Comprehensive Physiology Wiley Online Library

The Role of Thyroid Hormone in Neuronal Protection

Full Article on Wiley Online Library



Abstract

Thyroid hormone is essential for brain development and brain function in the adult. During development, thyroid hormone acts in a spatial and temporal‐specific manner to regulate the expression of genes essential for normal neural cell differentiation, migration, and myelination. In the adult brain, thyroid hormone is important for maintaining normal brain function. Thyroid hormone excess, hyperthyroidism, and thyroid hormone deficiency, hypothyroidism, are associated with disordered brain function, including depression, memory loss, impaired cognitive function, irritability, and anxiety. Adequate thyroid hormone levels are required for normal brain function. Thyroid hormone acts through a cascade of signaling components: activation and inactivation by deiodinase enzymes, thyroid hormone membrane transporters, and nuclear thyroid hormone receptors. Additionally, the hypothalamic‐pituitary‐thyroid axis, with negative feedback of thyroid hormone on thyrotropin‐releasing hormone (TRH) and thyroid‐stimulating hormone (TSH) secretion, regulates serum thyroid hormone levels in a narrow range. Animal and human studies have shown both systemic and local reduction in thyroid hormone availability in neurologic disease and after brain trauma. Treatment with thyroid hormone and selective thyroid hormone analogs has resulted in a reduction in injury and improved recovery. This article will describe the thyroid hormone signal transduction pathway in the brain and the role of thyroid hormone in the aging brain, neurologic diseases, and the protective role when administered after traumatic brain injury. © 2021 American Physiological Society. Compr Physiol 11:2075‐2095, 2021.

Figure 1. Figure 1. Thyroid hormones. The prohormone thyroxine (T4) is converted to the active hormone triiodothyronine (T3) by the Dio1 and Dio2 enzymes, 5′‐deiodinases, that remove an outer ring iodine. T4 can be inactivated by Dio3, 5‐deioiodinase, which removes an inner ring iodine and converts T3 to reverse T3 (rT3). Dio1, Dio2, and Dio3 are denoted as Deiodinases 1, 2, and 3.
Figure 2. Figure 2. Primary thyroid hormone transporters in the brain. A putative model of thyroid hormone signaling in the human brain based on the available studies. To exert its effects inside the brain, thyroid hormone needs to cross multiple barriers. This illustration provides a schematic overview of the different barriers in the human brain in which MCT8 and OATP1C1, and possibly additional transporters, might be involved in the transport of thyroid hormone. In most cases, definite proof of functional contribution to thyroid hormone transport is lacking. Moreover, the expression and contribution of the various thyroid hormone transporters likely depend on the developmental stage and vary between different cell populations of the same tissue. It is also unclear to what extent transporters other than those displayed here are expressed at the protein level at the different sites and contribute to thyroid hormone transport in the human brain. *LAT2 is localized to adult neurons and microglia but is absent in fetal neurons. Recently proposed novel routes by which thyroid hormone may enter the brain through the inner and outer cerebrospinal fluid brain barrier are not depicted. Abbreviations: 3V, third ventricle; BBB, blood‐brain‐barrier; BCSFB, blood‐cerebrospinal fluid barrier; CSF, cerebrospinal fluid; iTH, inactivated thyroid hormones. Reused, with permission, from Groeneweg S, et al., 2020 66.
Figure 3. Figure 3. Thyroid hormone receptor isoform‐specific functions. THRB1 and THRB2 are expressed in the brain and pituitary and mediate feedback from circulating thyroid hormone to regulate thyroid production by inhibiting expression of TRH in the hypothalamus and TSH in the pituitary. THRA1 is the primary THR expressed in the brain and accounts for 80% of the total THRs. THRA1 mediates T3 actions on brain development and function, as well as important actions of T3 in heart, skeletal muscle, brown adipose tissue, and bone.
Figure 4. Figure 4. Thyroid hormone effects on mitochondrial biogenesis. The schematic representation is drawn based on current knowledge of T3 action in skeletal muscle. T3 stimulates Pgc‐1α gene expression by direct binding to the Pgc‐1α gene and by nongenomic actions promoting AMPK/PI3K signaling. AMPK/PI3K phosphorylates, stabilizes, and activates the PGL‐1α protein, the master regulator of mitochondrial biogenesis. PGL‐1α binds the NRF1/2 gene promotor and actives Nrf1/2 gene transcription. NRF1/2, in turn, stimulates expression of the mitochondria transcription factor A (Tfam). T FAM protein is required for mitochondrial genome replication, repair, and mitochondrial gene transcription for biogenesis. T3 stimulates oxidative respiration and increases reactive oxygen species (ROS) and mitophagy.
Figure 5. Figure 5. Kaplan‐Meier survival curve of serum T3 levels of patients after an acute stroke. Patients with low serum T3, compared to patients with normal serum T3, followed for 12 months after an acute stroke. Adapted, with permission, from Alevizaki M, et al., 2007 5.
Figure 6. Figure 6. Thyroid hormone and adult neurogenesis in the dentate gyrus of subgranular zone (SGZ) in the hippocampus. (A) Sagittal view of the rodent brain with the boxed region outlining hippocampal formation. (B) Schematic of the hippocampus with CA1, CA3, dentate gyrus (DG), and hilus regions. (C). The SGZ niche is comprised of radial and horizontal type 1 NSCs (pink), early‐stage type 2a transit‐amplifying progenitors (TAPs) (orange), late‐stage type 3 TAPs/neuroblasts (yellow), immature granule neurons (green), and mature granule neurons (blue). The progression from NSCs to mature granule neurons in adult SGZ is a multistep process with distinct stages (labeled on top) and is controlled by the sequential expression of transcription factors (bottom colored panels). Neural stem cells (NSCs) receive the signal to proliferate and divide and generate TAPs, that are differentiated into neurons and astrocytes. Type 2a‐2b and neuroblasts are self‐renewing cells. A portion of these cells is differentiated. T3/THRA1 directly influences the differentiation of nonproliferating type 2b TPAs into type 3 neuroblasts, and then neuroblasts to immature neurons. T3/THRA1 also has a role in the maturation of immature granule neurons. The red bar indicates THRA1 expressed in all cell types. ML, molecular layer; GCL, granule cell layer. Adapted and modified, with permission, from Jenny Hsiegh, 2012.
Figure 7. Figure 7. Thyroid hormone regulates adult neurogenesis in the subventricular zone (SVZ). (A) Sagittal view of the rodent brain, with the boxed region outlining the SVZ region next to the lateral ventricle (LV). (B) Schematic of the SVZ with ependymal cells (E), blood vessel (BV) cells, and distinct stem/progenitor cell types (types B, C, and A). (C) The SVZ niche is comprised of astrocyte‐like type B1 and B2 NSCs (pink), type C TAPs (orange), type A neuroblasts (yellow), immature neurons (green), and mature neurons (blue). The progression from type B NSCs to mature neurons in the adult SVZ is a multistep process with distinct stages (labeled on top) and is controlled by the sequential expression of transcription factors (bottom colored panels). T3/THRA1 regulates differentiation of NSCs, progenitor cell proliferation, and commitment toward a neuronal phenotype in SVZ neurogenesis niche of adult brain. THRA1 is expressed in all neuronal cell types. T3 action is strongly indicated in differentiation. The shade of bars depicts the strength of influences. Adapted and modified, with permission, from Jenny Hsiegh, 2012.
Figure 8. Figure 8. Thyroid hormone protects hypoxic neuronal degradation via epigenetic pathways. The mouse primary cortical neurons are exposed to 0.2% hypoxia in the presence or absence of 5 mM T3. The epigenetic change is compared with controls for the mRNA level of DNA methyltransferases (Dnmts) and demethylation enzymes (Tets) and quantitative measurement of 5‐hydroxymethylcytosine (demethylation) and 5‐methylcytosine (methylated) as percentage of total DNA. Adapted, with permission, from Li J, et al., 2019 100.


