Comprehensive Physiology Wiley Online Library

Liver Immunology

Full Article on Wiley Online Library



Abstract

The liver is the largest organ in the body and is generally regarded by nonimmunologists as having little or no lymphoid function. However, such is far from accurate. This review highlights the importance of the liver as a lymphoid organ. Firstly, we discuss experimental data surrounding the role of liver as a lymphoid organ. The liver facilitates tolerance rather than immunoreactivity, which protects the host from antigenic overload of dietary components and drugs derived from the gut and it is instrumental to fetal immune tolerance. Loss of liver tolerance leads to autoaggressive phenomena, which if not controlled by regulatory lymphoid populations, may lead to the induction of autoimmune liver diseases. Liver‐related lymphoid subpopulations also act as critical antigen‐presenting cells. The study of the immunological properties of liver and delineation of the microenvironment of the intrahepatic milieu in normal and diseased livers provides a platform to understand the hierarchy of a series of detrimental events that lead to immune‐mediated destruction of the liver and the rejection of liver allografts. The majority of emphasis within this review will be on the normal mononuclear cell composition of the liver. However, within this context, we will discuss selected, but not all, immune‐mediated liver disease and attempt to place these data in the context of human autoimmunity. © 2013 American Physiological Society. Compr Physiol 3:567‐598, 2013.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Anatomical location and external appearance of the liver. The falciform ligament, on the surface of the diaphragm, splits the liver into right and left lobe. The anatomical relationship of the liver with organs such as the gallbladder, stomach, duodenum, and pancreas is illustrated.

Figure 2. Figure 2.

Cellular and extracellular composition of the liver.

Figure 3. Figure 3.

The morphological appearance of cells within the liver.

Figure 4. Figure 4.

The hepatic lobule is the structural unit of the liver. It consists of a hexagonal arrangement of hepatocyte plates with the central vein located in the center of the structure and the portal triads distributed at the vertices of the lobule. The portal triad consists of terminal branches of the portal vein and the hepatic artery and a bile duct.

Figure 5. Figure 5.

Illustration of the microanatomical localization of hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells. The space of Disse separates hepatocytes from the liver sinusoids. The endothelium of liver sinusoids is discontinued (fenestrated) as the liver sinusoidal cells are perforated by several clusters of pores forming sieve plates (420). These cells act as scavenger cells and form a physical filtering barrier between the sinusoidal blood and plasma (115,356). Kupffer cells are resident macrophages that are attached to the layer of liver sinusoidal endothelial cells. The hepatic stellate cells are located in the subendothelial space of Disse and play vital role in fibrogenesis.

Figure 6. Figure 6.

Cells comprising the liver including hepatocytes (HEP), liver sinusoidal ensothelial cells (LSEC), Kupffer cells (KC), hepatic stellate cells (HSC), and lymphoid cell subpopulations. NK, natural killer; NKT, natural killer T cells; DC, dendritic cell; Treg, T‐regulatory cell.

Figure 7. Figure 7.

Distribution of cell subpopulations within intrahepatic lymphocytes. A very wide range of these cell populations are reported in the liver, differs amongst species, and also varies by age. It is of note, that the highest proportion of intrahepatic human lymphocytes consists of natural killer T cell (NKT) and NK cells, a finding that in general contrasts what is found in the peripheral blood. Thus, NK cells account for approximately 20% to 30% of the total number of liver‐resident lymphocytes compared to less than 5% seen in peripheral blood (104).

Figure 8. Figure 8.

Flow cytometric analysis of peripheral blood reflects the relative proportion of bright and low natural killer (NK) (CD36+) cells, natural killer T cell (NKT) (CD3+CD56+), and T cells (CD3+CD56) in a representative donor. Bright and low NK cells can be seen. Vertical axis (CD56); horizontal axis CD3.

Figure 9. Figure 9.

Schematic illustration of natural killer (NK) cell receptors and killing of viral hepatitis infected cells. (A) Under normal conditions, noninfected cells are not killed because inhibitory signals from HLA class I molecules prevail over activating signals. (B) Virus‐infected cells are characterized by altered expression of HLA class I molecules. This disrupts the inhibitory signals and allows activation of NK cells and subsequent lysis of the infected hepatocytes. NK‐mediated killing of infected hepatocytes is not efficient in viral hepatitides

Figure 10. Figure 10.

Cell‐cell interaction which can lead to activation of naïve T lymphocytes within the liver include contact with Kupffer cells (KC) (A), liver sinusoidal endothelial cells (LSEC) (B), or hepatocytes (C) (indicated by the respective arrows).

Figure 11. Figure 11.

Hepatic dendritic subsets in mouse.

Figure 12. Figure 12.

Cell‐Cell interaction of biliary epithelial cells (BECs) as antigen presenting cells, effector and regulatory T cells determines the outcome of BEC‐specific immune responses. In the case of primary biliary cirrhosis, an autoimmune cholestatic disease characterized by an immune response against mitochondrial antigens, the close interplay between proinflammatory (IFN‐γ, TGF‐β) and immunoregulatory (IL‐10) cytokines greatly influences the outcome of the antigen‐specific immune response, especially in the absence of regulatory T cells.

Figure 13. Figure 13.

Cytochrome P450 (CYP)2D6, CYP1A2, and CYP2D6 amino acid homology. The three cytochromes appear highly conserved but autoantibody responses against the one do not invoke cross‐reactive immunity targeting the other. Amino acid analysis has been performed using the T‐coffee software. Highlights of red, yellow, and green correspond to areas of good, average, and bad degree of homology; cons, conservation of amino acids (* indicate identical amino acids, “:” conserved and, and “.” semiconservative substitutions).

Figure 14. Figure 14.

Three‐dimensional‐prediction model of the three major linear epitopic regions of human cytochrome P450IID6 (CYP2D6). The B‐cell epitopes of anti‐CYP2D6 antibodies (also known as antiliver kidney microsomal type 1 antibodies (anti‐LKM1) (176) has been studied and the three main epitopic regions recognized span CYP2D6254‐271, CYP2D6193‐212, and CYP2D6321‐351 sequences, being targeted by more than 95% of the patients with CYP2D6 autoantibodies (97,206,265,272). The antigenicity of this area may in part been explained by the exposure of these sequences to the surface of the molecule as it is illustrated in Figure 7. Aminoacids of the autoepitopic regions are presented in the form of space fill in different colors and the remaining in a wire worm backbone (gray); in red and yellow are the dominant CYP2D6254‐271 and CYP2D6193‐212 epitopes. Prediction analysis anticipates that the epitopes are exposed on the surface of the molecule. The structure was analyzed with the Cn3D visualization tool.

Figure 15. Figure 15.

Hepatitis B and C viruses are considered noncytopathic. The prevailing notion is that the ultimate clearance of intracellular viruses by host's immune system largely depends on the endogenous efficiency for the destruction of the infected cells by components of the innate and the adaptive immune system (cytolytic control). It has become apparent that innate and adaptive immune cells can exert their antiviral effects through the effect induced by the production of IFN‐γ and other cytokines at the site of inflammation (the liver in the case of hepatotropic viruses). IFN‐γ can eradicate the pathogen from the viral‐infected hepatocytes in a noncytopathic manner. These cytokines exert immunomodulatory effects in an attempt to control the virus and regulate at least in part antigen processing and the induction, amplification, recruitment, and effector functions of the immune responses. This may explain why viruses establish evasion mechanisms based on the inhibition of the antiviral potential of cytokines

Figure 16. Figure 16.

The tetraspin CD81 is used by hepatitis C virus to entry the hepatocyte. Expression of CD81 by NK suppresses the induction of proinflammatory cytokines such as interferon‐γ and inhibits the cytotoxic capability of these cells allowing for the persistence of the virus. Other HCV coreceptors (for further details, see main text), expressed by cells of the innate immune system resident within the sinusoids, may participate in a similar fashion by facilitating the inability of the host to clear the virus.

Figure 17. Figure 17.

Kinetics of hepatitis B antigens and antibodies in serum from patients who successfully resolved the virus.

Figure 18. Figure 18.

After initial exposure to Hepatitis C virus (HCV), a significant proportion of the infected individuals will develop chronic infection, and subsequent cirrhosis. Chronic HCV infection can lead to the development of hepatocellular carcinoma. They will die from the complications of cirrhosis, liver failure and hepatocellular carcinoma. What determines the outcome of the original exposure to the virus is not clear. So far, most studies (see text for more) have concluded that those infected individuals who show a vigorous, persistent and multispecific immune response to HCV can clear the virus, while most of those with persistent infection mount an immune response that fails to clear the virus.



Figure 1.

Anatomical location and external appearance of the liver. The falciform ligament, on the surface of the diaphragm, splits the liver into right and left lobe. The anatomical relationship of the liver with organs such as the gallbladder, stomach, duodenum, and pancreas is illustrated.



Figure 2.

Cellular and extracellular composition of the liver.



Figure 3.

The morphological appearance of cells within the liver.



Figure 4.

The hepatic lobule is the structural unit of the liver. It consists of a hexagonal arrangement of hepatocyte plates with the central vein located in the center of the structure and the portal triads distributed at the vertices of the lobule. The portal triad consists of terminal branches of the portal vein and the hepatic artery and a bile duct.



Figure 5.

Illustration of the microanatomical localization of hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells. The space of Disse separates hepatocytes from the liver sinusoids. The endothelium of liver sinusoids is discontinued (fenestrated) as the liver sinusoidal cells are perforated by several clusters of pores forming sieve plates (420). These cells act as scavenger cells and form a physical filtering barrier between the sinusoidal blood and plasma (115,356). Kupffer cells are resident macrophages that are attached to the layer of liver sinusoidal endothelial cells. The hepatic stellate cells are located in the subendothelial space of Disse and play vital role in fibrogenesis.



Figure 6.

Cells comprising the liver including hepatocytes (HEP), liver sinusoidal ensothelial cells (LSEC), Kupffer cells (KC), hepatic stellate cells (HSC), and lymphoid cell subpopulations. NK, natural killer; NKT, natural killer T cells; DC, dendritic cell; Treg, T‐regulatory cell.



Figure 7.

Distribution of cell subpopulations within intrahepatic lymphocytes. A very wide range of these cell populations are reported in the liver, differs amongst species, and also varies by age. It is of note, that the highest proportion of intrahepatic human lymphocytes consists of natural killer T cell (NKT) and NK cells, a finding that in general contrasts what is found in the peripheral blood. Thus, NK cells account for approximately 20% to 30% of the total number of liver‐resident lymphocytes compared to less than 5% seen in peripheral blood (104).



Figure 8.

Flow cytometric analysis of peripheral blood reflects the relative proportion of bright and low natural killer (NK) (CD36+) cells, natural killer T cell (NKT) (CD3+CD56+), and T cells (CD3+CD56) in a representative donor. Bright and low NK cells can be seen. Vertical axis (CD56); horizontal axis CD3.



Figure 9.

Schematic illustration of natural killer (NK) cell receptors and killing of viral hepatitis infected cells. (A) Under normal conditions, noninfected cells are not killed because inhibitory signals from HLA class I molecules prevail over activating signals. (B) Virus‐infected cells are characterized by altered expression of HLA class I molecules. This disrupts the inhibitory signals and allows activation of NK cells and subsequent lysis of the infected hepatocytes. NK‐mediated killing of infected hepatocytes is not efficient in viral hepatitides



Figure 10.

Cell‐cell interaction which can lead to activation of naïve T lymphocytes within the liver include contact with Kupffer cells (KC) (A), liver sinusoidal endothelial cells (LSEC) (B), or hepatocytes (C) (indicated by the respective arrows).



Figure 11.

Hepatic dendritic subsets in mouse.



Figure 12.

Cell‐Cell interaction of biliary epithelial cells (BECs) as antigen presenting cells, effector and regulatory T cells determines the outcome of BEC‐specific immune responses. In the case of primary biliary cirrhosis, an autoimmune cholestatic disease characterized by an immune response against mitochondrial antigens, the close interplay between proinflammatory (IFN‐γ, TGF‐β) and immunoregulatory (IL‐10) cytokines greatly influences the outcome of the antigen‐specific immune response, especially in the absence of regulatory T cells.



Figure 13.

Cytochrome P450 (CYP)2D6, CYP1A2, and CYP2D6 amino acid homology. The three cytochromes appear highly conserved but autoantibody responses against the one do not invoke cross‐reactive immunity targeting the other. Amino acid analysis has been performed using the T‐coffee software. Highlights of red, yellow, and green correspond to areas of good, average, and bad degree of homology; cons, conservation of amino acids (* indicate identical amino acids, “:” conserved and, and “.” semiconservative substitutions).



Figure 14.

Three‐dimensional‐prediction model of the three major linear epitopic regions of human cytochrome P450IID6 (CYP2D6). The B‐cell epitopes of anti‐CYP2D6 antibodies (also known as antiliver kidney microsomal type 1 antibodies (anti‐LKM1) (176) has been studied and the three main epitopic regions recognized span CYP2D6254‐271, CYP2D6193‐212, and CYP2D6321‐351 sequences, being targeted by more than 95% of the patients with CYP2D6 autoantibodies (97,206,265,272). The antigenicity of this area may in part been explained by the exposure of these sequences to the surface of the molecule as it is illustrated in Figure 7. Aminoacids of the autoepitopic regions are presented in the form of space fill in different colors and the remaining in a wire worm backbone (gray); in red and yellow are the dominant CYP2D6254‐271 and CYP2D6193‐212 epitopes. Prediction analysis anticipates that the epitopes are exposed on the surface of the molecule. The structure was analyzed with the Cn3D visualization tool.



Figure 15.

Hepatitis B and C viruses are considered noncytopathic. The prevailing notion is that the ultimate clearance of intracellular viruses by host's immune system largely depends on the endogenous efficiency for the destruction of the infected cells by components of the innate and the adaptive immune system (cytolytic control). It has become apparent that innate and adaptive immune cells can exert their antiviral effects through the effect induced by the production of IFN‐γ and other cytokines at the site of inflammation (the liver in the case of hepatotropic viruses). IFN‐γ can eradicate the pathogen from the viral‐infected hepatocytes in a noncytopathic manner. These cytokines exert immunomodulatory effects in an attempt to control the virus and regulate at least in part antigen processing and the induction, amplification, recruitment, and effector functions of the immune responses. This may explain why viruses establish evasion mechanisms based on the inhibition of the antiviral potential of cytokines



Figure 16.

The tetraspin CD81 is used by hepatitis C virus to entry the hepatocyte. Expression of CD81 by NK suppresses the induction of proinflammatory cytokines such as interferon‐γ and inhibits the cytotoxic capability of these cells allowing for the persistence of the virus. Other HCV coreceptors (for further details, see main text), expressed by cells of the innate immune system resident within the sinusoids, may participate in a similar fashion by facilitating the inability of the host to clear the virus.



Figure 17.

Kinetics of hepatitis B antigens and antibodies in serum from patients who successfully resolved the virus.



Figure 18.

After initial exposure to Hepatitis C virus (HCV), a significant proportion of the infected individuals will develop chronic infection, and subsequent cirrhosis. Chronic HCV infection can lead to the development of hepatocellular carcinoma. They will die from the complications of cirrhosis, liver failure and hepatocellular carcinoma. What determines the outcome of the original exposure to the virus is not clear. So far, most studies (see text for more) have concluded that those infected individuals who show a vigorous, persistent and multispecific immune response to HCV can clear the virus, while most of those with persistent infection mount an immune response that fails to clear the virus.

