Comprehensive Physiology Wiley Online Library

Cation‐Coupled Bicarbonate Transporters

Full Article on Wiley Online Library



Abstract

Cation‐coupled HCO3 transport was initially identified in the mid‐1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3 and associated with Na+ and Cl movement. The first Na+‐coupled bicarbonate transporter (NCBT) was expression‐cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4‐family: the electrogenic Na,HCO3‐cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3‐cotransporter NBCn1 (SLC4A7 gene product); the Na+‐driven Cl,HCO3‐exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3‐cotransporter or a Na+‐driven Cl,HCO3‐exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4‐family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid‐base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4‐members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation‐coupled HCO3 transporters of the SLC4‐family. © 2014 American Physiological Society. Compr Physiol 4:1605‐1637, 2014.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Na+‐coupled bicarbonate transporters NCBTs. Electrogenic Na,HCO3 cotransporters mediate HCO3 efflux or HCO3 influx in a tissue‐specific manner. Electroneutral Na,HCO3 cotransporters mediate net HCO3 influx. Na+‐driven Cl,HCO3 exchangers electroneutrally mediate Cl influx in exchange for Cl efflux.
Figure 2. Figure 2. Five different modes for effective HCO3 extrusion over the basolateral membrane of the proximal tubule [adapted, with permission, from ()]. The authors ruled out the first four modes because the transport was known to be Na+ dependent and electrogenic. Although this leaves option 5 (e) as the correct transport mode, it is still not decided which of the four different transport modes of (e), that is, which ion species, are actually transported by the transporter. This is not only the case for the Na+‐dependent transport of HCO3 or a related species over the basolateral membrane of the proximal tubule, but indeed for all Na+‐dependent transporters discussed in this article.
Figure 3. Figure 3. Schematic diagram showing the rationale for determination of whether HCO3 or CO32− is the transported ion. It has been suggested () that it is possible to distinguish between HCO3 and CO32− transport by measuring pH in the extracellular space near the membrane following a sudden change in transport activity, before and after inhibition of the carbonic anhydrase. If CO3 is the transported species an exaggerated decrease in pH would develop when the carbonic anhydrase is inhibited, while if HCO3 is the transported species a blunted decrease in pH would be the result. From ().
Figure 4. Figure 4. Model of reabsorption of HCO3 in the proximal tubules. The figure underlines the importance of basolateral HCO3 and CO2 for the regulation of HCO3 reabsorption suggested by Zhou et al. () and recently documented by Fukuda et al. () and others. From ().
Figure 5. Figure 5. Structure of NCBT proteins. (A) A generic structure of NCBTs is predicted to have an extended N‐terminus, a transmembrane domain containing 14 transmembrane segments, and a relatively short C‐terminal domain. The extracellular loop between segments 5 and 6 contains two N‐glycosylation sites. (B) Alignment of protein sequence comprising human NCBTs. The alignment was performed using the UniProt (www.uniprot.org) with each canonical protein sequence for NBCe1 (Uniprot ID: Q9Y6R1), NBCe2 (Q9BY07), NBCn1 (Q9Y6M7), NBCn2 (Q2Y0W8), and NDCBE (Q6U841). Sequences highly conserved among NCBTs are shown in brown bars, while sequences moderately conserved are in open bars. Sequences with negligible homology are shown as a horizontal line. Internal splice cassettes are in different colors.
Figure 6. Figure 6. Functional characterization of NBCs expressed in Xenopus oocytes demonstrating Na+‐dependent pHi recovery from a CO2/HCO3‐induced acidification. The electrogenic transporters NBCe1 (A) [adapted, with permission, from ] and NBCe2 (B) [adapted, with permission, from ] produce a large hyperpolarization due to net negative charge movement into oocytes. Activation of the electroneutral transporters NBCn1 (C) [adapted, with permission, from ], NBCn2/NCBE (D) [adapted, with permission, from ], and NDCBE (E) [adapted, with permission, from ] is not associated with hyperpolarization.
Figure 7. Figure 7. NBCe1 (A) NBCe1 is highly expressed in the basolateral membranes of the cortical collecting ducts (arrows) but not in glomeruli (G) (). [(B)‐(D)] Functional knockout of NBCe1 in mice (). (B) Rates of HCO3 absorption from isolated renal proximal tubules. Mice with functional knockout of NBCe1 (W516/W516×) had severely reduced reabsorption of HCO3, while heterozygous mice had a mildly reduced reabsorption. (C) Mice with functional knockout of NBCe1 were growth retarded compared to wild‐type mice (+/+). NaCl in the drinking water had no effect on the growth retardation while NaHCO3‐treated mice had attenuated growth retardation. (D) Mice with functional knockout of NBCe1 had severely reduced survival rates with a sharp increase in mortality starting around 17 days, but NaHCO3 treatment of these mice prolonged the survival time up to 81 days of age.
Figure 8. Figure 8. (A) Double‐labeling immunofluorescence microscopic analysis of NBCe2 (red) and NCBE/NBCn2 (green) localization in rat choroid plexus (). The fluorescence image was overlaid a differential interference contrast image and shows apical localization of NBCe2 (arrows) and basolateral localization of NCBE/NBCn2. Panels B and C show ventricular volume and (D) intracranial pressure in wild‐type (WT) and NBCe2 knockout (Slc4a5−/−) mice (). Panel B shows MRI imaging (horizontal plane) of the lateral ventricles in WT and Slc4a5−/− mice. The ventricular volume and intracranial pressure are significantly reduced in Slc4a5−/− mice.
Figure 9. Figure 9. Effect of intracellular pH on vascular tone (). In the NBCn1 (Slc4a7) knockout mouse (red) vascular endothelial cell (A) and smooth muscle cell (C) pH is reduced (vertical bars show SEM, n = 5 and 6, respectively). This is associated with a reduced endothelial cell mediated smooth muscle cell relaxation to acetylcholine (ACh) of norepinephrine (NE) activated mesenteric small arteries (B) and reduced tension development to NE in the presence of 100 μmol/L nitric oxide synthase inhibitor N(G)‐nitro‐L‐arginine methyl ester (L‐NAME) E), (vertical bars show SEM, n = 10). In the presence of 10 μmol/L Rho‐kinase inhibitor fasudil, the tension development to NE is similar in arteries from wild type and knockout mice (D) (n = 5), consistent with the Rho‐kinase being pH sensitive allowing for an effect of intracellular pH on smooth muscle cell tone.
Figure 10. Figure 10. NBCn1 expression in cancer cells. Micrographs of normal human breast (A) and breast cancer (B) immunostained (brown) for NBCn1. (C) Average (with SEM, n = 5) membrane density of NBCn1 immunostaining in normal breast, primary breast carcinomas, and metastases as indicated. (D) Na+‐dependent ethylispropylamilroide (EIPA) insensitive recovery of intracellular pH in a biopsy of human breast cancer following washout of NH4Cl (vertical bars show SEM, n = 5). The recovery of intracellular pH was Na+ and HCO3 dependent and thus demonstrates a NCBT transport activity in breast cancer. The authors also showed that the NCBT activity was modestly DIDS‐sensitive (34±9%), consistent with NBCn1 being responsible. Scale bars = 20 μm. Adapted, with permission, from ().
Figure 11. Figure 11. Localization of NDCBE to the hippocampus of the human brain (adapted, with permission, from ). (B) Effects of knockout of NDCBE (Slc4a8) on Na+‐dependent pHi changes in intercalated cells in mice cortical collecting ducts (adapted, with permission, from ). Traces are the average of pHi changes recorded when luminal Na+ was removed and readded, in the presence of extracellular HCO3. The data provides functional evidence for the presence of NDCBE in the apical membrane, which is important for reabsorption of Na+ by these cells.
Figure 12. Figure 12. NBCn2 versus NCBE. In Xenopus oocytes and HEK 293 cells, SLC4A10 encoding NBCn2/NCBE produces Cl flux. This flux is either due to Cl self‐exchange uncoupled to Na/HCO3 transport () or Na,HCO3‐dependent Cl transport ().
Figure 13. Figure 13. NBCn2/NCBE (Slc4a10) is present in the basolateral membrane of the choroid plexus epithelial cells and Slc4a10 knockout mice have reduced decreased volume of the brain ventricles (adapted, with permission, from ). (A) Slc4a10 (green) localizes to the basolateral, but not the apical, membrane of the choroid plexus epithelium. The apical membrane is stained for the Na+/K+‐ATPase (red) and the blue stain is nuclei (scale bar 30 μm). (B) In Slc4a10 knockout mice no NBCn2/NCBE staining was seen. [(C) and (D)] MRI scans of mice brain show the brain ventricles. (E) The volume of the brain ventricles from knockout mice is reduced to ≈25% of the volume in wild‐type mice.


Figure 1. Na+‐coupled bicarbonate transporters NCBTs. Electrogenic Na,HCO3 cotransporters mediate HCO3 efflux or HCO3 influx in a tissue‐specific manner. Electroneutral Na,HCO3 cotransporters mediate net HCO3 influx. Na+‐driven Cl,HCO3 exchangers electroneutrally mediate Cl influx in exchange for Cl efflux.


Figure 2. Five different modes for effective HCO3 extrusion over the basolateral membrane of the proximal tubule [adapted, with permission, from ()]. The authors ruled out the first four modes because the transport was known to be Na+ dependent and electrogenic. Although this leaves option 5 (e) as the correct transport mode, it is still not decided which of the four different transport modes of (e), that is, which ion species, are actually transported by the transporter. This is not only the case for the Na+‐dependent transport of HCO3 or a related species over the basolateral membrane of the proximal tubule, but indeed for all Na+‐dependent transporters discussed in this article.


Figure 3. Schematic diagram showing the rationale for determination of whether HCO3 or CO32− is the transported ion. It has been suggested () that it is possible to distinguish between HCO3 and CO32− transport by measuring pH in the extracellular space near the membrane following a sudden change in transport activity, before and after inhibition of the carbonic anhydrase. If CO3 is the transported species an exaggerated decrease in pH would develop when the carbonic anhydrase is inhibited, while if HCO3 is the transported species a blunted decrease in pH would be the result. From ().


Figure 4. Model of reabsorption of HCO3 in the proximal tubules. The figure underlines the importance of basolateral HCO3 and CO2 for the regulation of HCO3 reabsorption suggested by Zhou et al. () and recently documented by Fukuda et al. () and others. From ().


Figure 5. Structure of NCBT proteins. (A) A generic structure of NCBTs is predicted to have an extended N‐terminus, a transmembrane domain containing 14 transmembrane segments, and a relatively short C‐terminal domain. The extracellular loop between segments 5 and 6 contains two N‐glycosylation sites. (B) Alignment of protein sequence comprising human NCBTs. The alignment was performed using the UniProt (www.uniprot.org) with each canonical protein sequence for NBCe1 (Uniprot ID: Q9Y6R1), NBCe2 (Q9BY07), NBCn1 (Q9Y6M7), NBCn2 (Q2Y0W8), and NDCBE (Q6U841). Sequences highly conserved among NCBTs are shown in brown bars, while sequences moderately conserved are in open bars. Sequences with negligible homology are shown as a horizontal line. Internal splice cassettes are in different colors.


Figure 6. Functional characterization of NBCs expressed in Xenopus oocytes demonstrating Na+‐dependent pHi recovery from a CO2/HCO3‐induced acidification. The electrogenic transporters NBCe1 (A) [adapted, with permission, from ] and NBCe2 (B) [adapted, with permission, from ] produce a large hyperpolarization due to net negative charge movement into oocytes. Activation of the electroneutral transporters NBCn1 (C) [adapted, with permission, from ], NBCn2/NCBE (D) [adapted, with permission, from ], and NDCBE (E) [adapted, with permission, from ] is not associated with hyperpolarization.


Figure 7. NBCe1 (A) NBCe1 is highly expressed in the basolateral membranes of the cortical collecting ducts (arrows) but not in glomeruli (G) (). [(B)‐(D)] Functional knockout of NBCe1 in mice (). (B) Rates of HCO3 absorption from isolated renal proximal tubules. Mice with functional knockout of NBCe1 (W516/W516×) had severely reduced reabsorption of HCO3, while heterozygous mice had a mildly reduced reabsorption. (C) Mice with functional knockout of NBCe1 were growth retarded compared to wild‐type mice (+/+). NaCl in the drinking water had no effect on the growth retardation while NaHCO3‐treated mice had attenuated growth retardation. (D) Mice with functional knockout of NBCe1 had severely reduced survival rates with a sharp increase in mortality starting around 17 days, but NaHCO3 treatment of these mice prolonged the survival time up to 81 days of age.


Figure 8. (A) Double‐labeling immunofluorescence microscopic analysis of NBCe2 (red) and NCBE/NBCn2 (green) localization in rat choroid plexus (). The fluorescence image was overlaid a differential interference contrast image and shows apical localization of NBCe2 (arrows) and basolateral localization of NCBE/NBCn2. Panels B and C show ventricular volume and (D) intracranial pressure in wild‐type (WT) and NBCe2 knockout (Slc4a5−/−) mice (). Panel B shows MRI imaging (horizontal plane) of the lateral ventricles in WT and Slc4a5−/− mice. The ventricular volume and intracranial pressure are significantly reduced in Slc4a5−/− mice.


Figure 9. Effect of intracellular pH on vascular tone (). In the NBCn1 (Slc4a7) knockout mouse (red) vascular endothelial cell (A) and smooth muscle cell (C) pH is reduced (vertical bars show SEM, n = 5 and 6, respectively). This is associated with a reduced endothelial cell mediated smooth muscle cell relaxation to acetylcholine (ACh) of norepinephrine (NE) activated mesenteric small arteries (B) and reduced tension development to NE in the presence of 100 μmol/L nitric oxide synthase inhibitor N(G)‐nitro‐L‐arginine methyl ester (L‐NAME) E), (vertical bars show SEM, n = 10). In the presence of 10 μmol/L Rho‐kinase inhibitor fasudil, the tension development to NE is similar in arteries from wild type and knockout mice (D) (n = 5), consistent with the Rho‐kinase being pH sensitive allowing for an effect of intracellular pH on smooth muscle cell tone.


Figure 10. NBCn1 expression in cancer cells. Micrographs of normal human breast (A) and breast cancer (B) immunostained (brown) for NBCn1. (C) Average (with SEM, n = 5) membrane density of NBCn1 immunostaining in normal breast, primary breast carcinomas, and metastases as indicated. (D) Na+‐dependent ethylispropylamilroide (EIPA) insensitive recovery of intracellular pH in a biopsy of human breast cancer following washout of NH4Cl (vertical bars show SEM, n = 5). The recovery of intracellular pH was Na+ and HCO3 dependent and thus demonstrates a NCBT transport activity in breast cancer. The authors also showed that the NCBT activity was modestly DIDS‐sensitive (34±9%), consistent with NBCn1 being responsible. Scale bars = 20 μm. Adapted, with permission, from ().


Figure 11. Localization of NDCBE to the hippocampus of the human brain (adapted, with permission, from ). (B) Effects of knockout of NDCBE (Slc4a8) on Na+‐dependent pHi changes in intercalated cells in mice cortical collecting ducts (adapted, with permission, from ). Traces are the average of pHi changes recorded when luminal Na+ was removed and readded, in the presence of extracellular HCO3. The data provides functional evidence for the presence of NDCBE in the apical membrane, which is important for reabsorption of Na+ by these cells.


Figure 12. NBCn2 versus NCBE. In Xenopus oocytes and HEK 293 cells, SLC4A10 encoding NBCn2/NCBE produces Cl flux. This flux is either due to Cl self‐exchange uncoupled to Na/HCO3 transport () or Na,HCO3‐dependent Cl transport ().