Figure 1. Thyroid hormones. The prohormone thyroxine (T4) is converted to the active hormone triiodothyronine (T3) by the Dio1 and Dio2 enzymes, 5′‐deiodinases, that remove an outer ring iodine. T4 can be inactivated by Dio3, 5‐deioiodinase, which removes an inner ring iodine and converts T3 to reverse T3 (rT3). Dio1, Dio2, and Dio3 are denoted as Deiodinases 1, 2, and 3.


Figure 2. Primary thyroid hormone transporters in the brain. A putative model of thyroid hormone signaling in the human brain based on the available studies. To exert its effects inside the brain, thyroid hormone needs to cross multiple barriers. This illustration provides a schematic overview of the different barriers in the human brain in which MCT8 and OATP1C1, and possibly additional transporters, might be involved in the transport of thyroid hormone. In most cases, definite proof of functional contribution to thyroid hormone transport is lacking. Moreover, the expression and contribution of the various thyroid hormone transporters likely depend on the developmental stage and vary between different cell populations of the same tissue. It is also unclear to what extent transporters other than those displayed here are expressed at the protein level at the different sites and contribute to thyroid hormone transport in the human brain. *LAT2 is localized to adult neurons and microglia but is absent in fetal neurons. Recently proposed novel routes by which thyroid hormone may enter the brain through the inner and outer cerebrospinal fluid brain barrier are not depicted. Abbreviations: 3V, third ventricle; BBB, blood‐brain‐barrier; BCSFB, blood‐cerebrospinal fluid barrier; CSF, cerebrospinal fluid; iTH, inactivated thyroid hormones. Reused, with permission, from Groeneweg S, et al., 2020 66.


Figure 3. Thyroid hormone receptor isoform‐specific functions. THRB1 and THRB2 are expressed in the brain and pituitary and mediate feedback from circulating thyroid hormone to regulate thyroid production by inhibiting expression of TRH in the hypothalamus and TSH in the pituitary. THRA1 is the primary THR expressed in the brain and accounts for 80% of the total THRs. THRA1 mediates T3 actions on brain development and function, as well as important actions of T3 in heart, skeletal muscle, brown adipose tissue, and bone.


Figure 4. Thyroid hormone effects on mitochondrial biogenesis. The schematic representation is drawn based on current knowledge of T3 action in skeletal muscle. T3 stimulates Pgc‐1α gene expression by direct binding to the Pgc‐1α gene and by nongenomic actions promoting AMPK/PI3K signaling. AMPK/PI3K phosphorylates, stabilizes, and activates the PGL‐1α protein, the master regulator of mitochondrial biogenesis. PGL‐1α binds the NRF1/2 gene promotor and actives Nrf1/2 gene transcription. NRF1/2, in turn, stimulates expression of the mitochondria transcription factor A (Tfam). T FAM protein is required for mitochondrial genome replication, repair, and mitochondrial gene transcription for biogenesis. T3 stimulates oxidative respiration and increases reactive oxygen species (ROS) and mitophagy.


Figure 5. Kaplan‐Meier survival curve of serum T3 levels of patients after an acute stroke. Patients with low serum T3, compared to patients with normal serum T3, followed for 12 months after an acute stroke. Adapted, with permission, from Alevizaki M, et al., 2007 5.


Figure 6. Thyroid hormone and adult neurogenesis in the dentate gyrus of subgranular zone (SGZ) in the hippocampus. (A) Sagittal view of the rodent brain with the boxed region outlining hippocampal formation. (B) Schematic of the hippocampus with CA1, CA3, dentate gyrus (DG), and hilus regions. (C). The SGZ niche is comprised of radial and horizontal type 1 NSCs (pink), early‐stage type 2a transit‐amplifying progenitors (TAPs) (orange), late‐stage type 3 TAPs/neuroblasts (yellow), immature granule neurons (green), and mature granule neurons (blue). The progression from NSCs to mature granule neurons in adult SGZ is a multistep process with distinct stages (labeled on top) and is controlled by the sequential expression of transcription factors (bottom colored panels). Neural stem cells (NSCs) receive the signal to proliferate and divide and generate TAPs, that are differentiated into neurons and astrocytes. Type 2a‐2b and neuroblasts are self‐renewing cells. A portion of these cells is differentiated. T3/THRA1 directly influences the differentiation of nonproliferating type 2b TPAs into type 3 neuroblasts, and then neuroblasts to immature neurons. T3/THRA1 also has a role in the maturation of immature granule neurons. The red bar indicates THRA1 expressed in all cell types. ML, molecular layer; GCL, granule cell layer. Adapted and modified, with permission, from Jenny Hsiegh, 2012.


Figure 7. Thyroid hormone regulates adult neurogenesis in the subventricular zone (SVZ). (A) Sagittal view of the rodent brain, with the boxed region outlining the SVZ region next to the lateral ventricle (LV). (B) Schematic of the SVZ with ependymal cells (E), blood vessel (BV) cells, and distinct stem/progenitor cell types (types B, C, and A). (C) The SVZ niche is comprised of astrocyte‐like type B1 and B2 NSCs (pink), type C TAPs (orange), type A neuroblasts (yellow), immature neurons (green), and mature neurons (blue). The progression from type B NSCs to mature neurons in the adult SVZ is a multistep process with distinct stages (labeled on top) and is controlled by the sequential expression of transcription factors (bottom colored panels). T3/THRA1 regulates differentiation of NSCs, progenitor cell proliferation, and commitment toward a neuronal phenotype in SVZ neurogenesis niche of adult brain. THRA1 is expressed in all neuronal cell types. T3 action is strongly indicated in differentiation. The shade of bars depicts the strength of influences. Adapted and modified, with permission, from Jenny Hsiegh, 2012.


Figure 8. Thyroid hormone protects hypoxic neuronal degradation via epigenetic pathways. The mouse primary cortical neurons are exposed to 0.2% hypoxia in the presence or absence of 5 mM T3. The epigenetic change is compared with controls for the mRNA level of DNA methyltransferases (Dnmts) and demethylation enzymes (Tets) and quantitative measurement of 5‐hydroxymethylcytosine (demethylation) and 5‐methylcytosine (methylated) as percentage of total DNA. Adapted, with permission, from Li J, et al., 2019 100.
References
 1.Abe T, Kakyo M, Sakagami H, Tokui T, Nishio T, Tanemoto M, Nomura H, Hebert SC, Matsuno S, Kondo H, Yawo H. Molecular characterization and tissue distribution of a new organic anion transporter subtype (oatp3) that transports thyroid hormones and taurocholate and comparison with oatp2. J Biol Chem 273 (35): 22395‐22401, 1998.
 2.Abel ED, Ahima RS, Boers ME, Elmquist JK, Wondisford FE. Critical role for thyroid hormone receptor beta2 in the regulation of paraventricular thyrotropin‐releasing hormone neurons. J Clin Invest 107 (8): 1017‐1023, 2001.
 3.Abel ED, Boers ME, Pazos‐Moura C, Moura E, Kaulbach H, Zakaria M, Lowell B, Radovick S, Liberman MC, Wondisford F. Divergent roles for thyroid hormone receptor beta isoforms in the endocrine axis and auditory system. J Clin Invest 104 (3): 291‐300, 1999.
 4.Agha A, Phillips J, O'Kelly P, Tormey W, Thompson CJ. The natural history of post‐traumatic hypopituitarism: Implications for assessment and treatment. Am J Med 118 (12): 1416, 2005.
 5.Alevizaki M, Synetou M, Xynos K, Pappa T, Vemmos KN. Low triiodothyronine: A strong predictor of outcome in acute stroke patients. Eur J Clin Investig 37 (8): 651‐657, 2007.
