Comprehensive Physiology Wiley Online Library

Nuclear Receptor Control of Enterohepatic Circulation

Full Article on Wiley Online Library



Abstract

Enterohepatic circulation is responsible for the capture of bile acids and other steroids produced or metabolized in the liver and secreted to the intestine, for reabsorption back into the circulation and transport back to the liver. Bile acids are secreted from the liver in the form of mixed micelles that also contain phosphatidylcholines and cholesterol that facilitate the uptake of fats and vitamins from the diet due to the surfactant properties of bile acids and lipids. Bile acids are synthesized in the liver from cholesterol by a cascade of enzymes that carry out oxidation and conjugation reactions, and transported to the bile duct and gall bladder where they are stored before being released into the intestine. Bile flow from the gall bladder to the small intestine is triggered by food intake in accordance with its role in lipid and vitamin absorption from the diet. Bile acids are further metabolized by gut bacteria and are transported back to the circulation. Metabolites produced in the liver are termed primary bile acids or primary conjugated bile salts, while the metabolites generated by bacterial are called secondary bile acids. About 95% of bile acids are reabsorbed in the proximal and distal ileum into the hepatic portal vein and then into the liver sinusoids, where they are efficiently transported into the liver with little remaining in circulation. Each bile acid is reabsorbed about 20 times on average before being eliminated. Enterohepatic circulation is under tight regulation by nuclear receptor signaling, notably by the farnesoid X receptor (FXR). Published 2012. Compr Physiol 2:2811‐2828, 2012.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Enterohepatic circulation of bile acids. Bile acids and other steroids produced or metabolized in the liver and secreted to the intestine, for reabsorption back into the circulation and transport back to the liver. Coincident with bile acid recirculation is the removal and reuptake of drugs, usually conjugated high Mr drugs. Cholesterol is the substrate for bile acid synthesis, one of the routes for mammalian disposal of cholesterol. The author thanks Tsutomu Matsubara for help in preparing this figure.

Figure 2. Figure 2.

Pathway for the synthesis of bile acids. Neutral pathway: cholesterol is converted to 7α‐hydroxycholesterol (I) by CYP7A1, the rate‐limiting enzyme in cholesterol degradation in the major neutral pathway of bile acid synthesis. 7α‐Hydroxycholesterol is reduced to 7α‐hydroxy‐4‐cholesten‐3‐one (II), which is metabolized to 7α,12,‐dihydroxy‐4‐cholesten‐3‐one (III) by CYP12A1 or reduced to 5β‐cholestane‐3α,7α‐diol (VII). 7α,12,‐Dihydroxy‐4‐cholesten‐3‐one is oxidized to 5β‐cholestane‐3α,7α,12,‐triol (IV), and 5β‐cholestane‐3α,7α‐diol is oxidized by CYP27A1 to 3α,7α‐dihydroxy‐5β‐cholestanoic acid (VIII), which is then metabolized to the terminal metabolite chenodeoxycholic acid (IX) through a demethylation reaction. 5β‐Cholestane‐3α,7α,12,‐triol is also oxidized to 3α,7α,12,‐trihydroxy‐5β‐cholestanoic acid (V) by CYP27A1, which is converted to the terminal metabolite cholic acid (VI) by a demethylation reaction. Acidic pathway: cholesterol is also converted to 27‐hydroxycholesterol (X) and 3β‐hydroxy‐5‐cholestenoic acid (XI) by CYP27A1 in the minor acidic pathway. 3β‐Hydroxy‐5‐cholestenoic acid is metabolized to 3β,7α‐hydroxy‐5‐cholestenoic acid (XII) by CYP7B1. A series of reactions converts 3β,7α‐hydroxy‐5‐cholestenoic acid to chenodeoxycholic acid (IX). The author thanks Fei Li for making this figure.

Figure 3. Figure 3.

Domain structure of nuclear receptors. The nuclear receptor superfamily proteins have several functional domains; the activation function 1 (AF1) domain at the N terminus, the DNA‐binding domain (DBD), a hinge region, a ligand‐binding domain (LBD) and another activation function 2 (AF2) domain at the C terminus. The small heterodimer protein (SHP) that has a major role in the regulation of genes involved in bile acid synthesis and transport, lacks the AF1 and DBD domains. Derived in part, with permission, from Science Slides (scienceslides.com).

Figure 4. Figure 4.

Nuclear receptor control of gene expression. Nuclear receptors (NR) bind to cis‐acting elements usually located upstream of target genes. In the case of those receptors involved in metabolic control that bind as heterodimers with the retinoid X receptor, the binding site is composed of a direct repeat element (DR) separated by 1 to 4 nucleotides. In the absence of ligand, the NR is either unbound or bound to DNA. If bound to DNA in the absence of ligand, the receptor is complexed to a corepressor and histone deacetylases (HDAC) or demethylases, enzymes that remove acetyl or methyl groups from histones, which serve to keep the chromatin compact. In the presence of ligands, the corepressor is released and coactivators bind along with histone acetyltransferases and histone methyltransferases and components of the RNA polymerase (RNAP) complex resulting in gene transcription. Derived in part, with permission, from Science Slides (scienceslides.com).

Figure 5. Figure 5.

Repression of the Cyp7a1 gene by small heterodimer protein (SHP). Farnesoid X receptor (FXR) activates expression of SHP in the presence of bile acids agonist. SHP then binds to the positive regulator liver receptor homolog 1 (LRH‐1) and inhibits its transactivation of Cyp7a1 and other target genes such as Asbt. Derived in part, with permission, from Science Slides (scienceslides.com) and reference 76.

Figure 6. Figure 6.

Mechanism for gene suppression by Rev‐erbα. Rev‐erbα binds heme and represses gene transcription by recruitment of NCoR‐HDAC3 corepressor complex and promotes chromatin condensation. Rev‐erbα suppresses expression of Cyp7a1 and the positive clock component, Bmal1 that controls circadian rhythm. Derived in part, with permission, from Science Slides (scienceslides.com) and reference 160.

Figure 7. Figure 7.

Mechanism for the enterohepatic circulation of bile acids. Bile acids and other steroids produced or metabolized in the liver and secreted to the intestine, for reabsorption back into the circulation and transport back to the liver. Coincident with bile acid recirculation is the removal and reuptake of drugs, usually conjugated high Mr drugs. Cholesterol is the substrate for bile acid synthesis, one of the routes for mammalian disposal of cholesterol. The author thanks Tsutomu Matsubara for help in preparing this figure.



Figure 1.

Enterohepatic circulation of bile acids. Bile acids and other steroids produced or metabolized in the liver and secreted to the intestine, for reabsorption back into the circulation and transport back to the liver. Coincident with bile acid recirculation is the removal and reuptake of drugs, usually conjugated high Mr drugs. Cholesterol is the substrate for bile acid synthesis, one of the routes for mammalian disposal of cholesterol. The author thanks Tsutomu Matsubara for help in preparing this figure.



