Comprehensive Physiology Wiley Online Library

Mechanical Properties of Respiratory Muscles

Full Article on Wiley Online Library



Abstract

Striated respiratory muscles are necessary for lung ventilation and to maintain the patency of the upper airway. The basic structural and functional properties of respiratory muscles are similar to those of other striated muscles (both skeletal and cardiac). The sarcomere is the fundamental organizational unit of striated muscles and sarcomeric proteins underlie the passive and active mechanical properties of muscle fibers. In this respect, the functional categorization of different fiber types provides a conceptual framework to understand the physiological properties of respiratory muscles. Within the sarcomere, the interaction between the thick and thin filaments at the level of cross‐bridges provides the elementary unit of force generation and contraction. Key to an understanding of the unique functional differences across muscle fiber types are differences in cross‐bridge recruitment and cycling that relate to the expression of different myosin heavy chain isoforms in the thick filament. The active mechanical properties of muscle fibers are characterized by the relationship between myoplasmic Ca2+ and cross‐bridge recruitment, force generation and sarcomere length (also cross‐bridge recruitment), external load and shortening velocity (cross‐bridge cycling rate), and cross‐bridge cycling rate and ATP consumption. Passive mechanical properties are also important reflecting viscoelastic elements within sarcomeres as well as the extracellular matrix. Conditions that affect respiratory muscle performance may have a range of underlying pathophysiological causes, but their manifestations will depend on their impact on these basic elemental structures. © 2013 American Physiological Society. Compr Physiol 3:1533‐1567, 2013.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Innervation of the cat diaphragm muscle. Phrenic nerve axons derived from the C5 segment of the cervical spinal cord innervate ventral aspects of the costal and crural regions of the diaphragm muscle, whereas axons derived from C6 innervate more dorsal aspects. Reproduced from reference (); used with permission.
Figure 2. Figure 2. Muscle fibers contain myofibrils (a), each comprising sarcomeres arranged in series which give muscle a striated appearance visible also in transmission electron micrographs. Thick and thin filaments in the sarcomere are composed of myosin (red) and actin (yellow), respectively, and their interaction provides the basis for force generation and contraction. In cross‐section, myosin and actin filaments are organized in a myofilament lattice, clearly visible with electron microscopy. Reproduced from reference (); used with permission.
Figure 3. Figure 3. Muscle fibers from the rat diaphragm muscle express a single myosin heavy chain (MyHC) isoform with the exception of MyHC2X and MyHC2B in some fibers. Modified, with permission, from reference ().
Figure 4. Figure 4. Motor units are classified according to their contractile and fatigue properties as slow‐twitch (type S) and as fast‐twitch units, which display fatigue‐resistant (type FR), fatigue‐intermediate (type FInt), and fatigable (type FF) characteristics. Expression of MyHC isoforms by muscle fibers corresponds with motor unit properties. Contraction speeds also vary across motor unit types. Reproduced from reference (); used with permission.
Figure 5. Figure 5. Cross‐bridges cycle between a strongly bound and an unbound state during force generation and contraction. Cross‐bridge cycling determines rates of cross‐bridge attachment (fapp) and detachment (gapp). Illustration copyrighted by the Mayo Clinic and Foundation and reproduced from reference (); used with permission.
Figure 6. Figure 6. Force measurements in single muscle fibers during maximal activation in rigor solution (without ATP and with free ionized Ca2+ concentration of 100 μmol/L, i.e., pCa 4.0), pCa4.0 solution (with ATP) and pCa9.0 solution (free ionized Ca2+ concentration of 1 nmol/L). Resting and activated stiffness were determined by imposing sinusoidal length oscillations (0.2% Lo) at 2 kHz. Reproduced from reference (); used with permission.
Figure 7. Figure 7. Force development in single diaphragm muscle fibers expressing slow (open symbol) and fast (closed symbols—in A: MyHC2A: ▴, MyHC2X: ▪, MyHC2B, and/or MyHC2X: ♦) isoforms of MyHC. Force depends on myoplasmic Ca2+ concentrations (pCa; –log[Ca2+]). Reproduced, with permission, from reference ().
Figure 8. Figure 8. Muscle force generation depends on sarcomere length and the overlap between thick and thin filaments, which determines the fraction of cross‐bridges that can form (αfs). Reproduced from reference (); used with permission.
Figure 9. Figure 9. Titin cDNA sequences for splice variants expressed in rabbit psoas and soleus muscles. Sequences predict differences in the I‐band region of titin. Estimated protein molecular weight is show on the right. The longer segments in soleus contribute to lower titin‐based passive tension. Titin‐based passive tension is similar for diaphragm and soleus (). Thus, we anticipate similar titin sequences for both muscles. Reproduced from reference (); used with permission from Springer®.
Figure 10. Figure 10. Force‐length relationship of rat diaphragm muscle during lengthening and shortening cycles. Results are from cycles of sinusoidal oscillations at 2 Hz and loops are displayed in clockwise orientation. Lo is optimal length and cycle strain is the amplitude of oscillations as percentage of Lo. Note that passive force during lengthening is higher than during shortening (hysteresis). The amount of hysteresis depends on resting length of the diaphragm. Viscous work (area within each loop) increases at longer lengths. Reproduced from reference (); used with permission.
Figure 11. Figure 11. Movement history‐dependence (thixotropy) of length‐tension relationship in diaphragm single fibers. Raw tracings of fiber length (A) and tension (B) in a chemically permeabilized fiber from mouse diaphragm (LF Ferreira, KS Campbell, and MB Reid; unpublished observations). Data collected during maximal calcium activation (pCa 4.5) at 15ºC. Fiber was stretched by 35 μm from the optimal fiber length (879 μm; sarcomere length 2.586 μm). (C) Relationship between tension and fiber length—data replotted from panel A. Hysteresis is greater in the first lengthening‐shortening cycle than in subsequent cycles. The initial portions of the first and second cycles are traced by blue and red lines, respectively. (D) Relationship between changes (Δ) in tension and fiber length shows a decrease in stiffness with a prior lengthening‐shortening cycle, that is, slope of relationship for second cycle (red circles) is approximately 30% lower than slope of first cycle (blue circles). Solid black lines are best fit from linear regression. For details on protocol and methods see Campbell and Moss () and Hardin et al. ().
Figure 12. Figure 12. Schematic illustration of proteins of the extracellular matrix, costamere, and intermediate filaments. The extracellular matrix and basement membrane include laminin, collagen IV, and intermediate filament (IF) proteins which include desmin (yellow) and keratins (K8/K19; red) plus other proteins not shown (synemin, paranemin, and syncoilin). Desmin surrounds the Z‐disks connecting myofibrils to each other and to the sarcolemma. Most IF proteins are linked to costameric proteins; keratin‐containing IF are located around the M‐line and also link to costameres. Ank, ankyrin; ANT, adenine nucleotide translocator; CK, creatine kinase; DG, dystroglycan; K, keratin; MLP, striated muscle‐specific LIM protein; SP, sarcospan; SG, sarcoglycan; and SR, sarcoplasmic reticulum. Reproduced from reference (); used with permission from Elsevier.
Figure 13. Figure 13. Force (normalized to percent maximum tetanic force) generated by cat diaphragm motor units at different frequencies of stimulation. Results are for individual motor units classified by their contractile and fatigue properties (see text for details). The steepest portion of the force‐frequency curve occurs between 10 and 30 Hz for all types of motor units in the diaphragm muscle (), consistent with onset and peak discharge frequencies of ∼8 and ∼25 Hz, respectively, for type S and FR units (top arrows) and ∼15 and ∼60 Hz, respectively, for type FInt and FF units (bottom arrows), reported in ().
Figure 14. Figure 14. Contribution of neuromuscular transmission failure to diaphragm muscle fatigue. Diaphragm muscle‐phrenic nerve preparations are stimulated electrically every 1 s via a suction electrode to the phrenic nerve (40 Hz in 330 ms trains) and direct muscle stimulation via plate electrodes is superimposed intermittently every 15 s. (A) Representative measurement of force developed by a mouse diaphragm muscle with repetitive stimulation. Reduced force generation by the diaphragm muscle reflects fatigue. The difference in force elicited by nerve and muscle stimulation reflects neuromuscular transmission failure. (B) Neuromuscular transmission failure (mean ± SE) measured in diaphragm muscles from adult rats and mice. *, statistically significant difference. Reproduced from reference (); used with permission.


Figure 1. Innervation of the cat diaphragm muscle. Phrenic nerve axons derived from the C5 segment of the cervical spinal cord innervate ventral aspects of the costal and crural regions of the diaphragm muscle, whereas axons derived from C6 innervate more dorsal aspects. Reproduced from reference (); used with permission.


Figure 2. Muscle fibers contain myofibrils (a), each comprising sarcomeres arranged in series which give muscle a striated appearance visible also in transmission electron micrographs. Thick and thin filaments in the sarcomere are composed of myosin (red) and actin (yellow), respectively, and their interaction provides the basis for force generation and contraction. In cross‐section, myosin and actin filaments are organized in a myofilament lattice, clearly visible with electron microscopy. Reproduced from reference (); used with permission.


Figure 3. Muscle fibers from the rat diaphragm muscle express a single myosin heavy chain (MyHC) isoform with the exception of MyHC2X and MyHC2B in some fibers. Modified, with permission, from reference ().


Figure 4. Motor units are classified according to their contractile and fatigue properties as slow‐twitch (type S) and as fast‐twitch units, which display fatigue‐resistant (type FR), fatigue‐intermediate (type FInt), and fatigable (type FF) characteristics. Expression of MyHC isoforms by muscle fibers corresponds with motor unit properties. Contraction speeds also vary across motor unit types. Reproduced from reference (); used with permission.


Figure 5. Cross‐bridges cycle between a strongly bound and an unbound state during force generation and contraction. Cross‐bridge cycling determines rates of cross‐bridge attachment (fapp) and detachment (gapp). Illustration copyrighted by the Mayo Clinic and Foundation and reproduced from reference (); used with permission.


Figure 6. Force measurements in single muscle fibers during maximal activation in rigor solution (without ATP and with free ionized Ca2+ concentration of 100 μmol/L, i.e., pCa 4.0), pCa4.0 solution (with ATP) and pCa9.0 solution (free ionized Ca2+ concentration of 1 nmol/L). Resting and activated stiffness were determined by imposing sinusoidal length oscillations (0.2% Lo) at 2 kHz. Reproduced from reference (); used with permission.


Figure 7. Force development in single diaphragm muscle fibers expressing slow (open symbol) and fast (closed symbols—in A: MyHC2A: ▴, MyHC2X: ▪, MyHC2B, and/or MyHC2X: ♦) isoforms of MyHC. Force depends on myoplasmic Ca2+ concentrations (pCa; –log[Ca2+]). Reproduced, with permission, from reference ().


Figure 8. Muscle force generation depends on sarcomere length and the overlap between thick and thin filaments, which determines the fraction of cross‐bridges that can form (αfs). Reproduced from reference (); used with permission.


Figure 9. Titin cDNA sequences for splice variants expressed in rabbit psoas and soleus muscles. Sequences predict differences in the I‐band region of titin. Estimated protein molecular weight is show on the right. The longer segments in soleus contribute to lower titin‐based passive tension. Titin‐based passive tension is similar for diaphragm and soleus (). Thus, we anticipate similar titin sequences for both muscles. Reproduced from reference (); used with permission from Springer®.


Figure 10. Force‐length relationship of rat diaphragm muscle during lengthening and shortening cycles. Results are from cycles of sinusoidal oscillations at 2 Hz and loops are displayed in clockwise orientation. Lo is optimal length and cycle strain is the amplitude of oscillations as percentage of Lo. Note that passive force during lengthening is higher than during shortening (hysteresis). The amount of hysteresis depends on resting length of the diaphragm. Viscous work (area within each loop) increases at longer lengths. Reproduced from reference (); used with permission.


Figure 11. Movement history‐dependence (thixotropy) of length‐tension relationship in diaphragm single fibers. Raw tracings of fiber length (A) and tension (B) in a chemically permeabilized fiber from mouse diaphragm (LF Ferreira, KS Campbell, and MB Reid; unpublished observations). Data collected during maximal calcium activation (pCa 4.5) at 15ºC. Fiber was stretched by 35 μm from the optimal fiber length (879 μm; sarcomere length 2.586 μm). (C) Relationship between tension and fiber length—data replotted from panel A. Hysteresis is greater in the first lengthening‐shortening cycle than in subsequent cycles. The initial portions of the first and second cycles are traced by blue and red lines, respectively. (D) Relationship between changes (Δ) in tension and fiber length shows a decrease in stiffness with a prior lengthening‐shortening cycle, that is, slope of relationship for second cycle (red circles) is approximately 30% lower than slope of first cycle (blue circles). Solid black lines are best fit from linear regression. For details on protocol and methods see Campbell and Moss () and Hardin et al. ().


Figure 12. Schematic illustration of proteins of the extracellular matrix, costamere, and intermediate filaments. The extracellular matrix and basement membrane include laminin, collagen IV, and intermediate filament (IF) proteins which include desmin (yellow) and keratins (K8/K19; red) plus other proteins not shown (synemin, paranemin, and syncoilin). Desmin surrounds the Z‐disks connecting myofibrils to each other and to the sarcolemma. Most IF proteins are linked to costameric proteins; keratin‐containing IF are located around the M‐line and also link to costameres. Ank, ankyrin; ANT, adenine nucleotide translocator; CK, creatine kinase; DG, dystroglycan; K, keratin; MLP, striated muscle‐specific LIM protein; SP, sarcospan; SG, sarcoglycan; and SR, sarcoplasmic reticulum. Reproduced from reference (); used with permission from Elsevier.