 6.Alzoubi KH, Gerges NZ, Alkadhi KA. Levothyroxin restores hypothyroidism‐induced impairment of LTP of hippocampal CA1: Electrophysiological and molecular studies. Exp Neurol 195 (2): 330‐341, 2005.
 7.Amin A, Dhillo WS, Murphy KG. The central effects of thyroid hormones on appetite. J Thyroid Res 2011: 306510, 2011.
 8.Anderson GW, Schoonover CM, Jones SA. Control of thyroid hormone action in the developing rat brain. Thyroid 13 (11): 1039‐1056, 2003.
 9.Attardo A, Fabel K, Krebs J, Haubensak W, Huttner WB, Kempermann G. Tis21 expression marks not only populations of neurogenic precursor cells but also new postmitotic neurons in adult hippocampal neurogenesis. Cereb Cortex 20 (2): 304‐314, 2010.
 10.Aubert CE, Bauer DC, da Costa BR, Feller M, Rieben C, Simonsick EM, Yaffe K, Rodondi N, Health ABC Study. The association between subclinical thyroid dysfunction and dementia: The health, aging and body composition (health ABC) study. Clin Endocrinol 87 (5): 617‐626, 2017.
 11.Baptista P, Andrade JP. Adult hippocampal neurogenesis: Regulation and possible functional and clinical correlates. Front Neuroanat 12: 44, 2018.
 12.Barez‐Lopez S, Bosch‐Garcia D, Gomez‐Andres D, Pulido‐Valdeolivas I, Montero‐Pedrazuela A, Obregon MJ, Guadaño‐Ferraz A. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase. PLoS One 9 (8): e103857, 2014.
 13.Bates JM, St Germain DL, Galton VA. Expression profiles of the three iodothyronine deiodinases, D1, D2, and D3, in the developing rat. Endocrinology 140 (2): 844‐851, 1999.
 14.Bauer M, Silverman DH, Schlagenhauf F, London ED, Geist CL, van Herle K, Rasgon N, Martinez D, Miller K, van Herle A, Berman SM, Phelps ME, Whybrow PC. Brain glucose metabolism in hypothyroidism: A positron emission tomography study before and after thyroid hormone replacement therapy. J Clin Endocrinol Metab 94 (8): 2922‐2999, 2009.
 15.Begin ME, Langlois MF, Lorrain D, Cunnane SC. Thyroid function and cognition during aging. Curr Gerontol Geriatr Res 2008: 474868, 2008.
 16.Bernal J. Thyroid hormones in brain development and function. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dungan K, Grossman A, Hershman JM, Hofland J, Kaltsas G, Koch C, Kopp P, Korbonits M, McLachlan R, Morley JE, New M, Purnell J, Singer F, Stratakis CA, Trence DL, Wilson DP, editors. Endotext. South Dartmouth, MA: MDText.com, Inc., 2000.
 17.Bernal J, Guadano‐Ferraz A, Morte B. Thyroid hormone transporters‐functions and clinical implications. Nat Rev Endocrinol 11 (12): 690, 2015.
 18.Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23 (1): 38‐89, 2002.
 19.Billon N, Jolicoeur C, Tokumoto Y, Vennstrom B, Raff M. Normal timing of oligodendrocyte development depends on thyroid hormone receptor alpha 1 (TRalpha1). EMBO J 21 (23): 6452‐6460, 2002.
 20.Billon N, Tokumoto Y, Forrest D, Raff M. Role of thyroid hormone receptors in timing oligodendrocyte differentiation. Dev Biol 235 (1): 110‐120, 2001.
 21.Bocco BM, Werneck‐de‐Castro JP, Oliveira KC, Fernandes GW, Fonseca TL, Nascimento BP, McAninch EA, Ricci E, Kvárta‐Papp Z, Fekete C, Bernardi MM, Gereben B, Bianco AC, Ribeiro MO. Type 2 deiodinase disruption in astrocytes results in anxiety‐depressive‐like behavior in male mice. Endocrinology 157 (9): 3682‐3695, 2016.
 22.Bochukova E, Schoenmakers N, Agostini M, Schoenmakers E, Rajanayagam O, Keogh JM, Henning E, Reinemund J, Gevers E, Sarri M, Downes K, Offiah A, Albanese A, Halsall D, Schwabe JWR, Bain M, Lindley K, Muntoni F, Vargha‐Khadem F, Dattani M, Farooqi IS, Gurnell M, Chatterjee K. A mutation in the thyroid hormone receptor alpha gene. N Engl J Med 366 (3): 243‐249, 2012.
 23.Bondanelli M, Ambrosio MR, Zatelli MC, De Marinis L, degli Uberti EC. Hypopituitarism after traumatic brain injury. Eur J Endocrinol 152 (5): 679‐691, 2005.
 24.Brahimi‐Horn MC, Pouyssegur J. The hypoxia‐inducible factor and tumor progression along the angiogenic pathway. Int Rev Cytol 242: 157‐213, 2005.
 25.Bratic A, Larsson NG. The role of mitochondria in aging. J Clin Invest 123 (3): 951‐957, 2013.
 26.Burke SN, Barnes CA. Neural plasticity in the ageing brain. Nat Rev Neurosci 7 (1): 30‐40, 2006.
 27.Calvo R, Obregon MJ, Ruiz de Ona C, Escobar del Rey F, Morreale de Escobar G. Congenital hypothyroidism, as studied in rats. Crucial role of maternal thyroxine but not of 3,5,3′‐triiodothyronine in the protection of the fetal brain. J Clin Invest 86 (3): 889‐899, 1990.
 28.Campbell JN, Macosko EZ, Fenselau H, Pers TH, Lyubetskaya A, Tenen D, Goldman M, Verstegen AMJ, Resch JM, McCarroll SA, Rosen ED, Lowell BB, Tsai LT. A molecular census of arcuate hypothalamus and median eminence cell types. Nat Neurosci 20 (3): 484‐496, 2017.
 29.Cao X, Kambe F, Moeller LC, Refetoff S, Seo H. Thyroid hormone induces rapid activation of Akt/protein kinase B‐mammalian target of rapamycin‐p70S6K cascade through phosphatidylinositol 3‐kinase in human fibroblasts. Mol Endocrinol 19 (1): 102‐112, 2005.
 30.Charalambous M, Hernandez A. Genomic imprinting of the type 3 thyroid hormone deiodinase gene: Regulation and developmental implications. Biochim Biophys Acta 1830 (7): 3946‐3955, 2013.
 31.Chatonnet F, Guyot R, Benoit G, Flamant F. Genome‐wide analysis of thyroid hormone receptors shared and specific functions in neural cells. Proc Natl Acad Sci USA 110 (8): E766‐E775, 2013.
 32.Chen R, Wu X, Jiang L, Zhang Y. Single‐cell RNA‐Seq reveals hypothalamic cell diversity. Cell Rep 18 (13): 3227‐3241, 2017.
 33.Chiellini G, Apriletti JW, Yoshihara HA, Baxter JD, Ribeiro RC, Scanlan TS. A high‐affinity subtype‐selective agonist ligand for the thyroid hormone receptor. Chem Biol 5 (6): 299‐306, 1998.
 34.Contreras‐Jurado C, Pascual A. Thyroid hormone regulation of APP (beta‐amyloid precursor protein) gene expression in brain and brain cultured cells. Neurochem Int 60 (5): 484‐487, 2012.
 35.Coppola A, Liu ZW, Andrews ZB, Paradis E, Roy MC, Friedman JM, Ricquier D, Richard D, Horvath TL, Gao X‐B, Diano S. A central thermogenic‐like mechanism in feeding regulation: An interplay between arcuate nucleus T3 and UCP2. Cell Metab 5 (1): 21‐33, 2007.
 36.Costa LES, Clementino‐Neto J, Mendes CB, Franzon NH, Costa EO, Moura‐Neto V, Ximenes‐da‐Silva A. Evidence of aquaporin 4 regulation by thyroid hormone during mouse brain development and in cultured human glioblastoma multiforme cells. Front Neurosci 13: 317, 2019.