Figure 13. NBCn2/NCBE (Slc4a10) is present in the basolateral membrane of the choroid plexus epithelial cells and Slc4a10 knockout mice have reduced decreased volume of the brain ventricles (adapted, with permission, from ). (A) Slc4a10 (green) localizes to the basolateral, but not the apical, membrane of the choroid plexus epithelium. The apical membrane is stained for the Na+/K+‐ATPase (red) and the blue stain is nuclei (scale bar 30 μm). (B) In Slc4a10 knockout mice no NBCn2/NCBE staining was seen. [(C) and (D)] MRI scans of mice brain show the brain ventricles. (E) The volume of the brain ventricles from knockout mice is reduced to ≈25% of the volume in wild‐type mice.
References
 1.Aalkjaer C, Cragoe EJ, Jr. Intracellular pH regulation in resting and contracting segments of rat mesenteric resistance vessels. J Physiol 402: 391‐410, 1988.
 2.Aalkjaer C, Hughes A. Chloride and bicarbonate transport in rat resistance arteries. J Physiol 436: 57‐73, 1991.
 3.Aalkjaer C, Mulvany MJ. Steady‐state effects of arginine vasopressin on force and pHi of isolated mesenteric resistance arteries from rats. Am J Physiol 261: C1010‐C1017, 1991.
 4.Abuladze N, Azimov R, Newman D, Sassani P, Liu W, Tatishchev S, Pushkin A, Kurtz I. Critical amino acid residues involved in the electrogenic sodium‐bicarbonate cotransporter kNBC1‐mediated transport. J Physiol 565: 717‐730, 2005.
 5.Abuladze N, Lee I, Newman D, Hwang J, Boorer K, Pushkin A, Kurtz I. Molecular cloning, chromosomal localization, tissue distribution, and functional expression of the human pancreatic sodium bicarbonate cotransporter. J Biol Chem 273: 17689‐17695, 1998.
 6.Abuladze N, Pushkin A, Tatishchev S, Newman D, Sassani P, Kurtz I. Expression and localization of rat NBC4c in liver and renal uroepithelium. Am J Physiol Cell Physiol 287: C781‐C789, 2004.
 7.Ahmed S, Thomas G, Ghoussaini M, Healey CS, Humphreys MK, Platte R, Morrison J, Maranian M, Pooley KA, Luben R, Eccles D, Evans DG, Fletcher O, Johnson N, dos SSI, Peto J, Stratton MR, Rahman N, Jacobs K, Prentice R, Anderson GL, Rajkovic A, Curb JD, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Diver WR, Bojesen S, Nordestgaard BG, Flyger H, Dork T, Schurmann P, Hillemanns P, Karstens JH, Bogdanova NV, Antonenkova NN, Zalutsky IV, Bermisheva M, Fedorova S, Khusnutdinova E, Kang D, Yoo KY, Noh DY, Ahn SH, Devilee P, van Asperen CJ, Tollenaar RA, Seynaeve C, Garcia‐Closas M, Lissowska J, Brinton L, Peplonska B, Nevanlinna H, Heikkinen T, Aittomaki K, Blomqvist C, Hopper JL, Southey MC, Smith L, Spurdle AB, Schmidt MK, Broeks A, van Hien RR, Cornelissen S, Milne RL, Ribas G, Gonzalez‐Neira A, Benitez J, Schmutzler RK, Burwinkel B, Bartram CR, Meindl A, Brauch H, Justenhoven C, Hamann U, Chang‐Claude J, Hein R, Wang‐Gohrke S, Lindblom A, Margolin S, Mannermaa A, Kosma VM, Kataja V, Olson JE, Wang X, Fredericksen Z, Giles GG, Severi G, Baglietto L, English DR, Hankinson SE, Cox DG, Kraft P, Vatten LJ, Hveem K, Kumle M, Sigurdson A, Doody M, Bhatti P, Alexander BH, Hooning MJ, van den Ouweland AM, Oldenburg RA, Schutte M, Hall P, Czene K, Liu J, Li Y, Cox A, Elliott G, Brock I, Reed MW, Shen CY, Yu JC, Hsu GC, Chen ST, Anton‐Culver H, Ziogas A, Andrulis IL, Knight JA, Beesley J, Goode EL, Couch F, Chenevix‐Trench G, Hoover RN, Ponder BA, Hunter DJ, Pharoah PD, Dunning AM, Chanock SJ, Easton DF. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet 41: 585‐590, 2009.
 8.Aickin CC. Movement of acid equivalents across the mammalian smooth muscle cell membrane. Ciba Found Symp 139: 3‐22, 1988.
 9.Aiello EA, Petroff MG, Mattiazzi AR, Cingolani HE. Evidence for an electrogenic Na+‐HCO3− symport in rat cardiac myocytes. J Physiol 512: 137‐148, 1998.
 10.Akiba T, Rocco VK, Warnock DG. Parallel adaptation of the rabbit renal cortical sodium/proton antiporter and sodium/bicarbonate cotransporter in metabolic acidosis and alkalosis. J Clin Invest 80: 308‐315, 1987.
 11.Alper SL. Molecular physiology and genetics of Na+‐independent SLC4 anion exchangers. J Exp Biol 212: 1672‐1683, 2009.
 12.Alper SL, Chernova MN, Williams J, Zasloff M, Law FY, Knauf PA. Differential inhibition of AE1 and AE2 anion exchangers by oxonol dyes and by novel polyaminosterol analogs of the shark antibiotic squalamine. Biochem Cell Biol 76: 799‐806, 1998.
 13.Alpern RJ. Mechanism of basolateral membrane H+/OH−/HCO3− transport in the rat proximal convoluted tubule. A sodium‐coupled electrogenic process. J Gen Physiol 86: 613‐636, 1985.
 14.Alpern RJ. Cell mechanisms of proximal tubule acidification. Physiol Rev 70: 79‐114, 1990.
 15.Alvarez BV, Loiselle FB, Supuran CT, Schwartz GJ, Casey JR. Direct extracellular interaction between carbonic anhydrase IV and the human NBC1 sodium/bicarbonate co‐transporter. Biochemistry 42: 12321‐12329, 2003.
 16.Amlal H, Chen Q, Greeley T, Pavelic L, Soleimani M. Coordinated down‐regulation of NBC‐1 and NHE‐3 in sodium and bicarbonate loading. Kidney Int 60: 1824‐1836, 2001.
 17.Amlal H, Wang Z, Burnham C, Soleimani M. Functional characterization of a cloned human kidney Na+:HCO3− cotransporter. J Biol Chem 273: 16810‐16815, 1998.
 18.Antoniou AC, Beesley J, McGuffog L, Sinilnikova OM, Healey S, Neuhausen SL, Ding YC, Rebbeck TR, Weitzel JN, Lynch HT, Isaacs C, Ganz PA, Tomlinson G, Olopade OI, Couch FJ, Wang X, Lindor NM, Pankratz VS, Radice P, Manoukian S, Peissel B, Zaffaroni D, Barile M, Viel A, Allavena A, Dall'Olio V, Peterlongo P, Szabo CI, Zikan M, Claes K, Poppe B, Foretova L, Mai PL, Greene MH, Rennert G, Lejbkowicz F, Glendon G, Ozcelik H, Andrulis IL, Thomassen M, Gerdes AM, Sunde L, Cruger D, Birk JU, Caligo M, Friedman E, Kaufman B, Laitman Y, Milgrom R, Dubrovsky M, Cohen S, Borg A, Jernstrom H, Lindblom A, Rantala J, Stenmark‐Askmalm M, Melin B, Nathanson K, Domchek S, Jakubowska A, Lubinski J, Huzarski T, Osorio A, Lasa A, Duran M, Tejada MI, Godino J, Benitez J, Hamann U, Kriege M, Hoogerbrugge N, van der Luijt RB, van Asperen CJ, Devilee P, Meijers‐Heijboer EJ, Blok MJ, Aalfs CM, Hogervorst F, Rookus M, Cook M, Oliver C, Frost D, Conroy D, Evans DG, Lalloo F, Pichert G, Davidson R, Cole T, Cook J, Paterson J, Hodgson S, Morrison PJ, Porteous ME, Walker L, Kennedy MJ, Dorkins H, Peock S, Godwin AK, Stoppa‐Lyonnet D, de PA, Mazoyer S, Bonadona V, Lasset C, Dreyfus H, Leroux D, Hardouin A, Berthet P, Faivre L, Loustalot C, Noguchi T, Sobol H, Rouleau E, Nogues C, Frenay M, Venat‐Bouvet L, Hopper JL, Daly MB, Terry MB, John EM, Buys SS, Yassin Y, Miron A, Goldgar D, Singer CF, Dressler AC, Gschwantler‐Kaulich D, Pfeiler G, Hansen TV, Jonson L, Agnarsson BA, Kirchhoff T, Offit K, Devlin V, Dutra‐Clarke A, Piedmonte M, Rodriguez GC, Wakeley K, Boggess JF, Basil J, Schwartz PE, Blank SV, Toland AE, Montagna M, Casella C, Imyanitov E, Tihomirova L, Blanco I, Lazaro C, Ramus SJ, Sucheston L, Karlan BY, Gross J, Schmutzler R, Wappenschmidt B, Engel C, Meindl A, Lochmann M, Arnold N, Heidemann S, Varon‐Mateeva R, Niederacher D, Sutter C, Deissler H, Gadzicki D, Preisler‐Adams S, Kast K, Schonbuchner I, Caldes T, de la Hoya M, Aittomaki K, Nevanlinna H, Simard J, Spurdle AB, Holland H, Chen X, Platte R, Chenevix‐Trench G, Easton DF. Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: Implications for risk prediction. Cancer Res 70: 9742‐9754, 2010.
 19.Bachmann O, Rossmann H, Berger UV, Colledge WH, Ratcliff R, Evans MJ, Gregor M, Seidler U. cAMP‐mediated regulation of murine intestinal/pancreatic Na+/HCO3− cotransporter subtype pNBC1. Am J Physiol Gastrointest Liver Physiol 284: G37‐G45, 2003.
 20.Barkley RA, Chakravarti A, Cooper RS, Ellison RC, Hunt SC, Province MA, Turner ST, Weder AB, Boerwinkle E. Positional identification of hypertension susceptibility genes on chromosome 2. Hypertension 43: 477‐482, 2004.
 21.Bartel D, Hans H, Passow H. Identification by site‐directed mutagenesis of Lys‐558 as the covalent attachment site of H2DIDS in the mouse erythroid band 3 protein. Biochim Biophys Acta 985: 355‐358, 1989.
 22.Baxter KA, Church J. Characterization of acid extrusion mechanisms in cultured fetal rat hippocampal neurones. J Physiol 493: 457‐470, 1996.
 23.Becker HM, Deitmer JW. Carbonic anhydrase II increases the activity of the human electrogenic Na+/HCO3− cotransporter. J Biol Chem 282: 13508‐13521, 2007.
 24.Bevensee MO, Apkon M, Boron WF. Intracellular pH regulation in cultured astrocytes from rat hippocampus. II. Electrogenic Na+/HCO3− cotransport. J Gen Physiol 110: 467‐483, 1997.
 25.Bevensee MO, Boron WF. Effects of acute hypoxia on intracellular‐pH regulation in astrocytes cultured from rat hippocampus. Brain Res 1193: 143‐152, 2008.
 26.Bevensee MO, Schmitt BM, Choi I, Romero MF, Boron WF. An electrogenic Na+‐HCO3− cotransporter (NBC) with a novel COOH‐terminus, cloned from rat brain. Am J Physiol Cell Physiol 278: C1200‐C1211, 2000.
 27.Bevensee MO, Weed RA, Boron WF. Intracellular pH regulation in cultured astrocytes from rat hippocampus. I. Role Of HCO3−. J Gen Physiol 110: 453‐465, 1997.
 28.Beyenbach KW, Wieczorek H. The V‐type H+ ATPase: Molecular structure and function, physiological roles and regulation. J Exp Biol 209: 577‐589, 2006.
 29.Biagi BA, Sohtell M. Electrophysiology of basolateral bicarbonate transport in the rabbit proximal tubule. Am J Physiol 250: F267‐F272, 1986.
 30.Boedtkjer E, Aalkjaer C. Intracellular pH in the resistance vasculature: Regulation and functional implications. J Vasc Res 49: 479‐496, 2012.
 31.Boedtkjer E, Bunch L, Pedersen SF. Physiology, pharmacology and pathophysiology of the pH regulatory transport proteins NHE1 and NBCn1: Similarities, differences, and implications for cancer therapy. Curr Pharm Des 18: 1345‐1371, 2012.
 32.Boedtkjer E, Moreira JM, Mele M, Vahl P, Wielenga VT, Christiansen PM, Jensen VE, Pedersen SF, Aalkjaer C. Contribution of Na+,HCO3−‐cotransport to cellular pH control in human breast cancer: A role for the breast cancer susceptibility locus NBCn1 (SLC4A7). Int J Cancer 132: 1288‐1299, 2013.
 33.Boedtkjer E, Praetorius J, Aalkjaer C. NBCn1 (slc4a7) mediates the Na+‐dependent bicarbonate transport important for regulation of intracellular pH in mouse vascular smooth muscle cells. Circ Res 98: 515‐523, 2006.
 34.Boedtkjer E, Praetorius J, Fuchtbauer EM, Aalkjaer C. Antibody‐independent localization of the electroneutral Na+‐HCO3− cotransporter NBCn1 (slc4a7) in mice. Am J Physiol Cell Physiol 294: C591‐C603, 2008.
 35.Boedtkjer E, Praetorius J, Matchkov VV, Stankevicius E, Mogensen S, Fuchtbauer AC, Simonsen U, Fuchtbauer EM, Aalkjaer C. Disruption of Na+,HCO3− cotransporter NBCn1 (slc4a7) inhibits NO‐mediated vasorelaxation, smooth muscle Ca2+ sensitivity, and hypertension development in mice. Circulation 124: 1819‐1829, 2011.
 36.Bok D, Galbraith G, Lopez I, Woodruff M, Nusinowitz S, BeltrandelRio H, Huang W, Zhao S, Geske R, Montgomery C, Van SSI, Friddle C, Platt K, Sparks MJ, Pushkin A, Abuladze N, Ishiyama A, Dukkipati R, Liu W, Kurtz I. Blindness and auditory impairment caused by loss of the sodium bicarbonate cotransporter NBC3. Nat Genet 34: 313‐319, 2003.
 37.Boron WF. Intracellular pH‐regulating mechanism of the squid axon. Relation between the external Na+ and HCO3− dependences. J Gen Physiol 85: 325‐345, 1985.
 38.Boron WF. Evaluating the role of carbonic anhydrases in the transport of HCO3−‐related species. Biochim Biophys Acta 1804: 410‐421, 2010.
 39.Boron WF, Boulpaep EL. Intracellular pH regulation in the renal proximal tubule of the salamander. Na+‐H+ exchange. J Gen Physiol 81: 29‐52, 1983.
 40.Boron WF, Chen L, Parker MD. Modular structure of sodium‐coupled bicarbonate transporters. J Exp Biol 212: 1697‐1706, 2009.
 41.Boron WF, De Weer P. Active proton transport stimulated by CO2/HCO3−, blocked by cyanide. Nature 259: 240‐241, 1976.
 42.Boron WF, McCormick WC, Roos A. pH regulation in barnacle muscle fibers: Dependence on extracellular sodium and bicarbonate. Am J Physiol 240: C80‐C89, 1981.
 43.Bourgeois S, Masse S, Paillard M, Houillier P. Basolateral membrane Cl−‐, Na+‐, and K+‐coupled base transport mechanisms in rat MTALH. Am J Physiol Renal Physiol 282: F655‐F668, 2002.
