Comprehensive Physiology Wiley Online Library

TRP Channels

Full Article on Wiley Online Library



Abstract

TRP channels constitute a large superfamily of cation channel forming proteins, all related to the gene product of the transient receptor potential (trp) locus in Drosophila. In mammals, 28 different TRP channel genes have been identified, which exhibit a large variety of functional properties and play diverse cellular and physiological roles. In this article, we provide a brief and systematic summary of expression, function, and (patho)physiological role of the mammalian TRP channels. © 2012 American Physiological Society. Compr Physiol 2:563‐608, 2012.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

TRPA1. (A) Time course of whole‐cell TRPA1‐expressing CHO cell currents at +50 and −75 mV during cooling in the absence of both extracellular and intracellular solution free Ca2+ (left panel). Current‐voltage relations were obtained at the indicated time points (right panel) . (B) Time course of whole‐cell TRPA1‐expressing CHO cell currents at +50 and −75 mV, application of MO (10 mM) is indicated by bars (left panel) N‐Methyl‐D‐Glucamine (NMDG+) was used to control leak. Current‐voltage relations were obtained at the indicated time points (right panel) (reprinted from with permission from Elsevier). (C) Cartoon representation of TRPA1 showing each cysteine residue as a circle (reprinted from by permission from Macmilan Publishers Ltd, copyright 2007). (D) A chemical model of reversible agonist action of TRPA1 by AITC (adapted from by permission from National Academy of Sciences, U.S.A., copyright 2006).

Figure 2. Figure 2.

TRPC1, TRPC4, and TRPC5. [(A)‐(E)] Current‐voltage relations in HEK293‐M1 cells transfected with either TRPC1, TRPC4, or TRPC5 cDNA alone or cotransfected with TRPC1 and TRPC4 or TRPC1 and TRPC5 cDNA. Currents were recorded before (con) and after application of 20 μM carbachol (carb). (F) The time course of currents via putative TRPC1/TRPC5 heteromultimers was measured at −70 mV. Application of carbachol (20 μM) and replacement of extracellular cations by NMDG

are indicated by the bars. Voltage ramps (1 mV/ms) from −100 to +60 mV were applied at 3.3 s intervals. Numbers corresponding to current‐voltage relations shown in E (reprinted from with permission from Elsevier).

Figure 3. Figure 3.

TRPC2. [(A)‐(F)] Representative families of whole‐cell currents to a series of depolarizing and hyperpolarizing voltage steps recorded from an isolated WT (A, B, and C) or TRPC−/− vomeronasal sensory neurons (VSN) (D, E, and F). VSNs were exposed successively to extracellular control solution (A and D), control solution containing 50 μM of an impermeable, endogenous diacylglycerol (DAG) analogue 1‐stearoyl‐2‐arachidonoyl‐sn‐glycerol (SAG) (B and E), or 50 μM SAG in extracellular solution in which NMDG+ was the sole cation (C and D). Experiments were performed in the presence of 1 μM tetrodotoxin to block voltage‐gated Na+ channels; voltage‐activated K+ channels were blocked by using a Cs+‐based pipette solution. [(G), (H)] Plots of the steady‐state current‐voltage relationships of the SAG‐induced responses shown above with SAG‐induced currents in control solution (solid rectangles) or SAG‐induced currents in NMDG+‐based solution (open circles) for WT (G) and TRPC−/− (H). Currents obtained before SAG application (control) were digitally subtracted from the curves. Data points were fit by a polynomial function. The inset in H shows a magnification of the curve obtained with Na+. (I) Comparison of the dose dependence of averaged SAG‐induced currents (at −70 mV) from multiple WT (black bars) and TRPC−/− VSNs (gray bars). Data are the means ± SEM for the number of cells indicated above each bar (reprinted from with permission from Elsevier).

Figure 4. Figure 4.

TRPC3 and TRPC6. [(A), (B)] Current‐voltage relations of whole cell recordings in HEK 293 cells transiently cotransfected with plasmids encoding eGFP, the H1 histamine receptor and human TRPC3 (A) or human TRPC6 (B) before (basal) and after application of receptor agonist (histamine). Insets: time course of currents at +60 and –60 mV in TRPC3‐ and TRPC6‐expressing cells before and after application of histamine. Duration of histamine applications is indicated by bars . (C) Time course of whole‐cell TRPC3‐expressing HEK cell currents at −80 mV, application of OAG (100 μM), and Ca2+ (2 mM) is indicated (left panel). Current‐voltage relations were obtained at the indicated time points (right panel) . (D) Time course of inside‐out TRPC6‐expressing CHO‐K1 currents, application of OAG (100 μM, left panel), and SAG (10 μM, right panel) are indicated. Insets show sample traces collected at different indicated positions (reprinted from by permission from Macmilan Publishers Ltd, copyright 1999).

Figure 5. Figure 5.

TRPM2. (A) Time course of whole‐cell currents at −80 and +80 mV. Only tetracycline‐induced HEK‐293 cells expressing Flag‐LTRPC2 generated large inward and outward currents when perfused with 100 μM ADPR. I‐V relationships of ADPR‐induced currents at different times after break corresponding to panel A (reprinted from by permission from Macmilan Publishers Ltd, copyright 2001).

Figure 6. Figure 6.

TRPM3. (A) Time course of whole‐cell currents at +150 and −150 mV in TRPM3‐expressing HEK cells activated by temperature or pregnenolone sulphate (PS, 50 μM). (B) Representative current‐voltage relations obtained from time points indicated in A (reprinted from with permission from Elsevier).

Figure 7. Figure 7.

TRPM4 and TRPM5. (A) Time course of whole‐cell TRPM4 (left) or TRPM5 (right)‐expressing HEK currents at +80 and ‐120 mV in the presence of 100 or 1 μM [Ca2+]i (respectively, for TRPM4 or TRPM5). (B) current‐voltage (I‐V) relations elicited by a voltage ramp from −150 to +100 mV corresponding to the different time points indicated in panel A. Note the increase in the outward rectification ratio in B (b‐scaled, gray). (C) Current traces of TRPM4 and TRPM5 at 10 μM [Ca2+]i. Starting from a holding potential of 0 mV, the voltage protocol consisted of 400 ms presteps ranging from −100 to +140 mV (increment 20 mV) followed by a 200 ms test step to −100 mV (reprinted from with permission from Elsevier).

Figure 8. Figure 8.

TRPM6 and TRPM7. (A) Simultaneous recording of intracellular Mg2+ (top) and the whole‐cell current at 80 and –80 mV (bottom) in TRPM6 expressing HEK cells before and after flash photolysis (arrow) of DM‐nitrophen . (B) Outward current during a 100‐ms step to 100 mV, which was recorded during the gap in the recording shown in panel A, showing the rapid current inhibition after the flash . (C) Current‐voltage relations obtained at the time points indicated in panel A . (D) Dose‐response curve showing the inhibition of the TRPM6‐induced currents by flash‐induced increases in intracellular Mg2+ to different levels . (E) Time course of whole‐cell TRPM7‐expressing HEK currents at −80 and +80 mV. Cells were perfused with internal solutions containing various ATP concentrations (0 mM, 1 mM, 6 mM Mg.ATP or 2mM Na.ATP) (reprinted from by permission from Macmilan Publishers Ltd, copyright 2001).

Figure 9. Figure 9.

TRPM8. (A) Current‐voltage relations of whole‐cell TRPM8 currents activated by menthol (100 μM). Currents were measured during 200‐ms voltage ramps from −100 to +100 mV. (B) Current‐voltage relations of whole‐cell TRPM8 currents activated by cold (15 °C). Currents were measured during 200‐ms voltage ramps from −100 to +100 mV. (C) Steady‐state activation curves at different temperatures for the currents shown in D. (D) TRPM8 current traces at different temperatures in response to the indicated voltage protocol (adapted from ).

Figure 10. Figure 10.

TRPML1. (A) Cartoons of three distinct patch‐clamp configurations of lysosomal recordings: lysosome‐attached, lysosome luminal‐side‐out, and whole‐lysosome. In each configuration, the pink arrow indicates the direction of the inward (at negative potentials; flow out of the lysosomes) current mediated by TRPML1 (reprinted from by permission from Macmilan Publishers Ltd, copyright 2008). (B) Current‐voltage relations in lysosomes expressing TRPMLVa recorded using the luminal‐side‐out configuration and a voltage ramp from −140 to +140 mV in the presence of different Fe2+ concentrations (reprinted from by permission from Macmilan Publishers Ltd, copyright 2008). (C) Current‐voltage relations in lysosomes expressing TRPML1 recorded using the whole‐endolysosome configuration and a voltage ramp from −140 to +140 mV in the presence of PI(3)P or PI(3,5)P2 (reprinted from by permission from Macmilan Publishers Ltd, copyright 2010).

Figure 11. Figure 11.

TRPML3. (A) Currents elicited from wild type (black), A419P mutant (red), and I362/A419P mutant (green) in response to 5‐ms voltage steps from a holding potential of 50 mV between 200 and 100 mV in 20‐mV incremental steps. Black bars indicate zero current line. (B) Steady‐state current‐voltage plots from A normalized to cell capacitance (adapted from by permission National Academy of Sciences, U.S.A., copyright 2007).

Figure 12. Figure 12.

TRPP2. (A) Comparison of whole‐cell currents in GFP‐ and TRPP2‐expressing HEK cells. Step pulses from −100 to +160 mV in 20 mV increments with a postpulse to −100 mV were applied. (B) Voltage dependence of open probabilities (Po) obtained by normalization of tail currents to the maximal amplitude of each individual cell obtained from Boltzmann fits. (C) Current‐voltage relationships for steady‐state currents (open) and instantaneous currents (closed) (adapted from ).

Figure 13. Figure 13.

TRPV1. (A) Whole‐cell current traces of TRPV1 expressing HEK cells at different temperatures in response to voltage steps ranging from −120 to +160 mV . (B) Steady‐state activation curves at different temperatures for the currents shown in A . (C) Responses to capsaicin (10 mM) and extracts derived from four varieties of peppers in oocytes expressing TRPV1. Bottom right, relative potencies of each pepper extract are plotted. Reported pungencies for pepper varieties (in Scoville units) are: Habanero (H), 100,000‐300,000; Thai green (T), 50,000‐100,000; wax (W), 5,000‐10,000; and Poblano verde (P),1,000‐1,500. Capsaicin (C) is rated as 16 × 106 units (reprinted fron by permission from Macmilan Publishers Ltd, copyright 1997).

Figure 14. Figure 14.

TRPV2. (A) Representative current responses of untransfected (water), TRPV1 (VR1), or TRPV2 (VRL‐1)‐transfected HEK cell in response to a temperature ramp (lower panel) (reprinted from by permission from Macmilan Publishers Ltd, copyright 1999). (B) Representative current responses of untransfected (water), TRPV1 (VR1), or TRPV2 (VRL‐1)‐transfected HEK cell in response to capsaicin, acid, or temperature (reprinted from by permission from Macmilan Publishers Ltd, copyright 1999). (C) I‐V relation in hTRPV2‐expressing HEK cells using a voltage ramp from −100 to +150 mV in control and after THC (30 μM) application.

Figure 15. Figure 15.

TRPV3. (A) Whole‐cell current traces of p‐Tracer (left) or TRPV3 (right) expressing CHO‐K1 cells in response to a temperature stimulus of 34°C using voltage steps ranging from −100 to +100 mV in 10 mV increments (reprinted from by permission from Macmilan Publishers Ltd, copyright 2002). (B) Representative single‐channel currents (Vh = 60 mV) of TRPV3 expressing CHO‐K1 cells in response to a temperature ramp from 25.5 to 37 °C. Dashed lines indicate the closed state (reprinted from by permission from Macmilan Publishers Ltd, copyright 2002). (C) Time course of whole‐cell mTRPV3 currents at −80 and +80 mV after repeated application of eugenol (2 mM) (reprinted from (489) by permission from Macmilan Publishers Ltd, copyright 2006).

Figure 16. Figure 16.

TRPV4. [(A)‐(C)] Time course of TRPV4 currents at −150 and +150 mV before and during application of (A) 4α‐PDD (1 μM), (B) hypotonic solution (240 mOsm) or AA (10 μM). (D) I‐V relationships of control and AA‐induced currents corresponding to panel C.

Figure 17. Figure 17.

TRPV5 and TRPV6. (A) Current‐voltage (I‐V) relation obtained in TRPV5 expressing CHO‐K1 cells during a 500‐ms linear voltage‐ramp from −100 to 100 mV (reprinted from by permission from Macmilan Publishers Ltd, copyright 2002). (B) I‐V relation obtained in TRPV6 expressing HEK cells during a 200‐ms linear voltage‐ramp from −150 to 100 mV . (C) Whole‐cell current traces in TRPV5 expressing CHO‐K1 cells using voltage steps ranging from −120 to +80 mV in 20 mV increments from a holding potential of 0 mV (reprinted from by permission from Macmilan Publishers Ltd, copyright 2002). (D) Whole‐cell current traces in TRPV6 expressing HEK cells using voltage steps ranging from −180 to +100 mV in 20 mV increments from a holding potential of 0 mV .



Figure 1.

TRPA1. (A) Time course of whole‐cell TRPA1‐expressing CHO cell currents at +50 and −75 mV during cooling in the absence of both extracellular and intracellular solution free Ca2+ (left panel). Current‐voltage relations were obtained at the indicated time points (right panel) . (B) Time course of whole‐cell TRPA1‐expressing CHO cell currents at +50 and −75 mV, application of MO (10 mM) is indicated by bars (left panel) N‐Methyl‐D‐Glucamine (NMDG+) was used to control leak. Current‐voltage relations were obtained at the indicated time points (right panel) (reprinted from with permission from Elsevier). (C) Cartoon representation of TRPA1 showing each cysteine residue as a circle (reprinted from by permission from Macmilan Publishers Ltd, copyright 2007). (D) A chemical model of reversible agonist action of TRPA1 by AITC (adapted from by permission from National Academy of Sciences, U.S.A., copyright 2006).



Figure 2.

TRPC1, TRPC4, and TRPC5. [(A)‐(E)] Current‐voltage relations in HEK293‐M1 cells transfected with either TRPC1, TRPC4, or TRPC5 cDNA alone or cotransfected with TRPC1 and TRPC4 or TRPC1 and TRPC5 cDNA. Currents were recorded before (con) and after application of 20 μM carbachol (carb). (F) The time course of currents via putative TRPC1/TRPC5 heteromultimers was measured at −70 mV. Application of carbachol (20 μM) and replacement of extracellular cations by NMDG

are indicated by the bars. Voltage ramps (1 mV/ms) from −100 to +60 mV were applied at 3.3 s intervals. Numbers corresponding to current‐voltage relations shown in E (reprinted from with permission from Elsevier).



Figure 3.

TRPC2. [(A)‐(F)] Representative families of whole‐cell currents to a series of depolarizing and hyperpolarizing voltage steps recorded from an isolated WT (A, B, and C) or TRPC−/− vomeronasal sensory neurons (VSN) (D, E, and F). VSNs were exposed successively to extracellular control solution (A and D), control solution containing 50 μM of an impermeable, endogenous diacylglycerol (DAG) analogue 1‐stearoyl‐2‐arachidonoyl‐sn‐glycerol (SAG) (B and E), or 50 μM SAG in extracellular solution in which NMDG+ was the sole cation (C and D). Experiments were performed in the presence of 1 μM tetrodotoxin to block voltage‐gated Na+ channels; voltage‐activated K+ channels were blocked by using a Cs+‐based pipette solution. [(G), (H)] Plots of the steady‐state current‐voltage relationships of the SAG‐induced responses shown above with SAG‐induced currents in control solution (solid rectangles) or SAG‐induced currents in NMDG+‐based solution (open circles) for WT (G) and TRPC−/− (H). Currents obtained before SAG application (control) were digitally subtracted from the curves. Data points were fit by a polynomial function. The inset in H shows a magnification of the curve obtained with Na+. (I) Comparison of the dose dependence of averaged SAG‐induced currents (at −70 mV) from multiple WT (black bars) and TRPC−/− VSNs (gray bars). Data are the means ± SEM for the number of cells indicated above each bar (reprinted from with permission from Elsevier).



Figure 4.

TRPC3 and TRPC6. [(A), (B)] Current‐voltage relations of whole cell recordings in HEK 293 cells transiently cotransfected with plasmids encoding eGFP, the H1 histamine receptor and human TRPC3 (A) or human TRPC6 (B) before (basal) and after application of receptor agonist (histamine). Insets: time course of currents at +60 and –60 mV in TRPC3‐ and TRPC6‐expressing cells before and after application of histamine. Duration of histamine applications is indicated by bars . (C) Time course of whole‐cell TRPC3‐expressing HEK cell currents at −80 mV, application of OAG (100 μM), and Ca2+ (2 mM) is indicated (left panel). Current‐voltage relations were obtained at the indicated time points (right panel) . (D) Time course of inside‐out TRPC6‐expressing CHO‐K1 currents, application of OAG (100 μM, left panel), and SAG (10 μM, right panel) are indicated. Insets show sample traces collected at different indicated positions (reprinted from by permission from Macmilan Publishers Ltd, copyright 1999).



Figure 5.

TRPM2. (A) Time course of whole‐cell currents at −80 and +80 mV. Only tetracycline‐induced HEK‐293 cells expressing Flag‐LTRPC2 generated large inward and outward currents when perfused with 100 μM ADPR. I‐V relationships of ADPR‐induced currents at different times after break corresponding to panel A (reprinted from by permission from Macmilan Publishers Ltd, copyright 2001).



Figure 6.

TRPM3. (A) Time course of whole‐cell currents at +150 and −150 mV in TRPM3‐expressing HEK cells activated by temperature or pregnenolone sulphate (PS, 50 μM). (B) Representative current‐voltage relations obtained from time points indicated in A (reprinted from with permission from Elsevier).



Figure 7.

TRPM4 and TRPM5. (A) Time course of whole‐cell TRPM4 (left) or TRPM5 (right)‐expressing HEK currents at +80 and ‐120 mV in the presence of 100 or 1 μM [Ca2+]i (respectively, for TRPM4 or TRPM5). (B) current‐voltage (I‐V) relations elicited by a voltage ramp from −150 to +100 mV corresponding to the different time points indicated in panel A. Note the increase in the outward rectification ratio in B (b‐scaled, gray). (C) Current traces of TRPM4 and TRPM5 at 10 μM [Ca2+]i. Starting from a holding potential of 0 mV, the voltage protocol consisted of 400 ms presteps ranging from −100 to +140 mV (increment 20 mV) followed by a 200 ms test step to −100 mV (reprinted from with permission from Elsevier).



