill TK, Wittert GA. Monosodium glutamate is related to a higher increase in blood pressure over 5 years: Findings from the Jiangsu Nutrition Study of Chinese adults. J Hypertens 29: 846‐853, 2011.
 264.Shimada M, Hasegawa T, Nishimura C, Kan H, Kanno T, Nakamura T, Matsubayashi T. Anti‐hypertensive effect of gamma‐aminobutyric acid (GABA)‐rich Chlorella on high‐normal blood pressure and borderline hypertension in placebo‐controlled double blind study. Clin Exp Hypertens 31: 342‐354, 2009.
 265.Singh Y, Samuel VP, Dahiya S, Gupta G, Gillhotra R, Mishra A, Singh M, SreeHarsha N, Gubbiyappa SK, Tambuwala MM, Chellappan DK, Dua K. Combinational effect of angiotensin receptor blocker and folic acid therapy on uric acid and creatinine level in hyperhomocysteinemia‐associated hypertension. Biotechnol Appl Biochem 66: 715‐719, 2019.
 266.Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez‐Humarán LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière HM, Doré J, Marteau P, Seksik P, Langella P. Faecalibacterium prausnitzii is an anti‐inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105: 16731‐16736, 2008.
 267.Sonnenburg JL, Bäckhed F. Diet‐microbiota interactions as moderators of human metabolism. Nature 535: 56‐64, 2016.
 268.Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, Buhler JD, Gordon JI. Glycan foraging in vivo by an intestine‐adapted bacterial symbiont. Science 307: 1955‐1959, 2005.
 269.Stamler J, Brown IJ, Daviglus ML, Chan Q, Kesteloot H, Ueshima H, Zhao L, Elliott P, INTERMAP Research Group. Glutamic acid, the main dietary amino acid, and blood pressure: The INTERMAP Study (International Collaborative Study of Macronutrients, Micronutrients and Blood Pressure). Circulation 120: 221‐228, 2009.
 270.Steinert RE, Lee YK, Sybesma W. Vitamins for the gut microbiome. Trends Mol Med 26: 137‐140, 2020.
 271.Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res 1693: 128‐133, 2018.
 272.Sumners C, Tang W, Zelezna B, Raizada MK. Angiotensin II receptor subtypes are coupled with distinct signal‐transduction mechanisms in neurons and astrocytes from rat brain. Proc Natl Acad Sci USA 88: 7567‐7571, 1991.
 273.Sun Q, Wang B, Li Y, Sun F, Li P, Xia W, Zhou X, Li Q, Wang X, Chen J, Zeng X, Zhao Z, He H, Liu D, Zhu Z. Taurine supplementation lowers blood pressure and improves vascular function in prehypertension: Randomized, double‐blind, placebo‐controlled study. Hypertension 67: 541‐549, 2016.
 274.Sun S, Li H, Chen J, Qian Q. Lactic acid: No longer an inert and end‐product of glycolysis. Physiology (Bethesda) 32: 453‐463, 2017.
 275.Sun S, Lulla A, Sioda M, Winglee K, Wu MC, Jacobs DR, Shikany JM, Lloyd‐Jones DM, Launer LJ, Fodor AA, Meyer KA. Gut microbiota composition and blood pressure. Hypertension 73: 998‐1006, 2019.
 276.Sun X, Threadgill D, Jobin C. Campylobacter jejuni induces colitis through activation of mammalian target of rapamycin signaling. Gastroenterology 142: 86‐95.e85, 2012.
 277.Svingen GF, Ueland PM, Pedersen EK, Schartum‐Hansen H, Seifert R, Ebbing M, Løland KH, Tell GS, Nygård O. Plasma dimethylglycine and risk of incident acute myocardial infarction in patients with stable angina pectoris. Arterioscler Thromb Vasc Biol 33: 2041‐2048, 2013.
 278.Tajima Y, Ichikawa S, Sakamaki T, Matsuo H, Aizawa F, Kogure M, Yagi S, Murata K. Body fluid distribution in the maintenance of DOCA‐salt hypertension in rats. Am J Phys 244: H695‐H700, 1983.
 279.Takesue K, Kishi T, Hirooka Y, Sunagawa K. Activation of microglia within paraventricular nucleus of hypothalamus is NOT involved in maintenance of established hypertension. J Cardiol 69: 84‐88, 2017.
