References |
1. | Abbott BC, Lowy J. Stress relaxation in muscle. Proc R Soc Lond B Biol Sci 146(923): 281‐288, 1956. |
2. | Abrahams C, Janicki JS, Weber KT. Myocardial hypertrophy in Macaca fascicularis. Structural remodeling of the collagen matrix. Lab Invest 56(6): 676‐683, 1987. |
3. | Allessie MA, Rensma PL, Brugada J, Smeets JLRM, Penn OC, Kirchhof CJHS. Pathophysiology of atrial fibrillation. In: Cardiac Electrophysiology: From Cell to Bedside. Philadelphia, PA: WB Saunders Company, pp. 548‐559, 1990. |
4. | Armour JA, Randall WC. Structural basis for cardiac function. Am J Physiol 218(6): 1517‐1523, 1970. |
5. | Armstrong WE. Echocardiography. In: Bonow RO, Mann DL, Zipes DP, Libby P, editors. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine (7th ed). Philadelphia: Elsevier Saunders, pp. 187‐270, 2005. |
6. | Baan J, Jong TT, Kerkhof PL, Moene RJ, van Dijk AD, van der Velde ET, Koops J. Continuous stroke volume and cardiac output from intra‐ventricular dimensions obtained with impedance catheter. Cardiovasc Res 15(6): 328‐334, 1981. |
7. | Bakos AC. The question of the function of the right ventricular myocardium: An experimental study. Circulation 1: 724‐732, 1950. |
8. | Barbee RW, Perry BD, Ré RN, Murgo JP. Microsphere and dilution techniques for the determination of blood flows and volumes in conscious mice. Am J Physiol 263(3 Pt 2): R728‐R733, 1992. |
9. | Barrett KE, Barman SM, Boitano S, Brooks HL. The Heart as a Pump. In: Weitz M, Brown RY, editors. Ganong's Review of Medical Physiology (23rd ed). USA: The McGraw Hill Companies, Inc, Figure 31‐5, p. 515, 2010. |
10. | Bashey RI, Martinez‐Hernandez A, Jimenez SA. Isolation, characterization, and localization of cardiac collagen type VI. Associations with other extracellular matrix components. Circ Res 70(5): 1006‐1017, 1992. |
11. | Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJ, Cleland JG, Pennell DJ. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J 21(16): 1387‐1396, 2000. |
12. | Bennett ED, Barclay SA, Davis AL, Mannering D, Mehta N. Ascending aortic blood velocity and acceleration using Doppler ultrasound in the assessment of left ventricular function. Cardiovasc Res 18(10): 632‐638, 1984. |
13. | Bers DM. Excitation‐contraction coupling. In: Bers DM, editor. Excitation‐Contraction Coupling and Cardiac Contractile Force. Norwell MA: Kluwer Academic Publishers, pp. 155‐158, 1991. |
14. | Bers DM. Regulation of cellular calcium in cardiac myocytes. In: Page E, Fozzard HA, Solaro RJ, editors. Handbook of Physiology: The Cardiovascular System, Volume 1: The Heart. Oxford: University Press, pp. 335‐387, 2002. |
15. | Bhave NM, Lang RM. Evaluation of left ventricular structure and function by three‐dimensional echocardiography. Curr Opin Crit Care 19(5): 387‐396, 2013. |
16. | Bishop VS, Horwitz LD, Stone HL, Stegall HF, Engelken EJ. Left ventricular internal diameter and cardiac function in conscious dogs. J Appl Physiol 27(5): 619‐623, 1969. |
17. | Blinks JR, Endoh M. Modification of myofibrillar responsiveness to Ca++ as an inotropic mechanism. Circulation 73(3 Pt 2): III85‐III98, 1986. |
18. | Boettcher DH, Vatner SF, Heyndrickx GR, Braunwald E. Extent of utilization of the Frank‐Starling mechanism in conscious dogs. Am J Physiol 234(4): H338‐H345, 1978. |
19. | Bowditch, Henry P. About the peculiarities of excitability which the show muscle fibers of the heart. Arb Physiol Aust Leipzig 6: 139‐176, 1871. |
20. | Brady AJ. Active state in cardiac muscle. Physiol Rev 48(3): 570‐600, 1968. |
21. | Brady AJ. Mechanical properties of isolated cardiac myocytes. Physiol Rev 71(2): 413‐428, 1991. |
22. | Britman NA, Levine HJ. Contractile element work: A major determinant of myocardial oxygen consumption. J Clin Invest 43: 1397‐1408, 1964. |
23. | Buchalter MB1, Weiss JL, Rogers WJ, Zerhouni EA, Weisfeldt ML, Beyar R, Shapiro EP. Noninvasive quantification of left ventricular rotational deformation in normal humans using magnetic resonance imaging myocardial tagging. Circulation 81(4): 1236‐1244, 1990. |
24. | Buckberg GD, Hoffman JI, Coghlan HC, Nanda NC. Ventricular structure‐function relations in health and disease: Part I. The normal heart. Eur J Cardiothorac Surg pii: ezu278, 2014. |
25. | Burgeson RE. New collagens, new concepts. Annu Rev Cell Biol 4: 551‐577, 1988. |
26. | Burns JW, Covell JW, Ross J Jr. Mechanics of isotonic left ventricular contractions. Am J Physiol 224(4): 725‐732, 1973. |
27. | Cannon RO 3rd, Butany JW, McManus BM, Speir E, Kravitz AB, Bolli R, Ferrans VJ. Early degradation of collagen after acute myocardial infarction in the rat. Am J Cardiol 52(3): 390‐395, 1983. |