Figure 8.

TRPM6 and TRPM7. (A) Simultaneous recording of intracellular Mg2+ (top) and the whole‐cell current at 80 and –80 mV (bottom) in TRPM6 expressing HEK cells before and after flash photolysis (arrow) of DM‐nitrophen . (B) Outward current during a 100‐ms step to 100 mV, which was recorded during the gap in the recording shown in panel A, showing the rapid current inhibition after the flash . (C) Current‐voltage relations obtained at the time points indicated in panel A . (D) Dose‐response curve showing the inhibition of the TRPM6‐induced currents by flash‐induced increases in intracellular Mg2+ to different levels . (E) Time course of whole‐cell TRPM7‐expressing HEK currents at −80 and +80 mV. Cells were perfused with internal solutions containing various ATP concentrations (0 mM, 1 mM, 6 mM Mg.ATP or 2mM Na.ATP) (reprinted from by permission from Macmilan Publishers Ltd, copyright 2001).



Figure 9.

TRPM8. (A) Current‐voltage relations of whole‐cell TRPM8 currents activated by menthol (100 μM). Currents were measured during 200‐ms voltage ramps from −100 to +100 mV. (B) Current‐voltage relations of whole‐cell TRPM8 currents activated by cold (15 °C). Currents were measured during 200‐ms voltage ramps from −100 to +100 mV. (C) Steady‐state activation curves at different temperatures for the currents shown in D. (D) TRPM8 current traces at different temperatures in response to the indicated voltage protocol (adapted from ).



Figure 10.

TRPML1. (A) Cartoons of three distinct patch‐clamp configurations of lysosomal recordings: lysosome‐attached, lysosome luminal‐side‐out, and whole‐lysosome. In each configuration, the pink arrow indicates the direction of the inward (at negative potentials; flow out of the lysosomes) current mediated by TRPML1 (reprinted from by permission from Macmilan Publishers Ltd, copyright 2008). (B) Current‐voltage relations in lysosomes expressing TRPMLVa recorded using the luminal‐side‐out configuration and a voltage ramp from −140 to +140 mV in the presence of different Fe2+ concentrations (reprinted from by permission from Macmilan Publishers Ltd, copyright 2008). (C) Current‐voltage relations in lysosomes expressing TRPML1 recorded using the whole‐endolysosome configuration and a voltage ramp from −140 to +140 mV in the presence of PI(3)P or PI(3,5)P2 (reprinted from by permission from Macmilan Publishers Ltd, copyright 2010).



Figure 11.

TRPML3. (A) Currents elicited from wild type (black), A419P mutant (red), and I362/A419P mutant (green) in response to 5‐ms voltage steps from a holding potential of 50 mV between 200 and 100 mV in 20‐mV incremental steps. Black bars indicate zero current line. (B) Steady‐state current‐voltage plots from A normalized to cell capacitance (adapted from by permission National Academy of Sciences, U.S.A., copyright 2007).



Figure 12.

TRPP2. (A) Comparison of whole‐cell currents in GFP‐ and TRPP2‐expressing HEK cells. Step pulses from −100 to +160 mV in 20 mV increments with a postpulse to −100 mV were applied. (B) Voltage dependence of open probabilities (Po) obtained by normalization of tail currents to the maximal amplitude of each individual cell obtained from Boltzmann fits. (C) Current‐voltage relationships for steady‐state currents (open) and instantaneous currents (closed) (adapted from ).



Figure 13.

TRPV1. (A) Whole‐cell current traces of TRPV1 expressing HEK cells at different temperatures in response to voltage steps ranging from −120 to +160 mV . (B) Steady‐state activation curves at different temperatures for the currents shown in A . (C) Responses to capsaicin (10 mM) and extracts derived from four varieties of peppers in oocytes expressing TRPV1. Bottom right, relative potencies of each pepper extract are plotted. Reported pungencies for pepper varieties (in Scoville units) are: Habanero (H), 100,000‐300,000; Thai green (T), 50,000‐100,000; wax (W), 5,000‐10,000; and Poblano verde (P),1,000‐1,500. Capsaicin (C) is rated as 16 × 106 units (reprinted fron by permission from Macmilan Publishers Ltd, copyright 1997).



Figure 14.

TRPV2. (A) Representative current responses of untransfected (water), TRPV1 (VR1), or TRPV2 (VRL‐1)‐transfected HEK cell in response to a temperature ramp (lower panel) (reprinted from by permission from Macmilan Publishers Ltd, copyright 1999). (B) Representative current responses of untransfected (water), TRPV1 (VR1), or TRPV2 (VRL‐1)‐transfected HEK cell in response to capsaicin, acid, or temperature (reprinted from by permission from Macmilan Publishers Ltd, copyright 1999). (C) I‐V relation in hTRPV2‐expressing HEK cells using a voltage ramp from −100 to +150 mV in control and after THC (30 μM) application.



Figure 15.

TRPV3. (A) Whole‐cell current traces of p‐Tracer (left) or TRPV3 (right) expressing CHO‐K1 cells in response to a temperature stimulus of 34°C using voltage steps ranging from −100 to +100 mV in 10 mV increments (reprinted from by permission from Macmilan Publishers Ltd, copyright 2002). (B) Representative single‐channel currents (Vh = 60 mV) of TRPV3 expressing CHO‐K1 cells in response to a temperature ramp from 25.5 to 37 °C. Dashed lines indicate the closed state (reprinted from by permission from Macmilan Publishers Ltd, copyright 2002). (C) Time course of whole‐cell mTRPV3 currents at −80 and +80 mV after repeated application of eugenol (2 mM) (reprinted from (489) by permission from Macmilan Publishers Ltd, copyright 2006).



Figure 16.

TRPV4. [(A)‐(C)] Time course of TRPV4 currents at −150 and +150 mV before and during application of (A) 4α‐PDD (1 μM), (B) hypotonic solution (240 mOsm) or AA (10 μM). (D) I‐V relationships of control and AA‐induced currents corresponding to panel C.



Figure 17.

TRPV5 and TRPV6. (A) Current‐voltage (I‐V) relation obtained in TRPV5 expressing CHO‐K1 cells during a 500‐ms linear voltage‐ramp from −100 to 100 mV (reprinted from by permission from Macmilan Publishers Ltd, copyright 2002). (B) I‐V relation obtained in TRPV6 expressing HEK cells during a 200‐ms linear voltage‐ramp from −150 to 100 mV . (C) Whole‐cell current traces in TRPV5 expressing CHO‐K1 cells using voltage steps ranging from −120 to +80 mV in 20 mV increments from a holding potential of 0 mV (reprinted from by permission from Macmilan Publishers Ltd, copyright 2002). (D) Whole‐cell current traces in TRPV6 expressing HEK cells using voltage steps ranging from −180 to +100 mV in 20 mV increments from a holding potential of 0 mV .

