Comprehensive Physiology Wiley Online Library

Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis

Full Article on Wiley Online Library



ABSTRACT

Ventilatory responses to hypoxia vary widely depending on the pattern and length of hypoxic exposure. Acute, prolonged, or intermittent hypoxic episodes can increase or decrease breathing for seconds to years, both during the hypoxic stimulus, and also after its removal. These myriad effects are the result of a complicated web of molecular interactions that underlie plasticity in the respiratory control reflex circuits and ultimately control the physiology of breathing in hypoxia. Since the time domains of the physiological hypoxic ventilatory response (HVR) were identified, considerable research effort has gone toward elucidating the underlying molecular mechanisms that mediate these varied responses. This research has begun to describe complicated and plastic interactions in the relay circuits between the peripheral chemoreceptors and the ventilatory control circuits within the central nervous system. Intriguingly, many of these molecular pathways seem to share key components between the different time domains, suggesting that varied physiological HVRs are the result of specific modifications to overlapping pathways. This review highlights what has been discovered regarding the cell and molecular level control of the time domains of the HVR, and highlights key areas where further research is required. Understanding the molecular control of ventilation in hypoxia has important implications for basic physiology and is emerging as an important component of several clinical fields. © 2016 American Physiological Society. Compr Physiol 6:1345‐1385, 2016.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Time domains of the HVR. Ventilation (V·I), tidal volume (VT), and respiratory frequency (fR) as a function of time during normoxia (dotted baseline) and different durations and patterns of hypoxia (solid baseline). (A) The acute HVR is followed by STP and STD during brief (seconds to minutes) hypoxic exposures. (B) Ventilatory responses during and after sustained (minutes to days) hypoxic exposures include HVD, VAH, and VDH described in later sections; HD is not shown.) (C) Ventilatory responses during and after intermittent hypoxic exposures include PA and LTF (described in later sections).
Figure 2. Figure 2. Molecular mechanisms of the acute HVR. Acute hypoxia of seconds to minutes causes increased ventilation during the hypoxic stimulus. (A) During short‐term hypoxia, decreased PaO2 is sensed by the peripheral chemoreceptors (carotid bodies). Hypoxia‐mediated excitatory ion (Na+ and Ca2+) influx induces depolarization of the carotid bodies, which leads to the generation of action potentials that then propagate along the carotid sinus nerve. (B) Excitatory glutamatergic carotid body afferent neurons along with SP and inhibitory GABAergic neurons synapse at the NTS. If the summation of these opposing signals is net‐excitatory, action potentials are generated in the NTS neurons that communicate to the respiratory motorneurons and increase ventilation via excitation of the phrenic nerve. (C) At the synapse between carotid sinus nerve afferent neurons and the NTS, pre‐synaptic release of SP, glutamate, and GABA induce opposing effects on the excitability of the NTS postsynaptic second‐order neurons and induce excitatory signal propagation that increases downstream respiratory drive (i.e., the acute HVR). (D) This increased drive manifests as an increase in ventilation (raw data is from rats acutely breathing normoxic or hypoxic gas mixtures (Pamenter and Powell, unpublished).
Figure 3. Figure 3. Molecular mechanisms of STP. Acute hypoxia of several minutes increases ventilatory drive and normoxic (baseline) ventilation remains elevated for several minutes poststimulus. (A) During short‐term hypoxia: (i) carotid sinus nerve activity is elevated, which leads to (ii) sustained glutamate (glut) release from carotid body afferent neurons that stimulates NMDARs in postsynaptic NTS second‐order neurons. Maintained activation of postsynaptic glutamate receptors causes (iii) intracellular Ca2+ accumulation, which (iv) binds with calmodulin and activates CaMKII. CaMKII then (v) modifies membrane‐dissociated nNOSs, stimulating production of NO, which rapidly defuses back across the synaptic cleft and (vi) stimulates guanalyl cyclase‐mediated production of cGMP. cGMP then enhances presynaptic glut release and thus enhances the excitatory signal propagation that increases downstream respiratory drive (i.e., STP). (B) Physiologically, STP manifests as an increase in breathing frequency; reprinted with permission (190).
Figure 4. Figure 4. Molecular mechanisms of STD. Acute hypoxia of seconds to minutes can lead to a short‐term decrease in breathing frequency via an incompletely understood pathway. (A) Acute hypoxia induces activation of serotonin (5‐HT) type 2A and 2C receptors and/or α2‐adrenoreceptors within the noradrenergic A5 cell group. Activation of 5‐HT2A/2C or α2‐adrenoreceptors modulates glutamatergic NMDARs via an unknown pathway, and presumably decreases NMDAR activation. (B) Physiologically, activation of this pathway leads to decreased phrenic nerve activity and decreased ventilation (due to reduced breathing frequency); reprinted with permission (54).
Figure 5. Figure 5. HVD in humans involves a rapid decrease in O2 sensitivity followed by larger decreases in ventilation without changes in O2 sensitivity. (Upper panel) The slope of the HVR between baseline in mild hyperoxia and SaO2 = 85% for 3 min is significantly greater than the slope between SaO2 = 75% and 85% after 25 min of hypoxia (SaO2 = 85%). (Lower panel) However, most of the decrease in ventilation during sustained hypoxia is explained by a significant decrease in ventilation without a change in O2 sensitivity; the slope of the HVR between SaO2 = 90% and 80% is not significantly different after 8 versus 14 min of hypoxia (SaO2 = 90%), but there is significant HVD (illustrated as a decrease in the Y intercept predicting ventilation at SaO2 = 100%). We propose a more accurate way to quantify HVD is the decrease in ventilation predicted within the range of sustained hypoxia studied, for example, the change in ventilation predicted at SaO2 = 85% between the two HVR measurements in the lower panel; reprinted with permission (109).