Figure 2.

Pathway for the synthesis of bile acids. Neutral pathway: cholesterol is converted to 7α‐hydroxycholesterol (I) by CYP7A1, the rate‐limiting enzyme in cholesterol degradation in the major neutral pathway of bile acid synthesis. 7α‐Hydroxycholesterol is reduced to 7α‐hydroxy‐4‐cholesten‐3‐one (II), which is metabolized to 7α,12,‐dihydroxy‐4‐cholesten‐3‐one (III) by CYP12A1 or reduced to 5β‐cholestane‐3α,7α‐diol (VII). 7α,12,‐Dihydroxy‐4‐cholesten‐3‐one is oxidized to 5β‐cholestane‐3α,7α,12,‐triol (IV), and 5β‐cholestane‐3α,7α‐diol is oxidized by CYP27A1 to 3α,7α‐dihydroxy‐5β‐cholestanoic acid (VIII), which is then metabolized to the terminal metabolite chenodeoxycholic acid (IX) through a demethylation reaction. 5β‐Cholestane‐3α,7α,12,‐triol is also oxidized to 3α,7α,12,‐trihydroxy‐5β‐cholestanoic acid (V) by CYP27A1, which is converted to the terminal metabolite cholic acid (VI) by a demethylation reaction. Acidic pathway: cholesterol is also converted to 27‐hydroxycholesterol (X) and 3β‐hydroxy‐5‐cholestenoic acid (XI) by CYP27A1 in the minor acidic pathway. 3β‐Hydroxy‐5‐cholestenoic acid is metabolized to 3β,7α‐hydroxy‐5‐cholestenoic acid (XII) by CYP7B1. A series of reactions converts 3β,7α‐hydroxy‐5‐cholestenoic acid to chenodeoxycholic acid (IX). The author thanks Fei Li for making this figure.



Figure 3.

Domain structure of nuclear receptors. The nuclear receptor superfamily proteins have several functional domains; the activation function 1 (AF1) domain at the N terminus, the DNA‐binding domain (DBD), a hinge region, a ligand‐binding domain (LBD) and another activation function 2 (AF2) domain at the C terminus. The small heterodimer protein (SHP) that has a major role in the regulation of genes involved in bile acid synthesis and transport, lacks the AF1 and DBD domains. Derived in part, with permission, from Science Slides (scienceslides.com).



Figure 4.

Nuclear receptor control of gene expression. Nuclear receptors (NR) bind to cis‐acting elements usually located upstream of target genes. In the case of those receptors involved in metabolic control that bind as heterodimers with the retinoid X receptor, the binding site is composed of a direct repeat element (DR) separated by 1 to 4 nucleotides. In the absence of ligand, the NR is either unbound or bound to DNA. If bound to DNA in the absence of ligand, the receptor is complexed to a corepressor and histone deacetylases (HDAC) or demethylases, enzymes that remove acetyl or methyl groups from histones, which serve to keep the chromatin compact. In the presence of ligands, the corepressor is released and coactivators bind along with histone acetyltransferases and histone methyltransferases and components of the RNA polymerase (RNAP) complex resulting in gene transcription. Derived in part, with permission, from Science Slides (scienceslides.com).



Figure 5.

Repression of the Cyp7a1 gene by small heterodimer protein (SHP). Farnesoid X receptor (FXR) activates expression of SHP in the presence of bile acids agonist. SHP then binds to the positive regulator liver receptor homolog 1 (LRH‐1) and inhibits its transactivation of Cyp7a1 and other target genes such as Asbt. Derived in part, with permission, from Science Slides (scienceslides.com) and reference 76.



Figure 6.

Mechanism for gene suppression by Rev‐erbα. Rev‐erbα binds heme and represses gene transcription by recruitment of NCoR‐HDAC3 corepressor complex and promotes chromatin condensation. Rev‐erbα suppresses expression of Cyp7a1 and the positive clock component, Bmal1 that controls circadian rhythm. Derived in part, with permission, from Science Slides (scienceslides.com) and reference 160.



Figure 7.

Mechanism for the enterohepatic circulation of bile acids. Bile acids and other steroids produced or metabolized in the liver and secreted to the intestine, for reabsorption back into the circulation and transport back to the liver. Coincident with bile acid recirculation is the removal and reuptake of drugs, usually conjugated high Mr drugs. Cholesterol is the substrate for bile acid synthesis, one of the routes for mammalian disposal of cholesterol. The author thanks Tsutomu Matsubara for help in preparing this figure.