28. | Carabello BA. Progress in mitral and aortic regurgitation. Prog Cardiovasc Dis 43(6): 457‐475, 2001. |
29. | Carroll JD, Lang RM, Neumann AL, Borow KM, Rajfer SI. The differential effects of positive inotropic and vasodilator therapy on diastolic properties in patients with congestive cardiomyopathy. Circulation 74(4): 815‐825, 1986. |
30. | Caulfield JB, Wolkowicz P. Inducible collagenolytic activity in isolated perfused rat hearts. Am J Pathol 131(2): 199‐205, 1988. |
31. | Chan W, Ellims AH, Duffy SJ, Kaye DM, Taylor AJ. Principles, current status and clinical implications of ischaemic heart disease assessment by cardiac magnetic resonance imaging. Intern Med J 42(1): 7‐17, 2012. |
32. | Cheung YF. The role of 3D wall motion tracking in heart failure. Nat Rev Cardiol 9(11): 644‐657, 2012. |
33. | Clark JE, Marber MS. Advancements in pressure‐volume catheter technology ‐ stress remodelling after infarction. Exp Physiol 98(3): 614‐621, 2013. |
34. | Colan SD, Borow KM, Neumann A. Left ventricular end‐systolic wall stress‐velocity of fiber shortening relation: A load‐independent index of myocardial contractility. J Am Coll Cardiol 4(4): 715‐724, 1984. |
35. | Covell JW, Ross J Jr. Systolic and diastolic function (mechanics) of the intact heart. In: Page E, Fozzard HA, Solaro RJ, editors. Handbook of Physiology, The Cardiovascular System, The Heart. Oxford: University Press, 2002. pp. 741‐785. |
36. | Covell JW, Ross J Jr, Sonnenblick EH, Braunwald E. Comparison of the force‐velocity relation and the ventricular function curve as measures of the contractile state of the intact heart. Circ Res 19(2): 364‐372, 1966. |
37. | Covell JW, Ross J Jr, Taylor R, Sonnenblick EH, Braunwald E. Effects of increasing frequency of contraction on the force velocity relation of left ventricle. Cardiovasc Res 1(1): 2‐8, 1967. |
38. | Dalen H, Haugen BO, Graven T. Feasibility and clinical implementation of hand‐held echocardiography. Expert Rev Cardiovasc Ther 11(1): 49‐54, 2013. |
39. | Davidson CJ, Bonow RO. Cardiac catheterization. In: Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine (7th ed). Philadelphia: Elsevier Saunders, pp. 395‐422, 2005. |
40. | Davidson DM, Covell JW, Malloch CI, Ross J Jr. Factors influencing indices of left ventricle contractility in the conscious dog. Cardiovasc Res 8(3): 299‐312, 1974. |
41. | de Simone G, Wallerson DC, Volpe M, Devereux RB. Echocardiographic measurement of left ventricular mass and volume in normotensive and hypertensive rats. Necropsy validation. Am J Hypertens 3(9): 688‐696, 1990. |
42. | del Monte F, Hajjar RJ, Harding SE. Overwhelming evidence of the beneficial effects of SERCA gene transfer in heart failure. Circ Res 88(11): E66‐E67, 2001. |
43. | Dell'Italia LJ. Anatomy and physiology of the right ventricle. Cardiol Clin 30(2): 167‐187, 2012. |
44. | Edman KAP, Johannsson M. The contractile state of rabbit papillary muscle in relation to stimulation frequency. J Physiol 254(3): 565‐581, 1976. |
45. | Eising GP, Hammond HK, Helmer GA, Gilpin E, Ross J Jr. Force‐frequency relations during heart failure in pigs. Am J Physiol 267(6 Pt 2): H2516‐H2522, 1994. |
46. | Fabiato A, Fabiato F. Myofilament‐generated tension oscillations during partial calcium activation and activation dependence of the sarcomere length‐tension relation of skinned cardiac cells. J Gen Physiol 72(5): 667‐699, 1978. |
47. | Feldman DS, Carnes CA, Abraham WT, Bristow MR. Mechanisms of disease: Beta‐adrenergic receptors–alterations in signal transduction and pharmacogenomics in heart failure. Nat Clin Pract Cardiovasc Med 2(9): 475‐483, 2005. |
48. | Fick A. Ueber die Messung des Blutquantums in den Herzventrikeln. Proceedings of the Physical Medical Society to Wurzburg. XVI, 1870. |
49. | Fomovsky GM, Thomopoulos S, Holmes JW. Contribution of extracellular matrix to the mechanical properties of the heart. J Mol Cell Cardiol 48(3): 490‐496, 2010. |
50. | Frank O. For the dynamics of the heart muscle. Z Biol. 32:370‐437, 1895. |
51. | Frank O. Thermodynamics of the muscle. Reviews of physiology. 3: 348‐412, 1904. |
52. | Freeman GL. Effects of increased afterload on left ventricular function in closed‐chest dogs. Am J Physiol 259(2 Pt 2): H619‐H625, 1990. |
53. | Freeman GL, Colston JT. Evaluation of long‐term variance of left ventricular performance indexes in closed‐chest dogs. Am J Physiol 257(1 Pt 2): H70‐H78, 1989. |
54. | Freeman GL, LeWinter MM. Pericardial adaptations during chronic cardiac dilation in dogs. Circ Res 54(3): 294‐300, 1984. |
