Comprehensive Physiology Wiley Online Library

Glucagon's Metabolic Action in Health and Disease

Full Article on Wiley Online Library



Abstract

Discovered almost simultaneously with insulin, glucagon is a pleiotropic hormone with metabolic action that goes far beyond its classical role to increase blood glucose. Albeit best known for its ability to directly act on the liver to increase de novo glucose production and to inhibit glycogen breakdown, glucagon lowers body weight by decreasing food intake and by increasing metabolic rate. Glucagon further promotes lipolysis and lipid oxidation and has positive chronotropic and inotropic effects in the heart. Interestingly, recent decades have witnessed a remarkable renaissance of glucagon's biology with the acknowledgment that glucagon has pharmacological value beyond its classical use as rescue medication to treat severe hypoglycemia. In this article, we summarize the multifaceted nature of glucagon with a special focus on its hepatic action and discuss the pharmacological potential of either agonizing or antagonizing the glucagon receptor for health and disease. © 2021 American Physiological Society. Compr Physiol 11:1759‐1783, 2021.

Figure 1. Figure 1. Schematic on the transcriptional regulation of preproglucagon in the pancreatic α‐ and β‐cells. The expression of preproglucagon is regulated through interaction of home domain proteins that bind to the preproglucagon promoter region, which comprises a minimal promoter region and an enhancer region. For further explanations please see text.
Figure 2. Figure 2. Proposed model of Gcgr trafficking and signaling. Stimulations with glucagon induce glucagon receptor recruitment into clathrin‐coated vesicles on the plasma membrane through the interaction of β‐arrestins with the cytoplasmic tail of the receptor and subsequent interaction with the clathrin coat. Short‐term stimulations with glucagon increase glucagon receptor presence in early endosomes and enhanced signaling, followed by receptor recycling. Upon long‐term treatments, reoccurrence of the receptor on the membrane is reduced, and its lysosomal degradation increases. Regulators of these sorting mechanisms on early and late endosomes, such as retromer and WASH complex for recycling and ESCRTs for degradation have been shown to be involved in other GPCR trafficking, however, the knowledge on Gcgr is still very limited and represented by question marks.
Figure 3. Figure 3. Schematic on the direct and indirect metabolic effects of glucagon.
Figure 4. Figure 4. Glucagon effects on hepatic glucose and lipid metabolism. Activation of glucagon receptor by glucagon in hepatocyte stimulates adenylate cyclase‐/cAMP‐/PKA‐dependent phosphorylation of Creb and dephosphorylation/nuclear translocation of Crtc2. p‐Creb induces transcription of gluconeogenic genes G6Pase and Pck1. PKA activates phosphorylase synthase and inhibits glycogen synthase, thus stimulating glycogen breakdown. In addition, PKA activates FBPase2 and inhibits PFK‐1 and pyruvate kinase, thereby enhancing gluconeogenesis and inhibiting glycolysis. By AC dependent inhibition of SIK2, glucagon stimulates activation of p300, which facilitates transcription of gluconeogenic genes. p‐CREB induces transcription of Ppar‐α that enhances transcription of β‐oxidation genes Cpt1 and Mcad. ATP to cAMP conversion leads to enhanced AMP/ATP ratio leading to AMPK activation and inhibition of ACC. This results in inhibiting the conversion of acetyl‐CoA to malonyl‐CoA by ACC and subsequent decreases the lipid synthesis pathway. As a consequence malonyl‐CoA formation is reduced which induces an accumulation of Cpt1. Cpt1 enhances fatty acyl‐CoA transport into mitochondria and induces β‐oxidation. In addition, glucagon stimulates AMPK and mitochondrial IP3R1 further activating β‐oxidation. Acetyl‐CoA subsequently enters Krebs cycle for ketone body formation during prolonged starvation. Abbreviations, AC, adenylyl cyclase; cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; Creb, cAMP‐responsive element‐binding protein; G6Pase, glucose 6 phosphatase; Pck1, phosphoenol pyruvate carboxykinase 1; FBPase 2, fructose 2,6‐bisphosphatase; PFK‐1, phospho‐fructokinase 1; Crtc2, Creb‐regulated transcription coactivator 2; SIK2, salt‐inducible kinase 2; Ppar‐α, peroxisome proliferator‐activated receptor alpha; Cpt1, carnitine palmitoyltransferase 1; Mcad, medium‐chain acyl‐CoA dehydrogenase; ATP, adenosine triphosphate; AMP, adenosine monophosphate; AMPK, AMP‐activated protein kinase; ACC, acetyl‐CoA carboxylase; IP3R1, inositol triphosphate receptor 1; FFA, free fatty acid; TAG, tri‐acyl glycerol; VLDL, very low‐density‐lipoprotein; LCAD, long‐chain acyl‐CoA dehydrogenase.


Figure 1. Schematic on the transcriptional regulation of preproglucagon in the pancreatic α‐ and β‐cells. The expression of preproglucagon is regulated through interaction of home domain proteins that bind to the preproglucagon promoter region, which comprises a minimal promoter region and an enhancer region. For further explanations please see text.


Figure 2. Proposed model of Gcgr trafficking and signaling. Stimulations with glucagon induce glucagon receptor recruitment into clathrin‐coated vesicles on the plasma membrane through the interaction of β‐arrestins with the cytoplasmic tail of the receptor and subsequent interaction with the clathrin coat. Short‐term stimulations with glucagon increase glucagon receptor presence in early endosomes and enhanced signaling, followed by receptor recycling. Upon long‐term treatments, reoccurrence of the receptor on the membrane is reduced, and its lysosomal degradation increases. Regulators of these sorting mechanisms on early and late endosomes, such as retromer and WASH complex for recycling and ESCRTs for degradation have been shown to be involved in other GPCR trafficking, however, the knowledge on Gcgr is still very limited and represented by question marks.


Figure 3. Schematic on the direct and indirect metabolic effects of glucagon.


Figure 4. Glucagon effects on hepatic glucose and lipid metabolism. Activation of glucagon receptor by glucagon in hepatocyte stimulates adenylate cyclase‐/cAMP‐/PKA‐dependent phosphorylation of Creb and dephosphorylation/nuclear translocation of Crtc2. p‐Creb induces transcription of gluconeogenic genes G6Pase and Pck1. PKA activates phosphorylase synthase and inhibits glycogen synthase, thus stimulating glycogen breakdown. In addition, PKA activates FBPase2 and inhibits PFK‐1 and pyruvate kinase, thereby enhancing gluconeogenesis and inhibiting glycolysis. By AC dependent inhibition of SIK2, glucagon stimulates activation of p300, which facilitates transcription of gluconeogenic genes. p‐CREB induces transcription of Ppar‐α that enhances transcription of β‐oxidation genes Cpt1 and Mcad. ATP to cAMP conversion leads to enhanced AMP/ATP ratio leading to AMPK activation and inhibition of ACC. This results in inhibiting the conversion of acetyl‐CoA to malonyl‐CoA by ACC and subsequent decreases the lipid synthesis pathway. As a consequence malonyl‐CoA formation is reduced which induces an accumulation of Cpt1. Cpt1 enhances fatty acyl‐CoA transport into mitochondria and induces β‐oxidation. In addition, glucagon stimulates AMPK and mitochondrial IP3R1 further activating β‐oxidation. Acetyl‐CoA subsequently enters Krebs cycle for ketone body formation during prolonged starvation. Abbreviations, AC, adenylyl cyclase; cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; Creb, cAMP‐responsive element‐binding protein; G6Pase, glucose 6 phosphatase; Pck1, phosphoenol pyruvate carboxykinase 1; FBPase 2, fructose 2,6‐bisphosphatase; PFK‐1, phospho‐fructokinase 1; Crtc2, Creb‐regulated transcription coactivator 2; SIK2, salt‐inducible kinase 2; Ppar‐α, peroxisome proliferator‐activated receptor alpha; Cpt1, carnitine palmitoyltransferase 1; Mcad, medium‐chain acyl‐CoA dehydrogenase; ATP, adenosine triphosphate; AMP, adenosine monophosphate; AMPK, AMP‐activated protein kinase; ACC, acetyl‐CoA carboxylase; IP3R1, inositol triphosphate receptor 1; FFA, free fatty acid; TAG, tri‐acyl glycerol; VLDL, very low‐density‐lipoprotein; LCAD, long‐chain acyl‐CoA dehydrogenase.
References
 1.Ali S, Ussher JR, Baggio LL, Kabir MG, Charron MJ, Ilkayeva O, Newgard CB, Drucker DJ. Cardiomyocyte glucagon receptor signaling modulates outcomes in mice with experimental myocardial infarction. Mol Metab 4 (2): 132‐143, 2015.
 2.Almdal TP, Holst JJ, Heindorff H, Vilstrup H. Glucagon immunoneutralization in diabetic rats normalizes urea synthesis and decreases nitrogen wasting. Diabetes 41 (1): 12‐16, 1992.
 3.Altarejos JY, Montminy M. CREB and the CRTC co‐activators: Sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12 (3): 141‐151, 2011.
 4.Amatuzio DS, Grande F, Wada S. Effect of glucagon on the serum lipids in essential hyperlipemia and in hypercholesterolemia. Metabolism 11: 1240‐1249, 1962.
 5.Ambery PD, Klammt S, Posch MG, Petrone M, Pu W, Rondinone C, Jermutus L, Hirshberg B. MEDI0382, a GLP‐1/glucagon receptor dual agonist, meets safety and tolerability endpoints in a single‐dose, healthy‐subject, randomized, phase 1 study. Br J Clin Pharmacol 84 (10): 2325‐2335, 2018.
 6.Ambery P, Parker VE, Stumvoll M, Posch MG, Heise T, Plum‐Moerschel L, Tsai L‐F, Robertson D, Jain M, Petrone M, Rondinone C, Hirshberg B, Jermutus L. MEDI0382, a GLP‐1 and glucagon receptor dual agonist, in obese or overweight patients with type 2 diabetes: A randomised, controlled, double‐blind, ascending dose and phase 2a study. Lancet 391 (10140): 2607‐2618, 2018.
 7.Authier F, Desbuquois B. Glucagon receptors. Cell Mol Life Sci 65 (12): 1880‐1899, 2008.
 8.Authier F, Desbuquois B, De Galle B. Ligand‐mediated internalization of glucagon receptors in intact rat liver. Endocrinology 131 (1): 447‐457, 1992.
 9.Babaknejad N, Nayeri H, Hemmati R, Bahrami S, Esmaillzadeh A. An overview of FGF19 and FGF21: The therapeutic role in the treatment of the metabolic disorders and obesity. Horm Metab Res 50 (6): 441‐452, 2018.
 10.Badman MK, Koester A, Flier JS, Kharitonenkov A, Maratos‐Flier E. Fibroblast growth factor 21‐deficient mice demonstrate impaired adaptation to ketosis. Endocrinology 150 (11): 4931‐4940, 2009.
 11.Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos‐Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5 (6): 426‐437, 2007.
 12.Baggio LL, Drucker DJ. Biology of incretins: GLP‐1 and GIP. Gastroenterology 132 (6): 2131‐2157, 2007.
 13.Banks WA, Kastin AJ. Peptides and the blood‐brain barrier: Lipophilicity as a predictor of permeability. Brain Res Bull 15 (3): 287‐292, 1985.
 14.Barki‐Harrington L, Rockman HA. Beta‐arrestins: Multifunctional cellular mediators. Physiology (Bethesda) 23: 17‐22, 2008.
 15.Bartlett PJ, Gaspers LD, Pierobon N, Thomas AP. Calcium‐dependent regulation of glucose homeostasis in the liver. Cell Calcium 55 (6): 306‐316, 2014.
 16.Battezzati A, Simonson DC, Luzi L, Matthews DE. Glucagon increases glutamine uptake without affecting glutamine release in humans. Metabolism 47 (6): 713‐723, 1998.
 17.Beaudry JL, Kaur KD, Varin EM, Baggio LL, Cao X, Mulvihill EE, Stern JH, Campbell JE, Scherer PE, Drucker DJ. The brown adipose tissue glucagon receptor is functional but not essential for control of energy homeostasis in mice. Mol Metab 22: 37‐48, 2019.
 18.Bell GI, Sanchez‐Pescador R, Laybourn PJ, Najarian RC. Exon duplication and divergence in the human preproglucagon gene. Nature 304 (5924): 368‐371, 1983.
 19.Berglund ED, Lee‐Young RS, Lustig DG, Lynes SE, Donahue EP, Camacho RC, Meredith ME, Magnuson MA, Charron MJ, Wasserman DH. Hepatic energy state is regulated by glucagon receptor signaling in mice. J Clin Invest 119 (8): 2412‐2422, 2009.
 20.Bergman A, Tan B, Somayaji VR, Calle RA, Kazierad DJ. A 4‐week study assessing the pharmacokinetics, pharmacodynamics, safety, and tolerability of the glucagon receptor antagonist PF‐06291874 administered as monotherapy in subjects with type 2 diabetes mellitus. Diabetes Res Clin Pract 126: 95‐104, 2017.
 21.Betzenhauser MJ, Fike JL, Wagner LE, Yule DI. Protein kinase A increases type‐2 inositol 1, 4, 5‐trisphosphate receptor activity by phosphorylation of serine 937. Journal of Biological Chemistry 284 (37): 25116‐25125, 2009.
 22.Beynen AC, Haagsman HP, Van Golde LM, Geelen MJ. The effects of insulin and glucagon on the release of triacylglycerols by isolated rat hepatocytes are mere reflections of the hormonal effects on the rate of triacylglycerol synthesis. Biochim Biophy Acta 665 (1): 1‐7, 1981.
 23.Billington CJ, Briggs JE, Link JG, Levine AS. Glucagon in physiological concentrations stimulates brown fat thermogenesis in vivo. Am J Physiol 261 (2 Pt 2): R501‐R507, 1991.
 24.Bjornsson OG, Sparks JD, Sparks CE, Gibbons GF. Regulation of VLDL secretion in primary culture of rat hepatocytes: Involvement of cAMP and cAMP‐dependent protein kinases. Eur J Clin Invest 24 (2): 137‐148, 1994.
 25.Blauw H, Wendl I, DeVries J, Heise T, Jax T, Consortium P. Pharmacokinetics and pharmacodynamics of various glucagon dosages at different blood glucose levels. Diabetes, Obes Metab 18 (1): 34‐39, 2016.
 26.Bloom SR, Edwards AV, Hardy RN. The role of the autonomic nervous system in the control of glucagon, insulin and pancreatic polypeptide release from the pancreas. J Physiol 280: 9‐23, 1978.