 280.Tamanai‐Shacoori Z, Smida I, Bousarghin L, Loreal O, Meuric V, Fong SB, Bonnaure‐Mallet M, Jolivet‐Gougeon A. Roseburia spp.: A marker of health? Future Microbiol 12: 157‐170, 2017.
 281.Tan P, Li X, Shen J, Feng Q. Fecal microbiota transplantation for the treatment of inflammatory bowel disease: An update. Front Pharmacol 11: 574533, 2020.
 282.Tan TG, Sefik E, Geva‐Zatorsky N, Kua L, Naskar D, Teng F, Pasman L, Ortiz‐Lopez A, Jupp R, Wu HJ, Kasper DL, Benoist C, Mathis D. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc Natl Acad Sci U S A 113: E8141‐E8150, 2016.
 283.Tanca A, Manghina V, Fraumene C, Palomba A, Abbondio M, Deligios M, Silverman M, Uzzau S. Metaproteogenomics reveals taxonomic and functional changes between cecal and fecal microbiota in mouse. Front Microbiol 8: 391, 2017.
 284.Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res 120: 1183‐1196, 2017.
 285.Tapiainen T, Koivusaari P, Brinkac L, Lorenzi HA, Salo J, Renko M, Pruikkonen H, Pokka T, Li W, Nelson K, Pirttilä AM, Tejesvi MV. Impact of intrapartum and postnatal antibiotics on the gut microbiome and emergence of antimicrobial resistance in infants. Sci Rep 9: 10635, 2019.
 286.Tian Z, Liu Y, Usa K, Mladinov D, Fang Y, Ding X, Greene AS, Cowley AW, Liang M. Novel role of fumarate metabolism in dahl‐salt sensitive hypertension. Hypertension 54: 255‐260, 2009.
 287.Toral M, Robles‐Vera I, de la Visitación N, Romero M, Sánchez M, Gómez‐Guzmán M, Rodriguez‐Nogales A, Yang T, Jiménez R, Algieri F, Gálvez J, Raizada MK, Duarte J. Role of the immune system in vascular function and blood pressure control induced by fecal microbiota transplantation in rats. Acta Physiol (Oxf) 227 (1): e13285, 2019.
 288.Toral M, Robles‐Vera I, de la Visitación N, Romero M, Yang T, Sánchez M, Gómez‐Guzmán M, Jiménez R, Raizada MK, Duarte J. Critical role of the interaction gut microbiota ‐ Sympathetic nervous system in the regulation of blood pressure. Front Physiol 10: 231, 2019.
 289.Turroni F, Peano C, Pass DA, Foroni E, Severgnini M, Claesson MJ, Kerr C, Hourihane J, Murray D, Fuligni F, Gueimonde M, Margolles A, De Bellis G, O'Toole PW, van Sinderen D, Marchesi JR, Ventura M. Diversity of bifidobacteria within the infant gut microbiota. PLoS One 7: e36957, 2012.
 290.Turroni F, van Sinderen D, Ventura M. Genomics and ecological overview of the genus Bifidobacterium. Int J Food Microbiol 149: 37‐44, 2011.
 291.Ufnal M, Jazwiec R, Dadlez M, Drapala A, Sikora M, Skrzypecki J. Trimethylamine‐N‐oxide: A carnitine‐derived metabolite that prolongs the hypertensive effect of angiotensin II in rats. Can J Cardiol 30: 1700‐1705, 2014.
 292.Ufnal M, Nowiński A. Is increased plasma TMAO a compensatory response to hydrostatic and osmotic stress in cardiovascular diseases? Med Hypotheses 130: 109271, 2019.
 293.Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 141: 769‐776, 2011.
 294.van Ballegooijen AJ, Cepelis A, Visser M, Brouwer IA, van Schoor NM, Beulens JW. Joint association of low vitamin D and vitamin K status with blood pressure and hypertension. Hypertension 69: 1165‐1172, 2017.
 295.van Passel MW, Kant R, Zoetendal EG, Plugge CM, Derrien M, Malfatti SA, Chain PS, Woyke T, Palva A, de Vos WM, Smidt H. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS One 6: e16876, 2011.
