Comprehensive Physiology Wiley Online Library

Zebrafish Models of Human Liver Development and Disease

Full Article on Wiley Online Library


The liver performs a large number of essential synthetic and regulatory functions that are acquired during fetal development and persist throughout life. Their disruption underlies a diverse group of heritable and acquired diseases that affect both pediatric and adult patients. Although experimental analyses used to study liver development and disease are typically performed in cell culture models or rodents, the zebrafish is increasingly used to complement discoveries made in these systems. Forward and reverse genetic analyses over the past two decades have shown that the molecular program for liver development is largely conserved between zebrafish and mammals, and that the zebrafish can be used to model heritable human liver disorders. Recent work has demonstrated that zebrafish can also be used to study the mechanistic basis of acquired liver diseases. Here, we provide a comprehensive summary of how the zebrafish has contributed to our understanding of human liver development and disease. © 2013 American Physiological Society. Compr Physiol 3:1213‐1230, 2013.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images

Figure 1. Figure 1.

Brightfield images (A, C, and E) and corresponding whole‐mount fluorescent images (B, D, and F) of live Tg(L‐FABP‐dsRed) embryos and larvae, demonstrating liver growth between 2 dpf and 5 dpf.

Figure 2. Figure 2.

Overview of zebrafish biliary development and function. (A) Brightfield high‐magnification image of a live 5 dpf Tg(bglob‐EGFP) larva, raised in 1‐phenyl‐2‐thiourea (PTU) to inhibit melanophore development. Liver (red dashed line) is anterior to intestinal bulb and swim bladder. (B) The same larva imaged by whole‐mount fluorescence microscopy. Developing biliary cells in the liver express the Notch‐responsive reporter gene encoding EGFP. (C) Confocal projection of fixed wild‐type liver, stained with monoclonal antibody 2F11 to visualize biliary tree, including gallbladder (arrowhead) and extrahepatic bile duct (arrow). (D‐F) High‐magnification confocal projection through the liver of a 5 dpf wild‐type larvae immunstained with the 2F11 antibody showing the relationship between bile ducts (labeled by 2F11) and canaliculi (labeled by anti‐Mdr antibody). (G) Brightfield image of live 5 dpf wild‐type larva in right lateral view, showing right liver lobe, gallbladder, and pancreas. (H) Whole‐mount fluorescent image of the same larva, two hours following application of BODIPY‐FL C16 to the aqueous media. Fluorescent lipid is secreted into bile and accumulated in the gallbladder.

Figure 1.

Brightfield images (A, C, and E) and corresponding whole‐mount fluorescent images (B, D, and F) of live Tg(L‐FABP‐dsRed) embryos and larvae, demonstrating liver growth between 2 dpf and 5 dpf.

Figure 2.

Overview of zebrafish biliary development and function. (A) Brightfield high‐magnification image of a live 5 dpf Tg(bglob‐EGFP) larva, raised in 1‐phenyl‐2‐thiourea (PTU) to inhibit melanophore development. Liver (red dashed line) is anterior to intestinal bulb and swim bladder. (B) The same larva imaged by whole‐mount fluorescence microscopy. Developing biliary cells in the liver express the Notch‐responsive reporter gene encoding EGFP. (C) Confocal projection of fixed wild‐type liver, stained with monoclonal antibody 2F11 to visualize biliary tree, including gallbladder (arrowhead) and extrahepatic bile duct (arrow). (D‐F) High‐magnification confocal projection through the liver of a 5 dpf wild‐type larvae immunstained with the 2F11 antibody showing the relationship between bile ducts (labeled by 2F11) and canaliculi (labeled by anti‐Mdr antibody). (G) Brightfield image of live 5 dpf wild‐type larva in right lateral view, showing right liver lobe, gallbladder, and pancreas. (H) Whole‐mount fluorescent image of the same larva, two hours following application of BODIPY‐FL C16 to the aqueous media. Fluorescent lipid is secreted into bile and accumulated in the gallbladder.

 1. Alagille D, Estrada A, Hadchouel M, Gautier M, Odievre M, Dommergues JP. Syndromic paucity of interlobular bile ducts (Alagille syndrome or arteriohepatic dysplasia): Review of 80 cases. J Pediatr 110: 195‐200, 1987.
 2. Allende ML, Amsterdam A, Becker T, Kawakami K, Gaiano N, Hopkins N. Insertional mutagenesis in zebrafish identifies two novel genes, pescadillo and dead eye, essential for embryonic development. Genes Dev 10: 3141‐3155, 1996.
 3. Amali AA, Rekha RD, Lin CJ, Wang WL, Gong HY, Her GM, Wu JL. Thioacetamide induced liver damage in zebrafish embryo as a disease model for steatohepatitis. J Biomed Sci 13: 225‐232, 2006.
 4. Amsterdam A, Varshney GK, Burgess SM. Retroviral‐mediated insertional mutagenesis in zebrafish. Methods Cell Biol 104: 59‐82, 2011.
 5. Andersson ER, Sandberg R, Lendahl U. Notch signaling: Simplicity in design, versatility in function. Development 138: 3593‐3612, 2011.
 6. Bezerra JA, Balistreri WF. Cholestatic syndromes of infancy and childhood. Semin Gastrointest Dis 12: 54‐65, 2001.
 7. Bill BR, Petzold AM, Clark KJ, Schimmenti LA, Ekker SC. A primer for morpholino use in zebrafish. Zebrafish 6: 69‐77, 2009.
 8. Cade L, Reyon D, Hwang WY, Tsai SQ, Patel S, Khayter C, Joung JK, Sander JD, Peterson RT, Yeh JR. Highly efficient generation of heritable zebrafish gene mutations using homo‐ and heterodimeric TALENs. Nucleic Acids Res 40: 8001‐8010, 2012.
 9. Carpentier R, Suner RE, van Hul N, Kopp JL, Beaudry JB, Cordi S, Antoniou A, Raynaud P, Lepreux S, Jacquemin P, Leclercq IA, Sander M, Lemaigre FP. Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology 141: 1432‐1438, e1431‐1434, 2011.
 10. Chang C, Hu M, Zhu Z, Lo LJ, Chen J, Peng J. liver‐enriched gene 1a and 1b encode novel secretory proteins essential for normal liver development in zebrafish. PLoS One 6: e22910, 2011.