55. | Freeman GL, Little WC, O'Rourke RA. Influence of heart rate on left ventricular performance in conscious dogs. Circ Res 61(3): 455‐464, 1987. |
56. | Fukuta H, Little WC. Contribution of systolic and diastolic abnormalities to heart failure with a normal and a reduced ejection fraction. Prog Cardiovasc Dis 49(4): 229‐240, 2007. |
57. | Furnival CM, Linden RJ, Snow HM. Inotropic changes in the left ventricle: The effect of changes in heart rate, aortic pressure and end‐diastolic pressure. J Physiol 211(2): 359‐387, 1970. |
58. | Gaasch WH, Delorey DE, St John Sutton MG, Zile MR. Patterns of structural and functional remodeling of the left ventricle in chronic heart failure. Am J Cardiol 102(4): 459‐462, 2008. |
59. | Gaudio C, Tanzilli G, Mazzarotto P, Motolese M, Romeo F, Marino B, Reale A. Comparison of left ventricular ejection fraction by magnetic resonance imaging and radionuclide ventriculography in idiopathic dilated cardiomyopathy. Am J Cardiol 67(5): 411‐415, 1991. |
60. | Gibbons WR, Zygmunt AC. Excitation‐contraction coupling in heart. In: Page E, Fozzard HA, Solaro RJ, editors. The Heart and Cardiovascular System, Vol 2. New York: Raven Press, pp. 1249‐1279, 1991. |
61. | Glower DD, Spratt JA, Snow ND, Kabas JS, Davis JW, Olsen CO, Tyson GS, Sabiston DC Jr, Rankin JS. Linearity of the Frank‐Starling relationship in the intact heart: The concept of preload recruitable stroke work. Circulation 71(5): 994‐1009, 1985. |
62. | Goldstein MA, Schroeter JP. Ultrastructure of the heart. In: Reich M, Lindsey M, editors. Handbook of Physiology: The Cardiovascular System, Volume 1: The Heart. Oxford: University Press, pp. 3‐74, 2002. |
63. | Golestani R, Wu C, Tio RA, Zeebregts CJ, Petrov AD, Beekman FJ, Dierckx RA, Boersma HH, Slart RH. Small‐animal SPECT and SPECT/CT: Application in cardiovascular research. Eur J Nucl Med Mol Imaging 37(9): 1766‐1777, 2010. |
64. | Gorman JH III, Gupta KB, Streicher JT, Gorman RC, Jackson BM, Ratcliffe MB, Bogen DK, Edmunds LH Jr. Dynamic three‐dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J Thorac Cardiovasc Surg 112(3): 712‐726, 1996. |
65. | Grimm AF, Whitehorn WV. Characteristics of resting tension of myocardium and localization of its elements. Am J Physiol 210(6): 1362‐1368, 1966. |
66. | Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56(1): 56‐64, 1975. |
67. | Grossman W. Blood flow measurement: The cardiac output. In: Goolsby J, editor. Cardiac Catheterization, Angiography, and Intervention. Philadelphia: Lippincott, Williams, & Wilkins, pp. 101‐117, 2000. |
68. | Hains AD, Al‐Khawaja I, Hinge DA, Lahiri A, Raftery EB. Radionuclide left ventricular ejection fraction. Br Heart J 57(3): 242‐246, 1987. |
69. | Hales S. Statical Essays Containing Haemastatics (2nd ed). London: W. Innys and R. Manby, 1733. |
70. | Hamilton WF, Moore JW, Kinsman JM. Studies on the circulation. IV. Further analysis of the injection method and of changes in hemodynamics under physiological and pathological conditions. Am J Physiol 99: 534, 1932. |
71. | Hammond HK1, White FC, Bhargava V, Shabetai R. Heart size and maximal cardiac output are limited by the pericardium. Am J Physiol 263(6 Pt 2): H1675‐H1681, 1992. |
72. | Hawthorne EW. Instantaneous dimensional changes of the left ventricle in dogs. Circ Res 9: 110‐119, 1961. |
73. | Hein S, Arnon E, Kostin S, Schönburg M, Elsässer A, Polyakova V, Bauer EP, Klövekorn WP, Schaper J. Progression from compensated hypertrophy to failure in the pressure‐overloaded human heart: Structural deterioration and compensatory mechanisms. Circulation 107(7): 984‐991, 2003. |
74. | Hibberd MG, Jewell BR. Calcium‐ and length‐ dependent force production in rat ventricular muscle. J Physiol. 1982; 329: 527‐540 |
75. | Hoffmann R, Barletta G, von Bardeleben S, Vanoverschelde JL, Kasprzak J, Greis C, Becher H. Analysis of left ventricular volumes and function: A multicenter comparison of cardiac magnetic resonance imaging, cine ventriculography, and unenhanced and contrast‐enhanced two‐dimensional and three‐dimensional echocardiography. J Am Soc Echocardiogr 27(3): 292‐301, 2014. |
76. | Hoffman BF, Bassett AL, Bartelstone HJ. Some mechanical properties of isolated mammalian cardiac muscle. Circ Res 23(2): 291‐312, 1968. |
77. | Hryshko LV. Cardiac Na+‐Ca2+exchanger. Handbook of Physiology, The Cardiovascular System, The Heart. Oxford: University Press, 2011. |
78. | Hryshko LV. The cardiac Na+‐Ca2+ exchanger. In: Page E, Fozzard HA, Solaro RJ, editors. Handbook of Physiology: The Cardiovascular System, Volume 1: The Heart. Oxford: University Press, pp. 388‐419, 2002. |