References
 1. Abo T, Watanabe H, Iiai T, Kimura M, Ohtsuka K, Sato K, Ogawa M, Hirahara H, Hashimoto S, Sekikawa H. Extrathymic pathways of T‐cell differentiation in the liver and other organs. Int Rev Immunol 11: 61‐102, 1994.
 2. Adams DH, Ju C, Ramaiah SK, Uetrecht J, Jaeschke H. Mechanisms of immune‐mediated liver injury. Toxicol Sci 115: 307‐321, 2010.
 3. Agmon‐Levin N, Shapira Y, Selmi C, Barzilai O, Ram M, Szyper‐Kravitz M, Sella S, Katz BS, Youinou P, Renaudineau Y, Larida B, Invernizzi P, Gershwin ME, Shoenfeld Y. A comprehensive evaluation of serum autoantibodies in primary biliary cirrhosis. J Autoimmun 34: 55‐58, 2010.
 4. Agnello V, Abel G, Elfahal M, Knight GB, Zhang QX. Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci U S A 96: 12766‐12771, 1999.
 5. Aksoylar HI, Lampe K, Barnes MJ, Plas DR, Hoebe K. Loss of immunological tolerance in Gimap5‐deficient mice is associated with loss of Foxo in CD4+ T cells. J Immunol 188: 146‐154, 2012.
 6. Ali F, Rowley M, Jayakrishnan B, Teuber S, Gershwin ME, Mackay IR. Stiff‐person syndrome (SPS) and anti‐GAD‐related CNS degenerations: Protean additions to the autoimmune central neuropathies. J Autoimmun 37: 79‐87, 2011.
 7. Altekruse SF, McGlynn KA, Reichman ME. Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J Clin Oncol 27: 1485‐1491, 2009.
 8. Alvarez F, Berg PA, Bianchi FB, Bianchi L, Burroughs AK, Cancado EL, Chapman RW, Cooksley WG, Czaja AJ, Desmet VJ, Donaldson PT, Eddleston AL, Fainboim L, Heathcote J, Homberg JC, Hoofnagle JH, Kakumu S, Krawitt EL, Mackay IR, MacSween RN, Maddrey WC, Manns MP, McFarlane IG, Meyer zum Buschenfelde KH, Zeniya M. International Autoimmune Hepatitis Group Report: Review of criteria for diagnosis of autoimmune hepatitis. J Hepatol 31: 929‐938, 1999.
 9. Amadei B, Urbani S, Cazaly A, Fisicaro P, Zerbini A, Ahmed P, Missale G, Ferrari C, Khakoo SI. Activation of natural killer cells during acute infection with hepatitis C virus. Gastroenterology 138: 1536‐1545, 2010.
 10. Amano K, Leung PS, Rieger R, Quan C, Wang X, Marik J, Suen YF, Kurth MJ, Nantz MH, Ansari AA, Lam KS, Zeniya M, Matsuura E, Coppel RL, Gershwin ME. Chemical xenobiotics and mitochondrial autoantigens in primary biliary cirrhosis: Identification of antibodies against a common environmental, cosmetic, and food additive, 2‐octynoic acid. J Immunol 174: 5874‐5883, 2005.
 11. Amano K, Leung PS, Xu Q, Marik J, Quan C, Kurth MJ, Nantz MH, Ansari AA, Lam KS, Zeniya M, Coppel RL, Gershwin ME. Xenobiotic‐induced loss of tolerance in rabbits to the mitochondrial autoantigen of primary biliary cirrhosis is reversible. J Immunol 172: 6444‐6452, 2004.
 12. Anders RF. Multiple cross‐reactivities amongst antigens of Plasmodium falciparum impair the development of protective immunity against malaria. Parasite Immunol 8: 529‐539, 1986.
 13. Aoki CA, Borchers AT, Li M, Flavell RA, Bowlus CL, Ansari AA, Gershwin ME. Transforming growth factor beta (TGF‐beta) and autoimmunity. Autoimmun rev 4: 450‐459, 2005.
 14. Aoki CA, Bowlus CL, Gershwin ME. The immunobiology of primary sclerosing cholangitis. Autoimmun rev 4: 137‐143, 2005.
 15. Arnold B. Parenchymal cells in immune and tolerance induction. Immunol Lett 89: 225‐228, 2003.
 16. Aron JH, Bowlus CL. The immunobiology of primary sclerosing cholangitis. Semin Immunopathol 31: 383‐397, 2009.
 17. Asherson GR. Antibodies against nuclear and cytoplasmic cell constituents in systemic lupus erythematosus and other liver diseases. Br J Exp Pathol 40: 209–213, 1959.
 18. Ashida M, Hamada C. Molecular cloning of the hepatitis A virus receptor from a simian cell line. J Gen Virol 78(Pt 7): 1565‐1569, 1997.
 19. Badr G, Bedard N, Abdel‐Hakeem MS, Trautmann L, Willems B, Villeneuve JP, Haddad EK, Sekaly RP, Bruneau J, Shoukry NH. Early interferon therapy for hepatitis C virus infection rescues polyfunctional, long‐lived CD8+ memory T cells. J Virol 82: 10017‐10031, 2008.
 20. Baer K, Roosevelt M, Clarkson AB, Jr, van Rooijen N, Schnieder T, Frevert U. Kupffer cells are obligatory for Plasmodium yoelii sporozoite infection of the liver. Cell Microbiol 9: 397‐412, 2007.
 21. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439: 682‐687, 2006.
 22. Baron JL, Gardiner L, Nishimura S, Shinkai K, Locksley R, Ganem D. Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity 16: 583‐594, 2002.
 23. Bassett SE, Brasky KM, Lanford RE. Analysis of hepatitis C virus‐inoculated chimpanzees reveals unexpected clinical profiles. J Virol 72: 2589‐2599, 1998.
 24. Baughman EJ, Mendoza JP, Ortega SB, Ayers CL, Greenberg BM, Frohman EM, Karandikar NJ. Neuroantigen‐specific CD8+ regulatory T‐cell function is deficient during acute exacerbation of multiple sclerosis. J Autoimmun 36: 115‐124, 2011.
 25. Baum H. Nature of the mitochondrial antigens of primary biliary cirrhosis and their possible relationships to the etiology of the disease. Semin Liver Dis 9: 117‐123, 1989.
 26. Baum H, Berg PA. The complex nature of mitochondrial antibodies and their relation to primary biliary cirrhosis. Semin Liver Dis 1: 309‐321, 1981.
 27. Bengsch B, Seigel B, Ruhl M, Timm J, Kuntz M, Blum HE, Pircher H, Thimme R. Coexpression of PD‐1, 2B4, CD160 and KLRG1 on exhausted HCV‐specific CD8+ T cells is linked to antigen recognition and T cell differentiation. PLoS Pathog 6: e1000947, 2010.
 28. Benten D, Kumaran V, Joseph B, Schattenberg J, Popov Y, Schuppan D, Gupta S. Hepatocyte transplantation activates hepatic stellate cells with beneficial modulation of cell engraftment in the rat. Hepatology 42: 1072‐1081, 2005.
 29. Berg M, Wingender G, Djandji D, Hegenbarth S, Momburg F, Hammerling G, Limmer A, Knolle P. Cross‐presentation of antigens from apoptotic tumor cells by liver sinusoidal endothelial cells leads to tumor‐specific CD8+ T cell tolerance. Eur J Immunol 36: 2960‐2970, 2006.
 30. Berg PA, Doniach D, Roitt IM. Mitochondrial antibodies in primary biliary cirrhosis. I. Localization of the antigen to mitochondrial membranes. J Exp Med 126: 277‐290, 1967.
 31. Berg PA, Stechemesser E, Strienz J. Hypergammaglobulinamische chronisch aktive Hepatitis mit Nachweis von leberpankreas‐spezifischen komplementbindenden Autoantikorpern. Verh Dtsch Ges Inn Med 87: 921‐927, 1981.
 32. Bernuzzi F, Fenoglio D, Battaglia F, Fravega M, Gershwin ME, Indiveri F, Ansari AA, Podda M, Invernizzi P, Filaci G. Phenotypical and functional alterations of CD8 regulatory T cells in primary biliary cirrhosis. J Autoimmun 35: 176‐180, 2010.
 33. Bertoletti A, Ferrari C. Kinetics of the immune response during HBV and HCV infection. Hepatology 38: 4‐13, 2003.
 34. Bertolino P, McCaughan GW, Bowen DG. Role of primary intrahepatic T‐cell activation in the ‘liver tolerance effect’. Immunol Cell Biol 80: 84‐92, 2002.
 35. Bertolino P, Trescol‐Biemont MC, Rabourdin‐Combe C. Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. Eur J Immunol 28: 221‐236, 1998.
 36. Bianchi I, Lleo A, Gershwin ME, Invernizzi P. The X chromosome and immune associated genes. J Autoimmun 38: J187‐J192, 2012.
 37. Bigger CB, Brasky KM, Lanford RE. DNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection. J Virol 75: 7059‐7066, 2001.
 38. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DA, Wherry EJ. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 10: 29‐37, 2009.
 39. Blight KJ, Kolykhalov AA, Rice CM. Efficient initiation of HCV RNA replication in cell culture. Science 290: 1972‐1974, 2000.
 40. Blouin A, Bolender RP, Weibel ER. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol 72: 441‐455, 1977.
 41. Bogdanos DP, Baum H, Grasso A, Okamoto M, Butler P, Ma Y, Rigopoulou E, Montalto P, Davies ET, Burroughs AK, Vergani D. Microbial mimics are major targets of crossreactivity with human pyruvate dehydrogenase in primary biliary cirrhosis. J Hepatol 40: 31‐39, 2004.
 42. Bogdanos DP, Baum H, Okamoto M, Montalto P, Sharma UC, Rigopoulou EI, Vlachogiannakos J, Ma Y, Burroughs AK, Vergani D. Primary biliary cirrhosis is characterized by IgG3 antibodies cross‐reactive with the major mitochondrial autoepitope and its Lactobacillus mimic. Hepatology 42: 458‐465, 2005.
 43. Bogdanos DP, Choudhuri K, Vergani D. Molecular mimicry and autoimmune liver disease: Virtuous intentions, malign consequences. Liver 21: 225‐232, 2001.
 44. Bogdanos DP, Dalekos GN. Enzymes as target antigens of liver‐specific autoimmunity: The case of cytochromes P450s. Curr Med Chem 15: 2285‐2292, 2008.
 45. Bogdanos DP, Invernizzi P, Mackay IR, Vergani D. Autoimmune liver serology: Current diagnostic and clinical challenges. World J Gastroenterol 14: 3374‐3387, 2008.
 46. Bogdanos DP, Lenzi M, Okamoto M, Rigopoulou EI, Muratori P, Ma Y, Muratori L, Tsantoulas D, Mieli‐ Vergani G, Bianchi FB, Vergani D. Multiple viral/self immunological cross‐reactivity in liver kidney microsomal antibody positive hepatitis C virus infected patients is associated with the possession of HLA B51. Int J Immunopathol Pharmacol 17: 83‐92, 2004.
 47. Bogdanos DP, Mieli‐Vergani G, Vergani D. Virus, liver and autoimmunity. Dig Liver Dis 32: 440‐446, 2000.
 48. Bogdanos DP, Mieli‐Vergani G, Vergani D. Non‐organ‐specific autoantibodies in children with chronic hepatitis C virus infection. Clin Infect Dis 38: 1505; author reply 1505‐1506, 2004.
 49. Bogdanos DP, Mieli‐Vergani G, Vergani D. Non‐organ‐specific autoantibodies in hepatitis C virus infection: Do they matter? Clin Infect Dis 40: 508‐510, 2005.
 50. Bogdanos DP, Mieli‐Vergani G, Vergani D. Autoantibodies and their antigens in autoimmune hepatitis. Semin Liver Dis 29: 241‐253, 2009.
 51. Bogdanos DP, Muratori L, Bianchi FB, Vergani D. Hepatitis C virus and autoimmunity. Hepatology 31: 1380, 2000.
 52. Bogdanos DP, Smith H, Ma Y, Baum H, Mieli‐Vergani G, Vergani D. A study of molecular mimicry and immunological cross‐reactivity between hepatitis B surface antigen and myelin mimics. Clin Dev Immunol 12: 217‐224, 2005.
 53. Bogdanos DP, Smyk DS, Rigopoulou EI, Mytilinaiou MG, Heneghan MA, Selmi C, Gershwin ME. Twin studies in autoimmune disease: Genetics, gender and environment. J Autoimmun 38: J156‐J169, 2012.
 54. Bolender RP, Weibel ER. A morphometric study of the removal of phenobarbital‐induced membranes from hepatocytes after cessation of threatment. J Cell Biol 56: 746‐761, 1973.
 55. Bonder CS, Norman MU, Swain MG, Zbytnuik LD, Yamanouchi J, Santamaria P, Ajuebor M, Salmi M, Jalkanen S, Kubes P. Rules of recruitment for Th1 and Th2 lymphocytes in inflamed liver: A role for alpha‐4 integrin and vascular adhesion protein‐1. Immunity 23: 153‐163, 2005.
 56. Boni C, Fisicaro P, Valdatta C, Amadei B, Di Vincenzo P, Giuberti T, Laccabue D, Zerbini A, Cavalli A, Missale G, Bertoletti A, Ferrari C. Characterization of hepatitis B virus (HBV)‐specific T‐cell dysfunction in chronic HBV infection. J Virol 81: 4215‐4225, 2007.
 57. Borchers AT, Leibushor N, Cheema GS, Naguwa SM, Gershwin ME. Immune‐mediated adverse effects of biologicals used in the treatment of rheumatic diseases. J Autoimmun 37: 273‐288, 2011.
 58. Borchers AT, Naguwa SM, Keen CL, Gershwin ME. The implications of autoimmunity and pregnancy. J Autoimmun 34: J287‐J299, 2010.
 59. Borchers AT, Shimoda S, Bowlus C, Keen CL, Gershwin ME. Lymphocyte recruitment and homing to the liver in primary biliary cirrhosis and primary sclerosing cholangitis. Semin Immunopathol 31: 309‐322, 2009.
 60. Bottazzo GF, Florin‐Christensen A, Fairfax A, Swana G, Doniach D, Groeschel‐Stewart U. Classification of smooth muscle autoantibodies detected by immunofluorescence. J Clin Pathol 29: 403‐410, 1976.
 61. Bowen DG, Zen M, Holz L, Davis T, McCaughan GW, Bertolino P. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. J Clin Invest 114: 701‐712, 2004.
 62. Braet F, de Zanger R, Seynaeve C, Baekeland M, Wisse E. A comparative atomic force microscopy study on living skin fibroblasts and liver endothelial cells. J Electron Microsc (Tokyo) 50: 283‐290, 2001.
 63. Braet F, Kalle WH, De Zanger RB, De Grooth BG, Raap AK, Tanke HJ, Wisse E. Comparative atomic force and scanning electron microscopy: An investigation on fenestrated endothelial cells in vitro. J Microsc 181: 10‐17, 1996.
 64. Braet F, Wisse E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: A review. Comp Hepatol 1: 1, 2002.
 65. Brandes M, Willimann K, Moser B. Professional antigen‐presentation function by human gammadelta T Cells. Science 309: 264‐268, 2005.
 66. Breous E, Somanathan S, Vandenberghe LH, Wilson JM. Hepatic regulatory T cells and Kupffer cells are crucial mediators of systemic T cell tolerance to antigens targeting murine liver. Hepatology 50: 612‐621, 2009.
 67. Brimacombe CL, Grove J, Meredith LW, Hu K, Syder AJ, Flores MV, Timpe JM, Krieger SE, Baumert TF, Tellinghuisen TL, Wong‐Staal F, Balfe P, McKeating JA. Neutralizing antibody‐resistant hepatitis C virus cell‐to‐cell transmission. J Virol 85: 596‐605, 2011.
 68. Buelens C, Verhasselt V, De Groote D, Thielemans K, Goldman M, Willems F. Human dendritic cell responses to lipopolysaccharide and CD40 ligation are differentially regulated by interleukin‐10. Eur J Immunol 27: 1848‐1852, 1997.
 69. Butterfield LH, Koh A, Meng W, Vollmer CM, Ribas A, Dissette V, Lee E, Glaspy JA, McBride WH, Economou JS. Generation of human T‐cell responses to an HLA‐A2.1‐restricted peptide epitope derived from alpha‐fetoprotein. Cancer Res 59: 3134‐3142, 1999.
