Comprehensive Physiology Wiley Online Library

Oxalate Flux Across the Intestine: Contributions from Membrane Transporters

Full Article on Wiley Online Library



Abstract

Epithelial oxalate transport is fundamental to the role occupied by the gastrointestinal (GI) tract in oxalate homeostasis. The absorption of dietary oxalate, together with its secretion into the intestine, and degradation by the gut microbiota, can all influence the excretion of this nonfunctional terminal metabolite in the urine. Knowledge of the transport mechanisms is relevant to understanding the pathophysiology of hyperoxaluria, a risk factor in kidney stone formation, for which the intestine also offers a potential means of treatment. The following discussion presents an expansive review of intestinal oxalate transport. We begin with an overview of the fate of oxalate, focusing on the sources, rates, and locations of absorption and secretion along the GI tract. We then consider the mechanisms and pathways of transport across the epithelial barrier, discussing the transcellular, and paracellular components. There is an emphasis on the membrane‐bound anion transporters, in particular, those belonging to the large multifunctional Slc26 gene family, many of which are expressed throughout the GI tract, and we summarize what is currently known about their participation in oxalate transport. In the final section, we examine the physiological stimuli proposed to be involved in regulating some of these pathways, encompassing intestinal adaptations in response to chronic kidney disease, metabolic acid‐base disorders, obesity, and following gastric bypass surgery. There is also an update on research into the probiotic, Oxalobacter formigenes, and the basis of its unique interaction with the gut epithelium. © 2021 American Physiological Society. Compr Physiol 11:1‐41, 2021.

Figure 1. Figure 1. An overview of mammalian oxalate homeostasis highlighting the central role of the gastrointestinal tract alongside the liver and kidneys. There are two sources of oxalate in the body, absorption from the diet (exogenous) and as an end‐product of metabolism (endogenous). At the kidneys, oxalate is freely filtered from the blood and excreted in the urine. Dietary oxalate that is not absorbed remains within the intestine where it is degraded by the gut microbiota or eliminated in the feces. The focus of this article is the transport processes involved in GI absorption and secretion of oxalate.
Figure 2. Figure 2. The estimated daily inputs and fate of oxalate along the human gastrointestinal tract. The average amount of oxalate consumed as part of a balanced Western diet has been taken as 2.0 mmol/day 252,255,475,506. In general, less than 10% of this is absorbed 251,252,253 and, for the purposes of this illustration, absorption is set to 8% based on the standardized 13C‐oxalate absorption test 531. The relative contributions of the stomach, small and large intestine to overall absorption have not been determined, but the bulk is likely to be absorbed from the small intestine. The amount of oxalate absorbed (0.16 mmol/day) may contribute between 25% and 50% of total urinary excretion, the remainder (0.24 mmol/day) comes from metabolism. Oxalate not absorbed can be subject to degradation by the gut microbiota which is estimated to remove 0.56 mmol/day based on balance studies 242 and extrapolation from rates of in vitro degradation by human fecal samples 7. Given the concentration of oxalate in human saliva 535, and with a daily flow rate of about 1 liter 267, saliva is projected to contribute an estimated 0.14 mmol/day. Other possible inputs from the gastric juices, bile, pancreatic fluid, and intestinal secretions are unknown. Elimination in the feces was calculated by subtracting the sum of all inputs (diet + saliva) from the sum of absorption and microbial degradation, the resulting value of 1.42 mmol/day agrees well with direct measurements of human fecal oxalate 417.
Figure 3. Figure 3. Kinetics of oxalate absorption by two healthy human adults illustrating the rapid appearance of ingested oxalate in the bloodstream. In the morning, following an overnight fast, each subject consumed 20 μCi of 14C‐oxalate (62.5 mCi/mmol) along with 0.06 mmol potassium oxalate in 100 mL water. Blood samples (10 mL) were collected at regular intervals and radioactivity estimated in triplicate on 1.5 mL aliquots of serum by liquid scintillation spectrophotometry. After 48 h, 11.2% of ingested 14C‐oxalate had been recovered in the urine from Subject 1 (male) and 9.0% from Subject 2 (female). No dietary restrictions were imposed on either test subject and prior determinations of urinary oxalate (average of 2 × 24 h collections) revealed normal excretion rates: 0.312 mmol/24 h (Subject 1) and 0.185 mmol/24 h (Subject 2). Adapted, with permission, from Hatch M, 1978 207.
Figure 4. Figure 4. The gastrointestinal tract is a major route for the extra‐renal excretion of oxalate in a rat model of chronic renal failure (CRF). Age‐matched male Wistar rats (n = 25) underwent a 5/6 nephrectomy to simulate CRF (), a mean value for control rats (○) has been included for comparison. Subcutaneous 14C‐oxalic acid was infused by mini‐osmotic pump over 4 days at a rate of around 2 μCi/day. Urine, feces, and CO2 were collected and analyzed for 14C activity. The elimination of 14C in the feces was expressed as a proportion of total excretion (feces + urine + CO2) in relation to plasma oxalate concentration (μmol/L). Data have been adapted, with permission, from Figure 2 of Costello JF, et al., 1992 117. Fecal excretion and plasma oxalate for normal, control rats (○) are presented as mean ± SE (n = 16) from Table 1 of Costello JF, et al., 1992 117. The data have been fitted to a least‐squares, nonlinear regression model (y = −1.04 + 9.28 ln(x), r2 = 0.599).
Figure 5. Figure 5. An illustration of the pathways for oxalate transport across the epithelial cells of the intestine. Oxalate absorption JmsOx and secretion JsmOx are each composed of transcellular and paracellular movements, the former is facilitated by transport proteins expressed in the apical and basolateral membranes. Paracellular transport involves oxalate moving between cells through the tight junctions located at the apical pole. Transepithelial absorption and secretion take place simultaneously and the overall direction and magnitude of net transport, JnetOx=JmsOxJsmOx. See text for further details.
Figure 6. Figure 6. In vivo oxalate absorption by the human gastrointestinal tract has a paracellular component. (A) The amount of oxalate absorbed and appearing in the urine over 24 h (based on the percent recovery of oral 13C‐oxalate) following ingestion of an oxalate load consisting of 13C‐oxalate and unlabeled sodium oxalate by two groups of healthy human volunteers (n = 6 each study). Data are mean (SD) and have been reproduced, with permission, based on Table 2 in von Unruh GE, et al., 2006 529 and Table 3 in Knight J, et al., 2007 303. (B) The absorption and recovery in the urine of 13C‐oxalate (1 mmol) and the paracellular marker sucralose (12.6 mmol) in 24 h following ingestion by a group of idiopathic calcium oxalate stone formers. Reproduced, with permission, from Figure 3C in Knight J, et al., 2011 304 and analyzed by linear regression, where y = 2.98 + (1.79x), r2 = 0.142 (F1,33 = 5.466, P = 0.026).
Figure 7. Figure 7. An illustration summarizing early models of the transcellular mechanisms involved in oxalate absorption and secretion based on in vitro studies with rabbit ileum and colon. Before the intestinal Slc26 anion exchangers were identified and corresponding knockout mice came into being, initial characterizations of the membrane proteins responsible for oxalate transport were deduced from experiments with isolated membrane vesicles from rabbit ileum 169,298,299,301 and classical Ussing chamber studies with intact epithelia from rabbit colon 221,222,224 and ileum 169, involving substitutions of the major ions (Na+, Cl, HCO3) along with direct application of inhibitors (e.g., DIDS, SITS, amiloride, furosemide, NPPB), and regulators (epinephrine, cAMP) of ion transport. A = Anion (e.g., Cl, HCO3, SO42−).
Figure 8. Figure 8. The distribution of the Slc26 anion transporters throughout the mammalian gastrointestinal tract illustrating our present understanding of the region and membrane location where they are expressed and, if known, the direction of oxalate (Ox2) movement is indicated along with co‐transported substrate(s). At the apical membrane of acinar cells in (mouse) salivary glands, Slc26a6 (PAT‐1; A6) mediates Cl/oxalate exchange, contributing to the secretion of oxalate in saliva 375. Since oxalate transport by the stomach, liver, and pancreas has not been investigated in any great detail (if at all), the Slc26 anion exchangers are simply listed based on expression only. In (mouse) small intestine, apical Slc26a3 (DRA; A3) and PAT‐1 are involved in oxalate absorption and secretion, respectively 168,171,276. This role for DRA also extends into the large intestine and, while PAT‐1 is expressed there as well 228,272,309,317,326,348,380,495, two recent studies with the PAT‐1 KO mouse found no evidence of a contribution to oxalate transport 211,558. Slc26a2 (DTDST; A2) has been characterized as an oxalate transporter in vitro 236,388,452, localized to the apical membrane of the small and large intestine 131,197,198,206,398,452, but what role it may have (if any) remains unknown. Similarly, Slc26a9 (A9) can transport oxalate in vitro 347, yet it has a very limited distribution in the small intestine, restricted to the crypts of the (mouse) proximal duodenum 346, and any contribution has not been investigated. The role of the only basolateral transporter, Slc26a1 (SAT‐1; A1), is controversial in both the small and large intestine 132,559. Note, the cellular allocations of transporters in this figure are presented for the purposes of convenience only and are not intended to signify actual co‐expression of these proteins, which is unknown. For further information and details on all of these individual transporters see the main text.
Figure 9. Figure 9. Adaptations to oxalate transport by the Roux limb following Roux‐en‐Y gastric bypass (RYGB) surgery and colonization with Oxalobacter formigenes (strain OxWR) in vitro. (A) An illustration of how the proximal small intestine and stomach are configured after RYGB surgery. The stomach is divided to produce a small gastric pouch which empties into the anastomosed jejunum, this becomes the Roux limb, bypassing what remains of the stomach, duodenum, and proximal jejunum (biliopancreatic limb). The latter is connected to the jejunum thereby allowing bile and pancreatic secretions to drain into and mix with nutrients in what becomes the “common limb”. Adapted, with permission, from Aron‐Wisnewsky J, et al., 2012 30. (B) The unidirectional flux of oxalate, JOx (pmol/cm2 h) measured across pairs of isolated, short‐circuited segments from the most proximal portion of the Roux limb in RYGB rats compared to the corresponding portion of the jejunum (the “pre‐destined Roux limb”) from Sham‐operated animals (n = 5–6 tissue pairs each) at 20 weeks postsurgery while receiving a diet containing 10% fat supplemented with 1.5% oxalate. Transepithelial conductance, GT of the Roux limb was 5.9 ± 0.7 mS/cm2 in RYGB animals and significantly lower than the Sham group (17.1 ± 1.8 mS/cm2). Short‐circuit current, Isc was also significantly lower in the Roux limb (−0.28 ± 0.03 μeq/cm2 h) compared to Sham animals (−0.80 ± 0.21 μeq/cm2 h). An asterisk represents a statistically significant difference determined by independent t‐test (P < 0.05). Reproduced, with permission, from Hatch M and Canales BK, 2016 212. (C) The unidirectional flux of oxalate, JOx (pmol/cm2 h) measured across pairs of isolated, short‐circuited segments from the mid‐Roux limb in RYGB rats colonized with Oxalobacter formigenes (OxWR) and compared to noncolonized RYGB animals (n = 5–6 tissue pairs each) approximately 20 weeks postsurgery while receiving a diet containing 10% fat supplemented with 1.5% oxalate. Neither GT nor Isc were significantly different between noncolonized (5.9 ± 0.7 mS/cm2; −0.30 ± 0.03 μeq/cm2 h) and colonized (6.9 ± 0.4 mS/cm2; −0.31 ± 0.05 μeq/cm2 h) groups, respectively. An asterisk represents a statistically significant difference determined by independent t‐test (P < 0.05). Reproduced, with permission, from Canales BK and Hatch M, 2017 81.


Figure 1. An overview of mammalian oxalate homeostasis highlighting the central role of the gastrointestinal tract alongside the liver and kidneys. There are two sources of oxalate in the body, absorption from the diet (exogenous) and as an end‐product of metabolism (endogenous). At the kidneys, oxalate is freely filtered from the blood and excreted in the urine. Dietary oxalate that is not absorbed remains within the intestine where it is degraded by the gut microbiota or eliminated in the feces. The focus of this article is the transport processes involved in GI absorption and secretion of oxalate.


Figure 2. The estimated daily inputs and fate of oxalate along the human gastrointestinal tract. The average amount of oxalate consumed as part of a balanced Western diet has been taken as 2.0 mmol/day 252,255,475,506. In general, less than 10% of this is absorbed 251,252,253 and, for the purposes of this illustration, absorption is set to 8% based on the standardized 13C‐oxalate absorption test 531. The relative contributions of the stomach, small and large intestine to overall absorption have not been determined, but the bulk is likely to be absorbed from the small intestine. The amount of oxalate absorbed (0.16 mmol/day) may contribute between 25% and 50% of total urinary excretion, the remainder (0.24 mmol/day) comes from metabolism. Oxalate not absorbed can be subject to degradation by the gut microbiota which is estimated to remove 0.56 mmol/day based on balance studies 242 and extrapolation from rates of in vitro degradation by human fecal samples 7. Given the concentration of oxalate in human saliva 535, and with a daily flow rate of about 1 liter 267, saliva is projected to contribute an estimated 0.14 mmol/day. Other possible inputs from the gastric juices, bile, pancreatic fluid, and intestinal secretions are unknown. Elimination in the feces was calculated by subtracting the sum of all inputs (diet + saliva) from the sum of absorption and microbial degradation, the resulting value of 1.42 mmol/day agrees well with direct measurements of human fecal oxalate 417.


Figure 3. Kinetics of oxalate absorption by two healthy human adults illustrating the rapid appearance of ingested oxalate in the bloodstream. In the morning, following an overnight fast, each subject consumed 20 μCi of 14C‐oxalate (62.5 mCi/mmol) along with 0.06 mmol potassium oxalate in 100 mL water. Blood samples (10 mL) were collected at regular intervals and radioactivity estimated in triplicate on 1.5 mL aliquots of serum by liquid scintillation spectrophotometry. After 48 h, 11.2% of ingested 14C‐oxalate had been recovered in the urine from Subject 1 (male) and 9.0% from Subject 2 (female). No dietary restrictions were imposed on either test subject and prior determinations of urinary oxalate (average of 2 × 24 h collections) revealed normal excretion rates: 0.312 mmol/24 h (Subject 1) and 0.185 mmol/24 h (Subject 2). Adapted, with permission, from Hatch M, 1978 207.


Figure 4. The gastrointestinal tract is a major route for the extra‐renal excretion of oxalate in a rat model of chronic renal failure (CRF). Age‐matched male Wistar rats (n = 25) underwent a 5/6 nephrectomy to simulate CRF (), a mean value for control rats (○) has been included for comparison. Subcutaneous 14C‐oxalic acid was infused by mini‐osmotic pump over 4 days at a rate of around 2 μCi/day. Urine, feces, and CO2 were collected and analyzed for 14C activity. The elimination of 14C in the feces was expressed as a proportion of total excretion (feces + urine + CO2) in relation to plasma oxalate concentration (μmol/L). Data have been adapted, with permission, from Figure 2 of Costello JF, et al., 1992 117. Fecal excretion and plasma oxalate for normal, control rats (○) are presented as mean ± SE (n = 16) from Table 1 of Costello JF, et al., 1992 117. The data have been fitted to a least‐squares, nonlinear regression model (y = −1.04 + 9.28 ln(x), r2 = 0.599).


Figure 5. An illustration of the pathways for oxalate transport across the epithelial cells of the intestine. Oxalate absorption JmsOx and secretion JsmOx are each composed of transcellular and paracellular movements, the former is facilitated by transport proteins expressed in the apical and basolateral membranes. Paracellular transport involves oxalate moving between cells through the tight junctions located at the apical pole. Transepithelial absorption and secretion take place simultaneously and the overall direction and magnitude of net transport, JnetOx=JmsOxJsmOx. See text for further details.


Figure 6. In vivo oxalate absorption by the human gastrointestinal tract has a paracellular component. (A) The amount of oxalate absorbed and appearing in the urine over 24 h (based on the percent recovery of oral 13C‐oxalate) following ingestion of an oxalate load consisting of 13C‐oxalate and unlabeled sodium oxalate by two groups of healthy human volunteers (n = 6 each study). Data are mean (SD) and have been reproduced, with permission, based on Table 2 in von Unruh GE, et al., 2006 529 and Table 3 in Knight J, et al., 2007 303. (B) The absorption and recovery in the urine of 13C‐oxalate (1 mmol) and the paracellular marker sucralose (12.6 mmol) in 24 h following ingestion by a group of idiopathic calcium oxalate stone formers. Reproduced, with permission, from Figure 3C in Knight J, et al., 2011 304 and analyzed by linear regression, where y = 2.98 + (1.79x), r2 = 0.142 (F1,33 = 5.466, P = 0.026).


Figure 7. An illustration summarizing early models of the transcellular mechanisms involved in oxalate absorption and secretion based on in vitro studies with rabbit ileum and colon. Before the intestinal Slc26 anion exchangers were identified and corresponding knockout mice came into being, initial characterizations of the membrane proteins responsible for oxalate transport were deduced from experiments with isolated membrane vesicles from rabbit ileum 169,298,299,301 and classical Ussing chamber studies with intact epithelia from rabbit colon 221,222,224 and ileum 169, involving substitutions of the major ions (Na+, Cl, HCO3) along with direct application of inhibitors (e.g., DIDS, SITS, amiloride, furosemide, NPPB), and regulators (epinephrine, cAMP) of ion transport. A = Anion (e.g., Cl, HCO3, SO42−).


Figure 8. The distribution of the Slc26 anion transporters throughout the mammalian gastrointestinal tract illustrating our present understanding of the region and membrane location where they are expressed and, if known, the direction of oxalate (Ox2) movement is indicated along with co‐transported substrate(s). At the apical membrane of acinar cells in (mouse) salivary glands, Slc26a6 (PAT‐1; A6) mediates Cl/oxalate exchange, contributing to the secretion of oxalate in saliva 375. Since oxalate transport by the stomach, liver, and pancreas has not been investigated in any great detail (if at all), the Slc26 anion exchangers are simply listed based on expression only. In (mouse) small intestine, apical Slc26a3 (DRA; A3) and PAT‐1 are involved in oxalate absorption and secretion, respectively 168,171,276. This role for DRA also extends into the large intestine and, while PAT‐1 is expressed there as well 228,272,309,317,326,348,380,495, two recent studies with the PAT‐1 KO mouse found no evidence of a contribution to oxalate transport 211,558. Slc26a2 (DTDST; A2) has been characterized as an oxalate transporter in vitro 236,388,452, localized to the apical membrane of the small and large intestine 131,197,198,206,398,452, but what role it may have (if any) remains unknown. Similarly, Slc26a9 (A9) can transport oxalate in vitro 347, yet it has a very limited distribution in the small intestine, restricted to the crypts of the (mouse) proximal duodenum 346, and any contribution has not been investigated. The role of the only basolateral transporter, Slc26a1 (SAT‐1; A1), is controversial in both the small and large intestine 132,559. Note, the cellular allocations of transporters in this figure are presented for the purposes of convenience only and are not intended to signify actual co‐expression of these proteins, which is unknown. For further information and details on all of these individual transporters see the main text.