 37.Cox SR, Ritchie SJ, Tucker‐Drob EM, Liewald DC, Hagenaars SP, Davies G, Wardlaw JM, Gale CR, Bastin ME, Deary IJ. Ageing and brain white matter structure in 3,513 UK biobank participants. Nat Commun 7: 13629, 2016.
 38.Crantz FR, Silva JE, Larsen PR. An analysis of the sources and quantity of 3,5,3′‐triiodothyronine specifically bound to nuclear receptors in rat cerebral cortex and cerebellum. Endocrinology 110 (2): 367‐375, 1982.
 39.Crupi R, Paterniti I, Campolo M, Di Paola R, Cuzzocrea S, Esposito E. Exogenous T3 administration provides neuroprotection in a murine model of traumatic brain injury. Pharmacol Res 70 (1): 80‐89, 2013.
 40.Cummings J, Benson DF, LoVerme S Jr. Reversible dementia. Illustrative cases, definition, and review. JAMA 243 (23): 2434‐2439, 1980.
 41.Davis JD, Podolanczuk A, Donahue JE, Stopa E, Hennessey JV, Luo LG, Lim Y‐P, Stern RA. Thyroid hormone levels in the prefrontal cortex of post‐mortem brains of Alzheimer's disease patients. Curr Aging Sci 1 (3): 175‐181, 2008.
 42.Davis PJ, Davis FB, Lin HY. Promotion by thyroid hormone of cytoplasm‐to‐nucleus shuttling of thyroid hormone receptors. Steroids 73 (9–10): 1013‐1017, 2008.
 43.Davis PJ, Goglia F, Leonard JL. Nongenomic actions of thyroid hormone. Nat Rev Endocrinol 12 (2): 111‐121, 2016.
 44.Diano S, Naftolin F, Goglia F, Horvath TL. Fasting‐induced increase in type II iodothyronine deiodinase activity and messenger ribonucleic acid levels is not reversed by thyroxine in the rat hypothalamus. Endocrinology 139 (6): 2879‐2884, 1998.
 45.Duelli R, Kuschinsky W. Brain glucose transporters: Relationship to local energy demand. News Physiol Sci 16: 71‐76, 2001.
 46.Dumitrescu AM, Liao XH, Best TB, Brockmann K, Refetoff S. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet 74 (1): 168‐175, 2004.
 47.Fanibunda SE, Desouza LA, Kapoor R, Vaidya RA, Vaidya VA. Thyroid hormone regulation of adult neurogenesis. Vitam Horm 106: 211‐251, 2018.
 48.Farwell AP, Dubord‐Tomasetti SA, Pietrzykowski AZ, Stachelek SJ, Leonard JL. Regulation of cerebellar neuronal migration and neurite outgrowth by thyroxine and 3,3′,5′‐triiodothyronine. Brain Res Dev Brain Res 154 (1): 121‐135, 2005.
 49.Fauquier T, Romero E, Picou F, Chatonnet F, Nguyen XN, Quignodon L, Flamant F. Severe impairment of cerebellum development in mice expressing a dominant‐negative mutation inactivating thyroid hormone receptor alpha1 isoform. Dev Biol 356 (2): 350‐358, 2011.
 50.Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD, Silva AJ, Fan G. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13 (4): 423‐430, 2010.
 51.Fernandez‐Rodriguez E, Bernabeu I, Castro AI, Kelestimur F, Casanueva FF. Hypopituitarism following traumatic brain injury: Determining factors for diagnosis. Front Endocrinol (Lausanne) 2: 25, 2011.
 52.Flier JS, Harris M, Hollenberg AN. Leptin, nutrition, and the thyroid: The why, the wherefore, and the wiring. J Clin Invest 105 (7): 859‐861, 2000.
 53.Fonseca TL, Correa‐Medina M, Campos MP, Wittmann G, Werneck‐de‐Castro JP, Arrojo e Drigo R, Mora‐Garzon M, Ueta CB, Caicedo A, Fekete C, Gereben B, Lechan RM, Bianco AC. Coordination of hypothalamic and pituitary T3 production regulates TSH expression. J Clin Invest 123 (4): 1492‐1500, 2013.
 54.Forini F, Nicolini G, Pitto L, Iervasi G. Novel insight into the epigenetic and post‐transcriptional control of cardiac gene expression by thyroid hormone. Front Endocrinol (Lausanne) 10: 601, 2019.
 55.Friesema EC, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 278 (41): 40128‐40135, 2003.
 56.Friesema EC, Jansen J, Jachtenberg JW, Visser WE, Kester MH, Visser TJ. Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol Endocrinol 22 (6): 1357‐1369, 2008.
 57.Fujiwara K, Adachi H, Nishio T, Unno M, Tokui T, Okabe M, Onogawa T, Suzuki T, Asano N, Tanemoto M, Seki M, Shiiba K, Suzuki M, Kondo Y, Nunoki K, Shimosegawa T, Iinuma K, Ito S, Matsuno S, Abe T. Identification of thyroid hormone transporters in humans: Different molecules are involved in a tissue‐specific manner. Endocrinology 142 (5): 2005‐2012, 2001.
 58.Fylkesnes SI, Nygaard HA. Dementia and hypothyroidism. Tidsskr Nor Laegeforen 120 (8): 905‐907, 2000.
 59.Garry PS, Ezra M, Rowland MJ, Westbrook J, Pattinson KT. The role of the nitric oxide pathway in brain injury and its treatment—from bench to bedside. Exp Neurol 263: 235‐243, 2015.
 60.George KM, Lutsey PL, Selvin E, Palta P, Windham BG, Folsom AR. Association between thyroid dysfunction and incident dementia in the atherosclerosis risk in communities neurocognitive study. J Endocrinol Metab 9 (4): 82‐89, 2019.
 61.Gerdes AM, Iervasi G. Thyroid replacement therapy and heart failure. Circulation 122 (4): 385‐393, 2010.
 62.Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, Zeöld A, Bianco AC. Cellular and molecular basis of deiodinase‐regulated thyroid hormone signaling. Endocr Rev 29 (7): 898‐938, 2008.
 63.Gesing A, Lewinski A, Karbownik‐Lewinska M. The thyroid gland and the process of aging; what is new? Thyroid Res 5 (1): 16, 2012.
 64.Goyal MS, Vlassenko AG, Blazey TM, Su Y, Couture LE, Durbin TJ, Bateman RJ, Benzinger TL‐S, Morris JC, Raichle ME. Loss of brain aerobic glycolysis in normal human aging. Cell Metab 26 (2): 353‐360.e3, 2017.
 65.Grijota‐Martinez C, Diez D, Morreale de Escobar G, Bernal J, Morte B. Lack of action of exogenously administered T3 on the fetal rat brain despite expression of the monocarboxylate transporter 8. Endocrinology 152 (4): 1713‐1721, 2011.
 66.Groeneweg S, van Geest FS, Peeters RP, Heuer H, Visser WE. Thyroid hormone transporters. Endocr Rev 41 (2): bnz008, 2020.
 67.Halder R, Hennion M, Vidal RO, Shomroni O, Rahman RU, Rajput A, Centeno TP, van Bebber F, Capece V, Garcia Vizcaino JC, Schuetz A‐L, Burkhardt S, Benito E, Navarro Sala M, Javan SB, Haass C, Schmid B, Fischer A, Bonn S. DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nat Neurosci 19 (1): 102‐110, 2016.
 68.Hall CN, Klein‐Flugge MC, Howarth C, Attwell D. Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J Neurosci 32 (26): 8940‐8951, 2012.
 69.Hameed S, Patterson M, Dhillo WS, Rahman SA, Ma Y, Holton C, Gogakos A, Yeo GSH, Lam BYH, Polex‐Wolf J, Fenske W, Bell J, Anastasovska J, Samarut J, Bloom SR, Duncan Bassett JH, Williams GR, Gardiner JV. Thyroid hormone receptor beta in the ventromedial hypothalamus is essential for the physiological regulation of food intake and body weight. Cell Rep 19 (11): 2202‐2209, 2017.
