Comprehensive Physiology Wiley Online Library

Kupffer Cells in the Liver

Full Article on Wiley Online Library



Abstract

Kupffer cells are a critical component of the mononuclear phagocytic system and are central to both the hepatic and systemic response to pathogens. Kupffer cells are reemerging as critical mediators of both liver injury and repair. Kupffer cells exhibit a tremendous plasticity; depending on the local metabolic and immune environment, then can express a range of polarized phenotypes, from the proinflammatory M1 phenotype to the alternative/M2 phenotype. Multiple M2 phenotypes can be distinguished, each involved in the resolution of inflammation and wound healing. Here, we have provided an update on recent research that has contributed to the developing delineation of the contribution of Kupffer cells to different types of liver injury, with an emphasis on alcoholic and nonalcoholic liver diseases. These recent advances in our understanding of Kupffer cell function and regulation will likely provide new insights into the potential for therapeutic manipulation of Kupffer cells to promote the resolution of inflammation and enhance wound healing in liver disease. © 2013 American Physiological Society. Compr Physiol 3:785‐797, 2013.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Localization of Kupffer cells within the hepatic sinusoid in healthy and diseased liver. The Kupffer cell is located to the hepatic sinusoid and is therefore in close proximity to other cells in the sinusoid, including natural killer (NK) and natural killer T cells (NKT), as well as the liver sinusoidal endothelial cells (LSEC). Despite the barrier of the LSEC, Kupffer cell products, such as cytokines, chemokines, reactive nitrogen, and oxygen species, influence the activity of both stellate cells and hepatocytes.

Figure 2. Figure 2.

The complement anaphylatoxins activate Kupffer cells to express inflammatory cytokines and chemokines. Complement activation via the classical, lectin or alternative pathways culminates in the cleavage of C3. C3a and C5a, termed the anaphylatoxins, then interact with cognate receptors on the surface of macrophages. Interaction between Toll‐like receptor 4 (TLR4) and the anaphylatoxin receptors can exacerbate cytokine/chemokine production.

Figure 3. Figure 3.

Interactions between Kupffer cells and the regulation of hepatocyte proliferation in response to tissue injury: role of early growth response‐1. In acute carbon tetrachloride‐induced hepatoxicity, production of cytokines and other hepatoprotective factors is precisely controlled, both spatially and temporally. Absence of individual transcription factors, such as early growth response‐1 (Egr‐1), controlling these responses to injury results in an impaired hepatoproliferative response and an increased susceptibility to hepatoxicity (, , ).



Figure 1.

Localization of Kupffer cells within the hepatic sinusoid in healthy and diseased liver. The Kupffer cell is located to the hepatic sinusoid and is therefore in close proximity to other cells in the sinusoid, including natural killer (NK) and natural killer T cells (NKT), as well as the liver sinusoidal endothelial cells (LSEC). Despite the barrier of the LSEC, Kupffer cell products, such as cytokines, chemokines, reactive nitrogen, and oxygen species, influence the activity of both stellate cells and hepatocytes.



Figure 2.

The complement anaphylatoxins activate Kupffer cells to express inflammatory cytokines and chemokines. Complement activation via the classical, lectin or alternative pathways culminates in the cleavage of C3. C3a and C5a, termed the anaphylatoxins, then interact with cognate receptors on the surface of macrophages. Interaction between Toll‐like receptor 4 (TLR4) and the anaphylatoxin receptors can exacerbate cytokine/chemokine production.



Figure 3.

Interactions between Kupffer cells and the regulation of hepatocyte proliferation in response to tissue injury: role of early growth response‐1. In acute carbon tetrachloride‐induced hepatoxicity, production of cytokines and other hepatoprotective factors is precisely controlled, both spatially and temporally. Absence of individual transcription factors, such as early growth response‐1 (Egr‐1), controlling these responses to injury results in an impaired hepatoproliferative response and an increased susceptibility to hepatoxicity (, , ).