79. | Iwano H, Little WC. Heart failure: What does ejection fraction have to do with it? J Cardiol 62(1): 1‐3, 2013. |
80. | Julian FJ, Sollins MR, Moss RL. Absence of a plateau in length‐tension relationship of rabbit papillary muscle when internal shortening is prevented. Nature 26: 340‐342. 1976. |
81. | Kahn ML, Kavaler F, Fisher VJ. Frequency‐force relationships of mammalian ventricular muscle in vivo and in vitro. Am J Physiol 230(3): 631‐636, 1976. |
82. | Kambayashi M, Miura T, Oh BH, Rockman HA, Murata K, Ross J Jr. Enhancement of the force‐frequency effect on myocardial contractility by adrenergic stimulation in conscious dogs. Circulation 86(2): 572‐580, 1992. |
83. | Karliner JS, Gault JH, Eckberg D, Mullins CB, Ross J Jr. Mean velocity of fiber shortening. A simplified measure of left ventricular myocardial contractility. Circulation 44(3): 323‐333, 1971. |
84. | Kass DA. Alterations in ventricular function: Systolic heart failure. In: Mann D, editor. Heart Failure: A Companion to Braunwald's Heart Disease. St. Louis: Saunders, Elsevier, p. 198‐212, 2011. |
85. | Kass DA, Bronzwaer JG, Paulus WJ. What mechanisms underlie diastolic dysfunction in heart failure? Circ Res 94(12): 1533‐1542, 2004. |
86. | Keller RS, Shai SY, Babbitt CJ, Pham CG, Solaro RJ, Valencik ML, Loftus JC, Ross RS. Disruption of integrin function in the murine myocardium leads to perinatal lethality, fibrosis, and abnormal cardiac performance. Am J Pathol 158(3): 1079‐1090, 2001. |
87. | Khunti K. Systematic review of open access echocardiography for primary care. Eur J Heart Fail 6(1): 79‐83, 2004. |
88. | Kimura BJ, DeMaria AN. Technology insight: Hand‐carried ultrasound cardiac assessment–evolution, not revolution. Nat Clin Pract Cardiovasc Med 2(4): 217‐223, 2005 |
89. | Kitzman DW, Little WC, Brubaker PH, Anderson RT, Hundley WG, Marburger CT, Brosnihan B, Morgan TM, Stewart KP. Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure. JAMA 288(17): 2144‐2150, 2002. |
90. | Kleber AG, Janse MJ, Fast VG. Normal and abnormal conduction in the heart. In: Page E, Fozzard HA, Solaro RJ, editors. Handbook of Physiology: The Cardiovascular System, Volume 1: The Heart. Oxford: University Press, pp. 455‐530, 2002. |
91. | Koeppen BM, Stanton BA. Elements of cardiac function. In: Koeppen BM, Stanton BA, editors. Berne and Levy Physiology (6th ed). Philadelphia: Mosby Elsevier, p. 321, 2008. |
92. | Komamura K, Shannon RP, Ihara T, Shen YT, Mirsky I, Bishop SP, Vatner SF. Exhaustion of Frank‐Starling mechanism in conscious dogs with heart failure. Am J Physiol 265(4 Pt 2): H1119‐H1131, 1993. |
93. | Kranias EG, Hajjar RJ. Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. Circ Res 110(12): 1646‐1660, 2012. |
94. | Krayenbuehl HP, Hess OM, Monrad ES, Schneider J, Mall G, Turina M. Left ventricular myocardial structure in aortic valve disease before, intermediate, and late after aortic valve replacement. Circulation 79(4): 744‐755, 1989. |
95. | Kresh JY, Chopra A. Intercellular and extracellular mechanotransduction in cardiac myocytes. Pflugers Arch 462(1): 75‐87, 2011. |
96. | Lakatta EG. Changes in cardiovascular function with aging. Eur Heart J 11(Suppl C): 22‐29, 1990. |
97. | Lakatta EG. Length modulation of muscle performance. In: Page E, Fozzard HA, Solaro RJ, editors. The Heart and Cardiovascular System, Vol 2. New York: Raven Press, pp. 1325‐1351, 1991. |
98. | Lakatta EG, Jewell BR. Length‐dependent activation: Its effect on the length‐tension relation in cat ventricular muscle. Circ Res 40(3): 251‐257, 1977. |
99. | Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ; Chamber Quantification Writing Group; American Society of Echocardiography's Guidelines and Standards Committee; European Association of Echocardiography. Recommendations for chamber quantification: A report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18(12): 1440‐1463, 2005. |
100. | Lew WY. Mechanisms of volume‐induced increase in left ventricular contractility. Am J Physiol 265(5 Pt 2): H1778‐H1786, 1993. |
101. | LeWinter MM, Fabian J, Bell SP. Left ventricular restoring forces: Modulation by heart rate and contractility. Basic Res Cardiol 93(Suppl 1): 143‐147, 1998. |
102. | LeWinter MM, Kabbani S. Pericardial diseases. In: Bonow RO, Mann DL, Zipes DP, Libby P, editors. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine (7th ed). Philadelphia: Elsevier Saunders, pp. 1757‐1780, 2005. |
103. | Li AH, Liu PP, Villarreal FJ, Garcia RA. Dynamic changes in myocardial matrix and relevance to disease: Translational perspectives. Circ Res 114(5): 916‐927, 2014. |