 27.Boland ML, Laker RC, Mather K, Nawrocki A, Oldham S, Boland BB, Lewis H, Conway J, Naylor J, Guionaud S, Feigh M, Veidal SS, Lantier L, McGuinness OP, Grimsby J. Resolution of NASH and hepatic fibrosis by the GLP‐1R/GcgR dual‐agonist Cotadutide via modulating mitochondrial function and lipogenesis. Nat Metab 2 (5): 413‐431, 2020.
 28.Bollheimer LC, Landauer HC, Troll S, Schweimer J, Wrede CE, Schölmerich J, Buettner R. Stimulatory short‐term effects of free fatty acids on glucagon secretion at low to normal glucose concentrations. Metabolism 53 (11): 1443‐1448, 2004.
 29.Bomboy JD Jr, Lewis SB, Lacy WW, Sinclair‐Smith BC, Liljenquist JE. Transient stimulatory effect of sustained hyperglucagonemia on splanchnic glucose production in normal and diabetic man. Diabetes 26 (3): 177‐174, 1977.
 30.Bonni A, Ginty DD, Dudek H, Greenberg ME. Serine 133‐phosphorylated CREB induces transcription via a cooperative mechanism that may confer specificity to neurotrophin signals. Mol Cell Neurosci 6 (2): 168‐183, 1995.
 31.Breton L, Clot JP, Baudry M. Effects of glucagon on basal metabolic rate and oxidative phosphorylation of rat liver mitochondria. Horm Metab Res 15 (9): 429‐432, 1983.
 32.Briant LJB, Dodd MS, Chibalina MV, Rorsman NJG, Johnson PRV, Carmeliet P, Rorsman P, Knudsen JG. CPT1a‐dependent long‐chain fatty acid oxidation contributes to maintaining glucagon secretion from pancreatic islets. Cell Rep 23 (11): 3300‐3311, 2018.
 33.Buggy JJ, Heurich RO, MacDougall M, Kelley KA, Livingston JN, Yoo‐Warren H, Rossomando AJ. Role of the glucagon receptor COOH‐terminal domain in glucagon‐mediated signaling and receptor internalization. Diabetes 46 (9): 1400‐1405, 1997.
 34.Burcelin R, Katz EB, Charron MJ. Molecular and cellular aspects of the glucagon receptor: Role in diabetes and metabolism. Diabetes Metab 22 (6): 373‐396, 1996.
 35.Burcelin R, Li J, Charron MJ. Cloning and sequence analysis of the murine glucagon receptor‐encoding gene. Gene 164 (2): 305‐310, 1995.
 36.Bürger M. Über den hepatischen Angriffspunkt des Insulins. Die primäre Paradoxe Insulinhyperglykämie. Z Ges Exp Med 65: 487, 1929.
 37.Bürger M. Primäre Hyperglykämie und Glykogenveränderung der Leber als Folge intraportaler Insulininjektion nach Untersuchungen am Hund. Z Ges Exp Med 67: 441, 1929.
 38.Bürger M. Über das Glukagon (die hyperglykämisierende Substanz der Pankreas). Z ges exp Med 96: 375, 1935.
 39.Butler PC, Rizza RA. Contribution to postprandial hyperglycemia and effect on initial splanchnic glucose clearance of hepatic glucose cycling in glucose‐intolerant or NIDDM patients. Diabetes 40 (1): 73‐81, 1991.
 40.Camporez JP, Jornayvaz FR, Petersen MC, Pesta D, Guigni BA, Serr J, Zhang D, Kahn M, Samuel VT, Jurczak MJ, Shulman GI. Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology 154 (9): 3099‐3109, 2013.
 41.Capozzi ME, Coch RW, Koech J, Astapova II, Wait JB, Encisco SE, Douros JD, El K, Finan B, Sloop KW, Herman MA, D'Alessio DA, Campbell JE. The limited role of glucagon for ketogenesis during fasting or in response to SGLT2 inhibition. Diabetes 2020.
 42.Cardenas C, Miller RA, Smith I, Bui T, Molgó J, Müller M, Vais H, Cheung K‐H, Yang J, Parker I, Thompson CB, Birnbaum MJ, Hallows KR, Foskett JK. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142 (2): 270‐283, 2010.
 43.Caren R. Glucagon and cholesterol metabolism. Metabolism 9: 938‐945, 1960.
 44.Caren R, Carbo L. Pancreatic alpha‐cell function in relation to cholesterol metabolism. J Clin Endocrinol Metab 16 (4): 507‐516, 1956.
 45.Caren R, Corbo L. Transfer of plasma lipid to platelets by action of glucagon. Metabolism 19 (8): 598‐607, 1970.
 46.Cegla J, Jones BJ, Gardiner JV, Hodson DJ, Marjot T, McGlone ER, Tan TM, Bloom SR. RAMP2 influences glucagon receptor pharmacology via trafficking and signaling. Endocrinology 158 (8): 2680‐2693, 2017.
 47.Chambers AP, Sorrell JE, Haller A, Roelofs K, Hutch CR, Kim K‐S, Gutierrez‐Aguilar R, Li B, Drucker DJ, D'Alessio DA, Seeley RJ, Sandoval DA. The role of pancreatic preproglucagon in glucose homeostasis in mice. Cell Metab 25 (4): 927, e923‐934, 2017.
 48.Chan HM, La Thangue NB. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 114 (Pt 13): 2363‐2373, 2001.
 49.Chia CW, Carlson OD, Kim W, Shin YK, Charles CP, Kim HS, Melvin DL, Egan JM. Exogenous glucose‐dependent insulinotropic polypeptide worsens post prandial hyperglycemia in type 2 diabetes. Diabetes 58 (6): 1342‐1349, 2009.
 50.Chini B, Parenti M. G‐protein coupled receptors in lipid rafts and caveolae: How, when and why do they go there? J Mol Endocrinol 32 (2): 325‐338, 2004.
 51.Christensen M, Vedtofte L, Holst JJ, Vilsbøll T, Knop FK. Glucose‐dependent insulinotropic polypeptide: A bifunctional glucose‐dependent regulator of glucagon and insulin secretion in humans. Diabetes 60 (12): 3103‐3109, 2011.
 52.Christensen MB, Calanna S, Holst JJ, Vilsboll T, Knop FK. Glucose‐dependent insulinotropic polypeptide: Blood glucose stabilizing effects in patients with type 2 diabetes. J Clin Endocrinol Metab 99 (3): E418‐E426, 2014.
 53.Clemmensen C, Chabenne J, Finan B, Sullivan L, Fischer K, Küchler D, Sehrer L, Ograjsek T, Hofmann SM, Schriever SC, Pfluger PT, Pinkstaff J, Tschöp MH, Dimarchi R, Müller TD. GLP‐1/glucagon coagonism restores leptin responsiveness in obese mice chronically maintained on an obesogenic diet. Diabetes 63 (4): 1422‐1427, 2014.
 54.Cockburn F, Hull D, Walton I. The effect of lipolytic hormones and theophylline on heat production in brown adipose tissue in vivo. Br J Pharmacol Chemother 31 (3): 568‐577, 1967.
 55.Combettes L, Berthon B, Binet A, Claret M. Glucagon and vasopressin interactions on Ca2+ movements in isolated hepatocytes. Biochem J 237 (3): 675‐683, 1986.
 56.Conarello SL, Jiang G, Mu J, Li Z, Woods J, Zycband E, Ronan J, Liu F, Sinha Roy R, Zhu L, Charron MJ, Zhang BB. Glucagon receptor knockout mice are resistant to diet‐induced obesity and streptozotocin‐mediated beta cell loss and hyperglycaemia. Diabetologia 50 (1): 142‐150, 2007.
 57.Constantin J, Ishii‐Iwamoto EL, Suzuki‐Kemmelmeier F, Yamamoto NS, Bracht A. The action of glucagon infused via the hepatic artery in anterograde and retrograde perfusion of the rat liver is not a function of the accessible cellular spaces. Biochim Biophys Acta 1244 (1): 169‐178, 1995.
 58.Cooperberg BA, Cryer PE. Insulin reciprocally regulates glucagon secretion in humans. Diabetes 59 (11): 2936‐2940, 2010.
 59.Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, Moller DE, Kharitonenkov A. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149 (12): 6018‐6027, 2008.
 60.Creutzfeldt WO, Kleine N, Willms B, Orskov C, Holst JJ, Nauck MA. Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon‐like peptide I(7‐36) amide in type I diabetic patients. Diabetes Care 19 (6): 580‐586, 1996.
 61.Cryer PE. Minireview: Glucagon in the pathogenesis of hypoglycemia and hyperglycemia in diabetes. Endocrinology 153 (3): 1039‐1048, 2012.
 62.Cullen PJ, Steinberg F. To degrade or not to degrade: Mechanisms and significance of endocytic recycling. Nat Rev Mol Cell Biol 19 (11): 679‐696, 2018.
 63.Cypess AM, Weiner LS, Roberts‐Toler C, Elía EF, Kessler SH, Kahn PA, English J, Chatman K, Trauger SA, Doria A, Kolodny GM. Activation of human brown adipose tissue by a beta3‐adrenergic receptor agonist. Cell Metab 21 (1): 33‐38, 2015.
 64.Cyphert HA, Alonge KM, Ippagunta SM, Hillgartner FB. Glucagon stimulates hepatic FGF21 secretion through a PKA‐ and EPAC‐dependent posttranscriptional mechanism. PLoS One 9 (4): e94996, 2014.
 65.Davidson IWF, Salter JM, Best CH. The effect of glucagon on the metabolic rate of rats. Am J Clin Nutr 8 (5): 540‐546, 1960.
 66.Day JW, Ottaway N, Patterson JT, Gelfanov V, Smiley D, Gidda J, Findeisen H, Bruemmer D, Drucker DJ, Chaudhary N, Holland J, Hembree J, Abplanalp W, Grant E, Ruehl J, Wilson H, Kirchner H, Lockie SH, Hofmann S, Woods SC, Nogueiras R, Pfluger PT, Perez‐Tilve D, DiMarchi R, Tschöp MH. A new glucagon and GLP‐1 co‐agonist eliminates obesity in rodents. Nat Chem Biol 5 (10): 749‐757, 2009.
 67.de Andrade IS, Zemdegs JC, de Souza AP, Watanabe RLH, Telles MM, Nascimento CMO, Oyama LM, Ribeiro EB. Diet‐induced obesity impairs hypothalamic glucose sensing but not glucose hypothalamic extracellular levels, as measured by microdialysis. Nutr Diabetes 5: e162, 2015.
 68.de Castro JM, Paullin SK, DeLugas GM. Insulin and glucagon as determinants of body weight set point and microregulation in rats. J Comp Physiol Psychol 92 (3): 571‐579, 1978.
 69.de Graaf C, Song G, Cao C, Zhao Q, Wang M‐W, Wu B, Stevens RC. Extending the structural view of class B GPCRs. Trends Biochem Sci 42 (12): 946‐960, 2017.
 70.de Jong A, Strubbe JH, Steffens AB. Hypothalamic influence on insulin and glucagon release in the rat. Am J Physiol 233 (5): E380‐E388, 1977.
 71.De Oya M, Prigge WF, Swenson DE, Grande F. Role of glucagon on fatty liver production in birds. Am J Physiol 221 (1): 25‐30, 1971.
 72.Dean ED, Li M, Prasad N, Wisniewski SN, Von Deylen A, Spaeth J, Maddison L, Botros A, Sedgeman LR, Bozadjieva N, Ilkayeva O, Coldren A, Poffenberger G, Shostak A, Semich MC, Aamodt KI, Phillips N, Yan H, Bernal‐Mizrachi E, Corbin JD, Vickers KC, Levy SE, Dai C, Newgard C, Gu W, Stein R, Chen W, Powers AC. Interrupted glucagon signaling reveals hepatic alpha cell axis and role for L‐glutamine in alpha cell proliferation. Cell Metab 25 (6): 1362‐1373.e1365, 2017.
 73.Desbuquois B. Iodoglucagon. Preparation and characterization. Eur J Biochem 53 (2): 569‐580, 1975.
 74.Diao J, Asghar Z, Chan CB, Wheeler MB. Glucose‐regulated glucagon secretion requires insulin receptor expression in pancreatic alpha‐cells. J Biol Chem 280 (39): 33487‐33496, 2005.
 75.DiMarco JP, Hoppel C. Hepatic mitochondrial function in ketogenic states. Diabetes, starvation, and after growth hormone administration. J Clin Invest 55 (6): 1237‐1244, 1975.
 76.Dodd GT, Tiganis T. Insulin action in the brain: Roles in energy and glucose homeostasis. J Neuroendocrinol 29 (10), e12513, 2017. DOI: 10.1111/jne.12513
 77.Doi K, Kuroshima A. Thermogenic response to glucagon in cold‐acclimated mice. Jpn J Physiol 32 (3): 377‐385, 1982.
 78.Dominy JE, Lee Y, Gerhart‐Hines Z, Puigserver P. Nutrient‐dependent regulation of PGC‐1α's acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5. Biochim Biophys Acta (BBA)‐Proteins Proteom 1804 (8): 1676‐1683, 2010.
 79.Dominy JE Jr, Lee Y, Jedrychowski MP, Chim H, Jurczak MJ, Camporez JP, Ruan H‐B, Feldman J, Pierce K, Mostoslavsky R, Denu JM, Clish CB, Yang X, Shulman GI, Gygi SP, Puigserver P. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol Cell 48 (6): 900‐913, 2012.
 80.Dores MR, Trejo J. GPCR sorting at multivesicular endosomes. Methods Cell Biol 130: 319‐332, 2015.
 81.Douris N, Stevanovic DM, Fisher FM, Cisu TI, Chee MJ, Nguyen NL, Zarebidaki E, Adams AC, Kharitonenkov A, Flier JS, Bartness TJ, Maratos‐Flier E. Central fibroblast growth factor 21 browns white fat via sympathetic action in male mice. Endocrinology 156 (7): 2470‐2481, 2015.
 82.Drucker DJ. Glucagon and the glucagon‐like peptides. Pancreas 5 (4): 484‐488, 1990.
 83.Drucker DJ, Asa S. Glucagon gene expression in vertebrate brain. J Biol Chem 263 (27): 13475‐13478, 1988.
 84.Drucker DJ, Jin T, Asa SL, Young TA, Brubaker PL. Activation of proglucagon gene transcription by protein kinase‐A in a novel mouse enteroendocrine cell line. Mol Endocrinol 8 (12): 1646‐1655, 1994.