References
 1. Adachi Y, Bradford BU, Gao W, Bojes HK, Thurman RG. Inactivation of Kupffer cells prevents early alcohol‐induced liver injury. Hepatology 20: 453‐460, 1994.
 2. Aldred A Nagy LE. Ethanol dissociates hormone‐stimulated cAMP production from inhibition of TNFa production in rat Kupffer cells. Am J Physiol 276: G98‐G106, 1999.
 3. Antoine DJ, Williams DP, Park BK. Understanding the role of reactive metabolites in drug‐induced hepatotoxicity: State of the science. Expert Opin Drug Metab Toxicol 4: 1415‐G1427, 2008.
 4. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, Wynshaw‐Boris A, Poli G, Olefsky J, Karin M. IKK‐beta links inflammation to obesity‐induced insulin resistance. Nat Med 11: 191‐198, 2005.
 5. Arteel GE. Oxidants and antioxidants in alcohol‐induced liver disease. Gastroenterology 124: 778‐790, 2003.
 6. Arteel GE. New role of plasminogen activator inhibitor‐1 in alcohol‐induced liver injury. J Gastroenterol Hepatol 23 (Suppl 1): S54‐S59, 2008.
 7. Aziz‐Seible RS, Lee SM, Kharbanda KK, McVicker BL, Casey CA. Ethanol feeding potentiates the pro‐inflammatory response of Kupffer cells to cellular fibronectin. Alcohol Clin Exp Res 35: 717‐725, 2011.
 8. Baffy G. Kupffer cells in non‐alcoholic fatty liver disease: The emerging view. J Hepatol 51: 212‐223, 2009.
 9. Bala S, Marcos M, Kodys K, Csak T, Catalano D, Mandrekar P, Szabo G. Up‐regulation of microRNA‐155 in macrophages contributes to increased tumor necrosis factor {alpha} (TNF{alpha}) production via increased mRNA half‐life in alcoholic liver disease. J Biol Chem 286: 1436‐1444, 2011.
 10. Beier JI, Kaiser JP, Guo L, Martinez‐Maldonado M, Arteel GE. Plasminogen activator inhibitor‐1 deficient mice are protected from angiotensin II‐induced fibrosis. Arch Biochem Biophys 510: 19‐26, 2011.
 11. Beutler B. TNF, immunity and inflammatory disease: Lessons of the past decade. J Inv Med 43: 227‐235, 1995.
 12. Bode C, Kugler V, Bode JC. Endotoxemia in patients with alcoholic and non‐alcoholic cirrhosis and in subjects with no evidence of chronic liver disease following acute alcohol excess. J Hepatol 4: 8‐14, 1987.
 13. Boulter L, Govaere O, Bird TG, Radulescu S, Ramachandran P, Pellicoro A, Ridgway RA, Seo SS, Spee B, Van Rooijen N, Sansom OJ, Iredale JP, Lowell S, Roskams T, Forbes SJ. Macrophage‐derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med 18: 572‐579, 2012.
 14. Bykov I, Junnikkala S, Pekna M, Lindros KO, Meri S. Complement C3 contributes to ethanol‐induced liver steatosis in mice. Ann Med 38: 280‐286, 2006.
 15. Cao Q, Mak KM, Lieber CS. Cytochrome P4502E1 primes macrophages to increase TNF‐alpha production in response to lipopolysaccharide. Am J Physiol 289: G95‐G107, 2005.
 16. Chawla A, Nguyen KD, Goh YP. Macrophage‐mediated inflammation in metabolic disease. Nat Rev Immunol 11: 738‐749, 2011.
 17. Chiang DJ, Pritchard MT, Nagy LE. Obesity, diabetes mellitus, and liver fibrosis. Am J Physiol Gastrointest Liver Physiol 300: G697‐G702, 2011.
 18. Chiu H, Gardner CR, Dambach DM, Durham SK, Brittingham JA, Laskin JD, Laskin DL. Role of tumor necrosis factor receptor 1 (p55) in hepatocyte proliferation during acetaminophen‐induced toxicity in mice. Toxicol Appl Pharmacol 193: 218‐227, 2003.
 19. Clementi AH, Gaudy AM, van Rooijen N, Pierce RH, Mooney RA. Loss of Kupffer cells in diet‐induced obesity is associated with increased hepatic steatosis, STAT3 signaling, and further decreases in insulin signaling. Biochim Biophys Acta 1792: 1062‐1072, 2009.
 20. Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: Old questions and new insights. Science 332: 1519‐1523, 2011.
 21. Cohen JI, Chen X, Nagy LE. Redox signaling and the innate immune system in alcoholic liver disease. Antioxid Redox Signal 15: 523‐534, 2011.
 22. Cohen JI, Roychowdhury S, McMullen MR, Stavitsky AB, Nagy LE. Complement and alcoholic liver disease: Role of C1q in the pathogenesis of ethanol‐induced liver injury in mice. Gastroenterology 139: 664‐674, 674.e1, 2010.
 23. Colmenero J, Bataller R, Sancho‐Bru P, Bellot P, Miquel R, Moreno M, Jares P, Bosch J, Arroyo V, Caballeria J, Gines P. Hepatic expression of candidate genes in patients with alcoholic hepatitis: Correlation with disease severity. Gastroenterology 132: 687‐697, 2007.
 24. DiScipio RG, Daffern PJ, Jagels MA, Broide DH, Sriramarao P. A comparison of C3a and C5a‐mediated stable adhesion of rolling eosinophils in postcapillary venules and transendothelial migration in vitro and in vivo. J Immunol 162: 1127‐1136, 1999.