 1. Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M. A key role for TRPM7 channels in anoxic neuronal death. Cell 115: 863‐877, 2003.
 2. AbouAlaiwi WA, Takahashi M, Mell BR, Jones TJ, Ratnam S, Kolb RJ, Nauli SM. Ciliary polycystin‐2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ Res 104: 860‐869, 2009.
 3. Ahern GP, Wang X, Miyares RL. Polyamines are potent ligands for the capsaicin receptor TRPV1. J Biol Chem 281: 8991‐8995, 2006.
 4. Albert AP. Activation of TRPC6 channel proteins: Evidence for an essential role of phosphorylation. J Physiol 561: 354, 2004.
 5. Albert AP, Large WA. Synergism between inositol phosphates and diacylglycerol on native TRPC6‐like channels in rabbit portal vein myocytes. J Physiol 552: 789‐795, 2003.
 6. Alessandri‐Haber N, Dina OA, Joseph EK, Reichling D, Levine JD. A transient receptor potential vanilloid 4‐dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators. J Neurosci 26: 3864‐3874, 2006.
 7. Alessandri‐Haber N, Joseph E, Dina OA, Liedtke W, Levine JD. TRPV4 mediates pain‐related behavior induced by mild hypertonic stimuli in the presence of inflammatory mediator. Pain 118: 70‐79, 2005.
 8. Altarescu G, Sun M, Moore DF, Smith JA, Wiggs EA, Solomon BI, Patronas NJ, Frei KP, Gupta S, Kaneski CR, Quarrell OW, Slaugenhaupt SA, Goldin E, Schiffmann R. The neurogenetics of mucolipidosis type IV. Neurology 59: 306‐313, 2002.
 9. Alvarez DF, King JA, Weber D, Addison E, Liedtke W, Townsley MI. Transient receptor potential vanilloid 4‐mediated disruption of the alveolar septal barrier: A novel mechanism of acute lung injury. Circ Res 99: 988‐995, 2006.
 10. Amaral MD, Pozzo‐Miller L. TRPC3 channels are necessary for brain‐derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation. J Neurosci 27: 5179‐5189, 2007.
 11. Andersson DA, Chase HW, Bevan S. TRPM8 activation by menthol, icilin, and cold is differentially modulated by intracellular pH. J Neurosci 24: 5364‐5369, 2004.
 12. Andre E, Gatti R, Trevisani M, Preti D, Baraldi PG, Patacchini R, Geppetti P. Transient receptor potential ankyrin receptor 1 is a novel target for pro‐tussive agents. Br J Pharmacol 158: 1621‐1628, 2009.
 13. Aoyagi K, Ohara‐Imaizumi M, Nishiwaki C, Nakamichi Y, Nagamatsu S. Insulin/phosphatidylinositol 3‐kinase pathway accelerates the glucose‐induced first phase insulin secretion through TrpV2 recruitment in pancreatic beta‐cells. Biochem J.
 14. Arniges M, Fernandez‐Fernandez JM, Albrecht N, Schaefer M, Valverde MA. Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J Biol Chem 281: 1580‐1586, 2006.
 15. Asakawa M, Yoshioka T, Matsutani T, Hikita I, Suzuki M, Oshima I, Tsukahara K, Arimura A, Horikawa T, Hirasawa T, Sakata T. Association of a mutation in TRPV3 with defective hair growth in rodents. J Invest Dermatol 126: 2664‐2672, 2006.
 16. Atoyan R, Shander D, Botchkareva NV. Non‐neuronal expression of transient receptor potential type A1 (TRPA1) in human skin. J Invest Dermatol 129: 2312‐2315, 2009.
 17. Audo I, Kohl S, Leroy BP, Munier FL, Guillonneau X, Mohand‐Said S, Bujakowska K, Nandrot EF, Lorenz B, Preising M, Kellner U, Renner AB, Bernd A, Antonio A, Moskova‐Doumanova V, Lancelot ME, Poloschek CM, Drumare I, Defoort‐Dhellemmes S, Wissinger B, Leveillard T, Hamel CP, Schorderet DF, De Baere E, Berger W, Jacobson SG, Zrenner E, Sahel JA, Bhattacharya SS, Zeitz C. TRPM1 is mutated in patients with autosomal‐recessive complete congenital stationary night blindness. Am J Hum Genet 85: 720‐729, 2009.
 18. Auer‐Grumbach M, Olschewski A, Papic L, Kremer H, McEntagart ME, Uhrig S, Fischer C, Frohlich E, Balint Z, Tang B, Strohmaier H, Lochmuller H, Schlotter‐Weigel B, Senderek J, Krebs A, Dick KJ, Petty R, Longman C, Anderson NE, Padberg GW, Schelhaas HJ, van Ravenswaaij‐Arts CM, Pieber TR, Crosby AH, Guelly C. Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nat Genet 42: 160‐164, 2010.
 19. Bach G. Mucolipidosis type IV. Mol Genet Metab 73: 197‐203, 2001.
 20. Bai CX, Giamarchi A, Rodat‐Despoix L, Padilla F, Downs T, Tsiokas L, Delmas P. Formation of a new receptor‐operated channel by heteromeric assembly of TRPP2 and TRPC1 subunits. EMBO Rep 9: 472‐479, 2008.
 21. Bai CX, Kim S, Li WP, Streets AJ, Ong AC, Tsiokas L. Activation of TRPP2 through mDia1‐dependent voltage gating. Embo J 27: 1345‐1356, 2008.
 22. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41: 849‐857, 2004.
 23. Banke TG, Chaplan SR, Wickenden AD. Dynamic changes in the TRPA1 selectivity filter lead to progressive but reversible pore dilation. Am J Physiol Cell Physiol 298: C1457‐C1468, 2010.
 24. Baraldi PG, Preti D, Materazzi S, Geppetti P. Transient receptor potential ankyrin 1 (TRPA1) channel as emerging target for novel analgesics and anti‐inflammatory agents. J Med Chem 53: 5085‐5107, 2010.
 25. Barbet G, Demion M, Moura IC, Serafini N, Leger T, Vrtovsnik F, Monteiro RC, Guinamard R, Kinet JP, Launay P. The calcium‐activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nat Immunol 9: 1148‐1156, 2008.
 26. Bargal R, Avidan N, Ben‐Asher E, Olender Z, Zeigler M, Frumkin A, Raas‐Rothschild A, Glusman G, Lancet D, Bach G. Identification of the gene causing mucolipidosis type IV. Nat Genet 26: 118‐123, 2000.
 27. Basora N, Boulay G, Bilodeau L, Rousseau E, Payet MD. 20‐hydroxyeicosatetraenoic acid (20‐HETE) activates mouse TRPC6 channels expressed in HEK293 cells. J Biol Chem 278: 31709‐31716, 2003.
 28. Basora N, Nomura H, Berger UV, Stayner C, Guo L, Shen X, Zhou J. Tissue and cellular localization of a novel polycystic kidney disease‐like gene product, polycystin‐L. J Am Soc Nephrol 13: 293‐301, 2002.
 29. Bassi MT, Manzoni M, Monti E, Pizzo MT, Ballabio A, Borsani G. Cloning of the gene encoding a novel integral membrane protein, mucolipidin‐and identification of the two major founder mutations causing mucolipidosis type IV. Am J Hum Genet 67: 1110‐1120, 2000.
 30. Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124: 1269‐1282, 2006.
 31. Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Hogestatt ED, Julius D, Jordt SE, Zygmunt PM. Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci U S A 102: 12248‐12252, 2005.
 32. Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448: 204‐208, 2007.
 33. Becker EB, Fogel BL, Rajakulendran S, Dulneva A, Hanna MG, Perlman SL, Geschwind DH, Davies KE. Candidate screening of the TRPC3 gene in cerebellar ataxia. Cerebellum 10: 296‐309, 2011.
 34. Becker EB, Oliver PL, Glitsch MD, Banks GT, Achilli F, Hardy A, Nolan PM, Fisher EM, Davies KE. A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. Proc Natl Acad Sci U S A 106: 6706‐6711, 2009.
 35. Beech DJ, Muraki K, Flemming R. Non‐selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. J Physiol 559: 685‐706, 2004.
 36. Behrendt HJ, Germann T, Gillen C, Hatt H, Jostock R. Characterization of the mouse cold‐menthol receptor TRPM8 and vanilloid receptor type‐1 VR1 using a fluorometric imaging plate reader (FLIPR) assay. Br J Pharmacol 141: 737‐745, 2004.
 37. Ben‐Mabrouk F, Tryba AK. Substance P modulation of TRPC3/7 channels improves respiratory rhythm regularity and ICAN‐dependent pacemaker activity. Eur J Neurosci 31: 1219‐1232, 2010.
 38. Bessac BF, Sivula M, von Hehn CA, Caceres AI, Escalera J, Jordt SE. Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases. Faseb J 23: 1102‐1114, 2009.
 39. Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE. TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest 118: 1899‐1910, 2008.
 40. Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE. Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 6: 709‐720, 2004.
 41. Bhargave G, Woodworth BA, Xiong G, Wolfe SG, Antunes MB, Cohen NA. Transient receptor potential vanilloid type 4 channel expression in chronic rhinosinusitis. Am J Rhinol 22: 7‐12, 2008.
 42. Bhunia AK, Piontek K, Boletta A, Liu L, Qian F, Xu PN, Germino FJ, Germino GG. PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK‐STAT signaling pathway in a process requiring PKD2. Cell 109: 157‐168, 2002.
 43. Bianco SD, Peng JB, Takanaga H, Suzuki Y, Crescenzi A, Kos CH, Zhuang L, Freeman MR, Gouveia CH, Wu J, Luo H, Mauro T, Brown EM, Hediger MA. Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene. J Bone Miner Res 22: 274‐285, 2007.
 44. Birrell MA, Belvisi MG, Grace M, Sadofsky L, Faruqi S, Hele DJ, Maher SA, Freund‐Michel V, Morice AH. TRPA1 agonists evoke coughing in guinea pig and human volunteers. Am J Respir Crit Care Med 180: 1042‐1047, 2009.
 45. Blair NT, Kaczmarek JS, Clapham DE. Intracellular calcium strongly potentiates agonist‐activated TRPC5 channels. J Gen Physiol 133: 525‐546, 2009.
 46. Bolcskei K, Helyes Z, Szabo A, Sandor K, Elekes K, Nemeth J, Almasi R, Pinter E, Petho G, Szolcsanyi J. Investigation of the role of TRPV1 receptors in acute and chronic nociceptive processes using gene‐deficient mice. Pain 117: 368‐376, 2005.
 47. Boulay G. Ca(2+)‐calmodulin regulates receptor‐operated Ca(2+) entry activity of TRPC6 in HEK‐293 cells. Cell Calcium 32: 201‐207, 2002.
 48. Bowlus CL. The role of iron in T cell development and autoimmunity. Autoimmun Rev 2: 73‐78, 2003.
 49. Brierley SM, Hughes PA, Page AJ, Kwan KY, Martin CM, O'Donnell TA, Cooper NJ, Harrington AM, Adam B, Liebregts T, Holtmann G, Corey DP, Rychkov GY, Blackshaw LA. The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology 137: 2084‐2095 e2083, 2009.
 50. Brixel LR, Monteilh‐Zoller MK, Ingenbrandt CS, Fleig A, Penner R, Enklaar T, Zabel BU, Prawitt D. TRPM5 regulates glucose‐stimulated insulin secretion. Pflugers Arch 460: 69‐76, 2010.
 51. Cable J, Steel KP. Combined cochleo‐saccular and neuroepithelial abnormalities in the Varitint‐waddler‐J (VaJ) mouse. Hear Res 123: 125‐136, 1998.
 52. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen‐Zeitz KR, Koltzenburg M, Basbaum AI, Julius D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288: 306‐313, 2000.
 53. Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D. A capsaicin‐receptor homologue with a high threshold for noxious heat. Nature 398: 436‐441, 1999.
 54. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: A heat‐activated ion channel in the pain pathway. Nature 389: 816‐824, 1997.
 55. Celic A, Petri ET, Demeler B, Ehrlich BE, Boggon TJ. Domain mapping of the polycystin‐2 C‐terminal tail using de novo molecular modeling and biophysical analysis. J Biol Chem 283: 28305‐28312, 2008.
 56. Cha SK, Jabbar W, Xie J, Huang CL. Regulation of TRPV5 single‐channel activity by intracellular pH. J Membr Biol 220: 79‐85, 2007.
 57. Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG. The beta‐glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 310: 490‐493, 2005.
 58. Chapin HC, Caplan MJ. The cell biology of polycystic kidney disease. J Cell Biol 191: 701‐710, 2010.
 59. Chen CS, Bach G, Pagano RE. Abnormal transport along the lysosomal pathway in mucolipidosis, type IV disease. Proc Natl Acad Sci U S A 95: 6373‐6378, 1998.
 60. Chen XZ, Vassilev PM, Basora N, Peng JB, Nomura H, Segal Y, Brown EM, Reeders ST, Hediger MA, Zhou J. Polycystin‐L is a calcium‐regulated cation channel permeable to calcium ions. Nature 401: 383‐386, 1999.
 61. Chen Y, Zhang Z, Lv XY, Wang YD, Hu ZG, Sun H, Tan RZ, Liu YH, Bian GH, Xiao Y, Li QW, Yang QT, Ai JZ, Feng L, Yang Y, Wei YQ, Zhou Q. Expression of Pkd2l2 in testis is implicated in spermatogenesis. Biol Pharm Bull 31: 1496‐1500, 2008.
 62. Cheng W, Yang F, Takanishi CL, Zheng J. Thermosensitive TRPV channel subunits coassemble into heteromeric channels with intermediate conductance and gating properties. J Gen Physiol 129: 191‐207, 2007.
 63. Cheng X, Jin J, Hu L, Shen D, Dong XP, Samie MA, Knoff J, Eisinger B, Liu ML, Huang SM, Caterina MJ, Dempsey P, Michael LE, Dlugosz AA, Andrews NC, Clapham DE, Xu H. TRP channel regulates EGFR signaling in hair morphogenesis and skin barrier formation. Cell 141: 331‐343.
 64. Chuang HH, Neuhausser WM, Julius D. The super‐cooling agent icilin reveals a mechanism of coincidence detection by a temperature‐sensitive TRP channel. Neuron 43: 859‐869, 2004.
 65. Chubanov V, Waldegger S, Mederos Y, Schnitzler M, Vitzthum H, Sassen MC, Seyberth HW, Konrad M, Gudermann T. Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci U S A 101: 2894‐2899, 2004.
 66. Chung MK, Guler AD, Caterina MJ. Biphasic currents evoked by chemical or thermal activation of the heat‐gated ion channel, TRPV3. J Biol Chem 280: 15928‐15941, 2005.
 67. Chung MK, Lee H, Caterina MJ. Warm temperatures activate TRPV4 in mouse 308 keratinocytes. J Biol Chem 278: 32037‐32046, 2003.
 68. Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ. TRPV3 and TRPV4 mediate warmth‐evoked currents in primary mouse keratinocytes. J Biol Chem 279: 21569‐21575, 2004.
 69. Chung YH, Sun Ahn H, Kim D, Hoon Shin D, Su Kim S, Yong Kim K, Bok Lee W, and Ik Cha C. Immunohistochemical study on the distribution of TRPC channels in the rat hippocampus. Brain Res 1085: 132‐137, 2006.
 70. Clapham DE. TRP channels as cellular sensors. Nature 426: 517‐524, 2003.
 71. Colburn RW, Lubin ML, Stone DJ Jr, Wang Y, Lawrence D, D'Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N. Attenuated cold sensitivity in TRPM8 null mice. Neuron 54: 379‐386, 2007.
 72. Colsoul B, Schraenen A, Lemaire K, Quintens R, Van Lommel L, Segal A, Owsianik G, Talavera K, Voets T, Margolskee RF, Kokrashvili Z, Gilon P, Nilius B, Schuit FC, Vennekens R. Loss of high‐frequency glucose‐induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5‐/‐ mice. Proc Natl Acad Sci U S A 107: 5208‐5213, 2010.
 73. Corey DP, Garcia‐Anoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung EL, Derfler BH, Duggan A, Geleoc GS, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang DS. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432: 723‐730, 2004.
 74. Cosens DJ, Manning A. Abnormal electroretinogram from a Drosophila mutant. Nature 224: 285‐287, 1969.
 75. Cuajungco MP, Samie MA. The varitint‐waddler mouse phenotypes and the TRPML3 ion channel mutation: Cause and consequence. Pflugers Arch 457: 463‐473, 2008.
 76. Curry FR, Glass CA. TRP channels and the regulation of vascular permeability: new insights from the lung microvasculature. Circ Res 99: 915‐917, 2006.
 77. Damak S, Rong M, Yasumatsu K, Kokrashvili Z, Perez CA, Shigemura N, Yoshida R, Mosinger B Jr, Glendinning JI, Ninomiya Y, Margolskee RF. Trpm5 null mice respond to bitter, sweet, and umami compounds. Chem Senses 31: 253‐264, 2006.
 78. Dardenne O, Prud'homme J, Arabian A, Glorieux FH, St‐Arnaud R. Targeted inactivation of the 25‐hydroxyvitamin D(3)‐1(alpha)‐hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D‐deficiency rickets. Endocrinology 142: 3135‐3141, 2001.
 79. Davare MA, Fortin DA, Saneyoshi T, Nygaard S, Kaech S, Banker G, Soderling TR, Wayman GA. Transient receptor potential canonical 5 channels activate Ca2+/calmodulin kinase Igamma to promote axon formation in hippocampal neurons. J Neurosci 29: 9794‐9808, 2009.
 80. Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA. Vanilloid receptor‐1 is essential for inflammatory thermal hyperalgesia. Nature 405: 183‐187, 2000.
 81. De March Z, Giampa C, Patassini S, Bernardi G, Fusco FR. Cellular localization of TRPC5 in the substantia nigra of rat. Neurosci Lett 402: 35‐39, 2006.
 82. Delmas P. Polycystins: From mechanosensation to gene regulation. Cell 118: 145‐148, 2004.
 83. Delmas P, Padilla F, Osorio N, Coste B, Raoux M, Crest M. Polycystins, calcium signaling, and human diseases. Biochem Biophys Res Commun 322: 1374‐1383, 2004.
 84. Deng HX, Klein CJ, Yan J, Shi Y, Wu Y, Fecto F, Yau HJ, Yang Y, Zhai H, Siddique N, Hedley‐Whyte ET, Delong R, Martina M, Dyck PJ, Siddique T. Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet 42: 165‐169, 2010.
 85. Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A. TRPM8 is required for cold sensation in mice. Neuron 54: 371‐378, 2007.
 86. Di Palma F, Belyantseva IA, Kim HJ, Vogt TF, Kachar B, Noben‐Trauth K. Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint‐waddler (Va) mice. Proc Natl Acad Sci U S A 99: 14994‐14999, 2002.
 87. Dietrich A, Kalwa H, Rost BR, Gudermann T. The diacylgylcerol‐sensitive TRPC3/6/7 subfamily of cation channels: Functional characterization and physiological relevance. Pflugers Arch 451: 72‐80, 2005.
 88. Dietrich A, Kalwa H, Storch U, Mederos y Schnitzler M, Salanova B, Pinkenburg O, Dubrovska G, Essin K, Gollasch M, Birnbaumer L, Gudermann T. Pressure‐induced and store‐operated cation influx in vascular smooth muscle cells is independent of TRPC1. Pflugers Arch 455: 465‐477, 2007.
 89. Dietrich A, Mederos y Schnitzler M, Emmel J, Kalwa H, Hofmann T, Gudermann T. N‐linked protein glycosylation is a major determinant for basal TRPC3 and TRPC6 channel activity. J Biol Chem 278: 47842‐47852, 2003.
 90. Dietrich A, Mederos YSM, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T, Birnbaumer L. Increased vascular smooth muscle contractility in TRPC6‐/‐ mice. Mol Cell Biol 25: 6980‐6989, 2005.
 91. Diogenes A, Akopian AN, Hargreaves KM. NGF up‐regulates TRPA1: Implications for orofacial pain. J Dent Res 86: 550‐555, 2007.
 92. Doerner JF, Gisselmann G, Hatt H, Wetzel CH. Transient receptor potential channel A1 is directly gated by calcium ions. J Biol Chem 282: 13180‐13189, 2007.
 93. Dong XP, Cheng X, Mills E, Delling M, Wang F, Kurz T, Xu H. The type IV mucolipidosis‐associated protein TRPML1 is an endolysosomal iron release channel. Nature 455: 992‐996, 2008.