 11. Chen JN, Haffter P, Odenthal J, Vogelsang E, Brand M, van Eeden FJ, Furutani‐Seiki M, Granato M, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Mullins MC, Nusslein‐Volhard C. Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development 123: 293‐302, 1996.
 12. Cheng W, Guo L, Zhang Z, Soo HM, Wen C, Wu W, Peng J. HNF factors form a network to regulate liver‐enriched genes in zebrafish. Dev Biol 294: 482‐496, 2006.
 13. Cheung ID, Bagnat M, Ma TP, Datta A, Evason K, Moore JC, Lawson ND, Mostov KE, Moens CB, Stainier DY. Regulation of intrahepatic biliary duct morphogenesis by Claudin 15‐like b. Dev Biol 361: 68‐78, 2012.
 14. Childs S, Weinstein BM, Mohideen MA, Donohue S, Bonkovsky H, Fishman MC. Zebrafish dracula encodes ferrochelatase and its mutation provides a model for erythropoietic protoporphyria. Curr Biol 10: 1001‐1004, 2000.
 15. Chu J, Sadler KC. New school in liver development: Lessons from zebrafish. Hepatology 50: 1656‐1663, 2009.
 16. Chung WS, Shin CH, Stainier DY. Bmp2 signaling regulates the hepatic versus pancreatic fate decision. Dev Cell 15: 738‐748, 2008.
 17. Cinaroglu A, Gao C, Imrie D, Sadler KC. Activating transcription factor 6 plays protective and pathological roles in steatosis due to endoplasmic reticulum stress in zebrafish. Hepatology 54: 495‐508, 2011.
 18. Clark KJ, Voytas DF, Ekker SC. A TALE of two nucleases: Gene targeting for the masses? Zebrafish 8: 147‐149, 2011.
 19. Clifton JD, Lucumi E, Myers MC, Napper A, Hama K, Farber SA, Smith AB, 3rd, Huryn DM, Diamond SL, Pack M. Identification of novel inhibitors of dietary lipid absorption using zebrafish. PLoS One 5: e12386, 2010.
 20. Cohen M, Georgiou M, Stevenson NL, Miodownik M, Baum B. Dynamic filopodia transmit intermittent Delta‐Notch signaling to drive pattern refinement during lateral inhibition. Dev Cell 19: 78‐89, 2010.
 21. Collodi P, Kamei Y, Ernst T, Miranda C, Buhler DR, Barnes DW. Culture of cells from zebrafish (Brachydanio rerio) embryo and adult tissues. Cell Biol Toxicol 8: 43‐61, 1992.
 22. Couthouis J, Hart MP, Shorter J, DeJesus‐Hernandez M, Erion R, Oristano R, Liu AX, Ramos D, Jethava N, Hosangadi D, Epstein J, Chiang A, Diaz Z, Nakaya T, Ibrahim F, Kim HJ, Solski JA, Williams KL, Mojsilovic‐Petrovic J, Ingre C, Boylan K, Graff‐Radford NR, Dickson DW, Clay‐Falcone D, Elman L, McCluskey L, Greene R, Kalb RG, Lee VM, Trojanowski JQ, Ludolph A, Robberecht W, Andersen PM, Nicholson GA, Blair IP, King OD, Bonini NM, Van Deerlin V, Rademakers R, Mourelatos Z, Gitler AD. A yeast functional screen predicts new candidate ALS disease genes. Proc Natl Acad Sci U S A 108: 20881‐20890, 2011.
 23. Craig PM, Moon TW. Fasted zebrafish mimic genetic and physiological responses in mammals: a model for obesity and diabetes? Zebrafish 8: 109‐117, 2011.
 24. Cui S, Capecci LM, Matthews RP. Disruption of planar cell polarity activity leads to developmental biliary defects. Dev Biol 351: 229‐241, 2011.
 25. Cui S, Erlichman J, Russo P, Haber BA, Matthews RP. Intrahepatic biliary anomalies in a patient with Mowat‐Wilson syndrome uncover a role for the zinc finger homeobox gene zfhx1b in vertebrate biliary development. J Pediatr Gastroenterol Nutr 52: 339‐344, 2011.
 26. Cullinane AR, Straatman‐Iwanowska A, Zaucker A, Wakabayashi Y, Bruce CK, Luo G, Rahman F, Gurakan F, Utine E, Ozkan TB, Denecke J, Vukovic J, Di Rocco M, Mandel H, Cangul H, Matthews RP, Thomas SG, Rappoport JZ, Arias IM, Wolburg H, Knisely AS, Kelly DA, Muller F, Maher ER, Gissen P. Mutations in VIPAR cause an arthrogryposis, renal dysfunction and cholestasis syndrome phenotype with defects in epithelial polarization. Nat Genet 42: 303‐312, 2010.
 27. Curado S, Anderson RM, Jungblut B, Mumm J, Schroeter E, Stainier DY. Conditional targeted cell ablation in zebrafish: A new tool for regeneration studies. Dev Dyn 236: 1025‐1035, 2007.
 28. Curado S, Ober EA, Walsh S, Cortes‐Hernandez P, Verkade H, Koehler CM, Stainier DY. The mitochondrial import gene tomm22 is specifically required for hepatocyte survival and provides a liver regeneration model. Dis Model Mech 3: 486‐495, 2010.
 29. Curado S, Stainier DY. deLiver'in regeneration: Injury response and development. Semin Liver Dis 30: 288‐295, 2010.
 30. Curado S, Stainier DY, Anderson RM. Nitroreductase‐mediated cell/tissue ablation in zebrafish: A spatially and temporally controlled ablation method with applications in developmental and regeneration studies. Nat Protoc 3: 948‐954, 2008.
 31. Delous M, Yin C, Shin D, Ninov N, Debrito Carten J, Pan L, Ma TP, Farber SA, Moens CB, Stainier DY. Sox9b is a key regulator of pancreaticobiliary ductal system development. PLoS Genet 8: e1002754, 2012.
 32. Ding CB, Zhang JP, Zhao Y, Peng ZG, Song DQ, Jiang JD. Zebrafish as a potential model organism for drug test against hepatitis C virus. PLoS One 6: e22921, 2011.
 33. Dong PD, Munson CA, Norton W, Crosnier C, Pan X, Gong Z, Neumann CJ, Stainier DY. Fgf10 regulates hepatopancreatic ductal system patterning and differentiation. Nat Genet 39: 397‐402, 2007.