Figure 9. Adaptations to oxalate transport by the Roux limb following Roux‐en‐Y gastric bypass (RYGB) surgery and colonization with Oxalobacter formigenes (strain OxWR) in vitro. (A) An illustration of how the proximal small intestine and stomach are configured after RYGB surgery. The stomach is divided to produce a small gastric pouch which empties into the anastomosed jejunum, this becomes the Roux limb, bypassing what remains of the stomach, duodenum, and proximal jejunum (biliopancreatic limb). The latter is connected to the jejunum thereby allowing bile and pancreatic secretions to drain into and mix with nutrients in what becomes the “common limb”. Adapted, with permission, from Aron‐Wisnewsky J, et al., 2012 30. (B) The unidirectional flux of oxalate, JOx (pmol/cm2 h) measured across pairs of isolated, short‐circuited segments from the most proximal portion of the Roux limb in RYGB rats compared to the corresponding portion of the jejunum (the “pre‐destined Roux limb”) from Sham‐operated animals (n = 5–6 tissue pairs each) at 20 weeks postsurgery while receiving a diet containing 10% fat supplemented with 1.5% oxalate. Transepithelial conductance, GT of the Roux limb was 5.9 ± 0.7 mS/cm2 in RYGB animals and significantly lower than the Sham group (17.1 ± 1.8 mS/cm2). Short‐circuit current, Isc was also significantly lower in the Roux limb (−0.28 ± 0.03 μeq/cm2 h) compared to Sham animals (−0.80 ± 0.21 μeq/cm2 h). An asterisk represents a statistically significant difference determined by independent t‐test (P < 0.05). Reproduced, with permission, from Hatch M and Canales BK, 2016 212. (C) The unidirectional flux of oxalate, JOx (pmol/cm2 h) measured across pairs of isolated, short‐circuited segments from the mid‐Roux limb in RYGB rats colonized with Oxalobacter formigenes (OxWR) and compared to noncolonized RYGB animals (n = 5–6 tissue pairs each) approximately 20 weeks postsurgery while receiving a diet containing 10% fat supplemented with 1.5% oxalate. Neither GT nor Isc were significantly different between noncolonized (5.9 ± 0.7 mS/cm2; −0.30 ± 0.03 μeq/cm2 h) and colonized (6.9 ± 0.4 mS/cm2; −0.31 ± 0.05 μeq/cm2 h) groups, respectively. An asterisk represents a statistically significant difference determined by independent t‐test (P < 0.05). Reproduced, with permission, from Canales BK and Hatch M, 2017 81.
References
 1.Abratt VR, Reid SJ. Oxalate‐degrading bacteria of the human gut as probiotics in the management of kidney stone disease. In: Laskin AI, Sariaslani S, Gadd GM, editors. Advances in Applied Microbiology. New York: Academic Press, vol. 72, 2010, p. 63‐87.
 2.Ahlstrand C, Tiselius HG. Urine composition and stone formation during treatment with acetazolamide. Scand J Urol Nephrol 21: 225‐228, 1987.
 3.Aichbichler BW, Zerr CH, SantaAna CA, Porter JL, Fordtran JS. Proton‐pump inhibition of gastric chloride secretion in congenital chloridorrhea. N Engl J Med 336: 106‐109, 1997.
 4.Alexander F. The concentration of electrolytes in the alimentary tract of the rabbit, guinea pig, dog and cat. Res Vet Sci 6: 238‐244, 1965.
 5.Allen A, Flemstrom G. Gastroduodenal mucus bicarbonate barrier: Protection against acid and pepsin. Am J Physiol Cell Physiol 288: C1‐C19, 2005.
 6.Allison MJ, Cook HM. Oxalate degradation by microbes of the large bowel of herbivores ‐ the effect of dietary oxalate. Science 212: 675‐676, 1981.
 7.Allison MJ, Cook HM, Milne DB, Gallagher S, Clayman RV. Oxalate degradation by gastrointestinal bacteria from humans. J Nutr 116: 455‐460, 1986.
 8.Allison MJ, Daniel SL, Cornick NA. Oxalate‐degrading bacteria. In: Khan SR, editor. Calcium Oxalate in Biological Systems. Boca Raton: CRC Press, 1995, p. 131‐168.
 9.Allison MJ, Dawson KA, Mayberry WR, Foss JG. Oxalobacter‐formigenes gen‐nov, sp‐nov ‐ oxalate‐degrading anaerobes that inhabit the gastrointestinal‐tract. Arch Microbiol 141: 1‐7, 1985.
 10.Alper SL. The band 3‐related anion‐exchanger (AE) gene family. Annu Rev Physiol 53: 549‐564, 1991.
 11.Alper SL. Molecular physiology and genetics of Na+‐independent SLC4 anion exchangers. J Exp Biol 212: 1672‐1683, 2009.
 12.Alper SL, Rossmann H, Wilhelm S, Stuart‐Tilley AK, Shmukler BE, Seidler U. Expression of AE2 anion exchanger in mouse intestine. Am J Physiol Gastrointest Liver Physiol 277: G321‐G332, 1999.
 13.Alper SL, Sharma AK. The SLC26 gene family of anion transporters and channels. Mol Asp Med 34: 494‐515, 2013.
 14.Alrefai WA, Tyagi S, Mansour F, Saksena S, Syed I, Ramaswamy K, Dudeja PK. Sulfate and chloride transport in Caco‐2 cells: Differential regulation by thyroxine and the possible role of DRA gene. Am J Physiol Gastrointest Liver Physiol 280: G603‐G613, 2001.
 15.Alrefai WA, Tyagi S, Nazir TM, Barakat J, Anwar SS, Hadjiagapiou C, Bavishi D, Sahi J, Malik P, Goldstein J, Layden TJ, Ramaswamy K, Dudeja PK. Human intestinal anion exchanger isoforms: Expression, distribution, and membrane localization. Biochim Biophys Acta Biomembr 1511: 17‐27, 2001.
 16.Alrefai WA, Wen XM, Jiang W, Katz JP, Steinbrecher KA, Cohen MB, Williams IR, Dudeja PK, Wu GD. Molecular cloning and promoter analysis of downregulated in adenoma (DRA). Am J Physiol Gastrointest Liver Physiol 293: G923‐G934, 2007.
 17.Alvarado F. D‐xylose active transport in hamster small intestine. Biochim Biophys Acta 112: 292‐306, 1966.
 18.Alvarez BV, Vilas GL, Casey JR. Metabolon disruption: A mechanism that regulates bicarbonate transport. EMBO J 24: 2499‐2511, 2005.
 19.Amin R, Asplin J, Jung D, Bashir M, Alshaikh A, Ratakonda S, Sharma S, Jeon S, Granja I, Matern D, Hassan H. Reduced active transcellular intestinal oxalate secretion contributes to the pathogenesis of obesity‐associated hyperoxaluria. Kidney Int 93: 1098‐1107, 2018.
 20.Amin R, Sharma S, Ratakonda S, Hassan HA. Extracellular nucleotides inhibit oxalate transport by human intestinal Caco‐2‐BBe cells through PKC‐delta activation. Am J Physiol Cell Physiol 305: C78‐C89, 2013.
 21.Anbazhagan AN, Priyamvada S, Alrefai WA, Dudeja PK. Pathophysiology of IBD associated diarrhea. Tissue Barriers 6: e1463897, 2018.
 22.Anderle P, Rakhmanova V, Woodford K, Zerangue N, Sadee W. Messenger RNA expression of transporter and ion channel genes in undifferentiated and differentiated Caco‐2 cells compared to human intestines. Pharm Res 20: 3‐15, 2003.
 23.Andersson H, Filipsson S, Hulten L. Urinary oxalate excretion related to ileocolic surgery in patients with Crohns‐disease. Scand J Gastroenterol 13: 465‐469, 1978.
 24.Andrieux A, Harambat J, Bui S, Nacka F, Iron A, Llanas B, Fayon M. Renal impairment in children with cystic fibrosis. J Cyst Fibros 9: 263‐268, 2010.
 25.Antalis TM, Reeder JA, Gotley DC, Byeon MK, Walsh MD, Henderson KW, Papas TS, Schweinfest CW. Down‐regulation of the down‐regulated in adenoma (DRA) gene correlates with colon tumor progression. Clin Cancer Res 4: 1857‐1863, 1998.
 26.Archer HE, Dormer AE, Scowen EF, Watts RWE. Studies on the urinary excretion of oxalate by normal subjects. Clin Sci 16: 405‐411, 1957.
 27.Argenzio RA, Liacos JA, Allison MJ. Intestinal oxalate‐degrading bacteria reduce oxalate absorption and toxicity in guinea‐pigs. J Nutr 118: 787‐792, 1988.
 28.Arhan P, Devroede G, Jehannin B, Lanza M, Faverdin C, Dornic C, Persoz B, Tetreault L, Perey B, Pellerin D. Segmental colonic transit‐time. Dis Colon Rectum 24: 625‐629, 1981.
 29.Arike L, Seiman A, van der Post S, Pineiro AMR, Ermund A, Schutte A, Backhed F, Johansson MEV, Hansson GC. Protein turnover in epithelial cells and mucus along the gastrointestinal tract is coordinated by the spatial location and microbiota. Cell Rep 30: 1077‐1087, 2020.
 30.Aron‐Wisnewsky J, Dore J, Clement K. The importance of the gut microbiota after bariatric surgery. Nat Rev Gastroenterol Hepatol 9: 590‐598, 2012.
 31.Arvans D, Alshaikh A, Bashir M, Weber C, Hassan H. Activation of the PKA signaling pathway stimulates oxalate transport by human intestinal Caco2‐BBE cells. Am J Physiol Cell Physiol 318: C372‐C379, 2020.
 32.Arvans D, Jung YC, Antonopoulos D, Koval J, Granja I, Bashir M, Karrar E, Roy‐Chowdhury J, Musch M, Asplin J, Chang E, Hassan H. Oxalobacter formigenes‐derived bioactive factors stimulate oxalate transport by intestinal epithelial cells. J Am Soc Nephrol 28: 876‐887, 2017.
 33.Asplin JR. Hyperoxaluric calcium nephrolithiasis. Endocrinol Metab Clin N Am 31: 927‐949, 2002.
 34.Asplin JR. Obesity and urolithiasis. Adv Chronic Kidney Dis 16: 11‐20, 2009.
 35.Asplin JR. The management of patients with enteric hyperoxaluria. Urolithiasis 44: 33‐43, 2016.
 36.Avella M, Borgese F, Ehrenfeld J. Characterization of the L683P mutation of SLC26A9 in Xenopus oocytes. Biochim Biophys Acta Gen Subj 1810: 277‐283, 2011.
 37.Bachmann O, Juric M, Seidler U, Manns MP, Yu H. Basolateral ion transporters involved in colonic epithelial electrolyte absorption, anion secretion and cellular homeostasis. Acta Physiol 201: 33‐46, 2011.
 38.Bachmann O, Wuchner K, Rossmann H, Leipziger J, Osikowska B, Colledge WH, Ratcliff R, Evans MJ, Gregor M, Seidler U. Expression and regulation of the Na+‐K+‐2Cl− cotransporter NKCC1 in the normal and CFTR‐deficient murine colon. J Physiol Lond 549: 525‐536, 2003.
 39.Baggio B, Bordin L, Clari G, Gambaro G, Moret V. Functional correlation between the Ser Thr‐phosphorylation of band‐3 and band‐3‐mediated transmembrane anion transport in human erythrocytes. Biochim Biophys Acta 1148: 157‐160, 1993.
 40.Baggio B, Bordin L, Gambaro G, Piccoli A, Marzaro G, Clari G. Evidence of a link between erythrocyte band‐3 phosphorylation and anion transport in patients with idiopathic calcium‐oxalate nephrolithiasis. Miner Electrolyte Metab 19: 17‐20, 1993.
 41.Baggio B, Gambaro G, Borsatti A, Clari G, Moret V. Relation between band‐3 red‐blood‐cell protein and transmembrane oxalate flux in stone formers. Lancet 2: 223‐224, 1984.
 42.Baggio B, Gambaro G, Marchini F, Cicerello E, Tenconi R, Clementi M, Borsatti A. An inheritable anomaly of red‐cell oxalate transport in primary calcium nephrolithiasis correctable with diuretics. N Engl J Med 314: 599‐604, 1986.
 43.Baker PW, Rofe AM, Bais R. Idiopathic calcium oxalate urolithiasis and endogenous oxalate production. Crit Rev Clin Lab Sci 33: 39‐82, 1996.
 44.Bannwart C, Hagmaier V, Rutishauser G, Seiler H. Absorption of oxalic‐acid in rats by means of a C‐14 method. Eur Urol 5: 276‐277, 1979.
 45.Barber HH, Gallimore EJ. The metabolism of oxalic acid in the animal body. Biochem J 34: 144‐148, 1940.
 46.Barilla DE, Notz C, Kennedy D, Pak CYC. Renal oxalate excretion following oral oxalate loads in patients with lleal disease and with renal and absorptive hypercalciurias ‐ effect of calcium and magnesium. Am J Med 64: 579‐585, 1978.
 47.Barmeyer C, Ye JHQ, Sidani S, Geibel J, Binder HJ, Rajendran VM. Characteristics of rat downregulated in adenoma (rDRA) expressed in HEK 293 cells. Pflugers Arch Eur J Physiol 454: 441‐450, 2007.
 48.Barnett C, Nazzal L, Goldfarb DS, Blaser MJ. The presence of Oxalobacter formigenes in the microbiome of healthy young adults. J Urol 195: 499‐506, 2016.
 49.Barraclough M, Taylor CJ. Twenty‐four hour ambulatory gastric and duodenal pH profiles in cystic fibrosis: Effect of duodenal hyperacidity on pancreatic enzyme function and fat absorption. J Pediatr Gastroenterol Nutr 23: 45‐50, 1996.
 50.Barrett KE, Keely SJ. Chloride secretion by the intestinal epithelium: Molecular basis and regulatory aspects. Annu Rev Physiol 62: 535‐572, 2000.
 51.Bashir M, Meddings J, Alshaikh A, Jung D, Le K, Amin R, Ratakonda S, Sharma S, Granja I, Satti M, Asplin J, Hassan H. Enhanced gastrointestinal passive paracellular permeability contributes to the obesity‐associated hyperoxaluria. Am J Physiol Gastrointest Liver Physiol 316: G1‐G14, 2019.
 52.Batagello CA, Monga M, Miller AW. Calcium oxalate urolithiasis: A case of missing microbes? J Endourol 32: 995‐1005, 2018.
 53.Becker U, Elsborg L. New method for the determination of gastrointestinal transit times. Scand J Gastroenterol 14: 355‐359, 1979.
 54.Berg W, Bothor C, Pirlich W, Janitzky V. Influence of magnesium on the absorption and excretion of calcium and oxalate ions. Eur Urol 12: 274‐282, 1986.
 55.Berg W, Haerting R, Bothor C, Meinig S, Eschholz A, Schulze HP. Assessing enteral oxalate absorption in patients with idiopathic recurrent calcium‐oxalate urinary stone disease. Urologe‐Ausgabe A 29: 148‐151, 1990.
 56.Bertrand CA, Mitra S, Mishra SK, Wang X, Zhao Y, Pilewski JM, Madden DR, Frizzell RA. The CFTR trafficking mutation F508del inhibits the constitutive activity of SLC26A9. Am J Physiol Lung Cell Mol Physiol 312: L912‐L925, 2017.
 57.Bertrand CA, Zhang RL, Pilewski JM, Frizzell RA. SLC26A9 is a constitutively active, CFTR‐regulated anion conductance in human bronchial epithelia. J Gen Physiol 133: 421‐438, 2009.
 58.Bieberdorf FA, Fordtran JS, Gorden P. Pathogenesis of congenital alkalosis with diarrhea ‐ implications for physiology of normal ileal electrolyte absorption and secretion. J Clin Investig 51: 1958‐1968, 1972.
 59.Bieberdorf FA, Morawski S, Fordtran JS. Effect of sodium, mannitol, and magnesium on glucose, galactose, 3‐0‐methylglucose, and fructose absorption in human ileum. Gastroenterology 68: 58‐66, 1975.
 60.Bissig M, Hagenbuch B, Stieger B, Koller T, Meier PJ. Functional expression cloning of the canalicular sulfate transport‐system of rat hepatocytes. J Biol Chem 269: 3017‐3021, 1994.
 61.Bjerrum JT, Hansen M, Olsen J, Nielsen OH. Genome‐wide gene expression analysis of mucosal colonic biopsies and isolated colonocytes suggests a continuous inflammatory state in the lamina propria of patients with quiescent ulcerative colitis. Inflamm Bowel Dis 16: 999‐1007, 2010.
 62.Blumenfrucht MJ, Cheeks C, Wedeen RP. Multiorgan crystal deposition following intravenous oxalate infusion in rat. J Urol 135: 1274‐1279, 1986.
 63.Boer P, Prenen JAC, Koomans HA, Mees EJD. Fractional oxalate clearance in subjects with normal and impaired renal‐function. Nephron 41: 78‐81, 1985.
 64.Borsatti A, Rombola G, Surian M, Calo L, Fabbris A, Vezzoli G, Calderaro V, Maschio G, Borghi L, Bazzato G, Desanto N, Williams HE, Marangella M, Colussi G, Caudarella R, Kassirer JP, Tasca A, Schena FP, Dangelo A, Moracchiello P. Calcium‐oxalate nephrolithiasis ‐ defective oxalate transport. Kidney Int 39: 1283‐1298, 1991.
 65.Boyd C, Wood K, Whitaker D, Assimos DG. The influence of metabolic syndrome and its components on the development of nephrolithiasis. Asian J Urol 5: 215‐222, 2018.
 66.Brinkley L, McGuire J, Gregory J, Pak CYC. Bioavailability of oxalate in foods. Urology 17: 534‐538, 1981.
 67.Brot‐Laroche E, Alvarado F. Disaccharide uptake by brush‐border membrane‐vesicles lacking the corresponding hydrolases. Biochim Biophys Acta 775: 175‐181, 1984.
 68.Brubacher G, Just M, Bodur H, Bernhard K. Zur biochemie der oxalsaure. 1. Schicksal und halbwertszeit im organismus der ratte abbau durch Aspergillus‐niger. Hoppe Seylers Z Physiol Chem 304: 173‐181, 1956.
 69.Brzica H, Breljak D, Burckhardt BC, Burckhardt G, Sabolic I. Oxalate: From the environment to kidney stones. Arch Ind Hyg Toxicol 64: 609‐630, 2013.
 70.Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, Schoelles K. Bariatric surgery: A systematic review and meta‐analysis. J Am Med Assoc 292: 1724‐1737, 2004.
 71.Burns Z, Knight J, Fargue S, Holmes R, Assimos D, Wood K. Future treatments for hyperoxaluria. Curr Opin Urol 30: 171‐176, 2020.
 72.Burnstock G. Purinergic signalling in the gastrointestinal tract and related organs in health and disease. Purinergic Signal 10: 3‐50, 2014.
 73.Bushinsky DA, Favus MJ. Mechanism of hypercalciuria in genetic hypercalciuric rats ‐ inherited defect in intestinal calcium‐transport. J Clin Investig 82: 1585‐1591, 1988.
 74.Byeon MK, Westerman MA, Maroulakou IG, Henderson KW, Suster S, Zhang XK, Papas TS, Vesely J, Willingham MC, Green JE, Schweinfest CW. The down‐regulated in adenoma (DRA) gene encodes an intestine‐specific membrane glycoprotein. Oncogene 12: 387‐396, 1996.
 75.Cabantchik ZI, Greger R. Chemical probes for anion transporters of mammalian‐cell membranes. Am J Physiol Cell Physiol 262: C803‐C827, 1992.
 76.Cai T, Yang L, Cai WS, Guo S, Yu P, Li JC, Hu XY, Yan M, Shao QZ, Jin Y, Sun ZS, Luo ZJ. Dysplastic spondylolysis is caused by mutations in the diastrophic dysplasia sulfate transporter gene. Proc Natl Acad Sci U S A 112: 8064‐8069, 2015.
 77.Camici M, Balestri PL, Lupetti S, Colizzi V, Falcone G. Urinary‐excretion of oxalate in renal‐failure. Nephron 30: 269‐270, 1982.
 78.Camilleri M, Colemont LJ, Phillips SF, Brown ML, Thomforde GM, Chapman N, Zinsmeister AR. Human gastric‐emptying and colonic filling of solids characterized by a new method. Am J Physiol Gastrointest Liver Physiol 257: G284‐G290, 1989.