 25. Dixon LJ, Berk M, Thapaliya S, Papouchado BG, Feldstein AE. Caspase‐1‐mediated regulation of fibrogenesis in diet‐induced steatohepatitis. Lab Invest 92: 713‐723, 2012.
 26. Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, Fearnside J, Tatoud R, Blanc V, Lindon JC, Mitchell SC, Holmes E, McCarthy MI, Scott J, Gauguier D, Nicholson JK. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin‐resistant mice. Proc Natl Acad Sci U S A 103: 12511‐12516, 2006.
 27. Duryee MJ, Klassen LW, Freeman TL, Willis MS, Tuma DJ, Thiele GM. Lipopolysaccharide is a cofactor for malondialdehyde‐acetaldehyde adduct‐mediated cytokine/chemokine release by rat sinusoidal liver endothelial and Kupffer cells. Alcohol Clin Exp Res 28: 1931‐1938, 2004.
 28. Fallowfield JA, Mizuno M, Kendall TJ, Constandinou CM, Benyon RC, Duffield JS, Iredale JP. Scar‐associated macrophages are a major source of hepatic matrix metalloproteinase‐13 and facilitate the resolution of murine hepatic fibrosis. J Immunol 178: 5288‐5295, 2007.
 29. Franchi L, Warner N, Viani K, Nunez G. Function of Nod‐like receptors in microbial recognition and host defense. Immunol Rev 227: 106‐128, 2009.
 30. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 134: 1655‐1669, 2008.
 31. Fukui H, Brauner B, Bode J, Bode C. Plasma endotoxin concentrations in patients with alcoholic and nonalcoholic liver disease: Reevaluation with an improved chromogenic assay. J Hepatol 12: 162‐169, 1991.
 32. Fukushima J, Kamada Y, Matsumoto H, Yoshida Y, Ezaki H, Takemura T, Saji Y, Igura T, Tsutsui S, Kihara S, Funahashi T, Shimomura I, Tamura S, Kiso S, Hayashi N. Adiponectin prevents progression of steatohepatitis in mice by regulating oxidative stress and Kupffer cell phenotype polarization. Hepatol Res 39: 724‐738, 2009.
 33. Gasque P. Complement: A unique innate immune sensor for danger signals. Mol Immunol 41: 1089‐1098, 2004.
 34. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278: 8869‐8872, 2003.
 35. Gordon S. Alternative activation of macrophages. Nat Rev Immunol 3: 23‐35, 2003.
 36. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 5: 953‐964, 2005.
 37. Graff JW, Dickson AM, Clay G, McCaffrey AP, Wilson ME. Identifying functional microRNAs in macrophages with polarized phenotypes. J Biol Chem 287: 21816‐21825, 2012.
 38. Gressner AM, Bachem MG. Molecular mechanisms of liver fibrogenesis—a homage to the role of activated fat‐storing cells. Digestion 56: 335‐346, 1995.
 39. Gustot T, Lemmers A, Moreno C, Nagy N, Quertinmont E, Nicaise C, Franchimont D, Louis H, Deviere J, Le Moine O. Differential liver sensitization to toll‐like receptor pathways in mice with alcoholic fatty liver. Hepatology 43: 989‐1000, 2006.
 40. Han J, Ulevitch RJ. Limiting inflammatory responses during activation of innate immunity. Nat Immunol 6: 1198‐1205, 2005.
 41. Helmy KY, Katschke KJ Jr, Gorgani NN, Kljavin NM, Elliott JM, Diehl L, Scales SJ, Ghilardi N, van Lookeren Campagne M. CRIg: A macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124: 915‐927, 2006.
 42. Heymann F, Hammerich L, Storch D, Bartneck M, Huss S, Russeler V, Gassler N, Lira SA, Luedde T, Trautwein C, Tacke F. Hepatic macrophage migration and differentiation critical for liver fibrosis is mediated by the chemokine receptor C‐C motif chemokine receptor 8 in mice. Hepatology 55: 898‐909, 2012.
 43. Hill DB, Barve S, Joshi‐Barve S, McClain C. Increased monocyte nuclear factor‐kappaB activation and tumor necrosis factor production in alcoholic hepatitis. J Lab Clin Med 135: 387‐395, 2000.
 44. Hillebrandt S, Wasmuth HE, Weiskirchen R, Hellerbrand C, Keppeler H, Werth A, Schirin‐Sokhan R, Wilkens G, Geier A, Lorenzen J, Kohl J, Gressner AM, Matern S, Lammert F. Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. Nat Genet 37: 835‐843, 2005.
 45. Hillian AH, Nagy LE. C1q in the classical pathway is required for high fat diet induced insulin resistance. Diabetes (submitted), 2012.
 46. Hinglais N, Kazatchkine MD, Mandet C, Appay MD, Bariety J. Human liver Kupffer cells express CR1, CR3, and CR4 complement receptor antigens. An immunohistochemical study. Lab Invest 61: 509‐514, 1989.
 47. Hoek JB, Pastorino JG. Ethanol, oxidative stress, and cytokine‐induced liver cell injury. Alcohol 27: 63‐68, 2002.
 48. Holt MP, Ju C. Mechanisms of drug‐induced liver injury. AAPS J 8: E48‐E54, 2006.