 34. Dor Y, Stanger BZ. Regeneration in liver and pancreas: Time to cut the umbilical cord? Sci STKE 2007: pe66, 2007.
 35. Dovey M, Patton EE, Bowman T, North T, Goessling W, Zhou Y, Zon LI. Topoisomerase II alpha is required for embryonic development and liver regeneration in zebrafish. Mol Cell Biol 29: 3746‐3753, 2009.
 36. Drew RE, Rodnick KJ, Settles M, Wacyk J, Churchill E, Powell MS, Hardy RW, Murdoch GK, Hill RA, Robison BD. Effect of starvation on transcriptomes of brain and liver in adult female zebrafish (Danio rerio). Physiol Genomics 35: 283‐295, 2008.
 37. Dutko JA, Mullins MC. SnapShot: BMP signaling in development. Cell 145: 636, e631‐e632, 2011.
 38. Eastham KM, McKiernan PJ, Milford DV, Ramani P, Wyllie J, van't Hoff W, Lynch SA, Morris AA. ARC syndrome: An expanding range of phenotypes. Arch Dis Child 85: 415‐420, 2001.
 39. EauClaire SF, Cui S, Ma L, Matous J, Marlow FL, Gupta T, Burgess HA, Abrams EW, Kapp LD, Granato M, Mullins MC, Matthews RP. Mutations in vacuolar H+‐ATPase subunits lead to biliary developmental defects in zebrafish. Dev Biol 365: 434‐444, 2012.
 40. Eisen JS, Smith JC. Controlling morpholino experiments: Don't stop making antisense. Development 135: 1735‐1743, 2008.
 41. Ekker SC. Zinc finger‐based knockout punches for zebrafish genes. Zebrafish 5: 121‐123, 2008.
 42. Fan L, Collodi P. Zebrafish embryonic stem cells. Methods Enzymol 418: 64‐77, 2006.
 43. Fan L, Moon J, Crodian J, Collodi P. Homologous recombination in zebrafish ES cells. Transgenic Res 15: 21‐30, 2006.
 44. Farber SA, Pack M, Ho SY, Johnson ID, Wagner DS, Dosch R, Mullins MC, Hendrickson HS, Hendrickson EK, Halpern ME. Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science 292: 1385‐1388, 2001.
 45. Farooq M, Sulochana KN, Pan X, To J, Sheng D, Gong Z, Ge R. Histone deacetylase 3 (hdac3) is specifically required for liver development in zebrafish. Dev Biol 317: 336‐353, 2008.
 46. Fausto N, Campbell JS. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech Dev 120: 117‐130, 2003.
 47. Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME, Ukomadu C, Sadler KC, Pradhan S, Pellegrini M, Jacobsen SE. Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci U S A 107: 8689‐8694, 2010.
 48. Field HA, Ober EA, Roeser T, Stainier DY. Formation of the digestive system in zebrafish. I. Liver morphogenesis. Dev Biol 253: 279‐290, 2003.
 49. Foley JE, Yeh JR, Maeder ML, Reyon D, Sander JD, Peterson RT, Joung JK. Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). PLoS One 4: e4348, 2009.
 50. Fraenkel PG, Traver D, Donovan A, Zahrieh D, Zon LI. Ferroportin1 is required for normal iron cycling in zebrafish. J Clin Invest 115: 1532‐1541, 2005.
 51. Friedman JR, Kaestner KH. The Foxa family of transcription factors in development and metabolism. Cell Mol Life Sci 63: 2317‐2328, 2006.
 52. Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell 147: 742‐758, 2011.
 53. Gao H, Wang Y, Wegierski T, Skouloudaki K, Putz M, Fu X, Engel C, Boehlke C, Peng H, Kuehn EW, Kim E, Kramer‐Zucker A, Walz G. PRKCSH/80K‐H, the protein mutated in polycystic liver disease, protects polycystin‐2/TRPP2 against HERP‐mediated degradation. Hum Mol Genet 19: 16‐24, 2010.
 54. Ghosh C, Zhou YL, Collodi P. Derivation and characterization of a zebrafish liver cell line. Cell Biol Toxicol 10: 167‐176, 1994.
 55. Gibert Y, Lattanzi VJ, Zhen AW, Vedder L, Brunet F, Faasse SA, Babitt JL, Lin HY, Hammerschmidt M, Fraenkel PG. BMP signaling modulates hepcidin expression in zebrafish embryos independent of hemojuvelin. PLoS One 6: e14553, 2011.
 56. Girelli D, De Domenico I, Bozzini C, Campostrini N, Busti F, Castagna A, Soriani N, Cremonesi L, Ferrari M, Colombari R, McVey Ward D, Kaplan J, Corrocher R. Clinical, pathological, and molecular correlates in ferroportin disease: A study of two novel mutations. J Hepatol 49: 664‐671, 2008.
 57. Gissen P, Johnson CA, Morgan NV, Stapelbroek JM, Forshew T, Cooper WN, McKiernan PJ, Klomp LW, Morris AA, Wraith JE, McClean P, Lynch SA, Thompson RJ, Lo B, Quarrell OW, Di Rocco M, Trembath RC, Mandel H, Wali S, Karet FE, Knisely AS, Houwen RH, Kelly DA, Maher ER. Mutations in VPS33B, encoding a regulator of SNARE‐dependent membrane fusion, cause arthrogryposis‐renal dysfunction‐cholestasis (ARC) syndrome. Nat Genet 36: 400‐404, 2004.
 58. Goessling W, North TE, Lord AM, Ceol C, Lee S, Weidinger G, Bourque C, Strijbosch R, Haramis AP, Puder M, Clevers H, Moon RT, Zon LI. APC mutant zebrafish uncover a changing temporal requirement for wnt signaling in liver development. Dev Biol 320: 161‐174, 2008.
 59. Goessling W, North TE, Zon LI. Ultrasound biomicroscopy permits in vivo characterization of zebrafish liver tumors. Nat Methods 4: 551‐553, 2007.
 60. Gong HY, Lin CJ, Chen MH, Hu MC, Lin GH, Zhou Y, Zon LI, Wu JL. Two distinct teleost hepatocyte nuclear factor 1 genes, hnf1alpha/tcf1 and hnf1beta/tcf2, abundantly expressed in liver, pancreas, gut and kidney of zebrafish. Gene 338: 35‐46, 2004.
 61. Gupta A, Meng X, Zhu LJ, Lawson ND, Wolfe SA. Zinc finger protein‐dependent and ‐independent contributions to the in vivo off‐target activity of zinc finger nucleases. Nucleic Acids Res 39: 381‐392, 2011.