 85.Dumonteil E, Laser B, Constant I, Philippe J. Differential regulation of the glucagon and insulin I gene promoters by the basic helix‐loop‐helix transcription factors E47 and BETA2. J Biol Chem 273 (32): 19945‐19954, 1998.
 86.Eaton RP. Hypolipemic action of glucagon in experimental endogenous lipemia in the rat. J Lipid Res 14 (3): 312‐318, 1973.
 87.Eichel K, von Zastrow M. Subcellular organization of GPCR signaling. Trends Pharmacol Sci 39 (2): 200‐208, 2018.
 88.Ellingsgaard H, Ehses JA, Hammar EB, Van Lommel L, Quintens R, Martens G, Kerr‐Conte J, Pattou F, Berney T, Pipeleers D, Halban PA, Schuit FC, Donath MY. Interleukin‐6 regulates pancreatic alpha‐cell mass expansion. Proc Natl Acad Sci U S A 105 (35): 13163‐13168, 2008.
 89.Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT, Eppler E, Bouzakri K, Wueest S, Muller YD, Hansen AMK, Reinecke M, Konrad D, Gassmann M, Reimann F, Halban PA, Gromada J, Drucker DJ. Interleukin‐6 enhances insulin secretion by increasing glucagon‐like peptide‐1 secretion from L cells and alpha cells. Nat Med 17 (11): 1481‐1489, 2011.
 90.Enriori PJ, Evans AE, Sinnayah P, Cowley MA. Leptin resistance and obesity. Obesity (Silver Spring) 14 (Suppl 5): 254S‐258S, 2006.
 91.Exton JH, Park CR. Control of gluconeogenesis in liver. II. Effects of glucagon, catecholamines, and adenosine 3′,5′‐monophosphate on gluconeogenesis in the perfused rat liver. J Biol Chem 243 (16): 4189‐4196, 1968.
 92.Felig P, Wahren J, Hendler R. Influence of physiologic hyperglucagonemia on basal and insulin‐inhibited splanchnic glucose output in normal man. J Clin Invest 58 (3): 761‐765, 1976.
 93.Felig P, Wahren J, Hendler R. Influence of maturity‐onset diabetes on splanchnic glucose balance after oral glucose ingestion. Diabetes 27 (2): 121‐126, 1978.
 94.Fernando KC, Gregory RB, Barritt GJ. Protein kinase A regulates the disposition of Ca2+ which enters the cytoplasmic space through store‐activated Ca2+ channels in rat hepatocytes by diverting inflowing Ca2+ to mitochondria. Biochem J 330 (Pt 3): 1179‐1187, 1998.
 95.Finan B, Capozzi ME, Campbell JE. Repositioning glucagon action in the physiology and pharmacology of diabetes. Diabetes 69 (4): 532‐541, 2020.
 96.Finan B, Müller TD, Clemmensen C, Perez‐Tilve D, DiMarchi RD, Tschöp MH. Reappraisal of GIP pharmacology for metabolic diseases. Trens Mol Med 22 (5): 359‐376, 2016.
 97.Fisher FM, Chui PC, Antonellis PJ, Bina HA, Kharitonenkov A, Flier JS, Maratos‐Flier E. Obesity is a fibroblast growth factor 21 (FGF21)‐resistant state. Diabetes 59 (11): 2781‐2789, 2010.
 98.Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos‐Flier E, Spiegelman BM. FGF21 regulates PGC‐1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26 (3): 271‐281, 2012.
 99.Fisher FM, Maratos‐Flier E. Understanding the Physiology of FGF21. Annu Rev Physiol 78: 223‐241, 2016.
 100.Flock G, Cao X, Drucker DJ. Pdx‐1 is not sufficient for repression of proglucagon gene transcription in islet or enteroendocrine cells. Endocrinology 146 (1): 441‐449, 2005.
 101.Fodden JH, Read WO. The activity of extracted pancreatic hyperglycemic‐glycogenolytic factor after cobaltous chloride and synthalin A. Endocrinology 54 (3): 303‐310, 1954.
 102.Franklin I, Gromada J, Gjinovci A, Theander S, Wollheim CB. Beta‐cell secretory products activate alpha‐cell ATP‐dependent potassium channels to inhibit glucagon release. Diabetes 54 (6): 1808‐1815, 2005.
 103.Franklin IK, Wollheim CB. GABA in the endocrine pancreas: Its putative role as an islet cell paracrine‐signalling molecule. J Gen Physiol 123 (3): 185‐190, 2004.
 104.Franklin ZJ, O'Harte FP, Irwin N. Effects of short‐term chemical ablation of glucagon signalling by peptide‐based glucagon receptor antagonists on insulin secretion and glucose homeostasis in mice. Biol Chem 395 (4): 433‐442, 2014.
 105.Frohman LA, Bernardis LL. Effect of hypothalamic stimulation on plasma glucose, insulin, and glucagon levels. Am J Physiol 221 (6): 1596‐1603, 1971.
 106.Frohman LA, Ezdinli EZ, Javid R. Effect of vagotomy and vagal stimulation on insulin secretion. Diabetes 16 (7): 443‐448, 1967.
 107.Fujimoto WY, Williams RH. Somatostatin inhibits insulin and glucagon release by monolayer cell cultures of rat endocrine pancreas. Life Sci 15 (11): 1999‐2004, 1974.
 108.Furuta M, Carroll R, Martin S, Swift HH, Ravazzola M, Orci L, Steiner DF. Incomplete processing of proinsulin to insulin accompanied by elevation of Des‐31,32 proinsulin intermediates in islets of mice lacking active PC2. J Biol Chem 273 (6): 3431‐3437, 1998.
 109.Gälman C, Lundåsen T, Kharitonenkov A, Bina HA, Eriksson M, Hafström I, Dahlin M, Amark P, Angelin B, Rudling M. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metab 8 (2): 169‐174, 2008.
 110.Galsgaard KD, Jepsen SL, Kjeldsen SAS, Pedersen J, Wewer Albrechtsen NJ, Holst JJ. Alanine, arginine, and proline but not glutamine are the feed‐back regulators in the liver‐alpha cell axis in mice. bioRxiv: 792119, 2019.
 111.Galsgaard KD, Pedersen J, Knop FK, Holst JJ, Wewer Albrechtsen NJ. Glucagon receptor signaling and lipid metabolism. Front Physiol 10: 413‐413, 2019.
 112.Galsgaard KD, Winther‐Sorensen M, Orskov C, Kissow H, Poulsen SS, Vilstrup H, Prehn C, Adamski J, Jepsen SL, Hartmann B, Hunt J, Charron MJ, Pedersen J, Wewer Albre NJ. Disruption of glucagon receptor signaling causes hyperaminoacidemia exposing a possible liver‐alpha‐cell axis. Am J Physiol Endocrinol Metab 314 (1): e93‐e103, 2018.
 113.Gannon MC, Nuttall FQ. Effect of a high‐protein, low‐carbohydrate diet on blood glucose control in people with type 2 diabetes. Diabetes 53 (9): 2375‐2382, 2004.
 114.Gao C, Ren SV, Yu J, Baal U, Thai D, Lu J, Zeng C, Yan H, Wang Y. Glucagon receptor antagonism ameliorates progression of heart failure. JACC Basic Transl Sci 4 (2): 161‐172, 2019.
 115.Garcia A, Williamson JR, Cahill GF Jr. Studies on the perfused rat liver. II. Effect of glucagon on gluconeogenesis. Diabetes 15 (3): 188‐193, 1966.
 116.Gauthier BR, Gosmain Y, Mamin A, Philippe J. The beta‐cell specific transcription factor Nkx6.1 inhibits glucagon gene transcription by interfering with Pax6. Biochem J 403 (3): 593‐601, 2007.
 117.Gauthier BR, Schwitzgebel VM, Zaiko M, Mamin A, Ritz‐Laser B, Philippe J. Hepatic nuclear factor‐3 (HNF‐3 or Foxa2) regulates glucagon gene transcription by binding to the G1 and G2 promoter elements. Mol Endocrinol 16 (1): 170‐183, 2002.
 118.Geary N, Kissileff HR, Pi‐Sunyer FX, Hinton V. Individual, but not simultaneous, glucagon and cholecystokinin infusions inhibit feeding in men. Am J Physiol 262 (6 Pt 2): R975‐R980, 1992.
 119.Geary N, Le Sauter J, Noh U. Glucagon acts in the liver to control spontaneous meal size in rats. Am J Physiol 264 (1 Pt 2): R116‐R122, 1993.
 120.Geary N, Smith GP. Pancreatic glucagon and postprandial satiety in the rat. Physiol Behav 28 (2): 313‐322, 1982.
 121.Gelling RW, Du XQ, Dichmann DS, Cui L, Obici S, Tang B, Holst JJ, Fledelius C, Johansen PB, Rossetti L, Jelicks LA, Serup P, Nishimura E, Charron MJ. Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice. Proc Natl Acad Sci U S A 100 (3): 1438‐1443, 2003.
 122.Gerich JE, Langlois M, Noacco C, Lorenzi M, Karam JH, Korsham PH. Comparison of the suppressive effects of elevated plasma glucose and free fatty acid levels on glucagon secretion in normal and insulin‐dependent diabetic subjects. Evidence for selective alpha‐cell insensitivity to glucose in diabetes mellitus. J Clin Invest 58 (2): 320‐325, 1976.
 123.Gerich JE, Langlois M, Schneider V, Karam JH, Noacco C. Effects of alternations of plasma free fatty acid levels on pancreatic glucagon secretion in man. J Clin Invest 53 (5): 1284‐1289, 1974.
 124.Gerich JE, Lorenzi M, Bier DM, Tsalikian E, Schneider V, Karam JH, Forsham PH. Effects of physiologic levels of glucagon and growth hormone on human carbohydrate and lipid metabolism. Studies involving administration of exogenous hormone during suppression of endogenous hormone secretion with somatostatin. J Clin Invest 57 (4): 875‐884, 1976.
 125.Gerich JE, Lorenzi M, Schneider V, Karam JH, Rivier J, Guillemin R, Forsham PH. Effects of somatostatin on plasma glucose and glucagon levels in human diabetes mellitus. Pathophysiologic and therapeutic implications. N Engl J Med 291 (11): 544‐547, 1974.
 126.Gerich JE, Lorenzi M, Schneider V, Kwan CW, Karam JH, Guillemin R, Forsham PH. Inhibition of pancreatic glucagon responses to arginine by somatostatin in normal man and in insulin‐dependent diabetics. Diabetes 23 (11): 876‐880, 1974.
 127.Gevrey JC, Malapel M, Philippe J, Mithieux G, Chayvialle J‐A, Abello J, Cordier‐Bussat M. Protein hydrolysates stimulate proglucagon gene transcription in intestinal endocrine cells via two elements related to cyclic AMP response element. Diabetologia 47 (5): 926‐936, 2004.
 128.Gilleron J, Gerdes JM, Zeigerer A. Metabolic regulation through the endosomal system. Traffic 20 (8): 552‐570, 2019.
 129.Giralt M, Gavalda‐Navarro A, Villarroya F. Fibroblast growth factor‐21, energy balance and obesity. Mol Cell Endocrinol 418 (Pt 1): 66‐73, 2015.
 130.Girnita L, Shenoy SK, Sehat B, Vasilcanu R, Girnita A, Lefkowitz RJ, Larsson O. {beta}‐Arrestin is crucial for ubiquitination and down‐regulation of the insulin‐like growth factor‐1 receptor by acting as adaptor for the MDM2 E3 ligase. J Biol Chem 280 (26): 24412‐24419, 2005.
 131.Glick G, Parmley WW, Wechsler AS, Sonnenblick EH. Glucagon. Its enhancement of cardiac performance in the cat and dog and persistence of its inotropic action despite beta‐receptor blockade with propranolol. Circ Res 22 (6): 789‐799, 1968.
 132.Goldstein I. The Liver: Biology and Pathobiology (6th ed). Hoboken, NJ: Wiley Online Library, 2020.
 133.Goldstein I, Yizhak K, Madar S, Goldfinger N, Ruppin E, Rotter V. p53 Promotes the expression of gluconeogenesis‐related genes and enhances hepatic glucose production. Cancer Metab 1 (1): 9, 2013.
 134.Gosmain Y, Avril I, Mamin A, Philippe J. Pax‐6 and c‐Maf functionally interact with the alpha‐cell‐specific DNA element G1 in vivo to promote glucagon gene expression. J Biol Chem 282 (48): 35024‐35034, 2007.
 135.Gosmain Y, Cheyssac C, Heddad Masson M, Dibner C, Philippe J. Glucagon gene expression in the endocrine pancreas: The role of the transcription factor Pax6 in alpha‐cell differentiation, glucagon biosynthesis and secretion. Diabetes Obes Metab 13 (Suppl 1): 31‐38, 2011.
 136.Gromada J, Franklin I, Wollheim CB. Alpha‐cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev 28 (1): 84‐116, 2007.
 137.Gromada J, Ma X, Høy M, Bokvist K, Salehi A, Berggren PO, Rorsman P. ATP‐sensitive K+ channel‐dependent regulation of glucagon release and electrical activity by glucose in wild‐type and SUR1‐/‐ mouse alpha‐cells. Diabetes 53: S181‐S189, 2004.
 138.Gu W, Yan H, Winters KA, Komorowski R, Vonderfecht S, Atangan L, Sivits G, Hill D, Yang J, Bi V, Shen Y, Hu S, Boone T, Lindberg RA, Véniant MM. Long‐term inhibition of the glucagon receptor with a monoclonal antibody in mice causes sustained improvement in glycemic control, with reversible alpha‐cell hyperplasia and hyperglucagonemia. J Pharmacol Exp Ther 331 (3): 871‐881, 2009.
 139.Guan HP, Yang X, Lu K, Wang S‐P, Castro‐Perez JM, Previs S, Wright M, Shah V, Herath K, Xie D, Szeto D, Forrest G, Xiao JC, Palyha O, Sun L‐P, Andryuk PJ, Engel SS, Xiong Y, Lin S, Kelley DE, Erion MD, Davis HR, Wang L. Glucagon receptor antagonism induces increased cholesterol absorption. J Lipid Res 56 (11): 2183‐2195, 2015.
 140.Guettet C, Mathe D, Riottot M, Lutton C. Effects of chronic glucagon administration on cholesterol and bile acid metabolism. Biochim Biophys Acta 963 (2): 215‐223, 1988.
 141.Guettet C, Rostaqui N, Mathe D, Lecuyer B, Navarro N, Jacotot B. Effect of chronic glucagon administration on lipoprotein composition in normally fed. Fasted and cholesterol‐fed rats. Lipids 26 (6): 451‐458, 1991.