Figure 6. Figure 6. Molecular mechanisms of the HVD. Acute hypoxia of 5 to 30 min leads to a decrease in ventilatory drive, or a hypoxic apnea. The underlying mechanism of this HVR is poorly understood but evidence indicates mediation at both the peripheral chemoreceptors (A) and within the CNS (B). (A) At the peripheral chemoreceptors, DA release may inhibit hypoxia‐mediated carotid body depolarization and reduce carotid sinus nerve activity and thus downstream phrenic nerve activity. (B) At the synapse between the carotid sinus nerve and NTS second‐order neurons, GABA accumulation due to chronic activation of GABAergic interneurons or conversion of excessive synaptic glutamate to GABA by GAD inhibits the electrical excitability and downstream phrenic nerve activation. DA may act on either the carotid sinus nerve afferent or GABAergic interneurons to decrease GABA accumulation via these putative pathways. Activation of adenosine and opioid receptors has also been implicated in this pathway, potentially via inhibition of glutamatergic NMDAR activity mediated by inhibitory g protein signaling. (C) Physiologically, STP manifests as decreased ventilation (data shown are from hypoxic chemodenervated dogs; adapted from (427) with permission.
Figure 7. Figure 7. Opposing effects of DA on carotid body chemoreceptor sensitivity and ventilation. Ventilation (V·I) and arterial chemoreceptor activity measured simultaneously in anesthetized cats with haloperidol (open symbols) versus control (filled symbols). Haloperidol blocks D2Rs (i) in carotid bodies, which increases chemoreceptor activity for a given PO2, and (ii) in the CNS, which decreases the CNS gain of the HVR so V·I is less for a given chemoreceptor activity. Reprinted with permission (321); adapted from (366) with permission.
Figure 8. Figure 8. VAH involves increases in the CNS gain of the HVR. Neural output to respiratory muscles (left, phrenic burst frequency; right, phrenic burst frequency X integrated phrenic amplitude; analogous to fR and V·I, respectively) increases in chronically hypoxic (filled symbols) compared to normoxic control rats (open symbols) for any given level of electrical stimulation of the carotid sinus nerve; reprinted with permission (321).
Figure 9. Figure 9. VAH is mediated by glutamatergic NMDAR, but not AMPAR receptors. (A) The acute HVR is abolished by blocking NMDARs with MK801 in the NTS of chronically hypoxic, awake rats (CSH) and has no effect on chronically normoxic (CON) rats. (B) Non‐NMDA glutamatergic receptors (blocked with NBQX) contribute to the ventilatory chemoreflex response all conditions (i.e., acute or chronic hypoxia (and also hypercapnia, not shown) and do not play a unique role in VAH; adapted from (299) with permission.
Figure 10. Figure 10. Hypoxic ventilatory drive is reduced in high altitude natives. Relationship between ventilation and arterial oxygen tension in low altitude control human subjects, high altitude (HA) residents (3‐39 years at altitude) and HA natives (born and live at altitude); reprinted with permission (414).
Figure 11. Figure 11. High‐altitude natives from Tibet (upper panel) have greater and varied HVRs than high altitude native Andeans (Aymara; lower panel). Adapted from (24) with permission.
Figure 12. Figure 12. Putative molecular mechanism of PA at the carotid body. (A) AIH or repeated acute application of serotonin (5‐HT) to carotid bodies induces PKC‐mediated phosphorylation of carotid body NADPH oxidase (NOX) subunits and increased production or superoxide (O2). Superoxide production leads to enhanced carotid body membrane potential depolarization and increased afferent neuron firing. (B) This effect is manifested in progressive augmentation of phrenic nerve activity during the hypoxic episodes (or during 5‐HT application, arrows), followed by LTF of phrenic nerve activity in the normoxic period following the intermittent stimulus; adapted from (311) with permission.
Figure 13. Figure 13. Classic model of the molecular basis of phrenic LTF. Intermittent hypoxia (IH) increases ventilatory drive during acute hypoxia and normoxic (baseline) ventilation remains elevated for over an hour after IH. (A) Carotid body stimulation by IH releases 5‐HT from neuromodulatory Raphe neurons, which binds to 5‐HT type 1A and 2A receptors on phrenic motorneurons. 5‐HT activates Gq protein signaling cascades to activate protein kinase C (PKC) and induce the synthesis of BDNF. BDNF binds to tyrosine kinase receptors (TrkB) that activate phospho‐extracellular signal regulated kinase (pERK). In other systems, pERK has been shown to phosphorylate glutamatergic NMDARs in postsynaptic neurons and increase sensitivity to presynaptic glutamate release. (B) Physiologically, this increased sensitivity manifests as enhanced phrenic nerve activity and increased ventilation (primarily increased tidal volume); adapted from (225) with permission.
Figure 14. Figure 14. New model for phrenic LTF with multiple molecular pathways. The Gq pathway (blue arrows) proceeds as described in Figure 13, but can also be activated by α1‐adrenergic receptors (α1Rs). The Gs pathway (green arrows) can be induced by the activation of adenosine type 2A receptors (A2AR) or 5‐HT type 7 receptors (5‐HT7R), which are coupled to Gs proteins. Gs signaling activates protein kinase A (PKA), which stimulates immature TrkB to modulate phospho‐protein kinase B (pAkt). In other systems, this phosphorylates glutamatergic NMDARs and increases sensitivity to pre‐synaptic glutamate release. Recently, additional pathways (dashed arrows) have been described wherein vascular endothelial growth factor receptor‐2 (VEGFR‐2) or erythropoietin receptor (EPOR) induce LTF via phosphoinositide 3‐kinase (PI3K) and pAkt, and perhaps pERK.
Figure 15. Figure 15. Putative mechanism for ROS in phrenic LTF. Recent evidence supports a critical role for ROS produced from membrane‐bound NOX in the manifestation of LTF following AIH. (A) Activation of 5‐HT type 2 receptors in the post‐synaptic cell induces NOX activity and generation of O2. O2 acts to induce LTF, presumably via protein‐phosphatase (PP)‐mediated phosphorylation of NMDARs. (B) Application of the NOX inhibitor apocynin or ROS scavengers (not shown) abolish phrenic LTF following AIH; adapted from (225) with permission.