 49. Honchel R, Ray M, Marsano L, Cohen D, Lee E, Shedlofsky S, McClain CJ. Tumor necrosis factor in alcohol enhanced endotoxin liver injury. Alc Clin Exptl Res 16: 665‐669, 1992.
 50. Hritz I, Mandrekar P, Velayudham A, Catalano D, Dolganiuc A, Kodys K, Kurt‐Jones E, Szabo G. The critical role of toll‐like receptor (TLR) 4 in alcoholic liver disease is independent of the common TLR adapter MyD88. Hepatology 48: 1224‐1231, 2008.
 51. Huang W, Metlakunta A, Dedousis N, Zhang P, Sipula I, Dube JJ, Scott DK, O'Doherty RM. Depletion of liver Kupffer cells prevents the development of diet‐induced hepatic steatosis and insulin resistance. Diabetes 59: 347‐357, 2010.
 52. Inohara N, Nunez G. NODs: Intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 3: 371‐382, 2003.
 53. Jacob CO. Tumor necrosis factor alpha in autoimmunity: Pretty girl or old witch? Immunol Today 13: 122‐125, 1992.
 54. Jauneau AC, Ischenko A, Chan P, Fontaine M. Complement component anaphylatoxins upregulate chemokine expression by human astrocytes. FEBS Lett 537: 17‐22, 2003.
 55. Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, MacDonald AS, Allen JE. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332: 1284‐1288, 2011.
 56. Ju C, Reilly TP, Bourdi M, Radonovich MF, Brady JN, George JW, Pohl LR. Protective role of Kupffer cells in acetaminophen‐induced hepatic injury in mice. Chem Res Toxicol 15: 1504‐1513, 2002.
 57. Kang L, Sebastian BM, Pritchard MT, Pratt BT, Previs SF, Nagy LE. Chronic ethanol‐induced insulin resistance is associated with macrophage infiltration into adipose tissue and altered expression of adipocytokines. Alcohol Clin Exp Res 31: 1581‐1588, 2007.
 58. Keshavarzian A, Farhadi A, Forsyth CB, Rangan J, Jakate S, Shaikh M, Banan A, Fields JZ. Evidence that chronic alcohol exposure promotes intestinal oxidative stress, intestinal hyperpermeability and endotoxemia prior to development of alcoholic steatohepatitis in rats. J Hepatol 50: 538‐547, 2009.
 59. Khashab MA, Liangpunsakul S, Chalasani N. Nonalcoholic fatty liver disease as a component of the metabolic syndrome. Curr Gastroenterol Rep 10: 73‐80, 2008.
 60. Khoruts A, Stahnke L, McClain CJ, Logan G, Allen JI. Circulating tumor necrosis factor, interleukin‐1 and interleukin‐6 concentrations in chronic alcoholic patients. Hepatology 13: 267‐276, 1991.
 61. Kim ND, Moon JO, Slitt AL, Copple BL. Early growth response factor‐1 is critical for cholestatic liver injury. Toxicol Sci 90: 586‐595, 2006.
 62. Kishore R, Hill JR, McMullen MR, Frenkel J, Nagy LE. ERK1/2 and Egr‐1 contribute to increased TNFa production in rat Kupffer cells after chronic ethanol feeding. Am J Phys 282: G6‐G15, 2002.
 63. Kishore R, McMullen MR, Nagy LE. Stabilization of TNFa mRNA by chronic ethanol: Role of A+U rich elements and p38 mitogen activated protein kinase signaling pathway. J Biol Chem 276: 41930‐41937, 2001.
 64. Kono H, Rusyn I, Yin M, Gäbele E, Yamashina S, Dikalova A, Kadiiska MB, Connor HD, Mason RP, Segal BH, Bradford BU, Holland SM, Thurman RG. NADPH oxidase‐derived free radicals are key oxidants in alcohol‐induced liver disease. J Clin Inv 106: 867‐872, 2000.
 65. Lam B, Younossi ZM. Treatment options for nonalcoholic fatty liver disease. Therap Adv Gastroenterol 3: 121‐137, 2010.
 66. Lanthier N, Molendi‐Coste O, Cani PD, van Rooijen N, Horsmans Y, Leclercq IA. Kupffer cell depletion prevents but has no therapeutic effect on metabolic and inflammatory changes induced by a high‐fat diet. FASEB J 25: 4301‐4311, 2011.
 67. Laskin DL, Gardner CR, Price VF, Jollow DJ. Modulation of macrophage functioning abrogates the acute hepatotoxicity of acetaminophen. Hepatology 21: 1045‐1050, 1995.
 68. Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: Enabling diversity with identity. Nat Rev Immunol 11: 750‐761, 2011.
 69. Li L, Chen L, Hu L, Liu Y, Sun HY, Tang J, Hou YJ, Chang YX, Tu QQ, Feng GS, Shen F, Wu MC, Wang HY. Nuclear factor high‐mobility group box1 mediating the activation of Toll‐like receptor 4 signaling in hepatocytes in the early stage of nonalcoholic fatty liver disease in mice. Hepatology 54: 1620‐1630, 2011.
 70. Liao X, Sharma N, Kapadia F, Zhou G, Lu Y, Hong H, Paruchuri K, Mahabeleshwar GH, Dalmas E, Venteclef N, Flask CA, Kim J, Doreian BW, Lu KQ, Kaestner KH, Hamik A, Clement K, Jain MK. Kruppel‐like factor 4 regulates macrophage polarization. J Clin Invest 121: 2736‐2749, 2011.