 79.Camilleri M, Malagelada JR, Brown ML, Becker G, Zinsmeister AR. Relation between antral motility and gastric‐emptying of solids and liquids in humans. Am J Physiol Gastrointest Liver Physiol 249: G580‐G585, 1985.
 80.Canales BK, Hatch M. Kidney stone incidence and metabolic urinary changes after modern bariatric surgery: Review of clinical studies, experimental models, and prevention strategies. Surg Obes Relat Dis 10: 734‐742, 2014.
 81.Canales BK, Hatch M. Oxalobacter formigenes colonization normalizes oxalate excretion in a gastric bypass model of hyperoxaluria. Surg Obes Relat Dis 13: 1152‐1157, 2017.
 82.Capolongo G, Abul‐Ezz S, Moe OW, Sakhaee K. Subclinical celiac disease and crystal‐induced kidney disease following kidney transplant. Am J Kidney Dis 60: 662‐667, 2012.
 83.Caspary WF, Meyne K. Effects of chenodeoxycholic and ursodeoxycholic acid on absorption, secretion and permeability in rat colon and small‐intestine. Digestion 20: 168‐174, 1980.
 84.Caspary WF, Tonissen J. Enteric hyperoxaluria. 1. Intestinal oxalate absorption in gastrointestinal‐diseases. Klin Wochenschr 56: 607‐615, 1978.
 85.Caspary WF, Tonissen J, Lankisch PG. Enteral hyperoxaluria ‐ effect of cholestyramine, calcium, neomycin, and bile‐acids on intestinal oxalate absorption in man. Acta Hepatogastroenterol 24: 193‐200, 1977.
 86.Casselbrant A, Elias E, Fandriks L, Wallenius V. Expression of tight‐junction proteins in human proximal small intestinal mucosa before and after Roux‐en‐Y gastric bypass surgery. Surg Obes Relat Dis 11: 45‐53, 2015.
 87.Cassilly D, Kantor S, Knight LC, Maurer AH, Fisher RS, Semler J, Parkman HP. Gastric emptying of a non‐digestible solid: Assessment with simultaneous SmartPill pH and pressure capsule, antroduodenal manometry, gastric emptying scintigraphy. Neurogastroenterol Motil 20: 311‐319, 2008.
 88.Casteleyn C, Rekecki A, Van der Aa A, Simoens P, Van den Broeck W. Surface area assessment of the murine intestinal tract as a prerequisite for oral dose translation from mouse to man. Lab Anim 44: 176‐183, 2010.
 89.Cavin J‐B, Voitellier E, Cluzeaud F, Kapel N, Marmuse J‐P, Chevallier J‐M, Msika S, Bado A, Le Gall M. Malabsorption and intestinal adaptation after one anastomosis gastric bypass compared with Roux‐en‐Y gastric bypass in rats. Am J Physiol Gastrointest Liver Physiol 311: G492‐G500, 2016.
 90.Cedernaes J, Olszewski PK, Almen MS, Stephansson O, Levine AS, Fredriksson R, Nylander O, Schioth HB. Comprehensive analysis of localization of 78 solute carrier genes throughout the subsections of the rat gastrointestinal tract. Biochem Biophys Res Commun 411: 702‐707, 2011.
 91.Chadwick VS, Modha K, Dowling RH. Mechanism for hyperoxaluria in patients with ileal dysfunction. N Engl J Med 289: 172‐176, 1973.
 92.Chai WW, Liebman M, Kynast‐Gales S, Massey L. Oxalate absorption and endogenous oxalate synthesis from ascorbate in calcium oxalate stone formers and non‐stone formers. Am J Kidney Dis 44: 1060‐1069, 2004.
 93.Chamberlain CA, Hatch M, Garrett TJ. Metabolomic and lipidomic characterization of Oxalobacter formigenes strains HC1 and OxWR by UHPLC‐HRMS. Anal Bioanal Chem 411: 4807‐4818, 2019.
 94.Chamberlain CA, Hatch M, Garrett TJ. Metabolomic profiling of oxalate‐degrading probiotic Lactobacillus acidophilus and Lactobacillus gasseri. PLoS One 14: e0222393, 2019.
 95.Chamberlain CA, Hatch M, Garrett TJ. Metabolomic alteration in the mouse distal colonic mucosa after oral gavage with Oxalobacter formigenes. Metabolites 10: 405, 2020.
 96.Chang MH, Plata C, Zandi‐Nejad K, Sindic A, Sussman CR, Mercado A, Broumand V, Raghuram V, Mount DB, Romero MF. Slc26a9‐anion exchanger, channel and Na+ transporter. J Membr Biol 228: 125‐140, 2009.
 97.Charney AN, Dagher PC. Acid‐base effects on colonic electrolyte transport revisited. Gastroenterology 111: 1358‐1368, 1996.
 98.Charney AN, Egnor RW, Alexander‐Chacko J, Cassai N, Sidhu GS. Acid‐base effects on intestinal Na+ absorption and vesicular trafficking. Am J Physiol Cell Physiol 283: C971‐C979, 2002.
 99.Charney AN, Egnor RW, Henner D, Rashid H, Cassai N, Sidhu GS. Acid‐base effects on intestinal Cl− absorption and vesicular trafficking. Am J Physiol Cell Physiol 286: C1062‐C1070, 2004.
 100.Charney AN, Feldman GM. Systemic acid‐base‐disorders and intestinal electrolyte transport. Am J Physiol Gastrointest Liver Physiol 247: G1‐G12, 1984.
 101.Charney AN, Goldfarb DS, Dagher PC. Metabolic disorders associated with gastrointestinal disease. In: Arieff AI, DeFronzo RA, editors. Fluid, Electrolyte, and Acid‐Base Disorders. New York: Churchill Livingstone, 1995, p. 813‐836.
 102.Charney AN, Wagner JD, Birnbaum GJ, Johnstone JN. Functional‐role of carbonic‐anhydrase in intestinal electrolyte transport. Am J Physiol Gastrointest Liver Physiol 251: G682‐G687, 1986.
 103.Chen Z, Prosperi M, Bird VY. Prevalence of kidney stones in the USA: The National Health and Nutrition Evaluation Survey. J Clin Urol 12: 296‐302, 2019.
 104.Chen ZQ, Ye ZQ, Zeng LQ, Yang WM. Clinical investigation on gastric oxalate absorption. Chin Med J 116: 1749‐1751, 2003.
 105.Chernova MN, Jiang LW, Friedman DJ, Darman RB, Lohi H, Kere J, Vandorpe DH, Alper SL. Functional comparison of mouse slc26a6 anion exchanger with human SLC26A6 polypeptide variants ‐ Differences in anion selectivity, regulation, and electrogenicity. J Biol Chem 280: 8564‐8580, 2005.
 106.Chernova MN, Jiang LW, Shmukler BE, Schweinfest CW, Blanco P, Freedman SD, Stewart AK, Alper SL. Acute regulation of the SLC26A3 congenital chloride diarrhoea anion exchanger (DRA) expressed in Xenopus oocytes. J Physiol Lond 549: 3‐19, 2003.
 107.Chow A, Dobbins JW, Aronson PS, Igarashi P. cDNA cloning and localization of a band 3‐related protein from ileum. Am J Physiol Gastrointest Liver Physiol 263: G345‐G352, 1992.
 108.Chow A, Zhou W, Jacobson R. Regulation of AE2 Cl−/HCO3− exchanger during intestinal development. Am J Physiol Gastrointest Liver Physiol 271: G330‐G337, 1996.
 109.Cil O, Haggie PM, Tan JT, Rivera AA, Verkman AS. SLC26A6‐selective inhibitor identified in a small‐molecule screen blocks fluid absorption in small intestine. JCI Insight 6: 147699, 2021.
 110.Clark JS, Vandorpe DH, Chernova MN, Heneghan JF, Stewart AK, Alper SL. Species differences in Cl− affinity and in electrogenicity of SLC26A6‐mediated oxalate/Cl− exchange correlate with the distinct human and mouse susceptibilities to nephrolithiasis. J Physiol Lond 586: 1291‐1306, 2008.
 111.Clarke LL. A guide to Ussing chamber studies of mouse intestine. Am J Physiol Gastrointest Liver Physiol 296: G1151‐G1166, 2009.
 112.Cochat P, Rumsby G. Primary hyperoxaluria. N Engl J Med 369: 649‐658, 2013.
 113.Comelli EM, Lariani S, Zwahlen MC, Fotopoulos G, Holzwarth JA, Cherbut C, Dorta G, Corthesy‐Theulaz I, Grigorov M. Biomarkers of human gastrointestinal tract regions. Mamm Genome 20: 516‐527, 2009.
 114.Conyers RAJ, Bais R, Rofe AM. The relation of clinical catastrophes, endogenous oxalate production, and urolithiasis. Clin Chem 36: 1717‐1730, 1990.
 115.Corbetta S, Eller‐Vainicher C, Frigerio M, Vataperta R, Costa E, Vicentini L, Baccarelli A, Beck‐Peccoz P, Spada A. Analysis of the 206M polymorphic variant of the SLC26A6 gene encoding a Cl− oxalate transporter in patients with primary hyperparathyroidism. Eur J Endocrinol 160: 283‐288, 2009.
 116.Costello J, Landwehr DM. Determination of oxalate concentration in blood. Clin Chem 34: 1540‐1544, 1988.
 117.Costello JF, Smith M, Stolarski C, Sadovnic MJ. Extrarenal clearance of oxalate increases with progression of renal‐failure in the rat. J Am Soc Nephrol 3: 1098‐1104, 1992.
 118.Crepeau R, Romeder JM, Devroede G, Plante GE. Effects of saline infusion and acute metabolic‐acidosis and alkalosis on water and electrolyte transport in human colon. Can J Physiol Pharmacol 55: 13‐20, 1977.
 119.Crites KS‐M, Morin G, Orlando V, Patey N, Cantin C, Martel J, Brochiero E, Mailhot G. CFTR knockdown induces proinflammatory changes in intestinal epithelial cells. J Inflamm Lond 12: 62, 2015.
 120.Crivelli JJ, Mitchell T, Knight J, Wood KD, Assimos DG, Holmes RP, Fargue S. Contribution of dietary oxalate and oxalate precursors to urinary oxalate excretion. Nutrients 13: 62, 2021.
 121.Curhan GC, Willett WC, Rimm EB, Speizer FE, Stampfer MJ. Body size and risk of kidney stones. J Am Soc Nephrol 9: 1645‐1652, 1998.
 122.Curhan GC, Willett WC, Speizer FE, Stampfer MJ. Twenty‐four‐hour urine chemistries and the risk of kidney stones among women and men. Kidney Int 59: 2290‐2298, 2001.
 123.Curtin CO, King CG. The metabolism of ascorbic acid‐1‐C‐14 and oxalic acid‐C‐14 in the rat. J Biol Chem 216: 539‐548, 1955.
 124.Daniel SL, Hartman PA, Allison MJ. Intestinal colonization of laboratory rats by anaerobic oxalate‐degrading bacteria ‐ effects on the urinary and fecal excretion of dietary oxalate. Microb Ecol Health Dis 6: 277‐283, 1993.
 125.Danpure CJ. Primary hyperoxaluria. In: Scriver CR, Sly WS, Childs B, Beaudet AL, Valle D, Kinzler KW, Vogelstein B, editors. The Metabolic and Molecular Basis of Inherited Disease. New York: McGraw‐Hill, 2001, p. 6338.
 126.Daudon M, Donsimoni R, Hennequin C, Fellahi S, Lemoel G, Paris M, Troupel S, Lacour B. Sex and age‐related composition of 10617 calculi analyzed by infrared‐spectroscopy. Urol Res 23: 319‐326, 1995.
 127.Daudon M, Dore JC, Jungers P, Lacour B. Changes in stone composition according to age and gender of patients: A multivariate epidemiological approach. Urol Res 32: 241‐247, 2004.
 128.Daudon M, Lacour B, Jungers P. Influence of body size on urinary stone composition in men and women. Urol Res 34: 193‐199, 2006.
 129.Davis GR, Ana CAS, Morawski SG, Fordtran JS. Permeability characteristics of human jejunum, ileum, proximal colon and distal colon ‐ results of potential difference measurements and unidirectional fluxes. Gastroenterology 83: 844‐850, 1982.
 130.Dawson KA, Allison MJ, Hartman PA. Isolation and some characteristics of anaerobic oxalate‐degrading bacteria from the rumen. Appl Environ Microbiol 40: 833‐839, 1980.
 131.Dawson PA, Rakoczy J, Simmons DG. Placental, renal, and ileal sulfate transporter gene expression in mouse gestation. Biol Reprod 87: 43, 2012.
 132.Dawson PA, Russell CS, Lee S, McLeay SC, van Dongen JM, Cowley DM, Clarke LA, Markovich D. Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice. J Clin Investig 120: 706‐712, 2010.
 133.Dawson PA, Sim P, Mudge DW, Cowley D. Human SLC26A1 gene variants: A pilot study. Sci World J 2013: 541710, 2013.
 134.De Lisle RC. Disrupted tight junctions in the small intestine of cystic fibrosis mice. Cell Tissue Res 355: 131‐142, 2014.
 135.De Lisle RC, Borowitz D. The cystic fibrosis intestine. Cold Spring Harb Perspect Med 3: a009753, 2013.
 136.De Lisle RC, Isom KS, Ziemer D, Cotton CU. Changes in the exocrine pancreas secondary to altered small intestinal function in the CF mouse. Am J Physiol Gastrointest Liver Physiol 281: G899‐G906, 2001.
 137.De Lisle RC, Mueller R, Boyd M. Impaired mucosal barrier function in the small intestine of the cystic fibrosis mouse. J Pediatr Gastroenterol Nutr 53: 371‐379, 2011.
 138.Debedat J, Clement K, Aron‐Wisnewsky J. Gut microbiota dysbiosis in human obesity: Impact of bariatric surgery. Curr Obes Rep 8: 229‐242, 2019.
 139.Delie F, Rubas W. A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: Advantages and limitations of the Caco‐2 model. Crit Rev Ther Drug Carrier Syst 14: 221‐286, 1997.
 140.Delpire E, Gagnon KB. Na+‐K+‐2Cl− cotransporter (NKCC) physiological function in nonpolarized cells and transporting epithelia. Compr Physiol 8: 871‐901, 2018.
 141.Di Stadio CS, Altieri F, Miselli G, Elce A, Severino V, Chambery A, Quagliariello V, Villano V, de Dominicis G, Rippa E, Arcari P. AMP18 interacts with the anion exchanger SLC26A3 and enhances its expression in gastric cancer cells. Biochimie 121: 151‐160, 2016.
 142.Diamond KL, Fox CC, Barch DH. Role of cecal pH in intestinal oxalate absorption in the rat. J Lab Clin Med 112: 352‐356, 1988.
 143.Doane LT, Liebman M, Caldwell DR. Microbial oxalate degradation ‐ effects on oxalate and calcium balance in humans. Nutr Res 9: 957‐964, 1989.
 144.Dobbins JW. Oxalate and intestinal disease. J Clin Gastroenterol 1: 165‐169, 1979.
 145.Dobbins JW, Binder HJ. Effect of bile‐salts and fatty‐acids on colonic absorption of oxalate. Gastroenterology 70: 1096‐1100, 1976.
 146.Dobbins JW, Binder HJ. Importance of colon in enteric hyperoxaluria. N Engl J Med 296: 298‐301, 1977.
 147.Dobson DM, Finlayson B. Oxalate transport from plasma to intestinal lumen in the rat. Surg Forum 24: 540‐542, 1973.
 148.Dorwart MR, Shcheynikov N, Wang Y, Stippec S, Muallem S. SLC26A9 is a Cl− channel regulated by the WNK kinases. J Physiol Lond 584: 333‐345, 2007.
 149.Dorwart MR, Shcheynikov N, Yang DK, Muallem S. The solute carrier 26 family of proteins in epithelial ion transport. Physiology 23: 104‐114, 2008.
 150.Duce AM, Jerez E, Rapado A, Cajigal R. Intestinal‐absorption of oxalic‐acid in ileostomized patients. Acta Chir Scand 154: 297‐299, 1988.
 151.Duffey BG, Miyaoka R, Holmes R, Assimos D, Hinck B, Korman E, Kieley F, Ikramuddin S, Kellogg T, Moeding A, Monga M. Oxalobacter colonization in the morbidly obese and correlation with urinary stone risk. Urology 78: 531‐534, 2011.
 152.Duncan SH, Richardson AJ, Kaul P, Holmes RP, Allison MJ, Stewart CS. Oxalobacter formigenes and its potential role in human health. Appl Environ Microbiol 68: 3841‐3847, 2002.
 153.Earnest DL, Johnson G, Williams HE, Admirand WH. Hyperoxaluria in patients with ileal resection ‐ abnormality in dietary oxalate absorption. Gastroenterology 66: 1114‐1122, 1974.
 154.El Khouri E, Toure A. Functional interaction of the cystic fibrosis transmembrane conductance regulator with members of the SLC26 family of anion transporters (SLC26A8 and SLC26A9): Physiological and pathophysiological relevance. Int J Biochem Cell Biol 52: 58‐67, 2014.
 155.Elder TD, Wyngaarden JB. The biosynthesis and turnover of oxalate in normal and hyperoxaluric subjects. J Clin Investig 39: 1337‐1344, 1960.
 156.Encinosa WE, Bernard DM, Chen CC, Steiner CA. Healthcare utilization and outcomes after bariatric surgery. Med Care 44: 706‐712, 2006.
 157.Erickson SB, Cooper K, Broadus AE, Smith LH, Werness PG, Binder HJ, Dobbins JW. Oxalate absorption and postprandial urine supersaturation in an experimental human‐model of absorptive hypercalciuria. Clin Sci 67: 131‐138, 1984.
 158.Fairclough PD, Feest TG, Chadwick VS, Clark ML. Effect of sodium chenodeoxycholate on oxalate absorption from excluded human colon ‐ mechanism for enteric hyperoxaluria. Gut 18: 240‐244, 1977.
 159.Fallingborg J. Intraluminal pH of the human gastrointestinal tract. Dan Med Bull 46: 183‐196, 1999.
 160.Fallingborg J, Christensen LA, Ingemannielsen M, Jacobsen BA, Abildgaard K, Rasmussen HH, Rasmussen SN. Gastrointestinal pH and transit times in healthy‐subjects with ileostomy. Aliment Pharmacol Ther 4: 247‐253, 1990.
 161.Fang YW, Yang SS, Cheng CJ, Tseng MH, Hsu HM, Lin SH. Chronic metabolic acidosis activates renal tubular sodium chloride cotransporter through angiotension II‐dependent WNK4‐SPAK phosphorylation pathway. Sci Rep 6: 18360, 2016.
 162.Farkas K, Yeruva S, Rakonczay Z, Ludolph L, Molnar T, Nagy F, Szepes Z, Schnur A, Wittmann T, Hubricht J, Riederer B, Venglovecz V, Lazar G, Kiraly M, Zsembery A, Varga G, Seidler U, Hegyi P. New therapeutic targets in ulcerative colitis: The importance of ion transporters in the human colon. Inflamm Bowel Dis 17: 884‐898, 2011.
 163.Fayemi AO, Ali M, Braun EV. Oxalosis in hemodialysis patients ‐ pathologic‐study of 80 cases. Arch Pathol Lab Med 103: 58‐62, 1979.
 164.Flagella M, Clarke LL, Miller ML, Erway LC, Giannella RA, Andringa A, Gawenis LR, Kramer J, Duffy JJ, Doetschman T, Lorenz JN, Yamoah EN, Cardell EL, Shull GE. Mice lacking the basolateral Na‐K‐2Cl cotransporter have impaired epithelial chloride secretion and are profoundly deaf. J Biol Chem 274: 26946‐26955, 1999.