 70. Butterfield LH, Meng WS, Koh A, Vollmer CM, Ribas A, Dissette VB, Faull K, Glaspy JA, McBride WH, Economou JS. T cell responses to HLA‐A*0201‐restricted peptides derived from human alpha fetoprotein. J Immunol 166: 5300‐5308, 2001.
 71. Butterfield LH, Ribas A, Meng WS, Dissette VB, Amarnani S, Vu HT, Seja E, Todd K, Glaspy JA, McBride WH, Economou JS. T‐cell responses to HLA‐A*0201 immunodominant peptides derived from alpha‐fetoprotein in patients with hepatocellular cancer. Clin Cancer Res 9: 5902‐5908, 2003.
 72. Callery MP, Kamei T, Flye MW. Kupffer cell blockade inhibits induction of tolerance by the portal venous route. Transplantation 47: 1092‐1094, 1989.
 73. Calne RY, Rolles K, White DJ, Thiru S, Evans DB, McMaster P, Dunn DC, Craddock GN, Henderson RG, Aziz S, Lewis P. Cyclosporin A initially as the only immunosuppressant in 34 recipients of cadaveric organs: 32 kidneys, 2 pancreases, and 2 livers. Lancet 2: 1033‐1036, 1979.
 74. Calne RY, Sells RA, Pena JR, Davis DR, Millard PR, Herbertson BM, Binns RM, Davies DA. Induction of immunological tolerance by porcine liver allografts. Nature 223: 472‐476, 1969.
 75. Cantor HM, Dumont AE. Hepatic suppression of sensitization to antigen absorbed into the portal system. Nature 215: 744‐745, 1967.
 76. Carding SR, Egan PJ. Gammadelta T cells: Functional plasticity and heterogeneity. Nat Rev Immunol 2: 336‐345, 2002.
 77. Carvalho LH, Sano G, Hafalla JC, Morrot A, Curotto de Lafaille MA, Zavala F. IL‐4‐secreting CD4+ T cells are crucial to the development of CD8+ T‐cell responses against malaria liver stages. Nat Med 8: 166‐170, 2002.
 78. Cerami C, Frevert U, Sinnis P, Takacs B, Clavijo P, Santos MJ, Nussenzweig V. The basolateral domain of the hepatocyte plasma membrane bears receptors for the circumsporozoite protein of Plasmodium falciparum sporozoites. Cell 70: 1021‐1033, 1992.
 79. Chang C, Gershwin ME. Drugs and autoimmunity–a contemporary review and mechanistic approach. J Autoimmun 34: J266‐J275, 2010.
 80. Chang MH, Chen CJ, Lai MS, Hsu HM, Wu TC, Kong MS, Liang DC, Shau WY, Chen DS. Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group. N Engl J Med 336: 1855‐1859, 1997.
 81. Chang S, Dolganiuc A, Szabo G. Toll‐like receptors 1 and 6 are involved in TLR2‐mediated macrophage activation by hepatitis C virus core and NS3 proteins. J Leukoc Biol 82: 479‐487, 2007.
 82. Chapman R, Cullen S. Etiopathogenesis of primary sclerosing cholangitis. World J Gastroenterol 14: 3350‐3359, 2008.
 83. Chen CH, Kuo LM, Chang Y, Wu W, Goldbach C, Ross MA, Stolz DB, Chen L, Fung JJ, Lu L, Qian S. In vivo immune modulatory activity of hepatic stellate cells in mice. Hepatology 44: 1171‐1181, 2006.
 84. Chen L, Calomeni E, Wen J, Ozato K, Shen R, Gao JX. Natural killer dendritic cells are an intermediate of developing dendritic cells. J Leukoc Biol 81: 1422‐1433, 2007.
 85. Chen M, Felix K, Wang J. Immune regulation through mitochondrion‐dependent dendritic cell death induced by T regulatory cells. J Immunol 187: 5684‐5692, 2011.
 86. Christen U, Hintermann E, Holdener M, von Herrath MG. Viral triggers for autoimmunity: Is the ‘glass of molecular mimicry’ half full or half empty? J Autoimmun 34: 38‐44, 2010.
 87. Ciocca M. Clinical course and consequences of hepatitis A infection. Vaccine 18(Suppl 1): S71‐S74, 2000.
 88. Clemente MG, Meloni A, Obermayer‐Straub P, Frau F, Manns MP, De Virgiliis S. Two cytochromes P450 are major hepatocellular autoantigens in autoimmune polyglandular syndrome type 1. Gastroenterology 114: 324‐328, 1998.
 89. Connolly MK, Bedrosian AS, Malhotra A, Henning JR, Ibrahim J, Vera V, Cieza‐Rubio NE, Hassan BU, Pachter HL, Cohen S, Frey AB, Miller G. In hepatic fibrosis, liver sinusoidal endothelial cells acquire enhanced immunogenicity. J Immunol 185: 2200‐2208, 2010.
 90. Cooper A, Tal G, Lider O, Shaul Y. Cytokine induction by the hepatitis B virus capsid in macrophages is facilitated by membrane heparan sulfate and involves TLR2. J Immunol 175: 3165‐3176, 2005.
 91. Coppi A, Natarajan R, Pradel G, Bennett BL, James ER, Roggero MA, Corradin G, Persson C, Tewari R, Sinnis P. The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. J Exp Med 208: 341‐356, 2011.
 92. Cormier EG, Durso RJ, Tsamis F, Boussemart L, Manix C, Olson WC, Gardner JP, Dragic T. L‐SIGN (CD209L) and DC‐SIGN (CD209) mediate transinfection of liver cells by hepatitis C virus. Proc Natl Acad Sci U S A 101: 14067‐14072, 2004.
 93. Crispe IN. Liver antigen‐presenting cells. J Hepatol 54: 357‐365, 2011.
 94. Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol 27: 147‐163, 2009.
 95. Crotta S, Stilla A, Wack A, D'Andrea A, Nuti S, D'Oro U, Mosca M, Filliponi F, Brunetto RM, Bonino F, Abrignani S, Valiante NM. Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J Exp Med 195: 35‐41, 2002.
 96. Czaja AJ, Morshed SA, Parveen S, Nishioka M. Antibodies to single‐stranded and double‐stranded DNA in antinuclear antibody‐positive type 1‐autoimmune hepatitis. Hepatology 26: 567‐572, 1997.
 97. Dalekos GN, Wedemeyer H, Obermayer‐Straub P, Kayser A, Barut A, Frank H, Manns MP. Epitope mapping of cytochrome P4502D6 autoantigen in patients with chronic hepatitis C during alpha‐interferon treatment. J Hepatol 30: 366‐375, 1999.
 98. Dammacco F, Sansonno D, Piccoli C, Racanelli V, D'Amore FP, Lauletta G. The lymphoid system in hepatitis C virus infection: Autoimmunity, mixed cryoglobulinemia, and Overt B‐cell malignancy. Semin Liver Dis 20: 143‐157, 2000.
 99. Daneker GW, Lund SA, Caughman SW, Swerlick RA, Fischer AH, Staley CA, Ades EW. Culture and characterization of sinusoidal endothelial cells isolated from human liver. In Vitro Cell Dev Biol Anim 34: 370‐377, 1998.
 100. De Marcucci O, Lindsay JG. Component X. An immunologically distinct polypeptide associated with mammalian pyruvate dehydrogenase multi‐enzyme complex. Eur J Biochem 149: 641‐648, 1985.
 101. Dhirapong A, Lleo A, Yang GX, Tsuneyama K, Dunn R, Kehry M, Packard TA, Cambier JC, Liu FT, Lindor K, Coppel RL, Ansari AA, Gershwin ME. B cell depletion therapy exacerbates murine primary biliary cirrhosis. Hepatology 53: 527‐535, 2011.
 102. Diehl L, Schurich A, Grochtmann R, Hegenbarth S, Chen L, Knolle PA. Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7‐homolog 1‐dependent CD8+ T cell tolerance. Hepatology 47: 296‐305, 2008.
 103. Dillon PW, Belchis D, Minnick K, Tracy T. Differential expression of the major histocompatibility antigens and ICAM‐1 on bile duct epithelial cells in biliary atresia. Tohoku J Exp Med 181:*** 33‐40, 1997.
 104. Doherty DG, Norris S, Madrigal‐Estebas L, McEntee G, Traynor O, Hegarty JE, O'Farrelly C. The human liver contains multiple populations of NK cells, T cells, and CD3+CD56 +natural T cells with distinct cytotoxic activities and Th1, Th2, and Th0 cytokine secretion patterns. J Immunol 163: 2314‐2321, 1999.
 105. Doherty DG, O'Farrelly C. Innate and adaptive lymphoid cells in the human liver. Immunol Rev 174: 5‐20, 2000.
 106. Dolganiuc A, Oak S, Kodys K, Golenbock DT, Finberg RW, Kurt‐Jones E, Szabo G. Hepatitis C core and nonstructural 3 proteins trigger toll‐like receptor 2‐mediated pathways and inflammatory activation. Gastroenterology 127: 1513‐1524, 2004.
 107. Doniach D, Roitt I, Walker J, Sherlock S. Tissue antibodies in primary biliary cirrhosis, active chronic (lupoid) hepatitis, cryptogenic cirrhosis and other diseases and their clinical implications. Clin Exp Immunol 1: 237‐262, 1966.
 108. Dotzauer A, Gebhardt U, Bieback K, Gottke U, Kracke A, Mages J, Lemon SM, Vallbracht A. Hepatitis A virus‐specific immunoglobulin A mediates infection of hepatocytes with hepatitis A virus via the asialoglycoprotein receptor. J Virol 74: 10950‐10957, 2000.
 109. Dubel L, Tanaka A, Leung PS, Van de Water J, Coppel R, Roche T, Johanet C, Motokawa Y, Ansari A, Gershwin ME. Autoepitope mapping and reactivity of autoantibodies to the dihydrolipoamide dehydrogenase‐binding protein (E3BP) and the glycine cleavage proteins in primary biliary cirrhosis. Hepatology 29: 1013‐1018, 1999.
 110. Egen JG, Rothfuchs AG, Feng CG, Winter N, Sher A, Germain RN. Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity 28: 271‐284, 2008.
 111. Egger D, Wolk B, Gosert R, Bianchi L, Blum HE, Moradpour D, Bienz K. Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol 76: 5974‐5984, 2002.
 112. Eksteen B, Grant AJ, Miles A, Curbishley SM, Lalor PF, Hubscher SG, Briskin M, Salmon M, Adams DH. Hepatic endothelial CCL25 mediates the recruitment of CCR9+ gut‐homing lymphocytes to the liver in primary sclerosing cholangitis. J Exp Med 200: 1511‐1517, 2004.
 113. El‐Serag HB, Marrero JA, Rudolph L, Reddy KR. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology 134: 1752‐1763, 2008.
 114. Elvevold K, Smedsrod B, Martinez I. The liver sinusoidal endothelial cell: A cell type of controversial and confusing identity. Am J Physiol Gastrointest Liver Physiol 294: G391‐G400, 2008.
 115. Elvevold KH, Nedredal GI, Revhaug A, Smedsrod B. Scavenger properties of cultivated pig liver endothelial cells. Comp Hepatol 3: 4, 2004.
 116. Erhardt A, Biburger M, Papadopoulos T, Tiegs G. IL‐10, regulatory T cells, and Kupffer cells mediate tolerance in concanavalin A‐induced liver injury in mice. Hepatology 45: 475‐485, 2007.
 117. Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W. Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol 140: 947‐959, 1998.
 118. Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wolk B, Hatziioannou T, McKeating JA, Bieniasz PD, Rice CM. Claudin‐1 is a hepatitis C virus co‐receptor required for a late step in entry. Nature 446: 801‐805, 2007.
 119. Falkowska E, Durso RJ, Gardner JP, Cormier EG, Arrigale RA, Ogawa RN, Donovan GP, Maddon PJ, Olson WC, Dragic T. L‐SIGN (CD209L) isoforms differently mediate trans‐infection of hepatoma cells by hepatitis C virus pseudoparticles. J Gen Virol 87: 2571‐2576, 2006.
 120. Fattovich G. Natural history and prognosis of hepatitis B. Semin Liver Dis 23: 47‐58, 2003.
 121. Feigelstock D, Thompson P, Mattoo P, Zhang Y, Kaplan GG. The human homolog of HAVcr‐1 codes for a hepatitis A virus cellular receptor. J Virol 72: 6621‐6628, 1998.
 122. Ferrari C, Penna A, Bertoletti A, Valli A, Antoni AD, Giuberti T, Cavalli A, Petit MA, Fiaccadori F. Cellular immune response to hepatitis B virus‐encoded antigens in acute and chronic hepatitis B virus infection. J Immunol 145: 3442‐3449, 1990.
 123. Ferri S, Longhi MS, De Molo C, Lalanne C, Muratori P, Granito A, Hussain MJ, Ma Y, Lenzi M, Mieli‐Vergani G, Bianchi FB, Vergani D, Muratori L. A multifaceted imbalance of T cells with regulatory function characterizes type 1 autoimmune hepatitis. Hepatology 52: 999‐1007, 2010.
 124. Fischer J, Bohm S, Scholz M, Muller T, Witt H, George J, Sarrazin C, Susser S, Schott E, Suppiah V, Booth D, Stewart G, van Bommel F, Brodzinski A, Fulop B, Migaud P, Berg T. Combined effects of different IL28B gene variants on the outcome of dual combination therapy in chronic HCV type 1 infection. Hepatology 55: 1700‐1710, 2012.
 125. Fraser JR, Alcorn D, Laurent TC, Robinson AD, Ryan GB. Uptake of circulating hyaluronic acid by the rat liver. Cellular localization in situ. Cell Tissue Res 242: 505‐510, 1985.
 126. Fraser R, Dobbs BR, Rogers GW. Lipoproteins and the liver sieve: The role of the fenestrated sinusoidal endothelium in lipoprotein metabolism, atherosclerosis, and cirrhosis. Hepatology 21: 863‐874, 1995.
 127. Fregeau DR, Davis PA, Danner DJ, Ansari A, Coppel RL, Dickson ER, Gershwin ME. Antimitochondrial antibodies of primary biliary cirrhosis recognize dihydrolipoamide acyltransferase and inhibit enzyme function of the branched chain alpha‐ketoacid dehydrogenase complex. J Immunol 142: 3815‐3820, 1989.
 128. Fregeau DR, Leung PS, Coppel RL, McNeilage LJ, Medsger TA, Jr, Gershwin ME. Autoantibodies to mitochondria in systemic sclerosis. Frequency and characterization using recombinant cloned autoantigen. Arthritis Rheum 31: 386‐392, 1988.
 129. Fregeau DR, Prindiville T, Coppel RL, Kaplan M, Dickson ER, Gershwin ME. Inhibition of alpha‐ketoglutarate dehydrogenase activity by a distinct population of autoantibodies recognizing dihydrolipoamide succinyltransferase in primary biliary cirrhosis. Hepatology 11: 975‐981, 1990.
 130. Fregeau DR, Roche TE, Davis PA, Coppel R, Gershwin ME. Primary biliary cirrhosis. Inhibition of pyruvate dehydrogenase complex activity by autoantibodies specific for E1 alpha, a non‐lipoic acid containing mitochondrial enzyme. J Immunol 144: 1671‐1676, 1990.
 131. Frese M, Pietschmann T, Moradpour D, Haller O, Bartenschlager R. Interferon‐alpha inhibits hepatitis C virus subgenomic RNA replication by an MxA‐independent pathway. J Gen Virol 82: 723‐733, 2001.
 132. Freudenberg MA, Freudenberg N, Galanos C. Time course of cellular distribution of endotoxin in liver, lungs and kidneys of rats. Br J Exp Pathol 63: 56‐65, 1982.
 133. Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, Zhang Z, Yang H, Zhang H, Zhou C, Yao J, Jin L, Wang H, Yang Y, Fu YX, Wang FS. Increased regulatory T cells correlate with CD8 T‐cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 132: 2328‐2339, 2007.
 134. Fussey SP, Bassendine MF, Fittes D, Turner IB, James OF, Yeaman SJ. The E1 alpha and beta subunits of the pyruvate dehydrogenase complex are M2'd’ and M2'e’ autoantigens in primary biliary cirrhosis. Clin Sci (Lond) 77: 365‐368, 1989.