 142.Guzman CB, Zhang XM, Liu R, Regev A, Shankar S, Garhyan P, Pillai SG, Kazda C, Chalasani N, Hardy TA. Treatment with LY2409021, a glucagon receptor antagonist, increases liver fat in patients with type 2 diabetes. Diabetes Obes Metab 19 (11): 1521‐1528, 2017.
 143.Gylfe E. Patrick Gilon Glucose regulation of glucagon secretion. Diabetes Res Clin Pract 103 (1): 1‐10, 2014.
 144.Habegger KM, Heppner KM, Geary N, Bartness TJ, DiMarchi R, Tschop MH. The metabolic actions of glucagon revisited. Nat Rev Endocrinol 6 (12): 689‐697, 2010.
 145.Habegger KM, Stemmer K, Cheng C, Müller TD, Heppner KM, Ottaway N, Holland J, Hembree JL, Smiley D, Gelfanov V, Krishna R, Arafat AM, Konkar A, Belli S, Kapps M, Woods SC, Hofmann SM, D'Alessio D, Pfluger PT, Perez‐Tilve D, Seeley RJ, Konishi M, Itoh N, Kharitonenkov A, Spranger J, DiMarchi RD, Tschöp MH. Fibroblast growth factor 21 mediates specific glucagon actions. Diabetes 62 (5): 1453‐1463, 2013.
 146.Hallows WC, Yu W, Smith BC, Devries MK, Ellinger JJ, Someya S, Shortreed MR, Prolla T, Markley JL, Smith LM, Zhao S, Guan K‐L, Denu JM. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol Cell 41 (2): 139‐149, 2011.
 147.Han SAT, Previs SF, Herath K, Roddy TP, Jensen KK, Guan HP, Murphy BA, McNamara LA, Shen X, Strapps W, Hubbard BK, Pinto S, Li C, Li J. Effects of small interfering RNA‐mediated hepatic glucagon receptor inhibition on lipid metabolism in Db/Db mice. J Lipid Res 54 (10): 2615‐2622, 2013.
 148.Han VK, Hynes MA, Jin C, Towle AC, Lauder JM, Lund PK. Cellular localization of proglucagon/glucagon‐like peptide I messenger RNAs in rat brain. J Neurosci Res 16 (1): 97‐107, 1986.
 149.Hansen JS, Clemmesen JO, Secher NH, Hoene M, Drescher A, Weigert C, Pedersen BK, Plomgaard P. Glucagon‐to‐insulin ratio is pivotal for splanchnic regulation of FGF‐21 in humans. Mol Metab 4 (8): 551‐560, 2015.
 150.Hanyaloglu AC. Advances in membrane trafficking and endosomal signaling of G protein‐coupled receptors. Int Rev Cell Mol Biol 339: 93‐131, 2018.
 151.Hanyaloglu AC, von Zastrow M. Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu Rev Pharmacol Toxicol 48: 537‐568, 2008.
 152.Harano Y, Kosugi K, Kashiwagi A, Nakano T, Hidaka H, Shigeta Y. Regulatory mechanism of ketogenesis by glucagon and insulin in isolated and cultured hepatocytes. J Biochem 91 (5): 1739‐1748, 1982.
 153.Hare KJ, Vilsbøll T, Asmar M, Deacon CF, Knop FK, Holst JJ. The glucagonostatic and insulinotropic effects of glucagon‐like peptide 1 contribute equally to its glucose‐lowering action. Diabetes 59 (7): 1765‐1770, 2010.
 154.He L, Cao J, Meng S, Ma A, Radovick S, Wondisford FE. Activation of basal gluconeogenesis by coactivator p300 maintains hepatic glycogen storage. Mol Endocrinol 27 (8): 1322‐1332, 2013.
 155.Heckemeyer CM, Barker J, Duckworth WC, Solomon SS. Studies of the biological effect and degradation of glucagon in the rat perifused isolated adipose cell. Endocrinology 113 (1): 270‐276, 1983.
 156.Heibel SK, Lopez GY, Panglao M, Sodha S, Mariño‐Ramírez L, Tuchman M, Caldovic L. Transcriptional regulation of N‐acetylglutamate synthase. PloS One 7 (2): e29527, 2012.
 157.Heim T, Hull D. The effect of propranalol on the calorigenic response in brown adipose tissue of new‐born rabbits to catecholamines, glucagon, corticotrophin and cold exposure. J Physiol 187 (2): 271‐283, 1966.
 158.Heimberg M, Weinstein I, Kohout M. The effects of glucagon, dibutyryl cyclic adenosine 3′,5′‐monophosphate, and concentration of free fatty acid on hepatic lipid metabolism. J Biol Chem 244 (19): 5131‐5139, 1969.
 159.Henderson SJ, Konkar A, Hornigold DC, Trevaskis JL, Jackson R, Fredin MF, Jansson‐Löfmark R, Naylor J, Rossi A, Bednarek MA, Bhagroo N, Salari H, Wil S, Oldham S, Hansen G, Feigh M, Klein T, Grimsby J, Maguire LJ. Robust anti‐obesity and metabolic effects of a dual GLP‐1/glucagon receptor peptide agonist in rodents and non‐human primates. Diabetes Obes Metab 18 (12): 1176‐1190, 2016.
 160.Henne WM, Stenmark H, Emr SD. Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harb Perspect Biol 5 (9): a016766, 2013.
 161.Herman MA, Kahn BB. Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. J Clin Invest 116 (7): 1767‐1775, 2006.
 162.Herzig S, Fuzesi L, Knepel W. Heterodimeric Pbx‐Prep1 homeodomain protein binding to the glucagon gene restricting transcription in a cell type‐dependent manner. J Biol Chem 275 (36): 27989‐27999, 2000.
 163.Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M. CREB regulates hepatic gluconeogenesis through the coactivator PGC‐1. Nature 413 (6852): 179‐183, 2001.
 164.Heurich RO, Buggy JJ, Vandenberg MT, Rossomando AJ. Glucagon induces a rapid and sustained phosphorylation of the human glucagon receptor in Chinese hamster ovary cells. Biochem Biophys Res Commun 220 (3): 905‐910, 1996.
 165.Hill CM, Laeger T, Dehner M, Albarado DC, Clarke B, Wanders D, Burke SJ, Collier JJ, Qualls‐Creekmore E, Solon‐Biet SM, Simpson SJ, Berthoud HR, Münzberg H, Morrison CD. FGF21 signals protein status to the brain and adaptively regulates food choice and metabolism. Cell Rep 27 (10): 2934‐2947, 2019.
 166.Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, Grueter CA, Harris C, Biddinger S, Ilkayeva OR, Stevens RD, Li Y, Saha AK, Ruderman NB, Bain JR, Newgard CB, Farese RV Jr, Alt FW, Kah CR. SIRT3 regulates mitochondrial fatty‐acid oxidation by reversible enzyme deacetylation. Nature 464 (7285): 121‐125, 2010.
 167.Hong J, Abudula R, Chen J, Jeppesen PB, Dyrskog SE, Xiao J, Colombo M, Hermansen K. The short‐term effect of fatty acids on glucagon secretion is influenced by their chain length, spatial configuration, and degree of unsaturation: Studies in vitro. Metabolism 54 (10): 1329‐1336, 2005.
 168.Hoosein NM, Gurd RS. Identification of glucagon receptors in rat brain. Proc Natl Acad Sci U S A 81 (14): 4368‐4372, 1984.
 169.Huypens P, Ling Z, Pipeleers D, Schuit F. Glucagon receptors on human islet cells contribute to glucose competence of insulin release. Diabetologia 43 (8): 1012‐1019, 2000.
 170.Iizuka K, Takeda J, Horikawa Y. Glucose induces FGF21 mRNA expression through ChREBP activation in rat hepatocytes. FEBS Lett 2009 (583): 17, 2009.
 171.Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, Elmquist JK, Gerard RD, Burgess SC, Hammer RE, Mangelsdorf DJ, Kliewer SA. Endocrine regulation of the fasting response by PPARalpha‐mediated induction of fibroblast growth factor 21. Cell Metab 5 (6): 415‐425, 2007.
 172.Ingram DL, Kaciuba‐Uscilko H. Metabolic effects of glucagon in the young pig. Horm Metab Res 12 (9): 430‐433, 1980.
 173.Janah L, Kjeldsen S, Galsgaard KD, Winther‐Sørensen M, Stojanovska E, Pedersen J, Knop FK, Holst JJ, Wewer Albrechtsen NJ. Glucagon receptor signaling and glucagon resistance. Int J Mol Sci 20 (13): 3314, 2019.
 174.Jelinek LJ, Lok S, Rosenberg GB, Grant FJ, Biggs S, Bensch PA, Kuijper JL, Sheppard PO, Sprecher CA. Expression cloning and signaling properties of the rat glucagon receptor. Science 259 (5101): 1614‐1616, 1993.
 175.Jeon J, Correa‐Medina M, Ricordi C, Edlund H, Diez JA. Endocrine cell clustering during human pancreas development. J Histochem Cytochem 57 (9): 811‐824, 2009.
 176.Jiang G, Zhang BB. Glucagon and regulation of glucose metabolism. Am J Physiol‐Endocrinol Metabol 284 (4): E671‐E678, 2003.
 177.Jimenez V, Jambrina C, Casana E, Sacristan V, Muñoz S, Darriba S, Rodó J, Mallol C, Garcia M, León X, Marcó S, Ribera A, Elias I, Casellas A, Grass I, Elias G, Ferré T, Motas S, Franckhauser S, Mulero F, Navarro M, Haurigot V, Ruberte J, Bosch F. FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Mol Med 10 (8): e8791, 2018.
 178.Jin SL, Han VK, Simmons JG, Towle AC, Lauder JM, Lund PK. Distribution of glucagonlike peptide I (GLP‐I), glucagon, and glicentin in the rat brain: An immunocytochemical study. J Comp Neurol 271 (4): 519‐532, 1988.
 179.Jin T. Mechanisms underlying proglucagon gene expression. J Endocrinol 198 (1): 17‐28, 2008.
 180.Jin T, Drucker DJ. Activation of proglucagon gene transcription through a novel promoter element by the caudal‐related homeodomain protein cdx‐2/3. Mol Cell Biol 16 (1): 19‐28, 1996.
 181.Joel CD. Stimulation of metabolism of rat brown adipose tissue by addition of lipolytic hormones in vitro. J Biol Chem 241 (4): 814‐821, 1966.
 182.Johanns M, Lai YC, Hsu MF, Jacobs R, Vertommen D, Van Sande J, Dumont JE, Woods A, Carling D, Hue L, Viollet B, Foretz M, Rider MH. AMPK antagonizes hepatic glucagon‐stimulated cyclic AMP signalling via phosphorylation‐induced activation of cyclic nucleotide phosphodiesterase 4B. Nat Commun 7: 10856, 2016.
 183.Juan‐Fita MJ, Vargas ML, Kaumann AJ, Hernandez CJ. Rolipram reduces the inotropic tachyphylaxis of glucagon in rat ventricular myocardium. Naunyn Schmiedebergs Arch Pharmacol 370 (4): 324‐329, 2004.
 184.Junker AE, Gluud LL, van Hall G, Holst JJ, Knop FK, Vilsbøll T. Effects of glucagon‐like peptide‐1 on glucagon secretion in patients with non‐alcoholic fatty liver disease. J Hepatol 64 (4): 908‐915, 2016.
 185.Kaestner KH, Katz J, Liu Y, Drucker DJ, Schutz G. Inactivation of the winged helix transcription factor HNF3alpha affects glucose homeostasis and islet glucagon gene expression in vivo. Genes Dev 13 (4): 495‐504, 1999.
 186.Kaneko K, Shirotani T, Araki E, Matsumoto K, Taguchi T, Motoshima H, Yoshizato K, Kishikawa H, Shichiri M. Insulin inhibits glucagon secretion by the activation of PI3‐kinase in In‐R1‐G9 cells. Diabetes Res Clin Pract 44 (2): 83‐92, 1999.
 187.Karwi QG, Zhang L, Wagg CS, Wang W, Ghandi M, Thai D, Yan H, Ussher JR, Oudit GY, Lopaschuk GD. Targeting the glucagon receptor improves cardiac function and enhances insulin sensitivity following a myocardial infarction. Cardiovasc Diabetol 18 (1): 1, 2019.
 188.Katz RL, Hinds L, Mills CJ. Ability of glucagon to produce cardiac stimulation without arrhythmias in halothane‐anaesthetized animals. Br J Anaesth 41 (7): 574‐578, 1969.
 189.Kazda CM, Ding Y, Kelly RP, Garhyan P, Shi C, Lim CN, Fu H, Watson DE, Lewin AJ, Landschulz WH, Deeg MA, Moller DE, Hardy TA. Evaluation of efficacy and safety of the glucagon receptor antagonist LY2409021 in patients with type 2 diabetes: 12‐ and 24‐week phase 2 studies. Diabetes Care 39 (7): 1241‐1249, 2016.
 190.Kedees MH, Grigoryan M, Guz Y, Teitelman G. Differential expression of glucagon and glucagon‐like peptide 1 receptors in mouse pancreatic alpha and beta cells in two models of alpha cell hyperplasia. Mol Cell Endocrinol 311 (1‐2): 69‐76, 2009.
 191.Keller U, Schnell H, Sonnenberg GE, Gerber PPG, Stauffacher W. Role of glucagon in enhancing ketone body production in ketotic diabetic man. Diabetes 32 (5): 387‐391, 1983.
 192.Kelley D, Mokan M, Veneman T. Impaired postprandial glucose utilization in non‐insulin‐dependent diabetes mellitus. Metabolism 43 (12): 1549‐1557, 1994.
 193.Kelly RP, Garhyan P, Raddad E, Fu H, Lim CN, Prince MJ, Pinaire JA, Loh MT, Deeg MA. Short‐term administration of the glucagon receptor antagonist LY2409021 lowers blood glucose in healthy people and in those with type 2 diabetes. Diabetes Obes Metab 17 (4): 414‐422, 2015.
 194.Kennedy JE, Marchese A. Regulation of GPCR trafficking by ubiquitin. Prog Mol Biol Transl Sci 132: 15‐38, 2015.
 195.Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB. FGF‐21 as a novel metabolic regulator. J Clin Invest 115 (6): 1627‐1635, 2005.
 196.Kieffer TJ, Heller RS, Unson CG, Weir GC, Habener JF. Distribution of glucagon receptors on hormone‐specific endocrine cells of rat pancreatic islets. Endocrinology 137 (11): 5119‐5125, 1996.