 70.Harper ME, Seifert EL. Thyroid hormone effects on mitochondrial energetics. Thyroid 18 (2): 145‐156, 2008.
 71.Hartley MD, Banerji T, Tagge IJ, Kirkemo LL, Chaudhary P, Calkins E, Galipeau D, Shokat MD, DeBell MJ, Van Leuven S, Miller H, Marracci G, Pocius E, Banerji T, Ferrara SJ, Matthew Meinig J, Emery B, Bourdette D, Scanlan TS. Myelin repair stimulated by CNS‐selective thyroid hormone action. JCI Insight 4 (8): e126329, 2019.
 72.Hernandez A, Martinez ME, Fiering S, Galton VA, St Germain D. Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Invest 116 (2): 476‐484, 2006.
 73.Hernandez A, Quignodon L, Martinez ME, Flamant F, St Germain DL. Type 3 deiodinase deficiency causes spatial and temporal alterations in brain T3 signaling that are dissociated from serum thyroid hormone levels. Endocrinology 151 (11): 5550‐5558, 2010.
 74.Hernandez A, Stohn JP. The type 3 deiodinase: Epigenetic control of brain thyroid hormone action and neurological function. Int J Mol Sci 19 (6): 1804, 2018.
 75.Hoefig CS, Zucchi R, Kohrle J. Thyronamines and derivatives: Physiological relevance, pharmacological actions, and future research directions. Thyroid 26 (12): 1656‐1673, 2016.
 76.Horn S, Kersseboom S, Mayerl S, Muller J, Groba C, Trajkovic‐Arsic M, Ackermann T, Visser TJ, Heuer H. Tetrac can replace thyroid hormone during brain development in mouse mutants deficient in the thyroid hormone transporter mct8. Endocrinology 154 (2): 968‐979, 2013.
 77.Huber RD, Gao B, Sidler Pfandler MA, Zhang‐Fu W, Leuthold S, Hagenbuch B, Folkers G, Meier PJ, Stieger B. Characterization of two splice variants of human organic anion transporting polypeptide 3A1 isolated from human brain. Am J Physiol Cell Physiol 292 (2): C795‐C806, 2007.
 78.Irrcher I, Adhihetty PJ, Sheehan T, Joseph AM, Hood DA. PPARgamma coactivator‐1alpha expression during thyroid hormone‐ and contractile activity‐induced mitochondrial adaptations. Am J Physiol Cell Physiol 284 (6): C1669‐C1677, 2003.
 79.Ishii S, Kamegai J, Tamura H, Shimizu T, Sugihara H, Oikawa S. Triiodothyronine (T3) stimulates food intake via enhanced hypothalamic AMP‐activated kinase activity. Regul Pept 151 (1–3): 164‐169, 2008.
 80.Itoh Y, Esaki T, Kaneshige M, Suzuki H, Cook M, Sokoloff L, Cheng SY, Nunez J. Brain glucose utilization in mice with a targeted mutation in the thyroid hormone alpha or beta receptor gene. Proc Natl Acad Sci USA 98 (17): 9913‐9918, 2001.
 81.Jahagirdar V, McNay EC. Thyroid hormone's role in regulating brain glucose metabolism and potentially modulating hippocampal cognitive processes. Metab Brain Dis 27 (2): 101‐111, 2012.
 82.Jiang X, Xing H, Wu J, Du R, Liu H, Chen J, Wang J, Wang C, Wu Y. Prognostic value of thyroid hormones in acute ischemic stroke—A meta analysis. Sci Rep 7 (1): 16256, 2017.
 83.Jiang X, Xing H, Wu J, Du R, Liu H, Chen J, Wang J, Wang C, Wu Y. Author correction: Prognostic value of thyroid hormones in acute ischemic stroke—A meta analysis. Sci Rep 8 (1): 6651, 2018.
 84.John S, Weiss JN, Ribalet B. Subcellular localization of hexokinases I and II directs the metabolic fate of glucose. PLoS One 6 (3): e17674, 2011.
 85.Jones I, Srinivas M, Ng L, Forrest D. The thyroid hormone receptor beta gene: Structure and functions in the brain and sensory systems. Thyroid 13 (11): 1057‐1068, 2003.
 86.Kaneshige M, Kaneshige K, Zhu X, Dace A, Garrett L, Carter TA, Kazlauskaite R, Pankratz DG, Wynshaw‐Boris A, Refetoff S, Weintraub B, Willingham MC, Barlow C, Cheng S. Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci USA 97 (24): 13209‐13214, 2000.
 87.Kapoor R, Desouza LA, Nanavaty IN, Kernie SG, Vaidya VA. Thyroid hormone accelerates the differentiation of adult hippocampal progenitors. J Neuroendocrinol 24 (9): 1259‐1271, 2012.
 88.Kapoor R, Fanibunda SE, Desouza LA, Guha SK, Vaidya VA. Perspectives on thyroid hormone action in adult neurogenesis. J Neurochem 133 (5): 599‐616, 2015.
 89.Kapoor R, van Hogerlinden M, Wallis K, Ghosh H, Nordstrom K, Vennstrom B, Vaidya VA. Unliganded thyroid hormone receptor alpha1 impairs adult hippocampal neurogenesis. FASEB J 24 (12): 4793‐4805, 2010.
 90.Kong WM, Martin NM, Smith KL, Gardiner JV, Connoley IP, Stephens DA, Dhillo WS, Ghatei MA, Small CJ, Bloom SR. Triiodothyronine stimulates food intake via the hypothalamic ventromedial nucleus independent of changes in energy expenditure. Endocrinology 145 (11): 5252‐5258, 2004.
 91.Kouidhi S, Clerget‐Froidevaux MS. Integrating thyroid hormone signaling in hypothalamic control of metabolism: Crosstalk between nuclear receptors. Int J Mol Sci 19 (7): 2017, 2018.
 92.Kuge A, Takemura S, Kokubo Y, Sato S, Goto K, Kayama T. Temporal profile of neurogenesis in the subventricular zone, dentate gyrus and cerebral cortex following transient focal cerebral ischemia. Neurol Res 31 (9): 969‐976, 2009.
 93.Kumar A, Foster TC. Neurophysiology of old neurons and synapses. In: Riddle DR, editor. Brain Aging: Models, Methods, and Mechanisms. Boca Raton, FL: CRC Press/Taylor & Francis, 2007.
 94.Kyono Y, Sachs LM, Bilesimo P, Wen L, Denver RJ. Developmental and thyroid hormone regulation of the DNA methyltransferase 3a gene in xenopus tadpoles. Endocrinology 157 (12): 4961‐4972, 2016.
 95.Kyriacou A, McLaughlin J, Syed AA. Thyroid disorders and gastrointestinal and liver dysfunction: A state of the art review. Eur J Intern Med 26 (8): 563‐571, 2015.
 96.Langlet F. Tanycyte gene expression dynamics in the regulation of energy homeostasis. Front Endocrinol (Lausanne) 10: 286, 2019.
 97.Lemkine GF, Raj A, Alfama G, Turque N, Hassani Z, Alegria‐Prevot O, Samarut J, Levi G, Demeneix BA. Adult neural stem cell cycling in vivo requires thyroid hormone and its alpha receptor. FASEB J 19 (7): 863‐865, 2005.
 98.Leonard JL. Non‐genomic actions of thyroid hormone in brain development. Steroids 73 (9–10): 1008‐1012, 2008.
 99.Leuthold S, Hagenbuch B, Mohebbi N, Wagner CA, Meier PJ, Stieger B. Mechanisms of pH‐gradient driven transport mediated by organic anion polypeptide transporters. Am J Physiol Cell Physiol 296 (3): C570‐C582, 2009.