 62. Haber BA, Russo P. Biliary atresia. Gastroenterol Clin North Am 32: 891‐911, 2003.
 63. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani‐Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nusslein‐Volhard C. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123: 1‐36, 1996.
 64. Halsted CH, Medici V. Aberrant hepatic methionine metabolism and gene methylation in the pathogenesis and treatment of alcoholic steatohepatitis. Int J Hepatol 2012: 959746, 2012.
 65. Hammes TO, Pedroso GL, Hartmann CR, Escobar TD, Fracasso LB, da Rosa DP, Marroni NP, Porawski M, da Silveira TR. The effect of taurine on hepatic steatosis induced by thioacetamide in zebrafish (Danio rerio). Dig Dis Sci 57: 675‐682, 2012.
 66. Hand NJ, Master ZR, Eauclaire SF, Weinblatt DE, Matthews RP, Friedman JR. The microRNA‐30 family is required for vertebrate hepatobiliary development. Gastroenterology 136: 1081‐1090, 2009.
 67. Hardman RC, Volz DC, Kullman SW, Hinton DE. An in vivo look at vertebrate liver architecture: Three‐dimensional reconstructions from medaka (Oryzias latipes). Anat Rec (Hoboken) 290: 770‐782, 2007.
 68. Harper P, Plant JW, Unger DB. Congenital biliary atresia and jaundice in lambs and calves. Aust Vet J 67: 18‐22, 1990.
 69. Hartman BH, Reh TA, Bermingham‐McDonogh O. Notch signaling specifies prosensory domains via lateral induction in the developing mammalian inner ear. Proc Natl Acad Sci U S A 107: 15792‐15797, 2010.
 70. Hata S, Namae M, Nishina H. Liver development and regeneration: From laboratory study to clinical therapy. Dev Growth Differ 49: 163‐170, 2007.
 71. He S, Krens SG, Zhan H, Gong Z, Hogendoorn PC, Spaink HP, Snaar‐Jagalska BE. A DeltaRaf1‐ER‐inducible oncogenic zebrafish liver cell model identifies hepatocellular carcinoma signatures. J Pathol 225: 19‐28, 2011.
 72. Her GM, Cheng CH, Hong JR, Sundaram GS, Wu JL. Imbalance in liver homeostasis leading to hyperplasia by overexpressing either one of the Bcl‐2‐related genes, zfBLP1 and zfMcl‐1a. Dev Dyn 235: 515‐523, 2006.
 73. Her GM, Chiang CC, Chen WY, Wu JL. In vivo studies of liver‐type fatty acid binding protein (L‐FABP) gene expression in liver of transgenic zebrafish (Danio rerio). FEBS Lett 538: 125‐133, 2003.
 74. Her GM, Hsu CC, Hong JR, Lai CY, Hsu MC, Pang HW, Chan SK, Pai WY. Overexpression of gankyrin induces liver steatosis in zebrafish (Danio rerio). Biochim Biophys Acta 1811: 536‐548, 2011.
 75. Her GM, Yeh YH, Wu JL. 435‐bp liver regulatory sequence in the liver fatty acid binding protein (L‐FABP) gene is sufficient to modulate liver regional expression in transgenic zebrafish. Dev Dyn 227: 347‐356, 2003.
 76. Ho SY, Lorent K, Pack M, Farber SA. Zebrafish fat‐free is required for intestinal lipid absorption and Golgi apparatus structure. Cell Metab 3: 289‐300, 2006.
 77. Holtzinger A, Evans T. Gata4 regulates the formation of multiple organs. Development 132: 4005‐4014, 2005.
 78. Hong SK, Dawid IB. Alpha2 macroglobulin‐like is essential for liver development in zebrafish. PLoS One 3: e3736, 2008.
 79. Hopfner R, Mousli M, Jeltsch JM, Voulgaris A, Lutz Y, Marin C, Bellocq JP, Oudet P, Bronner C. ICBP90, a novel human CCAAT binding protein, involved in the regulation of topoisomerase IIalpha expression. Cancer Res 60: 121‐128, 2000.
 80. Howarth DL, Passeri M, Sadler KC. Drinks like a fish: Using zebrafish to understand alcoholic liver disease. Alcohol Clin Exp Res 35: 826‐829, 2011.
 81. Howarth DL, Vacaru AM, Tsedensodnom O, Mormone E, Nieto N, Costantini LM, Snapp EL, Sadler KC. Alcohol disrupts endoplasmic reticulum function and protein secretion in hepatocytes. Alcohol Clin Exp Res 36: 14‐23, 2012.
 82. Huang H, Ruan H, Aw MY, Hussain A, Guo L, Gao C, Qian F, Leung T, Song H, Kimelman D, Wen Z, Peng J. Mypt1‐mediated spatial positioning of Bmp2‐producing cells is essential for liver organogenesis. Development 135: 3209‐3218, 2008.
 83. Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29: 699‐700, 2011.
 84. Huang X, Nguyen AT, Li Z, Emelyanov A, Parinov S, Gong Z. One step forward: The use of transgenic zebrafish tumor model in drug screens. Birth Defects Res C Embryo Today 93: 173‐181, 2011.
 85. Huang X, Zhou L, Gong Z. Liver tumor models in transgenic zebrafish: An alternative in vivo approach to study hepatocarcinogenes. Future Oncol 8: 21‐28, 2012.
 86. Hugo SE, Cruz‐Garcia L, Karanth S, Anderson RM, Stainier DY, Schlegel A. A monocarboxylate transporter required for hepatocyte secretion of ketone bodies during fasting. Genes Dev 26: 282‐293, 2012.
 87. Itoh N. The Fgf families in humans, mice, and zebrafish: Their evolutional processes and roles in development, metabolism, and disease. Biol Pharm Bull 30: 1819‐1825, 2007.
 88. Jung J, Zheng M, Goldfarb M, Zaret KS. Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 284: 1998‐2003, 1999.
 89. Jury DR, Kaveti S, Duan ZH, Willard B, Kinter M, Londraville R. Effects of calorie restriction on the zebrafish liver proteome. Comp Biochem Physiol Part D Genomics Proteomics 3: 275‐282, 2008.
 90. Kan NG, Junghans D, Izpisua Belmonte JC. Compensatory growth mechanisms regulated by BMP and FGF signaling mediate liver regeneration in zebrafish after partial hepatectomy. Faseb J 23: 3516‐3525, 2009.