References
 1.Intercept Pharmaceuticals Inc press release. 2010, July 28.
 2.Intercept Pharmaceuticals Inc Company World Wide Web Site. 2010, June 18.
 3. Akwabi‐Ameyaw A, Bass JY, Caldwell RD, Caravella JA, Chen LH, Creech KL, Deaton DN, Madauss KP, Marr HB, McFadyen RB, Miller AB, Navas F, Parks DJ, Spearing PK, Todd D, Williams SP, Wisely GB. FXR agonist activity of conformationally constrained analogs of GW 4064. Bioorg Med Chem Lett 19: 4733‐4739, 2009.
 4. Anakk S, Watanabe M, Ochsner SA, McKenna NJ, Finegold MJ, Moore DD. Combined deletion of Fxr and Shp in mice induces Cyp17a1 and results in juvenile onset cholestasis. J Clin Invest 121: 86‐95, 2011.
 5. Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem 276: 28857‐28865, 2001.
 6. Araya Z, Wikvall K. 6alpha‐hydroxylation of taurochenodeoxycholic acid and lithocholic acid by CYP3A4 in human liver microsomes. Biochim Biophys Acta 1438: 47‐54, 1999.
 7. Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz‐Lozano P, Chien KR, Koder A, Evans RM. PPAR gamma is required for placental, cardiac, and adipose tissue development. Molecular Cell 4: 585‐595, 1999.
 8. Baranowski M. Biological role of liver X receptors. J Physiol Pharmacol 59(Suppl 7): 31‐55, 2008.
 9. Barbier O, Torra IP, Sirvent A, Claudel T, Blanquart C, Duran‐Sandoval D, Kuipers F, Kosykh V, Fruchart JC, Staels B. FXR induces the UGT2B4 enzyme in hepatocytes: A potential mechanism of negative feedback control of FXR activity. Gastroenterology 124: 1926‐1940, 2003.
 10. Bodin K, Lindbom U, Diczfalusy U. Novel pathways of bile acid metabolism involving CYP3A4. Biochim Biophys Acta 1687: 84‐93, 2005.
 11. Carter BA, Taylor OA, Prendergast DR, Zimmerman TL, Von Furstenberg R, Moore DD, Karpen SJ. Stigmasterol, a soy lipid‐derived phytosterol, is an antagonist of the bile acid nuclear receptor FXR. Pediatr Res 62: 301‐306, 2007.
 12. Chanda D, Xie YB, Choi HS. Transcriptional corepressor SHP recruits SIRT1 histone deacetylase to inhibit LRH‐1 transactivation. Nucleic Acids Res 38: 4607‐4619, 2010.
 13. Chen F, Ma L, Dawson PA, Sinal CJ, Sehayek E, Gonzalez FJ, Breslow J, Ananthanarayanan M, Shneider BL. Liver receptor homologue‐1 mediates species‐ and cell line‐specific bile acid‐dependent negative feedback regulation of the apical sodium‐dependent bile acid transporter. J Biol Chem 278: 19909‐19916, 2003.
 14. Chen W, Chiang JY. Regulation of human sterol 27‐hydroxylase gene (CYP27A1) by bile acids and hepatocyte nuclear factor 4alpha (HNF4alpha). Gene 313: 71‐82, 2003.
 15. Chen W, Owsley E, Yang Y, Stroup D, Chiang JY. Nuclear receptor‐mediated repression of human cholesterol 7alpha‐hydroxylase gene transcription by bile acids. J Lipid Res 42: 1402‐1412, 2001.
 16. Chen WS, Manova K, Weinstein DC, Duncan SA, Plump AS, Prezioso VR, Bachvarova RF, Darnell JE. Disruption of the Hnf‐4 gene, expressed in visceral endoderm, leads to cell‐death in embryonic ectoderm and impaired gastrulation of mouse embryos. Gene Dev 8: 2466‐2477, 1994.
 17. Cheng J, Ma X, Gonzalez FJ. Pregnane X receptor‐ and CYP3A4‐humanized mouse models and their applications. Br J Pharmacol 163: 461‐468, 2011.
 18. Cheng X, Maher J, Dieter MZ, Klaassen CD. Regulation of mouse organic anion‐transporting polypeptides (Oatps) in liver by prototypical microsomal enzyme inducers that activate distinct transcription factor pathways. Drug Metab Dispos 33: 1276‐1282, 2005.
 19. Chiang JY. Bile acids: Regulation of synthesis. J Lipid Res 50: 1955‐1966, 2009.
 20. Chiang JY. Hepatocyte nuclear factor 4alpha regulation of bile acid and drug metabolism. Expert Opin Drug Metab Toxicol 5: 137‐147, 2009.
 21. Cho JY, Matsubara T, Kang DW, Ahn SH, Krausz KW, Idle JR, Luecke H, Gonzalez FJ. Urinary metabolomics in Fxr‐null mice reveals activated adaptive metabolic pathways upon bile acid challenge. J Lipid Res 51: 1063‐1074, 2010.
 22. Choi M, Moschetta A, Bookout AL, Peng L, Umetani M, Holmstrom SR, Suino‐Powell K, Xu HE, Richardson JA, Gerard RD, Mangelsdorf DJ, Kliewer SA. Identification of a hormonal basis for gallbladder filling. Nat Med 12: 1253‐1255, 2006.
 23. Cipriani S, Mencarelli A, Palladino G, Fiorucci S. FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. J Lipid Res 51: 771‐784, 2010.
 24. Coppola CP, Gosche JR, Arrese M, Ancowitz B, Madsen J, Vanderhoof J, Shneider BL. Molecular analysis of the adaptive response of intestinal bile acid transport after ileal resection in the rat. Gastroenterology 115: 1172‐1178, 1998.
 25. Dawson PA, Hubbert M, Haywood J, Craddock AL, Zerangue N, Christian WV, Ballatori N. The heteromeric organic solute transporter alpha‐beta, Ostalpha‐Ostbeta, is an ileal basolateral bile acid transporter. J Biol Chem 280: 6960‐6968, 2005.
 26. De Fabiani E, Mitro N, Anzulovich AC, Pinelli A, Galli G, Crestani M. The negative effects of bile acids and tumor necrosis factor‐alpha on the transcription of cholesterol 7alpha‐hydroxylase gene (CYP7A1) converge to hepatic nuclear factor‐4: A novel mechanism of feedback regulation of bile acid synthesis mediated by nuclear receptors. J Biol Chem 276: 30708‐30716, 2001.
 27. De Fabiani E, Mitro N, Gilardi F, Caruso D, Galli G, Crestani M. Coordinated control of cholesterol catabolism to bile acids and of gluconeogenesis via a novel mechanism of transcription regulation linked to the fasted‐to‐fed cycle. J Biol Chem 278: 39124‐39132, 2003.
 28. De Vree JM, Jacquemin E, Sturm E, Cresteil D, Bosma PJ, Aten J, Deleuze JF, Desrochers M, Burdelski M, Bernard O, Oude Elferink RP, Hadchouel M. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc Natl Acad Sci U S A 95: 282‐287, 1998.