 197.Kilberg MS, Barber EF, Handlogten ME. Characteristics and hormonal regulation of amino acid transport system A in isolated rat hepatocytes. Curr Top Cell Regul 25: 133‐163, 1985.
 198.Kilimnik G, Kim A, Steiner DF, Friedman TC, Hara M. Intraislet production of GLP‐1 by activation of prohormone convertase 1/3 in pancreatic alpha‐cells in mouse models of ss‐cell regeneration. Islets 2 (3): 149‐155, 2010.
 199.Kim H, Mendez R, Chen X, Fang D, Zhang K. Lysine acetylation of CREBH regulates fasting‐induced hepatic lipid metabolism. Mol Cell Biol 35 (24): 4121‐4134, 2015.
 200.Kim H, Mendez R, Zheng Z, Chang L, Cai J, Zhang R, Zhang K. Liver‐enriched transcription factor CREBH interacts with peroxisome proliferator‐activated receptor α to regulate metabolic hormone FGF21. Endocrinology 155 (3): 769‐782, 2014.
 201.Kim T, Nason S, Holleman C, Pepin M, Wilson L, Berryhill TF, Wende AR, Steele C, Young ME, Barnes S, Drucker DJ, Finan B, DiMarchi R, Perez‐Tilve D, Tschop M, Habegger KM. Glucagon receptor signaling regulates energy metabolism via hepatic farnesoid X receptor and fibroblast growth factor 21. Diabetes 67 (9): 1773‐1782, 2018.
 202.Kim WD, Lee YH, Kim MH, Jung S‐Y, Son W‐C, Yoon S‐J, Lee B‐W. Human monoclonal antibodies against glucagon receptor improve glucose homeostasis by suppression of hepatic glucose output in diet‐induced obese mice. PLoS One 7 (12): e50954, 2012.
 203.Kimball C, Murlin JR. Aqueous extracts of pancreas III. Some precipitation reactions of insulin. J Biol Chem 58 (1): 337‐348, 1923.
 204.Klaff LJ, Taborsky GJ. Pancreatic somatostatin is a mediator of glucagon inhibition by hyperglycemia. Diabetes 36 (5): 592‐596, 1987.
 205.Kleinert M, Sachs S, Habegger KM, Hofmann SM, Muller TD. Glucagon regulation of energy expenditure. Int J Mol Sci 20 (21): 5407, 2019.
 206.Knepel W, Jepeal L, Habener JF. A pancreatic islet cell‐specific enhancer‐like element in the glucagon gene contains two domains binding distinct cellular proteins. J Biol Chem 265 (15): 8725‐8735, 1990.
 207.Kong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, Fang F, Chang Y. Sirtuin 3, a new target of PGC‐1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 5 (7): e11707, 2010.
 208.Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P, Takemori H, Montminy M. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437 (7062): 1109‐1111, 2005.
 209.Kostic A, King TA, Yang F, Chan K‐C, Yancopoulos GD, Gromada J, Harp JB. A first‐in‐human pharmacodynamic and pharmacokinetic study of a fully human anti‐glucagon receptor monoclonal antibody in normal healthy volunteers. Diabetes Obes Metab 20 (2): 283‐291, 2018.
 210.Kotowski Sarah J, Hopf FW, Seif T, Bonci A, von Zastrow M. Endocytosis promotes rapid dopaminergic signaling. Neuron 71 (2): 278‐290, 2011.
 211.Krilov L, Nguyen A, Miyazaki T, Unson CG, Bouscarel B. Glucagon receptor recycling: Role of carboxyl terminus, β‐arrestins, and cytoskeleton. Am J Physiol‐Cell Physiol 295 (5): C1230‐C1237, 2008.
 212.Krilov L, Nguyen A, Miyazaki T, Unson CG, Bouscarel B. Glucagon receptor recycling: Role of carboxyl terminus, beta‐arrestins, and cytoskeleton. Am J Physiol Cell Physiol 295 (5): C1230‐C1237, 2008.
 213.Krones A, Kietzmann T, Jungermann K. Periportal localization of glucagon receptor mRNA in rat liver and regulation of its expression by glucose and oxygen in hepatocyte cultures. FEBS Lett 421 (2): 136‐140, 1998.
 214.Kurose TSY, Nishi S, Tsuji K, Taminato T, Tsuda K, Imura H. Mechanism of sympathetic neural regulation of insulin, somatostatin, and glucagon secretion. Am J Physiol 258: 220‐227, 1990.
 215.Kurose YKH, Honda K, Azuma Y, Sugahara K, Hasegawa S, Kobayashi S. Effects of central administration of glucagon on feed intake and endocrine responses in sheep. Anim Sci J 80 (6): 868‐890, 2009.
 216.Kuroshima A, Yahata T. Thermogenic responses of brown adipocytes to noradrenaline and glucagon in heat‐acclimated and cold‐acclimated rats. Jpn J Physiol 29 (6): 683‐690, 1979.
 217.Lacey JH, Bradford NM, Joseph SK, McGivan JD. Increased activity of phosphate‐dependent glutaminase in liver mitochondria as a result of glucagon treatment of rats. Biochem J 194 (1): 29‐33, 1981.
 218.Laeger T, Albarado DC, Burke SJ, Trosclair L, Hedgepeth JW, Berthoud HR, Gettys TW, Collier JJ, Münzberg H, Morrison CD. Metabolic responses to dietary protein restriction require an increase in FGF21 that is delayed by the absence of GCN2. Cell Rep 16 (3): 707‐716, 2016.
 219.Laeger T, Henagan TM, Albarado DC, Redman LM, Bray GA, Noland RC, Münzberg H, Hutson SM, Gettys TW, Schwartz MW, Morrison CD. FGF21 is an endocrine signal of protein restriction. J Clin Invest 124 (9): 3913‐3922, 2014.
 220.Laffel L. Ketone bodies: A review of physiology, pathophysiology and application of monitoring to diabetes. Diab/Metab Res Rev 15 (6): 412‐426, 1999.
 221.Langhans W, Pantel K, Muller‐Schell W, Eggenberger E, Scharrer E. Hepatic handling of pancreatic glucagon and glucose during meals in rats. Am J Physiol 247 (5 Pt 2): R827‐R832, 1984.
 222.Langhans W, Zeiger U, Scharrer E, Geary N. Stimulation of feeding in rats by intraperitoneal injection of antibodies to glucagon. Science 218 (4575): 894‐896, 1982.
 223.LaPierre MP, Abraham MA, Yue JT, Filippi BM, Lam TK. Glucagon signalling in the dorsal vagal complex is sufficient and necessary for high‐protein feeding to regulate glucose homeostasis in vivo. EMBO Rep 16 (10): 1299‐1307, 2015.
 224.Laraia PJ, Craig RJ, Reddy WJ. Glucagon: Effect on adenosine 3′,5′‐monophosphate in the rat heart. Am J Physiol 215 (4): 968‐970, 1968.
 225.Larsen PJ, Tang‐Christensen M, Holst JJ, Orskov C. Distribution of glucagon‐like peptide‐1 and other preproglucagon‐derived peptides in the rat hypothalamus and brainstem. Neuroscience 77 (1): 257‐270, 1997.
 226.Lau J, Behrens C, Sidelmann UG, Lundt B, Sams C, Ynddal L, Brand CL, Pridal L, Ling A, Kiel D, Plewe M, Shi S, Madsen P. New beta‐alanine derivatives are orally available glucagon receptor antagonists. J Med Chem 50 (1): 113‐128, 2007.
 227.Le Sauter J, Noh U, Geary N. Hepatic portal infusion of glucagon antibodies increases spontaneous meal size in rats. Am J Physiol 261 (1 Pt 2): R162‐R165, 1991.
 228.Lee Y, Wang MY, Du XQ, Charron MJ, Unger RH. Glucagon receptor knockout prevents insulin‐deficient type 1 diabetes in mice. Diabetes 60 (2): 391‐397, 2011.
 229.Leibiger B, Moede T, Muhandiramlage TP, Kaiser D, Sanchez PV, Leibiger IB, Berggren P‐O. Glucagon regulates its own synthesis by autocrine signaling. Proc Natl Acad Sci U S A 109 (51): 20925‐20930, 2012.
 230.Li K, Qiu C, Sun P, Liu D‐C, Wu T‐J, Wang K, Zhou Y‐C, Chang X‐A, Yin Y, Chen F, Zhu Y‐X, Han X. Ets1‐mediated acetylation of FoxO1 is critical for gluconeogenesis regulation during feed‐fast cycles. Cell Rep 26 (11): 2998‐3010.e2995, 2019.
 231.Li YV. Zinc and insulin in pancreatic beta‐cells. Endocrine 45 (2): 178‐189, 2014.
 232.Liang Y, Osborne MC, Monia BP, Bhanot S, Gaarde WA, Reed C, She P, Jetton TL, Demarest KT. Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in db/db mice. Diabetes 53 (2): 410‐417, 2004.
 233.Lim SK, Cynober L, De Bandt JP, Aussel C. A Na(+)‐dependent system A and ASC‐independent amino acid transport system stimulated by glucagon in rat hepatocytes. Cell Biol Int 23 (1): 7‐12, 1999.
 234.Lin HV, Wang J, Wang J, Li W, Wang X, Alston JT, Thomas MK, Briere DA, Syed SK, Efanov AM. GPR142 prompts glucagon‐like Peptide‐1 release from islets to improve beta cell function. Mol Metab 11: 205‐211, 2018.
 235.Lin MC, Nicosia S, Rodbell M. Effects of iodination of tyrosyl residues on the binding and action of glucagon at its receptor. Biochemistry 15 (20): 4537‐4540, 1976.
 236.Linn T, Santosa B, Grönemeyer D, Aygen S, Scholz N, Busch M, Bretzel RG. Effect of long‐term dietary protein intake on glucose metabolism in humans. Diabetologia 43 (10): 1257‐1265, 2000.
 237.Liu Y, Dentin R, Chen D, Hedrick S, Ravnskjaer K, Schenk S, Milne J, Meyers DJ, Cole P, John Yates JO 3rd, Guarente L, Montminy M. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456 (7219): 269‐273, 2008.
 238.Livingston JN, Einarsson K, Backman L, Ewerth S, Arner P. Glucagon receptor of human liver. Studies of its molecular weight and binding properties, and its ability to activate hepatic adenylyl cyclase of non‐obese and obese subjects. J Clin Investigat 75 (2): 397‐403, 1985.
 239.Longuet C, Robledo AM, Dean ED, Dai C, Ali S, McGuinness I, de Chavez V, Vuguin PM, Charron MJ, Powers AC, Drucker DJ. Liver‐specific disruption of the murine glucagon receptor produces alpha‐cell hyperplasia: Evidence for a circulating alpha‐cell growth factor. Diabetes 62 (4): 1196‐1205, 2013.
 240.Longuet CSE, Maida A, Baggio LL, Maziarz M, Charron MJ, Drucker DJ. The glucagon receptor is required for the adaptive metabolic response to fasting. Cell Metab 8 (5): 359‐371, 2008.
 241.Lucchesi BR. Cardiac actions of glucagon. Circ Res 22 (6): 777‐787, 1968.
 242.Lund A, Bagger JI, Wewer Albrechtsen NJ, Christensen M, Grøndahl M, Hartmann B, Mathiesen ER, Hansen CP, Storkholm JH, van Hall G, Rehfeld JF, Hornburg D, Meissner F, Mann M, Larsen S. Evidence of extrapancreatic glucagon secretion in man. Diabetes 65 (3): 585‐597, 2016.
 243.Lund A, Vilsboll T, Bagger JI, Holst JJ, Knop FK. The separate and combined impact of the intestinal hormones, GIP, GLP‐1, and GLP‐2, on glucagon secretion in type 2 diabetes. Am J Physiol Endocrinol Metab 300 (6): E1038‐E1046, 2011.
 244.Luttrell LM, Lefkowitz RJ. The role of beta‐arrestins in the termination and transduction of G‐protein‐coupled receptor signals. J Cell Sci 115 (Pt 3): 455‐465, 2002.
 245.MacDonald PE, Ramracheya R, Salehi A, Ma X, Johnson PR, Cox R, Eliasson L, Rorsman P. ATP channel‐dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans. PLos Biol 5 (6): e143, 2007.
 246.Madison LL, Seyffert WA, Unger RH, Barker B. Effect on plasma free fatty acids on plasma glucagon and serum insulin concentrations. Metabolism 17 (4): 301‐304, 1968.
 247.Markan KR, Naber MC, Ameka MK, Anderegg MD, Mangelsdorf DJ, Kliewer SA, Mohammadi M, Potthoff MJ. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes 63 (12): 4057‐4063, 2014.
 248.Markova M, Hornemann S, Sucher S, Wegner K, Pivovarova O, Rudovich N, Thomann R, Schneeweiss R, Rohn S, Pfeiffer AFH. Rate of appearance of amino acids after a meal regulates insulin and glucagon secretion in patients with type 2 diabetes: A randomized clinical trial. Am J Clin Nutr 108 (2): 279‐291, 2018.
 249.Marliss EBGL, Seydoux J, Wollheim CB, Kanazawa Y, Orci L, Renold AE, Porte D. Glucagon release induced by pancreatic nerve stimulation in the dog. J Clin Invest 52 (5): 1246‐1259, 1973.
 250.Mashili FL, Austin RL, Deshmukh AS, Fritz T, Caidahl K, Bergdahl K, Zierath JR, Chibalin AV, Moller DE, Kharitonenkov A, Krook A. Direct effects of FGF21 on glucose uptake in human skeletal muscle: Implications for type 2 diabetes and obesity. Diabetes Metab Res Rev 27 (3): 286‐297, 2011.
 251.McGirr R, Ejbick CE, Carter DE, Andrews JD, Nie Y, Friedman TC, Dhanvantari S. Glucose dependence of the regulated secretory pathway in alphaTC1‐6 cells. Endocrinology 146 (10): 4514‐4523, 2005.
 252.McNally KE, Cullen PJ. Endosomal retrieval of cargo: Retromer is not alone. Trends Cell Biol 28 (10): 807‐822, 2018.
 253.Meek TH, Dorfman MD, Matsen ME, Fischer JD, Cubelo A, Kumar MR, Taborsky GJ, Morton GJ. Evidence that in uncontrolled diabetes, hyperglucagonemia is required for ketosis but not for increased hepatic glucose production or hyperglycemia. Diabetes 64 (7): 2376‐2387, 2015.
 254.Meier JJ, Gallwitz B, Siepmann N, Holst JJ, Deacon CF, Schmidt WE, Nauck MA. Gastric inhibitory polypeptide (GIP) dose‐dependently stimulates glucagon secretion in healthy human subjects at euglycaemia. Diabetologia 46 (6): 798‐801, 2003.
