Comprehensive Physiology Wiley Online Library
Home Browse Topics Latest Issue All Issues

Pontine Mechanisms of Respiratory Control

Full Article on Wiley Online Library



Abstract

Pontine respiratory nuclei provide synaptic input to medullary rhythmogenic circuits to shape and adapt the breathing pattern. An understanding of this statement depends on appreciating breathing as a behavior, rather than a stereotypic rhythm. In this review, we focus on the pontine‐mediated inspiratory off‐switch (IOS) associated with postinspiratory glottal constriction. Further, IOS is examined in the context of pontine regulation of glottal resistance in response to multimodal sensory inputs and higher commands, which in turn rules timing, duration, and patterning of respiratory airflow. In addition, network plasticity in respiratory control emerges during the development of the pons. Synaptic plasticity is required for dynamic and efficient modulation of the expiratory breathing pattern to cope with rapid changes from eupneic to adaptive breathing linked to exploratory (foraging and sniffing) and expulsive (vocalizing, coughing, sneezing, and retching) behaviors, as well as conveyance of basic emotions. The speed and complexity of changes in the breathing pattern of behaving animals implies that “learning to breathe” is necessary to adjust to changing internal and external states to maintain homeostasis and survival. © 2012 American Physiological Society. Compr Physiol 2:2443‐2469, 2012.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

(A) Respiratory motor outputs in relation to the three major phases of the respiratory cycle (I, inspiration, post‐I, postinspiration, E2, late expiration). HNA, hypoglossal nerve activity; PNA, phrenic nerve activity; RLNA, recurrent laryngeal nerve activity; AbNA, abdominal nerve activity (lumbar segment 1). The lower two traces illustrate the dynamic changes in subglottal pressure (SGP) related to changes in upper airway resistance and airflow (AF). (B) Sagittal section of the anatomical organization of the lateral respiratory column (LRC) which includes the respiratory central pattern generator (rCPG) in the pontomedullary brainstem. Abbreviations: cVRC, caudal ventral respiratory column; rVRC, rostral ventral respiratory column; RTN/pFRG, retrotrapezoidal nucleus/parafacial respiratory group; A5, noradrenaline‐containing neurons in the ventrolateral pons; ITR, intertrigeminal region; KF, Kölliker Fuse nucleus; l‐cresc PB, lateral crescent nucleus of the parabrachial complex.

Figure 2. Figure 2.

The efferent and afferent connections of the primary respiratory nuclei (shaded): Kölliker‐Fuse nucleus and adjacent subnuclei of the parabrachial complex of the dorsolateral pons (KF‐area). The data supporting the KF‐area projecting to the parafacial nucleus are unpublished and supplied by Bellintani, Herbert, and Dutschmann. Abbreviations: c, central subnucleus of the PB; d, dorsal subnucleus of the PB; el, external lateral subnucleus of the PB; il, internal lateral subnucleus of the PB; ll, lateral lemniscus; m, medial subnucleus of the PB; me5, mesencephalic trigeminal nucleus; scp, superior cerebellar peduncle; v, ventral subnucleus of the PB.

Figure 3. Figure 3.

Camera lucida drawings of coronal sections through the caudal pons and medulla oblongata from rostral to caudal (a‐i) illustrating the pattern and distribution of anterogradely labeled descending fibers following PHA‐L injection into the KF (see inset j, filled circles reflect neurons which have been filled with PHA‐L, and therefore represent the probable neurons with projections). Figure published with permission of Horst Herbert, Tübingen, Germany. Orientation: Panels a‐i are from rostral to caudal transverse sections through the pontomedullary brainstem. Abbreviations: 4V, 4th ventricle; 7, facial nucleus; 7L, lateral facial motor nucleus; 7n, facial nerve; 8n, vestibulocochlear nerve; 10, dorsal motor nucleus of vagus; 12, hypoglossal nucleus; A1, A1 noradrenergic cell group; A5, A5 noradrenergic cell group; Amb, nucleus ambiguus; AP, area postrema; Bo, Bötzinger complex; C1, C1 adrenergic cell group; CnF, cuneiform nucleus; Cu, cuneate nucleus; CVL, caudal ventrolateral reticular nucleus; DC, dorsal cochlear nucleus; DLL, dorsal nucleus of the lateral lemniscus; Gi, gigantocellular reticular nucleus; GiA, gigantocellular reticular nucleus, part alpha; Gr, gracile nucleus; icp, inferior cerebellar peduncle; IRt, intermediate reticular nucleus; KF, Kölliker‐Fuse nucleus; LC, locus coeruleus; LPGi, lateral paragigantocellular nucleus; LRt, lateral reticular nucleus; LSO, lateral superior olive; LVe, lateral vestibular nucleus; me5, mesencephalic trigeminal tract; Mo5, trigeminal motor nucleus; NTS, nuclei of solitary tract; nts, solitary tract; PB, parabrachial nucleus; PnC, pontine reticular nucleus, caudal part; Pr5, principal sensory trigeminal nucleus; PrB, pre‐Bötzinger complex; py, pyramidal tract; pyx, pyramidal decussation; RMg, raphé magnus nucleus; Rob, raphé obscurus nucleus; RPa, raphé pallidus nucleus; RVL, rostroventrolateral reticular nucleus; scp, superior cerebellar peduncle; sp5, spinal trigeminal tract; Sp5C, spinal trigeminal nucleus, caudal part; Sp5I, spinal trigeminal nucleus, interpolar part; Sp5O, spinal trigeminal nucleus, oral part; tz, trapezoid body; VCA, ventral cochlear nucleus, anterior part; VCP, ventral cochlear nucleus, posterior part subnuclei of the parabrachial complex (PB) (same as Fig. 3): c, central lateral; d, dorsal lateral; el, external lateral; eli, inner part of extern lateral; elo, outer part of extern lateral; exl, external lateral; exm, external medial; il, internal lateral; m, medial; s, superior; v, ventral; w, waist. Subnuclei of the nucleus of solitary tract (NTS): c, central; com, commissural; dm, dorsomedial; m, medial; vl, ventrolateral.

Figure 4. Figure 4.

Schematic drawing illustrating the two convergent pathways involved in the mediation of inspiratory off‐switch (IOS) and inspiratory/expiratory (I/E) phase transition. (A) An afferent pathway mediating Breuer‐Hering reflex originates from pulmonary stretch receptor input via the vagus and terminates in the nuclei of the solitary tract (NTS). (B) A central pathway that requires the Kölliker‐Fuse nucleus (KF) of the pons involves reciprocal interaction between the KF and central pattern generator (CPG). Plasticity in the expression of the breathing pattern depends on intrinsic gating mechanisms (for details see text) of the CPG attributed to the KF and results from interaction between reciprocal connections of the afferent and the network pathways.

Figure 5. Figure 5.

Schematic illustration of the sequential phase of the pontine mediated inspiratory off‐switch (IOS). The figure is adapted from Mörschel and Dutschmann 2009. Excitatory neurons and excitatory drive are highlighted in green; inhibitory neurons and interactions, red; and inactive cell populations and connections, gray. The model is based on the concept that ascending drive from the medullary respiratory neurons is required for the pontine mediated IOS. Panels on right show three time points in the cycle. (A) During the inspiratory phase, a pontine early‐I population receives excitatory synaptic input (efference copy 1) from inspiratory driver neurons (I‐driver) located in the pre‐Bötzinger complex. The pontine early‐I populations are inhibitory interneurons of the pons. The pontine early I neurons inhibit the pontine inspiratory/expiratory phase spanning neuron (I/E) and pontine postinspiratory premotoneurons (post‐I) to prevent initiation of phase transition during early and mid‐inspiration. With ongoing inspiration the pontine I/E neurons receive increasing excitatory drive (efference copy 2) from medullary augmenting‐inspiratory premotor neurons that override the inhibition of early‐I causing firing onset around late inspiration. (B) The pontine I/E neurons are excitatory pontobulbar neurons that activate the medullary late‐I neurons to initiate the inspiratory/expiratory phase transition. (C) Finally, the inhibitory late‐I neurons of the medulla terminate the activity of the medullary early‐I neurons and release the medullary post‐I population (inhibitory interneurons) from synaptic inhibition. These inhibitory post‐I neurons inhibit the inspiratory populations (medullary and pontine). Consequently, the pontine and medullary postinspiratory premotor population innervating thyroarytenoid motoneurons starts firing.

Figure 6. Figure 6.

Illustration of the effect of postsynaptic blockade of glutamatergic neurotransmission (e.g., NMDA‐receptor antagonism) within the dorsolateral pons. Local blockade of excitatory synaptic interaction (black circles with white “x”) in the pons suppresses the efference copies 1‐2 (see text and Fig. ) causing blockade of the descending excitatory synaptic input from the pontine I/E neurons to the medullary late‐I population. This abolishes the pontine mediated timing of the inspiratory/expiratory phase transition causing arrest in the inspiratory phase (apneusis). Figure adapted, with permission, from Mörschel and Dutschmann, 2009.

Figure 7. Figure 7.

Conceptual model of a dynamic switch between either Breuer‐Hering reflex (BHR, pulmonary stretch receptor) or Kölliker‐Fuse complex (KF) controlled inspiratory off‐switch (IOS). This switch occurs naturally in the process of postnatal maturation. The concept is based on the dual processing theory and involves habituation of the PSR input at level of the nuclei of the solitary tract (NTS) and sensitization of synaptic activity of the KF‐area. (A) During PSR dominance the second‐order neurons that receive PSR input (pump cells) of the NTS inhibit the efference copy (see also Fig. ) to the KF and the sensory feedback mediates the IOS. (B) During KF dominance the PSR input habituates (H) at level of the NTS and in turn sensitizes (S) the descending KF input to CPG to mediate IOS.

Figure 8. Figure 8.

(A) Illustration of the rhythmic vagal stimulation protocol. (B) Traces illustrating entrainment of phrenic nerve activity (PNA) to rhythmic vagal stimulation during the tenth stimulation trial in a neonatal perfused brainstem preparation. In the neonate, PNA entrains to stimulation trains (gray) occurring during the late inspiratory phase. Thus, the vagal stimuli provide the sensory trigger for IOS (details see reference ). (C) Traces illustrating entrainment of phrenic nerve activity (PNA) to rhythmic vagal stimulation during the tenth stimulation trial in a juvenile rat. In juvenile rats, PNA is also entrained to the rhythmic vagal stimulation, but IOS occurs anticipatory before the onset of the stimulus train. This indicates that the KF‐area has learned to pattern of vagal input and generates IOS prior to the sensory input (further details see text).

Figure 9. Figure 9.

Radiotelemetry recordings of electrocardiogram (ECG, gray lines), diaphragm electromyogram (DiaEMG, black) and arterial blood pressure (BP, red) in a conscious rat illustrating the continuous modulation of breathing in the context of behaviors such as sniffing, vocalizing, and sighing. Figure is published with permission of Julian Paton, Bristol.

Figure 10. Figure 10.

(A) Schematic illustration of the proposed pathway for adaptation of the breathing pattern during vocalization. (B) Original recording of an inspiratory modulated respiratory pontine unit showing pronounced activation during vocalization. Recording was obtained from the KF‐area of cat. The data are unpublished and supplied by Dick TE, Anderson C, and Orem, JM.



Figure 1.

(A) Respiratory motor outputs in relation to the three major phases of the respiratory cycle (I, inspiration, post‐I, postinspiration, E2, late expiration). HNA, hypoglossal nerve activity; PNA, phrenic nerve activity; RLNA, recurrent laryngeal nerve activity; AbNA, abdominal nerve activity (lumbar segment 1). The lower two traces illustrate the dynamic changes in subglottal pressure (SGP) related to changes in upper airway resistance and airflow (AF). (B) Sagittal section of the anatomical organization of the lateral respiratory column (LRC) which includes the respiratory central pattern generator (rCPG) in the pontomedullary brainstem. Abbreviations: cVRC, caudal ventral respiratory column; rVRC, rostral ventral respiratory column; RTN/pFRG, retrotrapezoidal nucleus/parafacial respiratory group; A5, noradrenaline‐containing neurons in the ventrolateral pons; ITR, intertrigeminal region; KF, Kölliker Fuse nucleus; l‐cresc PB, lateral crescent nucleus of the parabrachial complex.



Figure 2.

The efferent and afferent connections of the primary respiratory nuclei (shaded): Kölliker‐Fuse nucleus and adjacent subnuclei of the parabrachial complex of the dorsolateral pons (KF‐area). The data supporting the KF‐area projecting to the parafacial nucleus are unpublished and supplied by Bellintani, Herbert, and Dutschmann. Abbreviations: c, central subnucleus of the PB; d, dorsal subnucleus of the PB; el, external lateral subnucleus of the PB; il, internal lateral subnucleus of the PB; ll, lateral lemniscus; m, medial subnucleus of the PB; me5, mesencephalic trigeminal nucleus; scp, superior cerebellar peduncle; v, ventral subnucleus of the PB.



Figure 3.