 44.Bourgeois S, Meer LV, Wootla B, Bloch‐Faure M, Chambrey R, Shull GE, Gawenis LR, Houillier P. NHE4 is critical for the renal handling of ammonia in rodents. J Clin Invest 120: 1895‐1904, 2010.
 45.Bouyer P, Sakai H, Itokawa T, Kawano T, Fulton CM, Boron WF, Insogna KL. Colony‐stimulating factor‐1 increases osteoclast intracellular pH and promotes survival via the electroneutral Na+/HCO3− cotransporter NBCn1. Endocrinology 148: 831‐840, 2007.
 46.Bouzinova EV, Praetorius J, Virkki LV, Nielsen S, Boron WF, Aalkjaer C. Na+‐dependent HCO3− uptake into the rat choroid plexus epithelium is partially DIDS sensitive. Am J Physiol Cell Physiol 289: C1448‐C1456, 2005.
 47.Brandes A, Oehlke O, Schumann A, Heidrich S, Thevenod F, Roussa E. Adaptive redistribution of NBCe1‐A and NBCe1‐B in rat kidney proximal tubule and striated ducts of salivary glands during acid‐base disturbances. Am J Physiol Regul Integr Comp Physiol 293: R2400‐R2411, 2007.
 48.Burckhardt BC, Sato K, Fromter E. Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule. I. Basic observations. Pflugers Arch 401: 34‐42, 1984.
 49.Burette AC, Weinberg RJ, Sassani P, Abuladze N, Kao L, Kurtz I. The sodium‐driven chloride/bicarbonate exchanger in presynaptic terminals. J Comp Neurol 520: 1481‐1492, 2012.
 50.Burnham CE, Amlal H, Wang Z, Shull GE, Soleimani M. Cloning and functional expression of a human kidney Na+:HCO3− cotransporter. J Biol Chem 272: 19111‐19114, 1997.
 51.Cabantchik ZI, Knauf PA, Rothstein A. The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of ‘probes’. Biochim Biophys Acta 515: 239‐302, 1978.
 52.Cabantchik ZI, Rothstein A. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives. J Membr Biol 10: 311‐330, 1972.
 53.Camilion de Hurtado MC, Perez NG, Cingolani HE. An electrogenic sodium‐bicarbonate cotransport in the regulation of myocardial intracellular pH. J Mol Cell Cardiol 27: 231‐242, 1995.
 54.Carey RM, Schoeffel CD, Gildea JJ, Jones JE, McGrath HE, Gordon LN, Park MJ, Sobota RS, Underwood PC, Williams J, Sun B, Raby B, Lasky‐Su J, Hopkins PN, Adler GK, Williams SM, Jose PA, Felder RA. Salt sensitivity of blood pressure is associated with polymorphisms in the sodium‐bicarbonate cotransporter. Hypertension 60: 1359‐1366, 2012.
 55.Casey JR, Sly WS, Shah GN, Alvarez BV. Bicarbonate homeostasis in excitable tissues: Role of AE3 Cl−/HCO3− exchanger and carbonic anhydrase XIV interaction. Am J Physiol Cell Physiol 297: C1091‐C1102, 2009.
 56.Chambrey R, Kurth I, Peti‐Peterdi J, Houillier P, Purkerson JM, Leviel F, Hentschke M, Zdebik AA, Schwartz GJ, Hubner CA, Eladari D. Renal intercalated cells are rather energized by a proton than a sodium pump. Proc Natl Acad Sci U S A 110: 7928‐7933, 2013.
 57.Ch'en FF, Villafuerte FC, Swietach P, Cobden PM, Vaughan‐Jones RD. S0859, an N‐cyanosulphonamide inhibitor of sodium‐bicarbonate cotransport in the heart. Br J Pharmacol 153: 972‐982, 2008.
 58.Chang MH, DiPiero J, Sonnichsen FD, Romero MF. Entry to “HCO3− tunnel” revealed by SLC4A4 human mutation and structural model. J Biol Chem 283: 18402‐18410, 2008.
 59.Chen LM, Choi I, Haddad GG, Boron WF. Chronic continuous hypoxia decreases the expression of SLC4A7 (NBCn1) and SLC4A10 (NCBE) in mouse brain. Am J Physiol Regul Integr Comp Physiol 293: R2412‐R2420, 2007.
 60.Chen LM, Haddad GG, Boron WF. Effects of chronic continuous hypoxia on the expression of SLC4A8 (NDCBE) in neonatal versus adult mouse brain. Brain Res 1238: 85‐92, 2008.
 61.Chen LM, Kelly ML, Parker MD, Bouyer P, Gill HS, Felie JM, Davis BA, Boron WF. Expression and localization of Na+‐driven Cl−‐HCO3− exchanger (SLC4A8) in rodent CNS. Neuroscience 153: 162‐174, 2008.
 62.Chen LM, Liu Y, Boron WF. Role of an extracellular loop in determining the stoichiometry of Na+‐HCO3− cotransporters. J Physiol 589: 877‐890, 2011.
 63.Chen LM, Qin X, Moss FJ, Liu Y, Boron WF. Effect of simultaneously replacing putative TM6 and TM12 of human NBCe1‐A with those from NBCn1 on surface abundance in Xenopus oocytes. J Membr Biol 245: 131‐140, 2012.
 64.Chen M, Praetorius J, Zheng W, Xiao F, Riederer B, Singh AK, Stieger N, Wang J, Shull GE, Aalkjaer C, Seidler U. The electroneutral Na+:HCO3− cotransporter NBCn1 is a major pHi regulator in murine duodenum. J Physiol 590: 3317‐3333, 2012.
 65.Chen W, Zhong R, Ming J, Zou L, Zhu B, Lu X, Ke J, Zhang Y, Liu L, Miao X, Huang T. The SLC4A7 variant rs4973768 is associated with breast cancer risk: Evidence from a case‐control study and a meta‐analysis. Breast Cancer Res Treat 136: 847‐857, 2012.
 66.Chen Y, Choong LY, Lin Q, Philp R, Wong CH, Ang BK, Tan YL, Loh MC, Hew CL, Shah N, Druker BJ, Chong PK, Lim YP. Differential expression of novel tyrosine kinase substrates during breast cancer development. Mol Cell Proteomics 6: 2072‐2087, 2007.
 67.Chesler M. Regulation and modulation of pH in the brain. Physiol Rev 83: 1183‐1221, 2003.
 68.Choi I, Aalkjaer C, Boulpaep EL, Boron WF. An electroneutral sodium/bicarbonate cotransporter NBCn1 and associated sodium channel. Nature 405: 571‐575, 2000.
 69.Choi I, Hu L, Rojas JD, Schmitt BM, Boron WF. Role of glycosylation in the renal electrogenic Na+/HCO3− cotransporter (NBCe1). Am J Physiol Renal Physiol 284: F1199‐F1206, 2003.
 70.Choi I, Romero MF, Khandoudi N, Bril A, Boron WF. Cloning and characterization of a human electrogenic Na+‐HCO3− cotransporter isoform (hhNBC). Am J Physiol 276: C576‐C584, 1999.
 71.Choi I, Soo YH, Boron WF. The electrogenicity of the rat sodium‐bicarbonate cotransporter NBCe1 requires interactions among transmembrane segments of the transporter. J Physiol 578: 131‐142, 2007.
 72.Christianson TA, Doherty JK, Lin YJ, Ramsey EE, Holmes R, Keenan EJ, Clinton GM. NH2‐terminally truncated HER‐2/neu protein: Relationship with shedding of the extracellular domain and with prognostic factors in breast cancer. Cancer Res 58: 5123‐5129, 1998.
 73.Cogan MG. Chronic hypercapnia stimulates proximal bicarbonate reabsorption in the rat. J Clin Invest 74: 1942‐1947, 1984.
 74.Cooper DS, Lee HJ, Yang HS, Kippen J, Yun CC, Choi I. The electroneutral sodium/bicarbonate cotransporter containing an amino terminal 123‐amino‐acid cassette is expressed predominantly in the heart. J Biomed Sci 13: 593‐595, 2006.
 75.Cooper DS, Saxena NC, Yang HS, Lee HJ, Moring AG, Lee A, Choi I. Molecular and functional characterization of the electroneutral Na+/HCO3− cotransporter NBCn1 in rat hippocampal neurons. J Biol Chem 280: 17823‐17830, 2005.
 76.Cooper DS, Yang HS, He P, Kim E, Rajbhandari I, Yun CC, Choi I. Sodium/bicarbonate cotransporter NBCn1/slc4a7 increases cytotoxicity in magnesium depletion in primary cultures of hippocampal neurons. Eur J Neurosci 29: 437‐446, 2009.
 77.Cordat E, Casey JR. Bicarbonate transport in cell physiology and disease. Biochem J 417: 423‐439, 2009.
 78.Curci S, Debellis L, Fromter E. Evidence for rheogenic sodium bicarbonate cotransport in the basolateral membrane of oxyntic cells of frog gastric fundus. Pflugers Arch 408: 497‐504, 1987.
 79.Damkier HH, Aalkjaer C, Praetorius J. Na+‐dependent HCO3− import by the slc4a10 gene product involves Cl− export. J Biol Chem 285: 26998‐27007, 2010.
 80.Damkier HH, Nielsen S, Praetorius J. An anti‐NH2‐terminal antibody localizes NBCn1 to heart endothelia and skeletal and vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 290: H172‐H180, 2006.
 81.Damkier HH, Nielsen S, Praetorius J. Molecular expression of SLC4‐derived Na+‐dependent anion transporters in selected human tissues. Am J Physiol Regul Integr Comp Physiol 293: R2136‐R2146, 2007.
 82.Damkier HH, Praetorius J. Genetic ablation of Slc4a10 alters the expression pattern of transporters involved in solute movement in the mouse choroid plexus. Am J Physiol Cell Physiol 302: C1452‐C1459, 2012.
 83.Damkier HH, Prasad V, Hubner CA, Praetorius J. Nhe1 is a luminal Na+/H+ exchanger in mouse choroid plexus and is targeted to the basolateral membrane in Ncbe/Nbcn2‐null mice. Am J Physiol Cell Physiol 296: C1291‐C1300, 2009.
 84.Danielsen AA, Parker MD, Lee S, Boron WF, Aalkjaer C, Boedtkjer E. Splice cassette II of NBCn1 (slc4a7) interacts with calcineurin A: Implications for transporter activity and intracellular pH control during rat artery contractions. J Biol Chem 288: 8146‐8155, 2013.
 85.Dart C, Vaughan‐Jones RD. Na+‐HCO3− symport in the sheep cardiac Purkinje fibre. J Physiol 451: 365‐385, 1992.
 86.Davis BA, Hogan EM, Cooper GJ, Bashi E, Zhao J, Boron WF. Inhibition of K+/HCO3− cotransport in squid axons by quaternary ammonium ions. J Membr Biol 183: 25‐32, 2001.
 87.DeCoursey TE. Voltage‐gated proton channels and other proton transfer pathways. Physiol Rev 83: 475‐579, 2003.
 88.De Giusti VC, Orlowski A, Villa‐Abrille MC, de Cingolani GE, Casey JR, Alvarez BV, Aiello EA. Antibodies against the cardiac sodium/bicarbonate co‐transporter (NBCe1) as pharmacological tools. Br J Pharmacol 164: 1976‐1989, 2011.
 89.Deitmer JW, Schlue WR. The regulation of intracellular pH by identified glial cells and neurones in the central nervous system of the leech. J Physiol 388: 261‐283, 1987.
 90.Demirci FY, Chang MH, Mah TS, Romero MF, Gorin MB. Proximal renal tubular acidosis and ocular pathology: A novel missense mutation in the gene (SLC4A4) for sodium bicarbonate cotransporter protein (NBCe1). Mol Vis 12: 324‐330, 2006.
 91.Dinour D, Chang MH, Satoh J, Smith BL, Angle N, Knecht A, Serban I, Holtzman EJ, Romero MF. A novel missense mutation in the sodium bicarbonate cotransporter (NBCe1/SLC4A4) causes proximal tubular acidosis and glaucoma through ion transport defects. J Biol Chem 279: 52238‐52246, 2004.
 92.Dorwart MR, Shcheynikov N, Wang Y, Stippec S, Muallem S. SLC26A9 is a Cl− channel regulated by the WNK kinases. J Physiol 584: 333‐345, 2007.
 93.Douglas RM, Schmitt BM, Xia Y, Bevensee MO, Biemesderfer D, Boron WF, Haddad GG. Sodium‐hydrogen exchangers and sodium‐bicarbonate co‐transporters: Ontogeny of protein expression in the rat brain. Neuroscience 102: 217‐228, 2001.
 94.Douglas RM, Xue J, Chen JY, Haddad CG, Alper SL, Haddad GG. Chronic intermittent hypoxia decreases the expression of Na+/H+ exchangers and HCO3− dependent transporters in mouse CNS. J Appl Physiol 95: 292‐299, 2003.
 95.Ducoudret O, Diakov A, Muller‐Berger S, Romero MF, Fromter E. The renal Na+‐HCO3− cotransporter expressed in Xenopus laevis oocytes: Inhibition by tenidap and benzamil and effect of temperature on transport rate and stoichiometry. Pflugers Arch 442: 709‐717, 2001.
 96.Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, Smith AV, Tobin MD, Verwoert GC, Hwang SJ, Pihur V, Vollenweider P, O'Reilly PF, Amin N, Bragg‐Gresham JL, Teumer A, Glazer NL, Launer L, Zhao JH, Aulchenko Y, Heath S, Sober S, Parsa A, Luan J, Arora P, Dehghan A, Zhang F, Lucas G, Hicks AA, Jackson AU, Peden JF, Tanaka T, Wild SH, Rudan I, Igl W, Milaneschi Y, Parker AN, Fava C, Chambers JC, Fox ER, Kumari M, Go MJ, van der Harst P, Kao WH, Sjogren M, Vinay DG, Alexander M, Tabara Y, Shaw‐Hawkins S, Whincup PH, Liu Y, Shi G, Kuusisto J, Tayo B, Seielstad M, Sim X, Nguyen KD, Lehtimaki T, Matullo G, Wu Y, Gaunt TR, Onland‐Moret NC, Cooper MN, Platou CG, Org E, Hardy R, Dahgam S, Palmen J, Vitart V, Braund PS, Kuznetsova T, Uiterwaal CS, Adeyemo A, Palmas W, Campbell H, Ludwig B, Tomaszewski M, Tzoulaki I, Palmer ND, Aspelund T, Garcia M, Chang YP, O'Connell JR, Steinle NI, Grobbee DE, Arking DE, Kardia SL, Morrison AC, Hernandez D, Najjar S, McArdle WL, Hadley D, Brown MJ, Connell JM, Hingorani AD, Day IN, Lawlor DA, Beilby JP, Lawrence RW, Clarke R, Hopewell JC, Ongen H, Dreisbach AW, Li Y, Young JH, Bis JC, Kahonen M, Viikari J, Adair LS, Lee NR, Chen MH, Olden M, Pattaro C, Bolton JA, Kottgen A, Bergmann S, Mooser V, Chaturvedi N, Frayling TM, Islam M, Jafar TH, Erdmann J, Kulkarni SR, Bornstein SR, Grassler J, Groop L, Voight BF, Kettunen J, Howard P, Taylor A, Guarrera S, Ricceri F, Emilsson V, Plump A, Barroso I, Khaw KT, Weder AB, Hunt SC, Sun YV, Bergman RN, Collins FS, Bonnycastle LL, Scott LJ, Stringham HM, Peltonen L, Perola M, Vartiainen E, Brand SM, Staessen JA, Wang TJ, Burton PR, Soler AM, Dong Y, Snieder H, Wang X, Zhu H, Lohman KK, Rudock ME, Heckbert SR, Smith NL, Wiggins KL, Doumatey A, Shriner D, Veldre G, Viigimaa M, Kinra S, Prabhakaran D, Tripathy V, Langefeld CD, Rosengren A, Thelle DS, Corsi AM, Singleton A, Forrester T, Hilton G, McKenzie CA, Salako T, Iwai N, Kita Y, Ogihara T, Ohkubo T, Okamura T, Ueshima H, Umemura S, Eyheramendy S, Meitinger T, Wichmann HE, Cho YS, Kim HL, Lee JY, Scott J, Sehmi JS, Zhang W, Hedblad B, Nilsson P, Smith GD, Wong A, Narisu N, Stancakova A, Raffel LJ, Yao J, Kathiresan S, O'Donnell CJ, Schwartz SM, Ikram MA, Longstreth WT, Jr., Mosley TH, Seshadri S, Shrine NR, Wain LV, Morken MA, Swift AJ, Laitinen J, Prokopenko I, Zitting P, Cooper JA, Humphries SE, Danesh J, Rasheed A, Goel A, Hamsten A, Watkins H, Bakker SJ, van Gilst WH, Janipalli CS, Mani KR, Yajnik CS, Hofman A, Mattace‐Raso FU, Oostra BA, Demirkan A, Isaacs A, Rivadeneira F, Lakatta EG, Orru M, Scuteri A, Ala‐Korpela M, Kangas AJ, Lyytikainen LP, Soininen P, Tukiainen T, Wurtz P, Ong RT, Dorr M, Kroemer HK, Volker U, Volzke H, Galan P, Hercberg S, Lathrop M, Zelenika D, Deloukas P, Mangino M, Spector TD, Zhai G. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478: 103‐109, 2011.