 100.Li J, Abe K, Milanesi A, Liu YY, Brent GA. Thyroid hormone protects primary cortical neurons exposed to hypoxia by reducing DNA methylation and apoptosis. Endocrinology 160 (10): 2243‐2256, 2019.
 101.Li J, Donangelo I, Abe K, Scremin O, Ke S, Li F, Milanesi A, Liu Y‐Y, Brent GA. Thyroid hormone treatment activates protective pathways in both in vivo and in vitro models of neuronal injury. Mol Cell Endocrinol 452: 120‐130, 2017.
 102.Liu YY, Brent GA. Thyroid hormone‐dependent gene expression in differentiated embryonic stem cells and embryonal carcinoma cells: Identification of novel thyroid hormone target genes by deoxyribonucleic acid microarray analysis. Endocrinology 146 (2): 776‐783, 2005.
 103.Liu YY, Brent GA. Thyroid hormone and the brain: Mechanisms of action in development and role in protection and promotion of recovery after brain injury. Pharmacol Ther 186: 176‐185, 2018.
 104.Liu YY, Schultz JJ, Brent GA. A thyroid hormone receptor alpha gene mutation (P398H) is associated with visceral adiposity and impaired catecholamine‐stimulated lipolysis in mice. J Biol Chem 278 (40): 38913‐38920, 2003.
 105.Lopez M, Varela L, Vazquez MJ, Rodriguez‐Cuenca S, Gonzalez CR, Velagapudi VR, Morgan DA, Schoenmakers E, Agassandian K, Lage R, de Morentin PBM, Tovar S, Nogueiras R, Carling D, Lelliott C, Gallego R, Oresic M, Chatterjee K, Saha AK, Rahmouni K, Diéguez C, Vidal‐Puig A. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med 16 (9): 1001‐1008, 2010.
 106.Lopez‐Juarez A, Remaud S, Hassani Z, Jolivet P, Pierre Simons J, Sontag T, Yoshikawa K, Price J, Morvan‐Dubois G, Demeneix BA. Thyroid hormone signaling acts as a neurogenic switch by repressing Sox2 in the adult neural stem cell niche. Cell Stem Cell 10 (5): 531‐543, 2012.
 107.Luongo C, Martin C, Vella K, Marsili A, Ambrosio R, Dentice M, Harney JW, Salvatore D, Zavacki AM, Larsen PR. The selective loss of the type 2 iodothyronine deiodinase in mouse thyrotrophs increases basal TSH but blunts the thyrotropin response to hypothyroidism. Endocrinology 156 (2): 745‐754, 2015.
 108.Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS. Aquaporin‐4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6 (2): 159‐163, 2000.
 109.Martinez ME, Cox DF, Youth BP, Hernandez A. Genomic imprinting of DIO3, a candidate gene for the syndrome associated with human uniparental disomy of chromosome 14. Eur J Hum Genet 24 (11): 1617‐1621, 2016.
 110.Masel BE, Urban R. Chronic endocrinopathies in traumatic brain injury disease. J Neurotrauma 32 (23): 1902‐1910, 2015.
 111.Mayerl S, Muller J, Bauer R, Richert S, Kassmann CM, Darras VM, Buder K, Boelen A, Visser TJ, Heuer H. Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. J Clin Invest 124 (5): 1987‐1999, 2014.
 112.McAllister RM, Albarracin I, Price EM, Smith TK, Turk JR, Wyatt KD. Thyroid status and nitric oxide in rat arterial vessels. J Endocrinol 185 (1): 111‐119, 2005.
 113.Mons N, Enderlin V, Jaffard R, Higueret P. Selective age‐related changes in the PKC‐sensitive, calmodulin‐binding protein, neurogranin, in the mouse brain. J Neurochem 79 (4): 859‐867, 2001.
 114.Montero‐Pedrazuela A, Venero C, Lavado‐Autric R, Fernandez‐Lamo I, Garcia‐Verdugo JM, Bernal J, Guadaño‐Ferraz A. Modulation of adult hippocampal neurogenesis by thyroid hormones: Implications in depressive‐like behavior. Mol Psychiatry 11 (4): 361‐371, 2006.
 115.Moran C, Agostini M, Visser WE, Schoenmakers E, Schoenmakers N, Offiah AC, Poole K, Rajanayagam O, Lyons G, Halsall D, Gurnell M, Chrysis D, Efthymiadou A, Buchanan C, Aylwin S, Chatterjee KK. Resistance to thyroid hormone caused by a mutation in thyroid hormone receptor (TR)alpha1 and TRalpha2: Clinical, biochemical, and genetic analyses of three related patients. Lancet Diabetes Endocrinol 2 (8): 619‐626, 2014.
 116.Morte B, Bernal J. Thyroid hormone action: Astrocyte‐neuron communication. Front Endocrinol (Lausanne) 5: 82, 2014.
 117.Morte B, Manzano J, Scanlan TS, Vennstrom B, Bernal J. Aberrant maturation of astrocytes in thyroid hormone receptor alpha 1 knockout mice reveals an interplay between thyroid hormone receptor isoforms. Endocrinology 145 (3): 1386‐1391, 2004.
 118.Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev 94 (2): 355‐382, 2014.
 119.Nauta TD, van den Broek M, Gibbs S, van der Pouw‐Kraan TC, Oudejans CB, van Hinsbergh VW, Koolwijk P. Identification of HIF‐2alpha‐regulated genes that play a role in human microvascular endothelial sprouting during prolonged hypoxia in vitro. Angiogenesis 20 (1): 39‐54, 2017.
 120.Nishikawa M, Inada M, Naito K, Ishii H, Tanaka K, Mashio Y, Nakao K, Nakai Y, Udaka F, Imura H. 3,3′,5′‐triiodothyronine (reverse T3) in human cerebrospinal fluid. J Clin Endocrinol Metab 53 (5): 1030‐1035, 1981.
 121.Nomoto S, Kinno R, Ochiai H, Kubota S, Mori Y, Futamura A, Sugimoto A, Kuroda T, Yano S, Murakami H, Shirasawa T, Yoshimoto T, Minoura A, Kokaze A, Ono K. The relationship between thyroid function and cerebral blood flow in mild cognitive impairment and Alzheimer's disease. PLoS One 14 (4): e0214676, 2019.
 122.Ntali G, Tsagarakis S. Traumatic brain injury induced neuroendocrine changes: Acute hormonal changes of anterior pituitary function. Pituitary 22 (3): 283‐295, 2019.
 123.O'Barr SA, Oh JS, Ma C, Brent GA, Schultz JJ. Thyroid hormone regulates endogenous amyloid‐beta precursor protein gene expression and processing in both in vitro and in vivo models. Thyroid 16 (12): 1207‐1213, 2006.
 124.Ojaimi J, Masters CL, Opeskin K, McKelvie P, Byrne E. Mitochondrial respiratory chain activity in the human brain as a function of age. Mech Ageing Dev 111 (1): 39‐47, 1999.
 125.O'Keefe LM, Conway SE, Czap A, Malchoff CD, Benashski S, Fortunato G, Staff I, McCullough LD. Thyroid hormones and functional outcomes after ischemic stroke. Thyroid Res 8: 9, 2015.
 126.Olivecrona Z, Dahlqvist P, Koskinen LO. Acute neuro‐endocrine profile and prediction of outcome after severe brain injury. Scand J Trauma Resusc Emerg Med 21: 33, 2013.
 127.Ortiga‐Carvalho TM, Sidhaye AR, Wondisford FE. Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat Rev Endocrinol 10 (10): 582‐591, 2014.
 128.Papadopoulos MC, Verkman AS. Aquaporin‐4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J Biol Chem 280 (14): 13906‐13912, 2005.
 129.Papadopoulos MC, Verkman AS. Aquaporin water channels in the nervous system. Nat Rev Neurosci 14 (4): 265‐277, 2013.