 165.Forlino A, Piazza R, Torre SD, Tatangelo L, Bonafe L, Gualeni B, Romano A, Pecora F, Superti‐Furga A, Cetta G, Rossi A. A diastrophic dysplasia sulfate transporter (SLC26A2) mutant mouse: Morphological and biochemical characterization of the resulting chondrodysplasia phenotype. Hum Mol Genet 14: 859‐871, 2005.
 166.Freel RW, Hatch M. Enteric oxalate secretion is not directly mediated by the human CFTR chloride channel. Urol Res 36: 127‐131, 2008.
 167.Freel RW, Hatch M, Earnest DL, Goldner AM. Oxalate transport across the isolated rat colon. A re‐examination. Biochim Biophys Acta 600: 838‐843, 1980.
 168.Freel RW, Hatch M, Green M, Soleimani M. Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6 null mice. Am J Physiol Gastrointest Liver Physiol 290: G719‐G728, 2006.
 169.Freel RW, Hatch M, Vaziri ND. Conductive pathways for chloride and oxalate in rabbit ileal brush‐border membrane vesicles. Am J Physiol Cell Physiol 275: C748‐C757, 1998.
 170.Freel RW, Morozumi M, Hatch M. Parsing apical oxalate exchange in Caco‐2BBe1 monolayers: siRNA knockdown of SLC26A6 reveals the role and properties of PAT‐1. Am J Physiol Gastrointest Liver Physiol 297: G918‐G929, 2009.
 171.Freel RW, Whittamore JM, Hatch M. Transcellular oxalate and Cl− absorption in mouse intestine is mediated by the DRA anion exchanger Slc26a3, and DRA deletion decreases urinary oxalate. Am J Physiol Gastrointest Liver Physiol 305: G520‐G527, 2013.
 172.Frick KK, Asplin JR, Krieger NS, Culbertson CD, Asplin DM, Bushinsky DA. 1,25(OH)(2)D‐3‐enhanced hypercalciuria in genetic hypercalciuric stone‐forming rats fed a low‐calcium diet. Am J Physiol Renal Physiol 305: F1132‐F1138, 2013.
 173.Frizzell RA, Hanrahan JW. Physiology of epithelial chloride and fluid secretion. Cold Spring Harb Perspect Med 2: a009563, 2012.
 174.Fromter E, Diamond J. Route of passive ion permeation in epithelia. Nat New Biol 235: 9‐13, 1972.
 175.Fukushima K, Sasano H, Sasaki I, Nagura H, Funayama Y, Matsuno S. Increased expression of mineralocorticoid receptor in human ileum after total colectomy ‐ immunohistochemical and immunoblotting studies. Tohoku J Exp Med 173: 383‐390, 1994.
 176.Gamba G. Molecular physiology and pathophysiology of electroneutral cation‐chloride cotransporters. Physiol Rev 85: 423‐493, 2005.
 177.Gambaro G, Petrarulo M, Nardelotto A, Marangella M, Baggio B. Erythrocyte transmembrane flux and renal clearance of oxalate in idiopathic calcium nephrolithiasis. Kidney Int 48: 1549‐1552, 1995.
 178.Garneau AP, Slimani S, Fiola MJ, Tremblay LE, Isenring P. Multiple facets and roles of Na+‐K+‐Cl− cotransport: Mechanisms and therapeutic implications. Physiology 35: 415‐429, 2020.
 179.Gault MH, Chafe L. Relationship of frequency, age, sex, stone weight and composition in 15,624 stones: Comparison of results for 1980 to 1983 and 1995 to 1998. J Urol 164: 302‐307, 2000.
 180.Gawenis LR, Bradford EM, Alper SL, Prasad V, Shull GE. AE2 Cl−/HCO3− exchanger is required for normal cAMP‐stimulated anion secretion in murine proximal colon. Am J Physiol Gastrointest Liver Physiol 298: G493‐G503, 2010.
 181.Gawenis LR, Ledoussal C, Judd LM, Prasad V, Alper SL, Stuart‐Tilley A, Woo AL, Grisham C, Sanford LP, Doetschman T, Miller ML, Shull GE. Mice with a targeted disruption of the AE2 Cl−/HCO3− exchanger are achlorhydric. J Biol Chem 279: 30531‐30539, 2004.
 182.Geall MG, Summerskill WH. Electric‐potential difference ‐ a neglected parameter of gut integrity and function. Gut 10: 418‐421, 1969.
 183.Gee HY, Jun I, Braun DA, Lawson JA, Halbritter J, Shril S, Nelson CP, Tan WZ, Stein D, Wassner AJ, Ferguson MA, Gucev Z, Sayer JA, Milosevic D, Baum M, Tasic V, Lee MG, Hildebrandt F. Mutations in SLC26A1 cause nephrolithiasis. Am J Hum Genet 98: 1228‐1234, 2016.
 184.Gelfond D, Ma C, Semler J, Borowitz D. Intestinal pH and gastrointestinal transit profiles in cystic fibrosis patients measured by wireless motility capsule. Dig Dis Sci 58: 2275‐2281, 2013.
 185.Gennari FJ, Weise WJ. Acid‐base disturbances in gastrointestinal disease. Clin J Am Soc Nephrol 3: 1861‐1868, 2008.
 186.Gibney EM, Goldfarb DS. The association of nephrolithiasis with cystic fibrosis. Am J Kidney Dis 42: 1‐11, 2003.
 187.Gorbachinsky I, Akpinar H, Assimos DG. Metabolic syndrome and urologic diseases. Rev Urol 12: e157‐180, 2010.
 188.Goss SL, Lemons KA, Kerstetter JE, Bogner RH. Determination of calcium salt solubility with changes in pH and P‐CO2, simulating varying gastrointestinal environments. J Pharm Pharmacol 59: 1485‐1492, 2007.
 189.Granger DN, Holm L, Kvietys P. The gastrointestinal circulation: Physiology and pathophysiology. Compr Physiol 5: 1541‐1583, 2015.
 190.Grubb BR, Lee E, Pace AJ, Koller BH, Boucher RC. Intestinal ion transport in NKCC1‐deficient mice. Am J Physiol Gastrointest Liver Physiol 279: G707‐G718, 2000.
 191.Gustafsson JK, Linden SK, Alwan AH, Scholte BJ, Hansson GC, Sjovall H. Carbachol‐induced colonic mucus formation requires transport via NKCC1, K+ channels and CFTR. Pflugers Arch Eur J Physiol 467: 1403‐1415, 2015.
 192.Gustke RF, McCormick P, Ruppin H, Soergel KH, Whalen GE, Wood CM. Human intestinal potential difference ‐ recording method and biophysical implications. J Physiol Lond 321: 571‐582, 1981.
 193.Haggie PM, Cil O, Lee S, Tan J‐A, Rivera AA, Phuan P‐W, Verkman AS. SLC26A3 inhibitor identified in small molecule screen blocks colonic fluid absorption and reduces constipation. JCI Insight 3: e121370, 2018.
 194.Hagler L, Herman RH. Oxalate metabolism. 1. Am J Clin Nutr 26: 758‐765, 1973.
 195.Hagmaier V, Bannwart C, Remagen W, Rutishauser G. Anatomical distribution of exogenous oxalate‐C‐14 in the rat by macro‐autoradiography. Eur Urol 6: 172‐174, 1980.
 196.Hagmaier V, Bannwart C, Schmidt K, Remagen W, Rutishauser G. Localization of exogenous oxalate‐C‐14 in rats determined by whole‐body autoradiography and microautoradiography. Urol Res 9: 255‐257, 1981.
 197.Haila S, Hastbacka J, Bohling T, Karjalainen‐Lindsberg ML, Kere J, Saarialho‐Kere U. SLC26A2 (diastrophic dysplasia sulfate transporter) is expressed in developing and mature cartilage but also in other tissues and cell types. J Histochem Cytochem 49: 973‐982, 2001.
 198.Haila S, Saarialho‐Kere U, Karjalainen‐Lindsberg ML, Lohi H, Airola K, Holmberg C, Hastbacka J, Kere J, Hoglund P. The congenital chloride diarrhea gene is expressed in seminal vesicle, sweat gland, inflammatory colon epithelium, and in some dysplastic colon cells. Histochem Cell Biol 113: 279‐286, 2000.
 199.Hamm LL, Nakhoul N, Hering‐Smith KS. Acid‐base homeostasis. Clin J Am Soc Nephrol 10: 2232‐2242, 2015.
 200.Hanes DA, Weaver CM, Wastney ME. Calcium and oxalic acid kinetics differ in rats. J Nutr 129: 165‐169, 1999.
 201.Hanson CF, Frankos VH, Thompson WO. Bioavailability of oxalic‐acid from spinach, sugar‐beet fiber and a solution of sodium oxalate consumed by female volunteers. Food Chem Toxicol 27: 181‐184, 1989.
 202.Harig JM, Soergel KH, Barry JA, Ramaswamy K. Transport of propionate by human ileal brush‐border membrane‐vesicles. Am J Physiol Gastrointest Liver Physiol 260: G776‐G782, 1991.
 203.Harris AH, Freel RW, Hatch M. Serum oxalate in human beings and rats as determined with the use of ion chromatography. J Lab Clin Med 144: 45‐52, 2004.
 204.Hassan HA, Cheng M, Aronson PS. Cholinergic signaling inhibits oxalate transport by human intestinal T84 cells. Am J Physiol Cell Physiol 302: C46‐C58, 2012.
 205.Hassan HA, Mentone S, Karniski LP, Rajendran VM, Aronson PS. Regulation of anion exchanger Slc26a6 by protein kinase C. Am J Physiol Cell Physiol 292: C1485‐C1492, 2007.
 206.Hastbacka J, de la Chapelle A, Mahtani MM, Clines G, Reevedaly MP, Daly M, Hamilton BA, Kusumi K, Trivedi B, Weaver A, Coloma A, Lovett M, Buckler A, Kaitila I, Lander ES. The diastrophic dysplasia gene encodes a novel sulfate transporter ‐ positional cloning by fine‐structure linkage disequilibrium mapping. Cell 78: 1073‐1087, 1994.
 207.Hatch M. The Pathophysiology of Calcium Oxalate Nephrolithiasis. Ireland: Trinity College Dublin, 1978, p. 188.
 208.Hatch M. Spectrophotometric determination of oxalate in whole‐blood. Clin Chim Acta 193: 199‐202, 1990.
 209.Hatch M. Intestinal adaptations in chronic kidney disease and the influence of gastric bypass surgery. Exp Physiol 99: 1163‐1167, 2014.
 210.Hatch M. Gut microbiota and oxalate homeostasis. Ann Transl Med 5: 36, 2017.
 211.Hatch M. Induction of enteric oxalate secretion by Oxalobacter formigenes in mice does not require the presence of either apical oxalate transport proteins Slc26A3 or Slc26A6. Urolithiasis 48: 1‐8, 2020.
 212.Hatch M, Canales BK. The mechanistic basis of hyperoxaluria following gastric bypass in obese rats. Urolithiasis 44: 221‐230, 2016.
 213.Hatch M, Cornelius J, Allison M, Sidhu H, Peck A, Freel RW. Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int 69: 691‐698, 2006.
 214.Hatch M, Freel RW. Alterations in intestinal transport of oxalate in disease states. Scanning Microsc 9: 1121‐1126, 1995.
 215.Hatch M, Freel RW. Angiotensin II involvement in adaptive enteric oxalate excretion in rats with chronic renal failure induced by hyperoxaluria. Urol Res 31: 426‐432, 2003.
 216.Hatch M, Freel RW. Renal and intestinal handling of oxalate following oxalate loading in rats. Am J Nephrol 23: 18‐26, 2003.
 217.Hatch M, Freel RW. The roles and mechanisms of intestinal oxalate transport in oxalate homeostasis. Semin Nephrol 28: 143‐151, 2008.
 218.Hatch M, Freel RW. A human strain of Oxalobacter (HC‐1) promotes enteric oxalate secretion in the small intestine of mice and reduces urinary oxalate excretion. Urolithiasis 41: 379‐384, 2013.
 219.Hatch M, Freel RW, Goldner AM, Earnest DL. Effect of bile salt on active oxalate transport in the colon. In: Kasper H, Goebell H, editors. Colon and Nutrition. Lancaster, UK: MTP Press, 1982, p. 299‐303.
 220.Hatch M, Freel RW, Goldner AM, Earnest DL. Comparison of effects of low concentrations of ricinoleate and taurochenodeoxycholate on colonic oxalate and chloride absorption. Gastroenterology 84: 1183‐1183, 1983.
 221.Hatch M, Freel RW, Goldner AM, Earnest DL. Oxalate and chloride absorption by the rabbit colon: Sensitivity to metabolic and anion transport inhibitors. Gut 25: 232‐237, 1984.
 222.Hatch M, Freel RW, Vaziri ND. Characteristics of the transport of oxalate and other ions across rabbit proximal colon. Pflugers Arch ‐ Eur J Physiol 423: 206‐212, 1993.
 223.Hatch M, Freel RW, Vaziri ND. Intestinal excretion of oxalate in chronic renal failure. J Am Soc Nephrol 5: 1339‐1343, 1994.
 224.Hatch M, Freel RW, Vaziri ND. Mechanisms of oxalate absorption and secretion across the rabbit distal colon. Pflugers Arch ‐ Eur J Physiol 426: 101‐109, 1994.
 225.Hatch M, Freel RW, Vaziri ND. Local upregulation of colonic angiotensin II receptors enhances potassium excretion in chronic renal failure. Am J Physiol Renal Physiol 274: F275‐F282, 1998.
 226.Hatch M, Freel RW, Vaziri ND. AT1 receptor up‐regulation in intestine in chronic renal failure is segment specific. Pflugers Arch Eur J Physiol 437: 881‐887, 1999.
 227.Hatch M, Freel RW, Vaziri ND. Regulatory aspects of oxalate secretion in enteric oxalate elimination. J Am Soc Nephrol 10: S324‐S328, 1999.
 228.Hatch M, Gjymishka A, Salido EC, Allison MJ, Freel RW. Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter. Am J Physiol Gastrointest Liver Physiol 300: G461‐G469, 2011.
 229.Hatch M, Vaziri ND. Do thiazides reduce intestinal oxalate absorption ‐ a study in‐vitro using rabbit colon. Clin Sci 86: 353‐357, 1994.
 230.Hautmann R, Osswald H. Pharmacokinetic studies of oxalate in man. Investig Urol 16: 395‐398, 1979.
 231.Hautmann RE. The stomach ‐ a new and powerful oxalate absorption site in man. J Urol 149: 1401‐1404, 1993.
 232.He XJ, Wu XZ, Knauf PA, Tabak LA, Melvin JE. Functional expression of the rat anion‐exchanger AE2 in insect cells by a recombinant baculovirus. Am J Physiol Cell Physiol 264: C1075‐C1079, 1993.
 233.Heaney RP, Weaver CM. Oxalate ‐ effect on calcium absorbability. Am J Clin Nutr 50: 830‐832, 1989.
 234.Hegde RS, Palfrey HC. Ionic effects on bumetanide binding to the activated Na/K/2Cl cotransporter ‐ selectivity and kinetic‐properties of ion binding‐sites. J Membr Biol 126: 27‐37, 1992.
 235.Helander HF, Fandriks L. Surface area of the digestive tract ‐ revisited. Scand J Gastroenterol 49: 681‐689, 2014.
 236.Heneghan JF, Akhavein A, Salas MJ, Shmukler BE, Karniski LP, Vandorpe DH, Alper SL. Regulated transport of sulfate and oxalate by SLC26A2/DTDST. Am J Physiol Cell Physiol 298: C1363‐C1375, 2010.
 237.Henger A, Tutt P, Riesen WF, Hulter HN, Krapf R. Acid‐base and endocrine effects of aldosterone and angiotensin II inhibition in metabolic acidosis in human patients. J Lab Clin Med 136: 379‐389, 2000.
 238.Hesse A, Schneeberger W, Engfeld S, Von Unruh GE, Sauerbruch T. Intestinal hyperabsorption of oxalate in calcium oxalate stone formers: Application of a new test with C‐13(2) oxalate. J Am Soc Nephrol 10: S329‐S333, 1999.
 239.Higashihara E, Nutahara K, Takeuchi T, Shoji N, Araie M, Aso Y. Calcium‐metabolism in acidotic patients induced by carbonic‐anhydrase inhibitors ‐ responses to citrate. J Urol 145: 942‐948, 1991.
 240.Hihnala S, Hoglund P, Lammi L, Kokkonen J, Ormala T, Holmberg C. Long‐term clinical outcome in patients with congenital chloride diarrhea. J Pediatr Gastroenterol Nutr 42: 369‐375, 2006.
 241.Hirota CL, McKay DM. Cholinergic regulation of epithelial ion transport in the mammalian intestine. Br J Pharmacol 149: 463‐479, 2006.
 242.Hodgkinson A. Oxalic Acid in Biology and Medicine. London: Academic Press, 1977, p. 337.
 243.Hodgkinson A. Oxalic‐acid metabolism in rat. J Nutr 108: 1155‐1161, 1978.
 244.Hodgkinson A, Wilkinson R. Plasma oxalate concentration and renal excretion of oxalate in man. Clin Sci Mol Med 46: 61‐73, 1974.
 245.Hofmann AF, Schmuck G, Scopinaro N, Laker MF, Sherr HP, Lorenzo D, Meeuse BJD. Hyperoxaluria associated with intestinal‐bypass surgery for morbid‐obesity ‐ occurrence, pathogenesis and approaches to treatment. Int J Obes 5: 513‐518, 1981.
 246.Hoglund P, Haila S, Socha J, Tomaszewski L, Saarialho‐Kere U, Karjalainen‐Lindsberg ML, Airola K, Holmberg C, de la Chapelle A, Kere J. Mutations of the Down‐regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nat Genet 14: 316‐319, 1996.
 247.Holmberg C, Perheentupa J, Launiala K. Colonic electrolyte transport in health and in congenital chloride diarrhea. J Clin Investig 56: 302‐310, 1975.
 248.Holmberg C, Perheentupa J, Launiala K, Hallman N. Congenital chloride diarrhea ‐ clinical analysis of 21 Finnish patients. Arch Dis Child 52: 255‐267, 1977.
 249.Holmes RP, Ambrosius WT, Assimos DG. Dietary oxalate loads and renal oxalate handling. J Urol 174: 943‐947, 2005.
 250.Holmes RP, Assimos DG. Glyoxylate synthesis, and its modulation and influence on oxalate synthesis. J Urol 160: 1617‐1624, 1998.
 251.Holmes RP, Assimos DG. The impact of dietary oxalate on kidney stone formation. Urol Res 32: 311‐316, 2004.
 252.Holmes RP, Goodman HO, Assimos DG. Dietary oxalate and its intestinal absorption. Scanning Microsc 9: 1109‐1120, 1995.
 253.Holmes RP, Goodman HO, Assimos DG. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int 59: 270‐276, 2001.
 254.Holmes RP, Goodman HO, Hart LJ, Assimos DG. Relationship of protein‐intake to urinary oxalate and glycolate excretion. Kidney Int 44: 366‐372, 1993.
 255.Holmes RP, Kennedy M. Estimation of the oxalate content of foods and daily oxalate intake. Kidney Int 57: 1662‐1667, 2000.
 256.Holmes RP, Knight J, Assimos DG. Lowering urinary oxalate excretion to decrease calcium oxalate stone disease. Urolithiasis 44: 27‐32, 2016.
 257.Hoppe B, Beck B, Gatter N, von Unruh G, Tischer A, Hesse A, Laube N, Kaul P, Sidhu H. Oxalobacter formigenes: A potential tool for the treatment of primary hyperoxaluria type 1. Kidney Int 70: 1305‐1311, 2006.
 258.Hoppe B, Groothoff JW, Hulton SA, Cochat P, Niaudet P, Kemper MJ, Deschenes G, Unwin R, Milliner D. Efficacy and safety of Oxalobacter formigenes to reduce urinary oxalate in primary hyperoxaluria. Nephrol Dial Transplant 26: 3609‐3615, 2011.