Figure 1. Time domains of the HVR. Ventilation (V·I), tidal volume (VT), and respiratory frequency (fR) as a function of time during normoxia (dotted baseline) and different durations and patterns of hypoxia (solid baseline). (A) The acute HVR is followed by STP and STD during brief (seconds to minutes) hypoxic exposures. (B) Ventilatory responses during and after sustained (minutes to days) hypoxic exposures include HVD, VAH, and VDH described in later sections; HD is not shown.) (C) Ventilatory responses during and after intermittent hypoxic exposures include PA and LTF (described in later sections).


Figure 2. Molecular mechanisms of the acute HVR. Acute hypoxia of seconds to minutes causes increased ventilation during the hypoxic stimulus. (A) During short‐term hypoxia, decreased PaO2 is sensed by the peripheral chemoreceptors (carotid bodies). Hypoxia‐mediated excitatory ion (Na+ and Ca2+) influx induces depolarization of the carotid bodies, which leads to the generation of action potentials that then propagate along the carotid sinus nerve. (B) Excitatory glutamatergic carotid body afferent neurons along with SP and inhibitory GABAergic neurons synapse at the NTS. If the summation of these opposing signals is net‐excitatory, action potentials are generated in the NTS neurons that communicate to the respiratory motorneurons and increase ventilation via excitation of the phrenic nerve. (C) At the synapse between carotid sinus nerve afferent neurons and the NTS, pre‐synaptic release of SP, glutamate, and GABA induce opposing effects on the excitability of the NTS postsynaptic second‐order neurons and induce excitatory signal propagation that increases downstream respiratory drive (i.e., the acute HVR). (D) This increased drive manifests as an increase in ventilation (raw data is from rats acutely breathing normoxic or hypoxic gas mixtures (Pamenter and Powell, unpublished).


Figure 3. Molecular mechanisms of STP. Acute hypoxia of several minutes increases ventilatory drive and normoxic (baseline) ventilation remains elevated for several minutes poststimulus. (A) During short‐term hypoxia: (i) carotid sinus nerve activity is elevated, which leads to (ii) sustained glutamate (glut) release from carotid body afferent neurons that stimulates NMDARs in postsynaptic NTS second‐order neurons. Maintained activation of postsynaptic glutamate receptors causes (iii) intracellular Ca2+ accumulation, which (iv) binds with calmodulin and activates CaMKII. CaMKII then (v) modifies membrane‐dissociated nNOSs, stimulating production of NO, which rapidly defuses back across the synaptic cleft and (vi) stimulates guanalyl cyclase‐mediated production of cGMP. cGMP then enhances presynaptic glut release and thus enhances the excitatory signal propagation that increases downstream respiratory drive (i.e., STP). (B) Physiologically, STP manifests as an increase in breathing frequency; reprinted with permission (190).


Figure 4. Molecular mechanisms of STD. Acute hypoxia of seconds to minutes can lead to a short‐term decrease in breathing frequency via an incompletely understood pathway. (A) Acute hypoxia induces activation of serotonin (5‐HT) type 2A and 2C receptors and/or α2‐adrenoreceptors within the noradrenergic A5 cell group. Activation of 5‐HT2A/2C or α2‐adrenoreceptors modulates glutamatergic NMDARs via an unknown pathway, and presumably decreases NMDAR activation. (B) Physiologically, activation of this pathway leads to decreased phrenic nerve activity and decreased ventilation (due to reduced breathing frequency); reprinted with permission (54).


Figure 5. HVD in humans involves a rapid decrease in O2 sensitivity followed by larger decreases in ventilation without changes in O2 sensitivity. (Upper panel) The slope of the HVR between baseline in mild hyperoxia and SaO2 = 85% for 3 min is significantly greater than the slope between SaO2 = 75% and 85% after 25 min of hypoxia (SaO2 = 85%). (Lower panel) However, most of the decrease in ventilation during sustained hypoxia is explained by a significant decrease in ventilation without a change in O2 sensitivity; the slope of the HVR between SaO2 = 90% and 80% is not significantly different after 8 versus 14 min of hypoxia (SaO2 = 90%), but there is significant HVD (illustrated as a decrease in the Y intercept predicting ventilation at SaO2 = 100%). We propose a more accurate way to quantify HVD is the decrease in ventilation predicted within the range of sustained hypoxia studied, for example, the change in ventilation predicted at SaO2 = 85% between the two HVR measurements in the lower panel; reprinted with permission (109).