 255.Merlen C, Fabrega S, Desbuquois B, Unson CG, Authier F. Glucagon‐mediated internalization of serine‐phosphorylated glucagon receptor and Gsalpha in rat liver. FEBS Lett 580 (24): 5697‐5704, 2006.
 256.Mighiu PI, Yue JT, Filippi BM, Abraham MA, Chari M, Lam CKL, Yang CS, Christian NR, Charron MJ, Lam TKT. Hypothalamic glucagon signaling inhibits hepatic glucose production. Nat Med 19 (6): 766‐772, 2013.
 257.Mihaylova MM, Vasquez DS, Ravnskjaer K, Denechaud P‐D, Yu RT, Alvarez JG, Downes M, Evans RM, Montminy M, Shaw RJ. Class IIa histone deacetylases are hormone‐activated regulators of FOXO and mammalian glucose homeostasis. Cell 145 (4): 607‐621, 2011.
 258.Miller RA, Birnbaum MJ. Glucagon: Acute actions on hepatic metabolism. Diabetologia 59 (7): 1376‐1381, 2016.
 259.Miller RA, Shi Y, Lu W, Pirman DA, Jatkar A, Blatnik M, Wu H, Cárdenas C, Wan M, Foskett JK, Park JO, Zhang Y, Holland WL, Rabinowitz JD, Birnbaum MJ. Targeting hepatic glutaminase activity to ameliorate hyperglycemia. Nat. Med 24 (4): 518‐524, 2018.
 260.Milligan G. G protein‐coupled receptor dimerisation: Molecular basis and relevance to function. Biochim Biophys Acta 1768 (4): 825‐835, 2007.
 261.Mitrakou A, Kelley D, Veneman T, Jenssen T, Pangburn T, Reilly J, Gerich J. Contribution of abnormal muscle and liver glucose metabolism to postprandial hyperglycemia in NIDDM. Diabetes 39 (11): 1381‐1390, 1990.
 262.Mochiki E, Suzuki H, Takenoshita S, Nagamachi Y, Kuwano H, Mizumoto A, Itoh Z. Mechanism of inhibitory effect of glucagon on gastrointestinal motility and cause of side effects of glucagon. J Gastroenterol 33 (6): 835‐841, 1998.
 263.Moede T, Leibiger IB, Berggren PO. Alpha cell regulation of beta cell function. Diabetologia 63 (10): 2064‐2075, 2020.
 264.Moffett RC, Vasu S, Thorens B, Drucker DJ, Flatt PR. Incretin receptor null mice reveal key role of GLP‐1 but not GIP in pancreatic beta cell adaptation to pregnancy. PLoS One 9 (6): e96863, 2014.
 265.Mojsov S, Heinrich G, Wilson IB, Ravazzola M, Orci L, Habener JF. Preproglucagon gene expression in pancreas and intestine diversifies at the level of post‐translational processing. J Biol Chem 261 (25): 11880‐11889, 1986.
 266.Moore CA, Milano SK, Benovic JL. Regulation of receptor trafficking by GRKs and arrestins. Annu Rev Physiol 69: 451‐482, 2007.
 267.Mu J, Qureshi SA, Brady EJ, Muise ES, Candelore MR, Jiang G, Li Z, Wu MS, Yang X, Dallas‐Yang Q, Miller C, Xiong Y, Langdon RB, Parmee ER, Zhang BB. Anti‐diabetic efficacy and impact on amino acid metabolism of GRA1, a novel small‐molecule glucagon receptor antagonist. PLoS One 7 (11): e49572, 2012.
 268.Mukharji A, Drucker DJ, Charron MJ, Swoap SJ. Oxyntomodulin increases intrinsic heart rate through the glucagon receptor. Physiol Rep 1 (5): e00112, 2013.
 269.Muller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez‐Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ. Glucagon‐like peptide 1 (GLP‐1). Mol Metab 30: 72‐130, 2019.
 270.Muller TD, Finan B, Clemmensen C, DiMarchi RD, Tschop MH. The new biology and pharmacology of glucagon. Physiol Rev 97 (2): 721‐766, 2017.
 271.Muller WA, Faloona GR, Aguilar‐Parada E, Unger RH. Abnormal alpha‐cell function in diabetes. Response to carbohydrate and protein ingestion. N Engl J Med 283 (3): 109‐115, 1970.
 272.Muller WA, Faloona GR, Unger RH. Hyperglucagonemia in diabetic ketoacidosis. Its prevalence and significance. Am J Med 54 (1): 52‐57, 1973.
 273.Nakagawa T, Lomb DJ, Haigis MC, Guarente L. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137 (3): 560‐570, 2009.
 274.Nason SR, Kim T, Antipenko JP, Finan B, DiMarchi R, Hunter CS, Habegger KM. Glucagon‐receptor signaling reverses hepatic steatosis independent of leptin receptor expression. Endocrinology 161 (1): bqz013, 2020.
 275.Ni Z, Anini Y, Fang X, Mills G, Brubaker PL, Jin T. Transcriptional activation of the proglucagon gene by lithium and beta‐catenin in intestinal endocrine L cells. J Biol Chem 278 (2): 1380‐1387, 2003.
 276.Nie Y, Nakashima M, Brubaker PL, Li QL, Perfetti R, Jansen E, Zambre Y, Pipeleers D, Friedman TC. Regulation of pancreatic PC1 and PC2 associated with increased glucagon‐like peptide 1 in diabetic rats. J Clin Invest 105 (7): 955‐965, 2000.
 277.Nishimura T, Nakatake Y, Konishi M, Itoh N. Identification of a novel FGF, FGF‐21, preferentially expressed in the liver. Biochim Biophy Acta 1492 (1): 203‐206, 2000.
 278.Oh K‐J, Han H‐S, Kim M‐J, Koo S‐H. CREB and FoxO1: Two transcription factors for the regulation of hepatic gluconeogenesis. BMB Rep 46 (12): 567‐574, 2013.
 279.Oh P, Schnitzer JE. Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default. Mol Biol Cell 12 (3): 685‐698, 2001.
 280.Okamoto H, Kim J, Aglione J, Lee J, Cavino K, Na E, Rafique A, Kim JH, Harp J, Valenzuela DM, Yancopoulos GD, Murphy AJ, Gromada J. Glucagon receptor blockade with a human antibody normalizes blood glucose in diabetic mice and monkeys. Endocrinology 156 (8): 2781‐2794, 2015.
 281.Orskov C, Jeppesen J, Madsbad S, Holst JJ. Proglucagon products in plasma of noninsulin‐dependent diabetics and nondiabetic controls in the fasting state and after oral glucose and intravenous arginine. J Clin Invest 87 (2): 415‐423, 1991.
 282.Osei K, Falko JM, O'Dorisio TM, Fields PG, Bossetti B. Gastric inhibitory polypeptide responses and glucose turnover rates after natural meals in type II diabetic patients. J Clin Endocrinol Metab 62 (2): 325‐330, 1986.
 283.Osundiji MA, Evans ML. Brain control of insulin and glucagon secretion. Endocrinol Metab Clin North Am 42 (1): 1‐14, 2013.
 284.Owen BM, Ding X, Morgan DA, Coate KC, Bookout AL, Rahmouni K, Kliewer SA, Mangelsdorf DJ. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab 20 (4): 670‐677, 2014.
 285.Pal K, Melcher K, Xu HE. Structure and mechanism for recognition of peptide hormones by Class B G‐protein‐coupled receptors. Acta Pharmacol Sin 33 (3): 300‐311, 2012.
 286.Paloyan E, Harper PV. Glucagon as a regulating factor of plasma lipids. Metabolism 10: 315‐323, 1961.
 287.Parmley WW, Glick G, Sonnenblick EH. Cardiovascular effects of glucagon in man. N Engl J Med 279 (1): 12‐17, 1968.
 288.Pederson RA, Brown JC. Interaction of gastric inhibitory polypeptide, glucose, and arginine on insulin and glucagon secretion from the perfused rat pancreas. Endocrinology 103 (2): 610‐615, 1978.
 289.Penick SB, Hinkle LE Jr. Depression of food intake induced in healthy subjects by glucagon. N Engl J Med 264: 893‐897, 1961.
 290.Perry RJ, Zhang D, Guerra MT, Brill A. Glucagon stimulates gluconeogenesis by INSP3R1‐mediated hepatic lipolysis. Nature 579 (7798): 279‐283, 2020.
 291.Petersen KM, Bogevig S, Holst JJ, Knop FK, Christensen MB. Hemodynamic effects of glucagon: A literature review. J Clin Endocrinol Metab 103 (5): 1804‐1812, 2018.
 292.Petersen MC, Vatner DF, Shulman GI. Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol 13 (10): 572, 2017.
 293.Philippe J. Glucagon gene transcription is negatively regulated by insulin in a hamster islet cell line. J Clin Invest 84 (2): 672‐677, 1989.
 294.Philippe J. Structure and pancreatic expression of the insulin and glucagon genes. Endocr Rev 12 (3): 252‐271, 1991.
 295.Philippe J. Insulin regulation of the glucagon gene is mediated by an insulin‐responsive DNA element. Proc Natl Acad Sci U S A 88 (16): 7224‐7227, 1991.
 296.Philippe J, Drucker DJ, Habener JF. Glucagon gene transcription in an islet cell line is regulated via a protein kinase C‐activated pathway. J Biol Chem 262 (4): 1823‐1828, 1987.
 297.Pierce KL, Lefkowitz RJ. Classical and new roles of beta‐arrestins in the regulation of G‐protein‐coupled receptors. Nat Rev Neurosci 2 (10): 727‐733, 2001.
 298.Plum L, Belgardt BF, Bruning JC. Central insulin action in energy and glucose homeostasis. J Clin Invest 116 (7): 1761‐1766, 2006.
 299.Pocai A, Carrington PE, Adams JR, Wright M, Eiermann G, Zhu L, Du X, Petrov A, Lassman ME, Jiang G, Liu F, Miller C, Tota LM, Zhou G, Zhang X, Sountis MM, Santoprete A, Capito E, Chicchi GG, Thornberry N, Bianchi E, Pessi A, Marsh DJ, SinhaRoy R. Glucagon‐like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 58 (10): 2258‐2266, 2009.
 300.Potthoff MJ, Inagaki T, Satapati S, Ding X, He T, Goetz R, Mohammadi M, Finck BN, Mangelsdorf DJ, Kliewer SA, Burgess SC. FGF21 induces PGC‐1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci U S A 106 (26): 10853‐10858, 2009.
 301.Prip‐Buus C, Pegorier JP, Duee PH, Kohl C, Girard J. Evidence that the sensitivity of carnitine palmitoyltransferase I to inhibition by malonyl‐CoA is an important site of regulation of hepatic fatty acid oxidation in the fetal and newborn rabbit. Perinatal development and effects of pancreatic hormones in cultured rabbit hepatocytes. Biochem J 269 (2): 409‐415, 1990.
 302.Pryor HJ, Smyth JE, Quinlan PT, Halestrap AP. Evidence that the flux control coefficient of the respiratory chain is high during gluconeogenesis from lactate in hepatocytes from starved rats. Implications for the hormonal control of gluconeogenesis and action of hypoglycaemic agents. Biochem J 247 (2): 449‐457, 1987.
 303.Qiang L, Banks AS, Accili D. Uncoupling of acetylation from phosphorylation regulates FoxO1 function independent of its subcellular localization. J Biol Chem 285 (35): 27396‐27401, 2010.
 304.Quant PA, Tubbs PK, Brand MD. Glucagon activates mitochondrial 3‐hydroxy‐3‐methylglutaryl‐CoA synthase in vivo by decreasing the extent of succinylation of the enzyme. Eur J Biochem 187 (1): 169‐174, 1990.
 305.Quesada I, Tuduri E, Ripoll C, Nadal A. Physiology of the pancreatic alpha‐cell and glucagon secretion: Role in glucose homeostasis and diabetes. J Endocrinol 199 (1): 5‐19, 2008.
 306.Quinn PG, Granner DK. Cyclic AMP‐dependent protein kinase regulates transcription of the phosphoenolpyruvate carboxykinase gene but not binding of nuclear factors to the cyclic AMP regulatory element. Mol Cell Biol 10 (7): 3357‐3364, 1990.
 307.Quiñones MA, Al‐Massadi O, Gallego R, Fernø J, Diéguez C, López M, Nogueiras R. Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet‐induced resistance. Mol Metab 4 (12): 961‐970, 2015.
 308.Ramnanan C, Edgerton D, Kraft G, Cherrington A. Physiologic action of glucagon on liver glucose metabolism. Diabetes, Obes Metabol 13: 118‐125, 2011.
 309.Raskin P, Aydin I, Yamamoto T, Unger RH. Abnormal alpha cell function in human diabetes: The response to oral protein. Am J Med 65 (6): 988‐997, 1978.
 310.Ravier MA, Rutter GA. Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha‐cells. Diabetes 54 (6): 1789‐1797, 2005.
 311.Ravnskjaer K, Hogan MF, Lackey D, Tora L, Dent SYR, Olefsky J, Montminy M. Glucagon regulates gluconeogenesis through KAT2B‐ and WDR5‐mediated epigenetic effects. J Clin Investigat 123 (10): 4318‐4328, 2013.
 312.Ravnskjaer K, Kester H, Liu Y, Zhang X, Lee D, Yates JR, Montminy M. Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression. Embo J 26 (12): 2880‐2889, 2007.
 313.Reaven GM, Chen YD, Golay A, Swislocki AL, Jaspan JB. Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin‐dependent diabetes mellitus. J Clin Endocrinol Metab 64 (1): 106‐110, 1987.
 314.Reed SM, Quelle DE. p53 acetylation: Regulation and consequences. Cancers (Basel) 7 (1): 30‐69, 2014.
 315.Rieusset J. The role of endoplasmic reticulum‐mitochondria contact sites in the control of glucose homeostasis: An update. Cell Death Dis 9 (3): 388, 2018.
 316.Ritz‐Laser B, Estreicher A, Gauthier BR, Mamin A, Edlund H, Philippe J. The pancreatic beta‐cell‐specific transcription factor Pax‐4 inhibits glucagon gene expression through Pax‐6. Diabetologia 45 (1): 97‐107, 2002.
 317.Rocha DM, Faloona GR, Unger RH. Glucagon‐stimulating activity of 20 amino acids in dogs. J Clin Invest 5 (9): 2346‐2351, 1972.
 318.Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med 48, 2016.