 259.Hoppe B, Kemper MJ, Bokenkamp A, Langman CB. Plasma calcium‐oxalate saturation in children with renal insufficiency and in children with primary hyperoxaluria. Kidney Int 54: 921‐925, 1998.
 260.Hoppe B, Niaudet P, Salomon R, Harambat J, Hulton SA, Van't Hoff W, Moochhala SH, Deschenes G, Lindner E, Sjogren A, Cochat P. A randomised phase I/II trial to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Pediatr Nephrol 32: 781‐790, 2017.
 261.Hoppe B, von Unruh GE, Blank G, Rietschel E, Sidhu H, Laube N, Hesse A. Absorptive hyperoxaluria leads to an increased risk for urolithiasis or nephrocalcinosis in cystic fibrosis. Am J Kidney Dis 46: 440‐445, 2005.
 262.Hueppelshaeuser R, von Unruh GE, Habbig S, Beck BB, Buderus S, Hesse A, Hoppe B. Enteric hyperoxaluria, recurrent urolithiasis, and systemic oxalosis in patients with Crohn's disease. Pediatr Nephrol 27: 1103‐1109, 2012.
 263.Humphreys BD, Jiang LW, Chernova MN, Alper SL. Functional‐characterization and regulation by pH of murine AE2 anion‐exchanger expressed in Xenopus oocytes. Am J Physiol Cell Physiol 267: C1295‐C1307, 1994.
 264.Hylander E, Jarnum S, Jensen HJ, Thale M. Enteric hyperoxaluria ‐ dependence on small intestinal resection, colectomy, and steatorrhea in chronic inflammatory bowel‐disease. Scand J Gastroenterol 13: 577‐588, 1978.
 265.Ikpa PT, Meijsen KF, Nieuwenhuijze NDA, Dulla K, de Jonge HR, Bijvelds MJC. Transcriptome analysis of the distal small intestine of Cftr null mice. Genomics 112: 1139‐1150, 2020.
 266.Inci M, Demirtas A, Sarli B, Akinsal E, Baydilli N. Association between body mass index, lipid profiles, and types of urinary stones. Ren Fail 34: 1140‐1143, 2012.
 267.Iorgulescu G. Saliva between normal and pathological. Important factors in determining systemic and oral health. J Med Life 2: 303‐307, 2009.
 268.Jacob P, Rossmann H, Lamprecht G, Kretz A, Neff C, Lin‐Wu E, Gregor M, Groneberg DA, Kere J, Seidler U. Down‐regulated in adenoma mediates apical Cl−/HCO3− exchange in rabbit, rat, and human duodenum. Gastroenterology 122: 709‐724, 2002.
 269.Jaeger P, Robertson WG. Role of dietary intake and intestinal absorption of oxalate in calcium stone formation. Nephron Physiol 98: P64‐P71, 2004.
 270.Jakab RL, Collaco AM, Ameen NA. Physiological relevance of cell‐specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt‐villus axis in the intestine. Am J Physiol Gastrointest Liver Physiol 300: G82‐G98, 2011.
 271.Jakab RL, Collaco AM, Ameen NA. Cell‐specific effects of luminal acid, bicarbonate, cAMP, and carbachol on transporter trafficking in the intestine. Am J Physiol Gastrointest Liver Physiol 303: G937‐G950, 2012.
 272.Jakab RL, Collaco AM, Ameen NA. Lubiprostone targets prostanoid signaling and promotes ion transporter trafficking, mucus exocytosis, and contractility. Dig Dis Sci 57: 2826‐2845, 2012.
 273.Jennings ML, Adame MF. Characterization of oxalate transport by the human erythrocyte band 3 protein. J Gen Physiol 107: 145‐159, 1996.
 274.Jiang JQ, Knight J, Easter LH, Neiberg R, Holmes RP, Assimos DG. Impact of dietary calcium and oxalate, and Oxalobacter formigenes colonization on urinary oxalate excretion. J Urol 186: 135‐139, 2011.
 275.Jiang Z, Grichtchenko I, Boron WF, Aronson PS. Specificity of anion exchange mediated by mouse Slc26a6. J Biol Chem 277: 33963‐33967, 2002.
 276.Jiang ZR, Asplin JR, Evan AP, Rajendran VM, Velazquez H, Nottoli TP, Binder HJ, Aronson PS. Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet 38: 474‐478, 2006.
 277.Jin H, Wen G, Deng S, Wan S, Xu J, Liu X, Xie R, Dong H, Tuo B. Oestrogen upregulates the expression levels and functional activities of duodenal mucosal CFTR and SLC26A6. Exp Physiol 101: 1371‐1382, 2016.
 278.Jons T, Warrings B, Jons A, Drenckhahn D. Basolateral localization of anion‐exchanger‐2 (AE2) and actin in acid‐secreting (parietal) cells of the human stomach. Histochemistry 102: 255‐263, 1994.
 279.Joshi S, Goldfarb DS. The use of antibiotics and risk of kidney stones. Curr Opin Nephrol Hypertens 28: 311‐315, 2019.
 280.Jung D, Alshaikh A, Ratakonda S, Bashir M, Amin R, Jeon S, Stevens J, Sharma S, Ahmed W, Musch M, Hassan H. Adenosinergic signaling inhibits oxalate transport by human intestinal Caco2‐BBE cells through the A(2B) adenosine receptor. Am J Physiol Cell Physiol 315: C687‐C698, 2018.
 281.Kadlec AO, Greco K, Fridirici ZC, Hart ST, Vellos T, Turk TM. Metabolic syndrome and urinary stone composition: What factors matter most? Urology 80: 805‐810, 2012.
 282.Kaplon DM, Penniston KL, Nakada SY. Patients with and without prior urolithiasis have hypocitraturia and incident kidney stones while on topiramate. Urology 77: 295‐298, 2011.
 283.Karaica D, Breljak D, Loncar J, Lovric M, Micek V, Madunic IV, Brzica H, Herak‐Kramberger CM, Dupor JI, Ljubojevic MA, Smital T, Vogrinc Z, Burckhardt G, Burckhardt BC, Sabolic I. Sex‐independent expression of chloride/formate exchanger Cfex (Slc26a6) in rat pancreas, small intestine, and liver, and male‐dominant expression in kidneys. Arch Ind Hyg Toxicol 69: 286‐303, 2018.
 284.Karniski LP, Lotscher M, Fucentese M, Hilfiker H, Biber J, Murer H. Immunolocalization of sat‐1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney. Am J Physiol Renal Physiol 275: F79‐F87, 1998.
 285.Kasidas GP, Rose GA. Measurement of plasma oxalate in healthy‐subjects and in patients with chronic‐renal‐failure using immobilized oxalate oxidase. Clin Chim Acta 154: 49‐58, 1986.
 286.Kathpalia SC, Favus MJ, Coe FL. Evidence for size and charge permselectivity of rat ascending colon ‐ effects of ricinoleate and bile‐salts on oxalic‐acid and neutral sugar‐transport. J Clin Investig 74: 805‐811, 1984.
 287.Kaur S, Norkina O, Ziemer D, Samuelson LC, De Lisle RC. Acidic duodenal pH alters gene expression in the cystic fibrosis mouse pancreas. Am J Physiol Gastrointest Liver Physiol 287: G480‐G490, 2004.
 288.Kelly JP, Curhan GC, Cave DR, Anderson TE, Kaufman DW. Factors related to colonization with Oxalobacter formigenes in US Adults. J Endourol 25: 673‐679, 2011.
 289.Kelsay JL, Prather ES. Mineral balances of human‐subjects consuming spinach in a low‐fiber diet and in a diet containing fruits and vegetables. Am J Clin Nutr 38: 12‐19, 1983.
 290.Kennedy HJ, Aldujaili EAS, Edwards CR, Truelove SC. Water and electrolyte balance in subjects with a permanent ileostomy. Gut 24: 702‐705, 1983.
 291.Khamaysi A, Aharon S, Eini‐Rider H, Ohana E. A dynamic anchor domain in slc13 transporters controls metabolite transport. J Biol Chem 295: 8155‐8163, 2020.
 292.Khamaysi A, Anbtawee‐Jomaa S, Fremder M, Eini‐Rider H, Shimshilashvili L, Aharon S, Aizenshtein E, Shlomi T, Noguchi A, Springer D, Moe OW, Shcheynikov N, Muallem S, Ohana E. Systemic succinate homeostasis and local succinate signaling affect blood pressure and modify risks for calcium oxalate lithogenesis. J Am Soc Nephrol 30: 381‐392, 2019.
 293.Kim KH, Shcheynikov N, Wang YX, Muallem S. SLC26A7 is a Cl− channel regulated by intracellular pH. J Biol Chem 280: 6463‐6470, 2005.
 294.Klimesova K, Whittamore JM, Hatch M. Bifidobacterium animalis subsp lactis decreases urinary oxalate excretion in a mouse model of primary hyperoxaluria. Urolithiasis 43: 107‐117, 2015.
 295.Knauf F, Ko N, Jiang ZR, Robertson WG, Van Itallie CM, Anderson JM, Aronson PS. Net intestinal transport of oxalate reflects passive absorption and SLC26A6‐mediated secretion. J Am Soc Nephrol 22: 2247‐2255, 2011.
 296.Knauf F, Thomson RB, Heneghan JF, Jiang ZR, Adebamiro A, Thomson CL, Barone C, Asplin JR, Egan ME, Alper SL, Aronson PS. Loss of cystic fibrosis transmembrane regulator impairs intestinal oxalate secretion. J Am Soc Nephrol 28: 242‐249, 2017.
 297.Knickelbein R, Aronson PS, Schron CM, Seifter J, Dobbins JW. Sodium and chloride transport across rabbit ileal brush‐border. 2. Evidence for Cl‐HCO3 exchange and mechanism of coupling. Am J Physiol Gastrointest Liver Physiol 249: G236‐G245, 1985.
 298.Knickelbein RG, Aronson PS, Dobbins JW. Substrate and inhibitor specificity of anion‐exchangers on the brush‐border membrane of rabbit ileum. J Membr Biol 88: 199‐204, 1985.
 299.Knickelbein RG, Aronson PS, Dobbins JW. Oxalate transport by anion‐exchange across rabbit ileal brush‐border. J Clin Investig 77: 170‐175, 1986.
 300.Knickelbein RG, Aronson PS, Dobbins JW. Membrane distribution of sodium hydrogen and chloride bicarbonate exchangers in crypt and villus cell‐membranes from rabbit ileum. J Clin Investig 82: 2158‐2163, 1988.
 301.Knickelbein RG, Dobbins JW. Sulfate and oxalate exchange for bicarbonate across the basolateral membrane of rabbit ileum. Am J Physiol Gastrointest Liver Physiol 259: G807‐G813, 1990.
 302.Knight J, Deora R, Assimos DG, Holmes RP. The genetic composition of Oxalobacter formigenes and its relationship to colonization and calcium oxalate stone disease. Urolithiasis 41: 187‐196, 2013.
 303.Knight J, Holmes RP, Assimos DG. Intestinal and renal handling of oxalate loads in normal individuals and stone formers. Urol Res 35: 111‐117, 2007.
 304.Knight J, Jiang J, Wood KD, Holmes RP, Assimos DG. Oxalate and sucralose absorption in idiopathic calcium oxalate stone formers. Urology 78: e9‐485.e13, 2011.
 305.Knight J, Madduma‐Liyanage K, Mobley JA, Assimos DG, Holmes RP. Ascorbic acid intake and oxalate synthesis. Urolithiasis 44: 289‐297, 2016.
 306.Knispel HH, Fitzner R, Kaiser M, Butz M. Acute acid load in recurrent oxalate stone formers. Urol Int 43: 93‐96, 1988.
 307.Knoll T, Schubert AB, Fahlenkamp D, Leusmann DB, Wendt‐Nordahl G, Schubert G. Urolithiasis through the ages: Data on more than 200,000 urinary stone analyses. J Urol 185: 1304‐1311, 2011.
 308.Ko N, Knauf F, Jiang Z, Markovich D, Aronson PS. Sat1 is dispensable for active oxalate secretion in mouse duodenum. Am J Physiol Cell Physiol 303: C52‐C57, 2012.
 309.Ko SBH, Shcheynikov N, Choi JY, Luo X, Ishibashi K, Thomas PJ, Kim JY, Kim KH, Lee MG, Naruse S, Muallem S. A molecular mechanism for aberrant CFTR‐dependent HCO3− transport in cystic fibrosis. EMBO J 21: 5662‐5672, 2002.
 310.Ko SBH, Zeng WZ, Dorwart MR, Luo X, Kim KH, Millen L, Goto H, Naruse S, Soyombo A, Thomas PJ, Muallem S. Gating of CFTR by the STAS domain of SLC26 transporters. Nat Cell Biol 6: 343‐350, 2004.
 311.Kopic S, Murek M, Geibel JP. Revisiting the parietal cell. Am J Physiol Cell Physiol 298: C1‐C10, 2010.
 312.Kosiek O, Busque SM, Foller M, Shcheynikov N, Kirchhoff P, Bleich M, Muallem S, Geibel JP. SLC26A7 can function as a chloride‐loading mechanism in parietal cells. Pflugers Arch Eur J Physiol 454: 989‐998, 2007.
 313.Koumangoye R, Omer S, Kabeer MH, Delpire E. Novel human NKCC1 mutations cause defects in goblet cell mucus secretion and chronic inflammation. Cell Mol Gastroenterol Hepatol 9: 239‐255, 2020.
 314.Krick W, Schnedler N, Burckhardt G, Burckhardt BC. Ability of sat‐1 to transport sulfate, bicarbonate, or oxalate under physiological conditions. Am J Physiol Renal Physiol 297: F145‐F154, 2009.
 315.Krishnamurthy MS, Hruska KA, Chandhoke PS. The urinary response to an oral oxalate load in recurrent calcium stone formers. J Urol 169: 2030‐2033, 2003.
 316.Krugliak P, Hollander D, Schlaepfer CC, Nguyen H, Ma TY. Mechanisms and sites of mannitol permeability of small and large‐intestine in the rat. Dig Dis Sci 39: 796‐801, 1994.
 317.Kumar A, Anbazhagan AN, Coffing H, Chatterjee I, Priyamvada S, Gujral T, Saksena S, Gill RK, Alrefai WA, Borthakur A, Dudeja PK. Lactobacillus acidophilus counteracts inhibition of NHE3 and DRA expression and alleviates diarrheal phenotype in mice infected with Citrobacter rodentium. Am J Physiol Gastrointest Liver Physiol 311: G817‐G826, 2016.
 318.Kumar A, Priyamvada S, Ge Y, Jayawardena D, Singhal M, Anbazhagan AN, Chatterjee I, Dayal A, Patel M, Zadeh K, Saksena S, Alrefai WA, Gill RK, Zadeh M, Zhao N, Mohamadzadeh M, Dudeja PK. A novel role of SLC26A3 in the maintenance of intestinal epithelial barrier integrity. Gastroenterology 160: 1240‐1255, 2021.
 319.Kurtz I. Molecular mechanisms and regulation of urinary acidification. Compr Physiol 4: 1737‐1774, 2014.
 320.Ladas SD, Isaacs PET, Murphy GM, Sladen GE. Fasting and postprandial ileal function in adapted ileostomates and normal subjects. Gut 27: 906‐912, 1986.
 321.Lamprecht G, Baisch S, Schoenleber E, Gregor M. Transport properties of the human intestinal anion exchanger DRA (down‐regulated in adenoma) in transfected HEK293 cells. Pflugers Arch Eur J Physiol 449: 479‐490, 2005.
 322.Lamprecht G, Seidler U. The emerging role of PDZ adapter proteins for regulation of intestinal ion transport. Am J Physiol Gastrointest Liver Physiol 291: G766‐G777, 2006.
 323.Lange JN, Mufarrij PW, Wood KD, Holmes RP, Assimos DG. The association of cardiovascular disease and metabolic syndrome with nephrolithiasis. Curr Opin Urol 22: 154‐159, 2012.
 324.Lange JN, Wood KD, Wong H, Otto R, Mufarrij PW, Knight J, Akpinar H, Holmes RP, Assimos DG. Sensitivity of human strains of Oxalobacter formigenes to commonly prescribed antibiotics. Urology 79: 1286‐1289, 2012.
 325.LaPointe LC, Dunne R, Brown GS, Worthley DL, Molloy PL, Wattchow D, Young GP. Map of differential transcript expression in the normal human large intestine. Physiol Genomics 33: 50‐64, 2008.
 326.Laubitz D, Larmonier CB, Bai A, Midura‐Kiela MT, Lipko MA, Thurston RD, Kiela PR, Ghishan FK. Colonic gene expression profile in NHE3‐deficient mice: evidence for spontaneous distal colitis. Am J Physiol Gastrointest Liver Physiol 295: G63‐G77, 2008.
 327.Le Gall M, Thenet S, Aguanno D, Jarry AC, Genser L, Ribeiro‐Parenti L, Joly F, Ledoux S, Bado A, Le Beyec J. Intestinal plasticity in response to nutrition and gastrointestinal surgery. Nutr Rev 77: 129‐143, 2019.
 328.Lecanda J, Urtasun R, Medina JF. Molecular cloning and genomic organization of the mouse AE2 anion exchanger gene. Biochem Biophys Res Commun 276: 117‐124, 2000.
 329.Lee A, Beck L, Markovich D. The mouse sulfate anion transporter gene Sat1 (Slc26a1): Cloning, tissue distribution, gene structure, functional characterization, and transcriptional regulation by thyroid hormone. DNA Cell Biol 22: 19‐31, 2003.
 330.Lee S, Cil O, Haggie PM, Verkman AS. 4,8‐Dimethylcoumarin inhibitors of intestinal anion exchanger slc26a3 (downregulated in adenoma) for anti‐absorptive therapy of constipation. J Med Chem 62: 8330‐8337, 2019.
 331.Lee SK, Boron WF, Parker MD. Substrate specificity of the electrogenic sodium/bicarbonate cotransporter NBCe1‐A (SLC4A4, variant A) from humans and rabbits. Am J Physiol Renal Physiol 304: F883‐F899, 2013.
 332.Lemann J, Pleuss JA, Worcester EM, Hornick L, Schrab D, Hoffmann RG. Urinary oxalate excretion increases with body size and decreases with increasing dietary calcium intake among healthy adults. Kidney Int 49: 200‐208, 1996.
 333.Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102: 11070‐11075, 2005.
 334.Li H, Ye ZQ, He W, Xia D, Aliya AY, Shen JH, Chen ZQ. Screening of differentially expressed genes in the jejunum of rats with idiopathic hyperoxaluria. Chin Med J 125: 312‐315, 2012.
 335.Li XS, Ellis ML, Knight J. Oxalobacter formigenes colonization and oxalate dynamics in a mouse model. Appl Environ Microbiol 81: 5048‐5054, 2015.
 336.Liebman M, Al‐Wahsh IA. Probiotics and other key determinants of dietary oxalate absorption. Adv Nutr 2: 254‐260, 2011.
 337.Liebman M, Chai WW. Effect of dietary calcium on urinary oxalate excretion after oxalate loads. Am J Clin Nutr 65: 1453‐1459, 1997.
 338.Liebman M, Costa G. Effects of calcium and magnesium on urinary oxalate excretion after oxalate loads. J Urol 163: 1565‐1569, 2000.
 339.Lieske JC, Rule AD, Krambeck AE, Williams JC, Bergstralh EJ, Mehta RA, Moyer TP. Stone composition as a function of age and sex. Clin J Am Soc Nephrol 9: 2141‐2146, 2014.
 340.Lieske JC, Tremaine WJ, De Simone C, O'Connor HM, Li XI, Bergstralh EJ, Goldfarb DS. Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int 78: 1178‐1185, 2010.