Figure 6. Molecular mechanisms of the HVD. Acute hypoxia of 5 to 30 min leads to a decrease in ventilatory drive, or a hypoxic apnea. The underlying mechanism of this HVR is poorly understood but evidence indicates mediation at both the peripheral chemoreceptors (A) and within the CNS (B). (A) At the peripheral chemoreceptors, DA release may inhibit hypoxia‐mediated carotid body depolarization and reduce carotid sinus nerve activity and thus downstream phrenic nerve activity. (B) At the synapse between the carotid sinus nerve and NTS second‐order neurons, GABA accumulation due to chronic activation of GABAergic interneurons or conversion of excessive synaptic glutamate to GABA by GAD inhibits the electrical excitability and downstream phrenic nerve activation. DA may act on either the carotid sinus nerve afferent or GABAergic interneurons to decrease GABA accumulation via these putative pathways. Activation of adenosine and opioid receptors has also been implicated in this pathway, potentially via inhibition of glutamatergic NMDAR activity mediated by inhibitory g protein signaling. (C) Physiologically, STP manifests as decreased ventilation (data shown are from hypoxic chemodenervated dogs; adapted from (427) with permission.


Figure 7. Opposing effects of DA on carotid body chemoreceptor sensitivity and ventilation. Ventilation (V·I) and arterial chemoreceptor activity measured simultaneously in anesthetized cats with haloperidol (open symbols) versus control (filled symbols). Haloperidol blocks D2Rs (i) in carotid bodies, which increases chemoreceptor activity for a given PO2, and (ii) in the CNS, which decreases the CNS gain of the HVR so V·I is less for a given chemoreceptor activity. Reprinted with permission (321); adapted from (366) with permission.


Figure 8. VAH involves increases in the CNS gain of the HVR. Neural output to respiratory muscles (left, phrenic burst frequency; right, phrenic burst frequency X integrated phrenic amplitude; analogous to fR and V·I, respectively) increases in chronically hypoxic (filled symbols) compared to normoxic control rats (open symbols) for any given level of electrical stimulation of the carotid sinus nerve; reprinted with permission (321).


Figure 9. VAH is mediated by glutamatergic NMDAR, but not AMPAR receptors. (A) The acute HVR is abolished by blocking NMDARs with MK801 in the NTS of chronically hypoxic, awake rats (CSH) and has no effect on chronically normoxic (CON) rats. (B) Non‐NMDA glutamatergic receptors (blocked with NBQX) contribute to the ventilatory chemoreflex response all conditions (i.e., acute or chronic hypoxia (and also hypercapnia, not shown) and do not play a unique role in VAH; adapted from (299) with permission.


Figure 10. Hypoxic ventilatory drive is reduced in high altitude natives. Relationship between ventilation and arterial oxygen tension in low altitude control human subjects, high altitude (HA) residents (3‐39 years at altitude) and HA natives (born and live at altitude); reprinted with permission (414).


Figure 11. High‐altitude natives from Tibet (upper panel) have greater and varied HVRs than high altitude native Andeans (Aymara; lower panel). Adapted from (24) with permission.


Figure 12. Putative molecular mechanism of PA at the carotid body. (A) AIH or repeated acute application of serotonin (5‐HT) to carotid bodies induces PKC‐mediated phosphorylation of carotid body NADPH oxidase (NOX) subunits and increased production or superoxide (O2). Superoxide production leads to enhanced carotid body membrane potential depolarization and increased afferent neuron firing. (B) This effect is manifested in progressive augmentation of phrenic nerve activity during the hypoxic episodes (or during 5‐HT application, arrows), followed by LTF of phrenic nerve activity in the normoxic period following the intermittent stimulus; adapted from (311) with permission.


Figure 13. Classic model of the molecular basis of phrenic LTF. Intermittent hypoxia (IH) increases ventilatory drive during acute hypoxia and normoxic (baseline) ventilation remains elevated for over an hour after IH. (A) Carotid body stimulation by IH releases 5‐HT from neuromodulatory Raphe neurons, which binds to 5‐HT type 1A and 2A receptors on phrenic motorneurons. 5‐HT activates Gq protein signaling cascades to activate protein kinase C (PKC) and induce the synthesis of BDNF. BDNF binds to tyrosine kinase receptors (TrkB) that activate phospho‐extracellular signal regulated kinase (pERK). In other systems, pERK has been shown to phosphorylate glutamatergic NMDARs in postsynaptic neurons and increase sensitivity to presynaptic glutamate release. (B) Physiologically, this increased sensitivity manifests as enhanced phrenic nerve activity and increased ventilation (primarily increased tidal volume); adapted from (225) with permission.


Figure 14. New model for phrenic LTF with multiple molecular pathways. The Gq pathway (blue arrows) proceeds as described in Figure 13, but can also be activated by α1‐adrenergic receptors (α1Rs). The Gs pathway (green arrows) can be induced by the activation of adenosine type 2A receptors (A2AR) or 5‐HT type 7 receptors (5‐HT7R), which are coupled to Gs proteins. Gs signaling activates protein kinase A (PKA), which stimulates immature TrkB to modulate phospho‐protein kinase B (pAkt). In other systems, this phosphorylates glutamatergic NMDARs and increases sensitivity to pre‐synaptic glutamate release. Recently, additional pathways (dashed arrows) have been described wherein vascular endothelial growth factor receptor‐2 (VEGFR‐2) or erythropoietin receptor (EPOR) induce LTF via phosphoinositide 3‐kinase (PI3K) and pAkt, and perhaps pERK.