 296.van Roeyen CRC, Martin IV, Drescher A, Schuett KA, Hermert D, Raffetseder U, Otten S, Buhl EM, Braun GS, Kuppe C, Liehn E, Boor P, Weiskirchen R, Eriksson U, Gross O, Eitner F, Floege J, Ostendorf T. Identification of platelet‐derived growth factor C as a mediator of both renal fibrosis and hypertension. Kidney Int 95: 1103‐1119, 2019.
 297.Vanderpool C, Yan F, Polk DB. Mechanisms of probiotic action: Implications for therapeutic applications in inflammatory bowel diseases. Inflamm Bowel Dis 14: 1585‐1596, 2008.
 298.Vanholder R, Schepers E, Pletinck A, Nagler EV, Glorieux G. The uremic toxicity of indoxyl sulfate and p‐cresyl sulfate: A systematic review. J Am Soc Nephrol 25: 1897‐1907, 2014.
 299.Vieira‐Silva S, Falony G, Belda E, Nielsen T, Aron‐Wisnewsky J, Chakaroun R, Forslund SK, Assmann K, Valles‐Colomer M, Nguyen TTD, Proost S, Prifti E, Tremaroli V, Pons N, Le Chatelier E, Andreelli F, Bastard JP, Coelho LP, Galleron N, Hansen TH, Hulot JS, Lewinter C, Pedersen HK, Quinquis B, Rouault C, Roume H, Salem JE, Søndertoft NB, Touch S, Dumas ME, Ehrlich SD, Galan P, Gøtze JP, Hansen T, Holst JJ, Køber L, Letunic I, Nielsen J, Oppert JM, Stumvoll M, Vestergaard H, Zucker JD, Bork P, Pedersen O, Bäckhed F, Clément K, Raes J, Consortium M. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 581: 310‐315, 2020.
 300.Visick KL, Foster J, Doino J, McFall‐Ngai M, Ruby EG. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J Bacteriol 182: 4578‐4586, 2000.
 301.Vital M, Rud T, Rath S, Pieper DH, Schlüter D. Diversity of bacteria exhibiting bile acid‐inducible 7α‐dehydroxylation genes in the human gut. Comput Struct Biotechnol J 17: 1016‐1019, 2019.
 302.Wang L, Hou E, Wang Z, Sun N, He L, Chen L, Liang M, Tian Z. Analysis of metabolites in plasma reveals distinct metabolic features between Dahl salt‐sensitive rats and consomic SS.13(BN) rats. Biochem Biophys Res Commun 450: 863‐869, 2014.
 303.Wang L, Zhu Q, Lu A, Liu X, Zhang L, Xu C, Li H, Yang T. Sodium butyrate suppresses angiotensin II‐induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin‐angiotensin system. J Hypertens 35: 1899‐1908, 2017.
 304.Wang PX, Deng XR, Zhang CH, Yuan HJ. Gut microbiota and metabolic syndrome. Chin Med J (Engl) 133: 808‐816, 2020.
 305.Wang X, He G, Peng Y, Zhong W, Wang Y, Zhang B. Sodium butyrate alleviates adipocyte inflammation by inhibiting NLRP3 pathway. Sci Rep 5: 12676, 2015.
 306.Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472: 57‐63, 2011.
 307.Wang ZK, Yang YS, Stefka AT, Sun G, Peng LH. Review article: Fungal microbiota and digestive diseases. Aliment Pharmacol Ther 39: 751‐766, 2014.
 308.Watanabe‐Kamiyama M, Kamiyama S, Horiuchi K, Ohinata K, Shirakawa H, Furukawa Y, Komai M. Antihypertensive effect of biotin in stroke‐prone spontaneously hypertensive rats. Br J Nutr 99: 756‐763, 2008.
 309.Waters CM, Bassler BL. Quorum sensing: Cell‐to‐cell communication in bacteria. Annu Rev Cell Dev Biol 21: 319‐346, 2005.
 310.Watts SW, Morrison SF, Davis RP, Barman SM. Serotonin and blood pressure regulation. Pharmacol Rev 64: 359‐388, 2012.
 311.Weber GJ, Foster J, Pushpakumar SB, Sen U. Altered microRNA regulation of short chain fatty acid receptors in the hypertensive kidney is normalized with hydrogen sulfide supplementation. Pharmacol Res 134: 157‐165, 2018.