104. | Little WC. Diastolic dysfunction beyond distensibility: Adverse effects of ventricular dilatation. Circulation 112(19): 2888‐2890, 2005. |
105. | Little WC, Kitzman DW, Cheng CP. Diastolic dysfunction as a cause of exercise intolerance. Heart Fail Rev 5(4): 301‐306, 2000. |
106. | Loiselle DS, Crampin EJ, Niederer SA, Smith NP, Barclay CJ. Energetic consequences of mechanical loads. Prog Biophys Mol Biol 97(2‐3): 348‐366, 2008. |
107. | Ludin G. Mechanical properties of cardiac muscle. Acta Physiol Scand 7: 1‐85, 1944. |
108. | MacKenna DA, Omens JH, McCulloch AD, Covell JW. Contribution of collagen matrix to passive left ventricular mechanics in isolated rat hearts. Am J Physiol 266(3 Pt 2): H1007‐H1018, 1994. |
109. | MacKenna DA, Vaplon SM, McCulloch AD. Microstructural model of perimysial collagen fibers for resting myocardial mechanics during ventricular filling. Am J Physiol 273(3 Pt 2): H1576‐H1586, 1997. |
110. | MacLennan DH, Kranias EG. Phospholamban: A crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4(7): 566‐577, 2003. |
111. | Mall FP. On the muscular architecture of the ventricles of the human heart. Am J Anat 11: 211‐266, 1911. |
112. | Markwalder J, Starling EH. A note on some factors which determine the blood‐flow through the coronary circulation. J Physiol 47(4‐5): 275‐285, 1913. |
113. | Markwalder J, Starling EH. On the constancy of the systolic output under varying conditions. J Physiol 48(4): 348‐356, 1914. |
114. | Mason DT. Usefulness and limitations of the rate of rise of intraventricular pressure (dp‐dt) in the evaluation of myocardial contractility in man. Am J Cardiol 23(4): 516‐527, 1969. |
115. | Maughan WL, Sunagawa K, Burkhoff D, Sagawa K. Effect of arterial impedance changes on the end‐systolic pressure‐volume relation. Circ Res 54(5): 595‐602, 1984. |
116. | Meier GD, Ziskin MC, Santamore WP, Bove AA. Kinematics of the beating heart. IEEE Trans Biomed Eng 27(6): 319‐329, 1980. |
117. | Mirsky I. Left ventricular stresses in the intact human heart. Biophys J 9(2): 189‐208, 1969. |
118. | Mirsky I, Parmley WW. Force‐velocity studies in isolated and intact heart muscle. In: Mirsky M, Ghista DH, Sandler H, editors. Cardiac Mechanics: Physiological, Clinical, and Mathematical Considerations. New York: Wiley, pp. 87‐112, 1974. |
119. | Mirsky I, Tajimi T, Peterson KL. The development of the entire end‐systolic pressure‐volume and ejection fraction‐afterload relations: A new concept of systolic myocardial stiffness. Circulation 76(2): 343‐356, 1987. |
120. | Knowlton AA and Liu TT. Mitochondrial dynamics in heart failure. Comp Physiol (in press). |
121. | Møgelvang J, Stokholm KH, Saunamäki K, Reimer A, Stubgaard M, Thomsen C, Fritz‐Hansen P, Henriksen O. Assessment of left ventricular volumes by magnetic resonance in comparison with radionuclide angiography, contrast angiography and echocardiography. Eur Heart J 13(12): 1677‐1683, 1992. |
122. | Moss RL, Buck SH. Regulation of cardiac contraction by calcium. In: Page E, Fozzard HA, Solaro RJ, editors. Handbook of Physiology: The Cardiovascular System, Volume 1: The Heart. Oxford: University Press, pp. 420‐454, 2002. |
123. | Moss RL, Buck SH. The regulation of cardiac contraction. Handbook of Physiology. Oxford: University Press, 2011. |
124. | Nakano K, Swindle MM, Spinale FG, Ishihara K, Kanazawa F, Smith A, Biederman RWW, Clamp L, Hamada Y, Zile MR, Carabello BA. Depressed contractile function due to canine mitral regurgitation improves following correction of the volume overload. J Clin Invest, 87: 2077‐2086, 1991 |
125. | Ono S, Bhargava V, Ono S, Mao L, Hagan G, Rockman HA, Ross J Jr. In vivo assessment of left ventricular remodelling after myocardial infarction by digital video contrast angiography in the rat. Cardiovasc Res 28(3): 349‐357, 1994. |
126. | Owen AA, Spinale FG. Myocardial basis for heart failure: Role of the cardiac interstitium. In: Mann DL, editor. Heart Failure: A Companion to Braunwald's Heart Disease. St. Louis: Saunders, Elsevier, pp. 73‐84, 2004. |
127. | Palakodeti V, Oh S, Oh BH, Mao L, Hongo M, Peterson KL, Ross J Jr. Force‐frequency effect is a powerful determinant of myocardial contractility in the mouse. Am J Physiol 273(3 Pt 2): H1283‐H1290, 1997. |
128. | Parry DA. The molecular and fibrillar structure of collagen and its relationship to the mechanical properties of connective tissue. Biophys Chem 29(1‐2): 195‐209, 1988. |
129. | Patel CN, Chowdhury FU, Scarsbrook AF. Hybrid SPECT/CT: The end of “unclear” medicine. Postgrad Med J 85(1009): 606‐613, 2009. |
130. | Patterson SW, Piper H, Starling EH. The regulation of the heartbeat. J Physiol 48(6): 465‐513, 1914. |