Figure 15. Putative mechanism for ROS in phrenic LTF. Recent evidence supports a critical role for ROS produced from membrane‐bound NOX in the manifestation of LTF following AIH. (A) Activation of 5‐HT type 2 receptors in the post‐synaptic cell induces NOX activity and generation of O2. O2 acts to induce LTF, presumably via protein‐phosphatase (PP)‐mediated phosphorylation of NMDARs. (B) Application of the NOX inhibitor apocynin or ROS scavengers (not shown) abolish phrenic LTF following AIH; adapted from (225) with permission.
References
 1.NHLBI Morbidity and Mortality Chart Book, Bethesda, MD: National Institutes of Health 2012. National Heart Lung and Blood Institute: http://www.nhlbi.nih.gov/research/reports/2012‐mortality‐chart‐book
 2.Aaron EA, Powell FL. Effect of chronic hypoxia on hypoxic ventilatory response in awake rats. J Appl Physiol 74(4): 1635‐1640, 1993.
 3.Abbott LF, Nelson SB. Synaptic plasticity: Taming the beast. Nat Neurosci 3(Suppl): 1178‐1183, 2000.
 4.Accorsi‐Mendonca D, Almado CE, Bonagamba LG, Castania JA, Moraes DJ, Machado BH. Enhanced firing in NTS induced by short‐term sustained hypoxia is modulated by glia‐neuron interaction. J Neurosci 35(17): 6903‐6917, 2015.
 5.Adachi T, Ishikawa K, Hida W, Matsumoto H, Masuda T, Date F, Ogawa K, Takeda K, Furuyama K, Zhang Y, Kitamuro T, Ogawa H, Maruyama Y, Shibahara S. Hypoxemia and blunted hypoxic ventilatory responses in mice lacking heme oxygenase‐2. Biochem Biophys Res Commun 320(2): 514‐522, 2004.
 6.Aldenderfer MS. Moving up in the world. Am Sci 91(6): 542‐549, 2003.
 7.Alea OA, Czapla MA, Lasky JA, Simakajornboon N, Gozal E, Gozal D. PDGF‐beta receptor expression and ventilatory acclimatization to hypoxia in the rat. Am J Physiol Regul Integr Comp Physiol 279(5): R1625‐R1633, 2000.
 8.Ang RC, Hoop B, Kazemi H. Role of glutamate as the central neurotransmitter in the hypoxic ventilatory response. J Appl Physiol 72(4): 1480‐1487, 1992.
 9.Artola A, Singer W. Long‐term depression of excitatory synaptic transmission and its relationship to long‐term potentiation. Trends Neurosci 16(11): 480‐487, 1993.
 10.Baader SL, Schilling K. Glutamate receptors mediate dynamic regulation of nitric oxide synthase expression in cerebellar granule cells. J Neurosci 16(4): 1440‐1449, 1996.
 11.Babb TG, Wood HE, Mitchell GS. Short‐ and long‐term modulation of the exercise ventilatory response. Med Sci Sports Exerc 42(9): 1681‐1687, 2010.
 12.Babcock MA, Badr MS. Long‐term facilitation of ventilation in humans during NREM sleep. Sleep 21(7): 709‐716, 1998.
 13.Bach KB, Kinkead R, Mitchell GS. Post‐hypoxia frequency decline in rats: Sensitivity to repeated hypoxia and alpha2‐adrenoreceptor antagonism. Brain Res 817(1‐2): 25‐33, 1999.
 14.Bach KB, Mitchell GS. Hypoxia‐induced long‐term facilitation of respiratory activity is serotonin dependent. Respir Physiol 104(2‐3): 251‐260, 1996.
 15.Badr MS, Skatrud JB, Dempsey JA. Determinants of poststimulus potentiation in humans during NREM sleep. J Appl Physiol 73(5): 1958‐1971, 1992.
 16.Baker TL, Fuller DD, Zabka AG, Mitchell GS. Respiratory plasticity: Differential actions of continuous and episodic hypoxia and hypercapnia. Respir Physiol 129(1‐2): 25‐35, 2001.
 17.Baker‐Herman TL, Bavis RW, Dahlberg JM, Mitchell AZ, Wilkerson JE, Golder FJ, Macfarlane PM, Watters JJ, Behan M, Mitchell GS. Differential expression of respiratory long‐term facilitation among inbred rat strains. Respir Physiol Neurobiol 170(3): 260‐267, 2010.
 18.Baker‐Herman TL, Fuller DD, Bavis RW, Zabka AG, Golder FJ, Doperalski NJ, Johnson RA, Watters JJ, Mitchell GS. BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat Neurosci 7(1): 48‐55, 2004.
 19.Baker‐Herman TL, Mitchell GS. Phrenic long‐term facilitation requires spinal serotonin receptor activation and protein synthesis. J Neurosci 22(14): 6239‐6246, 2002.
 20.Barnard P, Andronikou S, Pokorski M, Smatresk N, Mokashi A, Lahiri S. Time‐dependent effect of hypoxia on carotid body chemosensory function. J Appl Physiol 63(2): 685‐691, 1987.
 21.Barnard P, Andronikou S, Pokorski M, Smatresk N, Mokashi A, Lahiri S. Time‐dependent effect of hypoxia on carotid body chemosensory function. J Appl Physiol (1985). 63(2): 685‐691, 1987.