Figure 13. Force (normalized to percent maximum tetanic force) generated by cat diaphragm motor units at different frequencies of stimulation. Results are for individual motor units classified by their contractile and fatigue properties (see text for details). The steepest portion of the force‐frequency curve occurs between 10 and 30 Hz for all types of motor units in the diaphragm muscle (), consistent with onset and peak discharge frequencies of ∼8 and ∼25 Hz, respectively, for type S and FR units (top arrows) and ∼15 and ∼60 Hz, respectively, for type FInt and FF units (bottom arrows), reported in ().


Figure 14. Contribution of neuromuscular transmission failure to diaphragm muscle fatigue. Diaphragm muscle‐phrenic nerve preparations are stimulated electrically every 1 s via a suction electrode to the phrenic nerve (40 Hz in 330 ms trains) and direct muscle stimulation via plate electrodes is superimposed intermittently every 15 s. (A) Representative measurement of force developed by a mouse diaphragm muscle with repetitive stimulation. Reduced force generation by the diaphragm muscle reflects fatigue. The difference in force elicited by nerve and muscle stimulation reflects neuromuscular transmission failure. (B) Neuromuscular transmission failure (mean ± SE) measured in diaphragm muscles from adult rats and mice. *, statistically significant difference. Reproduced from reference (); used with permission.
References
 1.Adelman WJ, Palti Y, Senft JP. Potassium ion accumulation in a periaxonal space and its effect on the measurement of membrane potassium ion conductance. J Membr Biol 13: 387‐410, 1973.
 2.Aldrich TK, Shander A, Chaudhry I, Nagashima H. Fatigue of isolated rat diaphragm: Role of impaired neuromuscular transmission. J Appl Physiol 61: 1077‐1083, 1986.
 3.Aldrich TK. Transmission fatigue of the rabbit diaphragm. Respir Physiol 69: 307‐319, 1987.
 4.Allan DW, Greer JJ. Embryogenesis of the phrenic nerve and diaphragm in the fetal rat. J Comp Neurol 382: 459‐468, 1997.
 5.Allen DG. Skeletal muscle function: Role of ionic changes in fatigue, damage and disease. Clin Exp Pharmacol Physiol 31: 485‐493, 2004.
 6.Ameredes BT, Zhan W‐Z, Vanderboom R, Prakash YS, Sieck GC. Power fatigue of the rat diaphragm muscle. J Appl Physiol 89: 2215‐2219, 2000.
 7.Anderson J, Li Z, Goubel F. Passive stiffness is increased in soleus muscle of desmin knockout mouse. Muscle Nerve 24: 1090‐1092, 2001.
 8.Argadine HM, Hellyer NJ, Mantilla CB, Zhan WZ, Sieck GC. The effect of denervation on protein synthesis and degradation in adult rat diaphragm muscle. J Appl Physiol 107: 438‐444, 2009.
 9.Argadine HM, Mantilla CB, Zhan WZ, Sieck GC. Intracellular signaling pathways regulating net protein balance following diaphragm muscle denervation. Am J Physiol Cell Physiol 300: C318‐C327, 2011.
 10.Baar K, Esser K. Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol Cell Physiol 276: C120‐C127, 1999.
 11.Babiuk RP, Zhang W, Clugston R, Allan DW, Greer JJ. Embryological origins and development of the rat diaphragm. J Comp Neurol 455: 477‐487, 2003.
 12.Bagni MA, Cecchi G, Colomo F, Garzella P. Are weakly binding bridges present in resting intact muscle fibers? Biophys J 63: 1412‐1415, 1992.
 13.Bagni MA, Cecchi G, Colomo F, Garzella P. Absence of mechanical evidence for attached weakly binding cross‐bridges in frog relaxed muscle fibres. J Physiol 482(Pt 2): 391‐400, 1995.
 14.Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H, Labeit S. The complete gene sequence of titin, expression of an unusual approximately 700‐kDa titin isoform, and its interaction with obscurin identify a novel Z‐line to I‐band linking system. Circ Res 89: 1065‐1072, 2001.
 15.Bar A, Pette D. Three fast myosin heavy chains in adult rat skeletal muscle. FEBS Lett 235: 153‐155, 1988.
 16.Barron DH, Matthews BHC. Intermittent conduction in the spinal cord. J Physiol (Lond) 85: 73‐103, 1935.
 17.Bartlett D, Jr., Remmers JE, Gautier H. Laryngeal regulation of respiratory airflow. Respir Physiol 18: 194‐204, 1973.
 18.Bartoo ML, Popov VI, Fearn LA, Pollack GH. Active tension generation in isolated skeletal myofibrils. J Muscle Res Cell Motil 14: 498‐510, 1993.
 19.Baumeister W, Walz J, Zuhl F, Seemuller E. The proteasome: Paradigm of a self‐compartmentalizing protease. Cell 92: 367‐380, 1998.
 20.Bazzy AR, Donnelly DF. Failure to generate action potentials in newborn diaphragms following nerve stimulation. Brain Res 600: 349‐352, 1993.
 21.Bellemare F, Bigland‐Ritchie B. Central components of diaphragmatic fatigue assessed by phrenic nerve stimulation. J Appl Physiol 62: 1307‐1316, 1987.
 22.Bellemare F, Bigland‐Ritchie B, Woods JJ. Contractile properties of the human diaphragm in vivo. J Appl Physiol 61: 1153‐1161, 1986.
 23.Benard G, Karbowski M. Mitochondrial fusion and division: Regulation and role in cell viability. Semin Cell Dev Biol 20: 365‐374, 2009.
 24.Berthier C, Blaineau S. Supramolecular organization of the subsarcolemmal cytoskeleton of adult skeletal muscle fibers. A review. Biol Cell 89: 413‐434, 1997.
 25.Betz WJ. Depression of transmitter release at the neuromuscular junction of the frog. J Physiol 206: 629‐644, 1970.
 26.Betz WJ, Ridge RM, Bewick GS. Comparison of FM1‐43 staining patterns and electrophysiological measures of transmitter release at the frog neuromuscular junction. J Physiol Paris 87: 193‐202, 1993.
 27.Bicknese S, Periasamy N, Shohet SB, Verkman AS. Cytoplasmic viscosity near the cell plasma membrane: Measurement by evanescent field frequency‐domain microfluorimetry. Biophys J 65: 1272‐1282, 1993.
 28.Biggs WH, 3rd, Cavenee WK, Arden KC. Identification and characterization of members of the FKHR (FOX O) subclass of winged‐helix transcription factors in the mouse. Mamm Genome 12: 416‐425, 2001.
 29.Biggs WH, III, Meisenhelder J, Hunter T, Cavenee WK, Arden KC. Protein kinase B/Akt‐mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A 96: 7421‐7426, 1999.
 30.Bigland‐Ritchie B, Donovan EF, Roussos CS. Conduction velocity and EMG power spectrum changes in fatigue of sustained maximal efforts. J Appl Physiol 51: 1300‐1305, 1981.
 31.Bigland‐Ritchie B, Jones DA, Woods JJ. Excitation frequency and muscle fatigue: Electrical responses during human voluntary and stimulated contractions. Exp Neurol 64: 414‐427, 1979.
 32.Bigland‐Ritchie B, Kukulka CG, Lippold OCJ, Woods JJ. The absence of neuromuscular transmission failure in sustained maximal voluntary contractions. J Physiol 330: 265‐278, 1982.
 33.Bigland‐Ritchie B, Lippold OCJ. Changes in muscle activation during prolonged maximal voluntary contractions. J Physiol (Lond) 330: 265‐278, 1979.
 34.Bittner GD. Differentiation of nerve terminals in the crayfish opener muscle and its functional significance. J Gen Physiol 51: 731‐758, 1968.
 35.Blanco CE, Fournier M, Sieck GC. Metabolic variability within individual fibres of the cat tibialis posterior and diaphragm muscles. Histochem J 23: 366‐374, 1991.
 36.Blanco CE, Sieck GC. Quantitative determination of calcium‐activated myosin adenosine triphosphatase activity in rat skeletal muscle fibres. Histochem J 24: 431‐444, 1992.
 37.Blanco CE, Sieck GC, Edgerton VR. Quantitative histochemical determination of succinic dehydrogenase activity in skeletal muscle fibres. Histochem J 20: 230‐243, 1988.
 38.Bloch RJ, Gonzalez‐Serratos H. Lateral force transmission across costameres in skeletal muscle. Exerc Sport Sci Rev 31: 73‐78, 2003.
 39.Boczkowski J, Dureuil B, Branger C, Pavlovic D, Murciano D, Pariente R, Aubier M. Effects of sepsis on diaphragmatic function in rats. Am Rev Respir Dis 138: 260‐265, 1988.
 40.Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294: 1704‐1708, 2001.
 41.Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3: 1014‐1019, 2001.
 42.Bolster DR, Crozier SJ, Kimball SR, Jefferson LS. AMP‐activated protein kinase suppresses protein synthesis in rat skeletal muscle through down‐regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 277: 23977‐23980, 2002.
 43.Boriek AM, Capetanaki Y, Hwang W, Officer T, Badshah M, Rodarte J, Tidball JG. Desmin integrates the three‐dimensional mechanical properties of muscles. Am J Physiol Cell Physiol 280: C46‐C52, 2001.
 44.Boriek AM, Hwang W, Trinh L, Rodarte JR. Shape and tension distribution of the active canine diaphragm. Am J Physiol Regul Integr Comp Physiol 288: R1021‐R1027, 2005.
 45.Boriek AM, Kelly NG, Rodarte JR, Wilson TA. Biaxial constitutive relations for the passive canine diaphragm. J Appl Physiol 89: 2187‐2190, 2000.
 46.Boriek AM, Miller CC, 3rd, Rodarte JR. Muscle fiber architecture of the dog diaphragm. J Appl Physiol 84: 318‐326, 1998.
 47.Boriek AM, Rodarte JR. Inferences on passive diaphragm mechanics from gross anatomy. J Appl Physiol 77: 2065‐2070, 1994.
 48.Boriek AM, Rodarte JR, Reid MB. Shape and tension distribution of the passive rat diaphragm. Am J Physiol Regul Integr Comp Physiol 280: R33‐R41, 2001.
 49.Boriek AM, Zhu D, Zeller M, Rodarte JR. Inferences on force transmission from muscle fiber architecture of the canine diaphragm. Am J Physiol Regul Integr Comp Physiol 280: R156‐R165, 2001.
 50.Bosco C, Komi PV. Potentiation of the mechanical behavior of the human skeletal muscle through prestretching. Acta Physiol Scand 106: 467‐472, 1979.
 51.Bracher A, Coleman R, Schnall R, Oliven A. Histochemical properties of upper airway muscles: Comparison of dilator and nondilator muscles. Eur Respir J 10: 990‐993, 1997.
 52.Brandt PW, Diamond MS, Rutchik JS, Schachat FH. Co‐operative interactions between troponin‐tropomyosin units extend the length of the thin filament in skeletal muscle. J Mol Biol 195: 885‐896, 1987.
 53.Brenner B. Kinetics of the crossbridge cycle derived from measurements of force, rate of force development and isometric ATPase. J Muscle Res Cell Motil 7: 75‐76, 1986.
 54.Brenner B. The necessity of using two parameters to describe isotonic shortening velocity of muscle tissue: The effect of various interventions upon initial shortening velocity (vi) and curvature (b). Basic Res Cardiol 81: 54‐69, 1986.
 55.Brenner B, Eisenberg E. Rate of force generation in muscle: Correlation with actomyosin ATPase activity in solution. Proc Nat Acad Sci USA 83: 3542‐3546, 1986.
 56.Brooke MH, Kaiser KK. Muscle fiber types: How many and what kind? Arch Neurol 23: 369‐379, 1970.
 57.Brooks SV, Faulkner JA. Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol 404: 71‐82, 1988.
 58.Brotto MA, Biesiadecki BJ, Brotto LS, Nosek TM, Jin JP. Coupled expression of troponin T and troponin I isoforms in single skeletal muscle fibers correlates with contractility. Am J Physiol Cell Physiol 290: C567‐C576, 2006.
 59.Brown LM, Gonzalez‐Serratos H, Huxley AF. Sarcomere and filament lengths in passive muscle fibres with wavy myofibrils. J Muscle Res Cell Motil 5: 293‐314, 1984.
 60.Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857‐868, 1999.
 61.Buffelli M, Burgess RW, Feng G, Lobe CG, Lichtman JW, Sanes JR. Genetic evidence that relative synaptic efficacy biases the outcome of synaptic competition. Nature 424: 430‐434, 2003.
 62.Bulbring E. Observations on the isolated phrenic nerve diaphragm preparation of the rat. Br J Pharmacol 1: 38‐61, 1946.
 63.Burke RE, Levine DN, Tsairis P, Zajac FE, 3rd. Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol (Lond) 234: 723‐748, 1973.
 64.Burke RE, Levine DN, Zajac FE, 3rd. Mammalian motor units: Physiological‐histochemical correlation in three types in cat gastrocnemius. Science 174: 709‐712, 1971.