 97.Espiritu DJ, Bernardo AA, Arruda JA. Role of NH2 and COOH termini in targeting, stability, and activity of sodium bicarbonate cotransporter 1. Am J Physiol Renal Physiol 291: F588‐F596, 2006.
 98.Fievet B, Gabillat N, Borgese F, Motais R. Expression of band 3 anion exchanger induces chloride current and taurine transport: Structure‐function analysis. EMBO J 14: 5158‐5169, 1995.
 99.Fitz JG, Lidofsky SD, Xie MH, Scharschmidt BF. Transmembrane electrical potential difference regulates Na+/HCO3− cotransport and intracellular pH in hepatocytes. Proc Natl Acad Sci U S A 89: 4197‐4201, 1992.
 100.Fitz JG, Persico M, Scharschmidt BF. Electrophysiological evidence for Na+‐coupled bicarbonate transport in cultured rat hepatocytes. Am J Physiol 256: G491‐G500, 1989.
 101.Freedman JC, Novak TS. Electrodiffusion, barrier, and gating analysis of DIDS‐insensitive chloride conductance in human red blood cells treated with valinomycin or gramicidin. J Gen Physiol 109: 201‐216, 1997.
 102.Fukuda H, Hirata T, Nakamura N, Kato A, Kawahara K, Wakabayashi S, Chang MH, Romero MF, Hirose S. Identification and properties of a novel variant of NBC4 (Na+/HCO3− co‐transporter 4) that is predominantly expressed in the choroid plexus. Biochem J 450: 179‐187, 2013.
 103.Galler S, Moser H. The ionic mechanism of intracellular pH regulation in crayfish muscle fibres. J Physiol 374: 137‐151, 1986.
 104.Gatenby RA, Gillies RJ. A microenvironmental model of carcinogenesis. Nat Rev Cancer 8: 56‐61, 2008.
 105.Gawenis LR, Bradford EM, Prasad V, Lorenz JN, Simpson JE, Clarke LL, Woo AL, Grisham C, Sanford LP, Doetschman T, Miller ML, Shull GE. Colonic anion secretory defects and metabolic acidosis in mice lacking the NBC1 Na+/HCO3− cotransporter. J Biol Chem 282: 9042‐9052, 2007.
 106.Geibel J, Giebisch G, Boron WF. Angiotensin II stimulates both Na+‐H+ exchange and Na+/HCO3− cotransport in the rabbit proximal tubule. Proc Natl Acad Sci U S A 87: 7917‐7920, 1990.
 107.Giffard RG, Lee YS, Ouyang YB, Murphy SL, Monyer H. Two variants of the rat brain sodium‐driven chloride bicarbonate exchanger (NCBE): developmental expression and addition of a PDZ motif. Eur J Neurosci 18: 2935‐2945, 2003.
 108.Giffard RG, Papadopoulos MC, van Hooft JA, Xu L, Giuffrida R, Monyer H. The electrogenic sodium bicarbonate cotransporter: Developmental expression in rat brain and possible role in acid vulnerability. J Neurosci 20: 1001‐1008, 2000.
 109.Gill HS, Boron WF. Expression and purification of the cytoplasmic N‐terminal domain of the Na+/HCO3− cotransporter NBCe1‐A: Structural insights from a generalized approach. Protein Expr Purif 49: 228‐234, 2006.
 110.Gillies RJ, Martinez‐Zaguilan R, Martinez GM, Serrano R, Perona R. Tumorigenic 3T3 cells maintain an alkaline intracellular pH under physiological conditions. Proc Natl Acad Sci U S A 87: 7414‐7418, 1990.
 111.Good DW. Adaptation of HCO3− and NH4+ transport in rat MTAL: Effects of chronic metabolic acidosis and Na+ intake. Am J Physiol 258: F1345‐F1353, 1990.
 112.Good DW. Ammonium transport by the thick ascending limb of Henle's loop. Annu Rev Physiol 56: 623‐647, 1994.
 113.Gresz V, Kwon TH, Vorum H, Zelles T, Kurtz I, Steward MC, Aalkjaer C, Nielsen S. Immunolocalization of electroneutral Na+‐HCO3− cotransporters in human and rat salivary glands. Am J Physiol Gastrointest Liver Physiol 283: G473‐G480, 2002.
 114.Grichtchenko II, Boron WF. Evidence for CO3= transport by NBCe1, based on surface‐pH measurements in voltage‐clamped Xenopus oocytes co‐expressing NBCe1 and CAIV: Evidence for CO3= transport. FASEB J 16: A795, 2002.
 115.Grichtchenko II, Chesler M. Depolarization‐induced acid secretion in gliotic hippocampal slices. Neuroscience 62: 1057‐1070, 1994a.
 116.Grichtchenko II, Chesler M. Depolarization‐induced alkalinization of astrocytes in gliotic hippocampal slices. Neuroscience 62: 1071‐1078, 1994b.
 117.Grichtchenko II, Choi I, Zhong X, Bray‐Ward P, Russell JM, Boron WF. Cloning, characterization, and chromosomal mapping of a human electroneutral Na+‐driven Cl−‐HCO3− exchanger. J Biol Chem 276: 8358‐8363, 2001.
 118.Grichtchenko II, Romero MF, Boron WF. Extracellular HCO3− dependence of electrogenic Na+/HCO3− cotransporters cloned from salamander and rat kidney. J Gen Physiol 115: 533‐546, 2000.
 119.Groger N, Vitzthum H, Frohlich H, Kruger M, Ehmke H, Braun T, Boettger T. Targeted mutation of SLC4A5 induces arterial hypertension and renal metabolic acidosis. Hum Mol Genet 21: 1025‐1036, 2012.
 120.Gross E, Abuladze N, Pushkin A, Kurtz I, Cotton CU. The stoichiometry of the electrogenic sodium bicarbonate cotransporter pNBC1 in mouse pancreatic duct cells is 2 HCO3−:1 Na+. J Physiol 531: 375‐382, 2001.
 121.Gross E, Hawkins K, Abuladze N, Pushkin A, Cotton CU, Hopfer U, Kurtz I. The stoichiometry of the electrogenic sodium bicarbonate cotransporter NBC1 is cell‐type dependent. J Physiol 531: 597‐603, 2001.
 122.Gross E, Hawkins K, Pushkin A, Sassani P, Dukkipati R, Abuladze N, Hopfer U, Kurtz I. Phosphorylation of Ser982 in the sodium bicarbonate cotransporter kNBC1 shifts the HCO3− : Na+ stoichiometry from 3 : 1 to 2 : 1 in murine proximal tubule cells. J Physiol 537: 659‐665, 2001.
 123.Gross E, Hopfer U. Activity and stoichiometry of Na+:HCO3− cotransport in immortalized renal proximal tubule cells. J Membr Biol 152: 245‐252, 1996.
 124.Gross E, Hopfer U. Voltage and cosubstrate dependence of the Na+‐HCO3− cotransporter kinetics in renal proximal tubule cells. Biophys J 75: 810‐824, 1998.
 125.Gross E, Hopfer U. Effects of pH on kinetic parameters of the Na+‐HCO3− cotransporter in renal proximal tubule. Biophys J 76: 3066‐3075, 1999.
 126.Gurnett CA, Veile R, Zempel J, Blackburn L, Lovett M, Bowcock A. Disruption of sodium bicarbonate transporter SLC4A10 in a patient with complex partial epilepsy and mental retardation. Arch Neurol 65: 550‐553, 2008.
 127.Han W, Woo JH, Yu JH, Lee MJ, Moon HG, Kang D, Noh DY. Common genetic variants associated with breast cancer in Korean women and differential susceptibility according to intrinsic subtype. Cancer Epidemiol Biomarkers Prev 20: 793‐798, 2011.
 128.Hentschke M, Wiemann M, Hentschke S, Kurth I, Hermans‐Borgmeyer I, Seidenbecher T, Jentsch TJ, Gal A, Hubner CA. Mice with a targeted disruption of the Cl−/HCO3− exchanger AE3 display a reduced seizure threshold. Mol Cell Biol 26: 182‐191, 2006.
 129.Heyer M, Muller‐Berger S, Romero MF, Boron WF, Fromter E. Stoichiometry of the rat kidney Na+‐HCO3− cotransport expressed in Xenopus laevis oocytes. Pflugers Arch 438: 322‐329, 1999.
 130.Hilgemann DW, Feng S, Nasuhoglu C. The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE 2001: re19.
 131.Hogan EM, Cohen MA, Boron WF. K+‐ and HCO3− ‐dependent acid‐base transport in squid giant axons II. Base influx. J Gen Physiol 106: 845‐862, 1995.
 132.Hong JH, Yang D, Shcheynikov N, Ohana E, Shin DM, Muallem S. Convergence of IRBIT, phosphatidylinositol (4,5) bisphosphate, and WNK/SPAK kinases in regulation of the Na+‐HCO3− cotransporters family. Proc Natl Acad Sci U S A 110: 4105‐4110, 2013.
 133.Horita S, Yamada H, Inatomi J, Moriyama N, Sekine T, Igarashi T, Endo Y, Dasouki M, Ekim M, Al‐Gazali L, Shimadzu M, Seki G, Fujita T. Functional analysis of NBC1 mutants associated with proximal renal tubular acidosis and ocular abnormalities. J Am Soc Nephrol 16: 2270‐2278, 2005.
 134.Hsueh WC, Mitchell BD, Schneider JL, Wagner MJ, Bell CJ, Nanthakumar E, Shuldiner AR. QTL influencing blood pressure maps to the region of PPH1 on chromosome 2q31‐34 in Old Order Amish. Circulation 101: 2810‐2816, 2000.
 135.Hubner CA, Hentschke M, Jacobs S, Hermans‐Borgmeyer I. Expression of the sodium‐driven chloride bicarbonate exchanger NCBE during prenatal mouse development. Gene Expr Patterns 5: 219‐223, 2004.
 136.Hunt SC, Xin Y, Wu LL, Cawthon RM, Coon H, Hasstedt SJ, Hopkins PN. Sodium bicarbonate cotransporter polymorphisms are associated with baseline and 10‐year follow‐up blood pressures. Hypertension 47: 532‐536, 2006.
 137.Igarashi T, Inatomi J, Sekine T, Cha SH, Kanai Y, Kunimi M, Tsukamoto K, Satoh H, Shimadzu M, Tozawa F, Mori T, Shiobara M, Seki G, Endou H. Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities. Nat Genet 23: 264‐266, 1999.
 138.Igarashi T, Inatomi J, Sekine T, Seki G, Shimadzu M, Tozawa F, Takeshima Y, Takumi T, Takahashi T, Yoshikawa N, Nakamura H, Endou H. Novel nonsense mutation in the Na+/HCO3− cotransporter gene (SLC4A4) in a patient with permanent isolated proximal renal tubular acidosis and bilateral glaucoma. J Am Soc Nephrol 12: 713‐718, 2001.
 139.Igarashi T, Sekine T, Inatomi J, Seki G. Unraveling the molecular pathogenesis of isolated proximal renal tubular acidosis. J Am Soc Nephrol 13: 2171‐2177, 2002.
 140.Inatomi J, Horita S, Braverman N, Sekine T, Yamada H, Suzuki Y, Kawahara K, Moriyama N, Kudo A, Kawakami H, Shimadzu M, Endou H, Fujita T, Seki G, Igarashi T. Mutational and functional analysis of SLC4A4 in a patient with proximal renal tubular acidosis. Pflugers Arch 448: 438‐444, 2004.
 141.Ishiguro H, Steward MC, Lindsay AR, Case RM. Accumulation of intracellular HCO3− by Na+‐HCO3− cotransport in interlobular ducts from the guinea‐pig pancreas. J Physiol 495: 169‐178, 1996.
 142.Ishiguro H, Walther D, Arinami T, Uhl GR. Variation in a bicarbonate co‐transporter gene family member SLC4A7 is associated with propensity to addictions: A study using fine‐mapping and three samples. Addiction 102: 1320‐1325, 2007.
 143.Jacobs S, Ruusuvuori E, Sipila ST, Haapanen A, Damkier HH, Kurth I, Hentschke M, Schweizer M, Rudhard Y, Laatikainen LM, Tyynela J, Praetorius J, Voipio J, Hubner CA. Mice with targeted Slc4a10 gene disruption have small brain ventricles and show reduced neuronal excitability. Proc Natl Acad Sci U S A 105: 311‐316, 2008.
 144.Jakobsen JK, Odgaard E, Wang W, Elkjaer ML, Nielsen S, Aalkjaer C, Leipziger J. Functional up‐regulation of basolateral Na+‐dependent. Pflugers Arch 448: 571‐578, 2004.
 145.Jentsch TJ, Keller SK, Koch M, Wiederholt M. Evidence for coupled transport of bicarbonate and sodium in cultured bovine corneal endothelial cells. J Membr Biol 81: 189‐204, 1984.
 146.Jentsch TJ, Schill BS, Schwartz P, Matthes H, Keller SK, Wiederholt M. Kidney epithelial cells of monkey origin (BSC‐1) express a sodium bicarbonate cotransport. Characterization by 22Na+ flux measurements. J Biol Chem 260: 15554‐15560, 1985.
 147.Jentsch TJ, Schwartz P, Schill BS, Langner B, Lepple AP, Keller SK, Wiederholt M. Kinetic properties of the sodium bicarbonate (carbonate) symport in monkey kidney epithelial cells (BSC‐1). Interactions between Na+, HCO3−, and pH. J Biol Chem 261: 10673‐10679, 1986.
 148.Jentsch TJ, Stahlknecht TR, Hollwede H, Fischer DG, Keller SK, Wiederholt M. A bicarbonate‐dependent process inhibitable by disulfonic stilbenes and a Na+/H+ exchange mediate 22Na+ uptake into cultured bovine corneal endothelium. J Biol Chem 260: 795‐801, 1985.
 149.Jung YW, Choi IJ, Kwon TH. Altered expression of sodium transporters in ischemic penumbra after focal cerebral ischemia in rats. Neurosci Res 59: 152‐159, 2007.