Camera lucida drawings of coronal sections through the caudal pons and medulla oblongata from rostral to caudal (a‐i) illustrating the pattern and distribution of anterogradely labeled descending fibers following PHA‐L injection into the KF (see inset j, filled circles reflect neurons which have been filled with PHA‐L, and therefore represent the probable neurons with projections). Figure published with permission of Horst Herbert, Tübingen, Germany. Orientation: Panels a‐i are from rostral to caudal transverse sections through the pontomedullary brainstem. Abbreviations: 4V, 4th ventricle; 7, facial nucleus; 7L, lateral facial motor nucleus; 7n, facial nerve; 8n, vestibulocochlear nerve; 10, dorsal motor nucleus of vagus; 12, hypoglossal nucleus; A1, A1 noradrenergic cell group; A5, A5 noradrenergic cell group; Amb, nucleus ambiguus; AP, area postrema; Bo, Bötzinger complex; C1, C1 adrenergic cell group; CnF, cuneiform nucleus; Cu, cuneate nucleus; CVL, caudal ventrolateral reticular nucleus; DC, dorsal cochlear nucleus; DLL, dorsal nucleus of the lateral lemniscus; Gi, gigantocellular reticular nucleus; GiA, gigantocellular reticular nucleus, part alpha; Gr, gracile nucleus; icp, inferior cerebellar peduncle; IRt, intermediate reticular nucleus; KF, Kölliker‐Fuse nucleus; LC, locus coeruleus; LPGi, lateral paragigantocellular nucleus; LRt, lateral reticular nucleus; LSO, lateral superior olive; LVe, lateral vestibular nucleus; me5, mesencephalic trigeminal tract; Mo5, trigeminal motor nucleus; NTS, nuclei of solitary tract; nts, solitary tract; PB, parabrachial nucleus; PnC, pontine reticular nucleus, caudal part; Pr5, principal sensory trigeminal nucleus; PrB, pre‐Bötzinger complex; py, pyramidal tract; pyx, pyramidal decussation; RMg, raphé magnus nucleus; Rob, raphé obscurus nucleus; RPa, raphé pallidus nucleus; RVL, rostroventrolateral reticular nucleus; scp, superior cerebellar peduncle; sp5, spinal trigeminal tract; Sp5C, spinal trigeminal nucleus, caudal part; Sp5I, spinal trigeminal nucleus, interpolar part; Sp5O, spinal trigeminal nucleus, oral part; tz, trapezoid body; VCA, ventral cochlear nucleus, anterior part; VCP, ventral cochlear nucleus, posterior part subnuclei of the parabrachial complex (PB) (same as Fig. 3): c, central lateral; d, dorsal lateral; el, external lateral; eli, inner part of extern lateral; elo, outer part of extern lateral; exl, external lateral; exm, external medial; il, internal lateral; m, medial; s, superior; v, ventral; w, waist. Subnuclei of the nucleus of solitary tract (NTS): c, central; com, commissural; dm, dorsomedial; m, medial; vl, ventrolateral.



Figure 4.

Schematic drawing illustrating the two convergent pathways involved in the mediation of inspiratory off‐switch (IOS) and inspiratory/expiratory (I/E) phase transition. (A) An afferent pathway mediating Breuer‐Hering reflex originates from pulmonary stretch receptor input via the vagus and terminates in the nuclei of the solitary tract (NTS). (B) A central pathway that requires the Kölliker‐Fuse nucleus (KF) of the pons involves reciprocal interaction between the KF and central pattern generator (CPG). Plasticity in the expression of the breathing pattern depends on intrinsic gating mechanisms (for details see text) of the CPG attributed to the KF and results from interaction between reciprocal connections of the afferent and the network pathways.



Figure 5.

Schematic illustration of the sequential phase of the pontine mediated inspiratory off‐switch (IOS). The figure is adapted from Mörschel and Dutschmann 2009. Excitatory neurons and excitatory drive are highlighted in green; inhibitory neurons and interactions, red; and inactive cell populations and connections, gray. The model is based on the concept that ascending drive from the medullary respiratory neurons is required for the pontine mediated IOS. Panels on right show three time points in the cycle. (A) During the inspiratory phase, a pontine early‐I population receives excitatory synaptic input (efference copy 1) from inspiratory driver neurons (I‐driver) located in the pre‐Bötzinger complex. The pontine early‐I populations are inhibitory interneurons of the pons. The pontine early I neurons inhibit the pontine inspiratory/expiratory phase spanning neuron (I/E) and pontine postinspiratory premotoneurons (post‐I) to prevent initiation of phase transition during early and mid‐inspiration. With ongoing inspiration the pontine I/E neurons receive increasing excitatory drive (efference copy 2) from medullary augmenting‐inspiratory premotor neurons that override the inhibition of early‐I causing firing onset around late inspiration. (B) The pontine I/E neurons are excitatory pontobulbar neurons that activate the medullary late‐I neurons to initiate the inspiratory/expiratory phase transition. (C) Finally, the inhibitory late‐I neurons of the medulla terminate the activity of the medullary early‐I neurons and release the medullary post‐I population (inhibitory interneurons) from synaptic inhibition. These inhibitory post‐I neurons inhibit the inspiratory populations (medullary and pontine). Consequently, the pontine and medullary postinspiratory premotor population innervating thyroarytenoid motoneurons starts firing.



Figure 6.

Illustration of the effect of postsynaptic blockade of glutamatergic neurotransmission (e.g., NMDA‐receptor antagonism) within the dorsolateral pons. Local blockade of excitatory synaptic interaction (black circles with white “x”) in the pons suppresses the efference copies 1‐2 (see text and Fig. ) causing blockade of the descending excitatory synaptic input from the pontine I/E neurons to the medullary late‐I population. This abolishes the pontine mediated timing of the inspiratory/expiratory phase transition causing arrest in the inspiratory phase (apneusis). Figure adapted, with permission, from Mörschel and Dutschmann, 2009.



Figure 7.

Conceptual model of a dynamic switch between either Breuer‐Hering reflex (BHR, pulmonary stretch receptor) or Kölliker‐Fuse complex (KF) controlled inspiratory off‐switch (IOS). This switch occurs naturally in the process of postnatal maturation. The concept is based on the dual processing theory and involves habituation of the PSR input at level of the nuclei of the solitary tract (NTS) and sensitization of synaptic activity of the KF‐area. (A) During PSR dominance the second‐order neurons that receive PSR input (pump cells) of the NTS inhibit the efference copy (see also Fig. ) to the KF and the sensory feedback mediates the IOS. (B) During KF dominance the PSR input habituates (H) at level of the NTS and in turn sensitizes (S) the descending KF input to CPG to mediate IOS.



Figure 8.

(A) Illustration of the rhythmic vagal stimulation protocol. (B) Traces illustrating entrainment of phrenic nerve activity (PNA) to rhythmic vagal stimulation during the tenth stimulation trial in a neonatal perfused brainstem preparation. In the neonate, PNA entrains to stimulation trains (gray) occurring during the late inspiratory phase. Thus, the vagal stimuli provide the sensory trigger for IOS (details see reference ). (C) Traces illustrating entrainment of phrenic nerve activity (PNA) to rhythmic vagal stimulation during the tenth stimulation trial in a juvenile rat. In juvenile rats, PNA is also entrained to the rhythmic vagal stimulation, but IOS occurs anticipatory before the onset of the stimulus train. This indicates that the KF‐area has learned to pattern of vagal input and generates IOS prior to the sensory input (further details see text).



Figure 9.

Radiotelemetry recordings of electrocardiogram (ECG, gray lines), diaphragm electromyogram (DiaEMG, black) and arterial blood pressure (BP, red) in a conscious rat illustrating the continuous modulation of breathing in the context of behaviors such as sniffing, vocalizing, and sighing. Figure is published with permission of Julian Paton, Bristol.



Figure 10.

(A) Schematic illustration of the proposed pathway for adaptation of the breathing pattern during vocalization. (B) Original recording of an inspiratory modulated respiratory pontine unit showing pronounced activation during vocalization. Recording was obtained from the KF‐area of cat. The data are unpublished and supplied by Dick TE, Anderson C, and Orem, JM.