 91. Kawakami K. Transgenesis and gene trap methods in zebrafish by using the Tol2 transposable element. Methods Cell Biol 77: 201‐222, 2004.
 92. Keng VW, Yagi H, Ikawa M, Nagano T, Myint Z, Yamada K, Tanaka T, Sato A, Muramatsu I, Okabe M, Sato M, Noguchi T. Homeobox gene Hex is essential for onset of mouse embryonic liver development and differentiation of the monocyte lineage. Biochem Biophys Res Commun 276: 1155‐1161, 2000.
 93. Kettleborough RN, Bruijn E, Eeden F, Cuppen E, Stemple DL. High‐throughput target‐selected gene inactivation in zebrafish. Methods Cell Biol 104: 121‐127, 2011.
 94. Klein C, Mikutta J, Krueger J, Scholz K, Brinkmann J, Liu D, Veerkamp J, Siegel D, Abdelilah‐Seyfried S, le Noble F. Neuron navigator 3a regulates liver organogenesis during zebrafish embryogenesis. Development 138: 1935‐1945, 2011.
 95. Kondo M. Bone morphogenetic proteins in the early development of zebrafish. Febs J 274: 2960‐2967, 2007.
 96. Korzh S, Emelyanov A, Korzh V. Developmental analysis of ceruloplasmin gene and liver formation in zebrafish. Mech Dev 103: 137‐139, 2001.
 97. Korzh S, Pan X, Garcia‐Lecea M, Winata CL, Pan X, Wohland T, Korzh V, Gong Z. Requirement of vasculogenesis and blood circulation in late stages of liver growth in zebrafish. BMC Dev Biol 8: 84, 2008.
 98. Lakner AM, Bonkovsky HL, Schrum LW. microRNAs: Fad or future of liver disease. World J Gastroenterol 17: 2536‐2542, 2011.
 99. Lam SH, Gong Z. Modeling liver cancer using zebrafish: A comparative oncogenomics approach. Cell Cycle 5: 573‐577, 2006.
 100. Lam SH, Wu YL, Vega VB, Miller LD, Spitsbergen J, Tong Y, Zhan H, Govindarajan KR, Lee S, Mathavan S, Murthy KR, Buhler DR, Liu ET, Gong Z. Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol 24: 73‐75, 2006.
 101. Langdon YG, Mullins MC. Maternal and zygotic control of zebrafish dorsoventral axial patterning. Annu Rev Genet 45: 357‐377, 2011.
 102. Latimer AJ, Jessen JR. Hgf/c‐met expression and functional analysis during zebrafish embryogenesis. Dev Dyn 237: 3904‐3915, 2008.
 103. Laudadio I, Manfroid I, Achouri Y, Schmidt D, Wilson MD, Cordi S, Thorrez L, Knoops L, Jacquemin P, Schuit F, Pierreux CE, Odom DT, Peers B, Lemaigre FP. A feedback loop between the liver‐enriched transcription factor network and mir‐122 controls hepatocyte differentiation. Gastroenterology 142: 119‐129, 2012.
 104. Law K, Brunt EM. Nonalcoholic fatty liver disease. Clin Liver Dis 14: 591‐604, 2010.
 105. Lawson ND, Wolfe SA. Forward and reverse genetic approaches for the analysis of vertebrate development in the zebrafish. Dev Cell 21: 48‐64, 2011.
 106. Li L, Krantz ID, Deng Y, Genin A, Banta AB, Collins CC, Qi M, Trask BJ, Kuo WL, Cochran J, Costa T, Pierpont ME, Rand EB, Piccoli DA, Hood L, Spinner NB. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet 16: 243‐251, 1997.
 107. Li YH, Chen MH, Gong HY, Hu SY, Li YW, Lin GH, Lin CC, Liu W, Wu JL. Progranulin A‐mediated MET signaling is essential for liver morphogenesis in zebrafish. J Biol Chem 285: 41001‐41009, 2010.
 108. Li Z, Huang X, Zhan H, Zeng Z, Li C, Spitsbergen JM, Meierjohann S, Schartl M, Gong Z. Inducible and repressable oncogene‐addicted hepatocellular carcinoma in Tet‐on xmrk transgenic zebrafish. J Hepatol 56: 419‐425, 2012.
 109. Li Z, Korzh V, Gong Z. Localized rbp4 expression in the yolk syncytial layer plays a role in yolk cell extension and early liver development. BMC Dev Biol 7: 117, 2007.
 110. Liu W, Chen JR, Hsu CH, Li YH, Chen YM, Lin CY, Huang SJ, Chang ZK, Chen YC, Lin CH, Gong HY, Lin CC, Kawakami K, Wu JL. A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver. Hepatology 56: 2268‐2276, 2012.
 111. Lorent K, Moore JC, Siekmann AF, Lawson N, Pack M. Reiterative use of the notch signal during zebrafish intrahepatic biliary development. Dev Dyn 239: 855‐864, 2010.
 112. Lorent K, Yeo SY, Oda T, Chandrasekharappa S, Chitnis A, Matthews RP, Pack M. Inhibition of Jagged‐mediated Notch signaling disrupts zebrafish biliary development and generates multi‐organ defects compatible with an Alagille syndrome phenocopy. Development 131: 5753‐5766, 2004.
 113. Marques IJ, Weiss FU, Vlecken DH, Nitsche C, Bakkers J, Lagendijk AK, Partecke LI, Heidecke CD, Lerch MM, Bagowski CP. Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer 9: 128, 2009.
 114. Martinez Barbera JP, Clements M, Thomas P, Rodriguez T, Meloy D, Kioussis D, Beddington RS. The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 127: 2433‐2445, 2000.
 115. Matsumoto N, Kubo A, Liu H, Akita K, Laub F, Ramirez F, Keller G, Friedman SL. Developmental regulation of yolk sac hematopoiesis by Kruppel‐like factor 6. Blood 107: 1357‐1365, 2006.
 116. Matthews RP, Eauclaire SF, Mugnier M, Lorent K, Cui S, Ross MM, Zhang Z, Russo P, Pack M. DNA hypomethylation causes bile duct defects in zebrafish and is a distinguishing feature of infantile biliary atresia. Hepatology 53: 905‐914, 2011.