 94. Dong XP, Shen D, Wang X, Dawson T, Li X, Zhang Q, Cheng X, Zhang Y, Weisman LS, Delling M, Xu H. PI(3,5)P(2) controls membrane traffic by direct activation of mucolipin Ca release channels in the endolysosome. Nat Commun 1: 38, 2010.
 95. Dong XP, Wang X, Shen D, Chen S, Liu M, Wang Y, Mills E, Cheng X, Delling M, Xu H. Activating mutations of the TRPML1 channel revealed by proline‐scanning mutagenesis. J Biol Chem 284: 32040‐32052, 2009.
 96. Dong XP, Wang X, Xu H. TRP channels of intracellular membranes. J Neurochem 113: 313‐328, 2010.
 97. Drennan D, Ryazanov AG. Alpha‐kinases: Analysis of the family and comparison with conventional protein kinases. Prog Biophys Mol Biol 85: 1‐32, 2004.
 98. Du W, Huang J, Yao H, Zhou K, Duan B, Wang Y. Inhibition of TRPC6 degradation suppresses ischemic brain damage in rats. J Clin Invest 120: 3480‐3492, 2010.
 99. Duncan LM, Deeds J, Cronin FE, Donovan M, Sober AJ, Kauffman M, McCarthy JJ. Melastatin expression and prognosis in cutaneous malignant melanoma. J Clin Oncol 19: 568‐576, 2001.
 100. Duncan LM, Deeds J, Hunter J, Shao J, Holmgren LM, Woolf EA, Tepper RI, Shyjan AW. Down‐regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res 58: 1515‐1520, 1998.
 101. Estacion M, Li S, Sinkins WG, Gosling M, Bahra P, Poll C, Westwick J, Schilling WP. Activation of human TRPC6 channels by receptor stimulation. J Biol Chem 279: 22047‐22056, 2004.
 102. Everaerts W, Gees M, Alpizar YA, Farre R, Leten C, Apetrei A, Dewachter I, van Leuven F, Vennekens R, De Ridder D, Nilius B, Voets T, Talavera K. The capsaicin receptor TRPV1 is a crucial mediator of the noxious effects of mustard oil. Curr Biol 21: 316‐321, 2011.
 103. Everaerts W, Nilius B, Owsianik G. The vanilloid transient receptor potential channel TRPV4: From structure to disease. Prog Biophys Mol Biol 103: 2‐17, 2010.
 104. Everaerts W, Sepulveda MR, Gevaert T, Roskams T, Nilius B, De Ridder D. Where is TRPV1 expressed in the bladder, do we see the real channel? Naunyn Schmiedebergs Arch Pharmacol 379: 421‐425, 2009.
 105. Everaerts W, Zhen X, Ghosh D, Vriens J, Gevaert T, Gilbert JP, Hayward NJ, McNamara CR, Xue F, Moran MM, Strassmaier T, Uykal E, Owsianik G, Vennekens R, De Ridder D, Nilius B, Fanger CM, Voets T. Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide‐induced cystitis. Proc Natl Acad Sci U S A, 107(44): 19084‐19089, 2010.
 106. Facemire CS, Mohler PJ, Arendshorst WJ. Expression and relative abundance of short transient receptor potential channels in the rat renal microcirculation. Am J Physiol Renal Physiol 286: F546‐F551, 2004.
 107. Fajardo O, Meseguer V, Belmonte C, Viana F. TRPA1 channels mediate cold temperature sensing in mammalian vagal sensory neurons: Pharmacological and genetic evidence. J Neurosci 28: 7863‐7875, 2008.
 108. Fernihough J, Gentry C, Bevan S, Winter J. Regulation of calcitonin gene‐related peptide and TRPV1 in a rat model of osteoarthritis. Neurosci Lett 388: 75‐80, 2005.
 109. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441: 179‐185, 2006.
 110. Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S. Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res 26: 159‐178, 2006.
 111. Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B. Lack of an endothelial store‐operated Ca2+ current impairs agonist‐dependent vasorelaxation in TRP4‐/‐ mice. Nat Cell Biol 3: 121‐127, 2001.
 112. Gailly P, Colson‐Van Schoor M. Involvement of trp‐2 protein in store‐operated influx of calcium in fibroblasts. Cell Calcium 30: 157‐165, 2001.
 113. Gao H, Wang Y, Wegierski T, Skouloudaki K, Putz M, Fu X, Engel C, Boehlke C, Peng H, Kuehn EW, Kim E, Kramer‐Zucker A, Walz G. PRKCSH/80K‐H, the protein mutated in polycystic liver disease, protects polycystin‐2/TRPP2 against HERP‐mediated degradation. Hum Mol Genet 19: 16‐24, 2010.
 114. Gaudet R. TRP channels entering the structural era. J Physiol 586: 3565‐3575, 2008.
 115. Geng L, Boehmerle W, Maeda Y, Okuhara DY, Tian X, Yu Z, Choe CU, Anyatonwu GI, Ehrlich BE, Somlo S. Syntaxin 5 regulates the endoplasmic reticulum channel‐release properties of polycystin‐2. Proc Natl Acad Sci U S A 105: 15920‐15925, 2008.
 116. Geppetti P, Materazzi S, Nicoletti P. The transient receptor potential vanilloid 1: Role in airway inflammation and disease. Eur J Pharmacol 533: 207‐214, 2006.
 117. Geppetti P, Trevisani M. Activation and sensitisation of the vanilloid receptor: Role in gastrointestinal inflammation and function. Br J Pharmacol 141: 1313‐1320, 2004.
 118. Gerzanich V, Woo SK, Vennekens R, Tsymbalyuk O, Ivanova S, Ivanov A, Geng Z, Chen Z, Nilius B, Flockerzi V, Freichel M, Simard JM. De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury. Nat Med 15: 185‐191, 2009.
 119. Gevaert T, Vriens J, Segal A, Everaerts W, Roskams T, Talavera K, Owsianik G, Liedtke W, Daelemans D, Dewachter I, Van Leuven F, Voets T, De Ridder D, Nilius B. Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J Clin Invest 117: 3453‐3462, 2007.
 120. Gibson HE, Edwards JG, Page RS, Van Hook MJ, Kauer JA. TRPV1 channels mediate long‐term depression at synapses on hippocampal interneurons. Neuron 57: 746‐759, 2008.
 121. Gkika D, Mahieu F, Nilius B, Hoenderop JG, Bindels RJ. 80K‐H as a new Ca2+ sensor regulating the activity of the epithelial Ca2+ channel transient receptor potential cation channel V5 (TRPV5). J Biol Chem 279: 26351‐26357, 2004.
 122. Gkika D, Topala CN, Chang Q, Picard N, Thebault S, Houillier P, Hoenderop JG, Bindels RJ. Tissue kallikrein stimulates Ca(2+) reabsorption via PKC‐dependent plasma membrane accumulation of TRPV5. Embo J 25: 4707‐4716, 2006.
 123. Glitsch MD. Activation of native TRPC3 cation channels by phospholipase D. Faseb J 24: 318‐325, 2010.
 124. Gonzalez‐Perrett S, Batelli M, Kim K, Essafi M, Timpanaro G, Moltabetti N, Reisin IL, Arnaout MA, Cantiello HF. Voltage dependence and pH regulation of human polycystin‐2‐mediated cation channel activity. J Biol Chem 277: 24959‐24966, 2002.
 125. Gopinath P, Wan E, Holdcroft A, Facer P, Davis JB, Smith GD, Bountra C, Anand P. Increased capsaicin receptor TRPV1 in skin nerve fibres and related vanilloid receptors TRPV3 and TRPV4 in keratinocytes in human breast pain. BMC Womens Health 5: 2, 2005.
 126. Gradilone SA, Masyuk AI, Splinter PL, Banales JM, Huang BQ, Tietz PS, Masyuk TV, Larusso NF. Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc Natl Acad Sci U S A 104: 19138‐19143, 2007.
 127. Gradilone SA, Masyuk TV, Huang BQ, Banales JM, Lehmann GL, Radtke BN, Stroope A, Masyuk AI, Splinter PL, LaRusso NF. Activation of Trpv4 reduces the hyperproliferative phenotype of cystic cholangiocytes from an animal model of ARPKD. Gastroenterology 139: 304‐314, 2010.
 128. Grand T, Demion M, Norez C, Mettey Y, Launay P, Becq F, Bois P, Guinamard R. 9‐phenanthrol inhibits human TRPM4 but not TRPM5 cationic channels. Br J Pharmacol 153: 1697‐1705, 2008.
 129. Greka A, Navarro B, Oancea E, Duggan A, Clapham DE. TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6: 837‐845, 2003.
 130. Grimm C, Cuajungco MP, van Aken AF, Schnee M, Jors S, Kros CJ, Ricci AJ, Heller S. A helix‐breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint‐waddler mouse. Proc Natl Acad Sci U S A 104: 19583‐19588, 2007.
 131. Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C. Molecular and functional characterization of the melastatin‐related cation channel TRPM3. J Biol Chem 278: 21493‐21501, 2003.
 132. Guatteo E, Chung KK, Bowala TK, Bernardi G, Mercuri NB, Lipski J. Temperature sensitivity of dopaminergic neurons of the substantia nigra pars compacta: Involvement of transient receptor potential channels. J Neurophysiol 94: 3069‐3080, 2005.
 133. Guinamard R, Demion M, Magaud C, Potreau D, Bois P. Functional expression of the TRPM4 cationic current in ventricular cardiomyocytes from spontaneously hypertensive rats. Hypertension 48: 587‐594, 2006.
 134. Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M. Heat‐evoked activation of the ion channel, TRPV4. J Neurosci 22: 6408‐6414, 2002.
 135. Guo L, Schreiber TH, Weremowicz S, Morton CC, Lee C, Zhou J. Identification and characterization of a novel polycystin family member, polycystin‐L2, in mouse and human: sequence, expression, alternative splicing, and chromosomal localization. Genomics 64: 241‐251, 2000.
 136. Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, Sukhatme VP, Guggino WB, Germino GG. Co‐assembly of polycystin‐1 and ‐2 produces unique cation‐permeable currents. Nature 408: 990‐994, 2000.
 137. Hara K, Kokubo Y, Ishiura H, Fukuda Y, Miyashita A, Kuwano R, Sasaki R, Goto J, Nishizawa M, Kuzuhara S, Tsuji S. TRPM7 is not associated with amyotrophic lateral sclerosis‐parkinsonism dementia complex in the Kii peninsula of Japan. Am J Med Genet B Neuropsychiatr Genet 153B: 310‐313.
 138. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y. LTRPC2 Ca2+‐permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9: 163‐173, 2002.
 139. Hardie RC, Minke B. The trp gene is essential for a light‐activated Ca2+ channel in Drosophila photoreceptors. Neuron 8: 643‐651, 1992.
 140. Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, Blum R, Dietrich A, Freichel M, Flockerzi V, Birnbaumer L, Konnerth A. TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59: 392‐398, 2008.
 141. Hayes P, Meadows HJ, Gunthorpe MJ, Harries MH, Duckworth DM, Cairns W, Harrison DC, Clarke CE, Ellington K, Prinjha RK, Barton AJ, Medhurst AD, Smith GD, Topp S, Murdock P, Sanger GJ, Terrett J, Jenkins O, Benham CD, Randall AD, Gloger IS, Davis JB. Cloning and functional expression of a human orthologue of rat vanilloid receptor‐1. Pain 88: 205‐215, 2000.
 142. He LP, Hewavitharana T, Soboloff J, Spassova MA, Gill DL. A functional link between store‐operated and TRPC channels revealed by the 3,5‐bis(trifluoromethyl)pyrazole derivative, BTP2. J Biol Chem 280: 10997‐11006, 2005.
 143. Hellwig N, Albrecht N, Harteneck C, Schultz G, Schaefer M. Homo‐ and heteromeric assembly of TRPV channel subunits. J Cell Sci 118: 917‐928, 2005.
 144. Hermosura MC, Cui AM, Go RC, Davenport B, Shetler CM, Heizer JW, Schmitz C, Mocz G, Garruto RM, Perraud AL. Altered functional properties of a TRPM2 variant in Guamanian ALS and PD. Proc Natl Acad Sci U S A 105: 18029‐18034, 2008.
 145. Hermosura MC, Nayakanti H, Dorovkov MV, Calderon FR, Ryazanov AG, Haymer DS, Garruto RM. A TRPM7 variant shows altered sensitivity to magnesium that may contribute to the pathogenesis of two Guamanian neurodegenerative disorders. Proc Natl Acad Sci U S A 102: 11510‐11515, 2005.
 146. Herson PS, Dulock KA, Ashford ML. Characterization of a nicotinamide‐adenine dinucleotide‐dependent cation channel in the CRI‐G1 rat insulinoma cell line. J Physiol 505(Pt 1): 65‐76, 1997.
 147. Hinman A, Chuang HH, Bautista DM, Julius D. TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A 103(51): 19564‐19568, 2006.
 148. Hoenderop JG, Dardenne O, Van Abel M, van der Kemp AW, Van Os CH, St‐Arnaud R, Bindels RJ. Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25‐dihydroxyvitamin D3 in 25‐hydroxyvitamin D3‐1alpha‐hydroxylase knockout mice. Faseb J 16: 1398‐1406, 2002.
 149. Hoenderop JG, Muller D, Van Der Kemp AW, Hartog A, Suzuki M, Ishibashi K, Imai M, Sweep F, Willems PH, Van Os CH, Bindels RJ. Calcitriol controls the epithelial calcium channel in kidney. J Am Soc Nephrol 12: 1342‐1349, 2001.
 150. Hoenderop JG, van der Kemp AW, Hartog A, van de Graaf SF, van Os CH, Willems PH, Bindels RJ. Molecular identification of the apical Ca2+ channel in 1, 25‐dihydroxyvitamin D3‐responsive epithelia. J Biol Chem 274: 8375‐8378, 1999.
 151. Hoenderop JG, van Leeuwen JP, van der Eerden BC, Kersten FF, van der Kemp AW, Merillat AM, Waarsing JH, Rossier BC, Vallon V, Hummler E, Bindels RJ. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest 112: 1906‐1914, 2003.
 152. Hoenderop JG, Vennekens R, Muller D, Prenen J, Droogmans G, Bindels RJ, Nilius B. Function and expression of the epithelial Ca(2+) channel family: Comparison of mammalian ECaC1 and 2. J Physiol 537: 747‐761, 2001.
 153. Hoenderop JG, Voets T, Hoefs S, Weidema F, Prenen J, Nilius B, Bindels RJ. Homo‐ and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. Embo J 22: 776‐785, 2003.
 154. Hofmann T, Chubanov V, Gudermann T, Montell C. TRPM5 is a voltage‐modulated and Ca(2+)‐activated monovalent selective cation channel. Curr Biol 13: 1153‐1158, 2003.
 155. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397: 259‐263, 1999.
 156. Hofmann T, Schaefer M, Schultz G, Gudermann T. Cloning, expression and subcellular localization of two novel splice variants of mouse transient receptor potential channel 2. Biochem J 351: 115‐122, 2000.
 157. Howard J, Bechstedt S. Hypothesis: A helix of ankyrin repeats of the NOMPC‐TRP ion channel is the gating spring of mechanoreceptors. Curr Biol 14: R224‐R226, 2004.
 158. Hu HZ, Gu Q, Wang C, Colton CK, Tang J, Kinoshita‐Kawada M, Lee LY, Wood JD, Zhu MX. 2‐aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J Biol Chem 279: 35741‐35748, 2004.
 159. Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Trankner D, Ryba NJ, Zuker CS. The cells and logic for mammalian sour taste detection. Nature 442: 934‐938, 2006.
 160. Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF. STIM1 carboxyl‐terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8: 1003‐1010, 2006.
 161. Huang SM, Lee H, Chung MK, Park U, Yu YY, Bradshaw HB, Coulombe PA, Walker JM, Caterina MJ. Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. J Neurosci 28: 13727‐13737, 2008.
 162. Inada H, Iida T, Tominaga M. Different expression patterns of TRP genes in murine B and T lymphocytes. Biochem Biophys Res Commun 350: 762‐767, 2006.
 163. Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, Ito Y, Mori Y. The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)‐adrenoceptor‐activated Ca(2+)‐permeable cation channel. Circ Res 88: 325‐332, 2001.
 164. Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci U S A 103: 12569‐12574, 2006.
 165. Iwata Y, Katanosaka Y, Arai Y, Komamura K, Miyatake K, Shigekawa M. A novel mechanism of myocyte degeneration involving the Ca2+‐permeable growth factor‐regulated channel. J Cell Biol 161: 957‐967, 2003.
 166. Iwata Y, Katanosaka Y, Arai Y, Shigekawa M, Wakabayashi S. Dominant‐negative inhibition of Ca2+ influx via TRPV2 ameliorates muscular dystrophy in animal models. Hum Mol Genet 18: 824‐834, 2009.
 167. Jia Y, Zhou J, Tai Y, Wang Y. TRPC channels promote cerebellar granule neuron survival. Nat Neurosci 10: 559‐567, 2007.
 168. Jiang J, Li M, Yue L. Potentiation of TRPM7 inward currents by protons. J Gen Physiol 126: 137‐150, 2005.
 169. Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 322: 756‐760, 2008.
 170. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427: 260‐265, 2004.
 171. Jung S, Muhle A, Schaefer M, Strotmann R, Schultz G, Plant TD. Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J Biol Chem 278: 3562‐3571, 2003.
 172. Jung S, Strotmann R, Schultz G, Plant TD. TRPC6 is a candidate channel involved in receptor‐stimulated cation currents in A7r5 smooth muscle cells. Am J Physiol Cell Physiol 282: C347‐C359, 2002.
 173. Jungnickel MK, Marrero H, Birnbaumer L, Lemos JR, Florman HM. Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nat Cell Biol 3: 499‐502, 2001.
 174. Kamouchi M, Philipp S, Flockerzi V, Wissenbach U, Mamin A, Raeymaekers L, Eggermont J, Droogmans G, Nilius B. Properties of heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells. J Physiol 518 Pt 2: 345‐358, 1999.
 175. Kaneko S, Kawakami S, Hara Y, Wakamori M, Itoh E, Minami T, Takada Y, Kume T, Katsuki H, Mori Y, Akaike A. A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J Pharmacol Sci 101: 66‐76, 2006.
 176. Kanzaki M, Zhang YQ, Mashima H, Li L, Shibata H, Kojima I. Translocation of a calcium‐permeable cation channel induced by insulin‐like growth factor‐I. Nat Cell Biol 1: 165‐170, 1999.
 177. Karacsonyi C, Miguel AS, Puertollano R. Mucolipin‐2 localizes to the Arf6‐associated pathway and regulates recycling of GPI‐APs. Traffic 8: 1404‐1414, 2007.
 178. Karashima Y, Damann N, Prenen J, Talavera K, Segal A, Voets T, Nilius B. Bimodal action of menthol on the transient receptor potential channel TRPA1. J Neurosci 27: 9874‐9884, 2007.
 179. Karashima Y, Prenen J, Meseguer V, Owsianik G, Voets T, Nilius B. Modulation of the transient receptor potential channel TRPA1 by phosphatidylinositol 4,5‐biphosphate manipulators. Pflugers Arch 457: 77‐89, 2008.
 180. Karashima Y, Prenen J, Talavera K, Janssens A, Voets T, Nilius B. Agonist‐induced changes in Ca(2+) permeation through the nociceptor cation channel TRPA1. Biophys J 98: 773‐783, 2010.
 181. Karashima Y, Talavera K, Everaerts W, Janssens A, Kwan KY, Vennekens R, Nilius B, Voets T. TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci U S A 106: 1273‐1278, 2009.
 182. Kaske S, Krasteva G, Konig P, Kummer W, Hofmann T, Gudermann T, Chubanov V. TRPM5, a taste‐signaling transient receptor potential ion‐channel, is a ubiquitous signaling component in chemosensory cells. BMC Neurosci 8: 49, 2007.
 183. Kedei N, Szabo T, Lile JD, Treanor JJ, Olah Z, Iadarola MJ, Blumberg PM. Analysis of the native quaternary structure of vanilloid receptor 1. J Biol Chem 276: 28613‐28619, 2001.