131. | Patterson WW, Starling EH. On the mechanical factors which determine the output of the ventricles. J Physiol 48(5): 357‐379, 1914. |
132. | Pennell D. Cardiovascular magnetic resonance. In: Bonow RO, Mann DL, Zipes DP, Libby P, editors. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine (7th ed). Philadelphia: Elsevier Saunders, pp. 335‐353, 2005. |
133. | Periasamy M, Bhupathy P, Babu GJ. Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovasc Res 77(2): 265‐273, 2008. |
134. | Peterson KL, Skloven D, Ludbrook P, Uther JB, Ross J Jr. Comparison of isovolumic and ejection phase indices of myocardial performance in man. Circulation 49(6): 1088‐1101, 1974. |
135. | Pouleur H, Lefèvre J, Van Mechelen H, Charlier AA. Free‐wall shortening and relaxation during ejection in the canine right ventricle. Am J Physiol 239(5): H601‐H613, 1980. |
136. | Quinones MA, Gaasch WH, Alexander JK. Influence of acute changes in preload, afterload, contractile state and heart rate on ejection and isovolumic indices of myocardial contractility in man. Circulation 53(2): 293‐302, 1976. |
137. | Quinones MA, Waggoner AD, Reduto LA, Nelson JG, Young JB, Winters WL Jr, Ribeiro LG, Miller RR. A new, simplified and accurate method for determining ejection fraction with two‐dimensional echocardiography. Circulation 64(4): 744‐753, 1981. |
138. | Rausch MK, Famaey N, Shultz TO, Bothe W, Miller DC, Kuhl E. Mechanics of the mitral valve: A critical review, an in vivo parameter identification, and the effect of prestrain. Biomech Model Mechanobiol 12(5): 1053‐1071, 2013. |
139. | Ritter M, Hess OM, Murakami T, Jenni R, Egloff L, Nonogi H, Schneider J, Krayenbuehl HP. Left ventricular systolic series elastic properties in aortic stenosis before and after valve replacement. Cardiovasc Res 22(11): 759‐767, 1988. |
140. | Robb JS, Robb RC. The normal heart. Anatomy and physiology of the structural units. Am Heart J 23: 455‐467, 1942. |
141. | Robinson TF, Geraci MA, Sonnenblick EH, Factor SM. Coiled perimysial fibers of papillary muscle in rat heart: Morphology, distribution, and changes in configuration. Circ Res 63(3): 577‐592, 1988. |
142. | Ross J Jr, Braunwald E. Aortic stenosis. Circulation 38(1 Suppl): 61‐67, 1968. |
143. | Ross J Jr, Covell JW, Sonnenblick EH, Braunwald E. Contractile state of the heart characterized by force‐velocity relations in variably afterloaded and isovolumic beats. Circ Res. 18: 149‐163, 1966. |
144. | Rudy Y. Cardiac ventricular action potential. Handbook of Physiology, The Cardiovascular System, The Heart. Oxford: University Press, 2011. |
145. | Sagawa K. The ventricular pressure‐volume diagram revisited. Circ Res 43(5): 677‐687, 1978. |
146. | Sagawa K, Suga H, Shoukas AA, Bakalar KM. End‐systolic pressure/volume ratio: A new index of ventricular contractility. Am J Cardiol 40(5): 748‐753, 1977. |
147. | Santamore WP, Lynch PR, Heckman JL, Bove AA, Meier GD. Left ventricular effects on right ventricular developed pressure. J Appl Physiol 41(6): 925‐930, 1976. |
148. | Sarnoff SJ, Mitchell JH. The regulation of the performance of the heart. Am J Med 30: 747‐771, 1961. |
149. | Sasaki T, Inui M, Kimura Y, Kuzuya T, Tada M. Molecular mechanism of regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum. Effects of synthetic phospholamban peptides on Ca2+ pump ATPase. J Biol Chem 267(3): 1674‐1679, 1992. |
150. | Schiller NB, Acquatella H, Ports TA, Drew D, Goerke J, Ringertz H, Silverman NH, Brundage B, Botvinick EH, Boswell R, Carlsson E, Parmley WW. Left ventricular volume from paired biplane two‐dimensional echocardiography. Circulation 60(3): 547‐555, 1979. |
151. | Schmidt U, Hajjar RJ, Helm PA, Kim CS, Doye AA, Gwathmey JK. Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. J Mol Cell Cardiol 30(10): 1929‐1937, 1998. |
152. | Schmidt U, Hajjar RJ, Kim CS, Lebeche D, Doye AA, Gwathmey JK. Human heart failure: cAMP stimulation of SR Ca(2+)‐ATPase activity and phosphorylation level of phospholamban. Am J Physiol 277(2 Pt 2): H474‐H480, 1999. |
153. | Schwinn DA, Caron MG, Lefkowitz RJ. The beta‐adrenergic receptor as a model for molecular structure‐function relationships in G protein‐coupled receptors. In: Page E, Fozzard HA, Solaro RJ, editors. The Heart and Cardiovascular System, Vol 2. New York: Raven Press, pp. 1657‐1684, 1991. |
154. | Sechtem U, Sommerhoff BA, Markiewicz W, White RD, Cheitlin MD, Higgins CB. Regional left ventricular wall thickening by magnetic resonance imaging: Evaluation in normal persons and patients with global and regional dysfunction. Am J Cardiol 59(1): 145‐151, 1987. |