 117. Matthews RP, Lorent K, Manoral‐Mobias R, Huang Y, Gong W, Murray IV, Blair IA, Pack M. TNFalpha‐dependent hepatic steatosis and liver degeneration caused by mutation of zebrafish S‐adenosylhomocysteine hydrolase. Development 136: 865‐875, 2009.
 118. Matthews RP, Lorent K, Pack M. Transcription factor onecut3 regulates intrahepatic biliary development in zebrafish. Dev Dyn 237: 124‐131, 2008.
 119. Matthews RP, Lorent K, Russo P, Pack M. The zebrafish onecut gene hnf‐6 functions in an evolutionarily conserved genetic pathway that regulates vertebrate biliary development. Dev Biol 274: 245‐259, 2004.
 120. Matthews RP, Plumb‐Rudewiez N, Lorent K, Gissen P, Johnson CA, Lemaigre F, Pack M. Zebrafish vps33b, an ortholog of the gene responsible for human arthrogryposis‐renal dysfunction‐cholestasis syndrome, regulates biliary development downstream of the onecut transcription factor hnf6. Development 132: 5295‐5306, 2005.
 121. Mayer AN, Fishman MC. Nil per os encodes a conserved RNA recognition motif protein required for morphogenesis and cytodifferentiation of digestive organs in zebrafish. Development 130: 3917‐3928, 2003.
 122. Mizgirev I, Revskoy S. Generation of clonal zebrafish lines and transplantable hepatic tumors. Nat Protoc 5: 383‐394, 2010.
 123. Moens CB, Donn TM, Wolf‐Saxon ER, Ma TP. Reverse genetics in zebrafish by TILLING. Brief Funct Genomic Proteomic 7: 454‐459, 2008.
 124. Moore FE, Reyon D, Sander JD, Martinez SA, Blackburn JS, Khayter C, Ramirez CL, Joung JK, Langenau DM. Improved somatic mutagenesis in zebrafish using transcription activator‐like effector nucleases (TALENs). PLoS One 7: e37877, 2012.
 125. Moore JL, Rush LM, Breneman C, Mohideen MA, Cheng KC. Zebrafish genomic instability mutants and cancer susceptibility. Genetics 174: 585‐600, 2006.
 126. Mormone E, George J, Nieto N. Molecular pathogenesis of hepatic fibrosis and current therapeutic approaches. Chem Biol Interact 193: 225‐231, 2011.
 127. Mudumana SP, Wan H, Singh M, Korzh V, Gong Z. Expression analyses of zebrafish transferrin, ifabp, and elastaseB mRNAs as differentiation markers for the three major endodermal organs: Liver, intestine, and exocrine pancreas. Dev Dyn 230: 165‐173, 2004.
 128. Nagaki M, Moriwaki H. Transcription factor HNF and hepatocyte differentiation. Hepatol Res 38: 961‐969, 2008.
 129. Nguyen AT, Emelyanov A, Koh CH, Spitsbergen JM, Lam SH, Mathavan S, Parinov S, Gong Z. A high level of liver‐specific expression of oncogenic Kras(V12) drives robust liver tumorigenesis in transgenic zebrafish. Dis Model Mech 4: 801‐813, 2011.
 130. Nguyen AT, Emelyanov A, Koh CH, Spitsbergen JM, Parinov S, Gong Z. An inducible krasV12 transgenic zebrafish model for liver tumorigenesis and chemical drug screening. Dis Model Mech 5: 63‐72, 2012.
 131.National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). A Randomized, Double‐Blinded, Placebo‐Controlled Trial of Corticosteroid Therapy Following Portoenterostomy in Infants With Biliary Atresia. In: [Internet]. Bethesda, MD: National Library of Medicine (US). 21 Feb. 2006 [18 June 2012]. Available at:
 132. Noel ES, Casal‐Sueiro A, Busch‐Nentwich E, Verkade H, Dong PD, Stemple DL, Ober EA. Organ‐specific requirements for Hdac1 in liver and pancreas formation. Dev Biol 322: 237‐250, 2008.
 133. Noel ES, Reis MD, Arain Z, Ober EA. Analysis of the Albumin/alpha‐Fetoprotein/Afamin/Group specific component gene family in the context of zebrafish liver differentiation. Gene Expr Patterns 10: 237‐243, 2010.
 134. North TE, Babu IR, Vedder LM, Lord AM, Wishnok JS, Tannenbaum SR, Zon LI, Goessling W. PGE2‐regulated wnt signaling and N‐acetylcysteine are synergistically hepatoprotective in zebrafish acetaminophen injury. Proc Natl Acad Sci U S A 107: 17315‐17320, 2010.
 135. North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, Weber GJ, Bowman TV, Jang IH, Grosser T, Fitzgerald GA, Daley GQ, Orkin SH, Zon LI. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447: 1007‐1011, 2007.
 136. Ober EA, Field HA, Stainier DY. From endoderm formation to liver and pancreas development in zebrafish. Mech Dev 120: 5‐18, 2003.
 137. Ober EA, Verkade H, Field HA, Stainier DY. Mesodermal Wnt2b signalling positively regulates liver specification. Nature 442: 688‐691, 2006.
 138. Oda T, Elkahloun AG, Pike BL, Okajima K, Krantz ID, Genin A, Piccoli DA, Meltzer PS, Spinner NB, Collins FS, Chandrasekharappa SC. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet 16: 235‐242, 1997.
 139. Oka T, Nishimura Y, Zang L, Hirano M, Shimada Y, Wang Z, Umemoto N, Kuroyanagi J, Nishimura N, Tanaka T. Diet‐induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol 10: 21, 2010.
 140. Ong ES, Chor CF, Zou L, Ong CN. A multi‐analytical approach for metabolomic profiling of zebrafish (Danio rerio) livers. Mol Biosyst 5: 288‐298, 2009.
 141. Pack M, Solnica‐Krezel L, Malicki J, Neuhauss SC, Schier AF, Stemple DL, Driever W, Fishman MC. Mutations affecting development of zebrafish digestive organs. Development 123: 321‐328, 1996.
 142. Parsons MJ, Pisharath H, Yusuff S, Moore JC, Siekmann AF, Lawson N, Leach SD. Notch‐responsive cells initiate the secondary transition in larval zebrafish pancreas. Mech Dev 126: 898‐912, 2009.
 143. Passeri MJ, Cinaroglu A, Gao C, Sadler KC. Hepatic steatosis in response to acute alcohol exposure in zebrafish requires sterol regulatory element binding protein activation. Hepatology 49: 443‐452, 2009.