 65.Cai D, Frantz JD, Tawa NE, Jr., Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ, Shoelson SE. IKKbeta/NF‐kappaB activation causes severe muscle wasting in mice. Cell 119: 285‐298, 2004.
 66.Campbell KS, Lakie M. A cross‐bridge mechanism can explain the thixotropic short‐range elastic component of relaxed frog skeletal muscle. J Physiol 510(Pt 3): 941‐962, 1998.
 67.Campbell KS, Moss RL. A thixotropic effect in contracting rabbit psoas muscle: Prior movement reduces the initial tension response to stretch. J Physiol 525(Pt 2): 531‐548, 2000.
 68.Campbell KS, Moss RL. History‐dependent mechanical properties of permeabilized rat soleus muscle fibers. Biophys J 82: 929‐943, 2002.
 69.Capetanaki Y, Bloch RJ, Kouloumenta A, Mavroidis M, Psarras S. Muscle intermediate filaments and their links to membranes and membranous organelles. Exp Cell Res 313: 2063‐2076, 2007.
 70.Carrera M, Barbe F, Sauleda J, Tomas M, Gomez C, Agusti AG. Patients with obstructive sleep apnea exhibit genioglossus dysfunction that is normalized after treatment with continuous positive airway pressure. Am J Resp Crit Care Med 159: 1960‐1966, 1999.
 71.Chandra M, Mamidi R, Ford S, Hidalgo C, Witt C, Ottenheijm C, Labeit S, Granzier H. Nebulin alters cross‐bridge cycling kinetics and increases thin filament activation: A novel mechanism for increasing tension and reducing tension cost. J Biol Chem 284: 30889‐30896, 2009.
 72.Christensen BN, Martin AR. Estimates of probability of transmitter release at the mammalian neuromuscular junction. J Physiol 210: 933‐945, 1970.
 73.Claflin DR, Faulkner JA. Shortening velocity extrapolated to zero load and unloaded shortening velocity of whole rat skeletal muscle. J Physiol 359: 357‐363, 1985.
 74.Claflin DR, Faulkner JA. The force‐velocity relationship at high shortening velocities in the soleus muscle of the rat. J Physiol (London) 411: 627‐637, 1989.
 75.Clark KA, McElhinny AS, Beckerle MC, Gregorio CC. Striated muscle cytoarchitecture: An intricate web of form and function. Annu Rev Cell Dev Biol 18: 637‐706, 2002.
 76.Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, Rakhilin SV, Stitt TN, Patterson C, Latres E, Glass DJ. The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone‐treated skeletal muscle. Cell Metab 6: 376‐385, 2007.
 77.Close RI. Dynamic properties of mammalian skeletal muscles. Physiol Rev 52: 129‐197, 1972.
 78.Coirault C, Samuel JL, Chemla D, Pourny JC, Lambert F, Marotte F, Lecarpentier Y. Increased compliance in diaphragm muscle of the cardiomyopathic Syrian hamster. J Appl Physiol 85: 1762‐1769, 1998.
 79.Cooke R. The actomyosin engine. FASEB J 9: 636‐642, 1995.
 80.Corton JM, Gillespie JG, Hawley SA, Hardie DG. 5‐aminoimidazole‐4‐carboxamide ribonucleoside. A specific method for activating AMP‐activated protein kinase in intact cells? Eur J Biochem 229: 558‐565, 1995.
 81.D'Antona G, Megighian A, Bortolotto S, Pellegrino MA, Marchese‐Ragona R, Staffieri A, Bottinelli R, Reggiani C. Contractile properties and myosin heavy chain isoform composition in single fibre of human laryngeal muscles. J Muscle Res Cell Motil 23: 187‐195, 2002.
 82.Damiani E, Margreth A. Characterization study of the ryanodine receptor and of calsequestrin isoforms of mammalian skeletal muscles in relation to fibre types. J Muscle Res Cell Motil 15: 86‐101, 1994.
 83.Danjo W, Fujimura N, Ujike Y. Effect of pentoxifylline on diaphragmatic contractility in septic rats. Acta Med Okayama 62: 101‐107, 2008.
 84.de Tombe PP, ter Keurs HE. An internal viscous element limits unloaded velocity of sarcomere shortening in rat myocardium. J Physiol 454: 619‐642, 1992.
 85.De Troyer A, Sampson M, Sigrist S, Macklem PT. The diaphragm: Two muscles. Science 213: 237‐238, 1981.
 86.De Troyer A, Sampson M, Sigrist S, Macklem PT. Action of costal and crural parts of the diaphragm on the rib cage in dog. J Appl Physiol 53(1): 30‐39, 1982.
 87.Dempsey JA, Veasey SC, Morgan BJ, O'Donnell CP. Pathophysiology of sleep apnea. Physiol Rev 90: 47‐112, 2010.
 88.Deval C, Mordier S, Obled C, Bechet D, Combaret L, Attaix D, Ferrara M. Identification of cathepsin L as a differentially expressed message associated with skeletal muscle wasting. Biochem J 360: 143‐150, 2001.
 89.Diaz PT, Brownstein E, Clanton TL. Effects of N‐acetylcysteine on in vitro diaphragm function are temperature dependent. J Appl Physiol 77: 2434‐2439, 1994.
 90.Dick TE, Kong FJ, Berger AJ. Correlation of recruitment order with axonal conduction velocity for supraspinally driven diaphragmatic motor units. J Neurophysiol 57: 245‐259, 1987.
 91.Diffee GM, Greaser ML, Reinach FC, Moss RL. Effects of a non‐divalent cation binding mutant of myosin regulatory light chain on tension generation in skinned skeletal muscle fibers. Biophys J 68: 1443‐1452, 1995.
 92.Eccles JC, Sherrington CS. Numbers and contraction values of individual motor units examined in some muscles of the limb. Am J Physiol 253: 210‐218, 1930.
 93.Eddinger TJ, Moss RL. Mechanical properties of skinned single fibers of identified types from rat diaphragm. Am J Physiol 253: C210‐C218, 1987.
 94.Edman KAP. The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres. J Physiol 291: 143‐159, 1979.
 95.Edwards RH. Human muscle function and fatigue. CIBA Found Symp 82: 1‐18, 1981.
 96.Ellisman MH, Rash JE, Staehelin LA, Porter KR. Studies of excitable membranes. II. A comparison of specializations at neuromuscular junctions and nonjunctional sarcolemmas of mammalian fast and slow twitch muscle fibers. J Cell Biol 68: 752‐774, 1976.
 97.Elmqvist D, Quastel DM. A quantitative study of end‐plate potentials in isolated human muscle. J Physiol 178: 505‐529, 1965.
 98.Enad JG, Fournier M, Sieck GC. Oxidative capacity and capillary density of diaphragm motor units. J Appl Physiol 67: 620‐627, 1989.
 99.Enright PL, Kronmal RA, Manolio TA, Schenker MB, Hyatt RE. Respiratory muscle strength in the elderly. Correlates and reference values. Cardiovascular Health Study Research Group. Am J Respir Crit Care Med 149: 430‐438, 1994.
 100.Ermilov LG, Mantilla CB, Rowley KL, Sieck GC. Safety factor for neuromuscular transmission at type‐identified diaphragm fibers. Muscle Nerve 35: 800‐803, 2007.
 101.Ermilov LG, Pulido JN, Atchison FW, Zhan WZ, Ereth MH, Sieck GC, Mantilla CB. Impairment of diaphragm muscle force and neuromuscular transmission after normothermic cardiopulmonary bypass: Effect of low dose inhaled CO. Am J Physiol Regul Integr Comp Physiol 298: R784‐R789, 2010.
 102.Farkas GA. Mechanical properties of respiratory muscles in primates. Respir Physiol 86: 41‐50, 1991.
 103.Farkas GA, Decramer M, Rochester DF, De Troyer A. Contractile properties of intercostal muscles and their functional significance. J Appl Physiol 59: 528‐535, 1985.
 104.Farkas GA, Roussos C. Diaphragm in emphysematous hamsters: Sarcomere adaptability. J Appl Physiol 54: 1635‐1640, 1983.
 105.Farkas GA, Rochester DF. Contractile characteristics and operating lengths of canine neck inspiratory muscles. J Appl Physiol 61: 220‐226, 1986.
 106.Farkas GA, Rochester DF. Functional characteristics of canine costal and crural diaphragm. J Appl Physiol 65: 2253‐2260, 1988a.
 107.Farkas GA, Rochester DF. Characteristics and functional significance of canine abdominal muscles. J Appl Physiol 65: 2427‐2433, 1988b.
 108.Faulkner JA, Jones DA, Round JM. Injury to skeletal muscles of mice by forced lengthening during contractions. Q J Exp Physiol 74: 661‐670, 1989.
 109.Faulkner JA, Maxwell LC, Ruff GL, White TP. The diaphragm as a muscle. Am Rev Respir Dis 119: 89‐92, 1979.
 110.Fenn WO. A quantitative comparison between the energy liberated and the work performed by the isolated sartorius muscle of the frog. J Physiol (London) 58: 175‐203, 1923.
 111.Fenn WO. The relation between the work performed and the energy liberated in muscular contraction. J Physiol (Lond) 58: 373‐395, 1924.
 112.Fenn WO, Rhan H, editors. Respiration. Washington, DC: American Physiological Society, 1964.
 113.Ferreira LF, Gilliam LA, Reid MB. L‐2‐Oxothiazolidine‐4‐carboxylate reverses glutathione oxidation and delays fatigue of skeletal muscle in vitro. J Appl Physiol 107: 211‐216, 2009.
 114.Ferreira LF, Moylan JS, Gilliam LA, Smith JD, Nikolova‐Karakashian M, Reid MB. Sphingomyelinase stimulates oxidant signaling to weaken skeletal muscle and promote fatigue. Am J Physiol Cell Physiol 299: C552‐C560, 2010.
 115.Flucher BE, Franzini‐Armstrong C. Formation of junctions involved in excitation‐contraction coupling in skeletal and cardiac muscle. Proc Natl Acad Sci U S A 93: 8101‐8106, 1996.
 116.Fournier M, Alula M, Sieck GC. Neuromuscular transmission failure during postnatal development. Neurosci Lett 125: 34‐36, 1991.
 117.Fournier M, Sieck GC. Mechanical properties of muscle units in the cat diaphragm. J Neurophysiol 59: 1055‐1066, 1988.
 118.Fournier M, Sieck GC. Somatotopy in the segmental innervation of the cat diaphragm. J Appl Physiol 64: 291‐298, 1988.
 119.Franzini‐Armstrong C. Studies of the triad. I. Structure of the junction in frog twitch fibers. J Cell Biol 47: 488‐499, 1970.
 120.Franzini‐Armstrong C, Jorgensen AO. Structure and development of E‐C coupling units in skeletal muscle. Annu Rev Physiol 56: 509‐534, 1994.
 121.Freiburg A, Trombitas K, Hell W, Cazorla O, Fougerousse F, Centner T, Kolmerer B, Witt C, Beckmann JS, Gregorio CC, Granzier H, Labeit S. Series of exon‐skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ Res 86: 1114‐1121, 2000.
 122.Froemming GR, Murray BE, Harmon S, Pette D, Ohlendieck K. Comparative analysis of the isoform expression pattern of Ca(2+)‐ regulatory membrane proteins in fast‐twitch, slow‐twitch, cardiac, neonatal and chronic low‐frequency stimulated muscle fibers. Biochim Biophys Acta 1466: 151‐168, 2000.
 123.Fujita H, Labeit D, Gerull B, Labeit S, Granzier HL. Titin isoform‐dependent effect of calcium on passive myocardial tension. Am J Physiol Heart Circ Physiol 287: H2528‐H2534, 2004.
 124.Fukuda N, Granzier HL, Ishiwata S, Kurihara S. Physiological functions of the giant elastic protein titin in mammalian striated muscle. J Physiol Sci 58: 151‐159, 2008.
 125.Fukuda N, Wu Y, Nair P, Granzier HL. Phosphorylation of titin modulates passive stiffness of cardiac muscle in a titin isoform‐dependent manner. J Gen Physiol 125: 257‐271, 2005.
 126.Fuller DD, Fregosi RF. Fatiguing contractions of tongue protrudor and retractor muscles: Influence of systemic hypoxia. J Appl Physiol 88: 2123‐2130, 2000.
 127.Furuno K, Goodman MN, Goldberg AL. Role of different proteolytic systems in the degradation of muscle proteins during denervation atrophy. J Biol Chem 265: 8550‐8557, 1990.
 128.Gautsch TA, Anthony JC, Kimball SR, Paul GL, Layman DK, Jefferson LS. Availability of eIF4E regulates skeletal muscle protein synthesis during recovery from exercise. Am J Physiol 274: C406‐C414, 1998.
 129.Gea J, Zhu E, Galdiz JB, Comtois N, Salazkin I, Fiz JA, Grassino A. Functional consequences of eccentric contractions of the diaphragm. Arch Bronconeumol 45: 68‐74, 2009.
 130.Geiger PC, Bailey JP, Mantilla CB, Zhan WZ, Sieck GC. Mechanisms underlying myosin heavy chain expression during development of the rat diaphragm muscle. J Appl Physiol 101: 1546‐1555, 2006.
 131.Geiger PC, Bailey JP, Zhan WZ, Mantilla CB, Sieck GC. Denervation‐induced changes in myosin heavy chain expression in the rat diaphragm muscle. J Appl Physiol 95: 611‐619, 2003.