 130.Peeters RP, Hernandez A, Ng L, Ma M, Sharlin DS, Pandey M, Simonds WF, St Germain DL, Forrest D. Cerebellar abnormalities in mice lacking type 3 deiodinase and partial reversal of phenotype by deletion of thyroid hormone receptor alpha1. Endocrinology 154 (1): 550‐561, 2013.
 131.Peeters RP, Wouters PJ, Kaptein E, van Toor H, Visser TJ, Van den Berghe G. Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J Clin Endocrinol Metab 88 (7): 3202‐3211, 2003.
 132.Pisarev MA, Thomasz L, Juvenal GJ. Role of transforming growth factor beta in the regulation of thyroid function and growth. Thyroid 19 (8): 881‐892, 2009.
 133.Pizzagalli F, Hagenbuch B, Stieger B, Klenk U, Folkers G, Meier PJ. Identification of a novel human organic anion transporting polypeptide as a high affinity thyroxine transporter. Mol Endocrinol 16 (10): 2283‐2296, 2002.
 134.Puigserver P, Rhee J, Lin J, Wu Z, Yoon JC, Zhang CY, Krauss S, Mootha VK, Lowell BB, Spiegelman BM. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator‐1. Mol Cell 8 (5): 971‐982, 2001.
 135.Qiu WQ, Folstein MF. Insulin, insulin‐degrading enzyme and amyloid‐beta peptide in Alzheimer's disease: Review and hypothesis. Neurobiol Aging 27 (2): 190‐198, 2006.
 136.Raichle ME. The restless brain: How intrinsic activity organizes brain function. Philos Trans R Soc Lond Ser B Biol Sci 370 (1668): 20140172, 2015.
 137.Refetoff S, Bassett JH, Beck‐Peccoz P, Bernal J, Brent G, Chatterjee K, De Groot LJ, Dumitrescu AM, Jameson JL, Kopp PA, Murata Y, Persani L, Samarut J, Weiss RE, Williams GR, Yen PM. Classification and proposed nomenclature for inherited defects of thyroid hormone action, cell transport, and metabolism. J Clin Endocrinol Metab 99 (3): 768‐770, 2014.
 138.Remaud S, Gothie JD, Morvan‐Dubois G, Demeneix BA. Thyroid hormone signaling and adult neurogenesis in mammals. Front Endocrinol (Lausanne) 5: 62, 2014.
 139.Rizzoti K, Lovell‐Badge R. Pivotal role of median eminence tanycytes for hypothalamic function and neurogenesis. Mol Cell Endocrinol 445: 7‐13, 2017.
 140.Roberts LM, Woodford K, Zhou M, Black DS, Haggerty JE, Tate EH, Grindstaff KK, Mengesha W, Raman C, Zerangue N. Expression of the thyroid hormone transporters monocarboxylate transporter‐8 (SLC16A2) and organic ion transporter‐14 (SLCO1C1) at the blood‐brain barrier. Endocrinology 149 (12): 6251‐6261, 2008.
 141.Rodrigues TB, Ceballos A, Grijota‐Martinez C, Nunez B, Refetoff S, Cerdan S, Morte B, Bernal J. Increased oxidative metabolism and neurotransmitter cycling in the brain of mice lacking the thyroid hormone transporter SLC16A2 (MCT8). PLoS One 8 (10): e74621, 2013.
 142.Rodriguez‐Rodriguez A, Lazcano I, Sanchez‐Jaramillo E, Uribe RM, Jaimes‐Hoy L, Joseph‐Bravo P, Charli J‐L. Tanycytes and the control of thyrotropin‐releasing hormone flux into portal capillaries. Front Endocrinol (Lausanne) 10: 401, 2019.
 143.Sabell I, Morata P, Quesada J, Morell M. Activities of glycolytic enzymes in some brain areas of thyroidectomized rats and their response to replacement therapy. Enzyme 37 (4): 169‐173, 1987.
 144.Sadana P, Coughlin L, Burke J, Woods R, Mdzinarishvili A. Anti‐edema action of thyroid hormone in MCAO model of ischemic brain stroke: Possible association with AQP4 modulation. J Neurol Sci 354 (1–2): 37‐45, 2015.
 145.Samuels MH. Cognitive function in untreated hypothyroidism and hyperthyroidism. Curr Opin Endocrinol Diabetes Obes 15 (5): 429‐433, 2008.
 146.Sanchez E, Vargas MA, Singru PS, Pascual I, Romero F, Fekete C, Charli J‐L, Lechan RM. Tanycyte pyroglutamyl peptidase II contributes to regulation of the hypothalamic‐pituitary‐thyroid axis through glial‐axonal associations in the median eminence. Endocrinology 150 (5): 2283‐2291, 2009.
 147.Sandler B, Webb P, Apriletti JW, Huber BR, Togashi M, Cunha Lima ST, Juric S, Nilsson S, Wagner R, Fletterick RJ, Baxter JD. Thyroxine‐thyroid hormone receptor interactions. J Biol Chem 279 (53): 55801‐55808, 2004.
 148.Schneider HJ, Kreitschmann‐Andermahr I, Ghigo E, Stalla GK, Agha A. Hypothalamopituitary dysfunction following traumatic brain injury and aneurysmal subarachnoid hemorrhage: A systematic review. JAMA 298 (12): 1429‐1438, 2007.
 149.Schneider HJ, Schneider M, Saller B, Petersenn S, Uhr M, Husemann B, von Rosen F, Stalla GK. Prevalence of anterior pituitary insufficiency 3 and 12 months after traumatic brain injury. Eur J Endocrinol 154 (2): 259‐265, 2006.
 150.Schneider MJ, Fiering SN, Pallud SE, Parlow AF, St Germain DL, Galton VA. Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol Endocrinol 15 (12): 2137‐2148, 2001.
 151.Schoenmakers N, Moran C, Peeters RP, Visser T, Gurnell M, Chatterjee K. Resistance to thyroid hormone mediated by defective thyroid hormone receptor alpha. Biochim Biophys Acta 1830 (7): 4004‐4008, 2013.
 152.Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48 (2): 158‐167, 2012.
 153.Senese R, Cioffi F, Petito G, Goglia F, Lanni A. Thyroid hormone metabolites and analogues. Endocrine 66 (1): 105‐114, 2019.
 154.Short KR, Bigelow ML, Kahl J, Singh R, Coenen‐Schimke J, Raghavakaimal S, Nair KS. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 102 (15): 5618‐5623, 2005.
 155.Sinz EH, Kochanek PM, Dixon CE, Clark RS, Carcillo JA, Schiding JK, Chen M, Wisniewski SR, Carlos TM, Williams D, DeKosky ST, Watkins SC, Marion DW, Billiar TR. Inducible nitric oxide synthase is an endogenous neuroprotectant after traumatic brain injury in rats and mice. J Clin Invest 104 (5): 647‐656, 1999.
 156.Smith JS, Kiloh LG. The investigation of dementia: Results in 200 consecutive admissions. Lancet 317 (8224): 824‐827, 1981.
 157.Smith JW, Evans AT, Costall B, Smythe JW. Thyroid hormones, brain function and cognition: A brief review. Neurosci Biobehav Rev 26 (1): 45‐60, 2002.
 158.Souza PC, Puhl AC, Martinez L, Aparicio R, Nascimento AS, Figueira AC, Nguyen P, Webb P, Skaf MS, Polikarpov I. Identification of a new hormone‐binding site on the surface of thyroid hormone receptor. Mol Endocrinol 28 (4): 534‐545, 2014.
 159.Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Boström E, Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisén J. Dynamics of hippocampal neurogenesis in adult humans. Cell 153 (6): 1219‐1227, 2013.
 160.Stohn JP, Martinez ME, Hernandez A. Decreased anxiety‐ and depression‐like behaviors and hyperactivity in a type 3 deiodinase‐deficient mouse showing brain thyrotoxicosis and peripheral hypothyroidism. Psychoneuroendocrinology 74: 46‐56, 2016.