References
 1. Abbott SB, Stornetta RL, Fortuna MG, Depuy SD, West GH, Harris TE, Guyenet PG. Photostimulation of retrotrapezoid nucleus phox2b‐expressing neurons in vivo produces long‐lasting activation of breathing in rats. J Neurosci 29: 5806‐5819, 2009.
 2. Abdala AP, Dutschmann M, Bissonnette JM, Paton JF. Correction of respiratory disorders in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 107: 18208‐18213.
 3. Abdala AP, Rybak IA, Smith JC, Paton JF. Abdominal expiratory activity in the rat brainstem‐spinal cord in situ: Patterns, origins and implications for respiratory rhythm generation. J Physiol 587: 3539‐3559, 2009.
 4. Abdala AP, Rybak IA, Smith JC, Zoccal DB, Machado BH, St‐John WM, Paton JF. Multiple pontomedullary mechanisms of respiratory rhythmogenesis. Respir Physiol Neurobiol 168: 19‐25, 2009.
 5. Adrian ED, Bronk DW. Discharges in mammalian sympathetic nerves. J Physiol 74: 115‐133, 1932.
 6. Alheid GF, Gray PA, Jiang MC, Feldman JL, McCrimmon DR. Parvalbumin in respiratory neurons of the ventrolateral medulla of the adult rat. J Neurocytol 31: 693‐717, 2002.
 7. Alheid GF, McCrimmon DR. The chemical neuroanatomy of breathing. Respir Physiol Neurobiol 164: 3‐11, 2008.
 8. Alheid GF, Milsom WK, McCrimmon DR. Pontine influences on breathing: An overview. Respir Physiol Neurobiol 143: 105‐114, 2004.
 9. Amiel J, Dubreuil V, Ramanantsoa N, Fortin G, Gallego J, Brunet JF, Goridis C. PHOX2B in respiratory control: Lessons from congenital central hypoventilation syndrome and its mouse models. Respir Physiol Neurobiol 168: 125‐132, 2009.
 10. Amiel J, Laudier B, Attie‐Bitach T, Trang H, de Pontual L, Gener B, Trochet D, Etchevers H, Ray P, Simonneau M, Vekemans M, Munnich A, Gaultier C, Lyonnet S. Polyalanine expansion and frameshift mutations of the paired‐like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet 33: 459‐461, 2003.
 11. Andrzejewski M, Muckenhoff K, Scheid P, Ballantyne D. Synchronized rhythms in chemosensitive neurons of the locus coeruleus in the absence of chemical synaptic transmission. Respir Physiol 129: 123‐140, 2001.
 12. Arata A. Respiratory activity of the neonatal dorsolateral pons in vitro. Respir Physiol Neurobiol 168: 144‐152, 2009.
 13. Arsenault J, Moreau‐Bussiere F, Reix P, Niyonsenga T, Praud JP. Postnatal maturation of vagal respiratory reflexes in preterm and full‐term lambs. J Appl Physiol 94: 1978‐1986, 2003.
 14. Arvanian VL, Bowers WJ, Petruska JC, Motin V, Manuzon H, Narrow WC, Federoff HJ, Mendell LM. Viral delivery of NR2D subunits reduces Mg2+ block of NMDA receptor and restores NT‐3‐induced potentiation of AMPA‐kainate responses in maturing rat motoneurons. J Neurophysiol 92: 2394‐2404, 2004.
 15. Aston‐Jones G, Shipley MT, Chouvet G, Ennis M, van Bockstaele E, Pieribone V, Shiekhattar R, Akaoka H, Drolet G, Astier B, et al. Afferent regulation of locus coeruleus neurons: Anatomy, physiology and pharmacology. Prog Brain Res 88: 47‐75, 1991.
 16. Bach KB, Kinkead R, Mitchell GS. Post‐hypoxia frequency decline in rats: Sensitivity to repeated hypoxia and alpha2‐adrenoreceptor antagonism. Brain Res 817: 25‐33, 1999.
 17. Baekey DM, Dick TE, Paton JF. Pontomedullary transection attenuates central respiratory modulation of sympathetic discharge, heart rate and the baroreceptor reflex in the in situ rat preparation. Exp Physiol 93: 803‐816, 2008.
 18. Bailey CH, Giustetto M, Huang YY, Hawkins RD, Kandel ER. Is heterosynaptic modulation essential for stabilizing Hebbian plasticity and memory? Nat Rev Neurosci 1: 11‐20, 2000.
 19. Baker JP, Jr. Remmers JE. Response of medullary respiratory neurons to rostral pontine stimulation. Respir Physiol 50: 197‐208, 1982.
 20. Baker TL, Fuller DD, Zabka AG, Mitchell GS. Respiratory plasticity: Differential actions of continuous and episodic hypoxia and hypercapnia. Respir Physiol 129: 25‐35, 2001.
 21. Baker TL, Netick A, Dement WC. Sleep‐related apneic and apneustic breathing following pneumotaxic lesion and vagotomy. Respir Physiol 46: 271‐294, 1981.
 22. Balland B, Lachamp P, Kessler JP, Tell F. Silent synapses in developing rat nucleus tractus solitarii have AMPA receptors. J Neurosci 28: 4624‐4634, 2008.
 23. Balland B, Lachamp P, Strube C, Kessler JP, Tell F. Glutamatergic synapses in the rat nucleus tractus solitarii develop by direct insertion of calcium‐impermeable AMPA receptors and without activation of NMDA receptors. J Physiol 574: 245‐261, 2006.
 24. Ballantyne D, Andrzejewski M, Muckenhoff K, Scheid P. Rhythms, synchrony and electrical coupling in the Locus coeruleus. Respir Physiol Neurobiol 143: 199‐214, 2004.
 25. Bandler R, Carrive P. Integrated defence reaction elicited by excitatory amino acid microinjection in the midbrain periaqueductal grey region of the unrestrained cat. Brain Res 439: 95‐106, 1988.
 26. Bartlett D, Jr. Respiratory functions of the larynx. Physiol Rev 69: 33‐57, 1989.
 27. Batsel HL, Lines AJ. Neural mechanisms of sneeze. Am J Physiol 229: 770‐776, 1975.
 28. Bavis RW, Olson EB, Jr., Vidruk EH, Fuller DD, Mitchell GS. Developmental plasticity of the hypoxic ventilatory response in rats induced by neonatal hypoxia. J Physiol 557: 645‐660, 2004.
 29. Berger AJ, Herbert DA, Mitchell RA. Properties of apneusis produced by reversible cold block of the rostral pons. Respir Physiol 33: 323‐327, 1978.
 30. Bernard JF, Besson JM. The spino(trigemino)pontoamygdaloid pathway: Electrophysiological evidence for an involvement in pain processes. J Neurophysiol 63: 473‐490, 1990.
 31. Bernard JF, Dallel R, Raboisson P, Villanueva L, Le Bars D. Organization of the efferent projections from the spinal cervical enlargement to the parabrachial area and periaqueductal gray: A PHA‐L study in the rat. J Comp Neurol 353: 480‐505, 1995.
 32. Berquin P, Cayetanot F, Gros F, Larnicol N. Postnatal changes in Fos‐like immunoreactivity evoked by hypoxia in the rat brainstem and hypothalamus. Brain Res 877: 149‐159, 2000.
 33. Berry‐Kravis EM, Zhou L, Rand CM, Weese‐Mayer DE. Congenital central hypoventilation syndrome: PHOX2B mutations and phenotype. Am J Respir Crit Care Med 174: 1139‐1144, 2006.
 34. Bianchi AL, Denavit‐Saubie M, Champagnat J. Central control of breathing in mammals: Neuronal circuitry, membrane properties, and neurotransmitters. Physiol Rev 75: 1‐45, 1995.
 35. Bianchi AL, Gestreau C. The brainstem respiratory network: An overview of a half century of research. Respir Physiol Neurobiol 168: 4‐12, 2009.
 36. Bianchi AL, St John WM. Pontile axonal projections of medullary respiratory neurons. Respir Physiol 45: 167‐183, 1981.
 37. Bianchi AL, St John WM. Medullary axonal projections of respiratory neurons of pontile pneumotaxic center. Respir Physiol 48: 357‐373, 1982.
 38. Bianchi R, Corsetti G, Rodella L, Tredici G, Gioia M. Supraspinal connections and termination patterns of the parabrachial complex determined by the biocytin anterograde tract‐tracing technique in the rat. J Anat 193(Pt 3): 417‐430, 1998.
 39. Bissonnette JM. Mechanisms regulating hypoxic respiratory depression during fetal and postnatal life. Am J Physiol Regul Integr Comp Physiol 278: R1391‐R1400, 2000.
 40. Bodineau L, Larnicol N. Brainstem and hypothalamic areas activated by tissue hypoxia: Fos‐like immunoreactivity induced by carbon monoxide inhalation in the rat. Neuroscience 108: 643‐653, 2001.
 41. Bolme P, Fuxe K. Pharmacological studies on a possible role of central noradrenaline neurons in respiratory control. J Pharm Pharmacol 25: 351‐352, 1973.
 42. Bongianni F, Mutolo D, Carfi M, Fontana GA, Pantaleo T. Respiratory neuronal activity during apnea and poststimulatory effects of laryngeal origin in the cat. J Appl Physiol 89: 917‐925, 2000.
 43. Bonham AC. Neurotransmitters in the CNS control of breathing. Respir Physiol 101: 219‐230, 1995.
 44. Bonham AC, Chen CY, Sekizawa S, Joad JP. Plasticity in the nucleus tractus solitarius and its influence on lung and airway reflexes. J Appl Physiol 101: 322‐327, 2006.
 45. Bonis JM, Neumueller SE, Krause KL, Kiner T, Smith A, Marshall BD, Qian B, Pan LG, Forster HV. A role for the Kolliker‐Fuse nucleus in cholinergic modulation of breathing at night during wakefulness and NREM sleep. J Appl Physiol 109: 159‐170, 2010.
 46. Bonis JM, Neumueller SE, Krause KL, Kiner T, Smith A, Marshall BD, Qian B, Pan LG, Forster HV. Site‐specific effects on respiratory rhythm and pattern of ibotenic acid injections in the pontine respiratory group of goats. J Appl Physiol 109: 171‐188, 2010.
 47. Bonis JM, Neumueller SE, Marshall BD, Krause KL, Qian B, Pan LG, Hodges MR, Forster HV. The effects of lesions in the dorsolateral pons on the coordination of swallowing and breathing in awake goats. Respir Physiol Neurobiol 175: 272‐282, 2011.
 48. Borday V, Foutz AS, Nordholm L, Denavit‐Saubie M. Respiratory effects of glutamate receptor antagonists in neonate and adult mammals. Eur J Pharmacol 348: 235‐246, 1998.
 49. Bouvier J, Thoby‐Brisson M, Renier N, Dubreuil V, Ericson J, Champagnat J, Pierani A, Chedotal A, Fortin G. Hindbrain interneurons and axon guidance signaling critical for breathing. Nat Neurosci 13: 1066‐1074, 2010.
 50. Breuer J. Die Selbststeurung der Athmung durch den Nervus Vagus. In: Akad Wiss. Wien, 1868, pp. 909‐937.
 51. Brockhaus J Ballanyi K. Synaptic inhibition in the isolated respiratory network of neonatal rats. Eur J Neurosci 10: 3823‐3839, 1998.
 52. Bullitt E. Expression of c‐fos‐like protein as a marker for neuronal activity following noxious stimulation in the rat. J Comp Neurol 296: 517‐530, 1990.
 53. Burke PG, Abbott SB, McMullan S, Goodchild AK, Pilowsky PM. Somatostatin selectively ablates post‐inspiratory activity after injection into the Botzinger complex. Neuroscience 167: 528‐539, 2010.
 54. Byrum CE, Guyenet PG. Afferent and efferent connections of the A5 noradrenergic cell group in the rat. J Comp Neurol 261: 529‐542, 1987.
 55. Carroll JL. Developmental plasticity in respiratory control. J Appl Physiol 94: 375‐389, 2003.
 56. Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320: 1224‐1229, 2008.
 57. Chamberlin NL. Functional organization of the parabrachial complex and intertrigeminal region in the control of breathing. Respir Physiol Neurobiol 143: 115‐125, 2004.
 58. Chamberlin NL, Saper CB. Topographic organization of respiratory responses to glutamate microstimulation of the parabrachial nucleus in the rat. J Neurosci 14: 6500‐6510, 1994.
 59. Chamberlin NL, Saper CB. Differential distribution of AMPA‐selective glutamate receptor subunits in the parabrachial nucleus of the rat. Neuroscience 68: 435‐443, 1995.
 60. Chamberlin NL, Saper CB. A brainstem network mediating apneic reflexes in the rat. J Neurosci 18: 6048‐6056, 1998.
 61. Clark FJ, von Euler C. On the regulation of depth and rate of breathing. J Physiol 222: 267‐295, 1972.
 62. Clarke RJ, Johnson JW. NMDA receptor NR2 subunit dependence of the slow component of magnesium unblock. J Neurosci 26: 5825‐5834, 2006.
 63. Coates EL, Li A, Nattie EE. Widespread sites of brain stem ventilatory chemoreceptors. J Appl Physiol 75: 5‐14, 1993.
 64. Cohen MI. Switching of the respiratory phases and evoked phrenic responses produced by rostral pontine electrical stimulation. J Physiol 217: 133‐158, 1971.
 65. Cohen MI. Central determinants of respiratory rhythm. Annu Rev Physiol 43: 91‐104, 1981.
 66. Cohen MI, Feldman JL. Models of respiratory phase‐switching. Fed Proc 36: 2367‐2374, 1977.
 67. Cohen MI, Huang WX, Barnhardt R, See WR. Timing of medullary late‐inspiratory neuron discharges: Vagal afferent effects indicate possible off‐switch function. J Neurophysiol 69: 1784‐1787, 1993.
 68. Cohen MI, Shaw CF. Role in the inspiratory off‐switch of vagal inputs to rostral pontine inspiratory‐modulated neurons. Respir Physiol Neurobiol 143: 127‐140, 2004.