 144. Patton EE, Mathers ME, Schartl M. Generating and analyzing fish models of melanoma. Methods Cell Biol 105: 339‐366, 2011.
 145. Peterson RT, Fishman MC. Designing zebrafish chemical screens. Methods Cell Biol 105: 525‐541, 2011.
 146. Piccoli DA, Spinner NB. Alagille syndrome and the Jagged1 gene. Semin Liver Dis 21: 525‐534, 2001.
 147. Poulain M, Ober EA. Interplay between Wnt2 and Wnt2bb controls multiple steps of early foregut‐derived organ development. Development 138: 3557‐3568, 2011.
 148. Puy H, Gouya L, Deybach JC. Porphyrias. Lancet 375: 924‐937, 2010.
 149. Qi F, Song J, Yang H, Gao W, Liu NA, Zhang B, Lin S. Mmp23b promotes liver development and hepatocyte proliferation through the tumor necrosis factor pathway in zebrafish. Hepatology 52: 2158‐2166, 2010.
 150. Rai K, Chidester S, Zavala CV, Manos EJ, James SR, Karpf AR, Jones DA, Cairns BR. Dnmt2 functions in the cytoplasm to promote liver, brain, and retina development in zebrafish. Genes Dev 21: 261‐266, 2007.
 151. Rai K, Nadauld LD, Chidester S, Manos EJ, James SR, Karpf AR, Cairns BR, Jones DA. Zebra fish Dnmt1 and Suv39h1 regulate organ‐specific terminal differentiation during development. Mol Cell Biol 26: 7077‐7085, 2006.
 152. Reiter JF, Kikuchi Y, Stainier DY. Multiple roles for Gata5 in zebrafish endoderm formation. Development 128: 125‐135, 2001.
 153. Rekha RD, Amali AA, Her GM, Yeh YH, Gong HY, Hu SY, Lin GH, Wu JL. Thioacetamide accelerates steatohepatitis, cirrhosis and HCC by expressing HCV core protein in transgenic zebrafish Danio rerio. Toxicology 243: 11‐22, 2008.
 154. Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S, Jang S, Haggarty SJ, Kokel D, Rubin LL, Peterson RT, Schier AF. Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327: 348‐351, 2010.
 155. Robu ME, Larson JD, Nasevicius A, Beiraghi S, Brenner C, Farber SA, Ekker SC. p53 activation by knockdown technologies. PLoS Genet 3: e78, 2007.
 156. Rossi JM, Dunn NR, Hogan BL, Zaret KS. Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev 15: 1998‐2009, 2001.
 157. Rovira M, Huang W, Yusuff S, Shim JS, Ferrante AA, Liu JO, Parsons MJ. Chemical screen identifies FDA‐approved drugs and target pathways that induce precocious pancreatic endocrine differentiation. Proc Natl Acad Sci U S A 108: 19264‐19269, 2011.
 158. Roy S, Qiao T, Wolff C, Ingham PW. Hedgehog signaling pathway is essential for pancreas specification in the zebrafish embryo. Curr Biol 11: 1358‐1363, 2001.
 159. Russo P, Magee JC, Boitnott J, Bove KE, Raghunathan T, Finegold M, Haas J, Jaffe R, Kim GE, Magid M, Melin‐Aldana H, White F, Whitington PF, Sokol RJ. Design and validation of the biliary atresia research consortium histologic assessment system for cholestasis in infancy. Clin Gastroenterol Hepatol 9: 357‐362, e352, 2011.
 160. Sadler KC, Amsterdam A, Soroka C, Boyer J, Hopkins N. A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease. Development 132: 3561‐3572, 2005.
 161. Sadler KC, Krahn KN, Gaur NA, Ukomadu C. Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1. Proc Natl Acad Sci U S A 104: 1570‐1575, 2007.
 162. Sakaguchi TF, Sadler KC, Crosnier C, Stainier DY. Endothelial signals modulate hepatocyte apicobasal polarization in zebrafish. Curr Biol 18: 1565‐1571, 2008.
 163. Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JR. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29: 697‐698, 2011.
 164. Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau‐Beganny S, Qi Y, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh JR, Joung JK. Selection‐free zinc‐finger‐nuclease engineering by context‐dependent assembly (CoDA). Nat Methods 8: 67‐69, 2011.
 165. Schaub M, Nussbaum J, Verkade H, Ober EA, Stainier DY, Sakaguchi TF. Mutation of zebrafish Snapc4 is associated with loss of the intrahepatic biliary network. Dev Biol 363: 128‐137, 2012.
 166. Schlegel A, Stainier DY. Lessons from “lower” organisms: What worms, flies, and zebrafish can teach us about human energy metabolism. PLoS Genet 3: e199, 2007.
 167. Schonthaler HB, Fleisch VC, Biehlmaier O, Makhankov Y, Rinner O, Bahadori R, Geisler R, Schwarz H, Neuhauss SC, Dahm R. The zebrafish mutant lbk/vam6 resembles human multisystemic disorders caused by aberrant trafficking of endosomal vesicles. Development 135: 387‐399, 2008.
 168. Sempoux C, Jibara G, Ward SC, Fan C, Qin L, Roayaie S, Fiel MI, Schwartz M, Thung SN. Intrahepatic cholangiocarcinoma: New insights in pathology. Semin Liver Dis 31: 49‐60, 2011.
 169. Shieh YS, Chang YS, Hong JR, Chen LJ, Jou LK, Hsu CC, Her GM. Increase of hepatic fat accumulation by liver specific expression of Hepatitis B virus X protein in zebrafish. Biochim Biophys Acta 1801: 721‐730, 2010.
 170. Shin D, Lee Y, Poss KD, Stainier DY. Restriction of hepatic competence by Fgf signaling. Development 138: 1339‐1348, 2011.
 171. Shin D, Shin CH, Tucker J, Ober EA, Rentzsch F, Poss KD, Hammerschmidt M, Mullins MC, Stainier DY. Bmp and Fgf signaling are essential for liver specification in zebrafish. Development 134: 2041‐2050, 2007.
 172. Shin D, Weidinger G, Moon RT, Stainier DY. Intrinsic and extrinsic modifiers of the regulative capacity of the developing liver. Mech Dev 128: 525‐535, 2012.
 173. Siddique A, Kowdley KV. Review article: The iron overload syndromes. Aliment Pharmacol Ther 35: 876‐893, 2012.
 174. Singham J, Yoshida EM, Scudamore CH. Choledochal cysts: Part 1 of 3: Classification and pathogenesis. Can J Surg 52: 434‐440, 2009.