 29. Del Castillo‐Olivares A, Gil G. Alpha 1‐fetoprotein transcription factor is required for the expression of sterol 12alpha‐hydroxylase, the specific enzyme for cholic acid synthesis. Potential role in the bile acid‐mediated regulation of gene transcription. J Biol Chem 275: 17793‐17799, 2000.
 30. Del Castillo‐Olivares A, Gil G. Role of FXR and FTF in bile acid‐mediated suppression of cholesterol 7alpha‐hydroxylase transcription. Nucleic Acids Res 28: 3587‐3593, 2000.
 31. Denson LA, Sturm E, Echevarria W, Zimmerman TL, Makishima M, Mangelsdorf DJ, Karpen SJ. The orphan nuclear receptor, shp, mediates bile acid‐induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology 121: 140‐147, 2001.
 32. Dhe‐Paganon S, Duda K, Iwamoto M, Chi YI, Shoelson SE. Crystal structure of the HNF4 alpha ligand binding domain in complex with endogenous fatty acid ligand. J Biol Chem 277: 37973‐37976, 2002.
 33. Downes M, Verdecia MA, Roecker AJ, Hughes R, Hogenesch JB, Kast‐Woelbern HR, Bowman ME, Ferrer JL, Anisfeld AM, Edwards PA, Rosenfeld JM, Alvarez JG, Noel JP, Nicolaou KC, Evans RM. A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol Cell 11: 1079‐1092, 2003.
 34. Duane WC, Levitt DG, Mueller SM, Behrens JC. Regulation of bile‐acid synthesis in man ‐ presence of a diurnal rhythm. J Clin Invest 72: 1930‐1936, 1983.
 35. Duez H, Staels B. Rev‐erb‐alpha: An integrator of circadian rhythms and metabolism. J Appl Physiol 107: 1972‐1980, 2009.
 36. Duez H, Van Der Veen JN, Duhem C, Pourcet B, Touvier T, Fontaine C, Derudas B, Bauge E, Havinga R, Bloks VW, Wolters H, Van Der Sluijs FH, Vennstrom B, Kuipers F, Staels B. Regulation of bile acid synthesis by the nuclear receptor Rev‐erb alpha. Gastroenterology 135: 689‐698, 2008.
 37. Eloranta JJ, Jung D, Kullak‐Ublick GA. The human Na+‐taurocholate cotransporting polypeptide gene is activated by glucocorticoid receptor and peroxisome proliferator‐activated receptor‐gamma coactivator‐1alpha, and suppressed by bile acids via a small heterodimer partner‐dependent mechanism. Mol Endocrinol 20: 65‐79, 2006.
 38. Fiorucci S, Antonelli E, Rizzo G, Renga B, Mencarelli A, Riccardi L, Orlandi S, Pellicciari R, Morelli A. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology 127: 1497‐1512, 2004.
 39. Fiorucci S, Clerici C, Antonelli E, Orlandi S, Goodwin B, Sadeghpour BM, Sabatino G, Russo G, Castellani D, Willson TM, Pruzanski M, Pellicciari R, Morelli A. Protective effects of 6‐ethyl chenodeoxycholic acid, a farnesoid X receptor ligand, in estrogen‐induced cholestasis. J Pharmacol Exp Ther 313: 604‐612, 2005.
 40. Fiorucci S, Rizzo G, Antonelli E, Renga B, Mencarelli A, Riccardi L, Orlandi S, Pruzanski M, Morelli A, Pellicciari R. A farnesoid x receptor‐small heterodimer partner regulatory cascade modulates tissue metalloproteinase inhibitor‐1 and matrix metalloprotease expression in hepatic stellate cells and promotes resolution of liver fibrosis. J Pharmacol Exp Ther 314: 584‐595, 2005.
 41. Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, Noonan DJ, Burka LT, McMorris T, Lamph WW, Evans RM, Weinberger C. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 81: 687‐693, 1995.
 42. Gadaleta RM, van Erpecum KJ, Oldenburg B, Willemsen EC, Renooij W, Murzilli S, Klomp LW, Siersema PD, Schipper ME, Danese S, Penna G, Laverny G, Adorini L, Moschetta A, van Mil SW. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60: 463‐472, 2011.
 43. Garrett WS, Gordon JI, Glimcher LH. Homeostasis and inflammation in the intestine. Cell 140: 859‐870, 2010.
 44. Garuti R, Croce MA, Piccinini L, Tiozzo R, Bertolini S, Calandra S. Functional analysis of the promoter of human sterol 27‐hydroxylase gene in HepG2 cells. Gene 283: 133‐143, 2002.
 45. Geier A, Dietrich CG, Voigt S, Kim SK, Gerloff T, Kullak‐Ublick GA, Lorenzen J, Matern S, Gartung C. Effects of proinflammatory cytokines on rat organic anion transporters during toxic liver injury and cholestasis. Hepatology 38: 345‐354, 2003.
 46. Geier A, Martin IV, Dietrich CG, Balasubramaniyan N, Strauch S, Suchy FJ, Gartung C, Trautwein C, Ananthanarayanan M. Hepatocyte nuclear factor‐4 alpha is a central transactivator of the mouse Ntcp gene. Am J Physiol‐Gastrointest Liver Physiol 295: G226‐G233, 2008.
 47. Geier A, Wagner M, Dietrich CG, Trauner M. Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. Bba‐Mol Cell Res 1773: 283‐308, 2007.
 48. Gielen J, Vancantfort J, Robaye B, Renson J. Rat‐Liver Cholesterol 7alpha‐hydroxylase .3. New results about its circadian‐rhythm. Eur J Biochem 55: 41‐48, 1975.
 49. Gnerre C, Blattler S, Kaufmann MR, Looser R, Meyer UA. Regulation of CYP3A4 by the bile acid receptor FXR: Evidence for functional binding sites in the CYP3A4 gene. Pharmacogenetics 14: 635‐645, 2004.
 50. Gonzalez FJ. The 2006 Bernard B. Brodie Award Lecture. Cyp2e1. Drug Metab Dispos 35: 1‐8, 2007.
 51. Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, Galardi C, Wilson JG, Lewis MC, Roth ME, Maloney PR, Willson TM, Kliewer SA. A regulatory cascade of the nuclear receptors FXR, SHP‐1, and LRH‐1 represses bile acid biosynthesis. Mol Cell 6: 517‐526, 2000.
 52. Goodwin B, Watson MA, Kim H, Miao J, Kemper JK, Kliewer SA. Differential regulation of rat and human CYP7A1 by the nuclear oxysterol receptor liver X receptor‐alpha. Mol Endocrinol 17: 386‐394, 2003.
 53. Grober J, Zaghini I, Fujii H, Jones SA, Kliewer SA, Willson TM, Ono T, Besnard P. Identification of a bile acid‐responsive element in the human ileal bile acid‐binding protein gene. Involvement of the farnesoid X receptor/9‐cis‐retinoic acid receptor heterodimer. J Biol Chem 274: 29749‐29754, 1999.
 54. Hadjantonakis AK, Pirity M, Nagy A. Cre recombinase mediated alterations of the mouse genome using embryonic stem cells. Methods Mol Biol 461: 111‐132, 2008.