 135. Fussey SP, Bassendine MF, James OF, Yeaman SJ. Characterisation of the reactivity of autoantibodies in primary biliary cirrhosis. FEBS Lett 246: 49‐53, 1989.
 136. Fussey SP, Guest JR, James OF, Bassendine MF, Yeaman SJ. Identification and analysis of the major M2 autoantigens in primary biliary cirrhosis. Proc Natl Acad Sci U S A 85: 8654‐8658, 1988.
 137. Gabbiani G, Ryan GB, Lamelin JP, Vassalli P, Majno G, Bouvier CA, Cruchaud A, Luscher EF. Human smooth muscle autoantibody. Its identification as antiactin antibody and a study of its binding to “nonmuscular” cells. Am J Pathol 72: 473‐488, 1973.
 138. Gao B, Bataller R. Alcoholic liver disease: Pathogenesis and new therapeutic targets. Gastroenterology 141: 1572‐1585, 2011.
 139. Gao B, Radaeva S, Park O. Liver natural killer and natural killer T cells: Immunobiology and emerging roles in liver diseases. J Leukoc Biol 86: 513‐528, 2009.
 140. Gao B, Seki E, Brenner DA, Friedman S, Cohen JI, Nagy L, Szabo G, Zakhari S. Innate immunity in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol 300: G516‐G525, 2011.
 141. Garcia‐Rodriguez MJ, Canales MA, Hernandez‐Maraver D, Hernandez‐Navarro F. Late reactivation of resolved hepatitis B virus infection: An increasing complication post rituximab‐based regimens treatment? Am J Hematol 83: 673‐675, 2008.
 142. Gardner JP, Durso RJ, Arrigale RR, Donovan GP, Maddon PJ, Dragic T, Olson WC. L‐SIGN (CD 209L) is a liver‐specific capture receptor for hepatitis C virus. Proc Natl Acad Sci U S A 100: 4498‐4503, 2003.
 143. Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, Heinzen EL, Qiu P, Bertelsen AH, Muir AJ, Sulkowski M, McHutchison JG, Goldstein DB. Genetic variation in IL28B predicts hepatitis C treatment‐induced viral clearance. Nature 461: 399‐401, 2009.
 144. Ge X, Karrar A, Ericzon BG, Broome U, Sumitran‐Holgersson S. Antibodies to liver sinusoidal endothelial cells modulate immune responses in liver transplantation. Transplant Proc 37: 3335‐3337, 2005.
 145. Gelpi C, Sontheimer EJ, Rodriguez‐Sanchez JL. Autoantibodies against a serine tRNA‐protein complex implicated in cotranslational selenocysteine insertion. Proc Natl Acad Sci U S A 89: 9739‐9743, 1992.
 146. Gershwin ME, Mackay IR. The causes of primary biliary cirrhosis: Convenient and inconvenient truths. Hepatology 47: 737‐745, 2008.
 147. Gershwin ME, Mackay IR, Sturgess A, Coppel RL. Identification and specificity of a cDNA encoding the 70 kd mitochondrial antigen recognized in primary biliary cirrhosis. J Immunol 138: 3525‐3531, 1987.
 148. Gershwin ME, Shoenfeld Y. Chella David: A lifetime contribution in translational immunology. J Autoimmun 37: 59‐62, 2011.
 149. Goldstone AB, Bronster DJ, Anyanwu AC, Goldstein MA, Filsoufi F, Adams DH, Chikwe J. Predictors and outcomes of seizures after cardiac surgery: A multivariable analysis of 2,578 patients. Ann Thorac Surg 91: 514‐518, 2011.
 150. Golgher D, Jones E, Powrie F, Elliott T, Gallimore A. Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur J Immunol 32: 3267‐3275, 2002.
 151. Grakoui A, Shoukry NH, Woollard DJ, Han JH, Hanson HL, Ghrayeb J, Murthy KK, Rice CM, Walker CM. HCV persistence and immune evasion in the absence of memory T cell help. Science 302: 659‐662, 2003.
 152. Gregorio GV, Choudhuri K, Ma Y, Pensati P, Iorio R, Grant P, Garson J, Bogdanos DP, Vegnente A, Mieli‐Vergani G, Vergani D. Mimicry between the hepatitis C virus polyprotein and antigenic targets of nuclear and smooth muscle antibodies in chronic hepatitis C virus infection. Clin Exp Immunol 133: 404‐413, 2003.
 153. Gueguen M, Meunier‐Rotival M, Bernard O, Alvarez F. Anti‐liver kidney microsome antibody recognizes a cytochrome P450 from the IID subfamily. J Exp Med 168: 801‐806, 1988.
 154. Guidotti LG, Borrow P, Hobbs MV, Matzke B, Gresser I, Oldstone MB, Chisari FV. Viral cross talk: Intracellular inactivation of the hepatitis B virus during an unrelated viral infection of the liver. Proc Natl Acad Sci U S A 93: 4589‐4594, 1996.
 155. Guidotti LG, Chisari FV. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol 19: 65‐91, 2001.
 156. Guidotti LG, Ishikawa T, Hobbs MV, Matzke B, Schreiber R, Chisari FV. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 4: 25‐36, 1996.
 157. Guidotti LG, Rochford R, Chung J, Shapiro M, Purcell R, Chisari FV. Viral clearance without destruction of infected cells during acute HBV infection. Science 284: 825‐829, 1999.
 158. Gumucio JJ, Berkovitz CM, Webster ST, Thornton A, J. Structural and functional organization of the liver. In: Kaplowitz N, editor. Liver and Biliary Diseases, Baltimore: Williams & Wilkins, 1996, pp. 3‐19.
 159. Hamada S, Umemura M, Shiono T, Tanaka K, Yahagi A, Begum MD, Oshiro K, Okamoto Y, Watanabe H, Kawakami K, Roark C, Born WK, O'Brien R, Ikuta K, Ishikawa H, Nakae S, Iwakura Y, Ohta T, Matsuzaki G. IL‐17A produced by gammadelta T cells plays a critical role in innate immunity against listeria monocytogenes infection in the liver. J Immunol 181: 3456‐3463, 2008.
 160. Hamann A, Klugewitz K, Austrup F, Jablonski‐Westrich D. Activation induces rapid and profound alterations in the trafficking of T cells. Eur J Immunol 30: 3207‐3218, 2000.
 161. Hao J, Dong S, Xia S, He W, Jia H, Zhang S, Wei J, O'Brien RL, Born WK, Wu Z, Wang P, Han J, Hong Z, Zhao L, Yin Z. Regulatory role of Vgamma1 gammadelta T cells in tumor immunity through IL‐4 production. J Immunol 187: 4979‐4986, 2011.
 162. Harada K, Ohira S, Isse K, Ozaki S, Zen Y, Sato Y, Nakanuma Y. Lipopolysaccharide activates nuclear factor‐kappaB through toll‐like receptors and related molecules in cultured biliary epithelial cells. Lab Invest 83: 1657‐1667, 2003.
 163. Harada K, Shimoda S, Ikeda H, Chiba M, Hsu M, Sato Y, Kobayashi M, Ren XS, Ohta H, Kasashima S, Kawashima A, Nakanuma Y. Significance of periductal Langerhans cells and biliary epithelial cell‐derived macrophage inflammatory protein‐3alpha in the pathogenesis of primary biliary cirrhosis. Liver Int 31: 245‐253, 2011.
 164. Harada K, Shimoda S, Sato Y, Isse K, Ikeda H, Nakanuma Y. Periductal interleukin‐17 production in association with biliary innate immunity contributes to the pathogenesis of cholangiopathy in primary biliary cirrhosis. Clin Exp Immunol 157: 261‐270, 2009.
 165. Hata K, Zhang XR, Iwatsuki S, Van Thiel DH, Herberman RB, Whiteside TL. Isolation, phenotyping, and functional analysis of lymphocytes from human liver. Clin Immunol Immunopathol 56: 401‐419, 1990.
 166. Hayakawa S, Saito S, Nemoto N, Chishima F, Akiyama K, Shiraishi H, Hayakawa J, Karasaki‐Suzuki M, Fujii KT, Ichijo M, Sakurai I, Satoh K. Expression of recombinase‐activating genes (RAG‐1 and 2) in human decidual mononuclear cells. J Immunol 153: 4934‐4939, 1994.
 167. He W, Hao J, Dong S, Gao Y, Tao J, Chi H, Flavell R, O'Brien RL, Born WK, Craft J, Han J, Wang P, Zhao L, Wu J, Yin Z. Naturally activated V gamma 4 gamma delta T cells play a protective role in tumor immunity through expression of eomesodermin. J Immunol 185: 126‐133, 2010.
 168. He XS, Ansari AA, Gershwin ME. Xenobiotic considerations for the development of autoimmune liver diseases: Bad genes and bad luck. Rev Environ Health 16: 191‐202, 2001.
 169. Heise T, Guidotti LG, Cavanaugh VJ, Chisari FV. Hepatitis B virus RNA‐binding proteins associated with cytokine‐induced clearance of viral RNA from the liver of transgenic mice. J Virol 73: 474‐481, 1999.
 170. Hennes EM, Zeniya M, Czaja AJ, Pares A, Dalekos GN, Krawitt EL, Bittencourt PL, Porta G, Boberg KM, Hofer H, Bianchi FB, Shibata M, Schramm C, Eisenmann de Torres B, Galle PR, McFarlane I, Dienes HP, Lohse AW. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology 48: 169‐176, 2008.
 171. Hiroishi K, Eguchi J, Baba T, Shimazaki T, Ishii S, Hiraide A, Sakaki M, Doi H, Uozumi S, Omori R, Matsumura T, Yanagawa T, Ito T, Imawari M. Strong CD8(+) T‐cell responses against tumor‐associated antigens prolong the recurrence‐free interval after tumor treatment in patients with hepatocellular carcinoma. J Gastroenterol 45: 451‐458, 2010.
 172. Hirschfield GM, Liu X, Han Y, Gorlov IP, Lu Y, Xu C, Chen W, Juran BD, Coltescu C, Mason AL, Milkiewicz P, Myers RP, Odin JA, Luketic VA, Speiciene D, Vincent C, Levy C, Gregersen PK, Zhang J, Heathcote EJ, Lazaridis KN, Amos CI, Siminovitch KA. Variants at IRF5‐TNPO3, 17q12‐21 and MMEL1 are associated with primary biliary cirrhosis. Nat Genet 42: 655‐657, 2010.
 173. Hirschfield GM, Liu X, Xu C, Lu Y, Xie G, Gu X, Walker EJ, Jing K, Juran BD, Mason AL, Myers RP, Peltekian KM, Ghent CN, Coltescu C, Atkinson EJ, Heathcote EJ, Lazaridis KN, Amos CI, Siminovitch KA. Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med 360: 2544‐2555, 2009.
 174. Hodgson HJ, Wands JR, Isselbacher KJ. Alteration in suppressor cell activity in chronic active hepatitis. Proc Natl Acad Sci U S A 75: 1549‐1553, 1978.
 175. Holz LE, Benseler V, Bowen DG, Bouillet P, Strasser A, O'Reilly L, d'Avigdor WM, Bishop AG, McCaughan GW, Bertolino P. Intrahepatic murine CD8 T‐cell activation associates with a distinct phenotype leading to Bim‐dependent death. Gastroenterology 135: 989‐997, 2008.
 176. Homberg JC, Abuaf N, Bernard O, Islam S, Alvarez F, Khalil SH, Poupon R, Darnis F, Levy VG, Grippon P. Chronic active hepatitis associated with antiliver/kidney microsome antibody type 1: A second type of “autoimmune” hepatitis. Hepatology 7: 1333‐1339, 1987.
 177. Horn T, Christoffersen P, Henriksen JH. Alcoholic liver injury: Defenestration in noncirrhotic livers–a scanning electron microscopic study. Hepatology 7: 77‐82, 1987.
 178. Hoshino S, Inaba M, Iwai H, Ito T, Li M, Gershwin ME, Okazaki K, Ikehara S. The role of dendritic cell subsets in 2,4,6‐trinitrobenzene sulfonic acid‐induced ileitis. J Autoimmun 34: 380‐389, 2010.
 179. Hsu W, Shu SA, Gershwin E, Lian ZX. The current immune function of hepatic dendritic cells. Cell Mol Immunol 4: 321‐328, 2007.
 180. Hsu W, Zhang W, Tsuneyama K, Moritoki Y, Ridgway WM, Ansari AA, Coppel RL, Lian ZX, Mackay I, Gershwin ME. Differential mechanisms in the pathogenesis of autoimmune cholangitis versus inflammatory bowel disease in interleukin‐2Ralpha(‐/‐) mice. Hepatology 49: 133‐140, 2009.
 181. Humphreys EH, Williams KT, Adams DH, Afford SC. Primary and malignant cholangiocytes undergo CD40 mediated Fas dependent apoptosis, but are insensitive to direct activation with exogenous Fas ligand. PloS one 5: e14037, 2010.
 182. Ikeda H, Sasaki M, Ishikawa A, Sato Y, Harada K, Zen Y, Kazumori H, Nakanuma Y. Interaction of Toll‐like receptors with bacterial components induces expression of CDX2 and MUC2 in rat biliary epithelium in vivo and in culture. Lab Invest 87: 559‐571, 2007.
 183. Inatsu A, Kinoshita M, Nakashima H, Shimizu J, Saitoh D, Tamai S, Seki S. Novel mechanism of C‐reactive protein for enhancing mouse liver innate immunity. Hepatology 49: 2044‐2054, 2009.
 184. Invernizzi P. Human leukocyte antigen in primary biliary cirrhosis: An old story now reviving. Hepatology 54: 714‐723, 2011.
 185. Irving MG, Roll FJ, Huang S, Bissell DM. Characterization and culture of sinusoidal endothelium from normal rat liver: Lipoprotein uptake and collagen phenotype. Gastroenterology 87: 1233‐1247, 1984.
 186. Ishihara S, Nieda M, Kitayama J, Osada T, Yabe T, Ishikawa Y, Nagawa H, Muto T, Juji T. CD8(+)NKR‐P1A (+)T cells preferentially accumulate in human liver. Eur J Immunol 29: 2406‐2413, 1999.
 187. Ishino T, Chinzei Y, Yuda M. A Plasmodium sporozoite protein with a membrane attack complex domain is required for breaching the liver sinusoidal cell layer prior to hepatocyte infection. Cell Microbiol 7: 199‐208, 2005.
 188. Ishino T, Chinzei Y, Yuda M. Two proteins with 6‐cys motifs are required for malarial parasites to commit to infection of the hepatocyte. Mol Microbiol 58: 1264‐1275, 2005.
 189. Ishino T, Yano K, Chinzei Y, Yuda M. Cell‐passage activity is required for the malarial parasite to cross the liver sinusoidal cell layer. PLoS Biol 2: E4, 2004.
 190. Iwai Y, Terawaki S, Ikegawa M, Okazaki T, Honjo T. PD‐1 inhibits antiviral immunity at the effector phase in the liver. J Exp Med 198: 39‐50, 2003.
 191. Jaeschke H, Farhood A, Fisher MA, Smith CW. Sequestration of neutrophils in the hepatic vasculature during endotoxemia is independent of beta 2 integrins and intercellular adhesion molecule‐1. Shock 6: 351‐356, 1996.
 192. Jeong WI, Park O, Gao B. Abrogation of the antifibrotic effects of natural killer cells/interferon‐gamma contributes to alcohol acceleration of liver fibrosis. Gastroenterology 134: 248‐258, 2008.
 193. John B, Crispe IN. Passive and active mechanisms trap activated CD8+ T cells in the liver. J Immunol 172: 5222‐5229, 2004.
 194. Johnson PJ, McFarlane IG. Meeting report: International Autoimmune Hepatitis Group. Hepatology 18: 998‐1005, 1993.
 195. Jomantaite I, Dikopoulos N, Kroger A, Leithauser F, Hauser H, Schirmbeck R, Reimann J. Hepatic dendritic cell subsets in the mouse. Eur J Immunol 34: 355‐365, 2004.
 196. Ju C, McCoy JP, Chung CJ, Graf ML, Pohl LR. Tolerogenic role of Kupffer cells in allergic reactions. Chem Res Toxicol 16: 1514‐1519, 2003.
 197. Ju C, Pohl LR. Tolerogenic role of Kupffer cells in immune‐mediated adverse drug reactions. Toxicology 209: 109‐112, 2005.