155. | Sengupta PP, Khandheria BK, Narula J. Twist and untwist mechanics of the left ventricle. Heart Fail Clin 4(3): 315‐324, 2008. |
156. | Sengupta PP, Tajik AJ, Chandrasekaran K, Khandheria BK. Twist mechanics of the left ventricle: Principles and application. JACC Cardiovasc Imaging 1(3): 366‐376, 2008. |
157. | Shabetai R. Pericardial and cardiac pressure. Circulation 77(1): 1‐5, 1988. |
158. | Shai SY, Harpf AE, Babbitt CJ, Jordan MC, Fishbein MC, Chen J, Omura M, Leil TA, Becker KD, Jiang M, Smith DJ, Cherry SR, Loftus JC, Ross RS. Cardiac myocyte‐specific excision of the beta1 integrin gene results in myocardial fibrosis and cardiac failure. Circ Res 90(4): 458‐464, 2002. |
159. | Sheehan FH, Feneley MP, DeBruijn NP, Rankin JS, Davis JW, Bolson EL, Glass PS, Clements FM. Quantitative analysis of regional wall thickening by transesophageal echocardiography. J Thorac Cardiovasc Surg 103(2): 347‐354, 1992. |
160. | Shirato K, Shabetai R, Bhargava V, Franklin D, Ross J Jr. Alteration of the left ventricular diastolic pressure‐segment length relation produced by the pericardium. Effects of cardiac distension and afterload reduction in conscious dogs. Circulation 57(6): 1191‐1198, 1978. |
161. | Smith VE, Zile MR. Relaxation and diastolic properties of the heart. In: Page E, Fozzard HA, Solaro RJ, editors. The Heart and Cardiovascular System, Vol 2. New York: Raven Press, pp. 1353‐1367, 1992. |
162. | Solaro RJ. Modulation of cardiac myofilament activity by protein phosphorylation. In: Page E, Fozzard HA, Solaro RJ, editors. Handbook of Physiology: The Cardiovascular System, Volume 1: The Heart. Oxford: University Press, pp. 264‐300, 2002. |
163. | Sonnenblick EH, Ross J Jr, Covell JW, Braunwald E. Alterations in resting length‐tension relations of cardiac muscle induced by changes in contractile force. Circ Res. 19: 980‐988, 1966. |
164. | Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: Influence on cardiac form and function. Physiol Rev 87(4): 1285‐1342, 2007. |
165. | Spinale FG, Crawford FA, Carabello BA. Right ventricular function and modeling using computer aided design. J Appl Physiol 68: 1707‐1716, 1990. |
166. | Spotnitz HM, Sonnenblick EH, Spiro D. Relation of ultrastructure to function in the intact heart: Sarcomere structure relative to pressure volume curves of intact left ventricles of dog and cat. Circ Res 18(1): 49‐66, 1966. |
167. | Spray DC, Suadicani SO, Srinivas M, Gutstein DE, Fishman GI. Gap junctions in the cardiovascular system. In: Page E, Fozzard HA, Solaro RJ, editors. Handbook of Physiology: The Cardiovascular System, Volume 1: The Heart. Oxford: University Press, pp. 169‐212, 2002. |
168. | Starling EH. The Linacre Lecture on the Law of the Heart, Given at Cambridge. London: Longmans, Green and Co, 1918. |
169. | Starr I, Collins LH, Wood FC. Studies of the basal work and output of the heart in clinical conditions. J Clin Invest 12(1): 13‐43, 1933. |
170. | Streeter DD Jr. Gross morphology and fiber geometry of the heart. In: Berne RM, Geiger SR, Sperelakis N, editors. Handbook of Physiology. Section 2: The Cardiovascular System. Baltimore: American Physiological Society, pp. 61‐112, 1979. |
171. | Stroud JD, Baicu CF, Barnes MA, Spinale FG, Zile MR. Viscoelastic properties of pressure overload hypertrophied myocardium: Effect of serine protease treatment. Am J Physiol Heart Circ Physiol 282(6): H2324‐H2335, 2002. |
172. | Suga H. Ventricular energetics. Physiol Rev 70(2): 247‐277, 1990. |
173. | Suga H, Hisano R, Goto Y, Yamada O, Igarashi Y. Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure volume area in canine left ventricle. Circ Res 53(3): 306‐318, 1983. |
174. | Suga H, Sagawa K. Instantaneous pressure‐volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res 35(1): 117‐126, 1974. |
175. | Susanni EE, Vatner DE, Homcy CJ. The beta‐adrenergic receptor/adenylyl cyclase system. In: Page E, Fozzard HA, Solaro RJ, editors. The Heart and Cardiovascular System, Vol 2. New York: Raven Press, pp. 1685‐1708, 1991. |
176. | Tada M. Cardiac sarcoplasmic reticulum Ca2+‐ATPase. Handbook of Physiology, The Cardiovascular System, The Heart. Oxford: University Press, 2011. |
177. | Tada M, Toyofuku T. Cardiac sarcoplasmic reticulum Ca2+‐ATPase. In: Page E, Fozzard HA, Solaro RJ, editors. Handbook of Physiology: The Cardiovascular System, Volume 1: The Heart. Oxford: University Press, pp. 308‐334, 2002. |
178. | Taylor RR, Covell JW, Ross J Jr. Influence of the thyroid state on left ventricular tension‐velocity relations in the intact, sedated dog. J Clin Invest 48(4): 775‐784, 1969. |