 132.Geiger PC, Cody MJ, Han YS, Hunter LW, Zhan WZ, Sieck GC. Effects of hypothyroidism on maximum specific force in rat diaphragm muscle fibers. J Appl Physiol 92: 1506‐1514, 2002.
 133.Geiger PC, Cody MJ, Macken RL, Bayrd ME, Sieck GC. Mechanisms underlying increased force generation by rat diaphragm muscle fibers during development. J Appl Physiol 90: 380‐388, 2001a.
 134.Geiger PC, Cody MJ, Macken RL, Bayrd ME, Sieck GC. Effect of unilateral denervation on maximum specific force in rat diaphragm muscle fibers. J Appl Physiol 90: 1196‐1204, 2001b.
 135.Geiger PC, Cody MJ, Sieck GC. Force‐calcium relationship depends on myosin heavy chain and troponin isoforms in rat diaphragm muscle fibers. J Appl Physiol 87: 1894‐1900, 1999.
 136.Geiger PC, Cody MJ, Macken RL, Sieck GC. Maximum specific force depends on myosin heavy chain content in rat diaphragm muscle fibers. J Appl Physiol 89: 695‐703, 2000.
 137.Gertler RA, Robbins N. Differences in neuromuscular transmission in red and white muscles. Brain Res 142: 160‐164, 1978.
 138.Gilliam LA, Ferreira LF, Bruton JD, Moylan JS, Westerblad H, St Clair DK, Reid MB. Doxorubicin acts through tumor necrosis factor receptor subtype 1 to cause dysfunction of murine skeletal muscle. J Appl Physiol 107: 1935‐1942, 2009.
 139.Glass DJ. Molecular mechanisms modulating muscle mass. Trends Mol Med 9: 344‐350, 2003.
 140.Glavinovic MI. Change of statistical parameters of transmitter release during various kinetic tests in unparalysed voltage‐clamped rat diaphragm. J Physiol 290: 481‐497, 1979.
 141.Goffart M, Ritchie JM. The effect of adrenaline on the contraction of mammalian skeletal muscle. J Physiol 116: 357‐371, 1952.
 142.Goldman YE, Homsher E. Molecular physiology of the cross‐bridge cycle. In: Engel A, Franzini‐Armstrong C, editors. Myology: Basic and Clinical. New York, NY: McGraw‐Hill, 2004, pp. 187‐202.
 143.Goldstein SS, Rall W. Changes of action potential shape and velocity for changing core conductor geometry. Biophys J 14: 731‐757, 1974.
 144.Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL. Atrogin‐1, a muscle‐specific F‐box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 98: 14440‐14445, 2001.
 145.Goodman C, Patterson M, Stephenson G. MHC‐based fiber type and E‐C coupling characteristics in mechanically skinned muscle fibers of the rat. Am J Physiol Cell Physiol 284: C1448‐C1459, 2003.
 146.Gordon AM, Huxley AF, Julian FJ. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184: 170‐192, 1966.
 147.Gordon DC, Hammond CG, Fisher JT, Richmond FJ. Muscle‐fiber architecture, innervation, and histochemistry in the diaphragm of the cat. J Morphol 201: 131‐143, 1989.
 148.Gorza L. Identification of a novel type 2 fiber population in mammalian skeletal muscle by combined use of histochemical myosin ATPase and anti‐myosin monoclonal antibodies. J Histochem Cytochem 38: 257‐265, 1990.
 149.Gorza L, Gundersen K, Lomo T, Schiaffino S, Westgaard RH. Slow‐to‐fast transformation of denervated soleus muscles by chronic high‐frequency stimulation in the rat. J Physiol 402: 627‐649, 1988.
 150.Gosselin LE, Johnson BD, Sieck GC. Age‐related changes in diaphragm muscle contractile properties and myosin heavy chain isoforms [published erratum appears in Am J Respir Crit Care Med 1994 Sep;150(3):879]. Am J Respir Crit Care Med 150: 174‐178, 1994.
 151.Gosselin LE, Martinez DA, Vailas AC, Sieck GC. Interstitial space and collagen alterations of the developing rat diaphragm. J Appl Physiol 74: 2450‐2455, 1993.
 152.Gosselin LE, Martinez DA, Vailas AC, Sieck GC. Passive length‐force properties of senescent diaphragm: Relationship with collagen characteristics. J Appl Physiol 76: 2680‐2685, 1994.
 153.Gosselin LE, Sieck GC, Aleff RA, Martinez DA, Vailas AC. Changes in diaphragm muscle collagen gene expression after acute unilateral denervation. J Appl Physiol 79: 1249‐1254, 1995.
 154.Gosselin LE, Williams JE, Personius K, Farkas GA. A comparison of factors associated with collagen metabolism in different skeletal muscles from dystrophic (mdx) mice: Impact of pirfenidone. Muscle Nerve 35: 208‐216, 2007.
 155.Gosselin LE, Zhan WZ, Sieck GC. Hypothyroid‐mediated changes in adult rat diaphragm muscle contractile properties and MHC isoform expression. J Appl Physiol 80: 1934‐1939, 1996.
 156.Gransee HM, Mantilla CB, Sieck GC. Respiratory muscle plasticity. Compr Physiol 2: 1441‐1462, 2012.
 157.Granzier H, Labeit S. Structure‐function relations of the giant elastic protein titin in striated and smooth muscle cells. Muscle Nerve 36: 740‐755, 2007.
 158.Granzier HL, Irving TC. Passive tension in cardiac muscle: Contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J 68: 1027‐1044, 1995.
 159.Granzier HL, Labeit S. The giant protein titin: A major player in myocardial mechanics, signaling, and disease. Circ Res 94: 284‐295, 2004.
 160.Granzier HL, Wang K. Passive tension and stiffness of vertebrate skeletal and insect flight muscles: The contribution of weak cross‐bridges and elastic filaments. Biophys J 65: 2141‐2159, 1993.
 161.Greenberg MJ, Mealy TR, Jones M, Szczesna‐Cordary D, Moore JR. The direct molecular effects of fatigue and myosin regulatory light chain phosphorylation on the actomyosin contractile apparatus. Am J Physiol Regul Integr Comp Physiol 298: R989‐R996, 2010.
 162.Greenberg MJ, Mealy TR, Watt JD, Jones M, Szczesna‐Cordary D, Moore JR. The molecular effects of skeletal muscle myosin regulatory light chain phosphorylation. Am J Physiol Regul Integr Comp Physiol 297: R265‐R274, 2009.
 163.Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, Gygi SP, Brunet A. An AMPK‐FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17: 1646‐1656, 2007.
 164.Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP, Brunet A. The energy sensor AMP‐activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 282: 30107‐30119, 2007.
 165.Greer JJ, Allan DW, Martin‐Caraballo M, Lemke RP. An overview of phrenic nerve and diaphragm muscle development in the perinatal rat. J Appl Physiol 86: 779‐786, 1999.
 166.Gregorevic P, Plant DR, Leeding KS, Bach LA, Lynch GS. Improved contractile function of the mdx dystrophic mouse diaphragm muscle after insulin‐like growth factor‐I administration. Am J Pathol 161: 2263‐2272, 2002.
 167.Greising SM, Gransee HM, Mantilla CB, Sieck GC. Systems biology of skeletal muscle: Fiber type as an organizing principle. Wiley Interdiscip Rev Syst Biol Med 4: 457‐473, 2012.
 168.Griffiths RI, Berger PJ. Functional development of the sheep diaphragmatic ligament. J Physiol 492(Pt 3): 913‐919, 1996.
 169.Griffiths RI, Shadwick RE, Berger PJ. Functional importance of a highly elastic ligament on the mammalian diaphragm. Proc Biol Sci 249: 199‐204, 1992.
 170.Grob D. Muscular disease. Bull NY Acad Med 37: 809‐834, 1961.
 171.Grossman Y, Parnas I, Spira ME. Differential conduction block in branches of a bifurcating axon. J Physiol 295: 283‐305, 1979.
 172.Gulati AK, Reddi AH, Zalewski AA. Changes in the basement membrane zone components during skeletal muscle fiber degeneration and regeneration. J Cell Biol 97: 957‐962, 1983.
 173.Guyton AC, Hall JE. Textbook of Medical Physiology. Philadelphia, PA: W.B. Saunders Co., 1999.
 174.Han YS, Geiger PC, Cody MJ, Macken RL, Sieck GC. ATP consumption rate per cross bridge depends on myosin heavy chain isoform. J Appl Physiol 94: 2188‐2196, 2003.
 175.Hardin BJ, Campbell KS, Smith JD, Arbogast S, Smith J, Moylan JS, Reid MB. TNF‐alpha acts via TNFR1 and muscle‐derived oxidants to depress myofibrillar force in murine skeletal muscle. J Appl Physiol 104: 694‐699, 2008.
 176.Hatt H, Smith DO. Synaptic depression related to presynaptic axon conduction block. J Physiol 259: 367‐393, 1976.
 177.Hebb DO. The Organization of Behavior. New York: John Wiley & Sons, 1949.
 178.Hellyer NJ, Mantilla CB, Park EW, Zhan WZ, Sieck GC. Neuregulin‐dependent protein synthesis in C2C12 myotubes and rat diaphragm muscle. Am J Physiol Cell Physiol 291: C1056‐C1061, 2006.
 179.Henneman E, Olson CB. Relations between structure and function in the design of skeletal muscles. J Neurophysiol 28: 581‐598, 1965.
 180.Henneman E, Somjen G, Carpenter DO. Functional significance of cell size in spinal motoneurons. J Neurophysiol 28: 560‐580, 1965.
 181.Hill AV. The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond 126: 136‐195, 1938.
 182.Hill DK. Tension due to interaction between the sliding filaments in resting striated muscle. The effect of stimulation. J Physiol 199: 637‐684, 1968.
 183.Hisa Y, Malmgren LT, Lyon MJ. Quantitative histochemical studies on the cat infrahyoid muscles. Otolaryngol Head Neck Surg 103: 723‐732, 1990.
 184.Hlastala MP, Berger AJ. Physiology of Respiration. New York, NY: Oxford University Press, 2001.
 185.Homma I, Hagbarth KE. Thixotropy of rib cage respiratory muscles in normal subjects. J Appl Physiol 89: 1753‐1758, 2000.
 186.Horowits R. The physiological role of titin in striated muscle. Rev Physiol Biochem Pharmacol 138: 57‐96, 1999.
 187.Hubmayr RD, Farkas GA, Tao HY, Sieck GC, Margulies SS. Diaphragm mechanics in dogs with unilateral emphysema. J Clin Invest 91: 1598‐1603, 1993.
 188.Huijing PA. Muscle as a collagen fiber reinforced composite: A review of force transmission in muscle and whole limb. J Biomech 32: 329‐345, 1999.
 189.Hunter RB, Kandarian SC. Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy. J Clin Invest 114: 1504‐1511, 2004.
 190.Hunter RB, Stevenson E, Koncarevic A, Mitchell‐Felton H, Essig DA, Kandarian SC. Activation of an alternative NF‐kappaB pathway in skeletal muscle during disuse atrophy. FASEB J 16: 529‐538, 2002.
 191.Huxley AF. Muscle structure and theories of contraction. Prog Biophysics Biophys Chem 7: 255‐318, 1957.
 192.Huxley AF, Niedergerke R. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature 173: 971‐973, 1954.
 193.Huxley AF, Simmons RM. Proposed mechanism of force generation in striated muscle. Nature 233: 533‐538, 1971.
 194.Huxley AF, Taylor RE. Local activation of striated muscle fibres. J Physiol (Lond) 144: 426‐441, 1958.
 195.Huxley H, Hanson J. Changes in the cross‐striations of muscle during contraction and stretch and their structural interpretation. Nature 173: 973‐976, 1954.
 196.Hwang W, Kelly NG, Boriek AM. Passive mechanics of muscle tendinous junction of canine diaphragm. J Appl Physiol 98: 1328‐1333, 2005.
 197.Isaza R, Behnke BJ, Bailey JK, McDonough P, Gonzalez NC, Poole DC. Arterial blood gas control in the upright versus recumbent Asian elephant. Respir Physiol Neurobiol 134: 169‐176, 2003.
 198.Izumizaki M, Iwase M, Ohshima Y, Homma I. Acute effects of thixotropy conditioning of inspiratory muscles on end‐expiratory chest wall and lung volumes in normal humans. J Appl Physiol 101: 298‐306, 2006.
 199.Izumizaki M, Shibata M, Homma I. Factors contributing to thixotropy of inspiratory muscles. Respir Physiol Neurobiol 140: 257‐264, 2004.
 200.Jannapureddy SR, Patel ND, Hwang W, Boriek AM. Genetic models in applied physiology. Merosin deficiency leads to alterations in passive and active skeletal muscle mechanics. J Appl Physiol 94: 2524‐2533; discussion 2523, 2003.
 201.Jenkins RR. Free radial chemistry –relationship to exercise. Sports Med 5: 156‐170, 1988.
 202.Jodkowski JS, Viana F, Dick TE, Berger AJ. Electrical properties of phrenic motoneurons in the cat: Correlation with inspiratory drive. J Neurophysiol 58: 105‐124, 1987.
 203.Jodkowski JS, Viana F, Dick TE, Berger AJ. Repetitive firing properties of phrenic motoneurons in the cat. J Neurophysiol 60: 687‐702, 1988.