 71. Louvet A, Teixeira‐Clerc F, Chobert MN, Deveaux V, Pavoine C, Zimmer A, Pecker F, Mallat A, Lotersztajn S. Cannabinoid CB2 receptors protect against alcoholic liver disease by regulating Kupffer cell polarization in mice. Hepatology 54: 1217‐1226, 2011.
 72. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117: 175‐184, 2007.
 73. Machida K, Tsukamoto H, Mkrtchyan H, Duan L, Dynnyk A, Liu HM, Asahina K, Govindarajan S, Ray R, Ou JH, Seki E, Deshaies R, Miyake K, Lai MM. Toll‐like receptor 4 mediates synergism between alcohol and HCV in hepatic oncogenesis involving stem cell marker Nanog. Proc Natl Acad Sci U S A 106: 1548‐1553, 2009.
 74. Maina V, Sutti S, Locatelli I, Vidali M, Mombello C, Bozzola C, Albano E. Bias in macrophage activation pattern influences non‐alcoholic steatohepatitis (NASH) in mice. Clin Sci (Lond) 122: 545‐553, 2012.
 75. Mamane Y, Chung Chan C, Lavallee G, Morin N, Xu LJ, Huang J, Gordon R, Thomas W, Lamb J, Schadt EE, Kennedy BP, Mancini JA. The C3a anaphylatoxin receptor is a key mediator of insulin resistance and functions by modulating adipose tissue macrophage infiltration and activation. Diabetes 58: 2006‐2017, 2009.
 76. Mandal P, Pratt BT, Barnes M, McMullen MR, Nagy LE. Molecular mechanism for adiponectin‐dependent M2 macrophage polarization: Link between the metabolic and innate immune activity of full‐length adiponectin. J Biol Chem 286: 13460‐13469, 2011.
 77. Mandayam S, Jamal MM, Morgan TR. Epidemiology of alcoholic liver disease. Semin Liver Dis 24: 217‐232, 2004.
 78. Martinez‐Hernandez A, Amenta PS. The hepatic extracellular matrix II. Ontogenesis, regeneration and cirrhosis. Virchows Archiv A Pathol Anat 423: 77‐84, 1993.
 79. Mathurin P, Deng Q‐G, Keshavarzian A, Choudhary S, Holmes EW, Tsukamoto H. Exacerbation of alcoholic liver injury by enteral endotoxin in rats. Hepatology 32: 1008‐1017, 2000.
 80. McClain CJ, Cohen DA. Increased tumor necrosis factor production by monocytes in alcoholic hepatitis. Hepatology 9: 349‐351, 1989.
 81. McMullen MR, Pritchard MT, Wang Q, Millward CA, Croniger CM, Nagy LE. Early growth response‐1 transcription factor is essential for ethanol‐induced Fatty liver injury in mice. Gastroenterology 128: 2066‐76, 2005.
 82. McVicker BL, Tuma DJ, Kharbanda KK, Kubik JL, Casey CA. Effect of chronic ethanol administration on the in vitro production of proinflammatory cytokines by rat Kupffer cells in the presence of apoptotic cells. Alcohol Clin Exp Res 31: 122‐129, 2007.
 83. Mencin A, Kluwe J, Schwabe RF. Toll‐like receptors as targets in chronic liver diseases. Gut 58: 704‐720, 2009.
 84. Michael SL, Pumford NR, Mayeux PR, Niesman MR, Hinson JA. Pretreatment of mice with macrophage inactivators decreases acetaminophen hepatotoxicity and the formation of reactive oxygen and nitrogen species. Hepatology 30: 186‐195, 1999.
 85. Mills SJ, Harrison SA. Comparison of the natural history of alcoholic and nonalcoholic Fatty liver disease. Curr Gastroenterol Rep 7: 32‐36, 2005.
 86. Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T, Ohnishi H, Olefsky JM, Brenner DA, Seki E. Toll‐like receptor 9 promotes steatohepatitis by induction of interleukin‐1beta in mice. Gastroenterology 139: 323‐34.e7, 2010.
 87. Monsinjon T, Gasque P, Chan P, Ischenko A, Brady JJ, Fontaine MC. Regulation by complement C3a and C5a anaphylatoxins of cytokine production in human umbilical vein endothelial cells. FASEB J 17: 1003‐1014, 2003.
 88. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8: 958‐969, 2008.
 89. Motomura K, Ohata M, Satre M, Tsukamoto H. Destabilization of TNFa mRNA by retinoic acid in hepatic macrophages:implications for alcoholic liver disease. Am J Phys 281: E420‐E429, 2001.
 90. Mutlu E, Keshavarzian A, Engen P, Forsyth CB, Sikaroodi M, Gillevet P. Intestinal dysbiosis: A possible mechanism of alcohol‐induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol Clin Exp Res 33: 1836‐1846, 2009.
 91. Nagy LE. New insights into the role of the innate immune response in the development of alcoholic liver disease. Expt Biol Med 228: 882‐890, 2003.
 92. Naito M, Hasegawa G, Takahashi K. Development, differentiation, and maturation of Kupffer cells. Microsc Res Tech 39: 350‐364, 1997.
 93. Nanji AA, Khettry U, Sadrzadeh SMH, Yamanaka T. Severity of liver injury in experimental alcoholic liver disease: Correlation with plasma endotoxin, prostaglandin E2, leukotriene B4 and thromboxane B2. Am J Path 142: 367‐373, 1993.
 94. Nelson S, Kolls JK. Alcohol, host defence and society. Nat Rev Immunol 2: 205‐209, 2002.