 150.Kahn AM, Cragoe EJ, Jr., Allen JC, Halligan RD, Shelat H. Na+‐H+ and Na+‐dependent Cl−‐HCO3− exchange control pHi in vascular smooth muscle. Am J Physiol 259: C134‐C143, 1990.
 151.Kahn AM, Cragoe EJ, Jr., Allen JC, Seidel CL, Shelat H. Effects of pHi on Na+‐H+, Na+‐dependent, and Na+‐independent Cl−‐HCO3− exchangers in vascular smooth muscle. Am J Physiol 261: C837‐C844, 1991.
 152.Kao L, Kurtz LM, Shao X, Papadopoulos MC, Liu L, Bok D, Nusinowitz S, Chen B, Stella SL, Andre M, Weinreb J, Luong SS, Piri N, Kwong JM, Newman D, Kurtz I. Severe neurologic impairment in mice with targeted disruption of the electrogenic sodium bicarbonate cotransporter NBCe2 (Slc4a5 gene). J Biol Chem 286: 32563‐32574, 2011.
 153.Kao L, Sassani P, Azimov R, Pushkin A, Abuladze N, Peti‐Peterdi J, Liu W, Newman D, Kurtz I. Oligomeric structure and minimal functional unit of the electrogenic sodium bicarbonate cotransporter NBCe1‐A. J Biol Chem 283: 26782‐26794, 2008.
 154.Kardia SL, Greene MT, Boerwinkle E, Turner ST, Kullo IJ. Investigating the complex genetic architecture of ankle‐brachial index, a measure of peripheral arterial disease, in non‐Hispanic whites. BMC Med Genomics 1: 16, 2008.
 155.Khandoudi N, Albadine J, Robert P, Krief S, Berrebi‐Bertrand I, Martin X, Bevensee MO, Boron WF, Bril A. Inhibition of the cardiac electrogenic sodium bicarbonate cotransporter reduces ischemic injury. Cardiovasc Res 52: 387‐396, 2001.
 156.Kim KH, Shcheynikov N, Wang Y, Muallem S. SLC26A7 is a Cl− channel regulated by intracellular pH. J Biol Chem 280: 6463‐6470, 2005.
 157.Kim YH, Kwon TH, Christensen BM, Nielsen J, Wall SM, Madsen KM, Frokiaer J, Nielsen S. Altered expression of renal acid‐base transporters in rats with lithium‐induced NDI. Am J Physiol Renal Physiol 285: F1244‐F1257, 2003.
 158.Knauf PA, Pal P. Band 3‐mediated transport. In: Red Cell Membrane Transport in Health and Disease. Berlin: Springer, 2003, pp. 253‐301.
 159.Ko SB, Luo X, Hager H, Rojek A, Choi JY, Licht C, Suzuki M, Muallem S, Nielsen S, Ishibashi K. AE4 is a DIDS‐sensitive Cl−/HCO3− exchanger in the basolateral membrane of the renal CCD and the SMG duct. Am J Physiol Cell Physiol 283: C1206‐C1218, 2002.
 160.Krapf R. Mechanisms of adaptation to chronic respiratory acidosis in the rabbit proximal tubule. J Clin Invest 83: 890‐896, 1989.
 161.Krepischi AC, Knijnenburg J, Bertola DR, Kim CA, Pearson PL, Bijlsma E, Szuhai K, Kok F, Vianna‐Morgante AM, Rosenberg C. Two distinct regions in 2q24.2‐q24.3 associated with idiopathic epilepsy. Epilepsia 51: 2457‐2460, 2010.
 162.Kristensen JM, Kristensen M, Juel C. Expression of Na+/HCO3− co‐transporter protein (NBCs) in rat and human skeletal muscle. Acta Physiol Scand 182: 69‐76, 2004.
 163.Krushkal J, Ferrell R, Mockrin SC, Turner ST, Sing CF, Boerwinkle E. Genome‐wide linkage analyses of systolic blood pressure using highly discordant siblings. Circulation 99: 1407‐1410, 1999.
 164.Kunau RT, Jr., Hart JI, Walker KA. Effect of metabolic acidosis on proximal tubular total CO2 absorption. Am J Physiol 249: F62‐F68, 1985.
 165.Kunimi M, Muller‐Berger S, Hara C, Samarzija I, Seki G, Fromter E. Incubation in tissue culture media allows isolated rabbit proximal tubules to regain in‐vivo‐like transport function: Response of HCO3− absorption to norepinephrine. Pflugers Arch 440: 908‐917, 2000.
 166.Kwon TH, Fulton C, Wang W, Kurtz I, Frokiaer J, Aalkjaer C, Nielsen S. Chronic metabolic acidosis upregulates rat kidney Na+‐HCO3− cotransporters NBCn1 and NBC3 but not NBC1. Am J Physiol Renal Physiol 282: F341‐F351, 2002.
 167.Kwon TH, Pushkin A, Abuladze N, Nielsen S, Kurtz I. Immunoelectron microscopic localization of NBC3 sodium‐bicarbonate cotransporter in rat kidney. Am J Physiol Renal Physiol 278: F327‐F336, 2000.
 168.L'Allemain G, Paris S, Pouyssegur J. Role of a Na+‐dependent Cl−/HCO3− exchange in regulation of intracellular pH in fibroblasts. J Biol Chem 260: 4877‐4883, 1985.
 169.Lacruz RS, Nanci A, Kurtz I, Wright JT, Paine ML. Regulation of pH During Amelogenesis. Calcif Tissue Int 86: 91‐103, 2010.
 170.Lacruz RS, Nanci A, White SN, Wen X, Wang H, Zalzal SF, Luong VQ, Schuetter VL, Conti PS, Kurtz I, Paine ML. The sodium bicarbonate cotransporter (NBCe1) is essential for normal development of mouse dentition. J Biol Chem 285: 24432‐24438, 2010.
 171.Lacruz RS, Smith CE, Moffatt P, Chang EH, Bromage TG, Bringas P, Jr., Nanci A, Baniwal SK, Zabner J, Welsh MJ, Kurtz I, Paine ML. Requirements for ion and solute transport, and pH regulation during enamel maturation. J Cell Physiol 227: 1776‐1785, 2012.
 172.Ladoux A, Krawice I, Cragoe EJ, Jr., Abita JP, Frelin C. Properties of the Na+‐dependent Cl−/HCO3− exchange system in U937 human leukemic cells. Eur J Biochem 170: 43‐49, 1987.
 173.Lagadic‐Gossmann D, Buckler KJ, Vaughan‐Jones RD. Role of bicarbonate in pH recovery from intracellular acidosis in the guinea‐pig ventricular myocyte. J Physiol 458: 361‐384, 1992.
 174.Lagadic‐Gossmann D, Vaughan‐Jones RD, Buckler KJ. Adrenaline and extracellular ATP switch between two modes of acid extrusion in the guinea‐pig ventricular myocyte. J Physiol 458: 385‐407, 1992.
 175.Larsen AM, Krogsgaard‐Larsen N, Lauritzen G, Olesen CW, Honore HS, Boedtkjer E, Pedersen SF, Bunch L. Gram‐scale solution‐phase synthesis of selective sodium bicarbonate co‐transport inhibitor S0859: In vitro efficacy studies in breast cancer cells. ChemMedChem 7: 1808‐1814, 2012.
 176.Lauritzen G, Jensen MB, Boedtkjer E, Dybboe R, Aalkjaer C, Nylandsted J, Pedersen SF. NBCn1 and NHE1 expression and activity in ΔNErbB2 receptor‐expressing MCF‐7 breast cancer cells: Contributions to pHi regulation and chemotherapy resistance. Exp Cell Res 316: 2538‐2553, 2010.
 177.Lauritzen G, Stock CM, Lemaire J, Lund SF, Jensen MF, Damsgaard B, Petersen KS, Wiwel M, Ronnov‐Jessen L, Schwab A, Pedersen SF. The Na+/H+ exchanger NHE1, but not the Na+, HCO3− cotransporter NBCn1, regulates motility of MCF7 breast cancer cells expressing constitutively active ErbB2. Cancer Lett 317: 172‐183, 2012.
 178.Le Quesne SP, Saihan Z, Rangesh N, Steele‐Stallard HB, Ambrose J, Coffey A, Emmerson J, Haralambous E, Hughes Y, Steel KP, Luxon LM, Webster AR, Bitner‐Glindzicz M. Comprehensive sequence analysis of nine Usher syndrome genes in the UK National Collaborative Usher Study. J Med Genet 49: 27‐36, 2012.
 179.Lee HJ, Park HJ, Lee S, Kim YH, Choi I. The sodium‐driven chloride/bicarbonate exchanger NDCBE in rat brain is upregulated by chronic metabolic acidosis. Brain Res 1377: 13‐20, 2011.
 180.Lee MG, Ohana E, Park HW, Yang D, Muallem S. Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev 92: 39‐74, 2012.
 181.Lee S, Lee HJ, Yang HS, Thornell IM, Bevensee MO, Choi I. Sodium‐bicarbonate cotransporter NBCn1 in the kidney medullary thick ascending limb cell line is upregulated under acidic conditions and enhances ammonium transport. Exp Physiol 95: 926‐937, 2010.
 182.Lee S, Yang HS, Kim E, Ju EJ, Kwon MH, Dudley RK, Smith Y, Yun CC, Choi I. PSD‐95 Interacts with NBCn1 and Enhances Channel‐like Activity without Affecting Na+/HCO3− Cotransport. Cell Physiol Biochem 30: 1444‐1455, 2012.
 183.Lee SK, Boron WF, Parker MD. Relief of autoinhibition of the electrogenic Na+‐HCO3− cotransporter NBCe1‐B: Role of IRBIT vs.amino‐terminal truncation. Am J Physiol Cell Physiol 302: C518‐C526, 2012.
 184.Lee SK, Grichtchenko II, Boron WF. Distinguishing HCO3− from CO32− transport by NBCe1‐A. FASEB J 25: 656.9, 2011.
 185.Leem CH, Lagadic‐Gossmann D, Vaughan‐Jones RD. Characterization of intracellular pH regulation in the guinea‐pig ventricular myocyte. J Physiol 517: 159‐180, 1999.
 186.Leviel F, Borensztein P, Houillier P, Paillard M, Bichara M. Electroneutral K+/HCO3− cotransport in cells of medullary thick ascending limb of rat kidney. J Clin Invest 90: 869‐878, 1992.
 187.Leviel F, Hubner CA, Houillier P, Morla L, El MS, Brideau G, Hassan H, Parker MD, Kurth I, Kougioumtzes A, Sinning A, Pech V, Riemondy KA, Miller RL, Hummler E, Shull GE, Aronson PS, Doucet A, Wall SM, Chambrey R, Eladari D. The Na+‐dependent chloride‐bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J Clin Invest 120: 1627‐1635, 2010.
 188.Li CY, Zhou WZ, Zhang PW, Johnson C, Wei L, Uhl GR. Meta‐analysis and genome‐wide interpretation of genetic susceptibility to drug addiction. BMC Genomics 12: 508, 2011.
 189.Li HC, Collier JH, Shawki A, Rudra JS, Li EY, Mackenzie B, Soleimani M. Sequence‐ or position‐specific mutations in the carboxyl‐terminal FL motif of the kidney sodium bicarbonate cotransporter (NBC1) disrupt its basolateral targeting and alpha‐helical structure. J Membr Biol 228: 111‐124, 2009.
 190.Li HC, Kucher V, Li EY, Conforti L, Zahedi KA, Soleimani M. The role of aspartic acid residues 405 and 416 of the kidney isotype of sodium‐bicarbonate cotransporter 1 in its targeting to the plasma membrane. Am J Physiol Cell Physiol 302: C1713‐C1730, 2012.
 191.Li HC, Li EY, Neumeier L, Conforti L, Soleimani M. Identification of a novel signal in the cytoplasmic tail of the Na+:HCO3− cotransporter NBC1 that mediates basolateral targeting. Am J Physiol Renal Physiol 292: F1245‐F1255, 2007.
 192.Li HC, Szigligeti P, Worrell RT, Matthews JB, Conforti L, Soleimani M. Missense mutations in Na+:HCO3− cotransporter NBC1 show abnormal trafficking in polarized kidney cells: A asis of proximal renal tubular acidosis. Am J Physiol Renal Physiol 289: F61‐F71, 2005.
 193.Li HC, Worrell RT, Matthews JB, Husseinzadeh H, Neumeier L, Petrovic S, Conforti L, Soleimani M. Identification of a carboxyl‐terminal motif essential for the targeting of Na+‐HCO3− cotransporter NBC1 to the basolateral membrane. J Biol Chem 279: 43190‐43197, 2004.
 194.Li J, Sun XC, Bonanno JA. Role of NBC1 in apical and basolateral HCO3− permeabilities and transendothelial HCO3− fluxes in bovine corneal endothelium. Am J Physiol Cell Physiol 288: C739‐C746, 2005.
 195.Lin CY, Ho CM, Bau DT, Yang SF, Liu SH, Lin PH, Lin TH, Tien N, Shih MC, Lu JJ. Evaluation of breast cancer susceptibility loci on 2q35, 3p24, 17q23 and FGFR2 genes in Taiwanese women with breast cancer. Anticancer Res 32: 475‐482, 2012.
 196.Liu X, Williams JB, Sumpter BR, Bevensee MO. Inhibition of the Na/bicarbonate cotransporter NBCe1‐A by diBAC oxonol dyes relative to niflumic acid and a stilbene. J Membr Biol 215: 195‐204, 2007.
 197.Liu Y, Xu JY, Wang DK, Wang L, Chen LM. Cloning and identification of two novel NBCe1 splice variants from mouse reproductive tract tissues: A comparative study of NCBT genes. Genomics 98: 112‐119, 2011.
 198.Liu Y, Xu K, Chen LM, Sun X, Parker MD, Kelly ML, LaManna JC, Boron WF. Distribution of NBCn2 (SLC4A10) splice variants in mouse brain. Neuroscience 169: 951‐964, 2010.
 199.Lo YF, Yang SS, Seki G, Yamada H, Horita S, Yamazaki O, Fujita T, Usui T, Tsai JD, Yu IS, Lin SW, Lin SH. Severe metabolic acidosis causes early lethality in NBC1 W516X knock‐in mice as a model of human isolated proximal renal tubular acidosis. Kidney Int 79: 730‐741, 2011.
 200.Loiselle FB, Morgan PE, Alvarez BV, Casey JR. Regulation of the human NBC3 Na+/HCO3− cotransporter by carbonic anhydrase II and PKA. Am J Physiol Cell Physiol 286: C1423‐C1433, 2004.
 201.Long J, Shu XO, Cai Q, Gao YT, Zheng Y, Li G, Li C, Gu K, Wen W, Xiang YB, Lu W, Zheng W. Evaluation of breast cancer susceptibility loci in Chinese women. Cancer Epidemiol Biomarkers Prev 19: 2357‐2365, 2010.
 202.Lopez IA, Acuna D, Galbraith G, Bok D, Ishiyama A, Liu W, Kurtz I. Time course of auditory impairment in mice lacking the electroneutral sodium bicarbonate cotransporter NBC3 (slc4a7). Brain Res Dev Brain Res 160: 63‐77, 2005.
 203.Lu J, Boron WF. Reversible and irreversible interactions of DIDS with the human electrogenic Na+/HCO3− cotransporter NBCe1‐A: Role of lysines in the KKMIK motif of TM5. Am J Physiol Cell Physiol 292: C1787‐C1798, 2007.
 204.Lu J, Daly CM, Parker MD, Gill HS, Piermarini PM, Pelletier MF, Boron WF. Effect of human carbonic anhydrase II on the activity of the human electrogenic Na+/HCO3− cotransporter NBCe1‐A in Xenopus oocytes. J Biol Chem 281: 19241‐19250, 2006.
 205.Luo X, Choi JY, Ko SB, Pushkin A, Kurtz I, Ahn W, Lee MG, Muallem S. HCO3− salvage mechanisms in the submandibular gland acinar and duct cells. J Biol Chem 276: 9808‐9816, 2001.