 204.Johnson BD, Sieck GC. Activation‐induced reduction of SDH activity in diaphragm muscle fibers. J Appl Physiol 75: 2689‐2695, 1993.
 205.Johnson BD, Sieck GC. Differential susceptibility of diaphragm muscle fibers to neuromuscular transmission failure. J Appl Physiol 75: 341‐348, 1993.
 206.Johnson BD, Wilson LE, Zhan WZ, Watchko JF, Daood MJ, Sieck GC. Contractile properties of the developing diaphragm correlate with myosin heavy chain phenotype. J Appl Physiol 77: 481‐487, 1994.
 207.Judge AR, Koncarevic A, Hunter RB, Liou HC, Jackman RW, Kandarian SC. Role for IkappaBalpha, but not c‐Rel, in skeletal muscle atrophy. Am J Physiol Cell Physiol 292: C372‐C382, 2007.
 208.Keens TG, Bryan AC, Levison H, Ianuzzo CD. Developmental pattern of muscle fiber types in human ventilatory muscles. J Appl Physiol 44: 909‐913, 1978.
 209.Kellermayer MS, Smith SB, Bustamante C, Granzier HL. Mechanical fatigue in repetitively stretched single molecules of titin. Biophys J 80: 852‐863, 2001.
 210.Kelly NG, McCarter RJ, Barnwell GM. Respiratory muscle stiffness is age‐ and muscle‐specific. Aging 5: 229‐238, 1993.
 211.Kelsen SG, Nochomovitz ML. Fatigue of the mammalian diaphragm in vitro. J Appl Physiol 53: 440‐447, 1982.
 212.Kelsen SG, Supinski GS, Oliven A. Diaphragm structure and function in elastase‐induced emphysema. Chest 85: 55S‐58S, 1984.
 213.Kernell D, Monster AW. Time course and properties of late adaptation in spinal motoneurones of the cat. Exp Brain Res 46: 191‐196, 1982.
 214.Kernell D, Monster AW. Motoneurone properties and motor fatigue. An intracellular study of gastrocnemius motoneurones of the cat. Exp Brain Res 46: 197‐204, 1982.
 215.Khawli FA, Reid MB. N‐acetylcysteine depresses contractile function and inhibits fatigue of diaphragm in vitro. J Appl Physiol 77: 317‐324, 1994.
 216.Kim MJ, Druz WS, Danon J, Machnach W, Sharp JT. Mechanics of the canine diaphragm. J Appl Physiol 41: 369‐382, 1976.
 217.Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 84: 649‐698, 2004.
 218.Kleijn M, Scheper GC, Voorma HO, Thomas AA. Regulation of translation initiation factors by signal transduction. Eur J Biochem 253: 531‐544, 1998.
 219.Kobzik L, Reid MB, Bredt DS, Stamler JS. Nitric oxide in skeletal muscle. Nature 372: 546‐548, 1994.
 220.Koo BB, Strohl KP, Gillombardo CB, Jacono FJ. Ventilatory patterning in a mouse model of stroke. Respir Physiol Neurobiol 172: 129‐135, 2010.
 221.Krnjevic K, Miledi R. Failure of neuromuscular propagation in rats. J Physiol 140: 440‐461, 1958.
 222.Krnjevic K, Miledi R. Presynaptic failure of neuromuscular propagation in rats. J Physiol (Lond) 149: 1‐22, 1959.
 223.Kruger M, Linke WA. Protein kinase‐A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension. J Muscle Res Cell Motil 27: 435‐444, 2006.
 224.Kuchler G, Patzak A, Schubert E. Muscle elasticity: Effect of muscle length and temperature. Biomed Biochim Acta 49: 1209‐1225, 1990.
 225.Kuei JH, Shadmehr R, Sieck GC. Relative contribution of neurotransmission failure to diaphragm fatigue. J Appl Physiol 68: 174‐180, 1990.
 226.Kulakowski SA, Parker SD, Personius KE. Reduced TrkB expression results in precocious age‐like changes in neuromuscular structure, neurotransmission, and muscle function. J Appl Physiol 111: 844‐852, 2011.
 227.Kulke M, Fujita‐Becker S, Rostkova E, Neagoe C, Labeit D, Manstein DJ, Gautel M, Linke WA. Interaction between PEVK‐titin and actin filaments: Origin of a viscous force component in cardiac myofibrils. Circ Res 89: 874‐881, 2001.
 228.Kumar A, Khandelwal N, Malya R, Reid MB, Boriek AM. Loss of dystrophin causes aberrant mechanotransduction in skeletal muscle fibers. FASEB J 18: 102‐113, 2004.
 229.Labeit D, Watanabe K, Witt C, Fujita H, Wu Y, Lahmers S, Funck T, Labeit S, Granzier H. Calcium‐dependent molecular spring elements in the giant protein titin. Proc Natl Acad Sci U S A 100: 13716‐13721, 2003.
 230.Labeit S, Kolmerer B. Titins: Giant proteins in charge of muscle ultrastructure and elasticity. Science 270: 293‐296, 1995.
 231.LaFramboise WA, Daood MJ, Guthrie RD, Butler‐Browne GS, Whalen RG, Ontell M. Myosin isoforms in neonatal rat extensor digitorum longus, diaphragm, and soleus muscles. Am J Physiol 259: L116‐L122, 1990.
 232.LaFramboise WA, Daood MJ, Guthrie RD, Schiaffino S, Moretti P, Brozanski B, Ontell MP, Butler‐Browne GS, Whalen RG, Ontell M. Emergence of the mature myosin phenotype in the rat diaphragm muscle. Dev Biol 144: 1‐15, 1991.
 233.Lakie M, Robson LG. Thixotropy in frog single muscle fibres. Exp Physiol 75: 123‐125, 1990.
 234.Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18: 39‐51, 2004.
 235.Levine S, Kaiser L, Leferovich J, Tikunov B. Cellular adaptations in the diaphragm in chronic obstructive pulmonary disease. N Engl J Med 337: 1799‐1806, 1997.
 236.Lewis MI, Bodine SC, Kamangar N, Xu X, Da X, Fournier M. Effect of severe short‐term malnutrition on diaphragm muscle signal transduction pathways influencing protein turnover. J Appl Physiol 100: 1799‐1806, 2006.
 237.Lewis MI, Fournier M, Yeh AY, Micevych PE, Sieck GC. Alterations in diaphragm contractility after nandrolone administration: An analysis of potential mechanisms. J Appl Physiol 86: 985‐992, 1999.
 238.Lewis MI, Li H, Huang ZS, Biring MS, Cercek B, Fournier M. Influence of varying degrees of malnutrition on IGF‐I expression in the rat diaphragm. J Appl Physiol 95: 555‐562, 2003.
 239.Lewis MI, LoRusso TJ, Zhan W‐Z, Sieck GC. Interactive effects of denervation and malnutrition on diaphragm structure and function. J Appl Physiol 81: 2165‐2172, 1996.
 240.Lewis MI, Monn SA, Sieck GC. Effect of corticosteroids on diaphragm fatigue, SDH activity, and muscle fiber size. J Appl Physiol 72: 293‐301, 1992.
 241.Lewis MI, Monn SA, Zhan WZ, Sieck GC. Interactive effects of emphysema and malnutrition on diaphragm structure and function. J Appl Physiol 77: 947‐955, 1994.
 242.Lewis MI, Sieck GC, Fournier M, Belman MJ. Effect of nutritional deprivation on diaphragm contractility and muscle fiber size. J Appl Physiol 60: 596‐603, 1986.
 243.Lewis MI, Zhan WZ, Sieck GC. Adaptations of the diaphragm in emphysema. J Appl Physiol 72: 934‐943, 1992.
 244.Li Z, Mericskay M, Agbulut O, Butler‐Browne G, Carlsson L, Thornell LE, Babinet C, Paulin D. Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle. J Cell Biol 139: 129‐144, 1997.
 245.Liddell EGT, Sherrington CS. Recruitment and some other factors of reflex inhibition. Proc Roy Soc Lond (Biol) 97: 488‐518, 1925.
 246.Light N, Champion AE. Characterization of muscle epimysium, perimysium and endomysium collagens. Biochem J 219: 1017‐1026, 1984.
 247.Lloyd JS, Brozanski BS, Daood M, Watchko JF. Developmental transitions in the myosin heavy chain phenotype of human respiratory muscle. Biol Neonate 69: 67‐75, 1996.
 248.Lopez MA, Mayer U, Hwang W, Taylor T, Hashmi MA, Jannapureddy SR, Boriek AM. Force transmission, compliance, and viscoelasticity are altered in the alpha7‐integrin‐null mouse diaphragm. Am J Physiol Cell Physiol 288: C282‐C289, 2005.
 249.Luby‐Phelps K. Cytoarchitecture and physical properties of cytoplasm: Volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192: 189‐221, 2000.
 250.Luff AR. Dynamic properties of the inferior rectus, extensor digitorum longus, diaphragm and soleus muscles of the mouse. J Physiol 313: 161‐171, 1981.
 251.Lynch GS, Fary CJ, Williams DA. Quantitative measurement of resting skeletal muscle [Ca2+]i following acute and long‐term downhill running exercise in mice. Cell Calcium 22: 373‐383, 1997.
 252.MacIntosh BR, Gardiner PF, McComas AJ. Skeletal Muscle Form and Function. Champaign, IL: Human Kinetics, 2006.
 253.Macklem PT. The Thorax; Part A: Physiology, Chapter 15. The Act of Breathing. New York, NY: Marcel Dekker, Inc., 1995.
 254.Macklem PT, Mead J editors. Mechanics of Breathing. Washington, DC: American Physiological Society, 1986.
 255.Magid A, Law DJ. Myofibrils bear most of the resting tension in frog skeletal muscle. Science 230: 1280‐1282, 1985.
 256.Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6: 458‐471, 2007.
 257.Mann EA, Burnett T, Cornell S, Ludlow CL. The effect of neuromuscular stimulation of the genioglossus on the hypopharyngeal airway. Laryngoscope 112: 351‐356, 2002.
 258.Mantilla CB, Dow DE, Sieck GC. Skeletal muscle changes in hypothyroidism. In: Preedy VR, Burrow GN, Watson RR, editors. Comprehensive Handbook of Iodine. Oxford: Academic Press, 2009, pp. 1087‐1101.
 259.Mantilla CB, Ermilov LG. The novel TrkB receptor agonist 7,8‐dihydroxyflavone enhances neuromuscular transmission. Muscle Nerve 45: 274‐276, 2012.
 260.Mantilla CB, Greising SM, Zhan WZ, Seven YB, Sieck GC. Prolonged C2 spinal hemisection‐induced inactivity reduces diaphragm muscle specific force with modest, selective atrophy of type IIx and/or IIb fibers. J Appl Physiol 114: 380‐386, 2013.
 261.Mantilla CB, Rowley KL, Fahim MA, Zhan WZ, Sieck GC. Synaptic vesicle cycling at type‐identified diaphragm neuromuscular junctions. Muscle Nerve 30: 774‐783, 2004.
 262.Mantilla CB, Rowley KL, Zhan WZ, Fahim MA, Sieck GC. Synaptic vesicle pools at diaphragm neuromuscular junctions vary with motoneuron soma, not axon terminal, inactivity. Neuroscience 146: 178‐189, 2007.
 263.Mantilla CB, Seven YB, Zhan WZ, Sieck GC. Diaphragm motor unit recruitment in rats. Respir Physiol Neurobiol 173: 101‐106, 2010.
 264.Mantilla CB, Sieck GC. Key aspects of phrenic motoneuron and diaphragm muscle development during the perinatal period. J Appl Physiol 104: 1818‐1827, 2008.
 265.Mantilla CB, Sieck GC. Neuromuscular adaptations to respiratory muscle inactivity. Respir Physiol Neurobiol 169: 133‐140, 2009.
 266.Mantilla CB, Sieck GC. Phrenic motor unit recruitment during ventilatory and non‐ventilatory behaviors. Respir Physiol Neurobiol 179: 57‐63, 2011.
 267.Mantilla CB, Sieck GC. Age‐related remodeling of neuromuscular junctions. In: Lynch GS, editor. Sarcopenia ‐ Age‐Related Muscle Wasting and Weakness. Netherlands: Springer, 2011, pp. 37‐54.
 268.Mantilla CB, Sieck GC. Neuromotor control in chronic obstructive pulmonary disease. J Appl Physiol 114: 1246‐1252, 2013.
 269.Mantilla CB, Sill RV, Aravamudan B, Zhan WZ, Sieck GC. Developmental effects on myonuclear domain size of rat diaphragm fibers. J Appl Physiol 104: 787‐794, 2008.
 270.Mantilla CB, Zhan WZ, Sieck GC. Neurotrophins improve neuromuscular transmission in the adult rat diaphragm. Muscle Nerve 29: 381‐386, 2004.
 271.Maquirriain J, Ghisi JP, Kokalj AM. Rectus abdominis muscle strains in tennis players. Br J Sports Med 41: 842‐848, 2007.
 272.Mardini IA, McCarter RJ. Contractile properties of the shortening rat diaphragm in vitro. J Appl Physiol 62: 1111‐1116, 1987.
 273.Margulies SS, Farkas GA, Rodarte JR. Effects of body position and lung volume on in situ operating length of canine diaphragm. J Appl Physiol 69: 1702‐1708, 1990.
 274.Margulies SS, Lei GT, Farkas GA, Rodarte JR. Finite‐element analysis of stress in the canine diaphragm. J Appl Physiol 76: 2070‐2075, 1994.
 275.Martin TP, Vailas AC, Durivage JB, Edgerton VR, Castleman KR. Quantitative histochemical determination of muscle enzymes: Biochemical verification. J Histochem Cytochem 33: 1053‐1059, 1985.
 276.Matsui T, Nagoshi T, Rosenzweig A. Akt and PI 3‐kinase signaling in cardiomyocyte hypertrophy and survival. Cell Cycle 2: 220‐223, 2003.