 312.Wexler HM. Bacteroides: The good, the bad, and the nitty‐gritty. Clin Microbiol Rev 20: 593‐621, 2007.
 313.Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, Haase S, Mähler A, Balogh A, Markó L, Vvedenskaya O, Kleiner FH, Tsvetkov D, Klug L, Costea PI, Sunagawa S, Maier L, Rakova N, Schatz V, Neubert P, Frätzer C, Krannich A, Gollasch M, Grohme DA, Côrte‐Real BF, Gerlach RG, Basic M, Typas A, Wu C, Titze JM, Jantsch J, Boschmann M, Dechend R, Kleinewietfeld M, Kempa S, Bork P, Linker RA, Alm EJ, Müller DN. Salt‐responsive gut commensal modulates T. Nature 551: 585‐589, 2017.
 314.Wu D, Tang X, Ding L, Cui J, Wang P, Du X, Yin J, Wang W, Chen Y, Zhang T. Candesartan attenuates hypertension‐associated pathophysiological alterations in the gut. Biomed Pharmacother 116: 109040, 2019.
 315.Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD. Linking long‐term dietary patterns with gut microbial enterotypes. Science 334: 105‐108, 2011.
 316.Xavier RJ. Microbiota as therapeutic targets. Dig Dis 34: 558‐565, 2016.
 317.Xun P, Liu K, Loria CM, Bujnowski D, Shikany JM, Schreiner PJ, Sidney S, He K. Folate intake and incidence of hypertension among American young adults: A 20‐y follow‐up study. Am J Clin Nutr 95: 1023‐1030, 2012.
 318.Yan Q, Gu Y, Li X, Yang W, Jia L, Chen C, Han X, Huang Y, Zhao L, Li P, Fang Z, Zhou J, Guan X, Ding Y, Wang S, Khan M, Xin Y, Li S, Ma Y. Alterations of the gut microbiome in hypertension. Front Cell Infect Microbiol 7: 381, 2017.
 319.Yan X, Jin J, Su X, Yin X, Gao J, Wang X, Zhang S, Bu P, Wang M, Zhang Y, Wang Z, Zhang Q. Intestinal flora modulates blood pressure by regulating the synthesis of intestinal‐derived corticosterone in high salt‐induced hypertension. Circ Res 126: 839‐853, 2020.
 320.Yang T, Aquino V, Lobaton GO, Li H, Colon‐Perez L, Goel R, Qi Y, Zubcevic J, Febo M, Richards EM, Pepine CJ, Raizada MK. Sustained captopril‐induced reduction in blood pressure is associated with alterations in gut‐brain axis in the spontaneously hypertensive rat. J Am Heart Assoc 8: e010721, 2019.
 321.Yang T, Chakraborty S, Saha P, Mell B, Cheng X, Yeo JY, Mei X, Zhou G, Mandal J, Golonka R, Yeoh BS, Putluri V, Piyarathna DWB, Putluri N, McCarthy CG, Wenceslau CF, Sreekumar A, Gewirtz A, Vijay‐Kumar M, Joe B. Gnotobiotic rats reveal that gut microbiota regulates colonic mRNA of Ace2, the receptor for SARS-CoV-2 infectivity. Hypertension 76 (1): e1‐e3, 2020.
 322.Yang T, Li H, Oliveira AC, Goel R, Richards EM, Pepine CJ, Raizada MK. Transcriptomic signature of gut microbiome‐contacting cells in colon of spontaneously hypertensive rats. Physiol Genomics 52: 121‐132, 2020.
 323.Yang T, Magee KL, Colon‐Perez LM, Larkin R, Liao YS, Balazic E, Cowart JR, Arocha R, Redler T, Febo M, Vickroy T, Martyniuk CJ, Reznikov LR, Zubcevic J. Impaired butyrate absorption in the proximal colon, low serum butyrate and diminished central effects of butyrate on blood pressure in spontaneously hypertensive rats. Acta Physiol (Oxf) 226 (2): e13256, 2019.
 324.Yang T, Owen JL, Lightfoot YL, Kladde MP, Mohamadzadeh M. Microbiota impact on the epigenetic regulation of colorectal cancer. Trends Mol Med 19: 714‐725, 2013.