 319.Rouille Y, Martin S, Steiner DF. Differential processing of proglucagon by the subtilisin‐like prohormone convertases PC2 and PC3 to generate either glucagon or glucagon‐like peptide. J Biol Chem 270 (44): 26488‐26496, 1995.
 320.Routh VH. Glucose sensing neurons in the ventromedial hypothalamus. Sensors (Basel) 10 (10): 9002‐9025, 2010.
 321.Rui L. Energy metabolism in the liver. Compr Physiol 4 (1): 177‐197, 2014.
 322.Rutter GA. Regulating glucagon secretion: Somatostatin in the spotlight. Diabetes 58 (2): 299‐301, 2009.
 323.Saberi M, Bjelica D, Schenk S, Imamura T, Bandyopadhyay G, Li P, Jadhar V, Vargeese C, Wang W, Bowman K, Zhang Y, Polisky B, Olefsky JM. Novel liver‐specific TORC2 siRNA corrects hyperglycemia in rodent models of type 2 diabetes. Am J Physiol Endocrinol Metab 297 (5): E1137‐E1146, 2009.
 324.Sakurai H, Dobbs RE, Unger RH. The role of glucagon in the pathogenesis of the endogenous hyperglycemia of diabetes mellitus. Metabolism 24 (11): 1287‐1297, 1975.
 325.Salem V, Izzi‐Engbeaya C, Coello C, Thomas DB, Chambers ES, Comninos AN, Buckley A, Win Z, Al‐Nahhas A, Rabiner EA, Gunn RN, Budge H, Symonds ME, Bloom SR, Tan TM, Dhillo WS. Glucagon increases energy expenditure independently of brown adipose tissue activation in humans. Diabetes Obes Metab 18 (1): 72‐81, 2016.
 326.Salter JM. Metabolic effects of glucagon in the wistar rat. Am J Clin Nutr 8 (5): 535‐539, 1960.
 327.Salter JM, Ezrin C, Laidlaw JC, Gornall AG. Metabolic effects of glucagon in human subjects. Metabolism 9: 753‐768, 1960.
 328.Sammons MF, Lee EC. Recent progress in the development of small‐molecule glucagon receptor antagonists. Bioorg Med Chem Lett 25 (19): 4057‐4064, 2015.
 329.Samols E, Marri G, Marks V. Promotion of insulin secretion by glucagon. Lancet 2 (7409): 415‐416, 1965.
 330.Sánchez J, Palou A, Picó C. Response to carbohydrate and fat refeeding in the expression of genes involved in nutrient partitioning and metabolism: Striking effects on fibroblast growth factor‐21 induction. Endocrinology 150 (12): 5341‐5350, 2009.
 331.Sarruf DA, Thaler JP, Morton GJ, German J, Fischer JD, Ogimoto K, Schwartz MW. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes 59 (7): 1817‐1824, 2010.
 332.Sasaki H, Ebitani I, Tominaga M, Yamatani K, Yawata Y, Hara M. Glucagon‐like substance in the canine brain. Endocrinol Jpn 27 (Suppl 1): 135‐140, 1980.
 333.Schulman JL, Carleton JL, Whitney G, Whitehorn JC. Effect of glucagon on food intake and body weight in man. J Appl Physiol 11 (3): 419‐421, 1957.
 334.Schutz Y. Protein turnover, ureagenesis and gluconeogenesis. Int J Vitam Nutr Res 81 (2‐3): 101‐107, 2011.
 335.Secchi ACR, Caumo A, Monti LD, Bonfatti D, Di Carlo V, Pozza G. Cephalic‐phase insulin and glucagon release in normal subjects and in patients receiving pancreas transplantation. Metabolism 44 (9): 1153‐1158, 1995.
 336.Seghieri M, Christensen AS, Andersen A, Solini A, Knop FK, Vilsbøll T. Future perspectives on GLP‐1 receptor agonists and GLP‐1/glucagon receptor co‐agonists in the treatment of NAFLD. Front Endocrinol 9: 649, 2018.
 337.Sengupta P, Philip F, Scarlata S. Caveolin‐1 alters Ca(2+) signal duration through specific interaction with the G alpha q family of G proteins. J Cell Sci 121 (Pt 9): 1363‐1372, 2008.
 338.Seyffert WA, Madison LL. Physiologic effects of metabolic fuels on carbohydrate metabolism. I. Acute effect of elevation of plasma free fatty acids on hepatic glucose output, peripheral glucose utilization, serum insulin, and plasma glucagon levels. Diabetes 16 (11): 765‐776, 1967.
 339.Shah P, Vella A, Basu A, Basu R, Schwenk WF, Rizza RA. Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab 85 (11): 4053‐4059, 2000.
 340.Shapiro H, Kolodziejczyk AA, Halstuch D, Elinav E. Bile acids in glucose metabolism in health and disease. J Exp Med 215 (2): 383‐396, 2018.
 341.Sharma AX, Quittner‐Strom EB, Lee Y, Johnson JA, Martin SA, Yu X, Li J, Lu J, Cai Z, Chen S, Wang M‐Y, Zhang Y, Pearson MJ, Dorn AC, McDonald JG, Gordillo R, Yan H. Glucagon receptor antagonism improves glucose metabolism and cardiac function by promoting AMP‐mediated protein kinase in diabetic mice. Cell Rep 22 (7): 1760‐1773, 2018.
 342.Shenoy SK. Arrestin interaction with E3 ubiquitin ligases and deubiquitinases: Functional and therapeutic implications. Handb Exp Pharmacol 219: 187‐203, 2014.
 343.Shenoy SK, Modi AS, Shukla AK, Xiao K, Berthouze M, Ahn S, Wilkinson KD, Miller WE, Lefkowitz RJ. Beta‐arrestin‐dependent signaling and trafficking of 7‐transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2. Proc Natl Acad Sci U S A 106 (16): 6650‐6655, 2009.
 344.Sherwin RS. Role of the liver in glucose homeostasis. Diabetes Care 3 (2): 261‐265, 1980.
 345.Shibata C, Naito H, Jin XL, Ueno T, Funayama Y, Fukushima K, Hashimoto A, Matsuno S, Sasaki I. Effect of glucagon, glicentin, glucagon‐like peptide‐1 and ‐2 on interdigestive gastroduodenal motility in dogs with a vagally denervated gastric pouch. Scand J Gastroenterol 36 (10): 1049‐1055, 2001.
 346.Shimazu T, Fukuda A, Ban T. Reciprocal influences of the ventromedial and lateral hypothalamic nuclei on blood glucose level and liver glycogen content. Nature 210 (5041): 1178‐1179, 1966.
 347.Shimazu T, Minokoshi Y. Systemic glucoregulation by glucose‐sensing neurons in the ventromedial hypothalamic nucleus (VMH). J Endocr Soc 1 (5): 449‐459, 2017.
 348.Slavin BG, Ong JM, Kern PA. Hormonal regulation of hormone‐sensitive lipase activity and mRNA levels in isolated rat adipocytes. J Lipid Res 35 (9): 1535‐1541, 1994.
 349.Snodgrass PJ, Lin RC, Muller WA, Aoki TT. Induction of urea cycle enzymes of rat liver by glucagon. J Biol Chem 253 (8): 2748‐2753, 1978.
 350.Solloway MJ, Madjidi A, Gu C, Eastham‐Anderson J, Clarke HJ, Kljavin N, Zavala‐Solorio J, Kates L, Friedman B, Brauer M, Wang J, Fiehn O, Kolumam G, Stern H, Lowe JB, Peterson AS. Glucagon couples hepatic amino acid catabolism to mTOR‐dependent regulation of alpha‐cell mass. Cell Rep 12 (3): 495‐510, 2015.
 351.Song K‐H, Chiang JYL. Glucagon and cAMP inhibit cholesterol 7α‐hydroxylase (CYP7a1) gene expression in human hepatocytes: Discordant regulation of bile acid synthesis and gluconeogenesis. Hepatology 43 (1): 117‐125, 2006.
 352.Sprague JE, Arbeláez AM. Glucose counterregulatory responses to hypoglycemia. Pediatr Endocrinol Rev 9 (1): 463‐475, 2011.
 353.Starke A, Imamura T, Unger RH. Relationship of glucagon suppression by insulin and somatostatin to the ambient glucose concentration. J Clin Invest 79 (1): 20‐24, 1987.
 354.Stasevich TJ, Hayashi‐Takanaka Y, Sato Y, Maehara K, Ohkawa Y, Sakata‐Sogawa K, Tokunaga M, Nagase T, Nozaki N, McNally JG, Kimura H. Regulation of RNA polymerase II activation by histone acetylation in single living cells. Nature 516 (7530): 272‐275, 2014.
 355.Stephens FB, Constantin‐Teodosiu D, Greenhaff PL. New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. J Physiol 581 (Pt 2): 431‐444, 2007.
 356.St‐Onge L, Sosa‐Pineda B, Chowdhury K, Mansouri A, Gruss P. Pax6 is required for differentiation of glucagon‐producing alpha‐cells in mouse pancreas. Nature 387 (6631): 406‐409, 1997.
 357.Struck E, Ashmore J, Wieland O. Stimulation of gluconeogenesis by long chain fatty acids and glucagon. Biochem Z 343 (1): 107‐110, 1965.
 358.Strzelecki T, Strzelecka D, Koch CD, LaNoue KF. Sites of action of glucagon and other Ca2+ mobilizing hormones on the malate aspartate cycle. Arch Biochem Biophys 264 (1): 310‐320, 1988.
 359.Stunkard AJ, Van Itallie TB, Reis BB. The mechanism of satiety: Effect of glucagon on gastric hunger contractions in man. Proc Soc Exp Biol Med 89 (2): 258‐261, 1955.
 360.Svendsen B, Larsen O, Gabe MBN, Christiansen CB, Rosenkilde MM, Drucker DJ, Holst JJ. Insulin secretion depends on intra‐islet glucagon signaling. Cell Rep 25 (5): 1127‐1134, e1122, 2018.
 361.Svoboda M, Tastenoy M, Vertongen P, Robberecht P. Relative quantitative analysis of glucagon receptor mRNA in rat tissues. Mol Cell Endocrinol 105 (2): 131‐137, 1994.
 362.Szymanska E, Budick‐Harmelin N, Miaczynska M. Endosomal “sort” of signaling control: The role of ESCRT machinery in regulation of receptor‐mediated signaling pathways. Semin Cell Dev Biol 74: 11‐20, 2018.
 363.Taborsky GJ, Ahrén B, Havel PJ. Autonomic mediation of glucagon secretion during hypoglycemia: Implications for impaired alpha‐cell responses in type 1 diabetes. Diabetes 47 (7): 995‐1005, 1998.
 364.Taborsky GJ. The physiology of glucagon. J Diabetes Sci Technol 4 (6): 1338‐1344, 2010.
 365.Taborsky GJ Jr. The Physiology of Glucagon. Newbury Park, CA: SAGE Publications, 2010.
 366.Tan TM, Field BC, McCullough KA, Troke RC, Chambers ES, Salem V, Maffe JG, Baynes KCR, De Silva A, Viardot A, Alsafi A, Frost GS, Ghatei MA, Bloom SR. Coadministration of glucagon‐like peptide‐1 during glucagon infusion in humans results in increased energy expenditure and amelioration of hyperglycemia. Diabetes 62 (4): 1131‐1138, 2013.
 367.Taneera J, Jin Z, Jin Y, Muhammed SJ, Zhang E, Lang S, Salehi A, Korsgren O, Renström E, Groop L, Birnir B. γ‐Aminobutyric acid (GABA) signalling in human pancreatic islets is altered in type 2 diabetes. Diabetologia 55 (7): 1985‐1994, 2012.
 368.Taylor CW. Regulation of IP3 receptors by cyclic AMP. Cell Calcium 63: 48‐52, 2017.
 369.Teff KL, Engelman K. Oral sensory stimulation improves glucose tolerance in humans: Effects on insulin, C‐peptide, and glucagon. Am J Physiol 270 (6): 1371‐1379, 1996.
 370.Teodoro JS, Rolo AP, Palmeira CM. Hepatic FXR: Key regulator of whole‐body energy metabolism. Trends Endocrinol Metab 22 (11): 458‐466, 2011.
 371.Thorburn A, Litchfield A, Fabris S, Proietto J. Abnormal transient rise in hepatic glucose production after oral glucose in non‐insulin‐dependent diabetic subjects. Diabetes Res Clin Pract 28 (2): 127‐135, 1995.
 372.Thyssen S, Arany E, Hill DJ. Ontogeny of regeneration of beta‐cells in the neonatal rat after treatment with streptozotocin. Endocrinology 147 (5): 2346‐2356, 2006.
 373.Tovey SC, Dedos SG, Rahman T, Taylor EJ, Pantazaka E, Taylor CW. Regulation of inositol 1, 4, 5‐trisphosphate receptors by cAMP independent of cAMP‐dependent protein kinase. J Biol Chem 285 (17): 12979‐12989, 2010.
 374.Traub S, Meier DT, Schulze F, Dror E, Nordmann TM, Goetz N, Koch N, Dalmas E, Stawiski M, Makshana V, Thorel F, Herrera PL, Böni‐Schnetzler M, Donath MY. Pancreatic alpha cell‐derived glucagon‐related peptides are required for beta cell adaptation and glucose homeostasis. Cell Rep 18 (13): 3192‐3203, 2017.
 375.Trejo J. Internal PDZ ligands: Novel endocytic recycling motifs for G protein‐coupled receptors. Mol Pharmacol 67 (5): 1388‐1390, 2005.
 376.Tsai WW, Niessen S, Goebel N, Yates JR 3rd, Guccione E, Montminy M. PRMT5 modulates the metabolic response to fasting signals. Proc Natl Acad Sci U S A 110 (22): 8870‐8875, 2013.
 377.Tschop MH, Finan B, Clemmensen C, Gelfanov V, Perez‐Tilve D, Müller TD, DiMarchi RD. Unimolecular polypharmacy for treatment of diabetes and obesity. Cell Metab 24 (1): 51‐62, 2016.
 378.Tsvetanova NG, Irannejad R, von Zastrow M. G protein‐coupled receptor (GPCR) signaling via heterotrimeric G proteins from endosomes. J Biol Chem 290 (11): 6689‐6696, 2015.
 379.Tucker JD, Dhanvantari S, Brubaker PL. Proglucagon processing in islet and intestinal cell lines. Regul Pept 62 (1): 29‐35, 1996.
 380.Tups A, Benzler J, Sergi D, Ladyman SR, Williams LM. Central regulation of glucose homeostasis. Compr Physiol 7 (2): 741‐764, 2017.