 277.Mayock DE, Standaert TA, Murphy TD, Woodrum DE. Diaphragmatic force and substrate reponse to resistive loaded breathing in the piglet. J Appl Physiol 70: 70‐76, 1991.
 278.McArdle A, van der Meulen JH, Catapano M, Symons MC, Faulkner JA, Jackson MJ. Free radical activity following contraction‐induced injury to the extensor digitorum longus muscles of rats. Free Radic Biol Med 26: 1085‐1091, 1999.
 279.McCully KK, Faulkner JA. Length‐tension relationship of mammalian diaphragm muscles. J Appl Physiol 54: 1681‐1686, 1983.
 280.McCully KK, Faulkner JA. Injury to skeletal muscle fibers of mice following lengthening contractions. J Appl Physiol 59: 119‐126, 1985.
 281.McKenzie DK, Allen GM, Butler JE, Gandevia SC. Task failure with lack of diaphragm fatigue during inspiratory resistive loading in human subjects. J Appl Physiol 82: 2011‐2019, 1997.
 282.McKenzie DK, Bigland‐Ritchie B, Gorman RB, Gandevia SC. Central and peripheral fatigue of human diaphragm and limb muscles assessed by twitch interpolation. J Physiol 454: 643‐656, 1992.
 283.McKinsey TA, Zhang CL, Olson EN. Signaling chromatin to make muscle. Curr Opin Cell Biol 14: 763‐772, 2002.
 284.McPhedran AM, Wuerker RB, Henneman E. Properties of motor units in a homogeneous red muscle (soleus) of the cat. J Neurophysiol 28: 71‐84, 1965.
 285.Mendell LM. The size principle: A rule describing the recruitment of motoneurons. J Neurophysiol 93: 3024‐3026, 2005.
 286.Merton PA. Voluntary strength and fatigue. J Physiol 123: 553‐564, 1954.
 287.Metzger JM, Scheidt KB, Fitts RH. Histochemical and physiological characteristics of the rat diaphragm. J Appl Physiol 58: 1085‐1091, 1985.
 288.Millar AG, Bradacs H, Charlton MP, Atwood HL. Inverse relationship between release probability and readily releasable vesicles in depressing and facilitating synapses. J Neurosci 22: 9661‐9667, 2002.
 289.Minajeva A, Kulke M, Fernandez JM, Linke WA. Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils. Biophys J 80: 1442‐1451, 2001.
 290.Miyata H, Zhan WZ, Prakash YS, Sieck GC. Myoneural interactions affect diaphragm muscle adaptations to inactivity. J Appl Physiol 79: 1640‐1649, 1995.
 291.Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15: 1101‐1111, 2004.
 292.Monti RJ, Roy RR, Hodgson JA, Edgerton VR. Transmission of forces within mammalian skeletal muscles. J Biomech 32: 371‐380, 1999.
 293.Moore AJ, Stubbings A, Swallow EB, Dusmet M, Goldstraw P, Porcher R, Moxham J, Polkey MI, Ferenczi MA. Passive properties of the diaphragm in COPD. J Appl Physiol 101: 1400‐1405, 2006.
 294.Moore BJ, Feldman HA, Reid MB. Developmental changes in diaphragm contractile properties. J Appl Physiol 75: 522‐526, 1993.
 295.Moss RL, Halpern W. Elastic and viscous properties of resting frog skeletal muscle. Biophys J 17: 213‐228, 1977.
 296.Moss RL, Lauer MR, Giulian GG, Greaser ML. Altered Ca2+ dependence of tension development in skinned skeletal muscle fibers following modification of troponin by partial substitution with cardiac troponin C. J Biol Chem 261: 6096‐6099, 1986.
 297.Mutungi G. The effects of inorganic phosphate and arsenate on both passive muscle visco‐elasticity and maximum Ca2+ activated tension in chemically skinned rat fast and slow twitch muscle fibres. J Muscle Res Cell Motil 24: 65‐75, 2003.
 298.Mutungi G, Ranatunga KW. The viscous, viscoelastic and elastic characteristics of resting fast and slow mammalian (rat) muscle fibres. J Physiol 496(Pt 3): 827‐836, 1996.
 299.Mutungi G, Ranatunga KW. Do cross‐bridges contribute to the tension during stretch of passive muscle? A response. J Muscle Res Cell Motil 21: 301‐302, 2000.
 300.Naess K, Storm‐Mathisen A. Fatigue of sustained tetanic contractions. Acta Physiologica Scandinavica 44: 363‐383, 1955.
 301.Nakashima K, Yakabe Y. AMPK activation stimulates myofibrillar protein degradation and expression of atrophy‐related ubiquitin ligases by increasing FOXO transcription factors in C2C12 myotubes. Biosci Biotechnol Biochem 71: 1650‐1656, 2007.
 302.Nelson DL, Cox MM. Lehniger ‐ Principles of Biochemistry. New York, NY: W.H. Freeman and Co., 2005.
 303.Nguyen T, Shrager J, Kaiser L, Mei L, Daood M, Watchko J, Rubinstein N, Levine S. Developmental myosin heavy chains in the adult human diaphragm: Coexpression patterns and effect of COPD. J Appl Physiol 88: 1446‐1456, 2000.
 304.Nosek TM, Fender KY, Godt RE. It is diprotonated inorganic phosphate that depresses force in skinned skeletal muscle fibers. Science 236: 191‐193, 1987.
 305.Nystrom GJ, Lang CH. Sepsis and AMPK Activation by AICAR Differentially Regulate FoxO‐1, ‐3 and ‐4 mRNA in Striated Muscle. Int J Clin Exp Med 1: 50‐63, 2008.
 306.Oliven A, Carmi N, Coleman R, Odeh M, Silbermann M. Age‐related changes in upper airway muscles morphological and oxidative properties. Exp Gerontol 36: 1673‐1686, 2001.
 307.Oliven A, Odeh M, Geitini L, Oliven R, Steinfeld U, Schwartz AR, Tov N. Effect of coactivation of tongue protrusor and retractor muscles on pharyngeal lumen and airflow in sleep apnea patients. J Appl Physiol 103: 1662‐1668, 2007.
 308.Oliven A, Tov N, Geitini L, Steinfeld U, Oliven R, Schwartz AR, Odeh M. Effect of genioglossus contraction on pharyngeal lumen and airflow in sleep apnoea patients. Eur Respir J 30: 748‐758, 2007.
 309.Osborne S, Road JD. Diaphragm and phrenic nerve activities during inspiratory loading in anesthetized rabbits. Respir Physiol 99: 321‐330, 1995.
 310.Osmond DG. The Thorax; Part A: Physiology, Chapter 14. Functional Anatomy of the Chest Wall. New York, NY: Marcel Dekker, Inc., 1995.
 311.Ottenheijm CA, Heunks LM, Hafmans T, van der Ven PF, Benoist C, Zhou H, Labeit S, Granzier HL, Dekhuijzen PN. Titin and diaphragm dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 173: 527‐534, 2006.
 312.Ottenheijm CA, Heunks LM, Sieck GC, Zhan WZ, Jansen SM, Degens H, de Boo T, Dekhuijzen PN. Diaphragm dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 172: 200‐205, 2005.
 313.Ottenheijm CA, Knottnerus AM, Buck D, Luo X, Greer K, Hoying A, Labeit S, Granzier H. Tuning passive mechanics through differential splicing of titin during skeletal muscle development. Biophys J 97: 2277‐2286, 2009.
 314.Pandorf CE, Jiang W, Qin AX, Bodell PW, Baldwin KM, Haddad F. Regulation of an antisense RNA with the transition of neonatal to IIb myosin heavy chain during postnatal development and hypothyroidism in rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 302: R854‐R867, 2012.
 315.Pardo JV, Siliciano JD, Craig SW. Vinculin is a component of an extensive network of myofibril‐sarcolemma attachment regions in cardiac muscle fibers. J Cell Biol 97: 1081‐1088, 1983.
 316.Parnas I. Differential block at high frequency of branches of a single axon innervating two muscles. J Neurophysiol 35: 903‐914, 1972.
 317.Passerieux E, Rossignol R, Letellier T, Delage JP. Physical continuity of the perimysium from myofibers to tendons: Involvement in lateral force transmission in skeletal muscle. J Struct Biol 159: 19‐28, 2007.
 318.Patel JR, Diffee GM, Moss RL. Myosin regulatory light chain modulates the Ca2+ dependence of the kinetics of tension development in skeletal muscle fibers. Biophys J 70: 2333‐2340, 1996.
 319.Patel ND, Jannapureddy SR, Hwang W, Chaudhry I, Boriek AM. Altered muscle force and stiffness of skeletal muscles in alpha‐sarcoglycan‐deficient mice. Am J Physiol Cell Physiol 284: C962‐C968, 2003.
 320.Patel TJ, Lieber RL. Force transmission in skeletal muscle: From actomyosin to external tendons. Exerc Sport Sci Rev 25: 321‐363, 1997.
 321.Pereon Y, Dettbarn C, Lu Y, Westlund KN, Zhang JT, Palade P. Dihydropyridine receptor isoform expression in adult rat skeletal muscle. Pflugers Arch 436: 309‐314, 1998.
 322.Periasamy M, Kalyanasundaram A. SERCA pump isoforms: Their role in calcium transport and disease. Muscle Nerve 35: 430‐442, 2007.
 323.Perrie WT, Smillie LB, Perry SB. A phosphorylated light‐chain component of myosin from skeletal muscle. Biochem J 35: 151‐164, 1973.
 324.Peter JB, Barnard RJ, Edgerton VR, Gillespie CA, Stempel KE. Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry 11: 2627‐2633, 1972.
 325.Pickart CM. Ubiquitin in chains. Trends Biochem Sci 25: 544‐548, 2000.
 326.Pieribone VA, Shupliakov O, Brodin L, Hilfiker‐Rothenfluh S, Czernik AJ, Greengard P. Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375: 493‐497, 1995.
 327.Polkey MI, Duguet A, Luo Y, Hughes PD, Hart N, Hamnegard CH, Green M, Similowski T, Moxham J. Anterior magnetic phrenic nerve stimulation: Laboratory and clinical evaluation. Intensive Care Med 26: 1065‐1075, 2000.
 328.Prado LG, Makarenko I, Andresen C, Kruger M, Opitz CA, Linke WA. Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles. J Gen Physiol 126: 461‐480, 2005.
 329.Prakash YS, Fournier M, Sieck GC. Effects of prenatal undernutrition on developing rat diaphragm. J Appl Physiol 75: 1044‐1052, 1993.
 330.Prakash YS, Miyata H, Zhan WZ, Sieck GC. Inactivity‐induced remodeling of neuromuscular junctions in rat diaphragmatic muscle. Muscle Nerve 22: 307‐319, 1999.
 331.Prakash YS, Sieck GC. Age‐related remodeling of neuromuscular junctions on type‐identified diaphragm fibers. Muscle Nerve 21: 887‐895, 1998.
 332.Pringle JW, Tregear RT. Mechanical properties of insect fibrillar muscle at large amplitudes of oscillation. Proc R Soc Lond B Biol Sci 174: 33‐50, 1969.
 333.Proske U, Morgan DL. Do cross‐bridges contribute to the tension during stretch of passive muscle? J Muscle Res Cell Motil 20: 433‐442, 1999.
 334.Purslow PP, Trotter JA. The morphology and mechanical properties of endomysium in series‐fibred muscles: Variations with muscle length. J Muscle Res Cell Motil 15: 299‐308, 1994.
 335.Puxkandl R, Zizak I, Paris O, Keckes J, Tesch W, Bernstorff S, Purslow P, Fratzl P. Viscoelastic properties of collagen: Synchrotron radiation investigations and structural model. Philos Trans R Soc Lond B Biol Sci 357: 191‐197, 2002.
 336.Rack PM, Westbury DR. The effects of length and stimulus rate on tension in the isometric cat soleus muscle. J Physiol 204: 443‐460, 1969.
 337.Ranatunga KW. Sarcomeric visco‐elasticity of chemically skinned skeletal muscle fibres of the rabbit at rest. J Muscle Res Cell Motil 22: 399‐414, 2001.
 338.Rayment I, Holden HM, Sellers JR, Fananapazir L, Epstein ND. Three‐dimensional structure of myosin subfragment‐1: a molecular motor. Science 261: 50‐58, 1995.
 339.Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligan RA. Structure of the actin‐myosin complex and its implications for muscle contraction. Science 261: 58‐65, 1993.
 340.Reed SA, Senf SM, Cornwell EW, Kandarian SC, Judge AR. Inhibition of IkappaB kinase alpha (IKKalpha) or IKKbeta (IKKbeta) plus forkhead box O (Foxo) abolishes skeletal muscle atrophy. Biochem Biophys Res Commun 405: 491‐496, 2011.
 341.Reid B, Slater CR, Bewick GS. Synaptic vesicle dynamics in rat fast and slow motor nerve terminals. J Neurosci 19: 2511‐2521, 1999.
 342.Reid MB. Role of nitric oxide in skeletal muscle: Synthesis, distribution and functional importance. Acta Physiol Scand 162: 401‐409, 1998.
 343.Reid MB, Feldman HA, Miller MJ. Isometric contractile properties of diaphragm strips from alcoholic rats. J Appl Physiol 63: 1156‐1164, 1987.
 344.Reid MB, Haack KE, Franchek KM, Valberg PA, Kobzik L, West MS. Reactive oxygen in skeletal muscle: I. Intracellular oxidant kinetics and fatigue in vitro. J Appl Physiol 73: 1797‐1804, 1992.
 345.Reid MB, Khawli FA, Moody MA. Reactive oxygen in skeletal muscle: III. Contractility of unfatigued muscle. J Appl Physiol 75: 1081‐1087, 1993.