 161.Stolt CC, Rehberg S, Ader M, Lommes P, Riethmacher D, Schachner M, Bartsch U, Wegner M. Terminal differentiation of myelin‐forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev 16 (2): 165‐170, 2002.
 162.Stromme P, Groeneweg S, Lima de Souza EC, Zevenbergen C, Torgersbraten A, Holmgren A, Gurcan E, Meima ME, Peeters RP, Visser WE, Johansson LH, Babovic A, Zetterberg H, Heuer H, Frengen E, Misceo D, Visser TJ. Mutated thyroid hormone transporter OATP1C1 associates with severe brain hypometabolism and juvenile neurodegeneration. Thyroid 28 (11): 1406‐1415, 2018.
 163.Sugiyama D, Kusuhara H, Taniguchi H, Ishikawa S, Nozaki Y, Aburatani H, Sugiyama Y. Functional characterization of rat brain‐specific organic anion transporter (Oatp14) at the blood‐brain barrier: High affinity transporter for thyroxine. J Biol Chem 278 (44): 43489‐43495, 2003.
 164.Tan ZS, Beiser A, Vasan RS, Au R, Auerbach S, Kiel DP, Wolf PA, Seshadri S. Thyroid function and the risk of Alzheimer disease: The Framingham Study. Arch Intern Med 168 (14): 1514‐1520, 2008.
 165.Tanriverdi F, Dagli AT, Karaca Z, Unluhizarci K, Selcuklu A, Casanueva FF, Kelestimur F. High risk of pituitary dysfunction due to aneurysmal subarachnoid haemorrhage: A prospective investigation of anterior pituitary function in the acute phase and 12 months after the event. Clin Endocrinol 67 (6): 931‐937, 2007.
 166.Thompson P Jr, Burman KD, Wright FD, Potter MW, Wartofsky L. Iodothyronine levels in human cerebrospinal fluid. J Clin Endocrinol Metab 54 (3): 653‐655, 1982.
 167.Tinnikov A, Nordstrom K, Thoren P, Kindblom JM, Malin S, Rozell B, Adams M, Rajanayagam O, Pettersson S, Ohlsson C, Chatterjee K, Vennström B. Retardation of post‐natal development caused by a negatively acting thyroid hormone receptor alpha1. EMBO J 21 (19): 5079‐5087, 2002.
 168.Tisdall MM, Rejdak K, Kitchen ND, Smith M, Petzold A. The prognostic value of brain extracellular fluid nitric oxide metabolites after traumatic brain injury. Neurocrit Care 19 (1): 65‐68, 2013.
 169.Tohyama K, Kusuhara H, Sugiyama Y. Involvement of multispecific organic anion transporter, Oatp14 (Slc21a14), in the transport of thyroxine across the blood‐brain barrier. Endocrinology 145 (9): 4384‐4391, 2004.
 170.Trajkovic M, Visser TJ, Mittag J, Horn S, Lukas J, Darras VM, Raivich G, Bauer K, Heuer H. Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. J Clin Invest 117 (3): 627‐635, 2007.
 171.Tsai CE, Lin SP, Ito M, Takagi N, Takada S, Ferguson‐Smith AC. Genomic imprinting contributes to thyroid hormone metabolism in the mouse embryo. Curr Biol 12 (14): 1221‐1226, 2002.
 172.Tylki‐Szymanska A, Acuna‐Hidalgo R, Krajewska‐Walasek M, Lecka‐Ambroziak A, Steehouwer M, Gilissen C, Brunner HG, Jurecka A, Różdżyńska‐Świątkowska A, Hoischen A, Chrzanowska KH. Thyroid hormone resistance syndrome due to mutations in the thyroid hormone receptor alpha gene (THRA). J Med Genet 52 (5): 312‐316, 2015.
 173.van Mullem A, van Heerebeek R, Chrysis D, Visser E, Medici M, Andrikoula M, Tsatsoulis A, Peeters R, Visser TJ. Clinical phenotype and mutant TRalpha1. N Engl J Med 366 (15): 1451‐1453, 2012.
 174.Venero C, Guadano‐Ferraz A, Herrero AI, Nordstrom K, Manzano J, de Escobar GM, Bernal J, Vennström B. Anxiety, memory impairment, and locomotor dysfunction caused by a mutant thyroid hormone receptor alpha1 can be ameliorated by T3 treatment. Genes Dev 19 (18): 2152‐2163, 2005.
 175.Verge CF, Konrad D, Cohen M, Di Cosmo C, Dumitrescu AM, Marcinkowski T, Hameed S, Hamilton J, Weiss RE, Refetoff S. Diiodothyropropionic acid (DITPA) in the treatment of MCT8 deficiency. J Clin Endocrinol Metab 97 (12): 4515‐4523, 2012.
 176.von Hafe M, Neves JS, Vale C, Borges‐Canha M, Leite‐Moreira A. The impact of thyroid hormone dysfunction on ischemic heart disease. Endocr Connect 8 (5): R76‐R90, 2019.
 177.Wallis K, Dudazy S, van Hogerlinden M, Nordstrom K, Mittag J, Vennstrom B. The thyroid hormone receptor alpha1 protein is expressed in embryonic postmitotic neurons and persists in most adult neurons. Mol Endocrinol 24 (10): 1904‐1916, 2010.
 178.Weiss RE, Murata Y, Cua K, Hayashi Y, Seo H, Refetoff S. Thyroid hormone action on liver, heart, and energy expenditure in thyroid hormone receptor beta‐deficient mice. Endocrinology 139 (12): 4945‐4952, 1998.
 179.Weitzel JM, Iwen KA, Seitz HJ. Regulation of mitochondrial biogenesis by thyroid hormone. Exp Physiol 88 (1): 121‐128, 2003.
 180.Wigerup C, Pahlman S, Bexell D. Therapeutic targeting of hypoxia and hypoxia‐inducible factors in cancer. Pharmacol Ther 164: 152‐169, 2016.
 181.Williams GR. Cloning and characterization of two novel thyroid hormone receptor beta isoforms. Mol Cell Biol 20 (22): 8329‐8342, 2000.
 182.Wolf A, Agnihotri S, Munoz D, Guha A. Developmental profile and regulation of the glycolytic enzyme hexokinase 2 in normal brain and glioblastoma multiforme. Neurobiol Dis 44 (1): 84‐91, 2011.
 183.Woolf PD, Lee LA, Hamill RW, McDonald JV. Thyroid test abnormalities in traumatic brain injury: Correlation with neurologic impairment and sympathetic nervous system activation. Am J Med 84 (2): 201‐208, 1988.
 184.Wulf A, Harneit A, Kroger M, Kebenko M, Wetzel MG, Weitzel JM. T3‐mediated expression of PGC‐1α via a far upstream located thyroid hormone response element. Mol Cell Endocrinol 287 (1–2): 90‐95, 2008.
 185.Zador Z, Stiver S, Wang V, Manley GT. Role of aquaporin‐4 in cerebral edema and stroke. Handb Exp Pharmacol 190: 159‐170, 2009.
 186.Zhang J, Huang J, Aximujiang K, Xu C, Ahemaiti A, Wu G, Zhong L, Yunusi K. Thyroid dysfunction, neurological disorder and immunosuppression as the consequences of long‐term combined stress. Sci Rep 8 (1): 4552, 2018.
 187.Zhang K, Zhang Q, Deng J, Li J, Li J, Wen L, Ma J, Li C. ALK5 signaling pathway mediates neurogenesis and functional recovery after cerebral ischemia/reperfusion in rats via Gadd45b. Cell Death Dis 10 (5): 360, 2019.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Yan‐Yun Liu, Gregory A. Brent. The Role of Thyroid Hormone in Neuronal Protection. Compr Physiol 2021, 11: 2075-2095. doi: 10.1002/cphy.c200019