 22.Bascom DA, Pandit JJ, Clement ID, Robbins PA. Effects of different levels of end‐tidal PO2 on ventilation during isocapnia in humans. Respir Physiol 88(3): 299‐311, 1992.
 23.Beall CM, Cavalleri GL, Deng L, Elston RC, Gao Y, Knight J, Li C, Li JC, Liang Y, McCormack M, Montgomery HE, Pan H, Robbins PA, Shianna KV, Tam SC, Tsering N, Veeramah KR, Wang W, Wangdui P, Weale ME, Xu Y, Xu Z, Yang L, Zaman MJ, Zeng C, Zhang L, Zhang X, Zhaxi P, Zheng YT. Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci U S A 107(25): 11459‐11464, 2010.
 24.Beall CM, Strohl KP, Blangero J, Williams‐Blangero S, Almasy LA, Decker MJ, Worthman CM, Goldstein MC, Vargas E, Villena M, Soria R, Alarcon AM, Gonzales C. Ventilation and hypoxic ventilatory response of Tibetan and Aymara high altitude natives. Am J Phys Anthropol 104(4): 427‐447, 1997.
 25.Bee D, Pallot DJ. Acute hypoxic ventilation, carotid body cell division, and dopamine content during early hypoxia in rats. J Appl Physiol 79(5): 1504‐1511, 1995.
 26.Behan M, Zabka AG, Mitchell GS. Age and gender effects on serotonin‐dependent plasticity in respiratory motor control. Respir Physiol Neurobiol 131(1‐2): 65‐77, 2002.
 27.Bigham A, Bauchet M, Pinto D, Mao X, Akey JM, Mei R, Scherer SW, Julian CG, Wilson MJ, Lopez Herraez D, Brutsaert T, Parra EJ, Moore LG, Shriver MD. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genet 6(9): e1001116, 2010.
 28.Bisgard GE, Forster AL. Ventilatory responses to acute and chronic hypoxia. In: Frely MJ, Blatteis CM, editors. Handbook of Physiology Environmental Physiology. New York: Oxford University Press, 1996, pp. 1207‐1239.
 29.Bisgard GE, Kressin NA, Nielsen AM, Daristotle L, Smith CA, Forster HV. Dopamine blockade alters ventilatory acclimatization to hypoxia in goats. Respir Physiol 69(2): 245‐155, 1987.
 30.Bisgard GE, Neubauer MS. Peripheral and central effects of hypoxia. In: Dempsey JA, Pack AIJ, editors. Regulation of Breathing. New York: Marcel Dekker, 1995, pp. 617‐618.
 31.Blain GM, Smith CA, Henderson KS, Dempsey JA. Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO(2). J Physiol 588(Pt 13): 2455‐2471, 2010.
 32.Bockaert J, Claeysen S, Becamel C, Dumuis A, Marin P. Neuronal 5‐HT metabotropic receptors: Fine‐tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res 326(2): 553‐572, 2006.
 33.Bonora M, Gautier H. Influence of dopamine and norepinephrine on the central ventilatory response to hypoxia in conscious cats. Respir Physiol 71(1): 11‐24, 1988.
 34.Boon JA, Garnett NB, Bentley JM, Milsom WK. Respiratory chemoreflexes and effects of cortical activation state in urethane anesthetized rats. Respir Physiol Neurobiol 140(3): 243‐256, 2004.
 35.Boon JA, Milsom WK. The role of the pontine respiratory complex in the response to intermittent hypoxia. Respir Physiol Neurobiol 171(2): 90‐100, 2010.
 36.Bouverot P. Control of breathing in birds compared with mammals. Physiol Rev 58(3): 604‐655, 1978.
 37.Bouverot P, Bureau M. Ventilatory acclimatization and csf acid‐base balance in carotid chemodenervated dogs at 3550 m. Pflugers Arch 361(1): 17‐23, 1975.
 38.Bouverot P, Candas V, Libert JP. Role of the arterial chemoreceptors in ventilatory adaptation to hypoxia of awake dogs and rabbits. Respir Physiol 17(2): 209‐219, 1973.
 39.Brack T, Randerath W, Bloch KE. Cheyne‐Stokes respiration in patients with heart failure: Prevalence, causes, consequences and treatments. Respiration 83(2): 165‐176, 2012.
 40.Bredt DS, Glatt CE, Hwang PM, Fotuhi M, Dawson TM, Snyder SH. Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron 7(4): 615‐624, 1991.
 41.Bredt DS, Snyder SH. Nitric oxide mediates glutamate‐linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci U S A 86(22): 9030‐9033, 1989.
 42.Brodin E, Linderoth B, Goiny M, Yamamoto Y, Gazelius B, Millhorn DE, Hokfelt T, Ungerstedt U. In vivo release of serotonin in cat dorsal vagal complex and cervical ventral horn induced by electrical stimulation of the medullary raphe nuclei. Brain Res 535(2): 227‐236, 1990.
 43.Budzinska K. Biphasic effect of ethyl alcohol on short‐term potentiation of the respiratory activity in the rabbit. J Physiol Pharmacol 56(Suppl 4): 31‐38, 2005.
 44.Cao KY, Zwillich CW, Berthon‐Jones M, Sullivan CE. Ventilatory response to sustained eucapnic hypoxia in the adult conscious dog. Respir Physiol 89(1): 65‐73, 1992.