 198. Kakimi K, Lane TE, Chisari FV, Guidotti LG. Cutting edge: Inhibition of hepatitis B virus replication by activated NK T cells does not require inflammatory cell recruitment to the liver. J Immunol 167: 6701‐6705, 2001.
 199. Kamei T, Callery MP, Flye MW. Kupffer cell blockade prevents induction of portal venous tolerance in rat cardiac allograft transplantation. J Surg Res 48: 393‐396, 1990.
 200. Kantzanou M, Lucas M, Barnes E, Komatsu H, Dusheiko G, Ward S, Harcourt G, Klenerman P. Viral escape and T cell exhaustion in hepatitis C virus infection analysed using Class I peptide tetramers. Immunol Lett 85: 165‐171, 2003.
 201. Kaplan MM, Gershwin ME. Primary biliary cirrhosis. N Engl J Med 353: 1261‐1273, 2005.
 202. Karrar A, Broome U, Uzunel M, Qureshi AR, Sumitran‐Holgersson S. Human liver sinusoidal endothelial cells induce apoptosis in activated T cells: A role in tolerance induction. Gut 56: 243‐252, 2007.
 203. Kassel R, Cruise MW, Iezzoni JC, Taylor NA, Pruett TL, Hahn YS. Chronically inflamed livers up‐regulate expression of inhibitory B7 family members. Hepatology 50: 1625‐1637, 2009.
 204. Katz SC, Pillarisetty VG, Bleier JI, Shah AB, DeMatteo RP. Liver sinusoidal endothelial cells are insufficient to activate T cells. J Immunol 173: 230‐235, 2004.
 205. Keating R, Yue W, Rutigliano JA, So J, Olivas E, Thomas PG, Doherty PC. Virus‐specific CD8+ T cells in the liver: Armed and ready to kill. J Immunol 178: 2737‐2745, 2007.
 206. Kerkar N, Choudhuri K, Ma Y, Mahmoud A, Bogdanos DP, Muratori L, Bianchi F, Williams R, Mieli‐Vergani G, Vergani D. Cytochrome P4502D6(193‐212): A new immunodominant epitope and target of virus/self cross‐reactivity in liver kidney microsomal autoantibody type 1‐positive liver disease. J Immunol 170: 1481‐1489, 2003.
 207. Kerzerho J, Wunsch D, Szely N, Meyer HA, Lurz L, Rose L, Wahn U, Akbari O, Stock P. Effects of systemic versus local administration of corticosteroids on mucosal tolerance. J Immunol 188: 470‐476, 2012.
 208. Khakoo SI, Thio CL, Martin MP, Brooks CR, Gao X, Astemborski J, Cheng J, Goedert JJ, Vlahov D, Hilgartner M, Cox S, Little AM, Alexander GJ, Cramp ME, O'Brien SJ, Rosenberg WM, Thomas DL, Carrington M. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305: 872‐874, 2004.
 209. Khanna A, Morelli AE, Zhong C, Takayama T, Lu L, Thomson AW. Effects of liver‐derived dendritic cell progenitors on Th1‐ and Th2‐like cytokine responses in vitro and in vivo. J Immunol 164: 1346‐1354, 2000.
 210. Khuroo MS. Discovery of hepatitis E: The epidemic non‐A, non‐B hepatitis 30 years down the memory lane. Virus Res 161: 3‐14, 2011.
 211. Kim DH, Lee JC, Kim S, Oh SH, Lee MK, Kim KW, Lee MS. Inhibition of autoimmune diabetes by TLR2 tolerance. J Immunol 187: 5211‐5220, 2011.
 212. Kimura Y, Selmi C, Leung PS, Mao TK, Schauer J, Watnik M, Kuriyama S, Nishioka M, Ansari AA, Coppel RL, Invernizzi P, Podda M, Gershwin ME. Genetic polymorphisms influencing xenobiotic metabolism and transport in patients with primary biliary cirrhosis. Hepatology 41: 55‐63, 2005.
 213. Kita H, Lian ZX, Van de Water J, He XS, Matsumura S, Kaplan M, Luketic V, Coppel RL, Ansari AA, Gershwin ME. Identification of HLA‐A2‐restricted CD8(+) cytotoxic T cell responses in primary biliary cirrhosis: T cell activation is augmented by immune complexes cross‐presented by dendritic cells. J Exp Med 195: 113‐123, 2002.
 214. Kita H, Mackay IR, Van De Water J, Gershwin ME. The lymphoid liver: Considerations on pathways to autoimmune injury. Gastroenterology 120: 1485‐1501, 2001.
 215. Kita H, Matsumura S, He XS, Ansari AA, Lian ZX, Van de Water J, Coppel RL, Kaplan MM, Gershwin ME. Quantitative and functional analysis of PDC‐E2‐specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis. J Clin Invest 109: 1231‐1240, 2002.
 216. Kleiner DE. Granulomas in the liver. Semin Diagn Pathol 23: 161‐169, 2006.
 217. Klenerman P, Lechner F, Kantzanou M, Ciurea A, Hengartner H, Zinkernagel R. Viral escape and the failure of cellular immune responses. Science 289: 2003, 2000.
 218. Knolle P, Schlaak J, Uhrig A, Kempf P, Meyer zum Buschenfelde KH, Gerken G. Human Kupffer cells secrete IL‐10 in response to lipopolysaccharide (LPS) challenge. J Hepatol 22: 226‐229, 1995.
 219. Knolle PA, Gerken G. Local control of the immune response in the liver. Immunol Rev 174: 21‐34, 2000.
 220. Knolle PA, Gerken G, Loser E, Dienes HP, Gantner F, Tiegs G, Meyer zum Buschenfelde KH, Lohse AW. Role of sinusoidal endothelial cells of the liver in concanavalin A‐induced hepatic injury in mice. Hepatology 24: 824‐829, 1996.
 221. Knolle PA, Germann T, Treichel U, Uhrig A, Schmitt E, Hegenbarth S, Lohse AW, Gerken G. Endotoxin down‐regulates T cell activation by antigen‐presenting liver sinusoidal endothelial cells. J Immunol 162: 1401‐1407, 1999.
 222. Knolle PA, Schmitt E, Jin S, Germann T, Duchmann R, Hegenbarth S, Gerken G, Lohse AW. Induction of cytokine production in naive CD4(+) T cells by antigen‐presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward Th1 cells. Gastroenterology 116: 1428‐1440, 1999.
 223. Knolle PA, Uhrig A, Hegenbarth S, Loser E, Schmitt E, Gerken G, Lohse AW. IL‐10 down‐regulates T cell activation by antigen‐presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules. Clin Exp Immunol 114: 427‐433, 1998.
 224. Kolykhalov AA, Agapov EV, Blight KJ, Mihalik K, Feinstone SM, Rice CM. Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science 277: 570‐574, 1997.
 225. Kudo S, Matsuno K, Ezaki T, Ogawa M. A novel migration pathway for rat dendritic cells from the blood: Hepatic sinusoids‐lymph translocation. J Exp Med 185: 777‐784, 1997.
 226. Kumar KA, Sano G, Boscardin S, Nussenzweig RS, Nussenzweig MC, Zavala F, Nussenzweig V. The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites. Nature 444: 937‐940, 2006.
 227. Laakso SM, Laurinolli TT, Rossi LH, Lehtoviita A, Sairanen H, Perheentupa J, Kekalainen E, Arstila TP. Regulatory T cell defect in APECED patients is associated with loss of naive FOXP3(+) precursors and impaired activated population. J Autoimmun 35: 351‐357, 2010.
 228. Lai WK, Sun PJ, Zhang J, Jennings A, Lalor PF, Hubscher S, McKeating JA, Adams DH. Expression of DC‐SIGN and DC‐SIGNR on human sinusoidal endothelium: A role for capturing hepatitis C virus particles. Am J Pathol 169: 200‐208, 2006.
 229. Lang PA, Recher M, Honke N, Scheu S, Borkens S, Gailus N, Krings C, Meryk A, Kulawik A, Cervantes‐Barragan L, Van Rooijen N, Kalinke U, Ludewig B, Hengartner H, Harris N, Haussinger D, Ohashi PS, Zinkernagel RM, Lang KS. Tissue macrophages suppress viral replication and prevent severe immunopathology in an interferon‐I‐dependent manner in mice. Hepatology 52: 25‐32, 2010.
 230. Lapierre P, Hajoui O, Homberg JC, Alvarez F. Formiminotransferase cyclodeaminase is an organ‐specific autoantigen recognized by sera of patients with autoimmune hepatitis. Gastroenterology 116: 643‐649, 1999.
 231. Larrubia JR, Benito‐Martinez S, Miquel J, Calvino M, Sanz‐de‐Villalobos E, Gonzalez‐Praetorius A, Albertos S, Garcia‐Garzon S, Lokhande M, Parra‐Cid T. Bim‐mediated apoptosis and PD‐1/PD‐L1 pathway impair reactivity of PD1(+)/CD127(‐) HCV‐specific CD8(+) cells targeting the virus in chronic hepatitis C virus infection. Cell Immunol 269: 104‐114, 2011.
 232. Le Couteur DG, Fraser R, Hilmer S, Rivory LP, McLean AJ. The hepatic sinusoid in aging and cirrhosis: Effects on hepatic substrate disposition and drug clearance. Clin Pharmacokinet 44: 187‐200, 2005.
 233. Lee WY, Moriarty TJ, Wong CH, Zhou H, Strieter RM, van Rooijen N, Chaconas G, Kubes P. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat Immunol 11: 295‐302, 2010.
 234. Leon MP, Bassendine MF, Gibbs P, Burt AD, Thick M, Kirby JA. Hepatic allograft rejection: Regulation of the immunogenicity of human intrahepatic biliary epithelial cells. Liver Transpl Surg 2: 37‐45, 1996.
 235. Leon MP, Bassendine MF, Gibbs P, Thick M, Kirby JA. Immunogenicity of biliary epithelium: Study of the adhesive interaction with lymphocytes. Gastroenterology 112: 968‐977, 1997.
 236. Leon MP, Bassendine MF, Wilson JL, Ali S, Thick M, Kirby JA. Immunogenicity of biliary epithelium: Investigation of antigen presentation to CD4+ T cells. Hepatology 24: 561‐567, 1996.
 237. Leon MP, Kirby JA, Gibbs P, Burt AD, Bassendine MF. Immunogenicity of biliary epithelial cells: Study of the expression of B7 molecules. J Hepatol 22: 591‐595, 1995.
 238. Leung PS, Chuang DT, Wynn RM, Cha S, Danner DJ, Ansari A, Coppel RL, Gershwin ME. Autoantibodies to BCOADC‐E2 in patients with primary biliary cirrhosis recognize a conformational epitope. Hepatology 22: 505‐513, 1995.
 239. Leung PS, Park O, Tsuneyama K, Kurth MJ, Lam KS, Ansari AA, Coppel RL, Gershwin ME. Induction of primary biliary cirrhosis in guinea pigs following chemical xenobiotic immunization. J Immunol 179: 2651‐2657, 2007.
 240. Leung PS, Quan C, Park O, Van de Water J, Kurth MJ, Nantz MH, Ansari AA, Coppel RL, Lam KS, Gershwin ME. Immunization with a xenobiotic 6‐bromohexanoate bovine serum albumin conjugate induces antimitochondrial antibodies. J Immunol 170: 5326‐5332, 2003.
 241. Li CR, Deiro MF, Godebu E, Bradley LM. IL‐7 uniquely maintains FoxP3(+) adaptive Treg cells that reverse diabetes in NOD mice via integrin‐beta7‐dependent localization. J Autoimmun 37: 217‐227, 2011.
 242. Li M, Abraham NG, Vanella L, Zhang Y, Inaba M, Hosaka N, Hoshino S, Shi M, Ambrosini YM, Gershwin ME, Ikehara S. Successful modulation of type 2 diabetes in db/db mice with intra‐bone marrow–bone marrow transplantation plus concurrent thymic transplantation. J Autoimmun 35: 414‐423, 2010.
 243. Li S, Rodrigues M, Rodriguez D, Rodriguez JR, Esteban M, Palese P, Nussenzweig RS, Zavala F. Priming with recombinant influenza virus followed by administration of recombinant vaccinia virus induces CD8+ T‐cell‐mediated protective immunity against malaria. Proc Natl Acad Sci U S A 90: 5214‐5218, 1993.
 244. Li W, Kuhr CS, Zheng XX, Carper K, Thomson AW, Reyes JD, Perkins JD. New insights into mechanisms of spontaneous liver transplant tolerance: The role of Foxp3‐expressing CD25+CD4+ regulatory T cells. Am J Transplant 8: 1639‐1651, 2008.
 245. Li Y, Muruve DA, Collins RG, Lee SS, Kubes P. The role of selectins and integrins in adenovirus vector‐induced neutrophil recruitment to the liver. Eur J Immunol 32: 3443‐3452, 2002.
 246. Lian ZX, Okada T, He XS, Kita H, Liu YJ, Ansari AA, Kikuchi K, Ikehara S, Gershwin ME. Heterogeneity of dendritic cells in the mouse liver: Identification and characterization of four distinct populations. J Immunol 170: 2323‐2330, 2003.
 247. Liberal R, Longhi MS, Mieli‐Vergani G, Vergani D. Pathogenesis of autoimmune hepatitis. Best Pract Res Clin Gastroenterol 25: 653‐664, 2011.
 248. Limmer A, Ohl J, Kurts C, Ljunggren HG, Reiss Y, Groettrup M, Momburg F, Arnold B, Knolle PA. Efficient presentation of exogenous antigen by liver endothelial cells to CD8 +T cells results in antigen‐specific T‐cell tolerance. Nat Med 6: 1348‐1354, 2000.
 249. Limmer A, Ohl J, Wingender G, Berg M, Jungerkes F, Schumak B, Djandji D, Scholz K, Klevenz A, Hegenbarth S, Momburg F, Hammerling GJ, Arnold B, Knolle PA. Cross‐presentation of oral antigens by liver sinusoidal endothelial cells leads to CD8 T cell tolerance. Eur J Immunol 35: 2970‐2981, 2005.
 250. Liu X, Invernizzi P, Lu Y, Kosoy R, Bianchi I, Podda M, Xu C, Xie G, Macciardi F, Selmi C, Lupoli S, Shigeta R, Ransom M, Lleo A, Lee AT, Mason AL, Myers RP, Peltekian KM, Ghent CN, Bernuzzi F, Zuin M, Rosina F, Borghesio E, Floreani A, Lazzari R, Niro G, Andriulli A, Muratori L, Muratori P, Almasio PL, Andreone P, Margotti M, Brunetto M, Coco B, Alvaro D, Bragazzi MC, Marra F, Pisano A, Rigamonti C, Colombo M, Marzioni M, Benedetti A, Fabris L, Strazzabosco M, Portincasa P, Palmieri VO, Tiribelli C, Croce L, Bruno S, Rossi S, Vinci M, Prisco C, Mattalia A, Toniutto P, Picciotto A, Galli A, Ferrari C, Colombo S, Casella G, Morini L, Caporaso N, Colli A, Spinzi G, Montanari R, Gregersen PK, Heathcote EJ, Hirschfield GM, Siminovitch KA, Amos CI, Gershwin ME, Seldin MF. Genome‐wide meta‐analyses identify three loci associated with primary biliary cirrhosis. Nat Genet 42: 658‐660, 2010.
 251. Lleo A, Bowlus CL, Yang GX, Invernizzi P, Podda M, Van de Water J, Ansari AA, Coppel RL, Worman HJ, Gores GJ, Gershwin ME. Biliary apotopes and anti‐mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. Hepatology 52: 987‐998, 2010.
 252. Lleo A, Selmi C, Invernizzi P, Podda M, Coppel RL, Mackay IR, Gores GJ, Ansari AA, Van de Water J, Gershwin ME. Apotopes and the biliary specificity of primary biliary cirrhosis. Hepatology 49: 871‐879, 2009.
 253. Logvinoff C, Major ME, Oldach D, Heyward S, Talal A, Balfe P, Feinstone SM, Alter H, Rice CM, McKeating JA. Neutralizing antibody response during acute and chronic hepatitis C virus infection. Proc Natl Acad Sci U S A 101: 10149‐10154, 2004.
 254. Lohmann V, Korner F, Koch J, Herian U, Theilmann L, Bartenschlager R. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285: 110‐113, 1999.
 255. Lohse AW, Knolle PA, Bilo K, Uhrig A, Waldmann C, Ibe M, Schmitt E, Gerken G, Meyer Zum Buschenfelde KH. Antigen‐presenting function and B7 expression of murine sinusoidal endothelial cells and Kupffer cells. Gastroenterology 110: 1175‐1181, 1996.
 256. Longhi MS, Hussain MJ, Bogdanos DP, Quaglia A, Mieli‐Vergani G, Ma Y, Vergani D. Cytochrome P450IID6‐specific CD8 T cell immune responses mirror disease activity in autoimmune hepatitis type 2. Hepatology 46: 472‐484, 2007.