 95. Netea MG, Ferwerda G, de Jong DJ, Jansen T, Jacobs L, Kramer M, Naber TH, Drenth JP, Girardin SE, Kullberg BJ, Adema GJ, Van der Meer JW. Nucleotide‐binding oligomerization domain‐2 modulates specific TLR pathways for the induction of cytokine release. J Immunol 174: 6518‐6523, 2005.
 96. Neyrinck AM, Cani PD, Dewulf EM, De Backer F, Bindels LB, Delzenne NM. Critical role of Kupffer cells in the management of diet‐induced diabetes and obesity. Biochem Biophys Res Commun 385: 351‐356, 2009.
 97. Obstfeld AE, Sugaru E, Thearle M, Francisco AM, Gayet C, Ginsberg HN, Ables EV, Ferrante AW Jr. C‐C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity‐induced hepatic steatosis. Diabetes 59: 916‐925, 2010.
 98. Odegaard JI, Chawla A. Mechanisms of macrophage activation in obesity‐induced insulin resistance. Nat Clin Pract Endocrinol Metab 4: 619‐626, 2008.
 99. Odegaard JI, Ricardo‐Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Red Eagle A, Vats D, Brombacher F, Ferrante AW, Chawla A. Macrophage‐specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447: 1116‐1120, 2007.
 100. Papackova Z, Palenickova E, Dankova H, Zdychova J, Skop V, Kazdova L, Cahova M. Kupffer cells ameliorate hepatic insulin resistance induced by high‐fat diet rich in monounsaturated fatty acids: The evidence for the involvement of alternatively activated macrophages. Nutr Metab (Lond) 9: 22, 2012.
 101. Papadakis KA, Targan SR. Tumor necrosis factor: Biology and therapeutic inhibitors. Gastroenterology 119: 1148‐1157, 2000.
 102. Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, Osterreicher CH, Takahashi H, Karin M. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL‐6 and TNF expression. Cell 140: 197‐208, 2010.
 103. Pestel S, Jungermann K, Gotze O, Schieferdecker HL. Inhibition by prostaglandin E(2) of anaphylatoxin C5a‐ but not zymosan‐induced prostanoid release from rat Kupffer cells. Lab Invest 82: 463‐471, 2002.
 104. Pritchard MT, Cohen JI, Roychowdhury S, Pratt BT, Nagy LE. Early growth response‐1 attenuates liver injury and promotes hepatoprotection after carbon tetrachloride exposure in mice. J Hepatol 53: 655‐662, 2010.
 105. Pritchard MT, Malinak RN, Nagy LE. Early growth response (EGR)‐1 is required for timely cell‐cycle entry and progression in hepatocytes after acute carbon tetrachloride exposure in mice. Am J Physiol Gastrointest Liver Physiol 300: G1124‐G1131, 2011.
 106. Pritchard MT, McMullen MR, Stavitsky AB, Cohen JI, Lin F, Medof ME, Nagy LE. Differential contributions of C3, C5, and decay‐accelerating factor to ethanol‐induced fatty liver in mice. Gastroenterology 132: 1117‐1126, 2007.
 107. Pritchard MT, Nagy LE. Ethanol‐induced liver injury: Potential roles for egr‐1. Alcohol Clin Exp Res 29: 146S‐150S, 2005.
 108. Pritchard MT, Nagy LE. Hepatic fibrosis is enhanced and accompanied by robust oval cell activation after chronic carbon tetrachloride administration to Egr‐1‐deficient mice. Am J Pathol 176: 2743‐2752, 2010.
 109. Pritchard MT, Roychowdhury S, McMullen MR, Guo L, Arteel GE, Nagy LE. Early growth response‐1 contributes to galactosamine/lipopolysaccharide‐induced acute liver injury in mice. Am J Physiol Gastrointest Liver Physiol 293: G1124‐G1133, 2007.
 110. Raghow R. The role of extracellular matrix in postinflammatory wound healing and fibrosis. FASEB J 8: 823‐831, 1994.
 111. Rajendram R, Lewison G, Preedy VR. Worldwide alcohol‐related research and the disease burden. Alcohol Alcohol 41: 99‐106, 2006.
 112. Ramachandran P, Iredale JP. Macrophages: Central regulators of hepatic fibrogenesis and fibrosis resolution. J Hepatol 56: 1417‐1419, 2012.
 113. Rao R. Endotoxemia and gut barrier dysfunction in alcoholic liver disease. Hepatology 50: 638‐44, 2009.
 114. Rehm J, Room R, Monteiro M, Gmel G, Graham K, Rehn N, Sempos CT, Jernigan D. Alcohol as a risk factor for global burden of disease. Eur Addict Res 9: 157‐164, 2003.
 115. Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M. Toll‐like receptor‐4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non‐alcoholic steatohepatitis. J Hepatol 47: 571‐579, 2007.
 116. Rivera CA, Gaskin L, Allman M, Pang J, Brady K, Adegboyega P, Pruitt K. Toll‐like receptor‐2 deficiency enhances non‐alcoholic steatohepatitis. BMC Gastroenterol 10: 52, 2010.
 117. Rogers CQ, Ajmo JM, You M. Adiponectin and alcoholic fatty liver disease. IUBMB Life 60: 790‐797, 2008.