 69. Coles SK, Dick TE. Neurones in the ventrolateral pons are required for post‐hypoxic frequency decline in rats. J Physiol 497(Pt 1): 79‐94, 1996.
 70. Coles SK, Ernsberger P, Dick TE. A role for NMDA receptors in posthypoxic frequency decline in the rat. Am J Physiol 274: R1546‐R1555, 1998.
 71. Connelly CA, Otto‐Smith MR, Feldman JL. Blockade of NMDA receptor‐channels by MK‐801 alters breathing in adult rats. Brain Res 596: 99‐110, 1992.
 72. Costa‐Silva JH, Zoccal DB, Machado BH. Glutamatergic antagonism in the NTS decreases post‐inspiratory drive and changes phrenic and sympathetic coupling during chemoreflex activation. J Neurophysiol 103: 2095‐2106, 2010.
 73. Cowie RJ, Holstege G. Dorsal mesencephalic projections to pons, medulla, and spinal cord in the cat: Limbic and non‐limbic components. J Comp Neurol 319: 536‐559, 1992.
 74. Cull‐Candy S, Brickley S, Farrant M. NMDA receptor subunits: Diversity, development and disease. Curr Opin Neurobiol 11: 327‐335, 2001.
 75. Dampney RA. Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 74: 323‐364, 1994.
 76. D'Angelo E, Monaco A, Pecchiari M. Motor control of the diaphragm in anesthetized rabbits. Respir Physiol Neurobiol 170: 141‐149, 2010.
 77. Denavit‐Saubie M, Kalia M, Pierrefiche O, Schweitzer P, Foutz AS, Champagnat J. Maturation of brain stem neurons involved in respiratory rhythmogenesis: Biochemical, bioelectrical and morphological properties. Biol Neonate 65: 171‐175, 1994.
 78. de Pontual L, Nepote V, Attie‐Bitach T, Al Halabiah H, Trang H, Elghouzzi V, Levacher B, Benihoud K, Auge J, Faure C, Laudier B, Vekemans M, Munnich A, Perricaudet M, Guillemot F, Gaultier C, Lyonnet S, Simonneau M, Amiel J. Noradrenergic neuronal development is impaired by mutation of the proneural HASH‐1 gene in congenital central hypoventilation syndrome (Ondine's curse). Hum Mol Genet 12: 3173‐3180, 2003.
 79. Dhingra RR, Jacono FJ, Fishman M, Loparo KA, Rybak IA, Dick TE. Vagal‐Dependent Nonlinear Variability in the Respiratory Pattern of anesthetized, spontaneously breathing rats. J Appl Physiol 111: 272‐284, 2011.
 80. Dick TE, Baekey DM, Paton JF, Lindsey BG, Morris KF. Cardio‐respiratory coupling depends on the pons. Respir Physiol Neurobiol 168: 76‐85, 2009.
 81. Dick TE, Bellingham MC, Richter DW. Pontine respiratory neurons in anesthetized cats. Brain Res 636: 259‐269, 1994.
 82. Dick TE, Coles SK. Ventrolateral pons mediates short‐term depression of respiratory frequency after brief hypoxia. Respir Physiol 121: 87‐100, 2000.
 83. Dick TE, Haxhiu MA, Cherniack NS. Salivary secretion elicited by activation of the parabrachial nuclei in the cat. J Auton Nerv Syst 39: 19‐27, 1992.
 84. Dick TE, Morris KF. Quantitative analysis of cardiovascular modulation in respiratory neural activity. J Physiol 556: 959‐970, 2004.
 85. Dick TE, Shannon R, Lindsey BG, Nuding SC, Segers LS, Baekey DM, Morris KF. Arterial pulse modulated activity is expressed in respiratory neural output. J Appl Physiol 99: 691‐698, 2005.
 86. Dick TE, Shannon R, Lindsey BG, Nuding SC, Segers LS, Baekey DM, Morris KF. Pontine respiratory‐modulated activity before and after vagotomy in decerebrate cats. J Physiol 586: 4265‐4282, 2008.
 87. Dickerson LW, Panico WH, Kuhn FE, Willis AC, Fitzgerald JF, Meyer EL, Norman WP, Gillis RA. Stimulation of dog RVLM and A5 area changes sympathetic outflow to vascular beds without effect on the heart. Am J Physiol 272: R821‐R839, 1997.
 88. Di Lorenzo PM, Platt D, Victor JD. Information processing in the parabrachial nucleus of the pons. Ann N Y Acad Sci 1170: 365‐371, 2009.
 89. Dobbins EG, Feldman JL. Brainstem network controlling descending drive to phrenic motoneurons in rat. J Comp Neurol 347: 64‐86, 1994.
 90. Dubreuil V, Thoby‐Brisson M, Rallu M, Persson K, Pattyn A, Birchmeier C, Brunet JF, Fortin G, Goridis C. Defective respiratory rhythmogenesis and loss of central chemosensitivity in Phox2b mutants targeting retrotrapezoid nucleus neurons. J Neurosci 29: 14836‐14846, 2009.
 91. Dutschmann M, Herbert H. The Kolliker‐Fuse nucleus mediates the trigeminally induced apnoea in the rat. Neuroreport 7: 1432‐1436, 1996.
 92. Dutschmann M, Herbert H. Fos expression in the rat parabrachial and Kolliker‐Fuse nuclei after electrical stimulation of the trigeminal ethmoidal nerve and water stimulation of the nasal mucosa. Exp Brain Res 117: 97‐110, 1997.
 93. Dutschmann M, Herbert H. NMDA and GABAA receptors in the rat Kolliker‐Fuse area control cardiorespiratory responses evoked by trigeminal ethmoidal nerve stimulation. J Physiol 510(Pt 3): 793‐804, 1998.
 94. Dutschmann M, Herbert H. The Kolliker‐Fuse nucleus gates the postinspiratory phase of the respiratory cycle to control inspiratory off‐switch and upper airway resistance in rat. Eur J Neurosci 24: 1071‐1084, 2006.
 95. Dutschmann M, Kron M, Morschel M, Gestreau C. Activation of Orexin B receptors in the pontine Kolliker‐Fuse nucleus modulates pre‐inspiratory hypoglossal motor activity in rat. Respir Physiol Neurobiol 159: 232‐235, 2007.
 96. Dutschmann M, Menuet C, Stettner GM, Gestreau C, Borghgraef P, Devijver H, Gielis L, Hilaire G, Van Leuven F. Upper airway dysfunction of Tau‐P301L mice correlates with tauopathy in midbrain and ponto‐medullary brainstem nuclei. J Neurosci 30: 1810‐1821, 2010.
 97. Dutschmann M, Morschel M, Kron M, Herbert H. Development of adaptive behaviour of the respiratory network: Implications for the pontine Kolliker‐Fuse nucleus. Respir Physiol Neurobiol 143: 155‐165, 2004.
 98. Dutschmann M, Morschel M, Reuter J, Zhang W, Gestreau C, Stettner GM, Kron M. Postnatal emergence of synaptic plasticity associated with dynamic adaptation of the respiratory motor pattern. Respir Physiol Neurobiol 164: 72‐79, 2008.
 99. Dutschmann M, Morschel M, Rybak IA, Dick TE. Learning to breathe: Control of the inspiratory‐expiratory phase transition shifts from sensory‐ to central‐dominated during postnatal development in rats. J Physiol 587: 4931‐4948, 2009.
 100. Dutschmann M, Paton JF. Glycinergic inhibition is essential for co‐ordinating cranial and spinal respiratory motor outputs in the neonatal rat. J Physiol 543: 643‐653, 2002.
 101. Dutschmann M, Paton JF. Influence of nasotrigeminal afferents on medullary respiratory neurones and upper airway patency in the rat. Pflugers Arch 444: 227‐235, 2002.
 102. Dutschmann M, Paton JF. Inhibitory synaptic mechanisms regulating upper airway patency. Respir Physiol Neurobiol 131: 57‐63, 2002.
 103. Dutschmann M, Waki H, Manzke T, Simms AE, Pickering AE, Richter DW, Paton JF. The potency of different serotonergic agonists in counteracting opioid evoked cardiorespiratory disturbances. Philos Trans R Soc Lond B Biol Sci 364: 2611‐2623, 2009.
 104. Dutschmann M, Wilson RJ, Paton JF. Respiratory activity in neonatal rats. Auton Neurosci 84: 19‐29, 2000.
 105. Easton PA, Katagiri M, Kieser TM, Platt RS. Postinspiratory activity of costal and crural diaphragm. J Appl Physiol 87: 582‐589, 1999.
 106. Eckberg DL. Point:counterpoint: Respiratory sinus arrhythmia is due to a central mechanism vs. respiratory sinus arrhythmia is due to the baroreflex mechanism. J Appl Physiol 106: 1740‐1742; discussion 1744, 2009.
 107. Ellenberger HH, Feldman JL. Brainstem connections of the rostral ventral respiratory group of the rat. Brain Res 513: 35‐42, 1990.
 108. Erickson JT, Millhorn DE. Hypoxia and electrical stimulation of the carotid sinus nerve induce Fos‐like immunoreactivity within catecholaminergic and serotoninergic neurons of the rat brainstem. J Comp Neurol 348: 161‐182, 1994.
 109. Errchidi S, Monteau R, Hilaire G. Noradrenergic modulation of the medullary respiratory rhythm generator in the newborn rat: An in vitro study. J Physiol 443: 477‐498, 1991.
 110. Ezure K. Synaptic connections between medullary respiratory neurons and considerations on the genesis of respiratory rhythm. Prog Neurobiol 35: 429‐450, 1990.
 111. Ezure K, Tanaka I. Distribution and medullary projection of respiratory neurons in the dorsolateral pons of the rat. Neuroscience 141: 1011‐1023, 2006.
 112. Farley GR, Barlow SM, Netsell R. Factors influencing neural activity in parabrachial regions during cat vocalizations. Exp Brain Res 89: 341‐351, 1992.
 113. Fay RA, Norgren R. Identification of rat brainstem multisynaptic connections to the oral motor nuclei using pseudorabies virus. III. Lingual muscle motor systems. Brain Res Brain Res Rev 25: 291‐311, 1997.
 114. Fedorko L, Kelly EN, England SJ. Importance of vagal afferents in determining ventilation in newborn rats. J Appl Physiol 65: 1033‐1039, 1988.
 115. Feil K, Herbert H. Topographic organization of spinal and trigeminal somatosensory pathways to the rat parabrachial and Kolliker‐Fuse nuclei. J Comp Neurol 353: 506‐528, 1995.
 116. Feldman JL, Cohen MI, Wolotsky P. Powerful inhibition of pontine respiratory neurons by pulmonary afferent activity. Brain Res 104: 341‐346, 1976.
 117. Feldman JL, Del Negro CA. Looking for inspiration: New perspectives on respiratory rhythm. Nat Rev Neurosci 7: 232‐242, 2006.
 118. Feldman JL, Gautier H. Interaction of pulmonary afferents and pneumotaxic center in control of respiratory pattern in cats. J Neurophysiol 39: 31‐44, 1976.
 119. Fisher SE, Scharff C. FOXP2 as a molecular window into speech and language. Trends Genet 25: 166‐177, 2009.
 120. Foutz AS, Champagnat J, Denavit‐Saubie M. N‐methyl‐D‐aspartate (NMDA) receptors control respiratory off‐switch in cat. Neurosci Lett 87: 221‐226, 1988.
 121. Foutz AS, Champagnat J, Denavit‐Saubie M. Involvement of N‐methyl‐D‐aspartate (NMDA) receptors in respiratory rhythmogenesis. Brain Res 500: 199‐208, 1989.
 122. Fukuda H, Fukai K. Location of the reflex centre for straining elicited by activation of pelvic afferent fibres of decerebrate dogs. Brain Res 380: 287‐296, 1986a.
 123. Fukuda H, Fukai K. Postural change and straining induced by distension of the rectum, vagina and urinary bladder of decerebrate dogs. Brain Res 380: 276‐286, 1986b.
 124. Fulwiler CE, Saper CB. Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res 319: 229‐259, 1984.
 125. Fung ML, St John WM. Neuronal activities underlying inspiratory termination by pneumotaxic mechanisms. Respir Physiol 98: 267‐281, 1994.
 126. Fung ML, St John WM. The functional expression of a pontine pneumotaxic centre in neonatal rats. J Physiol 489(Pt 2): 579‐591, 1995.
 127. Fung ML, Wang W, St John WM. Involvement of pontile NMDA receptors in inspiratory termination in rat. Respir Physiol 96: 177‐188, 1994.
 128. Gallego J, Nsegbe E, Durand E. Learning in respiratory control. Behav Modif 25: 495‐512, 2001.
 129. Gang S, Mizuguchi A, Aoki M. Axonal projections from the pontine pneumotaxic region to the nucleus raphe magnus in cats. Respir Physiol 85: 329‐339, 1991.
 130. Gang S, Mizuguchi A, Kobayashi N, Aoki M. Descending axonal projections from the medial parabrachial and Kolliker‐Fuse nuclear complex to the nucleus raphe magnus in cats. Neurosci Lett 118: 273‐275, 1990.
 131. Gang S, Nakazono Y, Aoki M, Aoki N. Differential projections to the raphe nuclei from the medial parabrachial‐Kolliker‐Fuse (NPBM‐KF) nuclear complex and the retrofacial nucleus in cats: Retrograde WGA‐HRP tracing. J Auton Nerv Syst 45: 241‐244, 1993.
 132. Gaultier C, Gallego J. Neural control of breathing: Insights from genetic mouse models. J Appl Physiol 104: 1522‐1530, 2008.
 133. Gauriau C, Bernard JF. Pain pathways and parabrachial circuits in the rat. Exp Physiol 87: 251‐258, 2002.
 134. Gautier H, Bertrand F. Respiratory effects of pneumotaxic center lesions and subsequent vagotomy in chronic cats. Respir Physiol 23: 71‐85, 1975.
 135. Gerrits PO, Holstege G. Pontine and medullary projections to the nucleus retroambiguus: A wheat germ agglutinin‐horseradish peroxidase and autoradiographic tracing study in the cat. J Comp Neurol 373: 173‐185, 1996.