 45.Chen J, He L, Dinger B, Stensaas L, Fidone S. Role of endothelin and endothelin A‐type receptor in adaptation of the carotid body to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 282(6): L1314‐1323, 2002.
 46.Chiodi H. Respiratory adaptations to chronic high altitude hypoxia. J Appl Physiol 10(1): 81‐87, 1957.
 47.Chitravanshi VC, Sapru HN. NMDA as well as non‐NMDA receptors mediate the neurotransmission of inspiratory drive to phrenic motoneurons in the adult rat. Brain Res 715(1‐2): 104‐112, 1996.
 48.Chowdhuri S, Pierchala L, Aboubakr SE, Shkoukani M, Badr MS. Long‐term facilitation of genioglossus activity is present in normal humans during NREM sleep. Respir Physiol Neurobiol 160(1): 65‐75, 2008.
 49.Chugh DK, Katayama M, Mokashi A, Bebout DE, Ray DK, Lahiri S. Nitric oxide‐related inhibition of carotid chemosensory nerve activity in the cat. Respir Physiol 97(2): 147‐156, 1994.
 50.Chung S, Ivy GO, Reid SG. GABA‐mediated neurotransmission in the nucleus of the solitary tract alters resting ventilation following exposure to chronic hypoxia in conscious rats. Am J Physiol Regul Integr Comp Physiol 291(5): R1449‐1456, 2006.
 51.Coates EL, Li A, Nattie EE. Widespread sites of brain stem ventilatory chemoreceptors. J Appl Physiol (1985). 75(1): 5‐14, 1993.
 52.Coles SK, Dick TE. Neurones in the ventrolateral pons are required for post‐hypoxic frequency decline in rats. J Physiol 497(Pt 1): 79‐94, 1996.
 53.Coles SK, Ernsberger P, Dick TE. Post‐hypoxic frequency decline does not depend on alpha2‐adrenergic receptors in the adult rat. Brain Res 794(2): 267‐273, 1998.
 54.Coles SK, Ernsberger P, Dick TE. A role for NMDA receptors in posthypoxic frequency decline in the rat. Am J Physiol 274(6 Pt 2): R1546‐R1555, 1998.
 55.Coles SK, Miller R, Huela J, Wolken P, Schlenker E. Frequency responses to hypoxia and hypercapnia in carotid body‐denervated conscious rats. Respir Physiol Neurobiol 130(2): 113‐120, 2002.
 56.Connelly CA, Otto‐Smith MR, Feldman JL. Blockade of NMDA receptor‐channels by MK‐801 alters breathing in adult rats. Brain Res 596(1‐2): 99‐110, 1992.
 57.Conrad SC, Nichols NL, Ritucci NA, Dean JB, Putnam RW. Development of chemosensitivity in neurons from the nucleus tractus solitarii (NTS) of neonatal rats. Respir Physiol Neurobiol 166(1): 4‐12, 2009.
 58.Cruz JC, Reeves JT, Grover RF, Maher JT, McCullough RE, Cymerman A, Denniston JC. Ventilatory acclimatization to high altitude is prevented by CO2 breathing. Respiration 39(3): 121‐130, 1980.
 59.Cummings KJ, Wilson RJ. Time‐dependent modulation of carotid body afferent activity during and after intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol 288(6): R1571‐R1580, 2005.
 60.Curran AK, Rodman JR, Eastwood PR, Henderson KS, Dempsey JA, Smith CA. Ventilatory responses to specific CNS hypoxia in sleeping dogs. J Appl Physiol 88(5): 1840‐1852, 2000.
 61.D'Agostino D, Mazza E, Jr, Neubauer JA. Heme oxygenase is necessary for the excitatory response of cultured neonatal rat rostral ventrolateral medulla neurons to hypoxia. Am J Physiol Regul Integr Comp Physiol 296(1): R102‐R118, 2009.
 62.Dahan A, Ward D, van den Elsen M, Temp J, Berkenbosch A. Influence of reduced carotid body drive during sustained hypoxia on hypoxic depression of ventilation in humans. J Appl Physiol 81(2): 565‐572, 1996.
 63.Dale EA, Mitchell GS. Spinal vascular endothelial growth factor (VEGF) and erythropoietin (EPO) induced phrenic motor facilitation after repetitive acute intermittent hypoxia. Respir Physiol Neurobiol 185(3): 481‐488, 2013.
 64.Dale EA, Satriotomo I, Mitchell GS. Cervical spinal erythropoietin induces phrenic motor facilitation via extracellular signal‐regulated protein kinase and Akt signaling. J Neurosci 32(17): 5973‐5983, 2012.
 65.Dale‐Nagle EA, Hoffman MS, MacFarlane PM, Mitchell GS. Multiple pathways to long‐lasting phrenic motor facilitation. Adv Exp Med Biol 669: 225‐230, 2010.
 66.Dale‐Nagle EA, Satriotomo I, Mitchell GS. Spinal vascular endothelial growth factor induces phrenic motor facilitation via extracellular signal‐regulated kinase and Akt signaling. J Neurosci 31(21): 7682‐7690, 2011.
 67.de Paula PM, Tolstykh G, Mifflin S. Chronic intermittent hypoxia alters NMDA and AMPA‐evoked currents in NTS neurons receiving carotid body chemoreceptor inputs. Am J Physiol Regul Integr Comp Physiol 292(6): R2259‐R2265, 2007.