 118. Roychowdhury S, McMullen MR, Pritchard MT, Hise AG, van Rooijen N, Medof ME, Stavitsky AB, Nagy LE. An early complement‐dependent and TLR‐4‐independent phase in the pathogenesis of ethanol‐induced liver injury in mice. Hepatology 49: 1326‐1334, 2009.
 119. Sakaguchi S, Takahashi S, Sasaki T, Kumagai T, Nagata K. Progression of alcoholic and non‐alcoholic steatohepatitis: Common metabolic aspects of innate immune system and oxidative stress. Drug Metab Pharmacokinet 26: 30‐46, 2011.
 120. Schieferdecker HL, Schlaf G, Jungermann K, Gotze O. Functions of anaphylatoxin C5a in rat liver: Direct and indirect actions on nonparenchymal and parenchymal cells. Int Immunopharmacol 1: 469‐481, 2001.
 121. Schlaf G, Schmitz M, Rothermel E, Jungermann K, Schieferdecker HL, Gotze O. Expression and induction of anaphylatoxin C5a receptors in the rat liver. Histol Histopathol 18: 299‐308, 2003.
 122. Sebastian BM, Roychowdhury S, Tang H, Hillian AD, Feldstein AE, Stahl GL, Takahashi K, Nagy LE. Identification of a cytochrome P4502E1/Bid/C1q‐dependent axis mediating inflammation in adipose tissue after chronic ethanol feeding to mice. J Biol Chem 286: 35989‐35997, 2011.
 123. Shen Z, Ajmo JM, Rogers CQ, Liang X, Le L, Murr MM, Peng Y, You M. Role of SIRT1 in regulation of LPS‐ or two ethanol metabolites‐induced TNF‐alpha production in cultured macrophage cell lines. Am J Physiol Gastrointest Liver Physiol 296: G1047‐G1053, 2009.
 124. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid‐induced insulin resistance. J Clin Invest 116: 3015‐3025, 2006.
 125. Shi L, Kishore R, McMullen MR, Nagy LE. Chronic ethanol increases lipopolysaccharide‐stimulated Egr‐1 expression in RAW 264.7 macrophages: Contribution to enhanced tumor necrosis factor alpha production. J Biol Chem 277: 14777‐14785, 2002.
 126. Shirabe K, Mano Y, Muto J, Matono R, Motomura T, Toshima T, Takeishi K, Uchiyama H, Yoshizumi T, Taketomi A, Morita M, Tsujitani S, Sakaguchi Y, Maehara Y. Role of tumor‐associated macrophages in the progression of hepatocellular carcinoma. Surg Today 42: 1‐7, 2012.
 127. Spitzer JA, Zhang P, Bagby GJ, Stouwe CV, Nelson S. Sex differences in the modulation by ethanol of lung chemotaxis. Alcohol 28: 95‐102, 2002.
 128. Spolarics Z. Endotoxemia, pentose cycle, and the oxidant/antioxidant balance in the hepatic sinusoid. J Leukocyte Biol 63: 534‐541, 1998.
 129. Starkel P, De Saeger C, Strain AJ, Leclercq I, Horsmans Y. NFkappaB, cytokines, TLR 3 and 7 expression in human end‐stage HCV and alcoholic liver disease. Eur J Clin Invest 40: 575‐584, 2010.
 130. Stienstra R, Joosten LA, Koenen T, van Tits B, van Diepen JA, van den Berg SA, Rensen PC, Voshol PJ, Fantuzzi G, Hijmans A, Kersten S, Muller M, van den Berg WB, van Rooijen N, Wabitsch M, Kullberg BJ, van der Meer JW, Kanneganti T, Tack CJ, Netea MG. The inflammasome‐mediated caspase‐1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab 12: 593‐605, 2010.
 131. Stienstra R, Saudale F, Duval C, Keshtkar S, Groener JE, van Rooijen N, Staels B, Kersten S, Muller M. Kupffer cells promote hepatic steatosis via interleukin‐1beta‐dependent suppression of peroxisome proliferator‐activated receptor alpha activity. Hepatology 51: 511‐522, 2010.
 132. Stout RD, Suttles J. Functional plasticity of macrophages: Reversible adaptation to changing microenvironments. J Leukoc Biol 76: 509‐513, 2004.
 133. Szabo G. Consequences of alcohol consumption on host defence. Alcohol Alcohol 34: 830‐841, 1999.
 134. Szabo G, Velayudham A, Romics L Jr, Mandrekar P. Modulation of non‐alcoholic steatohepatitis by pattern recognition receptors in mice: The role of toll‐like receptors 2 and 4. Alcohol Clin Exp Res 29: 140S‐145S, 2005.
 135. Tam J, Liu J, Mukhopadhyay B, Cinar R, Godlewski G, Kunos G. Endocannabinoids in liver disease. Hepatology 53: 346‐355, 2011.
 136. Tateya S, Rizzo NO, Handa P, Cheng AM, Morgan‐Stevenson V, Daum G, Clowes AW, Morton GJ, Schwartz MW, Kim F. Endothelial NO/cGMP/VASP signaling attenuates Kupffer cell activation and hepatic insulin resistance induced by high‐fat feeding. Diabetes 60: 2792‐2801, 2011.
 137. Taub R. Liver regeneration: From myth to mechanism. Nat Rev Mol Cell Biol 5: 836‐847, 2004.
 138. Thakur V, Pritchard MT, McMullen MR, Wang Q, Nagy LE. Chronic ethanol feeding increases activation of NADPH oxidase by lipopolysaccharide in rat Kupffer cells: Role of increased reactive oxygen in LPS‐stimulated ERK1/2 activation and TNF‐alpha production. J Leukoc Biol 79: 1348‐1356, 2006.