 136. Gestreau C, Bianchi AL, Grelot L. Differential brainstem Fos‐like immunoreactivity after laryngeal‐induced coughing and its reduction by codeine. J Neurosci 17: 9340‐9352, 1997.
 137. Gestreau C, Dutschmann M, Obled S, Bianchi AL. Activation of XII motoneurons and premotor neurons during various oropharyngeal behaviors. Respir Physiol Neurobiol 147: 159‐176, 2005.
 138. Gestreau C, Grelot L, Bianchi AL. Activity of respiratory laryngeal motoneurons during fictive coughing and swallowing. Exp Brain Res 130: 27‐34, 2000.
 139. Gilbert KA, Lydic R. Parabrachial neuron discharge in the cat is altered during the carbachol‐induced REM sleep‐like state (DCarb). Neurosci Lett 120: 241‐244, 1990.
 140. Gilbert KA, Lydic R. Pontine cholinergic reticular mechanisms cause state‐dependent changes in the discharge of parabrachial neurons. Am J Physiol 266: R136‐R150, 1994.
 141. Goksor E, Rosengren L, Wennergren G. Bradycardic response during submersion in infant swimming. Acta Paediatr 91: 307‐312, 2002.
 142. Gozal D. New concepts in abnormalities of respiratory control in children. Curr Opin Pediatr 16: 305‐308, 2004.
 143. Grabauskas G, Bradley RM. Postnatal development of inhibitory synaptic transmission in the rostral nucleus of the solitary tract. J Neurophysiol 85: 2203‐2212, 2001.
 144. Gray PA. Transcription factors and the genetic organization of brain stem respiratory neurons. J Appl Physiol 104: 1513‐1521, 2008.
 145. Gray PA, Hayes JA, Ling GY, Llona I, Tupal S, Picardo MC, Ross SE, Hirata T, Corbin JG, Eugenin J, Del Negro CA. Developmental origin of preBotzinger complex respiratory neurons. J Neurosci 30: 14883‐14895, 2010.
 146. Greer JJ, Funk GD, Ballanyi K. Preparing for the first breath: Prenatal maturation of respiratory neural control. J Physiol 570: 437‐444, 2006.
 147. Grillner S, Wallen P. Central pattern generators for locomotion, with special reference to vertebrates. Annu Rev Neurosci 8: 233‐261, 1985.
 148. Groves PM, Thompson RF. Habituation: A dual‐process theory. Psychol Rev 77: 419‐450, 1970.
 149. Guthmann A, Fritschy JM, Ottersen OP, Torp R, Herbert H. GABA, GABA transporters, GABA(A) receptor subunits, and GAD mRNAs in the rat parabrachial and Kolliker‐Fuse nuclei. J Comp Neurol 400: 229‐243, 1998.
 150. Guthmann A, Herbert H. Distribution of metabotropic glutamate receptors in the parabrachial and Kolliker‐Fuse nuclei of the rat. Neuroscience 89: 873‐881, 1999.
 151. Guthmann A, Herbert H. Expression of N‐methyl‐D‐aspartate receptor subunits in the rat parabrachial and Kolliker‐Fuse nuclei and in selected pontomedullary brainstem nuclei. J Comp Neurol 415: 501‐517, 1999.
 152. Guthmann A, Herbert H. In situ hybridization analysis of flip/flop splice variants of AMPA‐type glutamate receptor subunits in the rat parabrachial and Kolliker‐Fuse nuclei. Brain Res Mol Brain Res 74: 145‐157, 1999.
 153. Guyenet PG. The 2008 Carl Ludwig Lecture: Retrotrapezoid nucleus, CO2 homeostasis, and breathing automaticity. J Appl Physiol 105: 404‐416, 2008.
 154. Guyenet PG, Koshiya N, Huangfu D, Verberne AJ, Riley TA. Central respiratory control of A5 and A6 pontine noradrenergic neurons. Am J Physiol 264: R1035‐R1044, 1993.
 155. Guyenet PG, Stornetta RL, Bayliss DA. Retrotrapezoid nucleus and central chemoreception. J Physiol 586: 2043‐2048, 2008.
 156. Hade JS, Mifflin SW, Donta TS, Felder RB. Stimulation of parabrachial neurons elicits a sympathetically mediated pressor response in cats. Am J Physiol 255: H1349‐H1358, 1988.
 157. Haji A, Okazaki M, Takeda R. Synaptic interactions between respiratory neurons during inspiratory on‐switching evoked by vagal stimulation in decerebrate cats. Neurosci Res 35: 85‐93, 1999.
 158. Haji A, Okazaki M, Yamazaki H, Takeda R. Physiological properties of late inspiratory neurons and their possible involvement in inspiratory off‐switching in cats. J Neurophysiol 87: 1057‐1067, 2002.
 159. Harding R. Perinatal development of laryngeal function. J Dev Physiol 6: 249‐258, 1984.
 160. Harris MB, Milsom WK. The influence of NMDA receptor‐mediated processes on breathing pattern in ground squirrels. Respir Physiol 125: 181‐197, 2001.
 161. Harris MB, Milsom WK. Apneusis follows disruption of NMDA‐type glutamate receptors in vagotomized ground squirrels. Respir Physiol Neurobiol 134: 191‐207, 2003.
 162. Hayashi F, Coles SK, Bach KB, Mitchell GS, McCrimmon DR. Time‐dependent phrenic nerve responses to carotid afferent activation: Intact vs. decerebellate rats. Am J Physiol 265: R811‐R819, 1993.
 163. Hayashi F, McCrimmon DR. Respiratory motor responses to cranial nerve afferent stimulation in rats. Am J Physiol 271: R1054‐R1062, 1996.
 164. Hedrick MS, Ryan ML, Pizarro J, Bisgard GE. Modulation of respiratory rhythm by alpha 2‐adrenoceptors in awake and anesthetized goats. J Appl Physiol 77: 742‐750, 1994.
 165. Herbert H, Flugge G. Distribution of alpha 2‐adrenergic binding sites in the parabrachial complex of the rat. Anat Embryol (Berl) 192: 507‐516, 1995.
 166. Herbert H, Guthmann A, Zafra F, Ottersen OP. Glycine, glycine receptor subunit and glycine transporters in the rat parabrachial and Kolliker‐Fuse nuclei. Anat Embryol (Berl) 201: 259‐272, 2000.
 167. Herbert H, Moga MM, Saper CB. Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol 293: 540‐580, 1990.
 168. Hering E. Die Selbststeurung der Athmung durch den Nervus Vagus. In: Akad Wiss. Wien, 1868, pp. 672‐677.
 169. Hilaire G. Endogenous noradrenaline affects the maturation and function of the respiratory network: Possible implication for SIDS. Auton Neurosci 126‐127: 320‐331, 2006.
 170. Hilaire G, Monteau R, Errchidi S. Possible modulation of the medullary respiratory rhythm generator by the noradrenergic A5 area: An in vitro study in the newborn rat. Brain Res 485: 325‐332, 1989.
 171. Hilaire G, Viemari JC, Coulon P, Simonneau M, Bevengut M. Modulation of the respiratory rhythm generator by the pontine noradrenergic A5 and A6 groups in rodents. Respir Physiol Neurobiol 143: 187‐197, 2004.
 172. Hilaire G, Voituron N, Menuet C, Ichiyama RM, Subramanian HH, Dutschmann M. The role of serotonin in respiratory function and dysfunction. Respir Physiol Neurobiol 174: 76‐88, 2010.
 173. Hirooka Y, Polson JW, Potts PD, Dampney RA. Hypoxia‐induced Fos expression in neurons projecting to the pressor region in the rostral ventrolateral medulla. Neuroscience 80: 1209‐1224, 1997.
 174. Hodges PW, Butler JE, McKenzie DK, Gandevia SC. Contraction of the human diaphragm during rapid postural adjustments. J Physiol 505(Pt 2): 539‐548, 1997.
 175. Holstege G. Anatomical study of the final common pathway for vocalization in the cat. J Comp Neurol 284: 242‐252, 1989.
 176. Holstege G. Descending motor pathways and the spinal motor system: Limbic and non‐limbic components. Prog Brain Res 87: 307‐421, 1991.
 177. Holstege G. The emotional motor system and micturition control. Neurourol Urodyn 29: 42‐48.
 178. Holstege G, Bandler R, Saper CB. The emotional motor system. Prog Brain Res 107: 3‐6, 1996.
 179. Holstege G, Kerstens L, Moes MC, Vanderhorst VG. Evidence for a periaqueductal gray‐nucleus retroambiguus‐spinal cord pathway in the rat. Neuroscience 80: 587‐598, 1997.
 180. Holstege G, Kuypers HG. Propriobulbar fibre connections to the trigeminal, facial and hypoglossal motor nuclei. I. An anterograde degeneration study in the cat. Brain 100: 239‐264, 1977.
 181. Holstege G, Kuypers HG, Dekker JJ. The organization of the bulbar fibre connections to the trigeminal, facial and hypoglossal motor nuclei. II. An autoradiographic tracing study in cat. Brain 100: 264‐286, 1977.
 182. Holstege G, Meiners L, Tan K. Projections of the bed nucleus of the stria terminalis to the mesencephalon, pons, and medulla oblongata in the cat. Exp Brain Res 58: 379‐391, 1985.
 183. Huangfu D, Hwang LJ, Riley TA, Guyenet PG. Splanchnic nerve response to A5 area stimulation in rats. Am J Physiol 263: R437‐R446, 1992.
 184. Huangfu DH, Koshiya N, Guyenet PG. A5 noradrenergic unit activity and sympathetic nerve discharge in rats. Am J Physiol 261: R393‐R402, 1991.
 185. Humbert IA, McLaren DG, Kosmatka K, Fitzgerald M, Johnson S, Porcaro E, Kays S, Umoh EO, Robbins J. Early deficits in cortical control of swallowing in Alzheimer's disease. J Alzheimers Dis 19: 1185‐1197, 2010.
 186. Iscoe S. Control of abdominal muscles. Prog Neurobiol 56: 433‐506, 1998.
 187. Isenovic ER, Radulovacki M, Carley DW. Impact of intertrigeminal region AMPA receptor blockade on respiratory responses in rats. Respir Physiol Neurobiol 158: 39‐44, 2007.
 188. Jakus J, Poliacek I, Halasova E, Murin P, Knocikova J, Tomori Z, Bolser DC. Brainstem circuitry of tracheal‐bronchial cough: c‐fos study in anesthetized cats. Respir Physiol Neurobiol 160: 289‐300, 2008.
 189. Janczewski WA, Feldman JL. Distinct rhythm generators for inspiration and expiration in the juvenile rat. J Physiol 570: 407‐420, 2006.
 190. Jiang M, Alheid GF, Calandriello T, McCrimmon DR. Parabrachial‐lateral pontine neurons link nociception and breathing. Respir Physiol Neurobiol 143: 215‐233, 2004.
 191. Jodkowski JS, Coles SK, Dick TE. A ‘pneumotaxic centre’ in rats. Neurosci Lett 172: 67‐72, 1994.
 192. Jodkowski JS, Coles SK, Dick TE. Prolongation in expiration evoked from ventrolateral pons of adult rats. J Appl Physiol 82: 377‐381, 1997.
 193. Julien C, Parkes MJ, Tzeng SY, Sin PY, Ainslie PN, van de Borne P, Fortrat JO, Custaud MA, Gharib C, Porta A, Vallais F, Baselli G, Pagani M, Lucini D, Hughson RL, Taylor JA, Tan CO, Baekey DM, Dick TE, Paton JF, Taha B. Comments on point:counterpoint: Respiratory sinus arrhythmia is due to a central mechanism vs. respiratory sinus arrhythmia is due to the baroreflex mechanism. J Appl Physiol 106: 1745‐1749, 2009.
 194. Jurgens U. Neural pathways underlying vocal control. Neurosci Biobehav Rev 26: 235‐258, 2002.
 195. Jurgens U. A study of the central control of vocalization using the squirrel monkey. Med Eng Phys 24: 473‐477, 2002.
 196. Jurgens U. The neural control of vocalization in mammals: A review. J Voice 23: 1‐10, 2009.
 197. Jurgens U, Hage SR. On the role of the reticular formation in vocal pattern generation. Behav Brain Res 182: 308‐314, 2007.
 198. Karemaker JM. Counterpoint: Respiratory sinus arrhythmia is due to the baroreflex mechanism. J Appl Physiol 106: 1742‐1743; discussion 1744, 2009.
 199. Karemaker JM. Last word on point:counterpoint: Respiratory sinus arrhythmia is due to a central mechanism vs. respiratory sinus arrhythmia is due to the baroreflex mechanism. J Appl Physiol 106: 1750, 2009.
 200. Katz DM, Dutschmann M, Ramirez JM, Hilaire G. Breathing disorders in Rett syndrome: Progressive neurochemical dysfunction in the respiratory network after birth. Respir Physiol Neurobiol 168: 101‐108, 2009.
 201. Kinkead R, Bach KB, Johnson SM, Hodgeman BA, Mitchell GS. Plasticity in respiratory motor control: Intermittent hypoxia and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems. Comp Biochem Physiol A Mol Integr Physiol 130: 207‐218, 2001.
 202. Kinney HC, Thach BT. The sudden infant death syndrome. N Engl J Med 361: 795‐805, 2009.
 203. Kobayashi S, Onimaru H, Inoue M, Inoue T, Sasa R. Localization and properties of respiratory neurons in the rostral pons of the newborn rat. Neuroscience 134: 317‐325, 2005.
 204. Koshiya N, Guyenet PG. Role of the pons in the carotid sympathetic chemoreflex. Am J Physiol 267: R508‐R518, 1994.
 205. Kron M, Morschel M, Reuter J, Zhang W, Dutschmann M. Developmental changes in brain‐derived neurotrophic factor‐mediated modulations of synaptic activities in the pontine Kolliker‐Fuse nucleus of the rat. J Physiol 583: 315‐327, 2007.
 206. Krolo M, Tonkovic‐Capin V, Stucke AG, Stuth EA, Hopp FA, Dean C, Zuperku EJ. Subtype composition and responses of respiratory neurons in the pre‐botzinger region to pulmonary afferent inputs in dogs. J Neurophysiol 93: 2674‐2687, 2005.