 175. Sood R, English MA, Jones M, Mullikin J, Wang DM, Anderson M, Wu D, Chandrasekharappa SC, Yu J, Zhang J, Paul Liu P. Methods for reverse genetic screening in zebrafish by resequencing and TILLING. Methods 39: 220‐227, 2006.
 176. Stuart GW, Vielkind JR, McMurray JV, Westerfield M. Stable lines of transgenic zebrafish exhibit reproducible patterns of transgene expression. Development 109: 577‐584, 1990.
 177. Sun Z, Hopkins N. vhnf1, the MODY5 and familial GCKD‐associated gene, regulates regional specification of the zebrafish gut, pronephros, and hindbrain. Genes Dev 15: 3217‐3229, 2001.
 178. Tainaka T, Shimada Y, Kuroyanagi J, Zang L, Oka T, Nishimura Y, Nishimura N, Tanaka T. Transcriptome analysis of anti‐fatty liver action by Campari tomato using a zebrafish diet‐induced obesity model. Nutr Metab (Lond) 8: 88, 2011.
 179. Tan JL, Zon LI. Chemical screening in zebrafish for novel biological and therapeutic discovery. Methods Cell Biol 105: 493‐516, 2011.
 180. Tanaka M, Itoh T, Tanimizu N, Miyajima A. Liver stem/progenitor cells: Their characteristics and regulatory mechanisms. J Biochem 149: 231‐239, 2011.
 181. Thakur PC, Stuckenholz C, Rivera MR, Davison JM, Yao JK, Amsterdam A, Sadler KC, Bahary N. Lack of de novo phosphatidylinositol synthesis leads to endoplasmic reticulum stress and hepatic steatosis in cdipt‐deficient zebrafish. Hepatology 54: 452‐462, 2011.
 182. Tien AL, Senbanerjee S, Kulkarni A, Mudbhary R, Goudreau B, Ganesan S, Sadler KC, Ukomadu C. UHRF1 depletion causes a G2/M arrest, activation of DNA damage response and apoptosis. Biochem J 435: 175‐185, 2011.
 183. Tiso N, Filippi A, Pauls S, Bortolussi M, Argenton F. BMP signalling regulates anteroposterior endoderm patterning in zebrafish. Mech Dev 118: 29‐37, 2002.
 184. Tittle RK, Sze R, Ng A, Nuckels RJ, Swartz ME, Anderson RM, Bosch J, Stainier DY, Eberhart JK, Gross JM. Uhrf1 and Dnmt1 are required for development and maintenance of the zebrafish lens. Dev Biol 350: 50‐63, 2011.
 185. Wallace KN, Pack M. Unique and conserved aspects of gut development in zebrafish. Dev Biol 255: 12‐29, 2003.
 186. Wallace KN, Yusuff S, Sonntag JM, Chin AJ, Pack M. Zebrafish hhex regulates liver development and digestive organ chirality. Genesis 30: 141‐143, 2001.
 187. Wang R, Li Z, Wang Y, Gui JF. An Apo‐14 promoter‐driven transgenic zebrafish that marks liver organogenesis. PLoS One 6: e22555, 2011.
 188. White RM, Cech J, Ratanasirintrawoot S, Lin CY, Rahl PB, Burke CJ, Langdon E, Tomlinson ML, Mosher J, Kaufman C, Chen F, Long HK, Kramer M, Datta S, Neuberg D, Granter S, Young RA, Morrison S, Wheeler GN, Zon LI. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 471: 518‐522, 2011.
 189. Xu L, Yin W, Xia J, Peng M, Li S, Lin S, Pei A, Shu X. An anti‐apoptotic role of SNX7 is required for liver development in zebrafish. Hepatology 55: 1985‐1993, 2012.
 190. Yanger K, Stanger BZ. Facultative stem cells in liver and pancreas: Fact and fancy. Dev Dyn 240: 521‐529, 2011.
 191. Yao Y, Lin J, Yang P, Chen Q, Chu X, Gao C, Hu J. Fine structure, enzyme histochemistry, and immunohistochemistry of liver in zebrafish. Anat Rec (Hoboken) 295: 567‐576, 2012.
 192. Yin C, Evason KJ, Maher JJ, Stainier DY. The basic helix‐loop‐helix transcription factor, heart and neural crest derivatives expressed transcript 2, marks hepatic stellate cells in zebrafish: Analysis of stellate cell entry into the developing liver. Hepatology 56: 1958‐1970, 2012.
 193. Yovchev MI, Grozdanov PN, Zhou H, Racherla H, Guha C, Dabeva MD. Identification of adult hepatic progenitor cells capable of repopulating injured rat liver. Hepatology 47: 636‐647, 2008.
 194. Yu PB, Hong CC, Sachidanandan C, Babitt JL, Deng DY, Hoyng SA, Lin HY, Bloch KD, Peterson RT. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol 4: 33‐41, 2008.
 195. Zaret KS. Regulatory phases of early liver development: paradigms of organogenesis. Nat Rev Genet 3: 499‐512, 2002.
 196.Zebrafish Mutation Project. Cambridge: Wellcome Trust Sanger Institute. Cited on 18 June 2012. Available at:
 197. Zhao X, Monson C, Gao C, Gouon‐Evans V, Matsumoto N, Sadler KC, Friedman SL. Klf6/copeb is required for hepatic outgrowth in zebrafish and for hepatocyte specification in mouse ES cells. Dev Biol 344: 79‐93, 2010.
 198. Zong Y, Panikkar A, Xu J, Antoniou A, Raynaud P, Lemaigre F, Stanger BZ. Notch signaling controls liver development by regulating biliary differentiation. Development 136: 1727‐1739, 2009.
 199. Zweier C, Albrecht B, Mitulla B, Behrens R, Beese M, Gillessen‐Kaesbach G, Rott HD, Rauch A. “ Mowat‐Wilson” syndrome with and without Hirschsprung disease is a distinct, recognizable multiple congenital anomalies‐mental retardation syndrome caused by mutations in the zinc finger homeo box 1B gene. Am J Med Genet 108: 177‐181, 2002.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Benjamin J. Wilkins, Michael Pack. Zebrafish Models of Human Liver Development and Disease. Compr Physiol 2013, 3: 1213-1230. doi: 10.1002/cphy.c120021