 341.Lindsjo M, Danielson BG, Fellstrom B, Ljunghall S. Intestinal oxalate and calcium‐absorption in recurrent renal stone formers and healthy‐subjects. Scand J Urol Nephrol 23: 55‐59, 1989.
 342.Linsdell P, Hanrahan JW. Glutathione permeability of CFTR. Am J Physiol Cell Physiol 275: C323‐C326, 1998.
 343.Linsdell P, Tabcharani JA, Rommens JM, Hou YX, Chang XB, Tsui LC, Riordan JR, Hanrahan JW. Permeability of wild‐type and mutant cystic fibrosis transmembrane conductance regulator chloride channels to polyatomic anions. J Gen Physiol 110: 355‐364, 1997.
 344.Liu MH, Koh H, Kurtz ZD, Battaglia T, PeBenito A, Li HL, Nazzal L, Blaser MJ. Oxalobacter formigenes‐associated host features and microbial community structures examined using the American Gut Project. Microbiome 5: 108, 2017.
 345.Liu MH, Nazzal L. Enteric hyperoxaluria: Role of microbiota and antibiotics. Curr Opin Nephrol Hypertens 28: 352‐359, 2019.
 346.Liu XM, Li TL, Riederer B, Lenzen H, Ludolph L, Yeruva S, Tuo BG, Soleimani M, Seidler U. Loss of Slc26a9 anion transporter alters intestinal electrolyte and HCO3− transport and reduces survival in CFTR‐deficient mice. Pflugers Arch Eur J Physiol 467: 1261‐1275, 2015.
 347.Lohi H, Kujala M, Makela S, Lehtonen E, Kestila M, Saarialho‐Kere U, Markovich D, Kere J. Functional characterization of three novel tissue‐specific anion exchangers SLC26A7,‐A8, and‐A9. J Biol Chem 277: 14246‐14254, 2002.
 348.Lohi H, Lamprecht G, Markovich D, Heil A, Kujala M, Seidler U, Kere J. Isoforms of SLC26A6 mediate anion transport and have functional PDZ interaction domains. Am J Physiol Cell Physiol 284: C769‐C779, 2003.
 349.Loriol C, Dulong S, Avella M, Gabillat N, Boulukos K, Borgese F, Ehrenfeld J. Characterization of SLC26A9, facilitation of Cl− transport by bicarbonate. Cell Physiol Biochem 22: 15‐30, 2008.
 350.Lu XL, Sun DL, Xu B, Pan JC, Wei YH, Mao X, Yu DJ, Liu HS, Gao B. In silico screening and molecular dynamic study of nonsynonymous single nucleotide polymorphisms associated with kidney stones in the SLC26A6 Gene. J Urol 196: 118‐123, 2016.
 351.Madorsky ML, Finlayson B. Oxalate absorption from intestinal segments of rats. Investig Urol 14: 274‐277, 1977.
 352.Manoharan P, Coon S, Baseler W, Sundaram S, Kekuda R, Sundaram U. Prostaglandins, not the leukotrienes, regulate Cl−/HCO3− exchange (DRA, SLC26A3) in villus cells in the chronically inflamed rabbit ileum. Biochim Biophys Acta Biomembr 1828: 179‐186, 2013.
 353.Marangella M, Fruttero B, Bruno M, Linari F. Hyperoxaluria in idiopathic calcium stone disease ‐ further evidence of intestinal hyper‐absorption of oxalate. Clin Sci 63: 381‐385, 1982.
 354.Marangella M, Vitale C, Petrarulo M, Tricerri A, Cerelli E, Cadario A, Barbos MP, Linari F. Bony content of oxalate in patients with primary hyperoxaluria or oxalosis‐unrelated renal‐failure. Kidney Int 48: 182‐187, 1995.
 355.Marengo SR, Zeise BS, Wilson CG, MacLennan GT, Romani AMP. The trigger‐maintenance model of persistent mild to moderate hyperoxaluria induces oxalate accumulation in non‐renal tissues. Urolithiasis 41: 455‐466, 2013.
 356.Marengo SR, Zhang AL, Traverso EJ. Partitioning of C‐14‐oxalate excretion in rats during a persistent oxalate challenge. Urol Res 36: 319‐326, 2008.
 357.Markadieu N, Delpire E. Physiology and pathophysiology of SLC12A1/2 transporters. Pflugers Arch Eur J Physiol 466: 91‐105, 2014.
 358.Marshall RW, Cochran M, Hodgkinson A. Relationships between calcium and oxalic‐acid intake in diet and their excretion in urine of normal and renal‐stone‐forming subjects. Clin Sci 43: 91‐99, 1972.
 359.Mascolo N, Rajendran VM, Binder HJ. Mechanism of short‐chain fatty‐acid uptake by apical membrane‐vesicles of rat distal colon. Gastroenterology 101: 331‐338, 1991.
 360.Matthews JB. Molecular regulation of Na+‐K+‐2Cl− cotransporter (NKCC1) and epithelial chloride secretion. World J Surg 26: 826‐830, 2002.
 361.Maurer AH. Gastrointestinal motility, Part 2: Small‐bowel and colon transit. J Nucl Med Technol 44: 12‐18, 2016.
 362.Mehta M, Goldfarb DS, Nazzal L. The role of the microbiome in kidney stone formation. Int J Surg 36: 607‐612, 2016.
 363.Melvin JE, Park K, Richardson L, Schultheis PJ, Shull GE. Mouse down‐regulated in adenoma (DRA) is an intestinal Cl−/HCO3− exchanger and is up‐regulated in colon of mice lacking the NHE3 Na+/H+ exchanger. J Biol Chem 274: 22855‐22861, 1999.
 364.Miller AW, Choy D, Penniston KL, Lange D. Inhibition of urinary stone disease by a multi‐species bacterial network ensures healthy oxalate homeostasis. Kidney Int 96: 180‐188, 2019.
 365.Miller AW, Oakeson KF, Dale C, Dearing MD. Microbial community transplant results in increased and long‐term oxalate degradation. Microb Ecol 72: 470‐478, 2016.
 366.Miller MA, Parkman HP, Urbain JLC, Brown KL, Donahue DJ, Knight LC, Maurer AH, Fisher RS. Comparison of scintigraphy and lactulose breath hydrogen test for assessment of orocecal transit ‐ Lactulose accelerates small bowel transit. Dig Dis Sci 42: 10‐18, 1997.
 367.Milliner D, Hoppe B, Groothoff J. A randomised Phase II/III study to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Urolithiasis 46: 313‐323, 2018.
 368.Miyamoto H, Ikehara T, Yamaguchi H, Hosokawa K, Yonezu T, Masuya T. Kinetic mechanism of Na+, K+, Cl−‐cotransport as studied by Rb+ influx into HeLa‐cells ‐ effects of extracellular mono‐valent ions. J Membr Biol 92: 135‐150, 1986.
 369.Modigliani R, Labayle D, Aymes C, Denvil R. Evidence for excessive absorption of oxalate by colon in enteric hyperoxaluria. Scand J Gastroenterol 13: 187‐192, 1978.
 370.Monico CG, Weinstein A, Jiang ZR, Rohlinger AL, Cogal AG, Bjornson BB, Olson JB, Bergstralh EJ, Milliner DS, Aronson PS. Phenotypic and functional analysis of human SLC26A6 variants in patients with familial hyperoxaluria and calcium oxalate nephrolithiasis. Am J Kidney Dis 52: 1096‐1103, 2008.
 371.Moore ML, George JN, Turner RJ. Anion dependence of bumetanide binding and ion‐transport by the rabbit parotid Na+‐K+‐2Cl− cotransporter ‐ evidence for an intracellular anion modifier site. Biochem J 309: 637‐642, 1995.
 372.Moseley RH, Hoglund P, Wu GD, Silberg DG, Haila S, de la Chapelle A, Holmberg C, Kere J. Downregulated in adenoma gene encodes a chloride transporter defective in congenital chloride diarrhea. Am J Physiol Gastrointest Liver Physiol 276: G185‐G192, 1999.
 373.Motola JA, Urivetsky M, Molia L, Smith AD. Transmembrane oxalate exchange ‐ its relationship to idiopathic calcium‐oxalate nephrolithiasis. J Urol 147: 549‐552, 1992.
 374.Mount DB, Romero MF. The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch Eur J Physiol 447: 710‐721, 2004.
 375.Mukaibo T, Munemasa T, George AT, Tran DT, Gao X, Herche JL, Masaki C, Shull GE, Soleimani M, Melvin JE. The apical anion exchanger Slc26a6 promotes oxalate secretion by murine submandibular gland acinar cells. J Biol Chem 293: 6259‐6268, 2018.
 376.Muller G, Schutte W, Berg W, Moller T. Absorption of oxalic‐acid in calcium‐oxalate nephrolithiasis. Z Urol Nephrol 80: 391‐394, 1987.
 377.Musch MW, Arvans DL, Wu GD, Chang EB. Functional coupling of the downregulated in adenoma Cl−/base exchanger DRA and the apical Na+/H+ exchangers NHE2 and NHE3. Am J Physiol Gastrointest Liver Physiol 296: G202‐G210, 2009.
 378.Nader M, Lamprecht G, Classen M, Seidler U. Different regulation by pHi and osmolarity of the rabbit ileum brush‐border and parietal‐cell basolateral anion‐exchanger. J Physiol Lond 481: 605‐615, 1994.
 379.Nagami GT, Kraut JA. Acid‐base regulation of angiotensin receptors in the kidney. Curr Opin Nephrol Hypertens 19: 91‐97, 2010.
 380.Neumeier LI, Thomson RB, Reichel M, Eckardt K‐U, Aronson PS, Knauf F. Enteric oxalate secretion mediated by Slc26a6 defends against hyperoxalemia in murine models of chronic kidney disease. J Am Soc Nephrol 31: 1987‐1995, 2020.
 381.Newton AC. Protein‐Kinase‐C ‐ structure, function, and regulation. J Biol Chem 270: 28495‐28498, 1995.
 382.Nishimura M, Naito S. Tissue‐specific mRNA expression profiles of human solute carrier transporter superfamilies. Drug Metab Pharmacokinet 23: 22‐44, 2008.
 383.Nishizuka Y. The role of Protein Kinase‐C in cell‐surface signal transduction and tumor promotion. Nature 308: 693‐698, 1984.
 384.Norkina O, Kaur S, Ziemer D, De Lisle RC. Inflammation of the cystic fibrosis mouse small intestine. Am J Physiol Gastrointest Liver Physiol 286: G1032‐G1041, 2004.
 385.Novak I. Purinergic signalling in epithelial ion transport: Regulation of secretion and absorption. Acta Physiol 202: 501‐522, 2011.
 386.Oehlschlager S, Fuessel S, Meye A, Herrmann J, Lotzkat U, Froehner M, Albrecht S, Wirth MP. Importance of erythrocyte band III anion transporter (SLC4A1) on oxalate clearance of calcium oxalate monohydrate stone‐forming patients vs. normal controls. Urology 77: 250.e1‐5, 2011.
 387.Ohana E, Shcheynikov N, Moe OW, Muallem S. SLC26A6 and NaDC‐1 transporters interact to regulate oxalate and citrate homeostasis. J Am Soc Nephrol 24: 1617‐1626, 2013.
 388.Ohana E, Shcheynikov N, Park M, Muallem S. Solute carrier family 26 member a2 (Slc26a2) protein functions as an electroneutral SO42−/OH−/Cl− exchanger regulated by extracellular Cl. J Biol Chem 287: 5122‐5132, 2012.
 389.Ohana E, Shcheynikov N, Yang DK, So I, Muallem S. Determinants of coupled transport and uncoupled current by the electrogenic SLC26 transporters. J Gen Physiol 137: 239‐251, 2011.
 390.Ohrui T, Skach W, Thompson M, Matsumotopon J, Calayag C, Widdicombe JH. Radiotracer studies of cystic‐fibrosis transmembrane conductance regulator expressed in Xenopus‐oocytes. Am J Physiol Cell Physiol 266: C1586‐C1593, 1994.
 391.Ooi CY, Durie PR. Cystic fibrosis from the gastroenterologist's perspective. Nat Rev Gastroenterol Hepatol 13: 175‐185, 2016.
 392.Ormanji MS, Korkes F, Meca R, Ishiy C, Finotti GHC, Ferraz RRN, Heilberg IP. Hyperoxaluria in a model of mini‐gastric bypass surgery in rats. Obes Surg 27: 3202‐3208, 2017.
 393.Osther PJ, Bollerslev J, Norgard JR, Engel K, Kildeberg P. Effects of acute acid loading on the risk of calcium‐phosphate and calcium‐oxalate crystallization in urine. Scanning Microsc 8: 63‐69, 1994.
 394.Otto BJ, Bozorgmehri S, Kuo J, Canales M, Bird VG, Canales B. Age, body mass index, and gender predict 24‐hour urine parameters in recurrent idiopathic calcium oxalate stone formers. J Endourol 31: 1335‐1341, 2017.
 395.Owen NE, Prastein ML. Na/K/Cl cotransport in cultured human‐fibroblasts. J Biol Chem 260: 1445‐1451, 1985.
 396.Palfrey HC, Greengard P. Hormone‐sensitive ion transport systems in erythrocytes as models for epithelial ion pathways. Ann N Y Acad Sci 372: 291‐308, 1981.
 397.Pappenheimer JR. Paracellular intestinal‐absorption of glucose, creatinine, and mannitol in normal animals ‐ relation to body size. Am J Physiol Gastrointest Liver Physiol 259: G290‐G299, 1990.
 398.Park M, Ohana E, Choi SY, Lee MS, Park JH, Muallem S. Multiple roles of the SO42−/Cl−/OH− exchanger protein Slc26a2 in chondrocyte functions. J Biol Chem 289: 1993‐2001, 2014.
 399.Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium‐coupled bicarbonate transporters. Physiol Rev 93: 803‐959, 2013.
 400.Pearle MS, Goldfarb DS, Assimos DG, Curham G, Denu‐Ciocca CJ, Matlaga BR, Monga M, Penniston KL, Preminger GM, Turk TMT, White JR. Medical management of kidney stones: AUA guideline. J Urol 192: 316‐324, 2014.
 401.PeBenito A, Nazzal L, Wang C, Li HL, Jay M, Noya‐Alarcon O, Contreras M, Lander O, Leach J, Dominguez‐Bello MG, Blaser MJ. Comparative prevalence of Oxalobacter formigenes in three human populations. Sci Rep 9: 574, 2019.
 402.Pena‐Muenzenmayer G, Catalan MA, Kondo Y, Jaramillo Y, Liu F, Shull GE, Melvin JE. Ae4 (Slc4a9) anion exchanger drives Cl− uptake‐dependent fluid secretion by mouse submandibular gland acinar cells. J Biol Chem 290: 10677‐10688, 2015.
 403.Pena‐Munzenmayer G, George AT, Shull GE, Melvin JE, Catalan MA. Ae4 (Slc4a9) is an electroneutral monovalent cation‐dependent Cl−/HCO3− exchanger. J Gen Physiol 147: 423‐436, 2016.
 404.Perez GO, Oster JR, Rogers A. Acid‐base disturbances in gastrointestinal‐disease. Dig Dis Sci 32: 1033‐1043, 1987.
 405.Perez‐Brayfield MR, Caplan D, Gatti JM, Smith EA, Kirsch AJ. Metabolic risk factors for stone formation in patients with cystic fibrosis. J Urol 167: 480‐484, 2002.
 406.Petrovic S, Ju X, Barone S, Seidler U, Alper SL, Lohi H, Kere J, Soleimani M. Identification of a basolateral Cl−/HCO3− exchanger specific to gastric parietal cells. Am J Physiol Gastrointest Liver Physiol 284: G1093‐G1103, 2003.
 407.Petrovic S, Wang ZH, Ma LY, Seidler U, Forte JG, Shull GE, Soleimani M. Colocalization of the apical Cl−/HCO3− exchanger PAT1 and gastric H‐K‐ATPase in stomach parietal cells. Am J Physiol Gastrointest Liver Physiol 283: G1207‐G1216, 2002.
 408.Pigna F, Sakhaee K, Adams‐Huet B, Maalouf NM. Body fat content and distribution and urinary risk factors for nephrolithiasis. Clin J Am Soc Nephrol 9: 159‐165, 2014.
 409.Pinto B, Crespi G, Solebalc F, Barcelo P. Patterns of oxalate metabolism in recurrent oxalate stone formers. Kidney Int 5: 285‐291, 1974.
 410.Powell CR, Stoller ML, Schwartz BF, Kane C, Gentle DL, Bruce JE, Leslie SW. Impact of body weight on urinary electrolytes in urinary stone formers. Urology 55: 825‐830, 2000.
 411.Powell DW. Barrier function of epithelia. Am J Physiol Gastrointest Liver Physiol 241: G275‐G288, 1981.
 412.Prenen JAC, Boer P, Mees EJD. Absorption kinetics of oxalate from oxalate‐rich food in man. Am J Clin Nutr 40: 1007‐1010, 1984.
 413.Prenen JAC, Boer P, Mees EJD, Endeman HJ, Spoor SM, Oei HY. Renal clearance of C‐14‐labeled oxalate ‐ comparison of constant‐infusion with single‐injection techniques. Clin Sci 63: 47‐51, 1982.
 414.Prenen JAC, Boer P, Mees EJD, Endeman HJ, Yoe OH. Determination of oxalic‐acid clearance and plasma‐concentration by radioisotope infusion ‐ results in a family with hyperoxaluria. Acta Med Scand 209: 87‐91, 1981.
 415.Prenen JAC, Mees EJD, Boer P. Plasma oxalate concentration and oxalate distribution volume in patients with normal and decreased renal‐function. Eur J Clin Investig 15: 45‐49, 1985.
 416.Priyamvada S, Gomes R, Gill RK, Saksena S, Alrefai WA, Dudeja PK. Mechanisms underlying dysregulation of electrolyte absorption in inflammatory bowel disease‐associated diarrhea. Inflamm Bowel Dis 21: 2926‐2935, 2015.
 417.Prokopovich S, Knight J, Assimos DG, Holmes RP. Variability of Oxalobacter formigenes and oxalate in stool samples. J Urol 178: 2186‐2190, 2007.
 418.Pushkin A, Kurtz I. SLC4 base (HCO3−, CO32−) transporters: Classification, function, structure, genetic diseases, and knockout models. Am J Physiol Renal Physiol 290: F580‐F599, 2006.
 419.Quondamatteo F, Krick W, Hagos Y, Kruger MH, Neubauer‐Saile K, Herken R, Ramadori G, Burckhardt G, Burckhardt BC. Localization of the sulfate/anion exchanger in the rat liver. Am J Physiol Gastrointest Liver Physiol 290: G1075‐G1081, 2006.
 420.Rajendran VM, Black J, Ardito TA, Sangan P, Alper SL, Schweinfest C, Kashgarian M, Binder HJ. Regulation of DRA and AE1 in rat colon by dietary Na depletion. Am J Physiol Gastrointest Liver Physiol 279: G931‐G942, 2000.
 421.Rao MC. Physiology of electrolyte transport in the gut: Implications for disease. Compr Physiol 9: 947‐1023, 2019.
 422.Read NW, Aljanabi MN, Holgate AM, Barber DC, Edwards CA. Simultaneous measurement of gastric‐emptying, small‐bowel residence and colonic filling of a solid meal by the use of the gamma‐camera. Gut 27: 300‐308, 1986.
 423.Recalde S, Muruzabal F, Looije N, Kunne C, Burrell MA, Saez E, Martinez‐Anso E, Salas JT, Mardones P, Prieto J, Medina JF, Elferink R. Inefficient chronic activation of parietal cells in Ae2(a,b)(‐/‐) mice. Am J Pathol 169: 165‐176, 2006.
 424.Reddy TG, Knight J, Holmes RP, Harvey LM, Mitchem ALE, Wilcox CM, Monkemuller KE, Assimos DG. Oxalate concentrations in human gastrointestinal fluid. J Endourol 30: S8‐S11, 2016.