 325.Yang T, Richards EM, Pepine CJ, Raizada MK. The gut microbiota and the brain‐gut‐kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol 14: 442‐456, 2018.
 326.Yang T, Rodriguez V, Malphurs WL, Schmidt JT, Ahmari N, Sumners C, Martyniuk CJ, Zubcevic J. Butyrate regulates inflammatory cytokine expression without affecting oxidative respiration in primary astrocytes from spontaneously hypertensive rats. Physiol Rep 6: e13732, 2018.
 327.Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, Zadeh M, Gong M, Qi Y, Zubcevic J, Sahay B, Pepine CJ, Raizada MK, Mohamadzadeh M. Gut dysbiosis is linked to hypertension. Hypertension 65: 1331‐1340, 2015.
 328.Yang T, Zubcevic J. Gut‐brain axis in regulation of blood pressure. Front Physiol 8: 845, 2017.
 329.Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161: 264‐276, 2015.
 330.Yisireyili M, Shimizu H, Saito S, Enomoto A, Nishijima F, Niwa T. Indoxyl sulfate promotes cardiac fibrosis with enhanced oxidative stress in hypertensive rats. Life Sci 92: 1180‐1185, 2013.
 331.Yoshii Y, Furukawa T, Yoshii H, Mori T, Kiyono Y, Waki A, Kobayashi M, Tsujikawa T, Kudo T, Okazawa H, Yonekura Y, Fujibayashi Y. Cytosolic acetyl‐CoA synthetase affected tumor cell survival under hypoxia: The possible function in tumor acetyl‐CoA/acetate metabolism. Cancer Sci 100: 821‐827, 2009.
 332.Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, D'Agostino D, Planavsky N, Lupfer C, Kanneganti TD, Kang S, Horvath TL, Fahmy TM, Crawford PA, Biragyn A, Alnemri E, Dixit VD. The ketone metabolite β‐hydroxybutyrate blocks NLRP3 inflammasome‐mediated inflammatory disease. Nat Med 21: 263‐269, 2015.
 333.Young VR, Ajami AM. Glutamate: An amino acid of particular distinction. J Nutr 130: 892S‐900S, 2000.
 334.Yuan X, Li X, Ji Z, Xiao J, Zhang L, Zhang W, Su H, Kaliannan K, Long Y, Shao Z. Effects of vitamin C supplementation on blood pressure and hypertension control in response to ambient temperature changes in patients with essential hypertension. Clin Exp Hypertens 41: 414‐421, 2019.
 335.Zaunmüller T, Eichert M, Richter H, Unden G. Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Appl Microbiol Biotechnol 72: 421‐429, 2006.
 336.Zavecz JH, Battarbee HD. The role of lipophilic bile acids in the development of cirrhotic cardiomyopathy. Cardiovasc Toxicol 10: 117‐129, 2010.
 337.Zeisel SH, daCosta KA, Youssef M, Hensey S. Conversion of dietary choline to trimethylamine and dimethylamine in rats: Dose‐response relationship. J Nutr 119: 800‐804, 1989.
 338.Zeisel SH, Wishnok JS, Blusztajn JK. Formation of methylamines from ingested choline and lecithin. J Pharmacol Exp Ther 225: 320‐324, 1983.
 339.Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, Chen Y, Ji L. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 8: e71108, 2013.
 340.Zubcevic J, Richards EM, Yang T, Kim S, Sumners C, Pepine CJ, Raizada MK. Impaired autonomic nervous system‐microbiome circuit in hypertension. Circ Res 125: 104‐116, 2019.
 341.Zubcevic J, Santisteban MM, Perez PD, Arocha R, Hiller H, Malphurs WL, Colon‐Perez LM, Sharma RK, de Kloet A, Krause EG, Febo M, Raizada MK. A single angiotensin II hypertensive stimulus is associated with prolonged neuronal and immune system activation in Wistar‐Kyoto rats. Front Physiol 8: 592, 2017.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Tao Yang, Saroj Chakraborty, Juthika Mandal, Xue Mei, Bina Joe. Microbiota and Metabolites as Factors Influencing Blood Pressure Regulation. Compr Physiol 2021, 11: 1731-1757. doi: 10.1002/cphy.c200009