 55. Hagenbuch B, Meier PJ. Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J Clin Invest 93: 1326‐1331, 1994.
 56. Hardin PE, Yu W. Circadian transcription: Passing the HAT to CLOCK. Cell 125: 424‐426, 2006.
 57. Harding HP, Lazar MA. The orphan receptor Rev‐ErbA alpha activates transcription via a novel response element. Mol Cell Biol 13: 3113‐3121, 1993.
 58. Hertz R, Ben‐Haim N, Petrescu AD, Kalderon B, Berman I, Eldad N, Schroeder F, Bar‐Tana J. Rescue of MODY‐1 by agonist ligands of hepatocyte nuclear factor‐4 alpha. J Biol Chem 278: 22578‐22585, 2003.
 59. Hertz R, Magenheim J, Berman I, Bar‐Tana J. Fatty acyl‐CoA thioesters are ligands of hepatic nuclear factor‐4 alpha. Nature 392: 512‐516, 1998.
 60. Heubi JE, Balistreri WF, Fondacaro JD, Partin JC, Schubert WK. Primary bile acid malabsorption: Defective in vitro ileal active bile acid transport. Gastroenterology 83: 804‐811, 1982.
 61. Hofmann AF. Detoxification of lithocholic acid, a toxic bile acid: Relevance to drug hepatotoxicity. Drug Metab Rev 36: 703‐722, 2004.
 62. Hofmann AF. The enterohepatic circulation of bile acids in mammals: Form and functions. Front Biosci 14: 2584‐2598, 2009.
 63. Holt JA, Luo G, Billin AN, Bisi J, McNeill YY, Kozarsky KF, Donahee M, Wang DY, Mansfield TA, Kliewer SA, Goodwin B, Jones SA. Definition of a novel growth factor‐dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev 17: 1581‐1591, 2003.
 64. Howard WR, Pospisil JA, Njolito E, Noonan DJ. Catabolites of cholesterol synthesis pathways and forskolin as activators of the farnesoid X‐activated nuclear receptor. Toxicol Appl Pharmacol 163: 195‐202, 2000.
 65. Huang L, Zhao A, Lew JL, Zhang T, Hrywna Y, Thompson JR, de Pedro N, Royo I, Blevins RA, Pelaez F, Wright SD, Cui J. Farnesoid X receptor activates transcription of the phospholipid pump MDR3. J Biol Chem 278: 51085‐51090, 2003.
 66. Hughes SE. Differential expression of the fibroblast growth factor receptor (FGFR) multigene family in normal human adult tissues. J Histochem Cytochem 45: 1005‐1019, 1997.
 67. Ihunnah CA, Jiang M, Xie W. Nuclear receptor PXR, transcriptional circuits and metabolic relevance. Biochim Biophys Acta 1812: 956‐963, 2011.
 68. Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2: 217‐225, 2005.
 69. Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G, Downes M, Yu RT, Shelton JM, Richardson JA, Repa JJ, Mangelsdorf DJ, Kliewer SA. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A 103: 3920‐3925, 2006.
 70. Inoue Y, Yu AM, Inoue J, Gonzalez FJ. Hepatocyte nuclear factor 4alpha is a central regulator of bile acid conjugation. J Biol Chem 279: 2480‐2489, 2004.
 71. Inoue Y, Yu AM, Yim SH, Ma X, Krausz KW, Inoue J, Xiang CC, Brownstein MJ, Eggertsen G, Bjorkhem I, Gonzalez FJ. Regulation of bile acid biosynthesis by hepatocyte nuclear factor 4alpha. J Lipid Res 47: 215‐227, 2006.
 72. Jones S. Mini‐review: Endocrine actions of fibroblast growth factor 19. Mol Pharm 5: 42‐48, 2008.
 73. Jung D, Elferink MGL, Stellaard F, Groothuis GMM. Analysis of bile acid‐induced regulation of FXR target genes in human liver slices. Liver Int 27: 137‐144, 2007.
 74. Jung D, Hagenbuch B, Fried M, Meier PJ, Kullak‐Ublick GA. Role of liver‐enriched transcription factors and nuclear receptors in regulating the human, mouse, and rat NTCP gene. Am J Physiol Gastrointest Liver Physiol 286: G752‐G761, 2004.
 75. Jung D, Kullak‐Ublick GA. Hepatocyte nuclear factor 1 alpha: A key mediator of the effect of bile acids on gene expression. Hepatology 37: 622‐631, 2003.
 76. Kemper JK. Regulation of FXR transcriptional activity in health and disease: Emerging roles of FXR cofactors and post‐translational modifications. Biochim Biophys Acta 1812: 842‐850, 2011.
 77. Khan AA, Chow EC, van Loenen‐Weemaes AM, Porte RJ, Pang KS, Groothuis GM. Comparison of effects of VDR versus PXR, FXR and GR ligands on the regulation of CYP3A isozymes in rat and human intestine and liver. Eur J Pharm Sci 37: 115‐125, 2009.
 78. Kim I, Ahn SH, Inagaki T, Choi M, Ito S, Guo GL, Kliewer SA, Gonzalez FJ. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res 48: 2664‐2672, 2007.
 79. Kim I, Morimura K, Shah Y, Yang Q, Ward JM, Gonzalez FJ. Spontaneous hepatocarcinogenesis in farnesoid X receptor‐null mice. Carcinogenesis 28: 940‐946, 2007.
 80. Kir S, Beddow SA, Samuel VT, Miller P, Previs SF, Suino‐Powell K, Xu HE, Shulman GI, Kliewer SA, Mangelsdorf DJ. FGF19 as a postprandial, insulin‐independent activator of hepatic protein and glycogen Synthesis. Science 331: 1621‐1624, 2011.
 81. Kir S, Kliewer SA, Mangelsdorf DJ. Roles of FGF19 in Liver Metabolism. Cold Spring Harb Symp Quant Biol 76: 139‐144, 2011.
 82. Kliewer SA, Moore JT, Wade L, Staudinger JL, Watson MA, Jones SA, McKee DD, Oliver BB, Willson TM, Zetterstrom RH, Perlmann T, Lehmann JM. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92: 73‐82, 1998.
 83. Kong B, Wang L, Chiang JY, Zhang Y, Klaassen CD, Guo GL. Mechanism of tissue‐specific farnesoid X receptor in suppressing the expression of genes in bile‐acid synthesis in mice. Hepatology 2012 [Epub ahead of print].
 84. Kramer W, Girbig F, Gutjahr U, Kowalewski S, Jouvenal K, Muller G, Tripier D, Wess G. Intestinal bile acid absorption. Na(+)‐dependent bile acid transport activity in rabbit small intestine correlates with the coexpression of an integral 93‐kDa and a peripheral 14‐kDa bile acid‐binding membrane protein along the duodenum‐ileum axis. J Biol Chem 268: 18035‐18046, 1993.
 85. Kuo CJ, Conley PB, Chen L, Sladek FM, Darnell JE, Jr., Crabtree GR. A transcriptional hierarchy involved in mammalian cell‐type specification. Nature 355: 457‐461, 1992.