 206.Majumdar D, Bevensee MO. Na+‐coupled bicarbonate transporters of the solute carrier 4 family in the nervous system: Function, localization, and relevance to neurologic function. Neuroscience 171: 951‐972, 2010.
 207.Majumdar D, Maunsbach AB, Shacka JJ, Williams JB, Berger UV, Schultz KP, Harkins LE, Boron WF, Roth KA, Bevensee MO. Localization of electrogenic Na/bicarbonate cotransporter NBCe1 variants in rat brain. Neuroscience 155: 818‐832, 2008.
 208.Marino CR, Jeanes V, Boron WF, Schmitt BM. Expression and distribution of the Na+‐HCO3− cotransporter in human pancreas. Am J Physiol 277: G487‐G494, 1999.
 209.Maunsbach AB, Vorum H, Kwon TH, Nielsen S, Simonsen B, Choi I, Schmitt BM, Boron WF, Aalkjaer C. Immunoelectron microscopic localization of the electrogenic Na+/HCO3− cotransporter in rat and ambystoma kidney. J Am Soc Nephrol 11: 2179‐2189, 2000.
 210.McAlear SD, Bevensee MO. A cysteine‐scanning mutagenesis study of transmembrane domain 8 of the electrogenic sodium/bicarbonate cotransporter NBCe1. J Biol Chem 281: 32417‐32427, 2006.
 211.McAlear SD, Liu X, Williams JB, McNicholas‐Bevensee CM, Bevensee MO. Electrogenic Na+/HCO3− cotransporter (NBCe1) variants expressed in Xenopus oocytes: Functional comparison and roles of the amino and carboxy termini. J Gen Physiol 127: 639‐658, 2006.
 212.McLean LA, Roscoe J, Jorgensen NK, Gorin FA, Cala PM. Malignant gliomas display altered pH regulation by NHE1 compared with nontransformed astrocytes. Am J Physiol Cell Physiol 278: C676‐C688, 2000.
 213.McMurtrie HL, Cleary HJ, Alvarez BV, Loiselle FB, Sterling D, Morgan PE, Johnson DE, Casey JR. The bicarbonate transport metabolon. J Enzyme Inhib Med Chem 19: 231‐236, 2004.
 214.Millar ID, Brown PD. NBCe2 exhibits a 3 HCO3−:1 Na+ stoichiometry in mouse choroid plexus epithelial cells. Biochem Biophys Res Commun 373: 550‐554, 2008.
 215.Milne RL, Gaudet MM, Spurdle AB, Fasching PA, Couch FJ, Benitez J, Arias Perez JI, Zamora MP, Malats N, dos SSI, Gibson LJ, Fletcher O, Johnson N, Anton‐Culver H, Ziogas A, Figueroa J, Brinton L, Sherman ME, Lissowska J, Hopper JL, Dite GS, Apicella C, Southey MC, Sigurdson AJ, Linet MS, Schonfeld SJ, Freedman DM, Mannermaa A, Kosma VM, Kataja V, Auvinen P, Andrulis IL, Glendon G, Knight JA, Weerasooriya N, Cox A, Reed MW, Cross SS, Dunning AM, Ahmed S, Shah M, Brauch H, Ko YD, Bruning T, Lambrechts D, Reumers J, Smeets A, Wang‐Gohrke S, Hall P, Czene K, Liu J, Irwanto AK, Chenevix‐Trench G, Holland H, Giles GG, Baglietto L, Severi G, Bojensen SE, Nordestgaard BG, Flyger H, John EM, West DW, Whittemore AS, Vachon C, Olson JE, Fredericksen Z, Kosel M, Hein R, Vrieling A, Flesch‐Janys D, Heinz J, Beckmann MW, Heusinger K, Ekici AB, Haeberle L, Humphreys MK, Morrison J, Easton DF, Pharoah PD, Garcia‐Closas M, Goode EL, Chang‐Claude J. Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: A combined case‐control study. Breast Cancer Res 12: R110, 2010.
 216.Mohebbi N, Mihailova M, Wagner CA. The calcineurin inhibitor FK506 (tacrolimus) is associated with transient metabolic acidosis and altered expression of renal acid‐base transport proteins. Am J Physiol Renal Physiol 297: F499‐F509, 2009.
 217.Moody WJ, Jr. The ionic mechanism of intracellular pH regulation in crayfish neurones. J Physiol 316: 293‐308, 1981.
 218.Moser H. Intracellular pH regulation in the sensory neurone of the stretch receptor of the crayfish (Astacus fluviatilis). J Physiol 362: 23‐38, 1985.
 219.Mount DB, Romero MF. The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch 447: 710‐721, 2004.
 220.Muller‐Berger S, Coppola S, Samarzija I, Seki G, Fromter E. Partial recovery of in vivo function by improved incubation conditions of isolated renal proximal tubule. I. Change of amiloride‐inhibitable K+ conductance. Pflugers Arch 434: 373‐382, 1997.
 221.Muller‐Berger S, Ducoudret O, Diakov A, Fromter E. The renal Na+‐HCO3− cotransporter expressed in Xenopus laevis oocytes: Change in stoichiometry in response to elevation of cytosolic Ca2+ concentration. Pflugers Arch 442: 718‐728, 2001.
 222.Muller‐Berger S, Nesterov VV, Fromter E. Partial recovery of in vivo function by improved incubation conditions of isolated renal proximal tubule. II. Change of Na+‐HCO3− cotransport stoichiometry and of response to acetazolamide. Pflugers Arch 434: 383‐391, 1997.
 223.Mulligan AM, Couch FJ, Barrowdale D, Domchek SM, Eccles D, Nevanlinna H, Ramus SJ, Robson M, Sherman M, Spurdle AB, Wappenschmidt B, Lee A, McGuffog L, Healey S, Sinilnikova OM, Janavicius R, Hansen T, Nielsen FC, Ejlertsen B, Osorio A, Munoz‐Repeto I, Duran M, Godino J, Pertesi M, Benitez J, Peterlongo P, Manoukian S, Peissel B, Zaffaroni D, Cattaneo E, Bonanni B, Viel A, Pasini B, Papi L, Ottini L, Savarese A, Bernard L, Radice P, Hamann U, Verheus M, Meijers‐Heijboer HE, Wijnen J, Gomez Garcia EB, Nelen MR, Kets CM, Seynaeve C, Tilanus‐Linthorst MM, van der Luijt RB, van OT, Rookus M, Frost D, Jones JL, Evans DG, Lalloo F, Eeles R, Izatt L, Adlard J, Davidson R, Cook J, Donaldson A, Dorkins H, Gregory H, Eason J, Houghton C, Barwell J, Side LE, McCann E, Murray A, Peock S, Godwin AK, Schmutzler RK, Rhiem K, Engel C, Meindl A, Ruehl I, Arnold N, Niederacher D, Sutter C, Deissler H, Gadzicki D, Kast K, Preisler‐Adams S, Varon‐Mateeva R, Schoenbuchner I, Fiebig B, Heinritz W, Schafer D, Gevensleben H, Caux‐Moncoutier V, Fassy‐Colcombet M, Cornelis F, Mazoyer S, Leone M, Boutry‐Kryza N, Hardouin A, Berthet P, Muller D, Fricker JP, Mortemousque I, Pujol P, Coupier I, Lebrun M, Kientz C, Longy M, Sevenet N, Stoppa‐Lyonnet D, Isaacs C, Caldes T, de la Hoya M, Heikkinen T, Aittomaki K, Blanco I, Lazaro C, Barkardottir RB, Soucy P, Dumont M, Simard J, Montagna M, Tognazzo S, D'Andrea E, Fox S, Yan M, Rebbeck T, Olopade O, Weitzel JN, Lynch HT, Ganz PA, Tomlinson GE, Wang X, Fredericksen Z, Pankratz VS, Lindor NM, Szabo C, Offit K, Sakr R, Gaudet M, Bhatia J, Kauff N, Singer CF, Tea MK, Gschwantler‐Kaulich D, Fink‐Retter A, Mai PL, Greene MH, Imyanitov E, O'Malley FP, Ozcelik H, Glendon G, Toland AE, Gerdes AM, Thomassen M, Kruse TA, Jensen UB, Skytte AB, Caligo MA, Soller M, Henriksson K, Wachenfeldt v, Arver B, Stenmark‐Askmalm M, Karlsson P, Ding YC, Neuhausen SL, Beattie M, Pharoah PD, Moysich KB, Nathanson KL, Karlan BY, Gross J, John EM, Daly MB, Buys SM, Southey MC, Hopper JL, Terry MB, Chung W, Miron AF, Goldgar D, Chenevix‐Trench G, Easton DF, Andrulis IL, Antoniou AC. Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers: Results from the Consortium of Investigators of Modifiers of BRCA1/2. Breast Cancer Res 13: R110, 2011.
 224.Odgaard E, Jakobsen JK, Frische S, Praetorius J, Nielsen S, Aalkjaer C, Leipziger J. Basolateral Na+‐dependent HCO3− transporter NBCn1‐mediated HCO3− influx in rat medullary thick ascending limb. J Physiol 555: 205‐218, 2004.
 225.Okubo K, Kang D, Hamasaki N, Jennings ML. Red blood cell band 3. Lysine 539 and lysine 851 react with the same H2DIDS (4,4′‐diisothiocyanodihydrostilbene‐2,2′‐disulfonic acid) molecule. J Biol Chem 269: 1918‐1926, 1994.
 226.Orlowski A, De Giusti VC, Morgan PE, Aiello EA, Alvarez BV. Binding of carbonic anhydrase IX to extracellular loop 4 of the NBCe1 Na+/HCO3− cotransporter enhances NBCe1‐mediated. Am J Physiol Cell Physiol 303: C69‐C80, 2012.
 227.Orlowski J, Grinstein S. Na+/H+ exchangers of mammalian cells. J Biol Chem 272: 22373‐22376, 1997.
 228.Paillard M. H+ and HCO3− transporters in the medullary thick ascending limb of the kidney: Molecular mechanisms, function and regulation. Kidney Int Suppl 65: S36‐S41, 1998.
 229.Paine ML, Snead ML, Wang HJ, Abuladze N, Pushkin A, Liu W, Kao LY, Wall SM, Kim YH, Kurtz I. Role of NBCe1 and AE2 in secretory ameloblasts. J Dent Res 87: 391‐395, 2008.
 230.Park HJ, Rajbhandari I, Yang HS, Lee S, Cucoranu D, Cooper DS, Klein JD, Sands JM, Choi I. Neuronal expression of sodium/bicarbonate cotransporter NBCn1 (SLC4A7) and its response to chronic metabolic acidosis. Am J Physiol Cell Physiol 298: C1018‐C1028, 2010.
 231.Park K, Hurley PT, Roussa E, Cooper GJ, Smith CP, Thevenod F, Steward MC, Case RM. Expression of a sodium bicarbonate cotransporter in human parotid salivary glands. Arch Oral Biol 47: 1‐9, 2002.
 232.Park M, Ko SB, Choi JY, Muallem G, Thomas PJ, Pushkin A, Lee MS, Kim JY, Lee MG, Muallem S, Kurtz I. The cystic fibrosis transmembrane conductance regulator interacts with and regulates the activity of the HCO3− salvage transporter human Na+‐HCO3− cotransporter isoform 3. J Biol Chem 277: 50503‐50509, 2002.
 233.Park M, Li Q, Shcheynikov N, Zeng W, Muallem S. NaBC1 is a ubiquitous electrogenic Na+‐coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation. Mol Cell 16: 331‐341, 2004.
 234.Parker MD, Boron WF, Tanner MJA. Characterization of human “AE4” as an electroneutral sodium‐dependent bicarbonate transporter. FASEB J 2002.
 235.Parker MD, Bouyer P, Daly CM, Boron WF. Cloning and characterization of novel human SLC4A8 gene products encoding Na+‐driven Cl−/HCO3− exchanger variants NDCBE‐A, ‐C, and ‐D. Physiol Genomics 34: 265‐276, 2008.
 236.Parker MD, Musa‐Aziz R, Rojas JD, Choi I, Daly CM, Boron WF. Characterization of human SLC4A10 as an electroneutral Na+/HCO3− cotransporter (NBCn2) with Cl− self‐exchange activity. J Biol Chem 283: 12777‐12788, 2008.
 237.Parker MD, Qin X, Williamson RC, Toye AM, Boron WF. HCO3−‐independent conductance with a mutant Na+/HCO3− cotransporter (SLC4A4) in a case of proximal renal tubular acidosis with hypokalaemic paralysis. J Physiol 590: 2009‐2034, 2012.
 238.Parks SK, Chiche J, Pouyssegur J. pH control mechanisms of tumor survival and growth. J Cell Physiol 226: 299‐308, 2011.
 239.Pedrosa R, Goncalves N, Hopfer U, Jose PA, Soares‐da‐Silva P. Activity and regulation of Na+‐HCO3− cotransporter in immortalized spontaneously hypertensive rat and Wistar‐Kyoto rat proximal tubular epithelial cells. Hypertension 49: 1186‐1193, 2007.
 240.Perry C, Baker OJ, Reyland ME, Grichtchenko II. PKCαβγ‐ and PKCδ‐dependent endocytosis of NBCe1‐A and NBCe1‐B in salivary parotid acinar cells. Am J Physiol Cell Physiol 297: C1409‐C1423, 2009.
 241.Perry C, Blaine J, Le H, Grichtchenko II. PMA‐ and ANG II‐induced PKC regulation of the renal Na+‐HCO3− cotransporter (hkNBCe1). Am J Physiol Renal Physiol 290: F417‐F427, 2006.
 242.Perry C, Quissell DO, Reyland ME, Grichtchenko II. Electrogenic NBCe1 (SLC4A4), but not electroneutral NBCn1 (SLC4A7), cotransporter undergoes cholinergic‐stimulated endocytosis in salivary ParC5 cells. Am J Physiol Cell Physiol 295: C1385‐C1398, 2008.
 243.Piermarini PM, Choi I, Boron WF. Cloning and characterization of an electrogenic Na/HCO3− cotransporter from the squid giant fiber lobe. Am J Physiol Cell Physiol 292: C2032‐C2045, 2007.
 244.Piermarini PM, Kim EY, Boron WF. Evidence against a direct interaction between intracellular carbonic anhydrase II and pure C‐terminal domains of SLC4 bicarbonate transporters. J Biol Chem 282: 1409‐1421, 2007.
 245.Planelles G, Thomas SR, Anagnostopoulos T. Change of apparent stoichiometry of proximal‐tubule Na+‐HCO3− cotransport upon experimental reversal of its orientation. Proc Natl Acad Sci U S A 90: 7406‐7410, 1993.
 246.Poronnik P, Schumann SY, Cook DI. HCO3− ‐dependent ACh‐activated Na+ influx in sheep parotid secretory endpieces. Pflugers Arch 429: 852‐858, 1995.
 247.Praetorius J, Hager H, Nielsen S, Aalkjaer C, Friis UG, Ainsworth MA, Johansen T. Molecular and functional evidence for electrogenic and electroneutral Na+‐HCO3− cotransporters in murine duodenum. Am J Physiol Gastrointest Liver Physiol 280: G332‐G343, 2001.
 248.Praetorius J, Kim YH, Bouzinova EV, Frische S, Rojek A, Aalkjaer C, Nielsen S. NBCn1 is a basolateral Na+‐HCO3− cotransporter in rat kidney inner medullary collecting ducts. Am J Physiol Renal Physiol 286: F903‐F912, 2004.
 249.Praetorius J, Nejsum LN, Nielsen S. A SCL4A10 gene product maps selectively to the basolateral plasma membrane of choroid plexus epithelial cells. Am J Physiol Cell Physiol 286: C601‐C610, 2004.