 184. Keller SA, Jones JM, Boyle A, Barrow LL, Killen PD, Green DG, Kapousta NV, Hitchcock PF, Swank RT, Meisler MH. Kidney and retinal defects (Krd), a transgene‐induced mutation with a deletion of mouse chromosome 19 that includes the Pax2 locus. Genomics 23: 309‐320, 1994.
 185. Kim HJ, Lee GS, Ji YK, Choi KC, Jeung EB. Differential expression of uterine calcium transporter 1 and plasma membrane Ca2+ ATPase 1b during rat estrous cycle. Am J Physiol Endocrinol Metab 291: E234‐E241, 2006.
 186. Kim HJ, Li Q, Tjon‐Kon‐Sang S, So I, Kiselyov K, Muallem S. Gain‐of‐function mutation in TRPML3 causes the mouse Varitint‐Waddler phenotype. J Biol Chem 282: 36138‐36142, 2007.
 187. Kim HJ, Li Q, Tjon‐Kon‐Sang S, So I, Kiselyov K, Soyombo AA, Muallem S. A novel mode of TRPML3 regulation by extracytosolic pH absent in the varitint‐waddler phenotype. Embo J 27: 1197‐1205, 2008.
 188. Kim HJ, Soyombo AA, Tjon‐Kon‐Sang S, So I, Muallem S. The Ca(2+) channel TRPML3 regulates membrane trafficking and autophagy. Traffic 10: 1157‐1167, 2009.
 189. Kim HJ, Yamaguchi S, Li Q, So I, Muallem S. Properties of the TRPML3 channel pore and its stable expansion by the Varitint‐Waddler‐causing mutation. J Biol Chem 285: 16513‐16520.
 190. Kim SJ, Kim YS, Yuan JP, Petralia RS, Worley PF, Linden DJ. Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426: 285‐291, 2003.
 191. Kimchi T, Xu J, Dulac C. A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448: 1009‐1014, 2007.
 192. Kitanaka S, Takeyama K, Murayama A, Sato T, Okumura K, Nogami M, Hasegawa Y, Niimi H, Yanagisawa J, Tanaka T, Kato S. Inactivating mutations in the 25‐hydroxyvitamin D3 1alpha‐hydroxylase gene in patients with pseudovitamin D‐deficiency rickets. N Engl J Med 338: 653‐661, 1998.
 193. Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, Sawaguchi Y, Yoshida T, Wakamori M, Mori E, Numata T, Ishii M, Takemoto H, Ojida A, Watanabe K, Uemura A, Kurose H, Morii T, Kobayashi T, Sato Y, Sato C, Hamachi I, Mori Y. Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci U S A 106: 5400‐5405, 2009.
 194. Klausen TK, Pagani A, Minassi A, Ech‐Chahad A, Prenen J, Owsianik G, Hoffmann EK, Pedersen SF, Appendino G, Nilius B. Modulation of the transient receptor potential vanilloid channel TRPV4 by 4alpha‐phorbol esters: A structure‐activity study. J Med Chem 52: 2933‐2939, 2009.
 195. Knowlton WM, Bifolck‐Fisher A, Bautista DM, McKemy DD. TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold‐mimetics in vivo. Pain 150: 340‐350, 2010.
 196. Koike C, Obara T, Uriu Y, Numata T, Sanuki R, Miyata K, Koyasu T, Ueno S, Funabiki K, Tani A, Ueda H, Kondo M, Mori Y, Tachibana M, Furukawa T. TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade. Proc Natl Acad Sci U S A 107: 332‐337.
 197. Kokrashvili Z, Rodriguez D, Yevshayeva V, Zhou H, Margolskee RF, Mosinger B. Release of endogenous opioids from duodenal enteroendocrine cells requires Trpm5. Gastroenterology 137: 598‐606, 606 e591‐e592, 2009.
 198. Kolisek M, Beck A, Fleig A, Penner R. Cyclic ADP‐ribose and hydrogen peroxide synergize with ADP‐ribose in the activation of TRPM2 channels. Mol Cell 18: 61‐69, 2005.
 199. Kottgen M, Benzing T, Simmen T, Tauber R, Buchholz B, Feliciangeli S, Huber TB, Schermer B, Kramer‐Zucker A, Hopker K, Simmen KC, Tschucke CC, Sandford R, Kim E, Thomas G, Walz G. Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. Embo J 24: 705‐716, 2005.
 200. Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S. Polycystin‐2 is an intracellular calcium release channel. Nat Cell Biol 4: 191‐197, 2002.
 201. Kowase T, Nakazato Y, Yoko OH, Morikawa A, Kojima I. Immunohistochemical localization of growth factor‐regulated channel (GRC) in human tissues. Endocr J 49: 349‐355, 2002.
 202. Kraft R Harteneck C. The mammalian melastatin‐related transient receptor potential cation channels: An overview. Pflugers Arch 451: 204‐211, 2005.
 203. Krakow D, Vriens J, Camacho N, Luong P, Deixler H, Funari TL, Bacino CA, Irons MB, Holm IA, Sadler L, Okenfuss EB, Janssens A, Voets T, Rimoin DL, Lachman RS, Nilius B, Cohn DH. Mutations in the gene encoding the calcium‐permeable ion channel TRPV4 produce spondylometaphyseal dysplasia, Kozlowski type and metatropic dysplasia. Am J Hum Genet 84: 307‐315, 2009.
 204. Krapivinsky G, Mochida S, Krapivinsky L, Cibulsky SM, Clapham DE. The TRPM7 ion channel functions in cholinergic synaptic vesicles and affects transmitter release. Neuron 52: 485‐496, 2006.
 205. Kremeyer B, Lopera F, Cox JJ, Momin A, Rugiero F, Marsh S, Woods CG, Jones NG, Paterson KJ, Fricker FR, Villegas A, Acosta N, Pineda‐Trujillo NG, Ramirez JD, Zea J, Burley MW, Bedoya G, Bennett DL, Wood JN, Ruiz‐Linares A. A gain‐of‐function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66: 671‐680.
 206. Kruse M, Schulze‐Bahr E, Corfield V, Beckmann A, Stallmeyer B, Kurtbay G, Ohmert I, Brink P, Pongs O. Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J Clin Invest 119: 2737‐2744, 2009.
 207. Kumar B, Dreja K, Shah SS, Cheong A, Xu SZ, Sukumar P, Naylor J, Forte A, Cipollaro M, McHugh D, Kingston PA, Heagerty AM, Munsch CM, Bergdahl A, Hultgardh‐Nilsson A, Gomez MF, Porter KE, Hellstrand P, Beech DJ. Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. Circ Res 98: 557‐563, 2006.
 208. Kuniba H, Yoshiura K, Kondoh T, Ohashi H, Kurosawa K, Tonoki H, Nagai T, Okamoto N, Kato M, Fukushima Y, Kaname T, Naritomi K, Matsumoto T, Moriuchi H, Kishino T, Kinoshita A, Miyake N, Matsumoto N, Niikawa N. Molecular karyotyping in 17 patients and mutation screening in 41 patients with Kabuki syndrome. J Hum Genet 54: 304‐309, 2009.
 209. Kwan HY, Huang Y, Yao X. Regulation of canonical transient receptor potential isoform 3 (TRPC3) channel by protein kinase G. Proc Natl Acad Sci U S A 101: 2625‐2630, 2004.
 210. Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair‐cell transduction. Neuron 50: 277‐289, 2006.
 211. Kwan KY, Glazer JM, Corey DP, Rice FL, Stucky CL. TRPA1 modulates mechanotransduction in cutaneous sensory neurons. J Neurosci 29: 4808‐4819, 2009.
 212. Lambers TT, Mahieu F, Oancea E, Hoofd L, de Lange F, Mensenkamp AR, Voets T, Nilius B, Clapham DE, Hoenderop JG, Bindels RJ. Calbindin‐D28K dynamically controls TRPV5‐mediated Ca2+ transport. Embo J 25: 2978‐2988, 2006.
 213. Lambers TT, Oancea E, de Groot T, Topala CN, Hoenderop JG, Bindels RJ. Extracellular pH dynamically controls cell surface delivery of functional TRPV5 channels. Mol Cell Biol 27: 1486‐1494, 2007.
 214. Lambers TT, Weidema AF, Nilius B, Hoenderop JG, Bindels RJ. Regulation of the mouse epithelial Ca2(+) channel TRPV6 by the Ca(2+)‐sensor calmodulin. J Biol Chem 279: 28855‐28861, 2004.
 215. Lambert S, Drews A, Rizun O, Wagner TF, Lis A, Mannebach S, Plant S, Portz M, Meissner M, Philipp SE, Oberwinkler J. Transient receptor potential melastatin 1 (TRPM1) is an ion‐conducting plasma membrane channel inhibited by zinc ions. J Biol Chem, 2011.
 216. Landoure G, Zdebik AA, Martinez TL, Burnett BG, Stanescu HC, Inada H, Shi Y, Taye AA, Kong L, Munns CH, Choo SS, Phelps CB, Paudel R, Houlden H, Ludlow CL, Caterina MJ, Gaudet R, Kleta R, Fischbeck KH, Sumner CJ. Mutations in TRPV4 cause Charcot‐Marie‐Tooth disease type 2C. Nat Genet 42: 170‐174, 2010.
 217. Lange I, Yamamoto S, Partida‐Sanchez S, Mori Y, Fleig A, Penner R. TRPM2 functions as a lysosomal Ca2+‐release channel in beta cells. Sci Signal 2: ra23, 2009.
 218. LaPlante JM, Falardeau J, Sun M, Kanazirska M, Brown EM, Slaugenhaupt SA, Vassilev PM. Identification and characterization of the single channel function of human mucolipin‐1 implicated in mucolipidosis type IV, a disorder affecting the lysosomal pathway. FEBS Lett 532: 183‐187, 2002.
 219. LaPlante JM, Ye CP, Quinn SJ, Goldin E, Brown EM, Slaugenhaupt SA, Vassilev PM. Functional links between mucolipin‐1 and Ca2+‐dependent membrane trafficking in mucolipidosis IV. Biochem Biophys Res Commun 322: 1384‐1391, 2004.
 220. Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP. TRPM4 is a Ca2+‐activated nonselective cation channel mediating cell membrane depolarization. Cell 109: 397‐407, 2002.
 221. Lee‐Kwon W, Wade JB, Zhang Z, Pallone TL, Weinman EJ. Expression of TRPC4 channel protein that interacts with NHERF‐2 in rat descending vasa recta. Am J Physiol Cell Physiol 288: C942‐C949, 2005.
 222. Lee GS, Jeung EB. Uterine TRPV6 expression during the estrous cycle and pregnancy in a mouse model. Am J Physiol Endocrinol Metab 293: E132‐E138, 2007.
 223. Lee H, Iida T, Mizuno A, Suzuki M, Caterina MJ. Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4. J Neurosci 25: 1304‐1310, 2005.
 224. Lee KP, Jun JY, Chang IY, Suh SH, So I, Kim KW. TRPC4 is an essential component of the nonselective cation channel activated by muscarinic stimulation in mouse visceral smooth muscle cells. Mol Cells 20: 435‐441, 2005.
 225. Lee N, Chen J, Sun L, Wu S, Gray KR, Rich A, Huang M, Lin JH, Feder JN, Janovitz EB, Levesque PC, Blanar MA. Expression and characterization of human transient receptor potential melastatin 3 (hTRPM3). J Biol Chem 278: 20890‐20897, 2003.
 226. Lee YM, Kim BJ, Kim HJ, Yang DK, Zhu MH, Lee KP, So I, Kim KW. TRPC5 as a candidate for the nonselective cation channel activated by muscarinic stimulation in murine stomach. Am J Physiol Gastrointest Liver Physiol 284: G604‐G616, 2003.
 227. Lessard CB, Lussier MP, Cayouette S, Bourque G, Boulay G. The overexpression of presenilin2 and Alzheimer's‐disease‐linked presenilin2 variants influences TRPC6‐enhanced Ca2+ entry into HEK293 cells. Cell Signal 17: 437‐445, 2005.
 228. Leypold BG, Yu CR, Leinders‐Zufall T, Kim MM, Zufall F, Axel R. Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci U S A 99: 6376‐6381, 2002.
 229. Li HS, Xu XZ, Montell C. Activation of a TRPC3‐dependent cation current through the neurotrophin BDNF. Neuron 24: 261‐273, 1999.
 230. Li M, Jiang J, Yue L. Functional characterization of homo‐ and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 127: 525‐537, 2006.
 231. Li Y, Jia YC, Cui K, Li N, Zheng ZY, Wang YZ, Yuan XB. Essential role of TRPC channels in the guidance of nerve growth cones by brain‐derived neurotrophic factor. Nature 434: 894‐898, 2005.
 232. Li Y, Wright JM, Qian F, Germino GG, Guggino WB. Polycystin 2 interacts with type I inositol 1,4,5‐trisphosphate receptor to modulate intracellular Ca2+ signaling. J Biol Chem 280: 41298‐41306, 2005.
 233. Li Z, Sergouniotis PI, Michaelides M, Mackay DS, Wright GA, Devery S, Moore AT, Holder GE, Robson AG, Webster AR. Recessive mutations of the gene TRPM1 abrogate ON bipolar cell function and cause complete congenital stationary night blindness in humans. Am J Hum Genet 85: 711‐719, 2009.
 234. Lieben L, Benn BS, Ajibade D, Stockmans I, Moermans K, Hediger MA, Peng JB, Christakos S, Bouillon R, Carmeliet G. Trpv6 mediates intestinal calcium absorption during calcium restriction and contributes to bone homeostasis. Bone 47: 301‐308.
 235. Liedtke W. TRPV4 as osmosensor: A transgenic approach. Pflugers Arch 451: 176‐180, 2005.
 236. Liedtke W, Choe Y, Marti‐Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S. Vanilloid receptor‐related osmotically activated channel (VR‐OAC), a candidate vertebrate osmoreceptor. Cell 103: 525‐535, 2000.
 237. Liedtke W, Friedman JM. Abnormal osmotic regulation in trpv4‐/‐ mice. Proc Natl Acad Sci U S A 100: 13698‐13703, 2003.
 238. Liman ER, Corey DP, Dulac C. TRP2: A candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci U S A 96: 5791‐5796, 1999.
 239. Lindvall JM, Blomberg KE, Wennborg A, Smith CI. Differential expression and molecular characterisation of Lmo7, Myo1e, Sash1, and Mcoln2 genes in Btk‐defective B‐cells. Cell Immunol 235: 46‐55, 2005.
 240. Link TM, Park U, Vonakis BM, Raben DM, Soloski MJ, Caterina MJ. TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat Immunol 11: 232‐239, 2010.
 241. Lintschinger B, Balzer‐Geldsetzer M, Baskaran T, Graier WF, Romanin C, Zhu MX, Groschner K. Coassembly of Trp1 and Trp3 proteins generates diacylglycerol‐ and Ca2+‐sensitive cation channels. J Biol Chem 275: 27799‐27805, 2000.
 242. Lishko PV, Procko E, Jin X, Phelps CB, Gaudet R. The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54: 905‐918, 2007.
 243. Liu D, Liman ER. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci U S A 100: 15160‐15165, 2003.
 244. Liu D, Zhang Z, Liman ER. Extracellular acid block and acid‐enhanced inactivation of the Ca2+‐activated cation channel TRPM5 involve residues in the S3‐S4 and S5‐S6 extracellular domains. J Biol Chem 280: 20691‐20699, 2005.
 245. Liu H, El Zein L, Kruse M, Guinamard R, Beckmann A, Bozio A, Kurtbay G, Megarbane A, Ohmert I, Blaysat G, Villain E, Pongs O, Bouvagnet P. Gain‐of‐function mutations in TRPM4 cause autosomal dominant isolated cardiac conduction disease. Circ Cardiovasc Genet 3: 374‐385, 2010.
 246. Liu X, Cheng KT, Bandyopadhyay BC, Pani B, Dietrich A, Paria BC, Swaim WD, Beech D, Yildrim E, Singh BB, Birnbaumer L, Ambudkar IS. Attenuation of store‐operated Ca2 +current impairs salivary gland fluid secretion in TRPC1(‐/‐) mice. Proc Natl Acad Sci U S A 104: 17542‐17547, 2007.
 247. Loot AE, Popp R, Fisslthaler B, Vriens J, Nilius B, Fleming I. Role of cytochrome P450‐dependent transient receptor potential V4 activation in flow‐induced vasodilatation. Cardiovasc Res 80: 445‐452, 2008.
 248. Lopez Jimenez ND, Cavenagh MM, Sainz E, Cruz‐Ithier MA, Battey JF, Sullivan SL. Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co‐expressed in a subset of taste receptor cells. J Neurochem 98: 68‐77, 2006.
 249. Lucas P, Ukhanov K, Leinders‐Zufall T, Zufall F. A diacylglycerol‐gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: Mechanism of pheromone transduction. Neuron 40: 551‐561, 2003.
 250. Luo Y, Vassilev PM, Li X, Kawanabe Y, Zhou J. Native polycystin 2 functions as a plasma membrane Ca2+‐permeable cation channel in renal epithelia. Mol Cell Biol 23: 2600‐2607, 2003.
 251. Lussier MP, Cayouette S, Lepage PK, Bernier CL, Francoeur N, St‐Hilaire M, Pinard M, Boulay G. MxA, a member of the dynamin superfamily, interacts with the ankyrin‐like repeat domain of TRPC. J Biol Chem 280: 19393‐19400, 2005.
 252. Luzio JP, Bright NA, Pryor PR. The role of calcium and other ions in sorting and delivery in the late endocytic pathway. Biochem Soc Trans 35: 1088‐1091, 2007.
 253. Ma R, Li WP, Rundle D, Kong J, Akbarali HI, Tsiokas L. PKD2 functions as an epidermal growth factor‐activated plasma membrane channel. Mol Cell Biol 25: 8285‐8298, 2005.
 254. Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445(7127): 541‐545, 2007.
 255. Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR, Hwang S, Patapoutian A. The pungency of garlic: Activation of TRPA1 and TRPV1 in response to allicin. Curr Biol 15: 929‐934, 2005.
 256. Macpherson LJ, Xiao B, Kwan KY, Petrus MJ, Dubin AE, Hwang S, Cravatt B, Corey DP, Patapoutian A. An ion channel essential for sensing chemical damage. J Neurosci 27: 11412‐11415, 2007.
 257. Mahieu F, Janssens A, Gees M, Talavera K, Nilius B, Voets T. Modulation of the cold‐activated cation channel TRPM8 by surface charge screening. J Physiol 588: 315‐324, 2010.
 258. Maione S, Cristino L, Migliozzi AL, Georgiou AL, Starowicz K, Salt TE, Di Marzo V. TRPV1 channels control synaptic plasticity in the developing superior colliculus. J Physiol 587: 2521‐2535, 2009.
 259. Mandadi S, Sokabe T, Shibasaki K, Katanosaka K, Mizuno A, Moqrich A, Patapoutian A, Fukumi‐Tominaga T, Mizumura K, Tominaga M. TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP. Pflugers Arch 458: 1093‐1102, 2009.
 260. Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP. TRPC1 forms the stretch‐activated cation channel in vertebrate cells. Nat Cell Biol 7: 179‐185, 2005.
 261. Marsch R, Foeller E, Rammes G, Bunck M, Kossl M, Holsboer F, Zieglgansberger W, Landgraf R, Lutz B, Wotjak CT. Reduced anxiety, conditioned fear, and hippocampal long‐term potentiation in transient receptor potential vanilloid type 1 receptor‐deficient mice. J Neurosci 27: 832‐839, 2007.
 262. Martina JA, Lelouvier B, Puertollano R. The calcium channel mucolipin‐3 is a novel regulator of trafficking along the endosomal pathway. Traffic 10: 1143‐1156, 2009.
 263. Masoumi A, Reed‐Gitomer B, Kelleher C, Bekheirnia MR, Schrier RW. Developments in the management of autosomal dominant polycystic kidney disease. Ther Clin Risk Manag 4: 393‐407, 2008.
 264. Massullo P, Sumoza‐Toledo A, Bhagat H, Partida‐Sanchez S. TRPM channels, calcium and redox sensors during innate immune responses. Semin Cell Dev Biol 17: 654‐666, 2006.
 265. Masuyama R, Vriens J, Voets T, Karashima Y, Owsianik G, Vennekens R, Lieben L, Torrekens S, Moermans K, Vanden Bosch A, Bouillon R, Nilius B, Carmeliet G. TRPV4‐mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab 8: 257‐265, 2008.
 266. Mathar I, Vennekens R, Meissner M, Kees F, van der Mieren G, Camacho Londono JE, Uhl S, Voets T, Hummel B, van den Bergh A, Herijgers P, Nilius B, Flockerzi V, Schweda F, Freichel M. Increased catecholamine secretion contributes to hypertension in TRPM4‐deficient mice. J Clin Invest 120: 3267‐3279, 2010.
 267. McGrath J, Somlo S, Makova S, Tian X, Brueckner M. Two populations of node monocilia initiate left‐right asymmetry in the mouse. Cell 114: 61‐73, 2003.
 268. McHugh D, Flemming R, Xu SZ, Perraud AL, Beech DJ. Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem 278: 11002‐11006, 2003.