 86. Le Martelot G, Claudel T, Gatfield D, Schaad O, Kornmann B, Sasso GL, Moschetta A, Schibler U. REV‐ERBalpha participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol 7: e1000181, 2009.
 87. Lee FY, de Aguiar Vallim TQ, Chong HK, Zhang Y, Liu Y, Jones SA, Osborne TF, Edwards PA. Activation of the farnesoid X receptor provides protection against acetaminophen‐induced hepatic toxicity. Mol Endocrinol 24: 1626‐1636, 2010.
 88. Lee H, Zhang Y, Lee FY, Nelson SF, Gonzalez FJ, Edwards PA. FXR regulates organic solute transporters alpha and beta in the adrenal gland, kidney, and intestine. J Lipid Res 47: 201‐214, 2006.
 89. Lee SS, Pineau T, Drago J, Lee EJ, Owens JW, Kroetz DL, Fernandez‐Salguero PM, Westphal H, Gonzalez FJ. Targeted disruption of the alpha isoform of the peroxisome proliferator‐activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol 15: 3012‐3022, 1995.
 90. Lee YH, Alberta JA, Gonzalez FJ, Waxman DJ. Multiple, functional Dbp sites on the promoter of the cholesterol 7‐alpha‐hydroxylase P450 gene, cyp7 ‐ proposed role in diurnal regulation of liver gene‐expression. J Biol Chem 269: 14681‐14689, 1994.
 91. Lehmann JM, Kliewer SA, Moore LB, Smith‐Oliver TA, Oliver BB, Su JL, Sundseth SS, Winegar DA, Blanchard DE, Spencer TA, Willson TM. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem 272: 3137‐3140, 1997.
 92. Li GD, Thomas AM, Hart SN, Zhong XB, Wu DQ, Guo GL. Farnesoid X receptor activation mediates head‐to‐tail chromatin looping in the Nr0b2 gene encoding small heterodimer partner. Mol Endocrinol 24: 1404‐1412, 2010.
 93. Li T, Matozel M, Boehme S, Kong B, Nilsson LM, Guo G, Ellis E, Chiang JY. Overexpression of cholesterol 7alpha‐hydroxylase promotes hepatic bile acid synthesis and secretion and maintains cholesterol homeostasis. Hepatology 53: 996‐1006, 2011.
 94. Liu Y, Binz J, Numerick MJ, Dennis S, Luo G, Desai B, MacKenzie KI, Mansfield TA, Kliewer SA, Goodwin B, Jones SA. Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra‐ and extrahepatic cholestasis. J Clin Invest 112: 1678‐1687, 2003.
 95. Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, Mangelsdorf DJ. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 6: 507‐515, 2000.
 96. Maeda S, Kamata H, Luo JL, Leffert H, Karin M. IKK beta couples hepatocyte death to cytokine‐driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121: 977‐990, 2005.
 97. Maeda T, Miyata M, Yotsumoto T, Kobayashi D, Nozawa T, Toyama K, Gonzalez FJ, Yamazoe Y, Tamai I. Regulation of drug transporters by the farnesoid X receptor in mice. Mol Pharm 1: 281‐289, 2004.
 98. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B. Identification of a nuclear receptor for bile acids. Science 284: 1362‐1365, 1999.
 99. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM. The nuclear receptor superfamily: The second decade. Cell 83: 835‐839, 1995.
 100. Maran RR, Thomas A, Roth M, Sheng Z, Esterly N, Pinson D, Gao X, Zhang Y, Ganapathy V, Gonzalez FJ, Guo GL. Farnesoid X receptor deficiency in mice leads to increased intestinal epithelial cell proliferation and tumor development. J Pharmacol Exp Ther 328: 469‐477, 2009.
 101. Margolis RN, Christakos S. The nuclear receptor superfamily of steroid hormones and vitamin D gene regulation An update. Ann Ny Acad Sci 1192: 208‐214, 2010.
 102. Mason A, Luketic V, Lindor K, Hirschfield G, Gordon S, Mayo M, Kowdley K, Parés A, Trauner M, Castelloe E, Sciacca C, Jones TB, Böhm O, Shapiro D. Farnesoid‐X receptor agonists: A new class of drugs for the treatment of PBC? An international study evaluating the addition of INT‐747 to ursodeoxycholicacid. J Hepatol 52: S1‐S2, 2010.
 103. Matsubara T, Tanaka N, Patterson AD, Cho JY, Krausz KW, Gonzalez FJ. Lithocholic acid disrupts phospholipid and sphingolipid homeostasis leading to cholestasis in mice. Hepatology 53: 1282‐1293, 2011.
 104. Mi LZ, Devarakonda S, Harp JM, Han C, Pellicciari R, Willson TM, Khorasanizadeh S, Rastinejad F. Structural basis for bile acid binding and activation of the nuclear receptor FXR. Molecular Cell 11: 1093‐1100, 2003.
 105. Miao J, Choi SE, Seok SM, Yang L, Zuercher WJ, Xu Y, Willson TM, Xu HE, Kemper JK. Ligand‐Dependent Regulation of the Activity of the Orphan Nuclear Receptor, Small Heterodimer Partner (SHP), in the Repression of Bile Acid Biosynthetic CYP7A1 and CYP8B1 Genes. Mol Endocrinol 25: 1159‐1169, 2011.
 106. Miyata M, Matsuda Y, Tsuchiya H, Kitada H, Akase T, Shimada M, Nagata K, Gonzalez FJ, Yamazoe Y. Chenodeoxycholic acid‐mediated activation of the farnesoid X receptor negatively regulates hydroxysteroid sulfotransferase. Drug Metab Pharmacokinet 21: 315‐323, 2006.
 107. Miyata M, Tozawa A, Otsuka H, Nakamura T, Nagata K, Gonzalez FJ, Yamazoe Y. Role of farnesoid X receptor in the enhancement of canalicular bile acid output and excretion of unconjugated bile acids: A mechanism for protection against cholic acid‐induced liver toxicity. J Pharmacol Exp Ther 312: 759‐766, 2005.
 108. Moschetta A, Bookout AL, Mangelsdorf DJ. Prevention of cholesterol gallstone disease by FXR agonists in a mouse model. Nat Med 10: 1352‐1358, 2004.
 109. Noshiro M, Usui E, Kawamoto T, Kubo H, Fujimoto K, Furukawa M, Honma S, Makishima M, Honma K, Kato Y. Multiple mechanisms regulate circadian expression of the gene, for cholesterol 7 alpha‐hydroxylase (Cyp7a), a key enzyme in hepatic bile acid biosynthesis. J Biol Rhythm 22: 299‐311, 2007.
 110. Novac N, Heinzel T. Nuclear receptors: Overview and classification. Curr Drug Targets Inflamm Allergy 3: 335‐346, 2004.
 111. Oelkers P, Kirby LC, Heubi JE, Dawson PA. Primary bile acid malabsorption caused by mutations in the ileal sodium‐dependent bile acid transporter gene (SLC10A2). J Clin Invest 99: 1880‐1887, 1997.