 207. Kron M, Reuter J, Gerhardt E, Manzke T, Zhang W, Dutschmann M. Emergence of brain‐derived neurotrophic factor‐induced postsynaptic potentiation of NMDA currents during the postnatal maturation of the Kolliker‐Fuse nucleus of rat. J Physiol 586: 2331‐2343, 2008.
 208. Kron M, Zhang W, Dutschmann M. Developmental changes in the BDNF‐induced modulation of inhibitory synaptic transmission in the Kolliker‐Fuse nucleus of rat. Eur J Neurosci 26: 3449‐3457, 2007.
 209. Krout KE, Jansen AS, Loewy AD. Periaqueductal gray matter projection to the parabrachial nucleus in rat. J Comp Neurol 401: 437‐454, 1998.
 210. Krukoff TL, Harris KH, Jhamandas JH. Efferent projections from the parabrachial nucleus demonstrated with the anterograde tracer Phaseolus vulgaris leucoagglutinin. Brain Res Bull 30: 163‐172, 1993.
 211. Kubin L. Carbachol models of REM sleep: Recent developments and new directions. Arch Ital Biol 139: 147‐168, 2001.
 212. Kubin L, Alheid GF, Zuperku EJ, McCrimmon DR. Central pathways of pulmonary and lower airway vagal afferents. J Appl Physiol 101: 618‐627, 2006.
 213. Kubin L, Fenik V. Pontine cholinergic mechanisms and their impact on respiratory regulation. Respir Physiol Neurobiol 143: 235‐249, 2004.
 214. Kuna ST, Remmers JE. Premotor input to hypoglossal motoneurons from Kolliker‐Fuse neurons in decerebrate cats. Respir Physiol 117: 85‐95, 1999.
 215. Kunibe I, Nonaka S, Katada A, Adachi M, Enomoto K, Harabuchi Y. The neuronal circuit of augmenting effects on intrinsic laryngeal muscle activities induced by nasal air‐jet stimulation in decerebrate cats. Brain Res 978: 83‐90, 2003.
 216. Lara JP, Dawid‐Milner MS, Lopez MV, Montes C, Spyer KM, Gonzalez‐Baron S. Laryngeal effects of stimulation of rostral and ventral pons in the anaesthetized rat. Brain Res 934: 97‐106, 2002.
 217. Lara JP, Parkes MJ, Silva‐Carvhalo L, Izzo P, Dawid‐Milner MS, Spyer KM. Cardiovascular and respiratory effects of stimulation of cell bodies of the parabrachial nuclei in the anaesthetized rat. J Physiol 477(Pt 2): 321‐329, 1994.
 218. Larnicol N, Wallois F, Berquin P, Gros F, Rose D. c‐fos‐like immunoreactivity in the cat's neuraxis following moderate hypoxia or hypercapnia. J Physiol Paris 88: 81‐88, 1994.
 219. Larson CR, Kistler MK. The relationship of periaqueductal gray neurons to vocalization and laryngeal EMG in the behaving monkey. Exp Brain Res 63: 596‐606, 1986.
 220. Lasiter PS, Kachele DL. Postnatal development of the parabrachial gustatory zone in rat: Dendritic morphology and mitochondrial enzyme activity. Brain Res Bull 21: 79‐94, 1988.
 221. Lavezzi AM, Ottaviani G, Ballabio G, Rossi L, Matturri L. Preliminary study on the cytoarchitecture of the human parabrachial/Kolliker‐fuse complex, with reference to sudden infant death syndrome and sudden intrauterine unexplained death. Pediatr Dev Pathol 7: 171‐179, 2004.
 222. Lavezzi AM, Ottaviani G, Rossi L, Matturri L. Cytoarchitectural organization of the parabrachial/Kolliker‐Fuse complex in man. Brain Dev 26: 316‐320, 2004.
 223. Lavezzi AM, Ottaviani G, Rossi L, Matturri L. Hypoplasia of the parabrachial/kolliker‐fuse complex in perinatal death. Biol Neonate 86: 92‐97, 2004.
 224. Li A, Nattie E. Catecholamine neurones in rats modulate sleep, breathing, central chemoreception and breathing variability. J Physiol 570: 385‐396, 2006.
 225. Ling L. Serotonin and NMDA receptors in respiratory long‐term facilitation. Respir Physiol Neurobiol 164: 233‐241, 2008.
 226. Ling L, Karius DR, Speck DF. Role of N‐methyl‐D‐aspartate receptors in the pontine pneumotaxic mechanism in the cat. J Appl Physiol 76: 1138‐1143, 1994.
 227. Lioy DT, Wu WW, Bissonnette JM. Autonomic dysfunction with mutations in the gene that encodes methyl‐CpG‐binding protein 2: Insights into Rett syndrome. Auton Neurosci 161: 55‐62, 2011.
 228. Liu Q, Fehring C, Lowry TF, Wong‐Riley MT. Postnatal development of metabolic rate during normoxia and acute hypoxia in rats: Implication for a sensitive period. J Appl Physiol 106: 1212‐1222, 2009.
 229. Liu Q, Wong‐Riley MT. Developmental changes in the expression of GABAA receptor subunits alpha1, alpha2, and alpha3 in the rat pre‐Botzinger complex. J Appl Physiol 96: 1825‐1831, 2004.
 230. Liu Q, Wong‐Riley MT. Developmental changes in the expression of GABAA receptor subunits alpha1, alpha2, and alpha3 in brain stem nuclei of rats. Brain Res 1098: 129‐138, 2006.
 231. Liu Q, Wong‐Riley MT. Postnatal changes in the expression of serotonin 2A receptors in various brain stem nuclei of the rat. J Appl Physiol 104: 1801‐1808, 2008.
 232. Liu Q, Wong‐Riley MT. Postnatal changes in the expressions of serotonin 1A, 1B, and 2A receptors in ten brain stem nuclei of the rat: Implication for a sensitive period. Neuroscience 165: 61‐78, 2010.
 233. Liu YY, Wong‐Riley MT. Developmental study of cytochrome oxidase activity in the brain stem respiratory nuclei of postnatal rats. J Appl Physiol 90: 685‐694, 2001.
 234. Loewy AD, Burton H. Nuclei of the solitary tract: Efferent projections to the lower brain stem and spinal cord of the cat. J Comp Neurol 181: 421‐449, 1978.
 235. Long S, Duffin J. The neuronal determinants of respiratory rhythm. Prog Neurobiol 27: 101‐182, 1986.
 236. Lumsden T. Observations on the respiratory centers in the cat. J Physiol: 152‐160, 1923.
 237. Luppi PH, Aston‐Jones G, Akaoka H, Chouvet G, Jouvet M. Afferent projections to the rat locus coeruleus demonstrated by retrograde and anterograde tracing with cholera‐toxin B subunit and Phaseolus vulgaris leucoagglutinin. Neuroscience 65: 119‐160, 1995.
 238. Luthe L, Hausler U, Jurgens U. Neuronal activity in the medulla oblongata during vocalization. A single‐unit recording study in the squirrel monkey. Behav Brain Res 116: 197‐210, 2000.
 239. Lydic R, Orem J. Respiratory neurons of the pneumotaxic center during sleep and wakefulness. Neurosci Lett 15: 187‐192, 1979.
 240. MacDonald SM, Song G, Poon CS. Nonassociative learning promotes respiratory entrainment to mechanical ventilation. PLoS One 2: e865, 2007.
 241. MacDonald SM, Tin C, Song G, Poon CS. Use‐dependent learning and memory of the Hering‐Breuer inflation reflex in rats. Exp Physiol 94: 269‐278, 2009.
 242. Maiorov DN, Malpas SC, Head GA. Influence of pontine A5 region on renal sympathetic nerve activity in conscious rabbits. Am J Physiol Regul Integr Comp Physiol 278: R311‐319, 2000.
 243. Maiorov DN, Wilton ER, Badoer E, Petrie D, Head GA, Malpas SC. Sympathetic response to stimulation of the pontine A5 region in conscious rabbits. Brain Res 815: 227‐236, 1999.
 244. Mallios VJ, Lydic R, Baghdoyan HA. Muscarinic receptor subtypes are differentially distributed across brain stem respiratory nuclei. Am J Physiol 268: L941‐949, 1995.
 245. Marckwald M. Die Athembewegungen und deren Innervation beim Kaninchen. Z Biol 23: 149‐283, 1887.
 246. Marina N, Abdala AP, Trapp S, Li A, Nattie EE, Hewinson J, Smith JC, Paton JF, Gourine AV. Essential role of Phox2b‐expressing ventrolateral brainstem neurons in the chemosensory control of inspiration and expiration. J Neurosci 30: 12466‐12473, 2010.
 247. Masmoudi K, Larnicol N, Wallois F, Gros F. Changes in Fos‐like immunoreactivity evoked by maturation of the sneeze reflex triggered by nasal air puff stimulation in kittens. Brain Res 757: 102‐110, 1997.
 248. McKinley MJ, Albiston AL, Allen AM, Mathai ML, May CN, McAllen RM, Oldfield BJ, Mendelsohn FA, Chai SY. The brain renin‐angiotensin system: Location and physiological roles. Int J Biochem Cell Biol 35: 901‐918, 2003.
 249. Mellen NM. Degeneracy as a substrate for respiratory regulation. Respir Physiol Neurobiol 172: 1‐7.
 250. Mellen NM, Janczewski WA, Bocchiaro CM, Feldman JL. Opioid‐induced quantal slowing reveals dual networks for respiratory rhythm generation. Neuron 37: 821‐826, 2003.
 251. Merrill EG. The lateral respiratory neurones of the medulla: Their associations with nucleus ambiguus, nucleus retroambigualis, the spinal accessory nucleus and the spinal cord. Brain Res 24: 11‐28, 1970.
 252. Milsom WK, Abe AS, Andrade DV, Tattersall GJ. Evolutionary trends in airway CO2/H +chemoreception. Respir Physiol Neurobiol 144: 191‐202, 2004.
 253. Mingrone R, Fulcheri E, Lavezzi AM, Matturri L. Absolute shortness of the umbilical cord and hypoplasia of the arcuate nucleus and of the parabrachial/Kolliker‐Fuse complex in a case of sudden intrauterine fetal death. Eur J Obstet Gynecol Reprod Biol 147: 112‐114, 2009.
 254. Mitchell GS, Baker TL, Nanda SA, Fuller DD, Zabka AG, Hodgeman BA, Bavis RW, Mack KJ, Olson EB, Jr. Invited review: Intermittent hypoxia and respiratory plasticity. J Appl Physiol 90: 2466‐2475, 2001.
 255. Miyaoka Y, Takahashi Y, Sato S, Shimada K. Autonomic nervous reflexes in respiration elicited by mechanical stimulation of the velopharyngeal region in rabbits. J Auton Nerv Syst 26: 177‐180, 1989.
 256. Mizusawa A, Ogawa H, Kikuchi Y, Hida W, Shirato K. Role of the parabrachial nucleus in ventilatory responses of awake rats. J Physiol 489(Pt 3): 877‐884, 1995.
 257. Moga MM, Herbert H, Hurley KM, Yasui Y, Gray TS, Saper CB. Organization of cortical, basal forebrain, and hypothalamic afferents to the parabrachial nucleus in the rat. J Comp Neurol 295: 624‐661, 1990.
 258. Moga MM, Saper CB, Gray TS. Bed nucleus of the stria terminalis: Cytoarchitecture, immunohistochemistry, and projection to the parabrachial nucleus in the rat. J Comp Neurol 283: 315‐332, 1989.
 259. Monaghan DT, Cotman CW. Distribution of N‐methyl‐D‐aspartate‐sensitive L‐[3H]glutamate‐binding sites in rat brain. J Neurosci 5: 2909‐2919, 1985.
 260. Monteau R, Hilaire G. Spinal respiratory motoneurons. Prog Neurobiol 37: 83‐144, 1991.
 261. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12: 529‐540, 1994.
 262. Morris KF, Nuding SC, Segers LS, Baekey DM, Shannon R, Lindsey BG, Dick TE. Respiratory and Mayer wave‐related discharge patterns of raphe and pontine neurons change with vagotomy. J Appl Physiol 109: 189‐202.
 263. Morrison SF. Respiratory modulation of sympathetic nerve activity: Effect of MK‐801. Am J Physiol 270: R645‐R651, 1996.
 264. Morrison SF, Cravo SL, Wilfehrt HM. Pontine lesions produce apneusis in the rat. Brain Res 652: 83‐86, 1994.
 265. Morrison SF, Nakamura K. Central neural pathways for thermoregulation. Front Biosci 16: 74‐104, 2011.
 266. Morschel M, Dutschmann M. Pontine respiratory activity involved in inspiratory/expiratory phase transition. Philos Trans R Soc Lond B Biol Sci 364: 2517‐2526, 2009.
 267. Mortola JP, Fisher JT, Sant'Ambrogio G. Vagal control of the breathing pattern and respiratory mechanics in the adult and newborn rabbit. Pflugers Arch 401: 281‐286, 1984.
 268. Mraovitch S, Kumada M, Reis DJ. Role of the nucleus parabrachialis in cardiovascular regulation in cat. Brain Res 232: 57‐75, 1982.
 269. Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A, Bayliss DA, Guyenet PG. Respiratory control by ventral surface chemoreceptor neurons in rats. Nat Neurosci 7: 1360‐1369, 2004.
 270. Muller G, Klingberg H, Klingberg F. Incisor growth acceleration after lesions in the lateral pontine reticular formation of rats. Biomed Biochim Acta 50: 219‐222, 1991.
 271. Nakamura K, Morrison SF. A thermosensory pathway mediating heat‐defense responses. Proc Natl Acad Sci U S A 107: 8848‐8853.
 272. Norgren R, Leonard CM. Taste pathways in rat brainstem. Science 173: 1136‐1139, 1971.
 273. Nuding SC, Segers LS, Baekey DM, Dick TE, Solomon IC, Shannon R, Morris KF, Lindsey BG. Pontine‐ventral respiratory column interactions through raphe circuits detected using multi‐array spike train recordings. J Neurophysiol 101: 2943‐2960, 2009.
 274. Nuding SC, Segers LS, Shannon R, O'Connor R, Morris KF, Lindsey BG. Central and peripheral chemoreceptors evoke distinct responses in simultaneously recorded neurons of the raphe‐pontomedullary respiratory network. Philos Trans R Soc Lond B Biol Sci 364: 2501‐2516, 2009.