 425.Regeer RR, Lee A, Markovich D. Characterization of the human sulfate anion transporter (hsat‐1) protein and gene (SAT1; SLC26A1). DNA Cell Biol 22: 107‐117, 2003.
 426.Reimold FR, Heneghan JF, Stewart AK, Zelikovic I, Vandorpe DH, Shmukler BE, Alper SL. Pendrin function and regulation in Xenopus oocytes. Cell Physiol Biochem 28: 435‐450, 2011.
 427.Reimold FR, Stewart AK, Stolpe K, Heneghan JF, Shmukler BE, Alper SL. Substitution of transmembrane domain Cys residues alters pHo‐sensitive anion transport by AE2/SLC4A2 anion exchanger. Pflugers Arch Eur J Physiol 465: 839‐851, 2013.
 428.Reithmeier RAF, Casey JR, Kalli AC, Sansom MSP, Alguel Y, Iwata S. Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. Biochim Biophys Acta Biomembr 1858: 1507‐1532, 2016.
 429.Reynolds A, Parris A, Evans LA, Lindqvist S, Sharp P, Lewis M, Tighe R, Williams MR. Dynamic and differential regulation of NKCC1 by calcium and cAMP in the native human colonic epithelium. J Physiol Lond 582: 507‐524, 2007.
 430.Reynolds DA, Rajendran VM, Binder HJ. Bicarbonate‐stimulated C‐14 butyrate uptake in basolateral membrane‐vesicles of rat distal colon. Gastroenterology 105: 725‐732, 1993.
 431.Ribaya JD, Gershoff SN. Factors affecting endogenous oxalate synthesis and its excretion in feces and urine in rats. J Nutr 112: 2161‐2169, 1982.
 432.Robinson PJ, Smith AL, Sly PD. Duodenal pH in cystic‐fibrosis and its relationship to fat malabsorption. Dig Dis Sci 35: 1299‐1304, 1990.
 433.Romero MF, Chen AP, Parker MD, Boron WF. The SLC4 family of bicarbonate (HCO3−) transporters. Mol Asp Med 34: 159‐182, 2013.
 434.Rossi A, Superti‐Furga A. Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene (SLC26A2): 22 Novel mutations, mutation review, associated skeletal phenotypes, and diagnostic relevance. Hum Mutat 17: 159‐171, 2001.
 435.Rossmann H, Alper SL, Nader M, Wang Z, Gregor M, Seidler U. Three 5'‐variant mRNAs of anion exchanger AE2 in stomach and intestine of mouse, rabbit, and rat. In: Schulzke JD, Fromm M, Riecken EO, Binder HJ, editors. Epithelial Transport and Barrier Function: Pathomechanisms in Gastrointestinal Disorders. New York: New York Academy of Sciences, 2000, p. 81‐91.
 436.Rossmann H, Bachmann O, Wang Z, Shull GE, Obermaier B, Stuart‐Tilley A, Alper SL, Seidler U. Differential expression and regulation of AE2 anion exchanger subtypes in rabbit parietal and mucous cells. J Physiol Lond 534: 837‐848, 2001.
 437.Rothstein A. Anion exchanges and band 3 protein. In: Tosteson DC, editor. Membrane Transport: People and Ideas. New York: Springer, 1989, p. 203‐205.
 438.Ruetz S, Lindsey AE, Ward CL, Kopito RR. Functional activation of plasma‐membrane anion‐exchangers occurs in a pre‐golgi compartment. J Cell Biol 121: 37‐48, 1993.
 439.Rumble JR. CRC Handbook of Chemistry and Physics. New York: CRC Press, 2021, p. 1624.
 440.Russell JM. Sodium‐potassium‐chloride cotransport. Physiol Rev 80: 211‐276, 2000.
 441.Rutledge R. The mini‐gastric bypass: Experience with the first 1,274 cases. Obes Surg 11: 276‐280, 2001.
 442.Saint‐Criq V, Gray MA. Role of CFTR in epithelial physiology. Cell Mol Life Sci 74: 93‐115, 2017.
 443.Sakhaee K, Capolongo G, Maalouf NM, Pasch A, Moe OW, Poindexter J, Adams‐Huet B. Metabolic syndrome and the risk of calcium stones. Nephrol Dial Transplant 27: 3201‐3209, 2012.
 444.Sakhaee K, Maalouf NM, Sinnott B. Kidney stones 2012: Pathogenesis, diagnosis, and management. J Clin Endocrinol Metab 97: 1847‐1860, 2012.
 445.Saksena S, Dwivedi A, Singla A, Gill RK, Tyagi S, Borthakur A, Alrefai WA, Ramaswamy K, Dudeja PK. Characterization of the 5'‐flanking region and regulation of expression of human anion exchanger SLC26A6. J Cell Biochem 105: 454‐466, 2008.
 446.Saksena S, Gill RK, Syed IA, Tyagi S, Alrefai WA, Ramaswamy K, Dudeja PK. Inhibition of apical Cl−/OH− exchange activity in Caco‐2 cells by phorbol esters is mediated by PKC epsilon. Am J Physiol Cell Physiol 283: C1492‐C1500, 2002.
 447.Salido E, Pey AL, Rodriguez R, Lorenzo V. Primary hyperoxalurias: Disorders of glyoxylate detoxification. Biochim Biophys Acta Mol Basis Di 1822: 1453‐1464, 2012.
 448.Salminen E, Salminen S, Bridges JW, Marks V, Koivistoinen P. Urinary excretion of orally administered oxalic acid in sorbitol and mannitol fed CD‐1 mice. In: Bach P, Lock E, editors. Renal Heterogeneity and Target Cell Toxicity. Chichester: John Wiley & Sons, Ltd., 1985, p. 227‐231.
 449.Salminen E, Salminen S, Marks V, Bridges JW. Urinary excretion of orally administered oxalic acid in xylitol fed mice. In: Hayes AW, Schnell RC, Miya TS, editors. Developments in the Science and Practice of Toxicology. Amsterdam: Elsevier, 1983, p. 333‐336.
 450.Salminen S, Salminen E, Bridges JW, Marks V. Intestinal‐absorption of oxalate by xylitol‐treated rats and mice. Toxicol Lett 44: 113‐120, 1988.
 451.Salyer WR, Keren D. Oxalosis as a complication of chronic renal‐failure. Kidney Int 4: 61‐66, 1973.
 452.Satoh H, Susaki M, Shukunami C, Iyama K, Negoro T, Hiraki Y. Functional analysis of diastrophic dysplasia sulfate transporter ‐ Its involvement in growth regulation of chondrocytes mediated by sulfated proteoglycans. J Biol Chem 273: 12307‐12315, 1998.
 453.Saunders DR, Sillery J, McDonald GB. Regional differences in oxalate absorption by rat intestine ‐ evidence for excessive absorption by colon in steatorrhea. Gut 16: 543‐548, 1975.
 454.Scales CD, Smith AC, Hanley JM, Saigal CS, Urologic Diseases in America Project. Prevalence of kidney stones in the United States. Eur Urol 62: 160‐165, 2012.
 455.Schron CM, Knickelbein RG, Aronson PS, Dellapuca J, Dobbins JW. Effects of cations on pH gradient‐stimulated sulfate transport in rabbit ileal brush‐border membrane‐vesicles. Am J Physiol Gastrointest Liver Physiol 249: G614‐G621, 1985.
 456.Schron CM, Knickelbein RG, Aronson PS, Dobbins JW. Evidence for carrier‐mediated Cl‐SO4 exchange in rabbit ileal basolateral membrane‐vesicles. Am J Physiol Gastrointest Liver Physiol 253: G404‐G410, 1987.
 457.Schron CM, Washington C, Blitzer BL. Anion specificity of the jejunal folate carrier ‐ effects of reduced folate analogs on folate uptake and efflux. J Membr Biol 102: 175‐183, 1988.
 458.Schweinfest CW, Spyropoulos DD, Henderson KW, Kim JH, Chapman JM, Barone S, Worrell RT, Wang ZH, Soleimani M. slc26a3 (dra)‐deficient mice display chloride‐losing diarrhea, enhanced colonic proliferation, and distinct up‐regulation of ion transporters in the colon. J Biol Chem 281: 37962‐37971, 2006.
 459.Schwille PO, Hanisch E, Scholz D. Postprandial hyperoxaluria and intestinal oxalate absorption in idiopathic renal stone disease. J Urol 132: 650‐655, 1984.
 460.Seidler U, Nikolovska K. Slc26 family of anion transporters in the gastrointestinal tract: Expression, function, regulation, and role in disease. Compr Physiol 9: 839‐872, 2019.
 461.Seidler U, Rottinghaus I, Hillesheim J, Chen M, Riederer B, Krabbenhoft A, Engelhardt R, Wiemann M, Wang Z, Barone S, Manns MP, Soleimani M. Sodium and chloride absorptive defects in the small intestine in Slc26a6 null mice. Pflugers Arch Eur J Physiol 455: 757‐766, 2008.
 462.Seidler U, Sjoblom M. Gastroduodenal bicarbonate secretion. In: Johnson JR, Ghishan FK, Kaunitz JD, Merchant JL, Said HM, Wood JD, editors. Physiology of the Gastrointestinal Tract. San Diego: Academic Press, 2012, p. 1311‐1339.
 463.Seidler U, Song P, Xiao F, Riederer B, Bachmann O, Chen M. Recent advances in the molecular and functional characterization of acid/base and electrolyte transporters in the basolateral membranes of gastric and duodenal epithelial cells. Acta Physiol 201: 3‐20, 2011.
 464.Sharma AK, Rigby AC, Alper SL. STAS domain structure and function. Cell Physiol Biochem 28: 407‐422, 2011.
 465.Shavit L, Ferraro PM, Johri N, Robertson W, Walsh SB, Moochhala S, Unwin R. Effect of being overweight on urinary metabolic risk factors for kidney stone formation. Nephrol Dial Transplant 30: 607‐613, 2015.
 466.Shcheynikov N, Wang Y, Park M, Ko SBH, Dorwart M, Naruse S, Thomas PJ, Muallem S. Coupling modes and stoichiometry of Cl−/HCO3− exchange by slc26a3 and slc26a6. J Gen Physiol 127: 511‐524, 2006.
 467.Shcheynikov N, Yang DK, Wang YX, Zeng WZ, Karniski LP, So I, Wall SM, Muallem S. The Slc26a4 transporter functions as an electroneutral Cl−/I−/HCO3− exchanger: Role of Slc26a4 and Slc26a6 in I− and HCO3− secretion and in regulation of CFTR in the parotid duct. J Physiol Lond 586: 3813‐3824, 2008.
 468.Shen WW, Wu J, Cai L, Liu BY, Gao Y, Chen GQ, Fu GH. Expression of anion exchanger 1 sequestrates p16 in the cytoplasm in gastric and colonic adenocarcinoma. Neoplasia 9: 812‐819, 2007.
 469.Shimshilashvili L, Aharon S, Moe OW, Ohana E. Novel human polymorphisms define a key role for the SLC26A6‐STAS domain in protection from Ca2+‐oxalate lithogenesis. Front Pharmacol 11: 405, 2020.
 470.Shirley EK, Schmidt‐Nielsen K. Oxalate metabolism in pack rat sand rat hamster and white rat. J Nutr 91: 496‐502, 1967.
 471.Sidhu H, Hoppe B, Hesse A, Tenbrock K, Bromme S, Rietschel E, Peck AB. Absence of Oxalobacter formigenes in cystic fibrosis patients: A risk factor for hyperoxaluria. Lancet 352: 1026‐1029, 1998.
 472.Sidhu H, Schmidt ME, Cornelius JG, Thamilselvan S, Khan SR, Hesse A, Peck AB. Direct correlation between hyperoxaluria/oxalate stone disease‐and the absence of the gastrointestinal tract‐dwelling bacterium Oxalobacter formigenes: Possible prevention by gut recolonization or enzyme replacement therapy. J Am Soc Nephrol 10: S334‐S340, 1999.
 473.Siener R, Bade DJ, Hesse A, Hoppe B. Dietary hyperoxaluria is not reduced by treatment with lactic acid bacteria. J Transl Med 11: 306, 2013.
 474.Siener R, Bangen U, Sidhu H, Honow R, von Unruh G, Hesse A. The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int 83: 1144‐1149, 2013.
 475.Siener R, Ebert D, Nicolay C, Hesse A. Dietary risk factors for hyperoxaluria in calcium oxalate stone formers. Kidney Int 63: 1037‐1043, 2003.
 476.Siener R, Glatz S, Nicolay C, Hesse A. The role of overweight and obesity in calcium oxalate stone formation. Obes Res 12: 106‐113, 2004.
 477.Sikora P, von Unruh GE, Beck B, Feldkotter M, Zajaczkowska M, Hesse A, Hoppe B. C‐13(2) oxalate absorption in children with idiopathic calcium oxalate urolithiasis or primary hyperoxaluria. Kidney Int 73: 1181‐1186, 2008.
 478.Silberg DG, Wang W, Moseley RH, Traber PG. The down‐regulated in adenoma (dra) gene encodes an intestine‐specific membrane sulfate transport protein. J Biol Chem 270: 11897‐11902, 1995.
 479.Simpson JE, Gawenis LR, Walker NM, Boyle KT, Clarke LL. Chloride conductance of CFTR facilitates basal Cl−/HCO3− exchange in the villous epithelium of intact murine duodenum. Am J Physiol Gastrointest Liver Physiol 288: G1241‐G1251, 2005.
 480.Simpson JE, Schweinfest CW, Shull GE, Gawenis LR, Walker NM, Boyle KT, Soleimani M, Clarke LL. PAT‐1 (Slc26a6) is the predominant apical membrane Cl−/HCO3− exchanger in the upper villous epithelium of the murine duodenum. Am J Physiol Gastrointest Liver Physiol 292: G1079‐G1088, 2007.
 481.Simpson JE, Walker NM, Supuran CT, Soleimani M, Clarke LL. Putative anion transporter‐1 (Pat‐1, Slc26a6) contributes to intracellular pH regulation during H+‐dipeptide transport in duodenal villous epithelium. Am J Physiol Gastrointest Liver Physiol 298: G683‐G691, 2010.
 482.Singh AK, Amlal H, Haas PJ, Dringenberg U, Fussell S, Barone SL, Engelhardt R, Zuo J, Seidler U, Soleimani M. Fructose‐induced hypertension: Essential role of chloride and fructose absorbing transporters PAT1 and Glut5. Kidney Int 74: 438‐447, 2008.
 483.Singh AK, Liu YJ, Riederer B, Engelhardt R, Thakur BK, Soleimani M, Seidler U. Molecular transport machinery involved in orchestrating luminal acid‐induced duodenal bicarbonate secretion in vivo. J Physiol Lond 591: 5377‐5391, 2013.
 484.Singh AK, Riederer B, Chen MM, Xiao F, Krabbenhoft A, Engelhardt R, Nylander O, Soleimani M, Seidler U. The switch of intestinal Slc26 exchangers from anion absorptive to HCO3− secretory mode is dependent on CFTR anion channel function. Am J Physiol Cell Physiol 298: C1057‐C1065, 2010.
 485.Singh AK, Riederer B, Krabbenhoft A, Rausch B, Bonhagen J, Lehmann U, de Jonge HR, Donowitz M, Yun C, Weinman EJ, Kocher O, Hogema BM, Seidler U. Differential roles of NHERF1, NHERF2, and PDZK1 in regulating CFTR‐mediated intestinal anion secretion in mice. J Clin Investig 119: 540‐550, 2009.
 486.Singh AK, Sjoblom M, Zheng W, Krabbenhoft A, Riederer B, Rausch B, Manns MP, Soleimani M, Seidler U. CFTR and its key role in in vivo resting and luminal acid‐induced duodenal HCO3− secretion. Acta Physiol 193: 357‐365, 2008.
 487.Siva S, Barrack ER, Reddy GPV, Thamilselvan V, Thamilselvan S, Menon M, Bhandari M. A critical analysis of the role of gut Oxalobacter formigenes in oxalate stone disease. BJU Int 103: 18‐21, 2009.
 488.Sjostrom L, Peltonen M, Jacobson P, Sjostrom CD, Karason K, Wedel H, Ahlin S, Anveden A, Bengtsson C, Bergmark G, Bouchard C, Carlsson B, Dahlgren S, Karlsson J, Lindroos AK, Lonroth H, Narbro K, Naslund I, Olbers T, Svensson PA, Carlsson LMS. Bariatric surgery and long‐term cardiovascular events. J Am Med Assoc 307: 56‐65, 2012.
 489.Spradling K, Vernez SL, Khoyliar C, Morgan JB, Okhunov Z, Preminger GM, Lipkin ME, Landman J, Youssef RF. Prevalence of hyperoxaluria in urinary stone formers: Chronological and geographical trends and a literature review. J Endourol 30: 469‐475, 2016.
 490.Stauffer JQ, Barry RE, Faloon WW. Hyperoxaluria and calcium‐oxalate nephrolithiasis after jejunoileal bypass. Am J Clin Nutr 30: 64‐71, 1977.
 491.Stauffer JQ, Humphreys MH, Weir GJ. Acquired hyperoxaluria with regional enteritis after ileal resection ‐ role of dietary oxalate. Ann Intern Med 79: 383‐391, 1973.
 492.Stenson WF, Easom RA, Riehl TE, Turk J. Regulation of paracellular permeability in Caco‐2 cell monolayers by Protein‐Kinase‐C. Am J Physiol Gastrointest Liver Physiol 265: G955‐G962, 1993.
 493.Stephens CE, Whittamore JM, Hatch M. The role of NHE3 (Slc9a3) in oxalate and sodium transport by mouse intestine and regulation by cAMP. Physiological Reports 9: e14828, 2021.
 494.Stern JM, Moazami S, Qiu YP, Kurland I, Chen ZG, Agalliu I, Burk R, Davies KP. Evidence for a distinct gut microbiome in kidney stone formers compared to non‐stone formers. Urolithiasis 44: 399‐407, 2016.
 495.Stern JM, Urban‐Maldonado M, Usyk M, Granja I, Schoenfeld D, Davies KP, Agalliu I, Asplin J, Burk R, Suadicani SO. Fecal transplant modifies urine chemistry risk factors for urinary stone disease. Physiol Rep 7: e14012, 2019.
 496.Stewart AK, Kurschat CE, Vaughan‐Jones RD, Alper SL. Putative re‐entrant loop 1 of AE2 transmembrane domain has a major role in acute regulation of anion exchange by pH. J Biol Chem 284: 6126‐6139, 2009.
 497.Stewart AK, Shmukler BE, Vandorpe DH, Reimold F, Heneghan JF, Nakakuki M, Akhavein A, Ko S, Ishiguro H, Alper SL. SLC26 anion exchangers of guinea pig pancreatic duct: Molecular cloning and functional characterization. Am J Physiol Cell Physiol 301: C289‐C303, 2011.
 498.Stewart CS, Duncan SH, Cave DR. Oxalobacter formigenes and its role in oxalate metabolism in the human gut. FEMS Microbiol Lett 230: 1‐7, 2004.
 499.Stokes F, Acquaviva‐Bourdain C, Hoppe B, Lieske JC, Lindner E, Toulson G, Vaz FM, Rumsby G. Plasma oxalate: Comparison of methodologies. Urolithiasis 48: 473‐480, 2020.
 500.Stuarttilley A, Sardet C, Pouyssegur J, Schwartz MA, Brown D, Alper SL. Immunolocalization of anion‐exchanger AE2 and cation‐exchanger NHE‐1 in distinct adjacent cells of gastric‐mucosa. Am J Physiol Cell Physiol 266: C559‐C568, 1994.
 501.Sugimoto T, Osswald H, Yamamoto K, Kanazawa T, Iimori H, Funae Y, Kamikawa S, Kishimoto T. Fate of circulating oxalate in rats. Eur Urol 23: 485‐489, 1993.