 346.Reid MB, Kobzik L, Bredt DS, Stamler JS. Nitric oxide modulates excitation‐contraction coupling in the diaphragm. Comp Biochem Physiol A Mol Integr Physiol 119: 211‐218, 1998.
 347.Reid MB, Miller MJ. Theophylline does not increase maximal tetanic force or diaphragm endurance in vitro. J Appl Physiol 67: 1655‐1661, 1989.
 348.Reiser PJ, Moss RL, Giulian GG, Greaser ML. Shortening velocity in single fibers from adult rabbit soleus muscles is correlated with myosin heavy chain composition. J Biol Chem 260: 9077‐9080, 1985.
 349.Richards DA, Guatimosim C, Rizzoli SO, Betz WJ. Synaptic vesicle pools at the frog neuromuscular junction. Neuron 39: 529‐541, 2003.
 350.Ritchie JM. The relation between force and velocity of shortening in rat muscle. J Physiol 123: 633‐639, 1954.
 351.Rizzoli SO, Betz WJ. The structural organization of the readily releasable pool of synaptic vesicles. Science 303: 2037‐2039, 2004.
 352.Road J, Newman S, Derenne JP, Grassino A. In vivo length‐force relationship of canine diaphragm. J Appl Physiol 60: 63‐70, 1986.
 353.Romanello V, Guadagnin E, Gomes L, Roder I, Sandri C, Petersen Y, Milan G, Masiero E, Del Piccolo P, Foretz M, Scorrano L, Rudolf R, Sandri M. Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J 29: 1774‐1785, 2010.
 354.Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ. Mediation of IGF‐1‐induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3: 1009‐1013, 2001.
 355.Rommel C, Clarke BA, Zimmermann S, Nunez L, Rossman R, Reid K, Moelling K, Yancopoulos GD, Glass DJ. Differentiation stage‐specific inhibition of the Raf‐MEK‐ERK pathway by Akt. Science 286: 1738‐1741, 1999.
 356.Rowe J, Chen Q, Domire ZJ, McCullough MB, Sieck G, Zhan WZ, An KN. Effect of collagen digestion on the passive elastic properties of diaphragm muscle in rat. Med Eng Phys 32: 90‐94, 2010.
 357.Rowley KL, Mantilla CB, Ermilov LG, Sieck GC. Synaptic vesicle distribution and release at rat diaphragm neuromuscular junctions. J Neurophysiol 98: 478‐487, 2007.
 358.Rowley KL, Mantilla CB, Sieck GC. Respiratory muscle plasticity. Respir Physiol Neurobiol 147: 235‐251, 2005.
 359.Sanchez J, Medrano G, Debesse B, Riquet M, Derenne JP. Muscle fibre types in costal and crural diaphragm in normal men and in patients with moderate chronic respiratory disease. Bull Eur Physiopathol Respir 21: 351‐356, 1985.
 360.Sandercock TG, Faulkner JA, Albers JW, Abbrecht PH. Single motor unit and fiber action potentials during fatigue. J Appl Physiol 58: 1073‐1079, 1985.
 361.Sandri M. Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda) 23: 160‐170, 2008.
 362.Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL. Foxo transcription factors induce the atrophy‐related ubiquitin ligase atrogin‐1 and cause skeletal muscle atrophy. Cell 117: 399‐412, 2004.
 363.Sassoon CS, Caiozzo VJ, Manka A, Sieck GC. Altered diaphragm contractile properties with controlled mechanical ventilation. J Appl Physiol 92: 2585‐2595, 2002.
 364.Schiaffino S, Gorza L, Ausoni S. Muscle fiber types expressing different myosin heavy chain isoforms. Their functional properties and adaptive capacity. In: Pette D, editor. The Dynamic State of Muscle Fibers. Berlin: De Gruyter, 1990, pp. 329‐341.
 365.Schiaffino S, Gorza L, Sartore S, Saggin L, Ausoni S, Vianello M, Gundersen K, Lomo T. Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil 10: 197‐205, 1989.
 366.Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: Gene regulation and functional significance. Physiol Rev 76: 371‐423, 1996.
 367.Schnall RP, Pillar G, Kelsen SG, Oliven A. Dilatory effects of upper airway muscle contraction induced by electrical stimulation in awake humans. J Appl Physiol 78: 1950‐1956, 1995.
 368.Schoenberg M. Equilibrium muscle cross‐bridge behavior. Theoretical considerations. Biophys J 48: 467‐475, 1985.
 369.Senf SM, Dodd SL, McClung JM, Judge AR. Hsp70 overexpression inhibits NF‐kappaB and Foxo3a transcriptional activities and prevents skeletal muscle atrophy. FASEB J 22: 3836‐3845, 2008.
 370.Seven YB, Mantilla CB, Zhan WZ, Sieck GC. Frequency‐domain analysis of diaphragm muscle EMG activity across ventilatory and non‐ventilatory motor behaviors. FASEB J 25: 1111‐1124, 2011.
 371.Seven YB, Mantilla CB, Zhan WZ, Sieck GC. Non‐stationarity and power spectral shifts in EMG activity reflect motor unit recruitment in rat diaphragm muscle. Respir Physiol Neurobiol 185: 400‐409, 2013.
 372.Shindoh C, DiMarco A, Thomas A, Manubay P, Supinski G. Effect of N‐acetylcysteine on diaphragm fatigue. J Appl Physiol 68: 2107‐2113, 1990.
 373.Sieck DC, Zhan WZ, Fang YH, Ermilov LG, Sieck GC, Mantilla CB. Structure‐activity relationships in rodent diaphragm muscle fibers vs. neuromuscular junctions. Respir Physiol Neurobiol 180: 88‐96, 2012.
 374.Sieck GC. Diaphragm muscle: Structural and functional organization. Clin Chest Med 9: 195‐210, 1988.
 375.Sieck GC. Neural control of the inspiratory pump. NIPS 6: 260‐264, 1991a.
 376.Sieck GC. Diaphragm motor units and their response to altered use. Sem Respir Med 12: 258‐269, 1991b.
 377.Sieck GC. Physiological effects of diaphragm muscle denervation and disuse. Clin Chest Med 15: 641‐659, 1994.
 378.Sieck GC. Organization and recruitment of diaphragm motor units. In: Roussos C, editors. The Thorax. New York, NY: Marcel Dekker, 1995, pp. 783‐820.
 379.Sieck GC, Fournier M. Diaphragm motor unit recruitment during ventilatory and nonventilatory behaviors. J Appl Physiol 66: 2539‐2545, 1989.
 380.Sieck GC, Fournier M. Changes in diaphragm motor unit EMG during fatigue. J Appl Physiol 68: 1917‐1926, 1990.
 381.Sieck GC, Fournier M. Developmental aspects of diaphragm muscle cells: Structural and functional organization. In: Haddad GG, Farber JP, editors. Developmental Neurobiology of Breathing. New York: Marcel Dekker, 1991, pp. 375‐428.
 382.Sieck GC, Fournier M, Enad JG. Fiber type composition of muscle units in the cat diaphragm. Neurosci Lett 97: 29‐34, 1989.
 383.Sieck GC, Fournier M, Prakash YS, Blanco CE. Myosin phenotype and SDH enzyme variability among motor unit fibers. J Appl Physiol 80: 2179‐2189, 1996.
 384.Sieck GC, Han YS, Prakash YS, Jones KA. Cross‐bridge cycling kinetics, actomyosin ATPase activity and myosin heavy chain isoforms in skeletal and smooth respiratory muscles. Comp Biochem Physiol 119: 435‐450, 1998.
 385.Sieck GC, Lewis MI, Blanco CE. Effects of undernutrition on diaphragm fiber size, SDH activity, and fatigue resistance. J Appl Physiol 66: 2196‐2205, 1989.
 386.Sieck GC, Mantilla CB. Neuromuscular Junction (NMJ): Aging. In: Hof PR, Mobbs CV, editors. Handbook of the Neuroscience of Aging. London, UK, Burlington, MA, San Diego, CA: Elsevier Academic Press, 2009, pp. 223‐228.
 387.Sieck GC, Prakash YS. Fatigue at the neuromuscular junction. Branch point vs. presynaptic vs. postsynaptic mechanisms. Adv Exp Med Biol 384: 83‐100, 1995.
 388.Sieck GC, Prakash YS. The diaphragm muscle. In: Miller AD, Bianchi AL, Bishop BP, editors. Neural Control of the Respiratory Muscles. Boca Raton: CRC Press, 1996, pp. 7‐20.
 389.Sieck GC, Prakash YS. The diaphragm muscle. In: Miller AD, Bianchi AL, Bishop BP, editors. Neural Control of the Respitatory Muscles. Boca Raton, FL: CRC Press, 1997, pp. 7‐20.
 390.Sieck GC, Prakash YS. Cross bridge kinetics in respiratory muscles. Eur Respir J 10: 2147‐2158, 1997.
 391.Sieck GC, Prakash YS, Han YS, Fang YH, Geiger PC, Zhan WZ. Changes in actomyosin ATP consumption rate in rat diaphragm muscle fibers during postnatal development. J Appl Physiol 94: 1896‐1902, 2003.
 392.Sieck GC, Regnier M. Plasticity and energetic demands of contraction in skeletal and cardiac muscle. J Appl Physiol 90: 1158‐1164, 2001.
 393.Sieck GC, Roy RR, Powell P, Blanco C, Edgerton VR, Harper RM. Muscle fiber type distribution and architecture of the cat diaphragm. J Appl Physiol 55: 1386‐1392, 1983.
 394.Sieck GC, Sacks RD, Blanco CE, Edgerton VR. SDH activity and cross‐sectional area of muscle fibers in cat diaphragm. J Appl Physiol 60: 1284‐1292, 1986.
 395.Sieck GC, Trelease RB, Harper RM. Sleep influences on diaphragmatic motor unit discharge. Exp Neurol 85: 316‐335, 1984.
 396.Sieck GC, Van Balkom RH, Prakash YS, Zhan WZ, Dekhuijzen PN. Corticosteroid effects on diaphragm neuromuscular junctions. J Appl Physiol 86: 114‐122, 1999.
 397.Sieck GC, Wilson LE, Johnson BD, Zhan WZ. Hypothyroidism alters diaphragm muscle development. J Appl Physiol 81: 1965‐1972, 1996.
 398.Sieck GC, Zhan WZ. Denervation alters myosin heavy chain expression and contractility of developing rat diaphragm muscle. J Appl Physiol 89: 1106‐1113, 2000.
 399.Sieck GC, Zhan WZ, Han YS, Prakash YS. Effect of denervation on ATP consumption rate of diaphragm muscle fibers. J Appl Physiol 103: 858‐866, 2007.
 400.Sieck GC, Zhan WZ, Prakash YS, Daood MJ, Watchko JF. SDH and actomyosin ATPase activities of different fiber types in rat diaphragm muscle. J Appl Physiol 79: 1629‐1639, 1995.
 401.Skurk C, Maatz H, Kim HS, Yang J, Abid MR, Aird WC, Walsh K. The Akt‐regulated forkhead transcription factor FOXO3a controls endothelial cell viability through modulation of the caspase‐8 inhibitor FLIP. J Biol Chem 279: 1513‐1525, 2004.
 402.Smith DO. Mechanisms of action potential propagation failure at sites of axon branching in the crayfish. J Physiol (Lond) 301: 243‐259, 1980.
 403.Smith DO. Axon conduction failure under in vivo conditions in crayfish. J Physiol 344: 327‐333, 1983.
 404.Smith IJ, Alamdari N, O'Neal P, Gonnella P, Aversa Z, Hasselgren PO. Sepsis increases the expression and activity of the transcription factor Forkhead Box O 1 (FOXO1) in skeletal muscle by a glucocorticoid‐dependent mechanism. Int J Biochem Cell Biol 42: 701‐711, 2010.
 405.Solomon V, Goldberg AL. Importance of the ATP‐ubiquitin‐proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. J Biol Chem 271: 26690‐26697, 1996.
 406.Somerville LL, Wang K. Sarcomere matrix of striated muscle: In vivo phosphorylation of titin and nebulin in mouse diaphragm muscle. Arch Biochem Biophys 262: 118‐129, 1988.
 407.Staib JL, Swoap SJ, Powers SK. Diaphragm contractile dysfunction in MyoD gene‐inactivated mice. Am J Physiol Regul Integr Comp Physiol 283: R583‐R590, 2002.
 408.Stephens JA, Taylor A. Fatigue of maintained voluntary muscle contractions in man. J Physiol (Lond) 220: 1‐18, 1972.
 409.Stephens TJ, Chen ZP, Canny BJ, Michell BJ, Kemp BE, McConell GK. Progressive increase in human skeletal muscle AMPKalpha2 activity and ACC phosphorylation during exercise. Am J Physiol Endocrinol Metab 282: E688‐E694, 2002.
 410.Stevens CF, Wesseling JF. Activity‐dependent modulation of the rate at which synaptic vesicles become available to undergo exocytosis. Neuron 21: 415‐424, 1998.
 411.Stienen GJ, Kiers JG, Bottinelli R, Reggiani C. Myofibrillar ATPase activity in skinned human skeletal muscle fibres: Fibre type and temperature dependence. J Physiol 493: 299‐309, 1996.
 412.Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ. The IGF‐1/PI3K/Akt pathway prevents expression of muscle atrophy‐induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14: 395‐403, 2004.
 413.Stockbridge N. Differential conduction at axonal bifurcations. II. Theoretical basis. J Neurophysiol 59: 1286‐1295, 1988.
 414.Stockbridge N, Stockbridge LL. Differential conduction at axonal bifurcations. I. Effect of electrotonic length. J Neurophysiol 59: 1277‐1285, 1988.