 275. Ohtake PJ, Simakajornboon N, Fehniger MD, Xue YD, Gozal D. N‐Methyl‐D‐aspartate receptor expression in the nucleus tractus solitarii and maturation of hypoxic ventilatory response in the rat. Am J Respir Crit Care Med 162: 1140‐1147, 2000.
 276. Okazaki M, Takeda R, Yamazaki H, Haji A. Synaptic mechanisms of inspiratory off‐switching evoked by pontine pneumotaxic stimulation in cats. Neurosci Res 44: 101‐110, 2002.
 277. Oku Y, Dick TE. Phase resetting of the respiratory cycle before and after unilateral pontine lesion in cat. J Appl Physiol 72: 721‐730, 1992.
 278. Onimaru H, Homma I. A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J Neurosci 23: 1478‐1486, 2003.
 279. Onimaru H, Homma I. Optical imaging of respiratory neuron activity from the dorsal view of the lower brainstem. Clin Exp Pharmacol Physiol 32: 297‐301, 2005.
 280. Onimaru H, Ikeda K, Kawakami K. CO2‐sensitive preinspiratory neurons of the parafacial respiratory group express Phox2b in the neonatal rat. J Neurosci 28: 12845‐12850, 2008.
 281. Orem J. The nature of the wakefulness stimulus for breathing. Prog Clin Biol Res 345: 23‐30; discussion 31, 1990.
 282. Orem J, Anderson CA. Diaphragmatic activity during REM sleep in the adult cat. J Appl Physiol 81: 751‐760, 1996.
 283. Oyamada Y, Andrzejewski M, Muckenhoff K, Scheid P, Ballantyne D. Locus coeruleus neurones in vitro: pH‐sensitive oscillations of membrane potential in an electrically coupled network. Respir Physiol 118: 131‐147, 1999.
 284. Oyamada Y, Ballantyne D, Muckenhoff K, Scheid P. Respiration‐modulated membrane potential and chemosensitivity of locus coeruleus neurones in the in vitro brainstem‐spinal cord of the neonatal rat. J Physiol 513(Pt 2): 381‐398, 1998.
 285. Parrish MD, Hill JM, Kaufman MP. Cardiovascular and respiratory response to static exercise in the newborn kitten. Pediatr Res 30: 95‐99, 1991.
 286. Paterson DS, Hilaire G, Weese‐Mayer DE. Medullary serotonin defects and respiratory dysfunction in sudden infant death syndrome. Respir Physiol Neurobiol 168: 133‐143, 2009.
 287. Paton JF. Rhythmic bursting of pre‐ and post‐inspiratory neurones during central apnoea in mature mice. J Physiol 502(Pt 3): 623‐639, 1997.
 288. Paton JF, Dutschmann M. Central control of upper airway resistance regulating respiratory airflow in mammals. J Anat 201: 319‐323, 2002.
 289. Paton JF, Li YW, Kasparov S. Reflex response and convergence of pharyngoesophageal and peripheral chemoreceptors in the nucleus of the solitary tract. Neuroscience 93: 143‐154, 1999.
 290. Pattinson KT, Mitsis GD, Harvey AK, Jbabdi S, Dirckx S, Mayhew SD, Rogers R, Tracey I, Wise RG. Determination of the human brainstem respiratory control network and its cortical connections in vivo using functional and structural imaging. Neuroimage 44: 295‐305, 2009.
 291. Pierrefiche O, Foutz AS, Champagnat J, Denavit‐Saubie M. The bulbar network of respiratory neurons during apneusis induced by a blockade of NMDA receptors. Exp Brain Res 89: 623‐639, 1992.
 292. Pierrefiche O, Foutz AS, Champagnat J, Denavit‐Saubie M. NMDA and non‐NMDA receptors may play distinct roles in timing mechanisms and transmission in the feline respiratory network. J Physiol 474: 509‐523, 1994.
 293. Pierrefiche O, Foutz AS, Denavit‐Saubie M. Pneumotaxic mechanisms in the non‐human primate: Effect of the N‐methyl‐D‐aspartate (NMDA) antagonist ketamine. Neurosci Lett 119: 90‐93, 1990.
 294. Poliacek I, Stransky A, Szereda‐Przestaszewska M, Jakus J, Barani H, Tomori Z, Halasova E. Cough and laryngeal muscle discharges in brainstem lesioned anaesthetized cats. Physiol Res 54: 645‐654, 2005.
 295. Poon CS. Optimal interaction of respiratory and thermal regulation at rest and during exercise: Role of a serotonin‐gated spinoparabrachial thermoafferent pathway. Respir Physiol Neurobiol 169: 234‐242, 2009.
 296. Poon CS, Young DL. Nonassociative learning as gated neural integrator and differentiator in stimulus‐response pathways. Behav Brain Funct 2: 29, 2006.
 297. Poon CS, Zhou Z, Champagnat J. NMDA receptor activity in utero averts respiratory depression and anomalous long‐term depression in newborn mice. J Neurosci 20: RC73, 2000.
 298. Powell FL, Milsom WK, Mitchell GS. Time domains of the hypoxic ventilatory response. Respir Physiol 112: 123‐134, 1998.
 299. Prabhakar NR, Kline DD. Ventilatory changes during intermittent hypoxia: Importance of pattern and duration. High Alt Med Biol 3: 195‐204, 2002.
 300. Price WM, Batsel HL. Respiratory neurons participating in sneeze and in response to resistance to expiration. Exp Neurol 29: 554‐570, 1970.
 301. Rabbette PS, Stocks J. Influence of volume dependency and timing of airway occlusions on the Hering‐Breuer reflex in infants. J Appl Physiol 85: 2033‐2039, 1998.
 302. Radulovacki M, Pavlovic S, Carley DW. Pontine intertrigeminal region attenuates sleep apneas in rats. Sleep 27: 383‐387, 2004.
 303. Radulovacki M, Pavlovic S, Saponjic J, Carley DW. Intertrigeminal region attenuates reflex apnea and stabilizes respiratory pattern in rats. Brain Res 975: 66‐72, 2003.
 304. Radulovacki M, Pavlovic S, Saponjic J, Carley DW. Modulation of reflex and sleep related apnea by pedunculopontine tegmental and intertrigeminal neurons. Respir Physiol Neurobiol 143: 293‐306, 2004.
 305. Radulovacki M, Stoiljkovic M, Saponjic J, Carley DW. Effects of intertrigeminal region NMDA and non‐NMDA receptors on respiratory responses in rats. Respir Physiol Neurobiol 156: 40‐46, 2007.
 306. Reeves SR, Mitchell GS, Gozal D. Early postnatal chronic intermittent hypoxia modifies hypoxic respiratory responses and long‐term phrenic facilitation in adult rats. Am J Physiol Regul Integr Comp Physiol 290: R1664‐R1671, 2006.
 307. Remmers JE, Richter DW, Ballantyne D, Bainton CR, Klein JP. Reflex prolongation of stage I of expiration. Pflugers Arch 407: 190‐198, 1986.
 308. Reuter J, Kron M, Dutschmann M. Postnatal changes in morphology and dendritic organization of neurones located in the area of the Kolliker‐Fuse nucleus of rat. Adv Exp Med Biol 669: 37‐41, 2010.
 309. Ricardo JA, Koh ET. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res 153: 1‐26, 1978.
 310. Richter DW. Generation and maintenance of the respiratory rhythm. J Exp Biol 100: 93‐107, 1982.
 311. Richter DW. Neural regulation of respiration: Rhythmogenesis and afferent control. In: Gregor RW, Windhorst U, editors. Comprehensive Human Physiology,. Berlin: Springer‐Verlag, 1996, pp. 2079‐2095.
 312. Richter DW, Spyer KM. Studying rhythmogenesis of breathing: Comparison of in vivo and in vitro models. Trends Neurosci 24: 464‐472, 2001.
 313. Rikard‐Bell GC, Bystrzycka EK, Nail BS. Brainstem projections to the phrenic nucleus: A HRP study in the cat. Brain Res Bull 12: 469‐477, 1984.
 314. Rikard‐Bell GC, Bystrzycka EK, Nail BS. The identification of brainstem neurones projecting to thoracic respiratory motoneurones in the cat as demonstrated by retrograde transport of HRP. Brain Res Bull 14: 25‐37, 1985.
 315. Rohrer JD, Schott JM. Primary progressive aphasia ‐ defining genetic and pathological subtypes. Curr Alzheimer Res 8: 266‐272, 2011.
 316. Rosin DL, Chang DA, Guyenet PG. Afferent and efferent connections of the rat retrotrapezoid nucleus. J Comp Neurol 499: 64‐89, 2006.
 317. Rub U, Del Tredici K, Schultz C, Thal DR, Braak E, Braak H. The autonomic higher order processing nuclei of the lower brain stem are among the early targets of the Alzheimer's disease‐related cytoskeletal pathology. Acta Neuropathol 101: 555‐564, 2001.
 318. Rybak IA, Abdala AP, Markin SN, Paton JF, Smith JC. Spatial organization and state‐dependent mechanisms for respiratory rhythm and pattern generation. Prog Brain Res 165: 201‐220, 2007.
 319. Rybak IA, O'Connor R, Ross A, Shevtsova NA, Nuding SC, Segers LS, Shannon R, Dick TE, Dunin‐Barkowski WL, Orem JM, Solomon IC, Morris KF, Lindsey BG. Reconfiguration of the pontomedullary respiratory network: A computational modeling study with coordinated in vivo experiments. J Neurophysiol 100: 1770‐1799, 2008.
 320. Rybak IA, Paton JF, Schwaber JS. Modeling neural mechanisms for genesis of respiratory rhythm and pattern. I. Models of respiratory neurons. J Neurophysiol 77: 1994‐2006, 1997.
 321. Rybak IA, Paton JF, Schwaber JS. Modeling neural mechanisms for genesis of respiratory rhythm and pattern. II. Network models of the central respiratory pattern generator. J Neurophysiol 77: 2007‐2026, 1997.
 322. Rybak IA, Shevtsova NA, Paton JF, Dick TE, St‐John WM, Morschel M, Dutschmann M. Modeling the ponto‐medullary respiratory network. Respir Physiol Neurobiol 143: 307‐319, 2004.
 323. Saint John WM. Differing responses to hypercapnia and hypoxia following pneumotaxic center ablation. Respir Physiol 23: 1‐9, 1975.
 324. Saleh TM, Cechetto DF. Neurotransmitters in the parabrachial nucleus mediating visceral input to the thalamus in rats. Am J Physiol 266: R1287‐R1296, 1994.
 325. Saleh TM, Cechetto DF. Neurochemical interactions in the parabrachial nucleus mediating visceral inputs to visceral thalamic neurons. Am J Physiol 268: R786‐R795, 1995.
 326. Saleh TM, Cechetto DF. Peptide changes in the parabrachial nucleus following cervical vagal stimulation. J Comp Neurol 366: 390‐405, 1996.
 327. Saleh TM, Cechetto DF. Peptides in the parabrachial nucleus modulate visceral input to the thalamus. Am J Physiol 264: R668‐R675, 1993.
 328. Saper CB. Reciprocal parabrachial‐cortical connections in the rat. Brain Res 242: 33‐40, 1982.
 329. Saper CB, Loewy AD. Efferent connections of the parabrachial nucleus in the rat. Brain Res 197: 291‐317, 1980.
 330. Schmidt MF, Ashmore RC, Vu ET. Bilateral control and interhemispheric coordination in the avian song motor system. Ann N Y Acad Sci U S A 1016: 171‐186, 2004.
 331. Segers LS, Nuding SC, Dick TE, Shannon R, Baekey DM, Solomon IC, Morris KF, Lindsey BG. Functional connectivity in the pontomedullary respiratory network. J Neurophysiol 100: 1749‐1769, 2008.
 332. Segers LS, Shannon R, Lindsey BG. Interactions between rostral pontine and ventral medullary respiratory neurons. J Neurophysiol 54: 318‐334, 1985.
 333. Shannon R, Baekey DM, Morris KF, Li Z, Lindsey BG. Functional connectivity among ventrolateral medullary respiratory neurones and responses during fictive cough in the cat. J Physiol 525(Pt 1): 207‐224, 2000.
 334. Shannon R, Baekey DM, Morris KF, Lindsey BG. Brainstem respiratory networks and cough. Pulm Pharmacol 9: 343‐347, 1996.
 335. Shannon R, Baekey DM, Morris KF, Lindsey BG. Ventrolateral medullary respiratory network and a model of cough motor pattern generation. J Appl Physiol 84: 2020‐2035, 1998.
 336. Shannon R, Baekey DM, Morris KF, Nuding SC, Segers LS, Lindsey BG. Pontine respiratory group neuron discharge is altered during fictive cough in the decerebrate cat. Respir Physiol Neurobiol 142: 43‐54, 2004.
 337. Shannon R, Baekey DM, Morris KF, Nuding SC, Segers LS, Lindsey BG. Production of reflex cough by brainstem respiratory networks. Pulm Pharmacol Ther 17: 369‐376, 2004.
 338. Shiba K, Nakazawa K, Ono K, Umezaki T. Multifunctional laryngeal premotor neurons: Their activities during breathing, coughing, sneezing, and swallowing. J Neurosci 27: 5156‐5162, 2007.
 339. Shiba K, Satoh I, Kobayashi N, Hayashi F. Multifunctional laryngeal motoneurons: An intracellular study in the cat. J Neurosci 19: 2717‐2727, 1999.
 340. Sieck GC, Harper RM. Discharge of neurons in the parabrachial pons related to the cardiac cycle: Changes during different sleep‐waking states. Brain Res 199: 385‐399, 1980.
 341. Sieck GC, Harper RM. Pneumotaxic area neuronal discharge during sleep‐waking states in the cat. Exp Neurol 67: 79‐102, 1980.
 342. Siniaia MS, Young DL, Poon CS. Habituation and desensitization of the Hering‐Breuer reflex in rat. J Physiol 523(Pt 2): 479‐491, 2000.