 381.Uebi T, Tamura M, Horike N, Hashimoto YK, Takemori H. Phosphorylation of the CREB‐specific coactivator TORC2 at Ser(307) regulates its intracellular localization in COS‐7 cells and in the mouse liver. Am J Physiol Endocrinol Metab 299 (3): E413‐E425, 2010.
 382.Ui M, Claus TH, Exton JH, Park CR. Studies on the mechanism of action of glucagon on gluconeogenesis. J Biol Chem 248 (15): 5344‐5349, 1973.
 383.Unger RH, Cherrington AD. Glucagonocentric restructuring of diabetes: A pathophysiologic and therapeutic makeover. J Clin Invest 122 (1): 4‐12, 2012.
 384.Unger RH, Orci L. The essential role of glucagon in the pathogenesis of diabetes mellitus. Lancet 1 (7897): 14‐16, 1975.
 385.Unger RH, Orci L. Physiology and pathophysiology of glucagon. Physiol Rev 56 (4): 778‐826, 1976.
 386.Unger RHA‐PE, Müller WA, Eisentraut AM. Studies of pancreatic alpha cell function in normal and diabetic subjects. J Clin Invest 49 (4): 837‐848, 1970.
 387.Unson CG, Cypess AM, Wu CR, Goldsmith PK, Merrifield RB, Sakmar TP. Antibodies against specific extracellular epitopes of the glucagon receptor block glucagon binding. Proc Natl Acad Sci U S A 93 (1): 310‐315, 1996.
 388.Vajda EG, Logan D, Lasseter K, Armas D, Plotkin DJ, Pipkin JD, Li Y‐X, Zhou R, Klein D, Wei X, Dilzer S, Zhi L, Marschke KB. Pharmacokinetics and pharmacodynamics of single and multiple doses of the glucagon receptor antagonist LGD‐6972 in healthy subjects and subjects with type 2 diabetes mellitus. Diabetes Obes Metab 19 (1): 24‐32, 2017.
 389.van Dongen MG, Geerts BF, Morgan ES, Brandt TA, de Kam ML, Romijn JA, Cohen AF, Bhanot S, Burggraaf J. First proof of pharmacology in humans of a novel glucagon receptor antisense drug. J Clin Pharmacol 55 (3): 298‐306, 2015.
 390.Van Dyke RW. Heterotrimeric G protein subunits are located on rat liver endosomes. BMC Physiol 4: 1, 2004.
 391.Vasu S, Moffett RC, Thorens B, Flatt PR. Role of endogenous GLP‐1 and GIP in beta cell compensatory responses to insulin resistance and cellular stress. PLoS One 9 (6): e101005, 2014.
 392.Verma R, Marchese A. The endosomal sorting complex required for transport pathway mediates chemokine receptor CXCR4‐promoted lysosomal degradation of the mammalian target of rapamycin antagonist DEPTOR. J Biol Chem 290 (11): 6810‐6824, 2015.
 393.Vieira E, Salehi A, Gylfe E. Glucose inhibits glucagon secretion by a direct effect on mouse pancreatic alpha cells. Diabetologia 50 (2): 370‐379, 2007.
 394.von Meyenn F, Porstmann T, Gasser E, Selevsek N, Schmidt A, Aebersold R, Stoffel M. Glucagon‐induced acetylation of Foxa2 regulates hepatic lipid metabolism. Cell Metab 17 (3): 436‐447, 2013.
 395.Vrang N, Hansen M, Larsen PJ, Tang‐Christensen M. Characterization of brainstem preproglucagon projections to the paraventricular and dorsomedial hypothalamic nuclei. Brain Res 1149: 118‐126, 2007.
 396.Vuylsteke C, Cornelis G, Duve CD. Influence du traitment au cobalt sur le contenu en facteur HG du pancreas de cobaye. Arch Int Physiol 60: 128, 1952.
 397.Walker JN, Ramracheya R, Zhang Q, Johnson PR, Braun M, Rorsman P. Regulation of glucagon secretion by glucose: Paracrine, intrinsic or both? Diabetes Obes Metab 13: 95‐105, 2011.
 398.Wanders D, Forney LA, Stone KP, Burk DH, Pierse A, Gettys TW. FGF21 mediates the thermogenic and insulin‐sensitizing effects of dietary methionine restriction but not its effects on hepatic lipid metabolism. Diabetes 66 (4): 858‐867, 2017.
 399.Wandinger‐Ness A, Zerial M. Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol 6 (11): a022616, 2014.
 400.Wang LMM, Pan C, Yang S, Brandl K, Liu J, Reilly SM, Wang Y, Miao Z, Loomba R, Lu N, Guo Q, Liu J, Yu RT, Downes M, Evans RM, Brenner DA, Saltiel AR, Beutler B, Schnabl B. YIPF6 controls sorting of FGF21 into COPII vesicles and promotes obesity. Proc Natl Acad Sci U S A 116 (30): 15184‐15193, 2019.
 401.Watanabe O, Atobe Y, Akagi M, Nishi K. Effects of glucagon on myoelectrical activity of the stomach of conscious and anesthetized dogs. Eur J Pharmacol 79 (1–2): 31‐41, 1982.
 402.Webb GC, Akbar MS, Zhao C, Swift HH, Steiner DF. Glucagon replacement via micro‐osmotic pump corrects hypoglycemia and alpha‐cell hyperplasia in prohormone convertase 2 knockout mice. Diabetes 51 (2): 398‐405, 2002.
 403.Weiser PC, Grande F. Calorigenic effects of glucagon and epinephrine in anesthetized dogs. Proc Soc Exp Biol Med 145 (3): 912‐917, 1974.
 404.Wendt A, Birnir B, Buschard K, Gromada J, Salehi A, Sewing S, Rorsman P, Braun M. Glucose inhibition of glucagon secretion from rat alpha‐cells is mediated by GABA released from neighboring beta‐cells. Diabetes 53 (4): 1038‐1045, 2004.
 405.West C, Hanyaloglu AC. Minireview: Spatial programming of G protein‐coupled receptor activity: Decoding signaling in health and disease. Mol Endocrinol 29 (8): 1095‐1106, 2015.
 406.Wewer Albrechtsen NJ, Faerch K, Jensen TM, Witte DR, Pedersen J, Mahendran Y, Jonsson AE, Galsgaard KD, Winther‐Sørensen M, Torekov SS, Lauritzen T, Pedersen O, Knop FK, Hans T. Evidence of a liver‐alpha cell axis in humans: Hepatic insulin resistance attenuates relationship between fasting plasma glucagon and glucagonotropic amino acids. Diabetologia 61 (3): 671‐680, 2018.
 407.Wewer Albrechtsen NJ, Hartmann B, Veedfald S, Windeløv JA, Plamboeck A, Bojsen‐Møller KN, Idorn T, Feldt‐Rasmussen B, Knop FK, Vilsbøll T, Madsbad S, Deacon CF, Holst JJ. Hyperglucagonaemia analysed by glucagon sandwich ELISA: Nonspecific interference or truly elevated levels? Diabetologia 57 (9): 1919‐1926, 2014.
 408.Wewer Albrechtsen NJ, Junker AE, Christensen M, Hædersdal S, Wibrand F, Lund AM, Galsgaard KD, Holst JJ, Knop FK, Vilsbøll T. Hyperglucagonemia correlates with plasma levels of non‐branched‐chain amino acids in patients with liver disease independent of type 2 diabetes. Am J Physiol Gastrointest Liver Physiol 314 (1): G91‐g96, 2018.
 409.Wewer Albrechtsen NJ, Kuhre RE, Pedersen J, Knop FK, Holst JJ. The biology of glucagon and the consequences of hyperglucagonemia. Biomark Med 10 (11): 1141‐1151, 2016.
 410.Wewer Albrechtsen NJ, Pedersen J, Galsgaard KD, Winther‐Sørensen M, Suppli MP, Janah L, Gromada J, Vilstrup H, Knop FK, Holst JJ. The liver‐alpha‐cell axis and type 2 diabetes. Endocr Rev 40 (5): 1353‐1366, 2019.
 411.Whalen EJ, Rajagopal S, Lefkowitz RJ. Therapeutic potential of beta‐arrestin‐ and G protein‐biased agonists. Trends Mol Med 17 (3): 126‐139, 2011.
 412.Whalley NM, Pritchard LE, Smith DM, White A. Processing of proglucagon to GLP‐1 in pancreatic alpha‐cells: Is this a paracrine mechanism enabling GLP‐1 to act on beta‐cells? J Endocrinol 211 (1): 99‐106, 2011.
 413.Whitehouse FW, James TN. Chronotropic action of glucagon on the sinus node. Proc Soc Exp Biol Med 122 (3): 823‐826, 1966.
 414.Wideman RD, Yu IL, Webber TD, Verchere CB, Johnson JD, Cheung AT, Kieffer TJ. Improving function and survival of pancreatic islets by endogenous production of glucagon‐like peptide 1 (GLP‐1). Proc Natl Acad Sci U S A 103 (36): 13468‐13473, 2006.
 415.Wilson ME, Kalamaras JA, German MS. Expression pattern of IAPP and prohormone convertase 1/3 reveals a distinctive set of endocrine cells in the embryonic pancreas. Mech Dev 115 (1‐2): 171‐176, 2002.
 416.Wojtusciszyn A, Armanet M, Morel P, Berney T, Bosco D. Insulin secretion from human beta cells is heterogeneous and dependent on cell‐to‐cell contacts. Diabetologia 51 (10): 1843‐1852, 2008.
 417.Wu MS, Jeng CY, Hollenback CB, Chen YD, Jaspan J, Reaven GM. Does glucagon increase plasma free fatty acid concentration in humans with normal glucose tolerance? J Clin Endocrinol Metab 70 (2): 410‐416, 1990.
 418.Wynshaw‐Boris A, Short JM, Loose DS, Hanson RW. Characterization of the phosphoenolpyruvate carboxykinase (GTP) promoter‐regulatory region. I. Multiple hormone regulatory elements and the effects of enhancers. J Biol Chem 261 (21): 9714‐9720, 1986.
 419.Xiao C, Pavlic M, Szeto L, Patterson BW, Lewis GF. Effects of acute hyperglucagonemia on hepatic and intestinal lipoprotein production and clearance in healthy humans. Diabetes 60 (2): 383‐390, 2011.
 420.Xu E, Kumar M, Zhang Y, Ju W, Obata T, Zhang N, Liu S, Wendt A, Deng S, Ebina Y, Wheeler MB, Braun M, Wang Q. Intra‐islet insulin suppresses glucagon release via GABA‐GABAA receptor system. Cell Metab 3 (1): 47‐58, 2006.
 421.Yahata T, Habara Y, Kuroshima A. Effects of glucagon and noradrenaline on the blood flow through brown adipose tissue in temperature‐acclimated rats. Jpn J Physiol 33 (3): 367‐376, 1983.
 422.Yamazaki RK. Glucagon stimulation of mitochondrial respiration. J Biol Chem 250 (19): 7924‐7930, 1975.
 423.Yan H, Gu W, Yang J, Bi V, Shen Y, Lee E, Winters KA, Komorowski R, Zhang C, Patel JJ, Caughey D, Elliott GS, Lau YY, Wang J, Li Y‐S, Boone T, Lindberg RA, Hu S, Véniant MM. Fully human monoclonal antibodies antagonizing the glucagon receptor improve glucose homeostasis in mice and monkeys. J Pharmacol Exp Ther 329 (1): 102‐111, 2009.
 424.Yao LF, MacLeod KM, McNeill JH. Glucagon‐induced densensitization: Correlation between cyclic AMP levels and contractile force. Eur J Pharmacol 79 (1‐2): 147‐150, 1982.
 425.Ye J. Mechanisms of insulin resistance in obesity. Front Med 7 (1): 14‐24, 2013.
 426.Yi F, Brubaker PL, Jin T. TCF‐4 mediates cell type‐specific regulation of proglucagon gene expression by beta‐catenin and glycogen synthase kinase‐3beta. J Biol Chem 280 (2): 1457‐1464, 2005.
 427.Yi F, Sun J, Lim GE, Fantus IG, Brubaker PL, Jin T. Cross talk between the insulin and Wnt signaling pathways: Evidence from intestinal endocrine L cells. Endocrinology 149 (5): 2341‐2351, 2008.
 428.Younossi ZM, Loomba R, Rinella ME, Bugianesi E, Marchesini G, Neuschwander‐Tetri BA, Serfaty L, Negro F, Caldwell SH, Ratziu V, Corey KE, Friedman SL, Abdelmalek MF, Harrison SA, Sanyal AJ, Lavine JE, Mathurin P, Charlton MR, Chalasani NP, Anstee QM, Kowdley KV, George J, Goodman ZD, Lindor K. Current and future therapeutic regimens for nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology 68 (1): 361‐371, 2018.
 429.Zhang L, Yao W, Xia J, Wang T, Huang F. Glucagon‐induced acetylation of energy‐sensing factors in control of hepatic metabolism. Int J Mol Sci 20 (8): 1885, 2019.
 430.Zhang T, Wang S, Lin Y, Xu W, Ye D, Xiong Y, Zhao S, Guan K‐L. Acetylation negatively regulates glycogen phosphorylase by recruiting protein phosphatase 1. Cell Metabol 15 (1): 75‐87, 2012.
 431.Zhang W‐S, Pan A, Zhang X, Ying A, Ma G, Liu B‐L, Qi L‐W, Liu Q, Li P. Inactivation of NF‐κB2 (p52) restrains hepatic glucagon response via preserving PDE4B induction. Nat Commun 10 (1): 4303, 2019.
 432.Zhao GN, Zhang P, Gong J, Zhang X‐J, Wang P‐X, Yin M, Jiang Z, Shen L‐J, Ji Y‐X, Tong J, Wang Y, Wei Q‐F. Tmbim1 is a multivesicular body regulator that protects against non‐alcoholic fatty liver disease in mice and monkeys by targeting the lysosomal degradation of Tlr4. Nat Med 23 (6): 742‐752, 2017.
 433.Zhu L, Rossi M, Cui Y, Lee RJ, Sakamoto W, Perry NA, Urs NM, Caron MG, Gurevich VV, Godlewski G, Kunos G, Chen M, Chen W, Wess J. Hepatic β‐arrestin 2 is essential for maintaining euglycemia. J Clin Invest 127 (8): 2941‐2945, 2017.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Anja Zeigerer, Revathi Sekar, Maximilian Kleinert, Shelly Nason, Kirk M. Habegger, Timo D. Müller. Glucagon's Metabolic Action in Health and Disease. Compr Physiol 2021, 11: 1759-1783. doi: 10.1002/cphy.c200013