 269. McKay RR, Szymeczek‐Seay CL, Lievremont JP, Bird GS, Zitt C, Jungling E, Luckhoff A, Putney JW Jr. Cloning and expression of the human transient receptor potential 4 (TRP4) gene: Localization and functional expression of human TRP4 and TRP3. Biochem J 351 Pt 3: 735‐746, 2000.
 270. McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416: 52‐58, 2002.
 271. McQuillin A, Bass NJ, Kalsi G, Lawrence J, Puri V, Choudhury K, Detera‐Wadleigh SD, Curtis D, Gurling HM. Fine mapping of a susceptibility locus for bipolar and genetically related unipolar affective disorders, to a region containing the C21ORF29 and TRPM2 genes on chromosome 21q22.3. Mol Psychiatry 11: 134‐142, 2006.
 272. Mercado J, Gordon‐Shaag A, Zagotta WN, Gordon SE. Ca2+‐dependent desensitization of TRPV2 channels is mediated by hydrolysis of phosphatidylinositol 4,5‐bisphosphate. J Neurosci 30: 13338‐13347.
 273. Miedel MT, Rbaibi Y, Guerriero CJ, Colletti G, Weixel KM, Weisz OA, Kiselyov K. Membrane traffic and turnover in TRP‐ML1‐deficient cells: A revised model for mucolipidosis type IV pathogenesis. J Exp Med 205: 1477‐1490, 2008.
 274. Miller AJ, Du J, Rowan S, Hershey CL, Widlund HR, Fisher DE. Transcriptional regulation of the melanoma prognostic marker melastatin (TRPM1) by MITF in melanocytes and melanoma. Cancer Res 64: 509‐516, 2004.
 275. Minke B, Wu C, Pak WL. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature 258: 84‐87, 1975.
 276. Miyagi K, Kiyonaka S, Yamada K, Miki T, Mori E, Kato K, Numata T, Sawaguchi Y, Numaga T, Kimura T, Kanai Y, Kawano M, Wakamori M, Nomura H, Koni I, Yamagishi M, Mori Y. A pathogenic C terminus‐truncated polycystin‐2 mutant enhances receptor‐activated Ca2+ entry via association with TRPC3 and TRPC7. J Biol Chem 284: 34400‐34412, 2009.
 277. Mizoguchi F, Mizuno A, Hayata T, Nakashima K, Heller S, Ushida T, Sokabe M, Miyasaka N, Suzuki M, Ezura Y, Noda M. Transient receptor potential vanilloid 4 deficiency suppresses unloading‐induced bone loss. J Cell Physiol 216: 47‐53, 2008.
 278. Mizuno A, Matsumoto N, Imai M, Suzuki M. Impaired osmotic sensation in mice lacking TRPV4. Am J Physiol Cell Physiol 285: C96‐C101, 2003.
 279. Mizuno N, Kitayama S, Saishin Y, Shimada S, Morita K, Mitsuhata C, Kurihara H, Dohi T. Molecular cloning and characterization of rat trp homologues from brain. Brain Res Mol Brain Res 64: 41‐51, 1999.
 280. Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272: 1339‐1342, 1996.
 281. Monteilh‐Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121: 49‐60, 2003.
 282. Montell C, Rubin GM. Molecular characterization of the Drosophila trp locus: A putative integral membrane protein required for phototransduction. Neuron 2: 1313‐1323, 1989.
 283. Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KS, Andahazy M, Story GM, Patapoutian A. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307: 1468‐1472, 2005.
 284. Moreau R, Daoud G, Bernatchez R, Simoneau L, Masse A, Lafond J. Calcium uptake and calcium transporter expression by trophoblast cells from human term placenta. Biochim Biophys Acta 1564: 325‐332, 2002.
 285. Morgans CW, Zhang J, Jeffrey BG, Nelson SM, Burke NS, Duvoisin RM, Brown RL. TRPM1 is required for the depolarizing light response in retinal ON‐bipolar cells. Proc Natl Acad Sci U S A 106: 19174‐19178, 2009.
 286. Munsch T, Freichel M, Flockerzi V, Pape HC. Contribution of transient receptor potential channels to the control of GABA release from dendrites. Proc Natl Acad Sci U S A 100: 16065‐16070, 2003.
 287. Muraki K, Iwata Y, Katanosaka Y, Ito T, Ohya S, Shigekawa M, Imaizumi Y. TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 93: 829‐838, 2003.
 288. Muramatsu S, Wakabayashi M, Ohno T, Amano K, Ooishi R, Sugahara T, Shiojiri S, Tashiro K, Suzuki Y, Nishimura R, Kuhara S, Sugano S, Yoneda T, Matsuda A. Functional gene screening system identified TRPV4 as a regulator of chondrogenic differentiation. J Biol Chem 282: 32158‐32167, 2007.
 289. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A. LTRPC7 is a Mg.ATP‐regulated divalent cation channel required for cell viability. Nature 411: 590‐595, 2001.
 290. Nagata K, Duggan A, Kumar G, Garcia‐Anoveros J. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci 25: 4052‐4061, 2005.
 291. Nagata K, Zheng L, Madathany T, Castiglioni AJ, Bartles JR, Garcia‐Anoveros J. The varitint‐waddler (Va) deafness mutation in TRPML3 generates constitutive, inward rectifying currents and causes cell degeneration. Proc Natl Acad Sci U S A 105: 353‐358, 2008.
 292. Nakayama H, Wilkin BJ, Bodi I, Molkentin JD. Calcineurin‐dependent cardiomyopathy is activated by TRPC in the adult mouse heart. Faseb J 20: 1660‐1670, 2006.
 293. Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J. Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin‐1. Circulation 117: 1161‐1171, 2008.
 294. Naylor J, Li J, Milligan CJ, Zeng F, Sukumar P, Hou B, Sedo A, Yuldasheva N, Majeed Y, Beri D, Jiang S, Seymour VA, McKeown L, Kumar B, Harteneck C, O'Regan D, Wheatcroft SB, Kearney MT, Jones C, Porter KE, Beech DJ. Pregnenolone sulphate‐ and cholesterol‐regulated TRPM3 channels coupled to vascular smooth muscle secretion and contraction. Circ Res 106: 1507‐1515, 2010.
 295. Neeper MP, Liu Y, Hutchinson TL, Wang Y, Flores CM, Qin N. Activation properties of heterologously expressed mammalian TRPV2: Evidence for species dependence. J Biol Chem 282: 15894‐15902, 2007.
 296. Nijenhuis T, Hoenderop JG, Nilius B, Bindels RJ. (Patho)physiological implications of the novel epithelial Ca2+ channels TRPV5 and TRPV6. Pflugers Arch 446: 401‐409, 2003.
 297. Nijenhuis T, Hoenderop JG, van der Kemp AW, Bindels RJ. Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney. J Am Soc Nephrol 14: 2731‐2740, 2003.
 298. Nilius B. From TRPs to SOCs, CCEs, and CRACs: Consensus and controversies. Cell Calcium 33: 293‐298, 2003.
 299. Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T. The Ca2+‐activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5‐biphosphate. Embo J 25: 467‐478, 2006.
 300. Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channels in disease. Physiol Rev 87: 165‐217, 2007.
 301. Nilius B, Prenen J, Droogmans G, Voets T, Vennekens R, Freichel M, Wissenbach U, Flockerzi V. Voltage dependence of the Ca2+‐activated cation channel TRPM4. J Biol Chem 278: 30813‐30820, 2003.
 302. Nilius B, Prenen J, Hoenderop JG, Vennekens R, Hoefs S, Weidema AF, Droogmans G, Bindels RJ. Fast and slow inactivation kinetics of the Ca2+ channels ECaC1 and ECaC2 (TRPV5 and TRPV6). Role of the intracellular loop located between transmembrane segments 2 and 3. J Biol Chem 277: 30852‐30858, 2002.
 303. Nilius B, Prenen J, Janssens A, Voets T, Droogmans G. Decavanadate modulates gating of TRPM4 cation channels. J Physiol 560: 753‐765, 2004.
 304. Nilius B, Prenen J, Owsianik G. Irritating Channels: The case of TRPA1. J Physiol 589: 1543‐1549, 2011.
 305. Nilius B, Prenen J, Tang J, Wang C, Owsianik G, Janssens A, Voets T, Zhu MX. Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J Biol Chem 280: 6423‐6433, 2005.
 306. Nilius B, Prenen J, Wissenbach U, Bodding M, Droogmans G. Differential activation of the volume‐sensitive cation channel TRP12 (OTRPC4) and volume‐regulated anion currents in HEK‐293 cells. Pflugers Arch 443: 227‐233, 2001.
 307. Nilius B, Vennekens R, Prenen J, Hoenderop JG, Bindels RJ, Droogmans G. Whole‐cell and single channel monovalent cation currents through the novel rabbit epithelial Ca2+ channel ECaC. J Physiol 527 Pt 2: 239‐248, 2000.
 308. Nilius B, Vennekens R, Prenen J, Hoenderop JG, Droogmans G, Bindels RJ. The single pore residue Asp542 determines Ca2+ permeation and Mg2+ block of the epithelial Ca2+ channel. J Biol Chem 276: 1020‐1025, 2001.
 309. Nilius B, Vriens J, Prenen J, Droogmans G, Voets T. TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol 286: C195‐C205, 2004.
 310. Nishikawa S. Histochemistry of nerve fibres double labelled with anti‐TRPV2 antibodies and sensory nerve marker AM1‐43 in the dental pulp of rat molars. Arch Oral Biol 53: 859‐864, 2008.
 311. Nomura H, Turco AE, Pei Y, Kalaydjieva L, Schiavello T, Weremowicz S, Ji W, Morton CC, Meisler M, Reeders ST, Zhou J. Identification of PKDL, a novel polycystic kidney disease 2‐like gene whose murine homologue is deleted in mice with kidney and retinal defects. J Biol Chem 273: 25967‐25973, 1998.
 312. Oancea E, Vriens J, Brauchi S, Jun J, Splawski I, Clapham DE. TRPM1 forms ion channels associated with melanin content in melanocytes. Sci Signal 2: ra21, 2009.
 313. Obermuller N, Gallagher AR, Cai Y, Gassler N, Gretz N, Somlo S, Witzgall R. The rat pkd2 protein assumes distinct subcellular distributions in different organs. Am J Physiol 277: F914‐F925, 1999.
 314. Oberwinkler J, Lis A, Giehl KM, Flockerzi V, Philipp SE. Alternative splicing switches the divalent cation selectivity of TRPM3 channels. J Biol Chem 280: 22540‐22548, 2005.
 315. Obukhov AG, Nowycky MC. TRPC5 activation kinetics are modulated by the scaffolding protein ezrin/radixin/moesin‐binding phosphoprotein‐50 (EBP50). J Cell Physiol 201: 227‐235, 2004.
 316. Obukhov AG, Nowycky MC. TRPC5 channels undergo changes in gating properties during the activation‐deactivation cycle. J Cell Physiol 216: 162‐171, 2008.
 317. Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K, Mori Y. Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca(2+)‐permeable cation channel that is constitutively activated and enhanced by stimulation of G protein‐coupled receptor. J Biol Chem 274: 27359‐27370, 1999.
 318. Okada T, Shimizu S, Wakamori M, Maeda A, Kurosaki T, Takada N, Imoto K, Mori Y. Molecular cloning and functional characterization of a novel receptor‐activated TRP Ca2+ channel from mouse brain. J Biol Chem 273: 10279‐10287, 1998.
 319. Ong HL, Cheng KT, Liu X, Bandyopadhyay BC, Paria BC, Soboloff J, Pani B, Gwack Y, Srikanth S, Singh BB, Gill DL, Ambudkar IS. Dynamic assembly of TRPC1‐STIM1‐Orai1 ternary complex is involved in store‐operated calcium influx. Evidence for similarities in store‐operated and calcium release‐activated calcium channel components. J Biol Chem 282: 9105‐9116, 2007.
 320. Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, Mori Y, Nagao T, Kurose H. TRPC3 and TRPC6 are essential for angiotensin II‐induced cardiac hypertrophy. Embo J 25: 5305‐5316, 2006.
 321. Ordaz B, Tang J, Xiao R, Salgado A, Sampieri A, Zhu MX, Vaca L. Calmodulin and calcium interplay in the modulation of TRPC5 channel activity. Identification of a novel C‐terminal domain for calcium/calmodulin‐mediated facilitation. J Biol Chem 280: 30788‐30796, 2005.
 322. Otsuguro K, Tang J, Tang Y, Xiao R, Freichel M, Tsvilovskyy V, Ito S, Flockerzi V, Zhu MX, Zholos AV. Isoform‐specific inhibition of TRPC4 channel by phosphatidylinositol 4,5‐bisphosphate. J Biol Chem 283: 10026‐10036, 2008.
 323. Owsianik G, D'Hoedt D, Voets T, Nilius B. Structure‐function relationship of the TRP channel superfamily. Rev Physiol Biochem Pharmacol 156: 61‐90, 2006.
 324. Palmada M, Poppendieck S, Embark HM, van de Graaf SF, Boehmer C, Bindels RJ, Lang F. Requirement of PDZ domains for the stimulation of the epithelial Ca2+ channel TRPV5 by the NHE regulating factor NHERF2 and the serum and glucocorticoid inducible kinase SGK1. Cell Physiol Biochem 15: 175‐182, 2005.
 325. Pedersen SF, Owsianik G, Nilius B. TRP channels: An overview. Cell Calcium 38: 233‐252, 2005.
 326. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A. A TRP channel that senses cold stimuli and menthol. Cell 108: 705‐715, 2002.
 327. Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, Story GM, Colley S, Hogenesch JB, McIntyre P, Bevan S, Patapoutian A. A heat‐sensitive TRP channel expressed in keratinocytes. Science 296: 2046‐2049, 2002.
 328. Pelucchi B, Aguiari G, Pignatelli A, Manzati E, Witzgall R, Del Senno L, Belluzzi O. Nonspecific cation current associated with native polycystin‐2 in HEK‐293 cells. J Am Soc Nephrol 17: 388‐397, 2006.
 329. Peng JB, Chen XZ, Berger UV, Vassilev PM, Tsukaguchi H, Brown EM, Hediger MA. Molecular cloning and characterization of a channel‐like transporter mediating intestinal calcium absorption. J Biol Chem 274: 22739‐22746, 1999.
 330. Peng JB, Chen XZ, Berger UV, Weremowicz S, Morton CC, Vassilev PM, Brown EM, Hediger MA. Human calcium transport protein CaT1. Biochem Biophys Res Commun 278: 326‐332, 2000.
 331. Peng JB, Zhuang L, Berger UV, Adam RM, Williams BJ, Brown EM, Hediger MA, Freeman MR. CaT1 expression correlates with tumor grade in prostate cancer. Biochem Biophys Res Commun 282: 729‐734, 2001.
 332. Pennekamp P, Bogdanova N, Wilda M, Markoff A, Hameister H, Horst J, Dworniczak B. Characterization of the murine polycystic kidney disease (Pkd2) gene. Mamm Genome 9: 749‐752, 1998.
 333. Perez CA, Huang L, Rong M, Kozak JA, Preuss AK, Zhang H, Max M, Margolskee RF. A transient receptor potential channel expressed in taste receptor cells. Nat Neurosci 5: 1169‐1176, 2002.
 334. Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM. ADP‐ribose gating of the calcium‐permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411: 595‐599, 2001.
 335. Perraud AL, Schmitz C, Scharenberg AM. TRPM2 Ca2+ permeable cation channels: From gene to biological function. Cell Calcium 33: 519‐531, 2003.
 336. Perraud AL, Takanishi CL, Shen B, Kang S, Smith MK, Schmitz C, Knowles HM, Ferraris D, Li W, Zhang J, Stoddard BL, Scharenberg AM. Accumulation of free ADP‐ribose from mitochondria mediates oxidative stress‐induced gating of TRPM2 cation channels. J Biol Chem 280: 6138‐6148, 2005.
 337. Perraud M, Guerraz FT. A new concept of plaster for preventing hand‐borne infections. J Hosp Infect 49: 293‐295, 2001.
 338. Peters DJ, Spruit L, Saris JJ, Ravine D, Sandkuijl LA, Fossdal R, Boersma J, van Eijk R, Norby S, Constantinou‐Deltas CD, et al. Chromosome 4 localization of a second gene for autosomal dominant polycystic kidney disease. Nat Genet 5: 359‐362, 1993.
 339. Petersen CC, Berridge MJ, Borgese MF, Bennett DL. Putative capacitative calcium entry channels: Expression of Drosophila trp and evidence for the existence of vertebrate homologues. Biochem J 311(Pt 1): 41‐44, 1995.
 340. Petrus M, Peier AM, Bandell M, Hwang SW, Huynh T, Olney N, Jegla T, Patapoutian A. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol Pain 3: 40, 2007.
 341. Phelps CB, Huang RJ, Lishko PV, Wang RR, Gaudet R. Structural analyses of the ankyrin repeat domain of TRPV6 and related TRPV ion channels. Biochemistry 47: 2476‐2484, 2008.
 342. Phelps CB, Procko E, Lishko PV, Wang RR, Gaudet R. Insights into the roles of conserved and divergent residues in the ankyrin repeats of TRPV ion channels. Channels (Austin) 1: 148‐151, 2007.
 343. Phelps CB, Wang RR, Choo SS, Gaudet R. Differential regulation of TRPV1, TRPV3, and TRPV4 sensitivity through a conserved binding site on the ankyrin repeat domain. J Biol Chem 285: 731‐740.
 344. Philipp S, Hambrecht J, Braslavski L, Schroth G, Freichel M, Murakami M, Cavalie A, Flockerzi V. A novel capacitative calcium entry channel expressed in excitable cells. Embo J 17: 4274‐4282, 1998.
 345. Philipp S, Strauss B, Hirnet D, Wissenbach U, Mery L, Flockerzi V, Hoth M. TRPC3 mediates T‐cell receptor‐dependent calcium entry in human T‐lymphocytes. J Biol Chem 278: 26629‐26638, 2003.
 346. Philipp S, Trost C, Warnat J, Rautmann J, Himmerkus N, Schroth G, Kretz O, Nastainczyk W, Cavalie A, Hoth M, Flockerzi V. TRP4 (CCE1) protein is part of native calcium release‐activated Ca2+‐like channels in adrenal cells. J Biol Chem 275: 23965‐23972, 2000.
 347. Phillips AM, Bull A, Kelly LE. Identification of a Drosophila gene encoding a calmodulin‐binding protein with homology to the trp phototransduction gene. Neuron 8: 631‐642, 1992.
 348. Prawitt D, Monteilh‐Zoller MK, Brixel L, Spangenberg C, Zabel B, Fleig A, Penner R. TRPM5 is a transient Ca2+‐activated cation channel responding to rapid changes in [Ca2+]i. Proc Natl Acad Sci U S A 100: 15166‐15171, 2003.
 349. Pryor PR, Reimann F, Gribble FM, Luzio JP. Mucolipin‐1 is a lysosomal membrane protein required for intracellular lactosylceramide traffic. Traffic 7: 1388‐1398, 2006.
 350. Qian Q, Hunter LW, Li M, Marin‐Padilla M, Prakash YS, Somlo S, Harris PC, Torres VE, Sieck GC. Pkd2 haploinsufficiency alters intracellular calcium regulation in vascular smooth muscle cells. Hum Mol Genet 12: 1875‐1880, 2003.
 351. Razavi R, Chan Y, Afifiyan FN, Liu XJ, Wan X, Yantha J, Tsui H, Tang L, Tsai S, Santamaria P, Driver JP, Serreze D, Salter MW, Dosch HM. TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes. Cell 127: 1123‐1135, 2006.
 352. Reading SA, Brayden JE. Central role of TRPM4 channels in cerebral blood flow regulation. Stroke 38: 2322‐2328, 2007.
 353. Reading SA, Earley S, Waldron BJ, Welsh DG, Brayden JE. TRPC3 mediates pyrimidine receptor‐induced depolarization of cerebral arteries. Am J Physiol Heart Circ Physiol 288: H2055‐H2061, 2005.
 354. Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila‐Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR. TRPC6 is a glomerular slit diaphragm‐associated channel required for normal renal function. Nat Genet 37: 739‐744, 2005.
 355. Renkema KY, Nijenhuis T, van der Eerden BC, van der Kemp AW, Weinans H, van Leeuwen JP, Bindels RJ, Hoenderop JG. Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice. J Am Soc Nephrol 16: 3188‐3195, 2005.
 356. Riccio A, Li Y, Moon J, Kim KS, Smith KS, Rudolph U, Gapon S, Yao GL, Tsvetkov E, Rodig SJ, Van't Veer A, Meloni EG, Carlezon WA Jr, Bolshakov VY, Clapham DE. Essential role for TRPC5 in amygdala function and fear‐related behavior. Cell 137: 761‐772, 2009.