 250.Preisig PA, Alpern RJ. Chronic metabolic acidosis causes an adaptation in the apical membrane Na+/H+ antiporter and basolateral membrane Na(HCO3)3 symporter in the rat proximal convoluted tubule. J Clin Invest 82: 1445‐1453, 1988.
 251.Pushkin A, Abuladze N, Gross E, Newman D, Tatishchev S, Lee I, Fedotoff O, Bondar G, Azimov R, Ngyuen M, Kurtz I. Molecular mechanism of kNBC1‐carbonic anhydrase II interaction in proximal tubule cells. J Physiol 559: 55‐65, 2004.
 252.Pushkin A, Abuladze N, Lee I, Newman D, Hwang J, Kurtz I. Cloning, tissue distribution, genomic organization, and functional characterization of NBC3, a new member of the sodium bicarbonate cotransporter family. J Biol Chem 274: 16569‐16575, 1999.
 253.Pushkin A, Abuladze N, Newman D, Lee I, Xu G, Kurtz I. Cloning, characterization and chromosomal assignment of NBC4, a new member of the sodium bicarbonate cotransporter family. Biochim Biophys Acta 1493: 215‐218, 2000.
 254.Pushkin A, Abuladze N, Newman D, Muronets V, Sassani P, Tatishchev S, Kurtz I. The COOH termini of NBC3 and the 56‐kDa H+‐ATPase subunit are PDZ motifs involved in their interaction. Am J Physiol Cell Physiol 284: C667‐C673, 2003.
 255.Pushkin A, Kurtz I. SLC4 base (HCO3−, CO32−) transporters: Classification, function, structure, genetic diseases, and knockout models. Am J Physiol Renal Physiol 290: F580‐F599, 2006.
 256.Pushkin A, Yip KP, Clark I, Abuladze N, Kwon TH, Tsuruoka S, Schwartz GJ, Nielsen S, Kurtz I. NBC3 expression in rabbit collecting duct: Colocalization with vacuolar H+‐ATPase. Am J Physiol 277: F974‐F981, 1999.
 257.Putnam RW. pH regulatory transport systems in a smooth muscle‐like cell line. Am J Physiol 258: C470‐C479, 1990.
 258.Rabon EC, Reuben MA. The mechanism and structure of the gastric H+,K+‐ATPase. Annu Rev Physiol 52: 321‐344, 1990.
 259.Reiners J, van WE, Marker T, Zimmermann U, Jurgens K, te BH, Overlack N, Roepman R, Knipper M, Kremer H, Wolfrum U. Scaffold protein harmonin (USH1C) provides molecular links between Usher syndrome type 1 and type 2. Hum Mol Genet 14: 3933‐3943, 2005.
 260.Reinertsen KV, Tonnessen TI, Jacobsen J, Sandvig K, Olsnes S. Role of chloride/bicarbonate antiport in the control of cytosolic pH. Cell‐line differences in activity and regulation of antiport. J Biol Chem 263: 11117‐11125, 1988.
 261.Rickmann M, Orlowski B, Heupel K, Roussa E. Distinct expression and subcellular localization patterns of Na+/HCO3− cotransporter (SLC 4A4) variants NBCe1‐A and NBCe1‐B in mouse brain. Neuroscience 146: 1220‐1231, 2007.
 262.Riihonen R, Nielsen S, Vaananen HK, Laitala‐Leinonen T, Kwon TH. Degradation of hydroxyapatite in vivo and in vitro requires osteoclastic sodium‐bicarbonate co‐transporter NBCn1. Matrix Biol 29: 287‐294, 2010.
 263.Ro HA, Carson JH. pH microdomains in oligodendrocytes. J Biol Chem 279: 37115‐37123, 2004.
 264.Robey RB, Ruiz OS, Espiritu DJ, Ibanez VC, Kear FT, Noboa OA, Bernardo AA, Arruda JA. Angiotensin II stimulation of renal epithelial cell Na+/HCO3− cotransport activity: A central role for Src family kinase/classic MAPK pathway coupling. J Membr Biol 187: 135‐145, 2002.
 265.Romero MF, Fong P, Berger UV, Hediger MA, Boron WF. Cloning and functional expression of rNBC, an electrogenic Na+‐HCO3− cotransporter from rat kidney. Am J Physiol 274: F425‐F432, 1998.
 266.Romero MF, Hediger MA, Boulpaep EL, Boron WF. Expression cloning and characterization of a renal electrogenic Na+/HCO3− cotransporter. Nature 387: 409‐413, 1997.
 267.Romero MF, Henry D, Nelson S, Harte PJ, Dillon AK,, Sciortino CM. Cloning and characterization of a Na+‐driven anion exchanger (NDAE1). A new bicarbonate transporter. J Biol Chem 275: 24552‐24559, 2000.
 268.Roos A, Boron WF. Intracellular pH. Physiol Rev 61: 296‐434, 1981.
 269.Rose CR, Deitmer JW. Evidence that glial cells modulate extracellular pH transients induced by neuronal activity in the leech central nervous system. J Physiol 481: 1‐5, 1994.
 270.Roussa E, Nastainczyk W, Thevenod F. Differential expression of electrogenic NBC1 (SLC4A4) variants in rat kidney and pancreas. Biochem Biophys Res Commun 314: 382‐389, 2004.
 271.Roussa E, Romero MF, Schmitt BM, Boron WF, Alper SL, Thevenod F. Immunolocalization of anion exchanger AE2 and Na+‐HCO3− cotransporter in rat parotid and submandibular glands. Am J Physiol 277: G1288‐G1296, 1999.
 272.Ruiz OS, Arruda JA. Regulation of the renal Na+‐HCO3− cotransporter by cAMP and Ca2+‐dependent protein kinases. Am J Physiol 262: F560‐F565, 1992.
 273.Ruiz OS, Robey RB, Qiu YY, Wang LJ, Li CJ, Ma J, Arruda JA. Regulation of the renal Na+‐HCO3− cotransporter. XI. Signal transduction underlying CO2 stimulation. Am J Physiol 277: F580‐F586, 1999.
 274.Ruminot I, Gutierrez R, Pena‐Munzenmayer G, Anazco C, Sotelo‐Hitschfeld T, Lerchundi R, Niemeyer MI, Shull GE, Barros LF. NBCe1 mediates the acute stimulation of astrocytic glycolysis by extracellular K+. J Neurosci 31: 14264‐14271, 2011.
 275.Russell JM, Boron WF. Role of chloride transport in regulation of intracellular pH. Nature 264: 73‐74, 1976.
 276.Russell JM, Boron WF. Intracellular pH regulation in squid giant axons. Kroc Found Ser 15: 221‐237, 1981.
 277.Saito Y, Wright EM. Bicarbonate transport across the frog choroid plexus and its control by cyclic nucleotides. J Physiol 336: 635‐648, 1983.
 278.Sandmann S, Yu M, Kaschina E, Blume A, Bouzinova E, Aalkjaer C, Unger T. Differential effects of angiotensin AT1 and AT2 receptors on the expression, translation and function of the Na+‐H+ exchanger and Na+‐HCO3− symporter in the rat heart after myocardial infarction. J Am Coll Cardiol 37: 2154‐2165, 2001.
 279.Santella RN, Gennari FJ, Maddox DA. Metabolic acidosis stimulates bicarbonate reabsorption in the early proximal tubule. Am J Physiol 257: F35‐F42, 1989.
 280.Sassani P, Pushkin A, Gross E, Gomer A, Abuladze N, Dukkipati R, Carpenito G, Kurtz I. Functional characterization of NBC4: A new electrogenic sodium‐bicarbonate cotransporter. Am J Physiol Cell Physiol 282: C408‐C416, 2002.
 281.Schlue WR, Deitmer JW. Ionic mechanisms of intracellular pH regulation in the nervous system. Ciba Found Symp 139: 47‐69, 1988.
 282.Schlue WR, Thomas RC. A dual mechanism for intracellular pH regulation by leech neurones. J Physiol 364: 327‐338, 1985.
 283.Schmitt BM, Biemesderfer D, Romero MF, Boulpaep EL, Boron WF. Immunolocalization of the electrogenic Na+‐HCO3− cotransporter in mammalian and amphibian kidney. Am J Physiol 276: F27‐F38, 1999.
 284.Schosser A, Gaysina D, Cohen‐Woods S, Domenici E, Perry J, Tozzi F, Korszun A, Gunasinghe C, Gray J, Jones L, Binder EB, Holsboer F, Craddock N, Owen MJ, Craig IW, Farmer AE, Muglia P, McGuffin P. A follow‐up case‐control association study of tractable (druggable) genes in recurrent major depression. Am J Med Genet B Neuropsychiatr Genet 156B: 640‐650, 2011.
 285.Schueler C, Becker HM, McKenna R, Deitmer JW. Transport activity of the sodium bicarbonate cotransporter NBCe1 is enhanced by different isoforms of carbonic anhydrase. PLoS One 6: e27167, 2011.
 286.Schwab A, Rossmann H, Klein M, Dieterich P, Gassner B, Neff C, Stock C, Seidler U. Functional role of Na+‐HCO3− cotransport in migration of transformed renal epithelial cells. J Physiol 568: 445‐458, 2005.
 287.Schwiening CJ, Boron WF. Regulation of intracellular pH in pyramidal neurones from the rat hippocampus by Na+‐dependent Cl−‐HCO3− exchange. J Physiol 475: 59‐67, 1994.
 288.Sciortino CM, Romero MF. Cation and voltage dependence of rat kidney electrogenic Na+‐HCO3− cotransporter, rkNBC, expressed in oocytes. Am J Physiol 277: F611‐F623, 1999.
 289.Sebat J, Lakshmi B, Malhotra D, Troge J, Lese‐Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J, Spence SJ, Lee AT, Puura K, Lehtimaki T, Ledbetter D, Gregersen PK, Bregman J, Sutcliffe JS, Jobanputra V, Chung W, Warburton D, King MC, Skuse D, Geschwind DH, Gilliam TC, Ye K, Wigler M. Strong association of de novo copy number mutations with autism. Science 316: 445‐449, 2007.
 290.Seidler U, Bachmann O, Jacob P, Christiani S, Blumenstein I, Rossmann H. Na+/HCO3− cotransport in normal and cystic fibrosis intestine. JOP 2: 247‐256, 2001.
 291.Seki G, Coppola S, Fromter E. The Na+‐HCO3− cotransporter operates with a coupling ratio of 2 HCO3− to 1 Na+ in isolated rabbit renal proximal tubule. Pflugers Arch 425: 409‐416, 1993.
 292.Seki G, Coppola S, Yoshitomi K, Burckhardt BC, Samarzija I, Muller‐Berger S, Fromter E. On the mechanism of bicarbonate exit from renal proximal tubular cells. Kidney Int 49: 1671‐1677, 1996.
 293.Shiohara M, Igarashi T, Mori T, Komiyama A. Genetic and long‐term data on a patient with permanent isolated proximal renal tubular acidosis. Eur J Pediatr 159: 892‐894, 2000.
 294.Shirakabe K, Priori G, Yamada H, Ando H, Horita S, Fujita T, Fujimoto I, Mizutani A, Seki G, Mikoshiba K. IRBIT, an inositol 1,4,5‐trisphosphate receptor‐binding protein, specifically binds to and activates pancreas‐type Na+/HCO3− cotransporter 1 (pNBC1). Proc Natl Acad Sci U S A 103: 9542‐9547, 2006.
 295.Sindic A, Chang MH, Mount DB, Romero MF. Renal physiology of SLC26 anion exchangers. Curr Opin Nephrol Hypertens 16: 484‐490, 2007.
 296.Sinning A, Liebmann L, Kougioumtzes A, Westermann M, Bruehl C, Hubner CA. Synaptic glutamate release is modulated by the Na+‐driven Cl−/HCO3− exchanger Slc4a8. J Neurosci 31: 7300‐7311, 2011.
 297.Soleimani M, Aronson PS. Ionic mechanism of Na+‐HCO3− cotransport in rabbit renal basolateral membrane vesicles. J Biol Chem 264: 18302‐18308, 1989.
 298.Soleimani M, Grassi SM, Aronson PS. Stoichiometry of Na+‐HCO3− cotransport in basolateral membrane vesicles isolated from rabbit renal cortex. J Clin Invest 79: 1276‐1280, 1987.
 299.Soleimani M, Lesoine GA, Bergman JA, McKinney TD. A pH modifier site regulates activity of the Na+:HCO3− cotransporter in basolateral membranes of kidney proximal tubules. J Clin Invest 88: 1135‐1140, 1991.
 300.Sonalker PA, Tofovic SP, Bastacky SI, Jackson EK. Chronic noradrenaline increases renal expression of NHE‐3, NBC‐1, BSC‐1 and aquaporin‐2. Clin Exp Pharmacol Physiol 35: 594‐600, 2008.
 301.Sonalker PA, Tofovic SP, Jackson EK. Increased expression of the sodium transporter BSC‐1 in spontaneously hypertensive rats. J Pharmacol Exp Ther 311: 1052‐1061, 2004.
 302.Sterling D, Reithmeier RA, Casey JR. A transport metabolon. Functional interaction of carbonic anhydrase II and chloride/bicarbonate exchangers. J Biol Chem 276: 47886‐47894, 2001.
 303.Steward MC, Ishiguro H, Case RM. Mechanisms of bicarbonate secretion in the pancreatic duct. Annu Rev Physiol 67: 377‐409, 2005.
 304.Steward MC, Poronnik P, Cook DI. Bicarbonate transport in sheep parotid secretory cells. J Physiol 494: 819‐830, 1996.
 305.Stutz AM, Teran‐Garcia M, Rao DC, Rice T, Bouchard C, Rankinen T. Functional identification of the promoter of SLC4A5, a gene associated with cardiovascular and metabolic phenotypes in the HERITAGE Family Study. Eur J Hum Genet 17: 1481‐1489, 2009.
 306.Sueta A, Ito H, Kawase T, Hirose K, Hosono S, Yatabe Y, Tajima K, Tanaka H, Iwata H, Iwase H, Matsuo K. A genetic risk predictor for breast cancer using a combination of low‐penetrance polymorphisms in a Japanese population. Breast Cancer Res Treat 132: 711‐721, 2012.
 307.Suzuki M, Vaisbich MH, Yamada H, Horita S, Li Y, Sekine T, Moriyama N, Igarashi T, Endo Y, Cardoso TP, de Sa LC, Koch VH, Seki G, Fujita T. Functional analysis of a novel missense NBC1 mutation and of other mutations causing proximal renal tubular acidosis. Pflugers Arch 455: 583‐593, 2008.
 308.Suzuki M, Van PW, Stalmans I, Horita S, Yamada H, Bergmans BA, Legius E, Riant F, De JP, Li Y, Sekine T, Igarashi T, Fujimoto I, Mikoshiba K, Shimadzu M, Shiohara M, Braverman N, Al‐Gazali L, Fujita T, Seki G. Defective membrane expression of the Na+‐HCO3− cotransporter NBCe1 is associated with familial migraine. Proc Natl Acad Sci U S A 107: 15963‐15968, 2010.
 309.Svastova E, Witarski W, Csaderova L, Kosik I, Skvarkova L, Hulikova A, Zatovicova M, Barathova M, Kopacek J, Pastorek J, Pastorekova S. Carbonic anhydrase IX interacts with bicarbonate transporters in lamellipodia and increases cell migration via its catalytic domain. J Biol Chem 287: 3392‐3402, 2012.