 139. Thomson AW, Knolle PA. Antigen‐presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 10: 753‐766, 2010.
 140. Thurman RG. Mechanisms of hepatic toxicity II. Alcoholic liver injury involves activation of Kupffer cells by endotoxin. Am J Physiol 275: G605‐G611, 1998.
 141. Tilg H, Diehl AM. Cytokines in alcoholic and nonalcoholic steatohepatitis. New Engl J Med 343: 1467‐1476, 2000.
 142. Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J Physiol 587: 4153‐4158, 2009.
 143. Uehara A, Yang S, Fujimoto Y, Fukase K, Kusumoto S, Shibata K, Sugawara S, Takada H. Muramyldipeptide and diaminopimelic acid‐containing desmuramylpeptides in combination with chemically synthesized Toll‐like receptor agonists synergistically induced production of interleukin‐8 in a NOD2‐ and NOD1‐dependent manner, respectively, in human monocytic cells in culture. Cell Microbiol 7: 53‐61, 2005.
 144. van Heel DA, Ghosh S, Butler M, Hunt K, Foxwell BM, Mengin‐Lecreulx D, Playford RJ. Synergistic enhancement of Toll‐like receptor responses by NOD1 activation. Eur J Immunol 35: 2471‐2476, 2005.
 145. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, Stephens JM, Dixit VD. The NLRP3 inflammasome instigates obesity‐induced inflammation and insulin resistance. Nat Med 17: 179‐188, 2011.
 146. von Montfort C, Beier JI, Kaiser JP, Guo L, Joshi‐Barve S, Pritchard MT, States JC, Arteel GE. PAI‐1 plays a protective role in CCl4‐induced hepatic fibrosis in mice: Role of hepatocyte division. Am J Physiol Gastrointest Liver Physiol 298: G657‐G666, 2010.
 147. Walport MJ. Complement. First of two parts. N Engl J Med 344: 1058‐1066, 2001.
 148. Watkins LR, Hansen MK, Nguyne KT, Lee JE, Maier SF. Dynamic regulation of the proinflammatory cytokine, interleukin‐1b. Life Sci 65: 449‐481, 1999.
 149. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, Charo I, Leibel RL, Ferrante AW Jr. CCR2 modulates inflammatory and metabolic effects of high‐fat feeding. J Clin Invest 116: 115‐124, 2006.
 150. Wheeler MD, Kono H, Yin M, Nakagami M, Uesugi T, Arteel GE, Gabele E, Rusyn I, Yamashina S, Froh M, Adachi Y, Iimuro Y, Bradford BU, Smutney OM, Connor HD, Mason RP, Goyert SM, Peters JM, Gonzalez FJ, Samulski RJ, Thurman RG. The role of Kupffer cell oxidant production in early ethanol‐induced liver disease. Free Radic Biol Med 31: 1544‐1549, 2001.
 151. Wilfred de Alwis NM, Day CP. Genetics of alcoholic liver disease and nonalcoholic fatty liver disease. Semin Liver Dis 27: 44‐54, 2007.
 152. Wolfert MA, Murray TF, Boons GJ, Moore JN. The origin of the synergistic effect of muramyl dipeptide with endotoxin and peptidoglycan. J Biol Chem 277: 39179‐39186, 2002.
 153. Xiong S, She H, Zhang AS, Wang J, Mkrtchyan H, Dynnyk A, Gordeuk VR, French SW, Enns CA, Tsukamoto H. Hepatic macrophage iron aggravates experimental alcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 295: G512‐G521, 2008.
 154. Yamashina S, Takei Y, Ikejima K, Enomoto N, Kitamura T, Sato N. Ethanol‐induced sensitization to endotoxin in Kupffer cells is dependent upon oxidative stress. Alcohol Clin Exp Res 29: 246S‐250S, 2005.
 155. Yan AW, Fouts DE, Brandl J, Starkel P, Torralba M, Schott E, Tsukamoto H, Nelson KE, Brenner DA, Schnabl B. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 53: 96‐105, 2011.
 156. Yan J, Vetvicka V, Xia Y, Hanikyrova M, Mayadas TN, Ross GD. Critical role of Kupffer cell CR3 (CD11b/CD18) in the clearance of IgM‐opsonized erythrocytes or soluble beta‐glucan. Immunopharmacology 46: 39‐54, 2000.
 157. Younossi ZN. Epidemiology of alcohol‐induced liver disease. In: Gitlin N. Clinics in Liver Disease. Philadelphia, PA: Saunders, 1995, vol. 2.
 158. Zhang Z, Bagby GJ, Stoltz D, Oliver P, Schwarzenberger PO, Kolls JK. Prolonged ethanol treatment enhances lipopolysaccharide/phorbol myristate acetate‐induced tumor necrosis factor‐alpha production in human monocytic cells. Alc Clin Exptl Res 25: 444‐449, 2001.
 159. Zhao XJ, Dong Q, Bindas J, Piganelli JD, Magill A, Reiser J, Kolls JK. TRIF and IRF‐3 binding to the TNF promoter results in macrophage TNF dysregulation and steatosis induced by chronic ethanol. J Immunol 181: 3049‐3056, 2008.

Related Articles:

Immunity and Inflammation

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Laura J. Dixon, Mark Barnes, Hui Tang, Michele T. Pritchard, Laura E. Nagy. Kupffer Cells in the Liver. Compr Physiol 2013, 3: 785-797. doi: 10.1002/cphy.c120026