 257. Longhi MS, Ma Y, Bogdanos DP, Cheeseman P, Mieli‐Vergani G, Vergani D. Impairment of CD4(+)CD25(+) regulatory T‐cells in autoimmune liver disease. J Hepatol 41: 31‐37, 2004.
 258. Longhi MS, Ma Y, Mitry RR, Bogdanos DP, Heneghan M, Cheeseman P, Mieli‐Vergani G, Vergani D. Effect of CD4+ CD25+ regulatory T‐cells on CD8 T‐cell function in patients with autoimmune hepatitis. J Autoimmun 25: 63‐71, 2005.
 259. Longhi MS, Meda F, Wang P, Samyn M, Mieli‐Vergani G, Vergani D, Ma Y. Expansion and de novo generation of potentially therapeutic regulatory T cells in patients with autoimmune hepatitis. Hepatology 47: 581‐591, 2008.
 260. Lopes AR, Kellam P, Das A, Dunn C, Kwan A, Turner J, Peppa D, Gilson RJ, Gehring A, Bertoletti A, Maini MK. Bim‐mediated deletion of antigen‐specific CD8 T cells in patients unable to control HBV infection. J Clin Invest 118: 1835‐1845, 2008.
 261. Loud AV. A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells. J Cell Biol 37: 27‐46, 1968.
 262. Lupberger J, Zeisel MB, Xiao F, Thumann C, Fofana I, Zona L, Davis C, Mee CJ, Turek M, Gorke S, Royer C, Fischer B, Zahid MN, Lavillette D, Fresquet J, Cosset FL, Rothenberg SM, Pietschmann T, Patel AH, Pessaux P, Doffoel M, Raffelsberger W, Poch O, McKeating JA, Brino L, Baumert TF. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med 17: 589‐595, 2011.
 263. Luth S, Huber S, Schramm C, Buch T, Zander S, Stadelmann C, Bruck W, Wraith DC, Herkel J, Lohse AW. Ectopic expression of neural autoantigen in mouse liver suppresses experimental autoimmune neuroinflammation by inducing antigen‐specific Tregs. J Clin Invest 118: 3403‐3410, 2008.
 264. Ma Y, Bogdanos DP, Hussain MJ, Underhill J, Bansal S, Longhi MS, Cheeseman P, Mieli‐Vergani G, Vergani D. Polyclonal T‐cell responses to cytochrome P450IID6 are associated with disease activity in autoimmune hepatitis type 2. Gastroenterology 130: 868‐882, 2006.
 265. Ma Y, Thomas MG, Okamoto M, Bogdanos DP, Nagl S, Kerkar N, Lopes AR, Muratori L, Lenzi M, Bianchi FB, Mieli‐Vergani G, Vergani D. Key residues of a major cytochrome P4502D6 epitope are located on the surface of the molecule. J Immunol 169: 277‐285, 2002.
 266. Mackay I. Primary biliary cirrhosis showing a high titre of autoantibody: Report of a case of a study. N Engl J Med 185‐188, 1958.
 267. Mackay IR, Taft LI, Cowling DC. Lupoid hepatitis. Lancet 271: 1323‐1326, 1956.
 268. Mackay IR, Whittingham S, Fida S, Myers M, Ikuno N, Gershwin ME, Rowley MJ. The peculiar autoimmunity of primary biliary cirrhosis. Immunol Rev 174: 226‐237, 2000.
 269. Mackensen A, Krause T, Blum U, Uhrmeister P, Mertelsmann R, Lindemann A. Homing of intravenously and intralymphatically injected human dendritic cells generated in vitro from CD34+ hematopoietic progenitor cells. Cancer Immunol Immunother: CII 48: 118‐122, 1999.
 270. Mackie FD, Peakman M, Yun M, Sallie R, Smith H, Davies ET, Mieli‐Vergani G, Vergani D. Primary and secondary liver/kidney microsomal autoantibody response following infection with hepatitis C virus. Gastroenterology 106: 1672‐1675, 1994.
 271. MacPhee PJ, Schmidt EE, Groom AC. Intermittence of blood flow in liver sinusoids, studied by high‐resolution in vivo microscopy. Am J Physiol 269: G692‐G698, 1995.
 272. Manns MP, Griffin KJ, Sullivan KF, Johnson EF. LKM‐1 autoantibodies recognize a short linear sequence in P450IID6, a cytochrome P‐450 monooxygenase. J Clin Invest 88: 1370‐1378, 1991.
 273. Martinez RJ, Zhang N, Thomas SR, Nandiwada SL, Jenkins MK, Binstadt BA, Mueller DL. Arthritogenic self‐reactive CD4+ T cells acquire an FR4hiCD73hi anergic state in the presence of Foxp3+ regulatory T cells. J Immunol 188: 170‐181, 2012.
 274. Martins EB, Graham AK, Chapman RW, Fleming KA. Elevation of gamma delta T lymphocytes in peripheral blood and livers of patients with primary sclerosing cholangitis and other autoimmune liver diseases. Hepatology 23: 988‐993, 1996.
 275. Masuda T, Ohteki T, Abo T, Seki S, Nose S, Nagura H, Kumagai K. Expansion of the population of double negative CD4‐8‐ T alpha beta‐cells in the liver is a common feature of autoimmune mice. J Immunol 147: 2907‐2912, 1991.
 276. Matsumura T, Takesue M, Westerman KA, Okitsu T, Sakaguchi M, Fukazawa T, Totsugawa T, Noguchi H, Yamamoto S, Stolz DB, Tanaka N, Leboulch P, Kobayashi N. Establishment of an immortalized human‐liver endothelial cell line with SV40T and hTERT. Transplantation 77: 1357‐1365, 2004.
 277. Matsuno K, Ezaki T, Kudo S, Uehara Y. A life stage of particle‐laden rat dendritic cells in vivo: Their terminal division, active phagocytosis, and translocation from the liver to the draining lymph. J Exp Med 183: 1865‐1878, 1996.
 278. McCuskey RS, Urbaschek R, Urbaschek B. The microcirculation during endotoxemia. Cardiovasc Res 32: 752‐763, 1996.
 279. Mehal WZ. Intrahepatic T cell survival versus death: Which one prevails and why? J Hepatol 39: 1070‐1071, 2003.
 280. Mells GF, Floyd JA, Morley KI, Cordell HJ, Franklin CS, Shin SY, Heneghan MA, Neuberger JM, Donaldson PT, Day DB, Ducker SJ, Muriithi AW, Wheater EF, Hammond CJ, Dawwas MF, Jones DE, Peltonen L, Alexander GJ, Sandford RN, Anderson CA. Genome‐wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet 43: 329‐332, 2011.
 281. Melum E, Franke A, Schramm C, Weismuller TJ, Gotthardt DN, Offner FA, Juran BD, Laerdahl JK, Labi V, Bjornsson E, Weersma RK, Henckaerts L, Teufel A, Rust C, Ellinghaus E, Balschun T, Boberg KM, Ellinghaus D, Bergquist A, Sauer P, Ryu E, Hov JR, Wedemeyer J, Lindkvist B, Wittig M, Porte RJ, Holm K, Gieger C, Wichmann HE, Stokkers P, Ponsioen CY, Runz H, Stiehl A, Wijmenga C, Sterneck M, Vermeire S, Beuers U, Villunger A, Schrumpf E, Lazaridis KN, Manns MP, Schreiber S, Karlsen TH. Genome‐wide association analysis in primary sclerosing cholangitis identifies two non‐HLA susceptibility loci. Nat Genet 43: 17‐19, 2011.
 282. Menard R. The journey of the malaria sporozoite through its hosts: Two parasite proteins lead the way. Microbes Infect 2: 633‐642, 2000.
 283. Mengshol JA, Golden‐Mason L, Arikawa T, Smith M, Niki T, McWilliams R, Randall JA, McMahan R, Zimmerman MA, Rangachari M, Dobrinskikh E, Busson P, Polyak SJ, Hirashima M, Rosen HR. A crucial role for Kupffer cell‐derived galectin‐9 in regulation of T cell immunity in hepatitis C infection. PLoS One 5: e9504, 2010.
 284. Miyagawa F, Gutermuth J, Zhang H, Katz SI. The use of mouse models to better understand mechanisms of autoimmunity and tolerance. J Autoimmun 35: 192‐198, 2010.
 285. Mota MM, Hafalla JC, Rodriguez A. Migration through host cells activates Plasmodium sporozoites for infection. Nat Med 8: 1318‐1322, 2002.
 286. Mota MM, Pradel G, Vanderberg JP, Hafalla JC, Frevert U, Nussenzweig RS, Nussenzweig V, Rodriguez A. Migration of Plasmodium sporozoites through cells before infection. Science 291: 141‐144, 2001.
 287. Moteki S, Leung PS, Coppel RL, Dickson ER, Kaplan MM, Munoz S, Gershwin ME. Use of a designer triple expression hybrid clone for three different lipoyl domain for the detection of antimitochondrial autoantibodies. Hepatology 24: 97‐103, 1996.
 288. Mousa SA. Expression of adhesion molecules during cadmium hepatotoxicity. Life Sci 75: 93‐105, 2004.
 289. Muhlbauer M, Fleck M, Schutz C, Weiss T, Froh M, Blank C, Scholmerich J, Hellerbrand C. PD‐L1 is induced in hepatocytes by viral infection and by interferon‐alpha and ‐gamma and mediates T cell apoptosis. J Hepatol 45: 520‐528, 2006.
 290. Munoz‐Suano A, Kallikourdis M, Sarris M, Betz AG. Regulatory T cells protect from autoimmune arthritis during pregnancy. J Autoimmun 38: J103‐J108, 2011.
 291. Murison JG, Quaratino S, Kahan M, Verhoef A, Londei M. Definition of unique traits of human CD4‐CD8‐ alpha beta T cells. Clin Exp Immunol 93: 464‐470, 1993.
 292. Naiyanetr P, Butler JD, Meng L, Pfeiff J, Kenny TP, Guggenheim KG, Reiger R, Lam K, Kurth MJ, Ansari AA, Coppel RL, Lopez‐Hoyos M, Gershwin ME, Leung PS. Electrophile‐modified lipoic derivatives of PDC‐E2 elicits anti‐mitochondrial antibody reactivity. J Autoimmun 37: 209‐216, 2011.
 293. Nascimbeni M, Mizukoshi E, Bosmann M, Major ME, Mihalik K, Rice CM, Feinstone SM, Rehermann B. Kinetics of CD4+ and CD8+ memory T‐cell responses during hepatitis C virus rechallenge of previously recovered chimpanzees. J Virol 77: 4781‐4793, 2003.
 294. Niehues T, Gulwani‐Akolkar B, Akolkar PN, Tax W, Silver J. Unique phenotype and distinct TCR V beta repertoire in human peripheral blood alpha beta TCR+, CD4‐, and CD8‐ double negative T cells. J Immunol 152: 1072‐1081, 1994.
 295. Nishio A, Van de Water J, Leung PS, Joplin R, Neuberger JM, Lake J, Bjorkland A, Totterman TH, Peters M, Worman HJ, Ansari AA, Coppel RL, Gershwin ME. Comparative studies of antimitochondrial autoantibodies in sera and bile in primary biliary cirrhosis. Hepatology 25: 1085‐1089, 1997.
 296. Norris S, Collins C, Doherty DG, Smith F, McEntee G, Traynor O, Nolan N, Hegarty J, O'Farrelly C. Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J Hepatol 28: 84‐90, 1998.
 297. Norris S, Doherty DG, Collins C, McEntee G, Traynor O, Hegarty JE, O'Farrelly C. Natural T cells in the human liver: Cytotoxic lymphocytes with dual T cell and natural killer cell phenotype and function are phenotypically heterogenous and include Valpha24‐JalphaQ and gammadelta T cell receptor bearing cells. Hum Immunol 60: 20‐31, 1999.
 298. O'Connell PJ, Morelli AE, Logar AJ, Thomson AW. Phenotypic and functional characterization of mouse hepatic CD8 alpha+ lymphoid‐related dendritic cells. J Immunol 165: 795‐803, 2000.
 299. Oertelt S, Lian ZX, Cheng CM, Chuang YH, Padgett KA, He XS, Ridgway WM, Ansari AA, Coppel RL, Li MO, Flavell RA, Kronenberg M, Mackay IR, Gershwin ME. Anti‐mitochondrial antibodies and primary biliary cirrhosis in TGF‐beta receptor II dominant‐negative mice. J Immunol 177: 1655‐1660, 2006.
 300. Ohteki T, Abo T, Seki S, Kobata T, Yagita H, Okumura K, Kumagai K. Predominant appearance of gamma/delta T lymphocytes in the liver of mice after birth. Eur J Immunol 21: 1733‐1740, 1991.
 301. Onoe T, Ohdan H, Tokita D, Shishida M, Tanaka Y, Hara H, Zhou W, Ishiyama K, Mitsuta H, Ide K, Asahara T. Liver sinusoidal endothelial cells tolerize T cells across MHC barriers in mice. J Immunol 175: 139‐146, 2005.
 302. Oo YH, Shetty S, Adams DH. The role of chemokines in the recruitment of lymphocytes to the liver. Dig Dis 28: 31‐44, 2010.
 303. Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res 65: 2457‐2464, 2005.
 304. Park O, Grishina I, Leung PS, Gershwin ME, Prindiville T. Analysis of the Foxp3/scurfin gene in Crohn's disease. Ann N Y Acad Sci 1051: 218‐228, 2005.
 305. Paust S, Gill HS, Wang BZ, Flynn MP, Moseman EA, Senman B, Szczepanik M, Telenti A, Askenase PW, Compans RW, von Andrian UH. Critical role for the chemokine receptor CXCR6 in NK cell‐mediated antigen‐specific memory of haptens and viruses. Nat Immunol 11: 1127‐1135, 2010.
 306. Peng G, Li S, Wu W, Tan X, Chen Y, Chen Z. PD‐1 upregulation is associated with HBV‐specific T cell dysfunction in chronic hepatitis B patients. Mol Immunol 45: 963‐970, 2008.
 307. Persani L, Bonomi M, Lleo A, Pasini S, Civardi F, Bianchi I, Campi I, Finelli P, Miozzo M, Castronovo C, Sirchia S, Gershwin ME, Invernizzi P. Increased loss of the Y chromosome in peripheral blood cells in male patients with autoimmune thyroiditis. J Autoimmun 38: J193‐J196, 2012.
 308. Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, Weiner AJ, Houghton M, Rosa D, Grandi G, Abrignani S. Binding of hepatitis C virus to CD81. Science 282: 938‐941, 1998.
 309. Pillarisetty VG, Shah AB, Miller G, Bleier JI, DeMatteo RP. Liver dendritic cells are less immunogenic than spleen dendritic cells because of differences in subtype composition. J Immunol 172: 1009‐1017, 2004.
 310. Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You H, de Jong YP, Rice CM. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457: 882‐886, 2009.
 311. Pohlmann S, Zhang J, Baribaud F, Chen Z, Leslie GJ, Lin G, Granelli‐Piperno A, Doms RW, Rice CM, McKeating JA. Hepatitis C virus glycoproteins interact with DC‐SIGN and DC‐SIGNR. J Virol 77: 4070‐4080, 2003.
 312. Polakos NK, Klein I, Richter MV, Zaiss DM, Giannandrea M, Crispe IN, Topham DJ. Early intrahepatic accumulation of CD8+ T cells provides a source of effectors for nonhepatic immune responses. J Immunol 179: 201‐210, 2007.
 313. Popov A, Abdullah Z, Wickenhauser C, Saric T, Driesen J, Hanisch FG, Domann E, Raven EL, Dehus O, Hermann C, Eggle D, Debey S, Chakraborty T, Kronke M, Utermohlen O, Schultze JL. Indoleamine 2,3‐dioxygenase‐expressing dendritic cells form suppurative granulomas following Listeria monocytogenes infection. J Clin Invest 116: 3160‐3170, 2006.
 314. Post J, Ratnarajah S, Lloyd AR. Immunological determinants of the outcomes from primary hepatitis C infection. Cell Mol Life Sci: CMLS 66: 733‐756, 2009.
 315. Pradel G, Frevert U. Malaria sporozoites actively enter and pass through rat Kupffer cells prior to hepatocyte invasion. Hepatology 33: 1154‐1165, 2001.
 316. Prickett TC, McKenzie JL, Hart DN. Characterization of interstitial dendritic cells in human liver. Transplantation 46: 754‐761, 1988.
 317. Probst HC, Lagnel J, Kollias G, van den Broek M. Inducible transgenic mice reveal resting dendritic cells as potent inducers of CD8+ T cell tolerance. Immunity 18: 713‐720, 2003.