 112. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Willson TM, Zavacki AM, Moore DD, Lehmann JM. Bile acids: Natural ligands for an orphan nuclear receptor. Science 284: 1365‐1368, 1999.
 113. Paschos GK, Baggs JE, Hogenesch JB, FitzGerald GA. The role of clock genes in pharmacology. Annu Rev Pharmacol 50: 187‐214, 2010.
 114. Peet DJ, Turley SD, Ma WZ, Janowski BA, Lobaccaro JMA, Hammer RE, Mangelsdorf DJ. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 93: 693‐704, 1998.
 115. Pellicciari R, Fiorucci S, Camaioni E, Clerici C, Costantino G, Maloney PR, Morelli A, Parks DJ, Willson TM. 6alpha‐ethyl‐chenodeoxycholic acid (6‐ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J Med Chem 45: 3569‐3572, 2002.
 116. Petrescu AD, Payne HR, Boedecker A, Chao H, Hertz R, Bar‐Tana J, Schroeder F, Kier AB. Physical and functional interaction of acyl‐CoA‐binding protein with hepatocyte nuclear factor‐4 alpha. J Biol Chem 278: 51813‐51824, 2003.
 117. Pillot T, Ouzzine M, Fournel‐Gigleux S, Lafaurie C, Radominska A, Burchell B, Siest G, Magdalou J. Glucuronidation of hyodeoxycholic acid in human liver. Evidence for a selective role of UDP‐glucuronosyltransferase 2B4. J Biol Chem 268: 25636‐25642, 1993.
 118. Pircher PC, Kitto JL, Petrowski ML, Tangirala RK, Bischoff ED, Schulman IG, Westin SK. Farnesoid X receptor regulates bile acid‐amino acid conjugation. J Biol Chem 278: 27703‐27711, 2003.
 119. Potthoff MJ, Boney‐Montoya J, Choi M, He T, Sunny NE, Satapati S, Suino‐Powell K, Xu HE, Gerard RD, Finck BN, Burgess SC, Mangelsdorf DJ, Kliewer SA. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB‐PGC‐1alpha pathway. Cell Metab 13: 729‐738, 2011.
 120. Prawitt J, Abdelkarim M, Stroeve JHM, Popescu I, Duez H, Velagapudi VR, Dumont J, Bouchaert E, van Dijk TH, Lucas A, Dorchies E, Daoudi M, Lestavel S, Gonzalez FJ, Oresic M, Cariou B, Kuipers F, Caron S, Staels B. Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 60: 1861‐1871, 2011.
 121. Renga B, Mencarelli A, Cipriani S, D'Amore C, Zampella A, Monti MC, Distrutti E, Fiorucci S. The nuclear receptor FXR regulates hepatic transport and metabolism of glutamine and glutamate. Bba‐Mol Basis Dis 1812: 1522‐1531, 2011.
 122. Renga B, Mencarelli A, D'Amore C, Cipriani S, D'Auria MV, Sepe V, Chini MG, Monti MC, Bifulco G, Zampella A, Fiorucci S. Discovery that theonellasterol a marine sponge sterol Is a highly selective FXR antagonist that protects against liver injury in cholestasis. Plos One 7: e30443, 2012.
 123. Repa JJ, Berge KE, Pomajzl C, Richardson JA, Hobbs H, Mangelsdorf DJ. Regulation of ATP‐binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J Biol Chem 277: 18793‐18800, 2002.
 124. Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47: 241‐259, 2006.
 125. Roberts MS, Magnusson BM, Burczynski FJ, Weiss M. Enterohepatic circulation: Physiological, pharmacokinetic and clinical implications. Clin Pharmacokinet 41: 751‐790, 2002.
 126. Russell DW. Fifty years of advances in bile acid synthesis and metabolism. J Lipid Res 50: S120‐S125, 2009.
 127. Schuetz EG, Strom S, Yasuda K, Lecureur V, Assem M, Brimer C, Lamba J, Kim RB, Ramachandran V, Komoroski BJ, Venkataramanan R, Cai HB, Sinal CJ, Gonzalez FJ, Schuetz JD. Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome p450. J Biol Chem 276: 39411‐39418, 2001.
 128. Seol W, Choi HS, Moore DD. Isolation of proteins that interact specifically with the retinoid X receptor: Two novel orphan receptors. Mol Endocrinol 9: 72‐85, 1995.
 129. Seol W, Choi HS, Moore DD. An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors. Science 272: 1336‐1339, 1996.
 130. Shen H, Zhang Y, Ding H, Wang X, Chen LL, Jiang HL, Shen X. Farnesoid X receptor induces GLUT4 expression through FXR response element in the GLUT4 promoter. Cell Physiol Biochem 22: 1‐14, 2008.
 131. Shneider BL. Intestinal bile acid transport: Biology, physiology, and pathophysiology. J Pediatr Gastroenterol Nutr 32: 407‐417, 2001.
 132. Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102: 731‐744, 2000.
 133. Smith RL. The biliary excretion and enterohepatic circulation of drugs and other organic compounds. Fortschr Arzneimittelforsch 9: 299‐360, 1966.
 134. Song CS, Echchgadda I, Baek BS, Ahn SC, Oh T, Roy AK, Chatterjee B. Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid X receptor. J Biol Chem 276: 42549‐42556, 2001.
 135. Staudinger JL, Goodwin B, Jones SA, Hawkins‐Brown D, MacKenzie KI, LaTour A, Liu Y, Klaassen CD, Brown KK, Reinhard J, Willson TM, Koller BH, Kliewer SA. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci U S A 98: 3369‐3374, 2001.
 136. Stieger B, Hagenbuch B, Landmann L, Hochli M, Schroeder A, Meier PJ. In situ localization of the hepatocytic Na+/Taurocholate cotransporting polypeptide in rat liver. Gastroenterology 107: 1781‐1787, 1994.
 137. Stieger B, Meier Y, Meier PJ. The bile salt export pump. Pflugers Arch 453: 611‐620, 2007.
 138. Strautnieks SS, Bull LN, Knisely AS, Kocoshis SA, Dahl N, Arnell H, Sokal E, Dahan K, Childs S, Ling V, Tanner MS, Kagalwalla AF, Nemeth A, Pawlowska J, Baker A, Mieli‐Vergani G, Freimer NB, Gardiner RM, Thompson RJ. A gene encoding a liver‐specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet 20: 233‐238, 1998.
 139. Stroup D, Chiang JY. HNF4 and COUP‐TFII interact to modulate transcription of the cholesterol 7alpha‐hydroxylase gene (CYP7A1). J Lipid Res 41: 1‐11, 2000.
 140. Svoboda M, Riha J, Wlcek K, Jaeger W, Thalhammer T. Organic anion transporting polypeptides (OATPs): Regulation of expression and function. Curr Drug Metab 12: 139‐153, 2011.
 141. Urizar NL, Liverman AB, Dodds DT, Silva FV, Ordentlich P, Yan Y, Gonzalez FJ, Heyman RA, Mangelsdorf DJ, Moore DD. A natural product that lowers cholesterol as an antagonist ligand for FXR. Science 296: 1703‐1706, 2002.