 357. Riccio A, Medhurst AD, Mattei C, Kelsell RE, Calver AR, Randall AD, Benham CD, Pangalos MN. mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res Mol Brain Res 109: 95‐104, 2002.
 358. Rock MJ, Prenen J, Funari VA, Funari TL, Merriman B, Nelson SF, Lachman RS, Wilcox WR, Reyno S, Quadrelli R, Vaglio A, Owsianik G, Janssens A, Voets T, Ikegawa S, Nagai T, Rimoin DL, Nilius B, Cohn DH. Gain‐of‐function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat Genet 40: 999‐1003, 2008.
 359. Rohacs T, Lopes CM, Michailidis I, Logothetis DE. PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8: 626‐634, 2005.
 360. Rosenberg P, Hawkins A, Stiber J, Shelton JM, Hutcheson K, Bassel‐Duby R, Shin DM, Yan Z, Williams RS. TRPC3 channels confer cellular memory of recent neuromuscular activity. Proc Natl Acad Sci U S A 101: 9387‐9392, 2004.
 361. Runnels LW, Yue L, Clapham DE. TRP‐PLIK, a bifunctional protein with kinase and ion channel activities. Science 291: 1043‐1047, 2001.
 362. Rutter AR, Ma QP, Leveridge M, Bonnert TP. Heteromerization and colocalization of TrpV1 and TrpV2 in mammalian cell lines and rat dorsal root ganglia. Neuroreport 16: 1735‐1739, 2005.
 363. Samie MA, Grimm C, Evans JA, Curcio‐Morelli C, Heller S, Slaugenhaupt SA, Cuajungco MP. The tissue‐specific expression of TRPML2 (MCOLN‐2) gene is influenced by the presence of TRPML1. Pflugers Arch 459: 79‐91, 2009.
 364. Sammels E, Devogelaere B, Mekahli D, Bultynck G, Missiaen L, Parys JB, Cai Y, Somlo S, De Smedt H. Polycystin‐2 activation by inositol 1,4,5‐trisphosphate‐induced Ca2+ release requires its direct association with the inositol 1,4,5‐trisphosphate receptor in a signaling microdomain. J Biol Chem 285: 18794‐18805.
 365. Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, Matsushime H, Furuichi K. Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293: 1327‐1330, 2001.
 366. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS, Banfi S, Parenti G, Cattaneo E, Ballabio A. A gene network regulating lysosomal biogenesis and function. Science 325: 473‐477, 2009.
 367. Satoh S, Tanaka H, Ueda Y, Oyama J, Sugano M, Sumimoto H, Mori Y, Makino N. Transient receptor potential (TRP) protein 7 acts as a G protein‐activated Ca2+ channel mediating angiotensin II‐induced myocardial apoptosis. Mol Cell Biochem 294: 205‐215, 2007.
 368. Sawada Y, Hosokawa H, Hori A, Matsumura K, Kobayashi S. Cold sensitivity of recombinant TRPA1 channels. Brain Res 1160: 39‐46, 2007.
 369. Schaefer M, Plant TD, Obukhov AG, Hofmann T, Gudermann T, Schultz G. Receptor‐mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem 275: 17517‐17526, 2000.
 370. Schlingmann KP, Gudermann T. A critical role of TRPM channel‐kinase for human magnesium transport. J Physiol 566: 301‐308, 2005.
 371. Schlingmann KP, Sassen MC, Weber S, Pechmann U, Kusch K, Pelken L, Lotan D, Syrrou M, Prebble JJ, Cole DE, Metzger DL, Rahman S, Tajima T, Shu SG, Waldegger S, Seyberth HW, Konrad M. Novel TRPM6 mutations in 21 families with primary hypomagnesemia and secondary hypocalcemia. J Am Soc Nephrol 16: 3061‐3069, 2005.
 372. Schlingmann KP, Weber S, Peters M, Niemann Nejsum L, Vitzthum H, Klingel K, Kratz M, Haddad E, Ristoff E, Dinour D, Syrrou M, Nielsen S, Sassen M, Waldegger S, Seyberth HW, Konrad M. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 31: 166‐170, 2002.
 373. Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114: 191‐200, 2003.
 374. Seth M, Zhang ZS, Mao L, Graham V, Burch J, Stiber J, Tsiokas L, Winn M, Abramowitz J, Rockman HA, Birnbaumer L, Rosenberg P. TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res 105: 1023‐1030, 2009.
 375. Sharif‐Naeini R, Folgering JH, Bichet D, Duprat F, Lauritzen I, Arhatte M, Jodar M, Dedman A, Chatelain FC, Schulte U, Retailleau K, Loufrani L, Patel A, Sachs F, Delmas P, Peters DJ, Honore E. Polycystin‐1 and ‐2 dosage regulates pressure sensing. Cell 139: 587‐596, 2009.
 376. Shen Y, Heimel JA, Kamermans M, Peachey NS, Gregg RG, Nawy S. A transient receptor potential‐like channel mediates synaptic transmission in rod bipolar cells. J Neurosci 29: 6088‐6093, 2009.
 377. Shi J, Mori E, Mori Y, Mori M, Li J, Ito Y, Inoue R. Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. J Physiol 561: 415‐432, 2004.
 378. Shim S, Goh EL, Ge S, Sailor K, Yuan JP, Roderick HL, Bootman MD, Worley PF, Song H, Ming GL. XTRPC1‐dependent chemotropic guidance of neuronal growth cones. Nat Neurosci 8: 730‐735, 2005.
 379. Shimizu T, Janssens A, Voets T, Nilius B. Regulation of the murine TRPP3 channel by voltage, pH, and changes in cell volume. Pflugers Arch 457: 795‐807, 2009.
 380. Shumyatsky GP, Malleret G, Shin RM, Takizawa S, Tully K, Tsvetkov E, Zakharenko SS, Joseph J, Vronskaya S, Yin D, Schubart UK, Kandel ER, Bolshakov VY. Stathmin, a gene enriched in the amygdala, controls both learned and innate fear. Cell 123: 697‐709, 2005.
 381. Sidi S, Friedrich RW, Nicolson T. NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301: 96‐99, 2003.
 382. Slaugenhaupt SA. The molecular basis of mucolipidosis type IV. Curr Mol Med 2: 445‐450, 2002.
 383. Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin JP, Ooi L, Egerton J, Charles KJ, Smart D, Randall AD, Anand P, Davis JB. TRPV3 is a temperature‐sensitive vanilloid receptor‐like protein. Nature 418: 186‐190, 2002.
 384. Smith MA, Herson PS, Lee K, Pinnock RD, Ashford ML. Hydrogen‐peroxide‐induced toxicity of rat striatal neurones involves activation of a non‐selective cation channel. J Physiol 547: 417‐425, 2003.
 385. Song X, Zhao Y, Narcisse L, Duffy H, Kress Y, Lee S, Brosnan CF. Canonical transient receptor potential channel 4 (TRPC4) co‐localizes with the scaffolding protein ZO‐1 in human fetal astrocytes in culture. Glia 49: 418‐429, 2005.
 386. Song Y, Dayalu R, Matthews SA, Scharenberg AM. TRPML cation channels regulate the specialized lysosomal compartment of vertebrate B‐lymphocytes. Eur J Cell Biol 85: 1253‐1264, 2006.
 387. Sossey‐Alaoui K, Lyon JA, Jones L, Abidi FE, Hartung AJ, Hane B, Schwartz CE, Stevenson RE, Srivastava AK. Molecular cloning and characterization of TRPC5 (HTRP5), the human homologue of a mouse brain receptor‐activated capacitative Ca2+ entry channel. Genomics 60: 330‐340, 1999.
 388. Sotomayor M, Corey DP, Schulten K. In search of the hair‐cell gating spring elastic properties of ankyrin and cadherin repeats. Structure 13: 669‐682, 2005.
 389. Soyombo AA, Tjon‐Kon‐Sang S, Rbaibi Y, Bashllari E, Bisceglia J, Muallem S, Kiselyov K. TRP‐ML1 regulates lysosomal pH and acidic lysosomal lipid hydrolytic activity. J Biol Chem 281: 7294‐7301, 2006.
 390. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A. ANKTM1, a TRP‐like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112: 819‐829, 2003.
 391. Stowers L, Holy TE, Meister M, Dulac C, Koentges G. Loss of sex discrimination and male‐male aggression in mice deficient for TRP2. Science 295: 1493‐1500, 2002.
 392. Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2: 695‐702, 2000.
 393. Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE. TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29: 645‐655, 2001.
 394. Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE. Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278: 39014‐39019, 2003.
 395. Sun HS, Jackson MF, Martin LJ, Jansen K, Teves L, Cui H, Kiyonaka S, Mori Y, Jones M, Forder JP, Golde TE, Orser BA, Macdonald JF, Tymianski M. Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci 12: 1300‐1307, 2009.
 396. Sun M, Goldin E, Stahl S, Falardeau JL, Kennedy JC, Acierno JS Jr, Bove C, Kaneski CR, Nagle J, Bromley MC, Colman M, Schiffmann R, Slaugenhaupt SA. Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum Mol Genet 9: 2471‐2478, 2000.
 397. Sutton KA, Jungnickel MK, Ward CJ, Harris PC, Florman HM. Functional characterization of PKDREJ, a male germ cell‐restricted polycystin. J Cell Physiol 209: 493‐500, 2006.
 398. Suzuki M, Mizuno A, Kodaira K, Imai M. Impaired pressure sensation in mice lacking TRPV4. J Biol Chem 278: 22664‐22668, 2003.
 399. Suzuki Y, Kovacs CS, Takanaga H, Peng JB, Landowski CP, Hediger MA. Calcium channel TRPV6 is involved in murine maternal‐fetal calcium transport. J Bone Miner Res 23: 1249‐1256, 2008.
 400. Sweeney M, McDaniel SS, Platoshyn O, Zhang S, Yu Y, Lapp BR, Zhao Y, Thistlethwaite PA, Yuan JX. Role of capacitative Ca2+ entry in bronchial contraction and remodeling. J Appl Physiol 92: 1594‐1602, 2002.
 401. Sweeney M, Yu Y, Platoshyn O, Zhang S, McDaniel SS, Yuan JX. Inhibition of endogenous TRP1 decreases capacitative Ca2+ entry and attenuates pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 283: L144‐L155, 2002.
 402. Talavera K, Gees M, Karashima Y, Meseguer VM, Vanoirbeek JA, Damann N, Everaerts W, Benoit M, Janssens A, Vennekens R, Viana F, Nemery B, Nilius B, Voets T. Nicotine activates the chemosensory cation channel TRPA1. Nat Neurosci 12: 1293‐1299, 2009.
 403. Talavera K, Yasumatsu K, Voets T, Droogmans G, Shigemura N, Ninomiya Y, Margolskee RF, Nilius B. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438: 1022‐1025, 2005.
 404. Talavera K, Yasumatsu K, Yoshida R, Margolskee RF, Voets T, Ninomiya Y, Nilius B. The taste transduction channel TRPM5 is a locus for bitter‐sweet taste interactions. Faseb J 22: 1343‐1355, 2008.
 405. Tang Y, Tang J, Chen Z, Trost C, Flockerzi V, Li M, Ramesh V, Zhu MX. Association of mammalian trp4 and phospholipase C isozymes with a PDZ domain‐containing protein, NHERF. J Biol Chem 275: 37559‐37564, 2000.
 406. Taylor‐Clark TE, McAlexander MA, Nassenstein C, Sheardown SA, Wilson S, Thornton J, Carr MJ, Undem BJ. Relative contributions of TRPA1 and TRPV1 channels in the activation of vagal bronchopulmonary C‐fibres by the endogenous autacoid 4‐oxononenal. J Physiol 586: 3447‐3459, 2008.
 407. Taylor‐Clark TE, Undem BJ, Macglashan DW Jr, Ghatta S, Carr MJ, McAlexander MA. Prostaglandin‐induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1). Mol Pharmacol 73: 274‐281, 2008.
 408. Thompson EG, Schaheen L, Dang H, Fares H. Lysosomal trafficking functions of mucolipin‐1 in murine macrophages. BMC Cell Biol 8: 54, 2007.
 409. Thorneloe KS, Sulpizio AC, Lin Z, Figueroa DJ, Clouse AK, McCafferty GP, Chendrimada TP, Lashinger ES, Gordon E, Evans L, Misajet BA, Demarini DJ, Nation JH, Casillas LN, Marquis RW, Votta BJ, Sheardown SA, Xu X, Brooks DP, Laping NJ, Westfall TD. N‐((1S)‐1‐{[4‐((2S)‐2‐{[(2,4‐dichlorophenyl)sulfonyl]amino}‐3‐hydroxypropa noyl)‐1‐piperazinyl]carbonyl}‐3‐methylbutyl)‐1‐benzothiophene‐2‐carboxamid e (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: Part I. J Pharmacol Exp Ther 326: 432‐442, 2008.
 410. Thyagarajan B, Benn BS, Christakos S, Rohacs T. Phospholipase C‐mediated regulation of transient receptor potential vanilloid 6 channels: Implications in active intestinal Ca2+ transport. Mol Pharmacol 75: 608‐616, 2009.
 411. Thyagarajan B, Lukacs V, Rohacs T. Hydrolysis of phosphatidylinositol 4,5‐bisphosphate mediates calcium‐induced inactivation of TRPV6 channels. J Biol Chem 283: 14980‐14987, 2008.
 412. Tiruppathi C, Freichel M, Vogel SM, Paria BC, Mehta D, Flockerzi V, Malik AB. Impairment of store‐operated Ca2+ entry in TRPC4(‐/‐) mice interferes with increase in lung microvascular permeability. Circ Res 91: 70‐76, 2002.
 413. Todaka H, Taniguchi J, Satoh J, Mizuno A, Suzuki M. Warm temperature‐sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in thermal hyperalgesia. J Biol Chem 279: 35133‐35138, 2004.
 414. Togashi K, Hara Y, Tominaga T, Higashi T, Konishi Y, Mori Y, Tominaga M. TRPM2 activation by cyclic ADP‐ribose at body temperature is involved in insulin secretion. Embo J 25: 1804‐1815, 2006.
 415. Tominaga M, Tominaga T. Structure and function of TRPV1. Pflugers Arch 451: 143‐150, 2005.
 416. Tong Q, Zhang W, Conrad K, Mostoller K, Cheung JY, Peterson BZ, Miller BA. Regulation of the transient receptor potential channel TRPM2 by the Ca2+ sensor calmodulin. J Biol Chem 281: 9076‐9085, 2006.
 417. Topala CN, Bindels RJ, Hoenderop JG. Regulation of the epithelial calcium channel TRPV5 by extracellular factors. Curr Opin Nephrol Hypertens 16: 319‐324, 2007.
 418. Torihashi S, Fujimoto T, Trost C, Nakayama S. Calcium oscillation linked to pacemaking of interstitial cells of Cajal: Requirement of calcium influx and localization of TRP4 in caveolae. J Biol Chem 277: 19191‐19197, 2002.
 419. Trebak M, Hempel N, Wedel BJ, Smyth JT, Bird GS, Putney JW Jr. Negative regulation of TRPC3 channels by protein kinase C‐mediated phosphorylation of serine 712. Mol Pharmacol 67: 558‐563, 2005.
 420. Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, Imamachi N, Andre E, Patacchini R, Cottrell GS, Gatti R, Basbaum AI, Bunnett NW, Julius D, Geppetti P. 4‐Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A 104: 13519‐13524, 2007.
 421. Tsavaler L, Shapero MH, Morkowski S, Laus R. Trp‐p8, a novel prostate‐specific gene, is up‐regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res 61: 3760‐3769, 2001.
 422. Tympanidis P, Casula MA, Yiangou Y, Terenghi G, Dowd P, Anand P. Increased vanilloid receptor VR1 innervation in vulvodynia. Eur J Pain 8: 129‐133, 2004.
 423. Ullrich ND, Voets T, Prenen J, Vennekens R, Talavera K, Droogmans G, Nilius B. Comparison of functional properties of the Ca2+‐activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium 37: 267‐278, 2005.
 424. van Abel M, Hoenderop JG, Bindels RJ. The epithelial calcium channels TRPV5 and TRPV6: Regulation and implications for disease. Naunyn Schmiedebergs Arch Pharmacol 371: 295‐306, 2005.
 425. van Abel M, Hoenderop JG, van der Kemp AW, Friedlaender MM, van Leeuwen JP, Bindels RJ. Coordinated control of renal Ca(2+) transport proteins by parathyroid hormone. Kidney Int 68: 1708‐1721, 2005.
 426. van Abel M, Hoenderop JG, van der Kemp AW, van Leeuwen JP, Bindels RJ. Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection. Am J Physiol Gastrointest Liver Physiol 285: G78‐G85, 2003.
 427. van Aken AF, Atiba‐Davies M, Marcotti W, Goodyear RJ, Bryant JE, Richardson GP, Noben‐Trauth K, Kros CJ. TRPML3 mutations cause impaired mechano‐electrical transduction and depolarization by an inward‐rectifier cation current in auditory hair cells of varitint‐waddler mice. J Physiol 586: 5403‐5418, 2008.
 428. van Breemen C, Poburko D, Okon EB. TRP proteins: A new dimension in the treatment of occlusive vascular disease. Circ Res 98: 446‐447, 2006.
 429. Van Cromphaut SJ, Dewerchin M, Hoenderop JG, Stockmans I, Van Herck E, Kato S, Bindels RJ, Collen D, Carmeliet P, Bouillon R, Carmeliet G. Duodenal calcium absorption in vitamin D receptor‐knockout mice: functional and molecular aspects. Proc Natl Acad Sci U S A 98: 13324‐13329, 2001.
 430. van de Graaf SF, Hoenderop JG, Gkika D, Lamers D, Prenen J, Rescher U, Gerke V, Staub O, Nilius B, Bindels RJ. Functional expression of the epithelial Ca(2+) channels (TRPV5 and TRPV6) requires association of the S100A10‐annexin 2 complex. Embo J 22: 1478‐1487, 2003.
 431. van de Graaf SF, Hoenderop JG, van der Kemp AW, Gisler SM, Bindels RJ. Interaction of the epithelial Ca2+ channels TRPV5 and TRPV6 with the intestine‐ and kidney‐enriched PDZ protein NHERF4. Pflugers Arch 452: 407‐417, 2006.
 432. van der Eerden BC, Hoenderop JG, de Vries TJ, Schoenmaker T, Buurman CJ, Uitterlinden AG, Pols HA, Bindels RJ, van Leeuwen JP. The epithelial Ca2+ channel TRPV5 is essential for proper osteoclastic bone resorption. Proc Natl Acad Sci U S A 102: 17507‐17512, 2005.
 433. Van Der Stelt M, Di Marzo V. Endovanilloids. Putative endogenous ligands of transient receptor potential vanilloid 1 channels. Eur J Biochem 271: 1827‐1834, 2004.
 434. van Genderen MM, Bijveld MM, Claassen YB, Florijn RJ, Pearring JN, Meire FM, McCall MA, Riemslag FC, Gregg RG, Bergen AA, Kamermans M. Mutations in TRPM1 are a common cause of complete congenital stationary night blindness. Am J Hum Genet 85: 730‐736, 2009.
 435. van Rossum DB, Patterson RL, Sharma S, Barrow RK, Kornberg M, Gill DL, Snyder SH. Phospholipase Cgamma1 controls surface expression of TRPC3 through an intermolecular PH domain. Nature 434: 99‐104, 2005.
 436. Vannier B, Peyton M, Boulay G, Brown D, Qin N, Jiang M, Zhu X, Birnbaumer L. Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion‐activated capacitative Ca2+ entry channel. Proc Natl Acad Sci U S A 96: 2060‐2064, 1999.
 437. Vannier B, Zhu X, Brown D, Birnbaumer L. The membrane topology of human transient receptor potential 3 as inferred from glycosylation‐scanning mutagenesis and epitope immunocytochemistry. J Biol Chem 273: 8675‐8679, 1998.
 438. Vassilev PM, Guo L, Chen XZ, Segal Y, Peng JB, Basora N, Babakhanlou H, Cruger G, Kanazirska M, Ye C, Brown EM, Hediger MA, Zhou J. Polycystin‐2 is a novel cation channel implicated in defective intracellular Ca(2+) homeostasis in polycystic kidney disease. Biochem Biophys Res Commun 282: 341‐350, 2001.
 439. Vazquez G, Wedel BJ, Kawasaki BT, Bird GS, Putney JW Jr. Obligatory role of Src kinase in the signaling mechanism for TRPC3 cation channels. J Biol Chem 279: 40521‐40528, 2004.
 440. Veldhuisen B, Spruit L, Dauwerse HG, Breuning MH, Peters DJ. Genes homologous to the autosomal dominant polycystic kidney disease genes (PKD1 and PKD2). Eur J Hum Genet 7: 860‐872, 1999.