 318. Probst HC, McCoy K, Okazaki T, Honjo T, van den Broek M. Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD‐1 and CTLA‐4. Nat Immunol 6: 280‐286, 2005.
 319. Protzer U, Maini MK, Knolle PA. Living in the liver: Hepatic infections. Nat Rev Immunol 12: 201‐213, 2012.
 320. Pusztaszeri MP, Seelentag W, Bosman FT. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli‐1 in normal human tissues. J Histochem Cytochem 54: 385‐395, 2006.
 321. Qian S, Demetris AJ, Murase N, Rao AS, Fung JJ, Starzl TE. Murine liver allograft transplantation: Tolerance and donor cell chimerism. Hepatology 19: 916‐924, 1994.
 322. Qian S, Wang Z, Lee Y, Chiang Y, Bonham C, Fung J, Lu L. Hepatocyte‐induced apoptosis of activated T cells, a mechanism of liver transplant tolerance, is related to the expression of ICAM‐1 and hepatic lectin. Transplant Proc 33: 226, 2001.
 323. Radziewicz H, Ibegbu CC, Hon H, Osborn MK, Obideen K, Wehbi M, Freeman GJ, Lennox JL, Workowski KA, Hanson HL, Grakoui A. Impaired hepatitis C virus (HCV)‐specific effector CD8+ T cells undergo massive apoptosis in the peripheral blood during acute HCV infection and in the liver during the chronic phase of infection. J Virol 82: 9808‐9822, 2008.
 324. Rappaport AM, Borowy ZJ, Lougheed WM, Lotto WN. Subdivision of hexagonal liver lobules into a structural and functional unit; role in hepatic physiology and pathology. Anat Rec 119: 11‐33, 1954.
 325. Ray A, Basu S, Williams CB, Salzman NH, Dittel BN. A Novel IL‐10‐Independent Regulatory Role for B Cells in Suppressing Autoimmunity by Maintenance of Regulatory T Cells via GITR Ligand. J Immunol 188: 3188‐3198, 2012.
 326. Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 5: 215‐229, 2005.
 327. Reynoso‐Paz S, Leung PS, Van De Water J, Tanaka A, Munoz S, Bass N, Lindor K, Donald PJ, Coppel RL, Ansari AA, Gershwin ME. Evidence for a locally driven mucosal response and the presence of mitochondrial antigens in saliva in primary biliary cirrhosis. Hepatology 31: 24‐29, 2000.
 328. Rocha B, Vassalli P, Guy‐Grand D. Thymic and extrathymic origins of gut intraepithelial lymphocyte populations in mice. J Exp Med 180: 681‐686, 1994.
 329. Rong G, Zhong R, Lleo A, Leung PS, Bowlus CL, Yang GX, Yang CY, Coppel RL, Ansari AA, Cuebas DA, Worman HJ, Invernizzi P, Gores GJ, Norman G, He XS, Gershwin ME. Epithelial cell specificity and apotope recognition by serum autoantibodies in primary biliary cirrhosis. Hepatology 54: 196‐203, 2011.
 330. Round JL, O'Connell RM, Mazmanian SK. Coordination of tolerogenic immune responses by the commensal microbiota. J Autoimmun 34: J220‐J225, 2010.
 331. Santiuste I, Buelta L, Iglesias M, Genre F, Mazorra F, Izui S, Merino J, Merino R. B‐cell overexpression of Bcl‐2 cooperates with p21 deficiency for the induction of autoimmunity and lymphomas. J Autoimmun 35: 316‐324, 2010.
 332. Sato K, Yabuki K, Haba T, Maekawa T. Role of Kupffer cells in the induction of tolerance after liver transplantation. J Surg Res 63: 433‐438, 1996.
 333. Scarselli E, Ansuini H, Cerino R, Roccasecca RM, Acali S, Filocamo G, Traboni C, Nicosia A, Cortese R, Vitelli A. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J 21: 5017‐5025, 2002.
 334. Schildberg FA, Hegenbarth SI, Schumak B, Scholz K, Limmer A, Knolle PA. Liver sinusoidal endothelial cells veto CD8 T cell activation by antigen‐presenting dendritic cells. Eur J Immunol 38: 957‐967, 2008.
 335. Schmidt NW, Podyminogin RL, Butler NS, Badovinac VP, Tucker BJ, Bahjat KS, Lauer P, Reyes‐Sandoval A, Hutchings CL, Moore AC, Gilbert SC, Hill AV, Bartholomay LC, Harty JT. Memory CD8 T cell responses exceeding a large but definable threshold provide long‐term immunity to malaria. Proc Natl Acad Sci U S A 105: 14017‐14022, 2008.
 336. Scholz M, Cinatl J, Blaheta RA, Kornhuber B, Markus BH, Doerr HW. Expression of human leukocyte antigens class I and class II on cultured biliary epithelial cells after cytomegalovirus infection. Tissue Antigens 49: 640‐643, 1997.
 337. Schonrich G, Momburg F, Malissen M, Schmitt‐Verhulst AM, Malissen B, Hammerling GJ, Arnold B. Distinct mechanisms of extrathymic T cell tolerance due to differential expression of self antigen. Int Immunol 4: 581‐590, 1992.
 338. Schroder AJ, Blaheta RA, Scholz M, Kronenberger B, Encke A, Markus BH. Effects of proinflammatory cytokines on cultivated primary human hepatocytes. Fluorometric measurement of intercellular adhesion molecule‐1 and human leukocyte antigen‐A, ‐B, ‐C, and ‐DR expression. Transplantation 59: 1023‐1028, 1995.
 339. Schwabe RF, Schnabl B, Kweon YO, Brenner DA. CD40 activates NF‐kappa B and c‐Jun N‐terminal kinase and enhances chemokine secretion on activated human hepatic stellate cells. J Immunol 166: 6812‐6819, 2001.
 340. Scoazec JY, Feldmann G. In situ immunophenotyping study of endothelial cells of the human hepatic sinusoid: Results and functional implications. Hepatology 14: 789‐797, 1991.
 341. Scoazec JY, Feldmann G. The cell adhesion molecules of hepatic sinusoidal endothelial cells. J Hepatol 20: 296‐300, 1994.
 342. Seeff LB. Natural history of chronic hepatitis C. Hepatology 36: S35‐S46, 2002.
 343. Selmi C, Balkwill DL, Invernizzi P, Ansari AA, Coppel RL, Podda M, Leung PS, Kenny TP, Van De Water J, Nantz MH, Kurth MJ, Gershwin ME. Patients with primary biliary cirrhosis react against a ubiquitous xenobiotic‐metabolizing bacterium. Hepatology 38: 1250‐1257, 2003.
 344. Selmi C, Lleo A, Pasini S, Zuin M, Gershwin ME. Innate immunity and primary biliary cirrhosis. Curr Mol Med 9: 45‐51, 2009.
 345. Selmi C, Mackay IR, Gershwin ME. The immunological milieu of the liver. Semin Liver Dis 27: 129‐139, 2007.
 346. Selmi C, Meroni PL, Gershwin ME. Primary biliary cirrhosis and Sjogren's syndrome: Autoimmune epithelitis. J Autoimmun 39: 34‐42, 2012.
 347. Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+ T cells: A common basis between tumor immunity and autoimmunity. J Immunol 163: 5211‐5218, 1999.
 348. Shimoda S, Harada K, Niiro H, Shirabe K, Taketomi A, Maehara Y, Tsuneyama K, Nakanuma Y, Leung P, Ansari AA, Gershwin ME, Akashi K. Interaction between Toll‐like receptors and natural killer cells in the destruction of bile ducts in primary biliary cirrhosis. Hepatology 53: 1270‐1281, 2011.
 349. Shimoda S, Nakamura M, Ishibashi H, Hayashida K, Niho Y. HLA DRB4 0101‐restricted immunodominant T cell autoepitope of pyruvate dehydrogenase complex in primary biliary cirrhosis: Evidence of molecular mimicry in human autoimmune diseases. J Exp Med 181: 1835‐1845, 1995.
 350. Shimoda S, Nakamura M, Shigematsu H, Tanimoto H, Gushima T, Gershwin ME, Ishibashi H. Mimicry peptides of human PDC‐E2 163‐176 peptide, the immunodominant T‐cell epitope of primary biliary cirrhosis. Hepatology 31: 1212‐1216, 2000.
 351. Shimoda S, Van de Water J, Ansari A, Nakamura M, Ishibashi H, Coppel RL, Lake J, Keeffe EB, Roche TE, Gershwin ME. Identification and precursor frequency analysis of a common T cell epitope motif in mitochondrial autoantigens in primary biliary cirrhosis. J Clin Invest 102: 1831‐1840, 1998.
 352. Shin SC, Vanderberg JP, Terzakis JA. Direct infection of hepatocytes by sporozoites of Plasmodium berghei. J Protozool 29: 448‐454, 1982.
 353. Shoukry NH, Grakoui A, Houghton M, Chien DY, Ghrayeb J, Reimann KA, Walker CM. Memory CD8+ T cells are required for protection from persistent hepatitis C virus infection. J Exp Med 197: 1645‐1655, 2003.
 354. Silvie O, Rubinstein E, Franetich JF, Prenant M, Belnoue E, Renia L, Hannoun L, Eling W, Levy S, Boucheix C, Mazier D. Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nat Med 9: 93‐96, 2003.
 355. Sinnis P, Willnow TE, Briones MR, Herz J, Nussenzweig V. Remnant lipoproteins inhibit malaria sporozoite invasion of hepatocytes. J Exp Med 184: 945‐954, 1996.
 356. Smedsrod B, Pertoft H, Gustafson S, Laurent TC. Scavenger functions of the liver endothelial cell. Biochem J 266: 313‐327, 1990.
 357. Smith KR, Suppiah V, O'Connor K, Berg T, Weltman M, Abate ML, Spengler U, Bassendine M, Matthews G, Irving WL, Powell E, Riordan S, Ahlenstiel G, Stewart GJ, Bahlo M, George J, Booth DR. Identification of improved IL28B SNPs and haplotypes for prediction of drug response in treatment of hepatitis C using massively parallel sequencing in a cross‐sectional European cohort. Genome Med 3: 57, 2011.
 358. Starzl TE, Marchioro TL, Vonkaulla KN, Hermann G, Brittain RS, Waddell WR. Homotransplantation of the liver in humans. Surg Gynecol Obstet 117: 659‐676, 1963.
 359. Staubli W, Hess R, Weibel ER. Correlated morphometric and biochemical studies on the liver cell. II. Effects of phenobarbital on rat hepatocytes. J Cell Biol 42: 92‐112, 1969.
 360. Steptoe RJ, Patel RK, Subbotin VM, Thomson AW. Comparative analysis of dendritic cell density and total number in commonly transplanted organs: Morphometric estimation in normal mice. Transpl Immunol 8: 49‐56, 2000.
 361. Stockert RJ, Kressner MS, Collins JC, Sternlieb I, Morell AG. IgA interaction with the asialoglycoprotein receptor. Proc Natl Acad Sci U S A 79: 6229‐6231, 1982.
 362. Su AI, Pezacki JP, Wodicka L, Brideau AD, Supekova L, Thimme R, Wieland S, Bukh J, Purcell RH, Schultz PG, Chisari FV. Genomic analysis of the host response to hepatitis C virus infection. Proc Natl Acad Sci U S A 99: 15669‐15674, 2002.
 363. Sumitran‐Holgersson S, Ge X, Karrar A, Xu B, Nava S, Broome U, Nowak G, Ericzon BG. A novel mechanism of liver allograft rejection facilitated by antibodies to liver sinusoidal endothelial cells. Hepatology 40: 1211‐1221, 2004.
 364. Suppiah V, Gaudieri S, Armstrong NJ, O'Connor KS, Berg T, Weltman M, Abate ML, Spengler U, Bassendine M, Dore GJ, Irving WL, Powell E, Hellard M, Riordan S, Matthews G, Sheridan D, Nattermann J, Smedile A, Muller T, Hammond E, Dunn D, Negro F, Bochud PY, Mallal S, Ahlenstiel G, Stewart GJ, George J, Booth DR. IL28B, HLA‐C, and KIR variants additively predict response to therapy in chronic hepatitis C virus infection in a European Cohort: A cross‐sectional study. PLoS Med 8: e1001092, 2011.
 365. Suppiah V, Moldovan M, Ahlenstiel G, Berg T, Weltman M, Abate ML, Bassendine M, Spengler U, Dore GJ, Powell E, Riordan S, Sheridan D, Smedile A, Fragomeli V, Muller T, Bahlo M, Stewart GJ, Booth DR, George J. IL28B is associated with response to chronic hepatitis C interferon‐alpha and ribavirin therapy. Nat Genet 41: 1100‐1104, 2009.
 366. Surh CD, Coppel R, Gershwin ME. Structural requirement for autoreactivity on human pyruvate dehydrogenase‐E2, the major autoantigen of primary biliary cirrhosis. Implication for a conformational autoepitope. J Immunol 144: 3367‐3374, 1990.
 367. Surh CD, Danner DJ, Ahmed A, Coppel RL, Mackay IR, Dickson ER, Gershwin ME. Reactivity of primary biliary cirrhosis sera with a human fetal liver cDNA clone of branched‐chain alpha‐keto acid dehydrogenase dihydrolipoamide acyltransferase, the 52 kD mitochondrial autoantigen. Hepatology 9: 63‐68, 1989.
 368. Surh CD, Roche TE, Danner DJ, Ansari A, Coppel RL, Prindiville T, Dickson ER, Gershwin ME. Antimitochondrial autoantibodies in primary biliary cirrhosis recognize cross‐reactive epitope(s) on protein X and dihydrolipoamide acetyltransferase of pyruvate dehydrogenase complex. Hepatology 10: 127‐133, 1989.
 369. Tanaka A, Nalbandian G, Leung PS, Benson GD, Munoz S, Findor JA, Branch AD, Coppel RL, Ansari AA, Gershwin ME. Mucosal immunity and primary biliary cirrhosis: Presence of antimitochondrial antibodies in urine. Hepatology 32: 910‐915, 2000.
 370. Tanaka Y, Nishida N, Sugiyama M, Kurosaki M, Matsuura K, Sakamoto N, Nakagawa M, Korenaga M, Hino K, Hige S, Ito Y, Mita E, Tanaka E, Mochida S, Murawaki Y, Honda M, Sakai A, Hiasa Y, Nishiguchi S, Koike A, Sakaida I, Imamura M, Ito K, Yano K, Masaki N, Sugauchi F, Izumi N, Tokunaga K, Mizokami M. Genome‐wide association of IL28B with response to pegylated interferon‐alpha and ribavirin therapy for chronic hepatitis C. Nat Genet 41: 1105‐1109, 2009.
 371. Taylor JL, Hattle JM, Dreitz SA, Troudt JM, Izzo LS, Basaraba RJ, Orme IM, Matrisian LM, Izzo AA. Role for matrix metalloproteinase 9 in granuloma formation during pulmonary Mycobacterium tuberculosis infection. Infect Immun 74: 6135‐6144, 2006.
 372. Terjung B, Sohne J, Lechtenberg B, Gottwein J, Muennich M, Herzog V, Mahler M, Sauerbruch T, Spengler U. p‐ANCAs in autoimmune liver disorders recognise human beta‐tubulin isotype 5 and cross‐react with microbial protein FtsZ. Gut 59: 808‐816, 2010.
 373. Terjung B, Spengler U. Atypical p‐ANCA in PSC and AIH: A hint toward a “leaky gut”? Clin Rev Allergy Immunol 36: 40‐51, 2009.
 374. Thimme R, Bukh J, Spangenberg HC, Wieland S, Pemberton J, Steiger C, Govindarajan S, Purcell RH, Chisari FV. Viral and immunological determinants of hepatitis C virus clearance, persistence, and disease. Proc Natl Acad Sci U S A 99: 15661‐15668, 2002.
 375. Thimme R, Neagu M, Boettler T, Neumann‐Haefelin C, Kersting N, Geissler M, Makowiec F, Obermaier R, Hopt UT, Blum HE, Spangenberg HC. Comprehensive analysis of the alpha‐fetoprotein‐specific CD8+ T cell responses in patients with hepatocellular carcinoma. Hepatology 48: 1821‐1833, 2008.
 376. Thimme R, Oldach D, Chang KM, Steiger C, Ray SC, Chisari FV. Determinants of viral clearance and persistence during acute hepatitis C virus infection. J Exp Med 194: 1395‐1406, 2001.