 502.Talbot C, Lytle C. Segregation of Na/H exchanger‐3 and Cl/HCO3 exchanger SLC26A3 (DRA) in rodent cecum and colon. Am J Physiol Gastrointest Liver Physiol 299: G358‐G367, 2010.
 503.Tang L, Fatehi M, Linsdell P. Mechanism of direct bicarbonate transport by the CFTR anion channel. J Cyst Fibros 8: 115‐121, 2009.
 504.Tasian GE, Jemielita T, Goldfarb DS, Copelovitch L, Gerber JS, Wu QF, Denburg MR. Oral antibiotic exposure and kidney stone disease. J Am Soc Nephrol 29: 1731‐1740, 2018.
 505.Taylor EN, Curhan GC. Body size and 24‐hour urine composition. Am J Kidney Dis 48: 905‐915, 2006.
 506.Taylor EN, Curhan GC. Oxalate intake and the risk for nephrolithiasis. J Am Soc Nephrol 18: 2198‐2204, 2007.
 507.Taylor EN, Curhan GC. Determinants of 24‐hour urinary oxalate excretion. Clin J Am Soc Nephrol 3: 1453‐1460, 2008.
 508.Taylor EN, Stampfer MJ, Curhan GC. Obesity, weight gain, and the risk of kidney stones. J Am Med Assoc 293: 455‐462, 2005.
 509.Teixeira TFS, Carmen Collado M, Ferreira CLLF, Bressan J, MdCG P. Potential mechanisms for the emerging link between obesity and increased intestinal permeability. Nutr Res 32: 637‐647, 2012.
 510.Terribile M, Capuano M, Cangiano G, Carnovale V, Ferrara P, Petrarulo M, Marangella M. Factors increasing the risk for stone formation in adult patients with cystic fibrosis. Nephrol Dial Transplant 21: 1870‐1875, 2006.
 511.Thompson CS, Weinman EJ. The significance of oxalate in renal‐failure. Am J Kidney Dis 4: 97‐100, 1984.
 512.Thongprayoon C, Krambeck AE, Rule AD. Determining the true burden of kidney stone disease. Nat Rev Nephrol 16: 736‐746, 2020.
 513.Ticinesi A, Milani C, Guerra A, Allegri F, Lauretani F, Nouvenne A, Mancabelli L, Lugli GA, Turroni F, Duranti S, Mangifesta M, Viappiani A, Ferrario C, Dodi R, Dall'Asta M, Del Rio D, Ventura M, Meschi T. Understanding the gut‐kidney axis in nephrolithiasis: An analysis of the gut microbiota composition and functionality of stone formers. Gut 67: 2097‐2106, 2018.
 514.Tiselius HG, Ahlstrand C, Lundstrom B, Nilsson MA. Oxalate‐C‐14 absorption by normal persons, calcium‐oxalate stone formers, and patients with surgically disturbed intestinal function. Clin Chem 27: 1682‐1685, 1981.
 515.Tomson CRV, Channon SM, Parkinson IS, Morley AR, Lennard TWJ, Parrott NR, Laker MF. Plasma oxalate concentration and secondary oxalosis in patients with chronic renal‐failure. J Clin Pathol 41: 1107‐1113, 1988.
 516.Tuo BG, Chow JYC, Barrett KE, Isenberg JI. Protein kinase C potentiates cAMP‐stimulated mouse duodenal mucosal bicarbonate secretion in vitro. Am J Physiol Gastrointest Liver Physiol 286: G814‐G821, 2004.
 517.Tuo BG, Riederer B, Wang ZH, Colledge WH, Soleimani M, Seidler U. Involvement of the anion exchanger SLC26A6 in prostaglandin E2‐ but not forskolin‐stimulated duodenal HCO3− secretion. Gastroenterology 130: 349‐358, 2006.
 518.Turnberg LA. Abnormalities in intestinal electrolyte transport in congenital chloridorrhoea. Gut 12: 544‐551, 1971.
 519.Turnberg LA, Bieberdorf FA, Morawski SG, Fordtran JS. Interrelationships of chloride, bicarbonate, sodium, and hydrogen transport in the human ileum. J Clin Investig 49: 557‐567, 1970.
 520.Turner MA, Goldwater D, David TJ. Oxalate and calcium excretion in cystic fibrosis. Arch Dis Child 83: 244‐247, 2000.
 521.Tyagi S, Kavilaveettil RJ, Alrefai WA, Alsafwah S, Ramaswamy K, Dudeja PK. Evidence for the existence of a distinct SO42−‐OH− exchange mechanism in the human proximal colonic apical membrane vesicles and its possible role in chloride transport. Exp Biol Med 226: 912‐918, 2001.
 522.Tyagi S, Venugopalakrishnan J, Ramaswamy K, Dudeja PK. Mechanism of n‐butyrate uptake in the human proximal colonic basolateral membranes. Am J Physiol Gastrointest Liver Physiol 282: G676‐G682, 2002.
 523.Ullrich KJ. Specificity of transporters for organic‐anions and organic cations in the kidney. Biochim Biophys Acta, Rev Biomembr 1197: 45‐62, 1994.
 524.Vaandrager AB, Dejonge HR. A sensitive technique for the determination of anion‐exchange activities in brush‐border membrane‐vesicles ‐ evidence for 2 exchangers with different affinities for HCO3− and SITS in rat intestinal epithelium. Biochim Biophys Acta 939: 305‐314, 1988.
 525.van der Post S, Hansson GC. Membrane protein profiling of human colon reveals distinct regional differences. Mol Cell Proteomics 13: 2277‐2287, 2014.
 526.van der Post S, Jabbar KS, Birchenough G, Arike L, Akhtar N, Sjovall H, Johansson MEV, Hansson GC. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut 68: 2142‐2151, 2019.
 527.Vincourt JB, Jullien D, Kossida S, Amalric F, Girard JP. Molecular cloning of SLC26A7, a novel member of the SLC26 sulfate/anion transporter family, from high endothelial venules and kidney. Genomics 79: 249‐256, 2002.
 528.Von Stein P, Lofberg R, Kuznetsov NV, Gielen AW, Persson JO, Sundberg R, Hellstrom K, Eriksson A, Befrits R, Ost A, Von Stein OD. Multigene analysis can discriminate between ulcerative colitis, Crohn's disease, and irritable bowel syndrome. Gastroenterology 134: 1869‐1881, 2008.
 529.von Unruh GE, Bell AE, Hesse A. Effect of oxalate test dose size on absolute and percent oxalate absorption. Isot Environ Health Stud 42: 107‐112, 2006.
 530.von Unruh GE, Langer MAW, Paar DW, Hesse A. Mass spectrometric‐selected ion monitoring assay for an oxalate absorption test applying C‐13(2) oxalate. J Chromatogr B 716: 343‐349, 1998.
 531.von Unruh GE, Voss S, Sauerbruch T, Hesse A. Reference range for gastrointestinal oxalate absorption measured with a standardized C‐13(2) oxalate absorption test. J Urol 169: 687‐690, 2003.
 532.von Unruh GE, Voss S, Sauerbruch T, Hesse A. Dependence of oxalate absorption on the daily calcium intake. J Am Soc Nephrol 15: 1567‐1573, 2004.
 533.Voss S, Hesse A, Zimmermann DJ, Sauerbruch T, von Unruh GE. Intestinal oxalate absorption is higher in idiopathic calcium oxalate stone formers than in healthy controls: Measurements with the C‐13(2) oxalate absorption test. J Urol 175: 1711‐1715, 2006.
 534.Voss S, Zimmermann DJ, Hesse A, von Unruh GE. The effect of oral administration of calcium and magnesium on intestinal oxalate absorption in humans. Isot Environ Health Stud 40: 199‐205, 2004.
 535.Wahl R, Kallee E. Oxalic‐acid in saliva, teeth and tooth tartar. Eur J Clin Chem Clin Biochem 32: 821‐825, 1994.
 536.Walker NM, Flagella M, Gawenis LR, Shull GE, Clarke LL. An alternate pathway of cAMP‐stimulated Cl− secretion across the NKCC1‐null murine duodenum. Gastroenterology 123: 531‐541, 2002.
 537.Walker NM, Liu JH, Stein SR, Stefanski CD, Strubberg AM, Clarke LL. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium. Am J Physiol Gastrointest Liver Physiol 310: G70‐G80, 2016.
 538.Walker NM, Simpson JE, Brazill JM, Gill RK, Dudeja PK, Schweinfest CW, Clarke LL. Role of down‐regulated in adenoma anion exchanger in HCO3− secretion across murine duodenum. Gastroenterology 136: 893‐901, 2009.
 539.Walker NM, Simpson JE, Hoover EE, Brazill JM, Schweinfest CW, Soleimani M, Clarke LL. Functional activity of Pat‐1 (Slc26a6) Cl−/HCO3− exchange in the lower villus epithelium of murine duodenum. Acta Physiol 201: 21‐31, 2011.
 540.Walker NM, Simpson JE, Yen P‐F, Gill RK, Rigsby EV, Brazill JM, Dudeja PK, Schweinfest CW, Clarke LL. Down‐regulated in adenoma Cl/HCO3 exchanger couples with Na/H Exchanger 3 for NaCl absorption in murine small intestine. Gastroenterology 135: 1645‐1653, 2008.
 541.Wang YX, Soyombo AA, Shcheynikov N, Zeng WZ, Dorwart M, Marino CR, Thomas PJ, Muallem S. Slc26a6 regulates CFTR activity in vivo to determine pancreatic duct HCO3− secretion: Relevance to cystic fibrosis. EMBO J 25: 5049‐5057, 2006.
 542.Wang Z, Schultheis PJ, Shull GE. Three n‐terminal variants of the AE2 Cl−/HCO3− exchanger are encoded by mRNAs transcribed from alternative promoters. J Biol Chem 271: 7835‐7843, 1996.
 543.Wang ZH, Petrovic S, Mann E, Soleimani M. Identification of an apical Cl−/HCO3− exchanger in the small intestine. Am J Physiol Gastrointest Liver Physiol 282: G573‐G579, 2002.
 544.Wang ZH, Wang T, Petrovic S, Tuo BG, Riederer B, Barone S, Lorenz JN, Seidler U, Aronson PS, Soleimani M. Renal and intestinal transport defects in Slc26a6‐null mice. Am J Physiol Cell Physiol 288: C957‐C965, 2005.
 545.Watts RWE, Veall N, Purkiss P. Sequential studies of oxalate dynamics in primary hyperoxaluria. Clin Sci 65: 627‐633, 1983.
 546.Watts RWE, Veall N, Purkiss P. Oxalate dynamics and removal rates during hemodialysis and peritoneal‐dialysis in patients with primary hyperoxaluria and severe renal‐failure. Clin Sci 66: 591‐597, 1984.
 547.Weber AM, Roy CC. Intraduodenal events in cystic fibrosis. J Pediatr Gastroenterol Nutr 3 Suppl 1: S113‐S119, 1984.
 548.Wedenoja S, Hoglund P, Holmberg C. Review article: The clinical management of congenital chloride diarrhoea. Aliment Pharmacol Ther 31: 477‐485, 2010.
 549.Wedenoja S, Ormala T, Berg UB, Halling SFE, Jalanko H, Karikoski R, Kere J, Holmberg C, Hoglund P. The impact of sodium chloride and volume depletion in the chronic kidney disease of congenital chloride diarrhea. Kidney Int 74: 1085‐1093, 2008.
 550.Weinhouse S, Friedmann B. Metabolism of labeled 2‐carbon acids in the intact rat. J Biol Chem 191: 707‐717, 1951.
 551.Welch BJ, Graybeal D, Moe OW, Maalouf NM, Sakhaee K. Biochemical and stone‐risk profiles with topiramate treatment. Am J Kidney Dis 48: 555‐563, 2006.
 552.Whittamore JM, Freel RW, Hatch M. Sulfate secretion and chloride absorption are mediated by the anion exchanger DRA (Slc26a3) in the mouse cecum. Am J Physiol Gastrointest Liver Physiol 305: G172‐G184, 2013.
 553.Whittamore JM, Frost SC, Hatch M. Effects of acid‐base variables and the role of carbonic anhydrase on oxalate secretion by the mouse intestine in vitro. Physiological Reports 3: e12282, 2015.
 554.Whittamore JM, Hatch M. Chronic metabolic acidosis reduces urinary oxalate excretion and promotes intestinal oxalate secretion in the rat. Urolithiasis 43: 489‐499, 2015.
 555.Whittamore JM, Hatch M. Loss of the anion exchanger DRA (Slc26a3), or PAT1 (Slc26a6), alters sulfate transport by the distal ileum and overall sulfate homeostasis. Am J Physiol Gastrointest Liver Physiol 313: G166‐G179, 2017.
 556.Whittamore JM, Hatch M. The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man. Urolithiasis 45: 89‐108, 2017.
 557.Whittamore JM, Hatch M. Oxalate transport by the mouse intestine in vitro is not affected by chronic challenges to systemic acid‐base homeostasis. Urolithiasis 47: 243‐254, 2019.
 558.Whittamore JM, Hatch M. The anion exchanger PAT‐1 (Slc26a6) does not participate in oxalate or chloride transport by mouse large intestine. Pflugers Arch Eur J Physiol 473: 95‐106, 2021.
 559.Whittamore JM, Stephens CE, Hatch M. Absence of the sulfate transporter SAT‐1 has no impact on oxalate handling by mouse intestine and does not cause hyperoxaluria or hyperoxalemia. Am J Physiol Gastrointest Liver Physiol 316: G82‐G94, 2019.
 560.Witting C, Langman CB, Assimos D, Baum MA, Kausz A, Milliner D, Tasian G, Worcester E, Allain M, West M, Knauf F, Lieske JC. Pathophysiology and treatment of enteric hyperoxaluria. Clin J Am Soc Nephrol 16: 487‐495, 2021.
 561.Wolffram S, Grenacher B, Scharrer E. Transport of selenate and sulfate across the intestinal brush‐border membrane of pig jejunum by 2 common mechanisms. Q J Exp Physiol Cogn Med Sci 73: 103‐111, 1988.
 562.Worcester EM. Stones from bowel disease. Endocrinol Metab Clin N Am 31: 979‐999, 2002.
 563.Worcester EM, Coe FL. Nephrolithiasis. Prim Care 35: 369‐391, 2008.
 564.Worcester EM, Nakagawa Y, Bushinsky DA, Coe FL. Evidence that serum‐calcium oxalate supersaturation is a consequence of oxalate retention in patients with chronic‐renal‐failure. J Clin Investig 77: 1888‐1896, 1986.
 565.Worrell RT, Best A, Crawford OR, Xu J, Soleimani M, Matthews JB. Apical ammonium inhibition of cAMP‐stimulated secretion in T84 cells is bicarbonate dependent. Am J Physiol Gastrointest Liver Physiol 289: G768‐G778, 2005.
 566.Wright HK, Cleveland JC, Tilson MD, Herskovic T. Morphology and absorptive capacity of ileum after ileostomy in man. Am J Surg 117: 242‐245, 1969.
 567.Wrong O, Metcalfe A, Morrison RB, Ng ST, Howard AV. In vivo dialysis of faeces as a method of stool analysis. I. Technique and results in normal subjects. Clin Sci 28: 357‐375, 1965.
 568.Wu M, Heneghan JF, Vandorpe DH, Escobar LI, Wu BL, Alper SL. Extracellular Cl− regulates human SO42−/anion exchanger SLC26A1 by altering pH sensitivity of anion transport. Pflugers Arch Eur J Physiol 468: 1311‐1332, 2016.
 569.Xia WL, Yu Q, Riederer B, Singh AK, Engelhardt R, Yeruva S, Song PH, Tian DA, Soleimani M, Seidler U. The distinct roles of anion transporters Slc26a3 (DRA) and Slc26a6 (PAT‐1) in fluid and electrolyte absorption in the murine small intestine. Pflugers Arch Eur J Physiol 466: 1541‐1556, 2014.
 570.Xiao F, Juric M, Li JH, Riederer B, Yeruva S, Singh AK, Zheng LF, Glage S, Kollias G, Dudeja P, Tian DA, Xu G, Zhu JX, Bachmann O, Seidler U. Loss of downregulated in adenoma (DRA) impairs mucosal HCO3− secretion in murine ileocolonic inflammation. Inflamm Bowel Dis 18: 101‐111, 2012.
 571.Xie QH, Welch R, Mercado A, Romero MF, Mount DB. Molecular characterization of the murine Slc26a6 anion exchanger: Functional comparison with Slc26a1. Am J Physiol Renal Physiol 283: F826‐F838, 2002.
 572.Xu H, Li J, Chen H, Wang C, Ghishan FK. NHE8 plays important roles in gastric mucosal protection. Am J Physiol Gastrointest Liver Physiol 304: G257‐G261, 2013.
 573.Xu J, Barone S, Petrovic S, Wang ZH, Seidler U, Riederer B, Ramaswamy K, Dudeja PK, Shull GE, Soleimani M. Identification of an apical Cl−/HCO3− exchanger in gastric surface mucous and duodenal villus cells. Am J Physiol Gastrointest Liver Physiol 285: G1225‐G1234, 2003.
 574.Xu J, Henriksnas J, Barone S, Witte D, Shull GE, Forte JG, Holm L, Soleimani M. SLC26A9 is expressed in gastric surface epithelial cells, mediates Cl−/HCO3− exchange, and is inhibited by NH4+. Am J Physiol Cell Physiol 289: C493‐C505, 2005.
 575.Xu J, Song PH, Miller ML, Borgese F, Barone S, Riederer B, Wang ZH, Alper SL, Forte JG, Shull GE, Ehrenfeld J, Seidler U, Soleimani M. Deletion of the chloride transporter Slc26a9 causes loss of tubulovesicles in parietal cells and impairs acid secretion in the stomach. Proc Natl Acad Sci U S A 105: 17955‐17960, 2008.
 576.Xu J, Song PH, Nakamura S, Miller M, Barone S, Alper SL, Riederer B, Bonhagen J, Arend LJ, Amlal H, Seidler U, Soleimani M. Deletion of the chloride transporter Slc26a7 causes distal renal tubular acidosis and impairs gastric acid secretion. J Biol Chem 284: 29470‐29479, 2009.
 577.Yang HY, Jiang W, Furth EE, Wen XM, Katz JP, Sellon RK, Silberg DG, Antalis TM, Schweinfest CW, Wu GD. Intestinal inflammation reduces expression of DRA, a transporter responsible for congenital chloride diarrhea. Am J Physiol Gastrointest Liver Physiol 275: G1445‐G1453, 1998.
 578.Youngberg CA, Berardi RR, Howatt WF, Hyneck ML, Amidon GL, Meyer JH, Dressman JB. Comparison of gastrointestinal pH in cystic‐fibrosis and healthy‐subjects. Dig Dis Sci 32: 472‐480, 1987.
 579.Zarembski PM, Hodgkinson A. Some factors influencing the urinary excretion of oxalic‐acid in man. Clin Chim Acta 25: 1‐10, 1969.
 580.Zheng C, Lin XS, Liu H, Lu WG, Xu XL, Wang D, Gao B, Wang C, Zhou JR, Fan J, Hu YQ, Jie Q, Chen D, Yang L, Luo ZJ. Phenotypic characterization of Slc26a2 mutant mice reveals a multifactorial etiology of spondylolysis. FASEB J 34: 720‐734, 2020.
 581.Zimmermann DJ, Hesse A, von Unruh GE. Influence of a high‐oxalate diet on intestinal oxalate absorption. World J Urol 23: 324‐329, 2005.
 582.Zimmermann DJ, Voss S, von Unruh GE, and Hesse A. Importance of magnesium in absorption and excretion of oxalate. Urologia Internationalis 74: 262‐267, 2005.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Jonathan M. Whittamore, Marguerite Hatch. Oxalate Flux Across the Intestine: Contributions from Membrane Transporters. Compr Physiol 2021, 12: 2835-2875. doi: 10.1002/cphy.c210013