 415.Street SF. Lateral transmission of tension in frog myofibers: A myofibrillar network and transverse cytoskeletal connections are possible transmitters. J Cell Physiol 114: 346‐364, 1983.
 416.Stromer MH. Immunocytochemistry of the muscle cell cytoskeleton. Microsc Res Tech 31: 95‐105, 1995.
 417.Strumpf RK, Humphrey JD, Yin FC. Biaxial mechanical properties of passive and tetanized canine diaphragm. Am J Physiol 265: H469‐H475, 1993.
 418.Sudhof TC. The synaptic vesicle cycle. Annu Rev Neurosci 27: 509‐547, 2004.
 419.Supinski GS, Kelsen SG. Effect of elastase‐induced emphysema on the force‐generating ability of the diaphragm. J Clin Invest 70: 978‐988, 1982.
 420.Swadlow HA, Kocsis JD, Waxman SG. Modulation of impulse conduction along the axonal tree. Annu Rev Biophys Bioeng 9: 143‐179, 1980.
 421.Syme DA. Passive viscoelastic work of isolated rat, Rattus norvegicus, diaphragm muscle. J Physiol 424: 301‐315, 1990.
 422.Sypert GW, Munson JB. Basis of segmental motor control: Motoneuron size or motor unit type? Neurosurg 8: 608‐621, 1981.
 423.Takada F, Vander Woude DL, Tong HQ, Thompson TG, Watkins SC, Kunkel LM, Beggs AH. Myozenin: An alpha‐actinin‐ and gamma‐filamin‐binding protein of skeletal muscle Z lines. Proc Natl Acad Sci U S A 98: 1595‐1600, 2001.
 424.Takahashi A, Kureishi Y, Yang J, Luo Z, Guo K, Mukhopadhyay D, Ivashchenko Y, Branellec D, Walsh K. Myogenic Akt signaling regulates blood vessel recruitment during myofiber growth. Mol Cell Biol 22: 4803‐4814, 2002.
 425.Tatsumi R, Maeda K, Hattori A, Takahashi K. Calcium binding to an elastic portion of connectin/titin filaments. J Muscle Res Cell Motil 22: 149‐162, 2001.
 426.Tawa NE, Jr., Odessey R, Goldberg AL. Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles. J Clin Invest 100: 197‐203, 1997.
 427.Taylor SR, Rudel R. Striated muscle fibers: Inactivation of contraction induced by shortening. Science 167: 882‐884, 1970.
 428.Termin A, Staron RS, Pette D. Myosin heavy chain isoforms in histochemically defined fiber types of rat muscle. Histochemistry 92: 453‐457, 1989.
 429.Thornell LE, Price MG. The cytoskeleton in muscle cells in relation to function. Biochem Soc Trans 19: 1116‐1120, 1991.
 430.Tidball JG. Energy stored and dissipated in skeletal muscle basement membranes during sinusoidal oscillations. Biophys J 50: 1127‐1138, 1986.
 431.Timpl R. Proteoglycans of basement membranes. EXS 70: 123‐144, 1994.
 432.Timpl R, Brown JC. The laminins. Matrix Biol 14: 275‐281, 1994.
 433.Tong JF, Yan X, Zhu MJ, Du M. AMP‐activated protein kinase enhances the expression of muscle‐specific ubiquitin ligases despite its activation of IGF‐1/Akt signaling in C2C12 myotubes. J Cell Biochem 108: 458‐468, 2009.
 434.Topulos GP, Reid MB, Leith DE. Pliometric activity of inspiratory muscles: Maximal pressure‐flow curves. J Appl Physiol 62: 322‐327, 1987.
 435.Trombitas K, Greaser M, French G, Granzier H. PEVK extension of human soleus muscle titin revealed by immunolabeling with the anti‐titin antibody 9D10. J Struct Biol 122: 188‐196, 1998.
 436.Trombitas K, Wu Y, McNabb M, Greaser M, Kellermayer MS, Labeit S, Granzier H. Molecular basis of passive stress relaxation in human soleus fibers: Assessment of the role of immunoglobulin‐like domain unfolding. Biophys J 85: 3142‐3153, 2003.
 437.Trotter JA, Richmond FJ, Purslow PP. Functional morphology and motor control of series‐fibered muscles. Exerc Sport Sci Rev 23: 167‐213, 1995.
 438.Truong XT. Viscoelastic wave propagation and rheologic properties of skeletal muscle. Am J Physiol 226: 256‐264, 1974.
 439.Tskhovrebova L, Trinick J, Sleep JA, Simmons RM. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387: 308‐312, 1997.
 440.Tuck SA, Remmers JE. Mechanical propertie12:39 PM. J Appl Physiol 92: 2229‐2235, 2002a.
 441.Tuck SA, Remmers JE. Mechanical properties of the passive pharynx in Vietnamese pot‐bellied pigs. II. Dynamics. J Appl Physiol 92: 2236‐2244, 2002b.
 442.Tzelepis GE, Zakynthinos S, Mandros C, Tzelepis E, Roussos C. Respiratory muscle performance with stretch‐shortening cycle manoeuvres: Maximal inspiratory pressure‐flow curves. Acta Physiol Scand 185: 251‐256, 2005.
 443.Van Gammeren D, Damrauer JS, Jackman RW, Kandarian SC. The IkappaB kinases IKKalpha and IKKbeta are necessary and sufficient for skeletal muscle atrophy. FASEB J 23: 362‐370, 2009.
 444.van Balkom RHH, Zhan WZ, Prakash YS, Dekhuijzen PNR, Sieck GC. Corticosteroid effects on isotonic contractile properties of rat diaphragm muscle. J Appl Physiol 83: 1062‐1067, 1997.
 445.van Lunteren E, Dick TE. Intrinsic properties of pharyngeal and diaphragmatic respiratory motoneurons and muscles. J Appl Physiol 73: 787‐800, 1992.
 446.van Lunteren E, Haxhiu MA, Cherniack NS. Mechanical function of hyoid muscles during spontaneous breathing in cats. J Appl Physiol 62: 582‐590, 1987.
 447.van Lunteren E, Manubay P. Contractile properties of feline genioglossus, sternohyoid, and sternothyroid muscles. J Appl Physiol 72: 1010‐1015, 1992.
 448.van Lunteren E, Martin RJ. Pharyngeal dilator muscle contractile and endurance properties in neonatal piglets. Respir Physiol 92: 65‐75, 1993.
 449.van Lunteren E, Salomone RJ, Manubay P, Supinski GS, Dick TE. Contractile and endurance properties of geniohyoid and diaphragm muscles. J Appl Physiol 69: 1992‐1997, 1990.
 450.van Lunteren E, Spiegler S, Moyer M. Differential expression of lipid and carbohydrate metabolism genes in upper airway versus diaphragm muscle. Sleep 33: 363‐370, 2010.
 451.van Lunteren E, Strohl KP. The muscles of the upper airways. Clin Chest Med 7: 171‐188, 1986.
 452.van Lunteren E, Vafaie H, Salomone RJ. Comparative effects of aging on pharyngeal and diaphragm muscles. Respir Physiol 99: 113‐125, 1995.
 453.Verheul AJ, Mantilla CB, Zhan WZ, Bernal M, Dekhuijzen PN, Sieck GC. Influence of corticosteroids on myonuclear domain size in the rat diaphragm muscle. J Appl Physiol 97: 1715‐1722, 2004.
 454.Vivanco I, Sawyers CL. The phosphatidylinositol 3‐Kinase AKT pathway in human cancer. Nat Rev Cancer 2: 489‐501, 2002.
 455.Volz LM, Mann LB, Russell JA, Jackson MA, Leverson GE, Connor NP. Biochemistry of anterior, medial, and posterior genioglossus muscle in the rat. Dysphagia 22: 210‐214, 2007.
 456.Walmsley B, Hodgson JA, Burke RE. Forces produced by medial gastrocnemius and soleus muscles during locomotion in freely moving cats. J Neurophysiol 41: 1203‐1216, 1978.
 457.Wang K, Forbes JG, Jin AJ. Single molecule measurements of titin elasticity. Prog Biophys Mol Biol 77: 1‐44, 2001.
 458.Wang K, McCarter R, Wright J, Beverly J, Ramirez‐Mitchell R. Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin‐myosin composite filament is a dual‐stage molecular spring. Biophys J 64: 1161‐1177, 1993.
 459.Wang K, Wright J. Architecture of the sarcomere matrix of skeletal muscle: Immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z line. J Cell Biol 107: 2199‐2212, 1988.
 460.Wang R, Li Q, Tang DD. Role of vimentin in smooth muscle force development. Am J Physiol Cell Physiol 291: C483‐C489, 2006.
 461.Wang X, Proud CG. The mTOR pathway in the control of protein synthesis. Physiology (Bethesda) 21: 362‐369, 2006.
 462.Watchko JF, Brozanski BS, O'Day TL, Guthrie RD, Sieck GC. Contractile properties of the rat external abdominal oblique and diaphragm muscles during development. J Appl Physiol 72: 1432‐1436, 1992.
 463.Watchko JF, Daood MJ, Sieck GC. Myosin heavy chain transitions during development. Functional implications for the respiratory musculature. Comp Biochem Physiol 119: 459‐470, 1998.
 464.Watchko JF, Daood MJ, Vazquez RL, Brozanski BS, LaFramboise WA, Guthrie RD, Sieck GC. Postnatal expression of myosin isoforms in an expiratory muscle–external abdominal oblique. J Appl Physiol 73: 1860‐1866, 1992.
 465.Watchko JF, Johnson BD, Gosselin LE, Prakash YS, Sieck GC. Age‐related differences in diaphragm muscle injury after lengthening activations. J Appl Physiol 77: 2125‐2133, 1994.
 466.Watchko JF, Sieck GC. Respiratory muscle fatigue resistance relates to myosin phenotype and SDH activity during development. J Appl Physiol 75: 1341‐1347, 1993.
 467.Waxman SG. Integrative properties and design principles of axons. Int Rev Neurobiol 18: 1‐40, 1975.
 468.Westerblad H, Allen DG. Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers. J Gen Physiol 98: 615‐635, 1991.
 469.Westerblad H, Dahlstedt AJ, Lannergren J. Mechanisms underlying reduced maximum shortening velocity during fatigue of intact, single fibers of mouse muscle. J Physiol 510: 269‐277, 1998.
 470.Wiegand DA, Latz B. Effect of geniohyoid and sternohyoid muscle contraction on upper airway resistance in the cat. J Appl Physiol 71: 1346‐1354, 1991.
 471.Wilcox P, Osborne S, Bressler B. Monocyte inflammatory mediators impair in vitro hamster diaphragm contractility. Am Rev Respir Dis 146: 462‐466, 1992.
 472.Wilson DF. Depression, facilitation, and mobilization of transmitter at the rat diaphragm neuromuscular junction. Am J Physiol 237: C31‐C37, 1979.
 473.Wilson DF, Cardaman RC. Age‐associated changes in neuromuscular transmission in the rat. Am J Physiol 247: C288‐C292, 1984.
 474.Wood SJ, Slater CR. The contribution of postsynaptic folds to the safety factor for neuromuscular transmission in rat fast‐ and slow‐twitch muscles. J Physiol 500: 165‐176, 1997.
 475.Xu W, Baribault H, Adamson ED. Vinculin knockout results in heart and brain defects during embryonic development. Development 125: 327‐337, 1998.
 476.Yamasaki R, Berri M, Wu Y, Trombitas K, McNabb M, Kellermayer MS, Witt C, Labeit D, Labeit S, Greaser M, Granzier H. Titin‐actin interaction in mouse myocardium: Passive tension modulation and its regulation by calcium/S100A1. Biophys J 81: 2297‐2313, 2001.
 477.Yan S, Gauthier AP, Similowski T, Faltus R, Macklem PT, Bellemare F. Force‐frequency relationships of in vivo human and in vitro rat diaphragm using paired stimuli. Eur Respir J 6: 211‐218, 1993.
 478.Yarom R, Sagher U, Havivi Y, Peled IJ, Wexler MR. Myofibers in tongues of Down's syndrome. J Neurol Sci 73: 279‐287, 1986.
 479.Yasuda K, Anazawa T, Ishiwata S. Microscopic analysis of the elastic properties of nebulin in skeletal myofibrils. Biophys J 68: 598‐608, 1995.
 480.Yu ZB, Gao F, Feng HZ, Jin JP. Differential regulation of myofilament protein isoforms underlying the contractility changes in skeletal muscle unloading. Am J Physiol Cell Physiol 292: C1192‐C1203, 2007.
 481.Zhan WZ, Farkas GA, Schroeder MA, Gosselin LE, Sieck GC. Regional adaptations of rabbit diaphragm muscle fibers to unilateral denervation. J Appl Physiol 79: 941‐950, 1995.
 482.Zhan WZ, Miyata H, Prakash YS, Sieck GC. Metabolic and phenotypic adaptations of diaphragm muscle fibers with inactivation. J Appl Physiol 82: 1145‐1153, 1997.
 483.Zhan WZ, Watchko JF, Prakash YS, Sieck GC. Isotonic contractile and fatigue properties of developing rat diaphragm muscle. J Appl Physiol 84: 1260‐1268, 1998.
 484.Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6: 472‐483, 2007.
 485.Zucker RS, Regehr WG. Short‐term synaptic plasticity. Annu Rev Physiol 64: 355‐405, 2002.

Related Articles:

Mechanics of the Respiratory Muscles
Motor Units: Anatomy, Physiology, and Functional Organization
Muscle, the Motor
Neurophysiology of Breathing in Mammals
Respiratory Muscle Plasticity

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Gary C. Sieck, Leonardo F. Ferreira, Michael B. Reid, Carlos B. Mantilla. Mechanical Properties of Respiratory Muscles. Compr Physiol 2013, 3: 1533-1567. doi: 10.1002/cphy.c130003