 142. Van Helvoort A, Smith AJ, Sprong H, Fritzsche I, Schinkel AH, Borst P, van Meer G. MDR1 P‐glycoprotein is a lipid translocase of broad specificity, while MDR3 P‐glycoprotein specifically translocates phosphatidylcholine. Cell 87: 507‐517, 1996.
 143. Vavassori P, Mencarelli A, Renga B, Distrutti E, Fiorucci S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J Immunol 183: 6251‐6261, 2009.
 144. Visser TJ, Rutgers M, de Herder WW, Rooda SJ, Hazenberg MP. Hepatic metabolism, biliary clearance and enterohepatic circulation of thyroid hormone. Acta Med Austriaca 15(Suppl 1): 37‐39, 1988.
 145. Vree TB, Timmer CJ. Enterohepatic cycling and pharmacokinetics of oestradiol in postmenopausal women. J Pharm Pharmacol 50: 857‐864, 1998.
 146. Wang S, Lai K, Moy FJ, Bhat A, Hartman HB, Evans MJ. The nuclear hormone receptor farnesoid X receptor (FXR) is activated by androsterone. Endocrinology 147: 4025‐4033, 2006.
 147. Wang T, Shah YM, Matsubara T, Zhen YY, Tanabe T, Nagano T, Fotso S, Krausz KW, Zabriskie TM, Idle JR, Gonzalez FJ. Control of steroid 21‐oic acid synthesis by peroxisome proliferator‐activated receptor alpha and role of the hypothalamic‐pituitary‐adrenal axis. J Biol Chem 285: 7670‐7685, 2010.
 148. Wang XX, Jiang T, Shen Y, Adorini L, Pruzanski M, Gonzalez FJ, Scherzer P, Lewis L, Miyazaki‐Anzai S, Levi M. The farnesoid X receptor modulates renal lipid metabolism and diet‐induced renal inflammation, fibrosis, and proteinuria. Am J Physiol‐Renal 297: F1587‐F1596, 2009.
 149. Wang XXX, Jiang T, Shen Y, Caldas Y, Miyazaki‐Anzai S, Santamaria H, Urbanek C, Solis N, Scherzer P, Lewis L, Gonzalez FJ, Adorini L, Pruzanski M, Kopp JB, Verlander JW, Levi M. Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Diabetes 59: 2916‐2927, 2010.
 150. Watt AJ, Garrison WD, Duncan SA. HNF4: A central regulator of hepatocyte differentiation and function. Hepatology 37: 1249‐1253, 2003.
 151. Weinshilboum RM, Otterness DM, Aksoy IA, Wood TC, Her C, Raftogianis RB. Sulfation and sulfotransferases 1: Sulfotransferase molecular biology: cDNAs and genes. FASEB J 11: 3‐14, 1997.
 152. Winter J, Bokkenheuser VD. Bacterial metabolism of natural and synthetic sex‐hormones undergoing enterohepatic circulation. J Steroid Biochem 27: 1145‐1149, 1987.
 153. Wisely GB, Miller AB, Davis RG, Thornquest AD, Johnson R, Spitzer T, Sefler A, Shearer B, Moore JT, Miller AB, Willson TM, Williams SP. Hepatocyte nuclear factor 4 is a transcription factor that constitutively binds fatty acids. Structure 10: 1225‐1234, 2002.
 154. Wistuba W, Gnewuch C, Liebisch G, Schmitz G, Langmann T. Lithocholic acid induction of the FGF19 promoter in intestinal cells is mediated by PXR. World J Gastroenterol 13: 4230‐4235, 2007.
 155. Wong MH, Oelkers P, Craddock AL, Dawson PA. Expression cloning and characterization of the hamster ileal sodium‐dependent bile acid transporter. J Biol Chem 269: 1340‐1347, 1994.
 156. Wuarin J, Falvey E, Lavery D, Talbot D, Schmidt E, Ossipow V, Fonjallaz P, Schibler U. The role of the transcriptional activator protein Dbp in circadian liver gene‐expression. J Cell Sci 16: 123‐127, 1992.
 157. Xie MH, Holcomb I, Deuel B, Dowd P, Huang A, Vagts A, Foster J, Liang J, Brush J, Gu Q, Hillan K, Goddard A, Gurney AL. FGF‐19, a novel fibroblast growth factor with unique specificity for FGFR4. Cytokine 11: 729‐735, 1999.
 158. Yang F, Huang XF, Yi TS, Yen Y, Moore DD, Huang WD. Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor. Cancer Res 67: 863‐867, 2007.
 159. Yin L, Wu N, Curtin JC, Qatanani M, Szwergold NR, Reid RA, Waitt GM, Parks DJ, Pearce KH, Wisely GB, Lazar MA. Rev‐erb alpha, a heme sensor that coordinates metabolic and circadian pathways. Science 318: 1786‐1789, 2007.
 160. Yin L, Wu N, Lazar MA. Nuclear receptor Rev‐erbalpha: A heme receptor that coordinates circadian rhythm and metabolism. Nucl Recept Signal 16: e001, 2010.
 161. York B, O'Malley BW. Steroid receptor coactivator (SRC) family: Masters of systems biology. J Biol Chem 285: 38743‐38750, 2010.
 162. Yuan XH, Ta TC, Lin M, Evans JR, Dong YC, Bolotin E, Sherman MA, Forman BM, Sladek FM. Identification of an endogenous ligand bound to a “native orphan nuclear receptor. Plos One 4: e5609, 2009.
 163. Zhang M, Chiang JY. Transcriptional regulation of the human sterol 12alpha‐hydroxylase gene (CYP8B1): roles of heaptocyte nuclear factor 4alpha in mediating bile acid repression. J Biol Chem 276: 41690‐41699, 2001.
 164. Zhang Y, Hagedorn CH, Wang L. Role of nuclear receptor SHP in metabolism and cancer. Biochim Biophys Acta 1812: 893‐908, 2011.
 165. Zhang Y, Lee FY, Barrera G, Lee H, Vales C, Gonzalez FJ, Willson TM, Edwards PA. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A 103: 1006‐1011, 2006.
 166. Zhang Y, Wang L. Nuclear receptor small heterodimer partner in apoptosis signaling and liver cancer. Cancers 3: 198‐212, 2011.
 167. Zollner G, Fickert P, Zenz R, Fuchsbichler A, Stumptner C, Kenner L, Ferenci P, Stauber RE, Krejs GJ, Denk H, Zatloukal K, Trauner M. Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases. Hepatology 33: 633‐646, 2001.
 168. Zollner G, Wagner M, Moustafa T, Fickert P, Silbert D, Gumhold J, Fuchsbichler A, Halilbasic E, Denk H, Marschall HU, Trauner M. Coordinated induction of bile acid detoxification and alternative elimination in mice: Role of FXR‐regulated organic solute transporter‐alpha/beta in the adaptive response to bile acids. Am J Physiol Gastrointest Liver Physiol 290: G923‐932, 2006.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Frank J. Gonzalez. Nuclear Receptor Control of Enterohepatic Circulation. Compr Physiol 2012, 2: 2811-2828. doi: 10.1002/cphy.c120007