 377. Thimme R, Wieland S, Steiger C, Ghrayeb J, Reimann KA, Purcell RH, Chisari FV. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virol 77: 68‐76, 2003.
 378. Thomson AW, Knolle PA. Antigen‐presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 10: 753‐766, 2010.
 379. Thomson CW, Lee BP, Zhang L. Double‐negative regulatory T cells: Non‐conventional regulators. Immunol Res 35: 163‐178, 2006.
 380. Thomson CW, Teft WA, Chen W, Lee BP, Madrenas J, Zhang L. FcR gamma presence in TCR complex of double‐negative T cells is critical for their regulatory function. J Immunol 177: 2250‐2257, 2006.
 381. Tomana M, Kulhavy R, Mestecky J. Receptor‐mediated binding and uptake of immunoglobulin A by human liver. Gastroenterology 94: 762‐770, 1988.
 382. Tseng CT, Klimpel GR. Binding of the hepatitis C virus envelope protein E2 to CD81 inhibits natural killer cell functions. J Exp Med 195: 43‐49, 2002.
 383. Tsuneyama K, Harada K, Yasoshima M, Kaji K, Gershwin ME, Nakanuma Y. Expression of co‐stimulatory factor B7‐2 on the intrahepatic bile ducts in primary biliary cirrhosis and primary sclerosing cholangitis: An immunohistochemical study. J Pathol 186: 126‐130, 1998.
 384. Urbani S, Amadei B, Tola D, Massari M, Schivazappa S, Missale G, Ferrari C. PD‐1 expression in acute hepatitis C virus (HCV) infection is associated with HCV‐specific CD8 exhaustion. J Virol 80: 11398‐11403, 2006.
 385. Urbani S, Amadei B, Tola D, Pedrazzi G, Sacchelli L, Cavallo MC, Orlandini A, Missale G, Ferrari C. Restoration of HCV‐specific T cell functions by PD‐1/PD‐L1 blockade in HCV infection: Effect of viremia levels and antiviral treatment. J Hepatol 48: 548‐558, 2008.
 386. Uwatoku R, Suematsu M, Ezaki T, Saiki T, Tsuiji M, Irimura T, Kawada N, Suganuma T, Naito M, Ando M, Matsuno K. Kupffer cell‐mediated recruitment of rat dendritic cells to the liver: Roles of N‐acetylgalactosamine‐specific sugar receptors. Gastroenterology 121: 1460‐1472, 2001.
 387. Van de Water J, Ansari A, Prindiville T, Coppel RL, Ricalton N, Kotzin BL, Liu S, Roche TE, Krams SM, Munoz S, Gershwin ME. Heterogeneity of autoreactive T cell clones specific for the E2 component of the pyruvate dehydrogenase complex in primary biliary cirrhosis. J Exp Med 181: 723‐733, 1995.
 388. Van de Water J, Ansari AA, Surh CD, Coppel R, Roche T, Bonkovsky H, Kaplan M, Gershwin ME. Evidence for the targeting by 2‐oxo‐dehydrogenase enzymes in the T cell response of primary biliary cirrhosis. J Immunol 146: 89‐94, 1991.
 389. Van de Water J, Fregeau D, Davis P, Ansari A, Danner D, Leung P, Coppel R, Gershwin ME. Autoantibodies of primary biliary cirrhosis recognize dihydrolipoamide acetyltransferase and inhibit enzyme function. J Immunol 141: 2321‐2324, 1988.
 390. Van de Water J, Gershwin ME, Leung P, Ansari A, Coppel RL. The autoepitope of the 74‐kD mitochondrial autoantigen of primary biliary cirrhosis corresponds to the functional site of dihydrolipoamide acetyltransferase. J Exp Med 167: 1791‐1799, 1988.
 391. van der Kwast TH, Stel HV, Cristen E, Bertina RM, Veerman EC. Localization of factor VIII‐procoagulant antigen: An immunohistological survey of the human body using monoclonal antibodies. Blood 67: 222‐227, 1986.
 392. van Egmond M, van Garderen E, van Spriel AB, Damen CA, van Amersfoort ES, van Zandbergen G, van Hattum J, Kuiper J, van de Winkel JG. FcalphaRI‐positive liver Kupffer cells: Reappraisal of the function of immunoglobulin A in immunity. Nat Med 6: 680‐685, 2000.
 393. Vento S, Cainelli F. Is there a role for viruses in triggering autoimmune hepatitis? Autoimmun Rev 3: 61‐69, 2004.
 394. Vento S, Hegarty JE, Bottazzo G, Macchia E, Williams R, Eddleston AL. Antigen specific suppressor cell function in autoimmune chronic active hepatitis. Lancet 1: 1200‐1204, 1984.
 395. Vergani D, Choudhuri K, Bogdanos DP, Mieli‐Vergani G. Pathogenesis of autoimmune hepatitis. Clin Liver Dis 6: 727‐737, 2002.
 396. Vergani D, Longhi MS, Bogdanos DP, Ma Y, Mieli‐Vergani G. Autoimmune hepatitis. Semin Immunopathol 31: 421‐435, 2009.
 397. Vergani D, Mieli‐Vergani G, Mondelli M, Portmann B, Eddleston AL. Immunoglobulin on the surface of isolated hepatocytes is associated with antibody‐dependent cell‐mediated cytotoxicity and liver damage. Liver 7: 307‐315, 1987.
 398. Verkoczy L, Chen Y, Bouton‐Verville H, Zhang J, Diaz M, Hutchinson J, Ouyang YB, Alam SM, Holl TM, Hwang KK, Kelsoe G, Haynes BF. Rescue of HIV‐1 broad neutralizing antibody‐expressing B cells in 2F5 VH x VL knockin mice reveals multiple tolerance controls. J Immunol 187: 3785‐3797, 2011.
 399. Vinas O, Bataller R, Sancho‐Bru P, Gines P, Berenguer C, Enrich C, Nicolas JM, Ercilla G, Gallart T, Vives J, Arroyo V, Rodes J. Human hepatic stellate cells show features of antigen‐presenting cells and stimulate lymphocyte proliferation. Hepatology 38: 919‐929, 2003.
 400. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S. Innate or adaptive immunity? The example of natural killer cells. Science 331: 44‐49, 2011.
 401. von Boehmer H, Kirberg J, Rocha B. An unusual lineage of alpha/beta T cells that contains autoreactive cells. J Exp Med 174: 1001‐1008, 1991.
 402. von Hahn T, Yoon JC, Alter H, Rice CM, Rehermann B, Balfe P, McKeating JA. Hepatitis C virus continuously escapes from neutralizing antibody and T‐cell responses during chronic infection in vivo. Gastroenterology 132: 667‐678, 2007.
 403. Wack A, Soldaini E, Tseng C, Nuti S, Klimpel G, Abrignani S. Binding of the hepatitis C virus envelope protein E2 to CD81 provides a co‐stimulatory signal for human T cells. Eur J Immunol 31: 166‐175, 2001.
 404. Wada Y, Nakashima O, Kutami R, Yamamoto O, Kojiro M. Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology 27: 407‐414, 1998.
 405. Wainwright H. Hepatic granulomas. Eur J Gastroenterol Hepatol 19: 93‐95, 2007.
 406. Wakabayashi K, Lian ZX, Leung PS, Moritoki Y, Tsuneyama K, Kurth MJ, Lam KS, Yoshida K, Yang GX, Hibi T, Ansari AA, Ridgway WM, Coppel RL, Mackay IR, Gershwin ME. Loss of tolerance in C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehydrogenase by a xenobiotic with ensuing biliary ductular disease. Hepatology 48: 531‐540, 2008.
 407. Wakabayashi K, Lian ZX, Moritoki Y, Lan RY, Tsuneyama K, Chuang YH, Yang GX, Ridgway W, Ueno Y, Ansari AA, Coppel RL, Mackay IR, Gershwin ME. IL‐2 receptor alpha(‐/‐) mice and the development of primary biliary cirrhosis. Hepatology 44: 1240‐1249, 2006.
 408. Wakabayashi K, Yoshida K, Leung PS, Moritoki Y, Yang GX, Tsuneyama K, Lian ZX, Hibi T, Ansari AA, Wicker LS, Ridgway WM, Coppel RL, Mackay IR, Gershwin ME. Induction of autoimmune cholangitis in non‐obese diabetic (NOD).1101 mice following a chemical xenobiotic immunization. Clin Exp Immunol 155: 577‐586, 2009.
 409. Wang YH, Yan Y, Rice JS, Volpe BT, Diamond B. Enforced expression of the apoptosis inhibitor Bcl‐2 ablates tolerance induction in DNA‐reactive B cells through a novel mechanism. J Autoimmun 37: 18‐27, 2011.
 410. Warren A, Le Couteur DG, Fraser R, Bowen DG, McCaughan GW, Bertolino P. T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology 44: 1182‐1190, 2006.
 411. Wei HX, Chuang YH, Li B, Wei H, Sun R, Moritoki Y, Gershwin ME, Lian ZX, Tian Z. CD4+ CD25+ Foxp3 +regulatory T cells protect against T cell‐mediated fulminant hepatitis in a TGF‐beta‐dependent manner in mice. J Immunol 181: 7221‐7229, 2008.
 412. Weibel ER, Staubli W, Gnagi HR, Hess FA. Correlated morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods, and normal morphometric data for rat liver. J Cell Biol 42: 68‐91, 1969.
 413. Wen L, Ma Y, Bogdanos DP, Wong FS, Demaine A, Mieli‐Vergani G, Vergani D. Pediatric autoimmune liver diseases: The molecular basis of humoral and cellular immunity. Curr Mol Med 1: 379‐389, 2001.
 414. Wen L, Peakman M, Lobo‐Yeo A, McFarlane BM, Mowat AP, Mieli‐Vergani G, Vergani D. T‐cell‐directed hepatocyte damage in autoimmune chronic active hepatitis. Lancet 336: 1527‐1530, 1990.
 415. Wen L, Peakman M, Mieli‐Vergani G, Vergani D. Elevation of activated gamma delta T cell receptor bearing T lymphocytes in patients with autoimmune chronic liver disease. Clin Exp Immunol 89: 78‐82, 1992.
 416. Weston CJ, Adams DH. Hepatic consequences of vascular adhesion protein‐1 expression. J Neural Transm 118: 1055‐1064, 2011.
 417. Wieland S, Thimme R, Purcell RH, Chisari FV. Genomic analysis of the host response to hepatitis B virus infection. Proc Natl Acad Sci U S A 101: 6669‐6674, 2004.
 418. Wies I, Brunner S, Henninger J, Herkel J, Kanzler S, Meyer zum Buschenfelde KH, Lohse AW. Identification of target antigen for SLA/LP autoantibodies in autoimmune hepatitis. Lancet 355: 1510‐1515, 2000.
 419. Winau F, Hegasy G, Weiskirchen R, Weber S, Cassan C, Sieling PA, Modlin RL, Liblau RS, Gressner AM, Kaufmann SH. Ito cells are liver‐resident antigen‐presenting cells for activating T cell responses. Immunity 26: 117‐129, 2007.
 420. Wisse E. An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res 31: 125‐150, 1970.
 421. Wong J, Johnston B, Lee SS, Bullard DC, Smith CW, Beaudet AL, Kubes P. A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature. J Clin Invest 99: 2782‐2790, 1997.
 422. Woo J, Lu L, Rao AS, Li Y, Subbotin V, Starzl TE, Thomson AW. Isolation, phenotype, and allostimulatory activity of mouse liver dendritic cells. Transplantation 58: 484‐491, 1994.
 423. Wu J, Lu M, Meng Z, Trippler M, Broering R, Szczeponek A, Krux F, Dittmer U, Roggendorf M, Gerken G, Schlaak JF. Toll‐like receptor‐mediated control of HBV replication by nonparenchymal liver cells in mice. Hepatology 46: 1769‐1778, 2007.
 424. Wu J, Meng Z, Jiang M, Pei R, Trippler M, Broering R, Bucchi A, Sowa JP, Dittmer U, Yang D, Roggendorf M, Gerken G, Lu M, Schlaak JF. Hepatitis B virus suppresses toll‐like receptor‐mediated innate immune responses in murine parenchymal and nonparenchymal liver cells. Hepatology 49: 1132‐1140, 2009.
 425. Xiao X, Gong W, Demirci G, Liu W, Spoerl S, Chu X, Bishop DK, Turka LA, Li XC. New insights on OX40 in the control of T cell immunity and immune tolerance in vivo. J Immunol 188: 892‐901, 2012.
 426. Yalaoui S, Zougbede S, Charrin S, Silvie O, Arduise C, Farhati K, Boucheix C, Mazier D, Rubinstein E, Froissard P. Hepatocyte permissiveness to Plasmodium infection is conveyed by a short and structurally conserved region of the CD81 large extracellular domain. PLoS Pathog 4: e1000010, 2008.
 427. Yang GX, Lian ZX, Chuang YH, Moritoki Y, Lan RY, Wakabayashi K, Ansari AA, Flavell RA, Ridgway WM, Coppel RL, Tsuneyama K, Mackay IR, Gershwin ME. Adoptive transfer of CD8(+) T cells from transforming growth factor beta receptor type II (dominant negative form) induces autoimmune cholangitis in mice. Hepatology 47: 1974‐1982, 2008.
 428. Yeaman SJ, Fussey SP, Danner DJ, James OF, Mutimer DJ, Bassendine MF. Primary biliary cirrhosis: Identification of two major M2 mitochondrial autoantigens. Lancet 1: 1067‐1070., 1988.
 429. You Q, Cheng L, Kedl RM, Ju C. Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology 48: 978‐990, 2008.
 430. Youinou P, Pers JO, Gershwin ME, Shoenfeld Y. Geo‐epidemiology and autoimmunity. J Autoimmun 34: J163‐J167, 2010.
 431. Yu MC, Chen CH, Liang X, Wang L, Gandhi CR, Fung JJ, Lu L, Qian S. Inhibition of T‐cell responses by hepatic stellate cells via B7‐H1‐mediated T‐cell apoptosis in mice. Hepatology 40: 1312‐1321, 2004.
 432. Zhang AH, Li X, Onabajo OO, Su Y, Skupsky J, Thomas JW, Scott DW. B‐cell delivered gene therapy for tolerance induction: Role of autoantigen‐specific B cells. J Autoimmun 35: 107‐113, 2010.
 433. Zhang W, Ono Y, Miyamura Y, Bowlus CL, Gershwin ME, Maverakis E. T cell clonal expansions detected in patients with primary biliary cirrhosis express CX3CR1. J Autoimmun 37: 71‐78, 2011.
 434. Zhang W, Tsuda M, Yang GX, Tsuneyama K, Rong G, Ridgway WM, Ansari AA, Flavell RA, Coppel RL, Lian ZX, Gershwin ME. Deletion of interleukin‐6 in mice with the dominant negative form of transforming growth factor beta receptor II improves colitis but exacerbates autoimmune cholangitis. Hepatology 52: 215‐222, 2010.
 435. Zhang Z, Zhang JY, Wherry EJ, Jin B, Xu B, Zou ZS, Zhang SY, Li BS, Wang HF, Wu H, Lau GK, Fu YX, Wang FS. Dynamic programmed death 1 expression by virus‐specific CD8 T cells correlates with the outcome of acute hepatitis B. Gastroenterology 134: 1938‐1949, 1949. e1‐3, 2008.
 436. Zhao N, Hao J, Ni Y, Luo W, Liang R, Cao G, Zhao Y, Wang P, Zhao L, Tian Z, Flavell R, Hong Z, Han J, Yao Z, Wu Z, Yin Z. Vgamma4 gammadelta T cell‐derived IL‐17A negatively regulates NKT cell function in Con A‐induced fulminant hepatitis. J Immunol 187: 5007‐5014, 2011.
 437. Zhao Q, Kuang DM, Wu Y, Xiao X, Li XF, Li TJ, Zheng L. Activated CD69+ T cells foster immune privilege by regulating IDO expression in tumor‐associated macrophages. J Immunol 188: 1117‐1124, 2012.
 438. Zimmermann FA, White DJ, Gokel JM, Calne RY. [Orthotopic liver transplantation in rats. Prolonging of survival time of allotransplants using cyclosporin A in an acute rejection model]. Chir Forum Exp Klin Forsch 339‐344, 1979.
 439. Zumla A, James DG. Granulomatous infections: Etiology and classification. Clin Infect Dis 23: 146‐158, 1996.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Dimitrios P. Bogdanos, Bin Gao, M. Eric Gershwin. Liver Immunology. Compr Physiol 2013, 3: 567-598. doi: 10.1002/cphy.c120011