179. | ter Keurs HE, Rijnsburger WH, van Heuningen R, Nagelsmit MJ. Tension development and sarcomere length in rat cardiac trabeculae. Evidence of length‐dependent activation. Circ Res 46(5): 703‐714, 1980. |
180. | Tomita M, Spinale FG, Crawford FA, Zile MR. Changes in left ventricular volume, mass, and function during the development and regression of supraventricular tachycardia‐induced cardiomyopathy. Disparity between recovery of systolic versus diastolic function. Circulation 83(2): 635‐644, 1991. |
181. | Trautwein W, Hescheler J. Regulation of cardiac L‐type calcium current by phosphorylation and G proteins. Annu Rev Physiol 52: 257‐274, 1990. |
182. | Tsutsui H, Spinale FG, Nagatsu M, Nagatsu M, Schmid PG, Ishihara K, DeFreyte G, Cooper G, Carabello B. The effects of chronic b‐adrenergic blockade on the left ventricular and cardiocyte abnormalities of chronic mitral regurgitation. J Clin Invest 93: 2639‐2648, 1994. |
183. | Udelson JE, Dilsizian V, Bonow RO. Nuclear cardiology. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine (7th ed). Philadelphia: Elsevier Saunders, pp. 287‐333, 2005. |
184. | Vandsburger MH, Epstein FH. Emerging MRI methods in translational cardiovascular research. J Cardiovasc Transl Res 4(4): 477‐492, 2011. |
185. | van Heerebeek L, Franssen CP, Hamdani N, Verheugt FW, Somsen GA, Paulus WJ. Molecular and cellular basis for diastolic dysfunction. Curr Heart Fail Rep 9(4): 293‐302, 2012. |
186. | Wackers FJ, Berger HJ, Johnstone DE, Goldman L, Reduto LA, Langou RA, Gottschalk A, Zaret BL. Multiple gated cardiac blood pool imaging for left ventricular ejection fraction: Validation of the technique and assessment of variability. Am J Cardiol 43(6): 1159‐1166, 1979. |
187. | Waldman LK, Fung YC, Covell JW. Transmural myocardial deformation in the canine left ventricle. Normal in vivo three‐dimensional finite strains. Circ Res 57(1): 152‐163, 1985. |
188. | Warbasse JR, Braunwald E, Aygen MM. Starling's law of the heart. VII. Ventricular function in closed‐chest unanesthetized dogs. Am J Physiol 204: 439‐445, 1963. |
189. | Weber KT. Cardiac interstitium in health and disease: The fibrillar collagen network. J Am Coll Cardiol 13(7): 1637‐1652, 1989. |
190. | Wei CL, Shih MH. Calibration capacity of the conductance‐to‐volume conversion equations for the mouse conductance catheter measurement system. IEEE Trans Biomed Eng 56(6): 1627‐1634, 2009. |
191. | Wei CL, Valvano JW, Feldman MD, Nahrendorf M, Peshock R, Pearce JA. Volume catheter parallel conductance varies between end‐systole and end‐diastole. IEEE Trans Biomed Eng 54(8): 1480‐1489, 2007. |
192. | Wiggers CJ, Katz LN. The contour of the ventricular volume curves under different conditions. Am J Physiol. 58: 439‐475, 1922. |
193. | Witschey WR, Contijoch F, McGarvey JR, Ferrari VA, Hansen MS, Lee ME, Takebayashi S, Aoki C, Chirinos JA, Yushkevich PA, Gorman JH III, Pilla JJ, Gorman RC. Real‐time magnetic resonance imaging technique for determining left ventricle pressure‐volume loops. Ann Thorac Surg 97(5): 1597‐1603, 2014. |
194. | Wood PW, Choy JB, Nanda NC, Becher H. Left ventricular ejection fraction and volumes: It depends on the imaging method. Echocardiography 31(1): 87‐100, 2014. |
195. | Yarbrough WM, Mukherjee R, Ikonomidis JS, Zile MR, Spinale FG. Myocardial remodeling with aortic stenosis and after aortic valve replacement: Mechanisms and future prognostic implications. J Thorac Cardiovasc Surg 143(3): 656‐664, 2012. |
196. | Yellin EL, Meisner JS. Physiology of diastolic function and transmitral pressure‐flow relations. Cardiol Clin 18(3): 411‐433, 2000. |
197. | Young AA, Cowan BR. Evaluation of left ventricular torsion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14: 49, 2012. |
198. | Zile MR, Baicu CF. Alterations in ventricular function: Diastolic heart failure. Heart Failure: A Companion to Braunwald's Heart Disease. St. Louis: Saunders, Elsevier, pp. 213‐231, 2011. |
199. | Zile MR, Baicu CF, Bonnema DD. Diastolic heart failure: Definitions and terminology. Prog Cardiovasc Dis 47(5): 307‐133, 2005. |
200. | Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: Part I: Diagnosis, prognosis, and measurements of diastolic function. Circulation 105(11): 1387‐1393, 2002. |
201. | Zile MR, Spinale FG. Integrating the myocardial matrix into heart failure recognition and management. Circ Res 113(6): 725‐738, 2013. |
202. | Zile MR, Tanaka R, Lindroth JR, Spinale FG, Carabello BA, Mirsky I. Left ventricular volume determined echocardiographically by using a constant LV epicardial long axis to short axis dimension ratio throughout the cardiac cycle. J Am Coll Cardiol 20(4): 986‐983, 1992. |