 343. Smith JC, Abdala AP, Koizumi H, Rybak IA, Paton JF. Spatial and functional architecture of the mammalian brain stem respiratory network: A hierarchy of three oscillatory mechanisms. J Neurophysiol 98: 3370‐3387, 2007.
 344. Smith JC, Abdala AP, Rybak IA, Paton JF. Structural and functional architecture of respiratory networks in the mammalian brainstem. Philos Trans R Soc Lond B Biol Sci 364: 2577‐2587, 2009.
 345. Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL. Pre‐Botzinger complex: A brainstem region that may generate respiratory rhythm in mammals. Science 254: 726‐729, 1991.
 346. Smotherman M, Kobayasi K, Ma J, Zhang S, Metzner W. A mechanism for vocal‐respiratory coupling in the mammalian parabrachial nucleus. J Neurosci 26: 4860‐4869, 2006.
 347. Song A, Ashwell KW, Tracey DJ. Development of the rat phrenic nucleus and its connections with brainstem respiratory nuclei. Anat Embryol (Berl) 202: 159‐177, 2000.
 348. Song G, Poon CS. Functional and structural models of pontine modulation of mechanoreceptor and chemoreceptor reflexes. Respir Physiol Neurobiol 143: 281‐292, 2004.
 349. Song G, Poon CS. Lateral parabrachial nucleus mediates shortening of expiration and increase of inspiratory drive during hypercapnia. Respir Physiol Neurobiol 165: 9‐12, 2009.
 350. Song G, Poon CS. Lateral parabrachial nucleus mediates shortening of expiration during hypoxia. Respir Physiol Neurobiol 165: 1‐8, 2009.
 351. Song G, Yu Y, Poon CS. Cytoarchitecture of pneumotaxic integration of respiratory and nonrespiratory information in the rat. J Neurosci 26: 300‐310, 2006.
 352. Stella G. On the mechanism of production and the physiological significance of apneusis. J Physiol 93: 10‐23, 1938.
 353. Stettner GM, Huppke P, Brendel C, Richter DW, Gartner J, Dutschmann M. Breathing dysfunctions associated with impaired control of postinspiratory activity in Mecp2‐/y knockout mice. J Physiol 579: 863‐876, 2007.
 354. Stettner GM, Huppke P, Gartner J, Richter DW, Dutschmann M. Disturbances of breathing in Rett syndrome: Results from patients and animal models. Adv Exp Med Biol 605: 503‐507, 2008.
 355. St‐John WM. Neurogenesis of patterns of automatic ventilatory activity. Prog Neurobiol 56: 97‐117, 1998.
 356. St‐John WM, Paton JF. Characterizations of eupnea, apneusis and gasping in a perfused rat preparation. Respir Physiol 123: 201‐213, 2000.
 357. St John WM. Characterization of the tidal volume regulating function of the pneumotaxic center. Respir Physiol 18: 64‐79, 1973.
 358. St John WM. Differential alteration by hypercapnia and hypoxia of the apneustic respiratory pattern in decerebrate cats. J Physiol 287: 467‐491, 1979.
 359. St John WM. Influence of pulmonary inflations on discharge of pontile respiratory neurons. J Appl Physiol 63: 2231‐2239, 1987.
 360. St John WM. Integration of peripheral and central chemoreceptor stimuli by pontine and medullary respiratory centers. Fed Proc 36: 2421‐2427, 1977.
 361. St John WM. Respiratory tidal volume responses of cats with chronic pneumotaxic center lesions. Respir Physiol 16: 92‐108, 1972.
 362. St John WM, Glasser RL, King RA. Apneustic breathing after vagotomy in cats with chronic pneumotaxic center lesions. Respir Physiol 12: 239‐250, 1971.
 363. St John WM, Glasser RL, King RA. Rhythmic respiration in awake vagotomized cats with chronic pneumotaxic area lesions. Respir Physiol 15: 233‐244, 1972.
 364. St John WM, Wang SC. Integration of chemoreceptor stimuli by caudal pontile and rostral medullary sites. J Appl Physiol 41: 612‐622, 1976.
 365. Stoiljkovic M, Radulovacki M, Carley DW. Local antagonism of intertrigeminal region metabotropic glutamate receptors exacerbates apneic responses to intravenous serotonin. Respir Physiol Neurobiol 165: 137‐142, 2009.
 366. Stornetta RL, Moreira TS, Takakura AC, Kang BJ, Chang DA, West GH, Brunet JF, Mulkey DK, Bayliss DA, Guyenet PG. Expression of Phox2b by brainstem neurons involved in chemosensory integration in the adult rat. J Neurosci 26: 10305‐10314, 2006.
 367. Stuart DG, Hultborn H. Thomas Graham Brown (1882–1965), Anders Lundberg (1920‐), and the neural control of stepping. Brain Res Rev 59: 74‐95, 2008.
 368. Subramanian HH, Balnave RJ, Holstege G. The midbrain periaqueductal gray control of respiration. J Neurosci 28: 12274‐12283, 2008.
 369. Subramanian HH, Holstege G. The nucleus retroambiguus control of respiration. J Neurosci 29: 3824‐3832, 2009.
 370. Subramanian HH, Holstege G. The midbrain and medullary control of post‐inspiratory activity of the crural and costal diaphragm in vivo. J Neurophysiol 105: 2852‐2862, 2011.
 371. Subramanian HH, Holstege G. Periaqueductal gray control of breathing. Adv Exp Med Biol 669: 353‐358, 2010.
 372. Suzue T. Respiratory rhythm generation in the in vitro brain stem‐spinal cord preparation of the neonatal rat. J Physiol 354: 173‐183, 1984.
 373. Takada M, Itoh K, Yasui Y, Mitani A, Nomura S, Mizuno N. Distribution of premotor neurons for the hypoglossal nucleus in the cat. Neurosci Lett 52: 141‐146, 1984.
 374. Takagi K, Nakayama T. Respiratory discharge of the pons. Science 128: 1206, 1958.
 375. Tang PC. Localization of the pneumotaxic center in the cat. Am J Physiol 172: 645‐652, 1953.
 376. Taylor EW, Jordan D, Coote JH. Central control of the cardiovascular and respiratory systems and their interactions in vertebrates. Physiol Rev 79: 855‐916, 1999.
 377. Tchobroutsky C, Merlet C, Rey P. The diving reflex in rabbit, sheep and newborn lamb and its afferent pathways. Respir Physiol 8: 108‐117, 1969.
 378. Teppema LJ, Veening JG, Kranenburg A, Dahan A, Berkenbosch A, Olievier C. Expression of c‐fos in the rat brainstem after exposure to hypoxia and to normoxic and hyperoxic hypercapnia. J Comp Neurol 388: 169‐190, 1997.
 379. Thach BT. Maturation and transformation of reflexes that protect the laryngeal airway from liquid aspiration from fetal to adult life. Am J Med 111(Suppl 8A): 69S‐77S, 2001.
 380. Traube L. Über periodische Thatigkeits‐Äusserungen des vasomotorischen und Hemmungs‐Nervencentrums. Zentr Med Wiss 56: 881‐885, 1865.
 381. Trippenbach T. Pulmonary reflexes and control of breathing during development. Biol Neonate 65: 205‐210, 1994.
 382. Vanderhorst VG, Mouton LJ, Blok BF, Holstege G. Distinct cell groups in the lumbosacral cord of the cat project to different areas in the periaqueductal gray. J Comp Neurol 376: 361‐385, 1996.
 383. Vargha‐Khadem F, Gadian DG, Copp A, Mishkin M. FOXP2 and the neuroanatomy of speech and language. Nat Rev Neurosci 6: 131‐138, 2005.
 384. Verner TA, Pilowsky PM, Goodchild AK. Retrograde projections to a discrete apneic site in the midline medulla oblongata of the rat. Brain Res 1208: 128‐136, 2008.
 385. Vicini S, Rumbaugh G. A slow NMDA channel: In search of a role. J Physiol 525(Pt 2): 283, 2000.
 386. Viemari JC. Noradrenergic modulation of the respiratory neural network. Respir Physiol Neurobiol 164: 123‐130, 2008.
 387. Viemari JC, Burnet H, Bevengut M, Hilaire G. Perinatal maturation of the mouse respiratory rhythm‐generator: In vivo and in vitro studies. Eur J Neurosci 17: 1233‐1244, 2003.
 388. Viemari JC, Roux JC, Tryba AK, Saywell V, Burnet H, Pena F, Zanella S, Bevengut M, Barthelemy‐Requin M, Herzing LB, Moncla A, Mancini J, Ramirez JM, Villard L, Hilaire G. Mecp2 deficiency disrupts norepinephrine and respiratory systems in mice. J Neurosci 25: 11521‐11530, 2005.
 389. Vincent A, Tell F. Postnatal changes in electrophysiological properties of rat nucleus tractus solitarii neurons. Eur J Neurosci 9: 1612‐1624, 1997.
 390. Vincent A, Tell F. Postnatal development of rat nucleus tractus solitarius neurons: Morphological and electrophysiological evidence. Neuroscience 93: 293‐305, 1999.
 391. Voituron N, Menuet C, Dutschmann M, Hilaire G. Physiological definition of upper airway obstructions in mouse model for Rett syndrome. Respir Physiol Neurobiol 173: 146‐156, 2010.
 392. Voituron N, Zanella S, Menuet C, Dutschmann M, Hilaire G. Early breathing defects after moderate hypoxia or hypercapnia in a mouse model of Rett syndrome. Respir Physiol Neurobiol 168: 109‐118, 2009.
 393. Voituron N, Zanella S, Menuet C, Lajard AM, Dutschmann M, Hilaire G. Early abnormalities of post‐sigh breathing in a mouse model of Rett syndrome. Respir Physiol Neurobiol 170: 173‐182, 2010.
 394. von Baumgarten K, Kanzow E. The interaction of two types of inspiratory neurons in the region of the tractus solitarius of the cat. Arch Ital Biol 96: 361‐373, 1957.
 395. von Euler C. On the central pattern generator for the basic breathing rhythmicity. J Appl Physiol 55: 1647‐1659, 1983.
 396. von Euler C, Marttila I, Remmers JE, Trippenbach T. Effects of lesions in the parabrachial nucleus on the mechanisms for central and reflex termination of inspiration in the cat. Acta Physiol Scand 96: 324‐337, 1976.
 397. Wallois F, Gros F, Masmoudi K, Larnicol N. C‐Fos‐like immunoreactivity in the cat brainstem evoked by sneeze‐inducing air puff stimulation of the nasal mucosa. Brain Res 687: 143‐154, 1995.
 398. Wallois F, Macron JM, Larnicol N, Rose D. The sneeze: Maturation of the reflex in kittens. Neuroreport 4: 240‐242, 1993.
 399. Wasserman AM, Ferreira M, Jr., Sahibzada N, Hernandez YM, Gillis RA. GABA‐mediated neurotransmission in the ventrolateral NTS plays a role in respiratory regulation in the rat. Am J Physiol Regul Integr Comp Physiol 283: R1423‐1441, 2002.
 400. Wasserman AM, Sahibzada N, Hernandez YM, Gillis RA. Specific subnuclei of the nucleus tractus solitarius play a role in determining the duration of inspiration in the rat. Brain Res 880: 118‐130, 2000.
 401. Welzl H, D'Adamo P, Lipp HP. Conditioned taste aversion as a learning and memory paradigm. Behav Brain Res 125: 205‐213, 2001.
 402. Westlund KN, Bowker RM, Ziegler MG, Coulter JD. Noradrenergic projections to the spinal cord of the rat. Brain Res 263: 15‐31, 1983.
 403. Willis WD, Westlund KN. Neuroanatomy of the pain system and of the pathways that modulate pain. J Clin Neurophysiol 14: 2‐31, 1997.
 404. Wong‐Riley MT, Liu Q. Neurochemical development of brain stem nuclei involved in the control of respiration. Respir Physiol Neurobiol 149: 83‐98, 2005.
 405. Wong‐Riley MT, Liu Q. Neurochemical and physiological correlates of a critical period of respiratory development in the rat. Respir Physiol Neurobiol 164: 28‐37, 2008.
 406. Wu Q, Boyle MP, Palmiter RD. Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell 137: 1225‐1234, 2009.
 407. Yamamoto T, Takemura M, Inui T, Torii K, Maeda N, Ohmoto M, Matsumoto I, Abe K. Functional organization of the rodent parabrachial nucleus. Ann N Y Acad Sci U S A 1170: 378‐382, 2009.
 408. Yokota S, Oka T, Tsumori T, Nakamura S, Yasui Y. Glutamatergic neurons in the Kolliker‐Fuse nucleus project to the rostral ventral respiratory group and phrenic nucleus: A combined retrograde tracing and in situ hybridization study in the rat. Neurosci Res 59: 341‐346, 2007.
 409. Yokota S, Tsumori T, Ono K, Yasui Y. Glutamatergic pathways from the Kolliker‐Fuse nucleus to the phrenic nucleus in the rat. Brain Res 995: 118‐130, 2004.
 410. Yoshioka M, Kawai Y. Activity‐dependent reorganization of local circuitry in the developing visceral sensory system. Neuroscience 150: 905‐914, 2007.
 411. Zagami CJ, Stifani S. Molecular characterization of the mouse superior lateral parabrachial nucleus through expression of the transcription factor Runx1. PLoS One 5: e13944, 2010.
 412. Zhang SP, Bandler R, Davis PJ. Brain stem integration of vocalization: Role of the nucleus retroambigualis. J Neurophysiol 74: 2500‐2512, 1995.
 413. Zhang SP, Davis PJ, Bandler R, Carrive P. Brain stem integration of vocalization: Role of the midbrain periaqueductal gray. J Neurophysiol 72: 1337‐1356, 1994.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Mathias Dutschmann, Thomas E. Dick. Pontine Mechanisms of Respiratory Control. Compr Physiol 2012, 2: 2443-2469. doi: 10.1002/cphy.c100015