 310.Svichar N, Esquenazi S, Chen HY, Chesler M. Preemptive regulation of intracellular pH in hippocampal neurons by a dual mechanism of depolarization‐induced alkalinization. J Neurosci 31: 6997‐7004, 2011.
 311.Taylor JY, Maddox R, Wu CY. Genetic and environmental risks for high blood pressure among African American mothers and daughters. Biol Res Nurs 11: 53‐65, 2009.
 312.Thevenod F, Roussa E, Schmitt BM, Romero MF. Cloning and immunolocalization of a rat pancreatic Na+ bicarbonate cotransporter. Biochem Biophys Res Commun 264: 291‐298, 1999.
 313.Thomas RC. Ionic mechanism of the H+ pump in a snail neurone. Nature 262: 54‐55, 1976a.
 314.Thomas RC. The effect of carbon dioxide on the intracellular pH and buffering power of snail neurones. J Physiol 255: 715‐735, 1976b.
 315.Thomas RC. The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones. J Physiol 273: 317‐338, 1977.
 316.Thouverey C, Malinowska A, Balcerzak M, Strzelecka‐Kiliszek A, Buchet R, Dadlez M, Pikula S. Proteomic characterization of biogenesis and functions of matrix vesicles released from mineralizing human osteoblast‐like cells. J Proteomics 74: 1123‐1134, 2011.
 317.Tombola F, Del GG, Papini E, Zoratti M. Blockers of VacA provide insights into the structure of the pore. Biophys J 79: 863‐873, 2000.
 318.Tonnessen TI, Ludt J, Sandvig K, Olsnes S. Bicarbonate/chloride antiport in Vero cells: I. Evidence for both sodium‐linked and sodium‐independent exchange. J Cell Physiol 132: 183‐191, 1987.
 319.Tonnessen TI, Sandvig K, Olsnes S. Role of Na+‐H+ and Cl−‐HCO3− antiports in the regulation of cytosolic pH near neutrality. Am J Physiol 258: C1117‐C1126, 1990.
 320.Tsuganezawa H, Kobayashi K, Iyori M, Araki T, Koizumi A, Watanabe S, Kaneko A, Fukao T, Monkawa T, Yoshida T, Kim DK, Kanai Y, Endou H, Hayashi M, Saruta T. A new member of the HCO3− transporter superfamily is an apical anion exchanger of beta‐intercalated cells in the kidney. J Biol Chem 276: 8180‐8189, 2001.
 321.Uhl GR, Liu QR, Walther D, Hess J, Naiman D. Polysubstance abuse‐vulnerability genes: Genome scans for association, using 1,004 subjects and 1,494 single‐nucleotide polymorphisms. Am J Hum Genet 69: 1290‐1300, 2001.
 322.Usui T, Hara M, Satoh H, Moriyama N, Kagaya H, Amano S, Oshika T, Ishii Y, Ibaraki N, Hara C, Kunimi M, Noiri E, Tsukamoto K, Inatomi J, Kawakami H, Endou H, Igarashi T, Goto A, Fujita T, Araie M, Seki G. Molecular basis of ocular abnormalities associated with proximal renal tubular acidosis. J Clin Invest 108: 107‐115, 2001.
 323.Villanger O, Veel T, Raeder MG. Secretin causes H+/HCO3− secretion from pig pancreatic ductules by vacuolar‐type H+ ‐adenosine triphosphatase. Gastroenterology 108: 850‐859, 1995.
 324.Vince JW, Reithmeier RA. Identification of the carbonic anhydrase II binding site in the Cl−/HCO3− anion exchanger AE1. Biochemistry 39: 5527‐5533, 2000.
 325.Virkki LV, Choi I, Davis BA, Boron WF. Cloning of a Na+‐driven Cl/HCO3 exchanger from squid giant fiber lobe. Am J Physiol Cell Physiol 285: C771‐C780, 2003.
 326.Virkki LV, Wilson DA, Vaughan‐Jones RD, Boron WF. Functional characterization of human NBC4 as an electrogenic Na+‐HCO3− cotransporter (NBCe2). Am J Physiol Cell Physiol 282: C1278‐C1289, 2002.
 327.Vorum H, Kwon TH, Fulton C, Simonsen B, Choi I, Boron W, Maunsbach AB, Nielsen S, Aalkjaer C. Immunolocalization of electroneutral Na+‐HCO3− cotransporter in rat kidney. Am J Physiol Renal Physiol 279: F901‐F909, 2000.
 328.Wahl M, Deetjen P, Thurau K, Ingvar DH, Lassen NA. Micropuncture evaluation of the importance of perivascular pH for the arteriolar diameter on the brain surface. Pflugers Arch 316: 152‐163, 1970.
 329.Wakabayashi S, Shigekawa M, Pouyssegur J. Molecular physiology of vertebrate Na+/H+ exchangers. Physiol Rev 77: 51‐74, 1997.
 330.Wang CZ, Yano H, Nagashima K, Seino S. The Na+‐driven Cl−/HCO3− exchanger: Cloning, tissue distribution, and functional characterization. J Biol Chem 275: 35486‐35490, 2000.
 331.Wang DN, Sarabia VE, Reithmeier RA, Kuhlbrandt W. Three‐dimensional map of the dimeric membrane domain of the human erythrocyte anion exchanger, Band 3. EMBO J 13: 3230‐3235, 1994.
 332.Wang G, Li C, Kim SW, Ring T, Wen J, Djurhuus JC, Wang W, Nielsen S, Frokiaer J. Ureter obstruction alters expression of renal acid‐base transport proteins in rat kidney. Am J Physiol Renal Physiol 295: F497‐F506, 2008.
 333.Wang G, Topcu SO, Ring T, Wen J, Djurhuus JC, Kwon TH, Nielsen S, Frokiaer J. Age‐dependent renal expression of acid‐base transporters in neonatal ureter obstruction. Pediatr Nephrol 24: 1487‐1500, 2009.
 334.Wang W, Praetorius J, Li C, Praetorius HA, Kwon TH, Frokiaer J, Nielsen S. Vacuolar H+‐ATPase expression is increased in acid‐secreting intercalated cells in kidneys of rats with hypercalcaemia‐induced alkalosis. Acta Physiol (Oxf) 189: 359‐368, 2007.
 335.Wendel C, Becker HM, Deitmer JW. The sodium‐bicarbonate cotransporter NBCe1 supports glutamine efflux via SNAT3 (SLC38A3) co‐expressed in Xenopus oocytes. Pflugers Arch 455: 885‐893, 2008.
 336.Whitfield JB, Dy V, McQuilty R, Zhu G, Heath AC, Montgomery GW, Martin NG. Genetic effects on toxic and essential elements in humans: Arsenic, cadmium, copper, lead, mercury, selenium, and zinc in erythrocytes. Environ Health Perspect 118: 776‐782, 2010.
 337.Whitfield JB, Dy V, McQuilty R, Zhu G, Montgomery GW, Ferreira MA, Duffy DL, Neale MC, Heijmans BT, Heath AC, Martin NG. Evidence of genetic effects on blood lead concentration. Environ Health Perspect 115: 1224‐1230, 2007.
 338.Wieth JO, Andersen OS, Brahm J, Bjerrum PJ, Borders CL, Jr. Chloride‐bicarbonate exchange in red blood cells: Physiology of transport and chemical modification of binding sites. Philos Trans R Soc Lond B Biol Sci 299: 383‐399, 1982.
 339.Wostyn P, van DD, Audenaert K, de Deyn PP. Genes involved in cerebrospinal fluid production as candidate genes for late‐onset Alzheimer's disease: A hypothesis. J Neurogenet 25: 195‐200, 2011.
 340.Wu J, McNicholas CM, Bevensee MO. Phosphatidylinositol 4,5‐bisphosphate (PIP2) stimulates the electrogenic Na+/HCO3− cotransporter NBCe1‐A expressed in Xenopus oocytes. Proc Natl Acad Sci U S A 106: 14150‐14155, 2009.
 341.Xu J, Barone S, Petrovic S, Wang Z, Seidler U, Riederer B, Ramaswamy K, Dudeja PK, Shull GE, Soleimani M. Identification of an apical Cl−/HCO3− exchanger in gastric surface mucous and duodenal villus cells. Am J Physiol Gastrointest Liver Physiol 285: G1225‐G1234, 2003.
 342.Yamada H, Horita S, Suzuki M, Fujita T, Seki G. Functional role of a putative carbonic anhydrase II‐binding domain in the electrogenic Na+‐HCO3− cotransporter NBCe1 expressed in Xenopus oocytes. Channels (Austin) 5: 106‐109, 2011.
 343.Yamaguchi S, Ishikawa T. Electrophysiological characterization of native Na+‐HCO3− cotranspoter current in bovine parotid acinar cells. J Physiol 568: 181‐197, 2005.
 344.Yamamoto T, Shirayama T, Sakatani T, Takahashi T, Tanaka H, Takamatsu T, Spitzer KW, Matsubara H. Enhanced activity of ventricular Na+‐HCO3− cotransport in pressure overload hypertrophy. Am J Physiol Heart Circ Physiol 293: H1254‐H1264, 2007.
 345.Yamamoto T, Swietach P, Rossini A, Loh SH, Vaughan‐Jones RD, Spitzer KW. Functional diversity of electrogenic Na+‐HCO3− cotransport in ventricular myocytes from rat, rabbit and quinea pig. J Physiol 562: 455‐475, 2005.
 346.Yamazaki O, Yamada H, Suzuki M, Horita S, Shirai A, Nakamura M, Seki G, Fujita T. Functional characterization of nonsynonymous single nucleotide polymorphisms in the electrogenic Na+‐HCO3− cotransporter NBCe1A. Pflugers Arch 461: 249‐259, 2011.
 347.Yang D, Li Q, So I, Huang CL, Ando H, Mizutani A, Seki G, Mikoshiba K, Thomas PJ, Muallem S. IRBIT governs epithelial secretion in mice by antagonizing the WNK/SPAK kinase pathway. J Clin Invest 121: 956‐965, 2011.
 348.Yang D, Shcheynikov N, Zeng W, Ohana E, So I, Ando H, Mizutani A, Mikoshiba K, Muallem S. IRBIT coordinates epithelial fluid and HCO3− secretion by stimulating the transporters pNBC1 and CFTR in the murine pancreatic duct. J Clin Invest 119: 193‐202, 2009.
 349.Yang HS, Cooper DS, Rajbhandari I, Park HJ, Lee S, Choi I. Inhibition of rat Na+‐HCO3− cotransporter (NBCn1) function and expression by the alternative splice domain. Exp Physiol 94: 1114‐1123, 2009.
 350.Yang HS, Kim E, Lee S, Park HJ, Cooper DS, Rajbhandari I, Choi I. Mutation of Aspartate 555 of the Sodium/Bicarbonate Transporter SLC4A4/NBCe1 Induces Chloride Transport. J Biol Chem 284: 15970‐15979, 2009.
 351.Yang Z, Alvarez BV, Chakarova C, Jiang L, Karan G, Frederick JM, Zhao Y, Sauve Y, Li X, Zrenner E, Wissinger B, Hollander AI, Katz B, Baehr W, Cremers FP, Casey JR, Bhattacharya SS, Zhang K. Mutant carbonic anhydrase 4 impairs pH regulation and causes retinal photoreceptor degeneration. Hum Mol Genet 14: 255‐265, 2005.
 352.Yoshitomi K, Fromter E. Cell pH of rat renal proximal tubule in vivo and the conductive nature of peritubular HCO3− (HO−) exit. Pflugers Arch 402: 300‐305, 1984.
 353.Yoshitomi K, Fromter E. How big is the electrochemical potential difference of Na+ across rat renal proximal tubular cell membranes in vivo? Pflugers Arch 405 Suppl 1: S121‐S126, 1985a.
 354.Yoshitomi K, Burckhardt BC, Fromter E. Rheogenic sodium‐bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule. Pflugers Arch 405: 360‐366, 1985b.
 355.Yu H, Riederer B, Stieger N, Boron WF, Shull GE, Manns MP, Seidler UE, Bachmann O. Secretagogue stimulation enhances NBCe1 (electrogenic Na+/HCO3− cotransporter) surface expression in murine colonic crypts. Am J Physiol Gastrointest Liver Physiol 297: G1223‐G1231, 2009.
 356.Zhang D, Kiyatkin A, Bolin JT, Low PS. Crystallographic structure and functional interpretation of the cytoplasmic domain of erythrocyte membrane band 3. Blood 96: 2925‐2933, 2000.
 357.Zhao H, Star RA, Muallem S. Membrane localization of H+ and HCO3− transporters in the rat pancreatic duct. J Gen Physiol 104: 57‐85, 1994.
 358.Zhao J, Hogan EM, Bevensee MO, Boron WF. Out‐of‐equilibrium CO2/HCO3− solutions and their use in characterizing a new K+/HCO3− cotransporter. Nature 374: 636‐639, 1995.
 359.Zhao J, Zhou Y, Boron WF. Effect of isolated removal of either basolateral HCO3− or basolateral CO2 on HCO3− reabsorption by rabbit S2 proximal tubule. Am J Physiol Renal Physiol 285: F359‐F369, 2003.
 360.Zhou Y, Bouyer P, Boron WF. Effects of angiotensin II on the CO2 dependence of HCO3− reabsorption by the rabbit S2 renal proximal tubule. Am J Physiol Renal Physiol 290: F666‐F673, 2006a.
 361.Zhou Y, Bouyer P, Boron WF. Role of a tyrosine kinase in the CO2‐induced stimulation of HCO3− reabsorption by rabbit S2 proximal tubules. Am J Physiol Renal Physiol 291: F358‐F367, 2006b.
 362.Zhou Y, Bouyer P, Boron WF. Role of the AT1A receptor in the CO2‐induced stimulation of HCO3− reabsorption by renal proximal tubule. Am J Physiol Renal Physiol 293: F110‐F120, 2007.
 363.Zhou Y, Zhao J, Bouyer P, Boron WF. Evidence from renal proximal tubules that HCO3− and solute reabsorption are acutely regulated not by pH but by basolateral HCO3− and CO2. Proc Natl Acad Sci U S A 102: 3875‐3880, 2005.
 364.Zhu Q, Azimov R, Kao L, Newman D, Liu W, Abuladze N, Pushkin A, Kurtz I. NBCe1‐A Transmembrane Segment 1 Lines the Ion Translocation Pathway. J Biol Chem 284: 8918‐8929, 2009.
 365.Zhu Q, Kao L, Azimov R, Abuladze N, Newman D, Pushkin A, Liu W, Chang C, Kurtz I. Structural and functional characterization of the C‐terminal transmembrane region of NBCe1‐A. J Biol Chem 285: 37178‐37187, 2010.
 366.Zhu Q, Kao L, Azimov R, Newman D, Liu W, Pushkin A, Abuladze N, Kurtz I. Topological location and structural importance of the NBCe1‐A residues mutated in proximal renal tubular acidosis. J Biol Chem 285: 13416‐13426, 2010.
 367.Zhu Q, Liu W, Kao L, Azimov R, Newman D, Abuladze N, Kurtz I. Topology of NBCe1 protein transmembrane segment 1 and structural effect of proximal renal tubular acidosis (pRTA) S427L mutation. J Biol Chem 288: 7894‐7906, 2013.

Related Articles:

Intracellular pH
Pulmonary Vascular Disease

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Christian Aalkjaer, Ebbe Boedtkjer, Inyeong Choi, Soojung Lee. Cation‐Coupled Bicarbonate Transporters. Compr Physiol 2014, 4: 1605-1637. doi: 10.1002/cphy.c130005