 441. Venkatachalam K, Hofmann T, Montell C. Lysosomal localization of TRPML3 depends on TRPML2 and the mucolipidosis‐associated protein TRPML1. J Biol Chem 281: 17517‐17527, 2006.
 442. Venkatachalam K, Zheng F, Gill DL. Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 278: 29031‐29040, 2003.
 443. Vennekens R, Hoenderop JG, Prenen J, Stuiver M, Willems PH, Droogmans G, Nilius B, Bindels RJ. Permeation and gating properties of the novel epithelial Ca(2+) channel. J Biol Chem 275: 3963‐3969, 2000.
 444. Vennekens R, Olausson J, Meissner M, Bloch W, Mathar I, Philipp SE, Schmitz F, Weissgerber P, Nilius B, Flockerzi V, Freichel M. Increased IgE‐dependent mast cell activation and anaphylactic responses in mice lacking the calcium‐activated nonselective cation channel TRPM4. Nat Immunol 8: 312‐320, 2007.
 445. Vennekens R, Owsianik G, Nilius B. Vanilloid transient receptor potential cation channels: An overview. Curr Pharm Des 14: 18‐31, 2008.
 446. Vennekens R, Prenen J, Hoenderop JG, Bindels RJ, Droogmans G, Nilius B. Modulation of the epithelial Ca2+ channel ECaC by extracellular pH. Pflugers Arch 442: 237‐242, 2001.
 447. Venugopal B, Browning MF, Curcio‐Morelli C, Varro A, Michaud N, Nanthakumar N, Walkley SU, Pickel J, Slaugenhaupt SA. Neurologic, gastric, and opthalmologic pathologies in a murine model of mucolipidosis type IV. Am J Hum Genet 81: 1070‐1083, 2007.
 448. Vergarajauregui S, Puertollano R. Two di‐leucine motifs regulate trafficking of mucolipin‐1 to lysosomes. Traffic 7: 337‐353, 2006.
 449. Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B. The principle of temperature‐dependent gating in cold‐ and heat‐sensitive TRP channels. Nature 430: 748‐754, 2004.
 450. Voets T, Janssens A, Prenen J, Droogmans G, Nilius B. Mg2+‐dependent gating and strong inward rectification of the cation channel TRPV6. J Gen Physiol 121: 245‐260, 2003.
 451. Voets T, Nilius B, Hoefs S, van der Kemp AW, Droogmans G, Bindels RJ, Hoenderop JG. TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279: 19‐25, 2004.
 452. Voets T, Owsianik G, Janssens A, Talavera K, Nilius B. TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nat Chem Biol 3: 174‐182, 2007.
 453. Voets T, Prenen J, Fleig A, Vennekens R, Watanabe H, Hoenderop JG, Bindels RJ, Droogmans G, Penner R, Nilius B. CaT1 and the calcium release‐activated calcium channel manifest distinct pore properties. J Biol Chem 276: 47767‐47770, 2001.
 454. Voets T, Prenen J, Vriens J, Watanabe H, Janssens A, Wissenbach U, Bodding M, Droogmans G, Nilius B. Molecular determinants of permeation through the cation channel TRPV4. J Biol Chem 277: 33704‐33710, 2002.
 455. Vriens J, Owsianik G, Fisslthaler B, Suzuki M, Janssens A, Voets T, Morisseau C, Hammock BD, Fleming I, Busse R, Nilius B. Modulation of the Ca2 permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. Circ Res 97: 908‐915, 2005.
 456. Vriens J, Owsianik G, Hofmann T, Philipp S, Stab J, Chen X, Benoit M, Xue F, Janssens A, Kerselaers S, Oberwinkler J, Vennekens R, Gudermann T, Nilius B, Voets T. TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70(3): 482‐494, 2011.
 457. Vriens J, Owsianik G, Janssens A, Voets T, Nilius B. Determinants of 4 alpha‐phorbol sensitivity in transmembrane domains 3 and 4 of the cation channel TRPV4. J Biol Chem 282: 12796‐12803, 2007.
 458. Vriens J, Owsianik G, Voets T, Droogmans G, Nilius B. Invertebrate TRP proteins as functional models for mammalian channels. Pflugers Arch 449: 213‐226, 2004.
 459. Wagner TF, Drews A, Loch S, Mohr F, Philipp SE, Lambert S, Oberwinkler J. TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells. Pflugers Arch 460: 755‐765, 2010.
 460. Wagner TF, Loch S, Lambert S, Straub I, Mannebach S, Mathar I, Dufer M, Lis A, Flockerzi V, Philipp SE, Oberwinkler J. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. Nat Cell Biol 10: 1421‐1430, 2008.
 461. Walder RY, Landau D, Meyer P, Shalev H, Tsolia M, Borochowitz Z, Boettger MB, Beck GE, Englehardt RK, Carmi R, Sheffield VC. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 31: 171‐174, 2002.
 462. Walder RY, Yang B, Stokes JB, Kirby PA, Cao X, Shi P, Searby CC, Husted RF, Sheffield VC. Mice defective in Trpm6 show embryonic mortality and neural tube defects. Hum Mol Genet 18: 4367‐4375, 2009.
 463. Walker RG, Willingham AT, Zuker CS. A Drosophila mechanosensory transduction channel. Science 287: 2229‐2234, 2000.
 464. Walker RL, Koh SD, Sergeant GP, Sanders KM, Horowitz B. TRPC4 currents have properties similar to the pacemaker current in interstitial cells of Cajal. Am J Physiol Cell Physiol 283: C1637‐C1645, 2002.
 465. Wang GX, Poo MM. Requirement of TRPC channels in netrin‐1‐induced chemotropic turning of nerve growth cones. Nature 434: 898‐904, 2005.
 466. Wang J, Shimoda LA, Weigand L, Wang W, Sun D, Sylvester JT. Acute hypoxia increases intracellular [Ca2+] in pulmonary arterial smooth muscle by enhancing capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol 288: L1059‐L1069, 2005.
 467. Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL, Shimoda LA. Hypoxia inducible factor 1 mediates hypoxia‐induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 98: 1528‐1537, 2006.
 468. Wang W, O'Connell B, Dykeman R, Sakai T, Delporte C, Swaim W, Zhu X, Birnbaumer L, Ambudkar IS. Cloning of Trp1beta isoform from rat brain: immunodetection and localization of the endogenous Trp1 protein. Am J Physiol 276: C969‐C979, 1999.
 469. Wang YY, Chang RB, Waters HN, McKemy DD, Liman ER. The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J Biol Chem 283: 32691‐32703, 2008.
 470. Watanabe H, Davis JB, Smart D, Jerman JC, Smith GD, Hayes P, Vriens J, Cairns W, Wissenbach U, Prenen J, Flockerzi V, Droogmans G, Benham CD, Nilius B. Activation of TRPV4 channels (hVRL‐2/mTRP12) by phorbol derivatives. J Biol Chem 277: 13569‐13577, 2002.
 471. Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424: 434‐438, 2003.
 472. Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B. Heat‐evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277: 47044‐47051, 2002.
 473. Weber K, Erben RG, Rump A, Adamski J. Gene structure and regulation of the murine epithelial calcium channels ECaC1 and 2. Biochem Biophys Res Commun 289: 1287‐1294, 2001.
 474. Wedel BJ, Vazquez G, McKay RR, St JBG, Putney JW Jr. A calmodulin/inositol 1,4,5‐trisphosphate (IP3) receptor‐binding region targets TRPC3 to the plasma membrane in a calmodulin/IP3 receptor‐independent process. J Biol Chem 278: 25758‐25765, 2003.
 475. Wehage E, Eisfeld J, Heiner I, Jungling E, Zitt C, Luckhoff A. Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP‐ribose. J Biol Chem 277: 23150‐23156, 2002.
 476. Welsh DG, Brayden JE. Mechanisms of coronary artery depolarization by uridine triphosphate. Am J Physiol Heart Circ Physiol 280: H2545‐H2553, 2001.
 477. Welsh DG, Morielli AD, Nelson MT, Brayden JE. Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 90: 248‐250, 2002.
 478. Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C. TRPC1, a human homolog of a Drosophila store‐operated channel. Proc Natl Acad Sci U S A 92: 9652‐9656, 1995.
 479. Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak‐Vance MA, Howell DN, Vance JM, Rosenberg PB. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308: 1801‐1804, 2005.
 480. Wissenbach U, Niemeyer BA, Fixemer T, Schneidewind A, Trost C, Cavalie A, Reus K, Meese E, Bonkhoff H, Flockerzi V. Expression of CaT‐like, a novel calcium‐selective channel, correlates with the malignancy of prostate cancer. J Biol Chem 276: 19461‐19468, 2001.
 481. Wissenbach U, Schroth G, Philipp S, Flockerzi V. Structure and mRNA expression of a bovine trp homologue related to mammalian trp2 transcripts. FEBS Lett 429: 61‐66, 1998.
 482. Wu G, D'Agati V, Cai Y, Markowitz G, Park JH, Reynolds DM, Maeda Y, Le TC, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S. Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93: 177‐188, 1998.
 483. Wu G, Hayashi T, Park JH, Dixit M, Reynolds DM, Li L, Maeda Y, Cai Y, Coca‐Prados M, Somlo S. Identification of PKD2L, a human PKD2‐related gene: Tissue‐specific expression and mapping to chromosome 10q25. Genomics 54: 564‐568, 1998.
 484. Wu G, Markowitz GS, Li L, D'Agati VD, Factor SM, Geng L, Tibara S, Tuchman J, Cai Y, Park JH, van Adelsberg J, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S. Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat Genet 24: 75‐78, 2000.
 485. Wu G, Mochizuki T, Le TC, Cai Y, Hayashi T, Reynolds DM, Somlo S. Molecular cloning, cDNA sequence analysis, and chromosomal localization of mouse Pkd2. Genomics 45: 220‐223, 1997.
 486. Wu LJ, Sweet TB, Clapham DE. International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev 62: 381‐404, 2010.
 487. Xiao R, Xu XZ. Function and regulation of TRP family channels in C. elegans. Pflugers Arch 458: 851‐860, 2009.
 488. Xiao R, Xu XZ. C. elegans TRP Channels. Adv Exp Med Biol 704: 323‐339, 2010.
 489. Xiao Y, Lv X, Cao G, Bian G, Duan J, Ai J, Sun H, Li Q, Yang Q, Chen T, Zhao D, Tan R, Liu Y, Wang Y, Zhang Z, Yang Y, Wei Y, Zhou Q. Overexpression of Trpp5 contributes to cell proliferation and apoptosis probably through involving calcium homeostasis. Mol Cell Biochem 339: 155‐161.
 490. Xu C, Macciardi F, Li PP, Yoon IS, Cooke RG, Hughes B, Parikh SV, McIntyre RS, Kennedy JL, Warsh JJ. Association of the putative susceptibility gene, transient receptor potential protein melastatin type 2, with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 141B: 36‐43, 2006.
 491. Xu H, Delling M, Jun JC, Clapham DE. Oregano, thyme and clove‐derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci 9: 628‐635, 2006.
 492. Xu H, Delling M, Li L, Dong X, Clapham DE. Activating mutation in a mucolipin transient receptor potential channel leads to melanocyte loss in varitint‐waddler mice. Proc Natl Acad Sci U S A 104: 18321‐18326, 2007.
 493. Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos‐Santiago I, Xie Y, DiStefano PS, Curtis R, Clapham DE. TRPV3 is a calcium‐permeable temperature‐sensitive cation channel. Nature 418: 181‐186, 2002.
 494. Xu SZ, Sukumar P, Zeng F, Li J, Jairaman A, English A, Naylor J, Ciurtin C, Majeed Y, Milligan CJ, Bahnasi YM, Al‐Shawaf E, Porter KE, Jiang LH, Emery P, Sivaprasadarao A, Beech DJ. TRPC channel activation by extracellular thioredoxin. Nature 451: 69‐72, 2008.
 495. Xu XZ, Moebius F, Gill DL, Montell C. Regulation of melastatin, a TRP‐related protein, through interaction with a cytoplasmic isoform. Proc Natl Acad Sci U S A 98: 10692‐10697, 2001.
 496. Yamaguchi H, Matsushita M, Nairn AC, Kuriyan J. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol Cell 7: 1047‐1057, 2001.
 497. Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y, Negoro T, Hiroi T, Kiuchi Y, Okada T, Kaneko S, Lange I, Fleig A, Penner R, Nishi M, Takeshima H, Mori Y. TRPM2‐mediated Ca2+influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14: 738‐747, 2008.
 498. Yamashiro K, Sasano T, Tojo K, Namekata I, Kurokawa J, Sawada N, Suganami T, Kamei Y, Tanaka H, Tajima N, Utsunomiya K, Ogawa Y, Furukawa T. Role of transient receptor potential vanilloid 2 in LPS‐induced cytokine production in macrophages. Biochem Biophys Res Commun 398: 284‐289.
 499. Yeh BI, Kim YK, Jabbar W, Huang CL. Conformational changes of pore helix coupled to gating of TRPV5 by protons. Embo J 24: 3224‐3234, 2005.
 500. Yeh BI, Sun TJ, Lee JZ, Chen HH, Huang CL. Mechanism and molecular determinant for regulation of rabbit transient receptor potential type 5 (TRPV5) channel by extracellular pH. J Biol Chem 278: 51044‐51052, 2003.
 501. Yiangou Y, Facer P, Dyer NH, Chan CL, Knowles C, Williams NS, Anand P. Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet 357: 1338‐1339, 2001.
 502. Yu Y, Fantozzi I, Remillard CV, Landsberg JW, Kunichika N, Platoshyn O, Tigno DD, Thistlethwaite PA, Rubin LJ, Yuan JX. Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc Natl Acad Sci U S A 101: 13861‐13866, 2004.
 503. Yu Y, Keller SH, Remillard CV, Safrina O, Nicholson A, Zhang SL, Jiang W, Vangala N, Landsberg JW, Wang JY, Thistlethwaite PA, Channick RN, Robbins IM, Loyd JE, Ghofrani HA, Grimminger F, Schermuly RT, Cahalan MD, Rubin LJ, Yuan JX. A functional single‐nucleotide polymorphism in the TRPC6 gene promoter associated with idiopathic pulmonary arterial hypertension. Circulation 119: 2313‐2322, 2009.
 504. Yu Y, Ulbrich MH, Li MH, Buraei Z, Chen XZ, Ong AC, Tong L, Isacoff EY, Yang J. Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc Natl Acad Sci U S A 106: 11558‐11563, 2009.
 505. Yue L, Peng JB, Hediger MA, Clapham DE. CaT1 manifests the pore properties of the calcium‐release‐activated calcium channel. Nature 410: 705‐709, 2001.
 506. Zeevi DA, Frumkin A, Offen‐Glasner V, Kogot‐Levin A, Bach G. A potentially dynamic lysosomal role for the endogenous TRPML proteins. J Pathol 219: 153‐162, 2009.
 507. Zhang L, Barritt GJ. Evidence that TRPM8 is an androgen‐dependent Ca2+ channel required for the survival of prostate cancer cells. Cancer Res 64: 8365‐8373, 2004.
 508. Zhang LL, Yan Liu D, Ma LQ, Luo ZD, Cao TB, Zhong J, Yan ZC, Wang LJ, Zhao ZG, Zhu SJ, Schrader M, Thilo F, Zhu ZM, Tepel M. Activation of transient receptor potential vanilloid type‐1 channel prevents adipogenesis and obesity. Circ Res 100: 1063‐1070, 2007.
 509. Zhang W, Chu X, Tong Q, Cheung JY, Conrad K, Masker K, Miller BA. A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J Biol Chem 278: 16222‐16229, 2003.
 510. Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ. Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways. Cell 112: 293‐301, 2003.
 511. Zhang Z, Okawa H, Wang Y, Liman ER. Phosphatidylinositol 4,5‐bisphosphate rescues TRPM4 channels from desensitization. J Biol Chem 280: 39185‐39192, 2005.
 512. Zhang Z, Reboreda A, Alonso A, Barker PA, Seguela P. TRPC channels underlie cholinergic plateau potentials and persistent activity in entorhinal cortex. Hippocampus 21: 386‐397, 2011.
 513. Zhou J, Du W, Zhou K, Tai Y, Yao H, Jia Y, Ding Y, Wang Y. Critical role of TRPC6 channels in the formation of excitatory synapses. Nat Neurosci 11: 741‐743, 2008.
 514. Zhu G, Gulsvik A, Bakke P, Ghatta S, Anderson W, Lomas DA, Silverman EK, Pillai SG. Association of TRPV4 gene polymorphisms with chronic obstructive pulmonary disease. Hum Mol Genet 18: 2053‐2062, 2009.
 515. Zhu MX. Multiple roles of calmodulin and other Ca(2+)‐binding proteins in the functional regulation of TRP channels. Pflugers Arch 451: 105‐115, 2005.
 516. Zhu MX, Tang J. TRPC channel interactions with calmodulin and IP3 receptors. Novartis Found Symp 258: 44‐58; discussion 58‐62, 98‐102, 263‐106, 2004.
 517. Zhu X, Jiang M, Peyton M, Boulay G, Hurst R, Stefani E, Birnbaumer L. trp, a novel mammalian gene family essential for agonist‐activated capacitative Ca2+ entry. Cell 85: 661‐671, 1996.
 518. Zhuang L, Peng JB, Tou L, Takanaga H, Adam RM, Hediger MA, Freeman MR. Calcium‐selective ion channel, CaT1, is apically localized in gastrointestinal tract epithelia and is aberrantly expressed in human malignancies. Lab Invest 82: 1755‐1764, 2002.
 519. Zitt C, Obukhov AG, Strubing C, Zobel A, Kalkbrenner F, Luckhoff A, Schultz G. Expression of TRPC3 in Chinese hamster ovary cells results in calcium‐activated cation currents not related to store depletion. J Cell Biol 138: 1333‐1341, 1997.
 520. Zitt C, Zobel A, Obukhov AG, Harteneck C, Kalkbrenner F, Luckhoff A, Schultz G. Cloning and functional expression of a human Ca2+‐permeable cation channel activated by calcium store depletion. Neuron 16: 1189‐1196, 1996.
 521. Zurborg S, Yurgionas B, Jira JA, Caspani O, Heppenstall PA. Direct activation of the ion channel TRPA1 by Ca2+. Nat Neurosci 10: 277‐279, 2007.
Further Reading
 1. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell 139: 267‐284, 2009.
 2. Clapham DE. TRP channels as cellular sensors. Nature 426: 517‐524, 2003.
 3. Montell C. The history of TRP channels, a commentary and reflection. Pflugers Arch, 2011.
 4. Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julius D, Kojima I, Mori Y, Penner R, Prawitt D, Scharenberg AM, Schultz G, Shimizu N, Zhu MX. A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9: 229‐231, 2002.
 5. Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channels in disease. Physiol Rev 87: 165‐217, 2007.
 6. Owsianik G, Talavera K, Voets T, Nilius B. Permeation and selectivity of TRP channels. Annu Rev Physiol 68: 685‐717, 2006.

Further Reading:

Montell C. The history of TRP channels, a commentary and reflection. Pflugers Arch, 2011.

Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julius D, Kojima I, Mori Y, Penner R, Prawitt D, Scharenberg AM, Schultz G, Shimizu N, and Zhu MX. A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9: 229-231, 2002.

Clapham DE. TRP channels as cellular sensors. Nature 426: 517-524, 2003.

Owsianik G, Talavera K, Voets T, and Nilius B. Permeation and selectivity of TRP channels. Annu Rev Physiol 68: 685-717, 2006.

Basbaum AI, Bautista DM, Scherrer G, and Julius D. Cellular and molecular mechanisms of pain. Cell 139: 267-284, 2009.

Nilius B, Owsianik G, Voets T, and Peters JA. Transient receptor potential cation channels in disease. Physiol Rev 87: 165-217, 2007.

 


Related Articles:

Molecular Mechanism of TRP Channels

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Maarten Gees, Grzegorz Owsianik, Bernd Nilius, Thomas Voets. TRP Channels. Compr Physiol 2012, 2: 563-608. doi: 10.1002/cphy.c110026