 68.Dempsey JA, Forster HV. Mediation of ventilatory adaptations. Physiol Rev 62(1): 262‐346, 1982.
 69.Dempsey JA, Forster HV, Bisgard GE, Chosy LW, Hanson PG, Kiorpes AL, Pelligrino DA. Role of cerebrospinal fluid [H+] in ventilatory deacclimatization from chronic hypoxia. J Clin Invest 64(1): 199‐205, 1979.
 70.Dhillon DP, Barer GR, Walsh M. The enlarged carotid body of the chronically hypoxic and chronically hypoxic and hypercapnic rat: A morphometric analysis. Q J Exp Physiol 69(2): 301‐317, 1984.
 71.Dinger B, Gonzalez C, Yoshizaki K, Fidone S. [3H]Spiroperidol binding in normal and denervated carotid bodies. Neurosci Lett 21(1): 51‐55, 1981.
 72.Dobbins EG, Feldman JL. Brainstem network controlling descending drive to phrenic motoneurons in rat. J Comp Neurol 347(1): 64‐86, 1994.
 73.Dong K, Yao N, Pu Y, He X, Zhao Q, Luan Y, Guan W, Rao S, Ma Y. Genomic scan reveals loci under altitude adaptation in Tibetan and Dahe pigs. PLoS One 9(10): e110520, 2014.
 74.Donnelly DF, Jiang C, Haddad GG. Comparative responses of brain stem and hippocampal neurons to O2 deprivation: In vitro intracellular studies. Am J Physiol 262(5 Pt 1): L549‐L554, 1992.
 75.Donoghue S, Fatemian M, Balanos GM, Crosby A, Liu C, O'Connor D, Talbot NP, Robbins PA. Ventilatory acclimatization in response to very small changes in PO2 in humans. J Appl Physiol (1985). 98(5): 1587‐1591, 2005.
 76.Dwinell MR, Janssen PL, Bisgard GE. Lack of long‐term facilitation of ventilation after exposure to hypoxia in goats. Respir Physiol 108(1): 1‐9, 1997.
 77.Dwinell MR, Powell FL. Chronic hypoxia enhances the phrenic nerve response to arterial chemoreceptor stimulation in anesthetized rats. J Appl Physiol 87(2): 817‐823, 1999.
 78.Dzal YA, Jenkin SE, Lague SL, Reichert MN, York JM, Pamenter ME. Oxygen in demand: How oxygen has shaped vertebrate physiology. Comp Biochem Physiol A Mol Integr Physiol 186: 4‐26, 2015.
 79.East SJ, Parry‐Jones A, Brotchie JM. Ionotropic glutamate receptors and nitric oxide synthesis in the rat striatum. Neuroreport 8(1): 71‐75, 1996.
 80.Easton PA, Anthonisen NR. Ventilatory response to sustained hypoxia after pretreatment with aminophylline. J Appl Physiol 64(4): 1445‐1450, 1988.
 81.Easton PA, Slykerman LJ, Anthonisen NR. Recovery of the ventilatory response to hypoxia in normal adults. J Appl Physiol 64(2): 521‐528, 1988.
 82.Eccles JC, McIntyre AK. Plasticity of mammalian monosynaptic reflexes. Nature 167:466‐468, 1951.
 83.El Hasnaoui‐Saadani R, Alayza RC, Launay T, Pichon A, Quidu P, Beaudry M, Leon‐Velarde F, Richalet JP, Duvallet A, Favret F. Brain stem NO modulates ventilatory acclimatization to hypoxia in mice. J Appl Physiol 103(5): 1506‐1512, 2007.
 84.Eldridge BF, Millhorn DE. Oscillation, gating, and memory in the prespiratory control system. In: Cherniack NS, Widdicombe JG, editors. Handbook of Physiology, Section 3: The Respiratory System: Control of Breathing, Part 1. 2. Washington, D.C.: American Physiological Society, 1986, pp. 93‐114.
 85.Engwall MJ, Bisgard GE. Ventilatory responses to chemoreceptor stimulation after hypoxic acclimatization in awake goats. J Appl Physiol 69(4): 1236‐1243, 1990.
 86.Engwall MJ, Bisgard GE. Ventilatory responses to chemoreceptor stimulation after hypoxic acclimatization in awake goats. J Appl Physiol (1985). 69(4): 1236‐1243, 1990.
 87.Engwall MJ, Daristotle L, Niu WZ, Dempsey JA, Bisgard GE. Ventilatory afterdischarge in the awake goat. J Appl Physiol 71(4): 1511‐1517, 1991.
 88.Erickson JT, Millhorn DE. Fos‐like protein is induced in neurons of the medulla oblongata after stimulation of the carotid sinus nerve in awake and anesthetized rats. Brain Res 567(1): 11‐24, 1991.
 89.Erickson JT, Millhorn DE. Hypoxia and electrical stimulation of the carotid sinus nerve induce Fos‐like immunoreactivity within catecholaminergic and serotoninergic neurons of the rat brainstem. J Comp Neurol 348(2): 161‐182, 1994.
 90.Eyzaguirre C, Abudara V. Carotid body glomus cells: Chemical secretion and transmission (modulation?) across cell‐nerve ending junctions. Respir Physiol 115(2): 135‐149, 1999.
 91.Fatemian M, Robbins PA. Human ventilatory response to CO2 after 8 h of isocapnic or poikilocapnic hypoxia. J Appl Physiol (1985). 85(5): 1922‐1928, 1998.
 92.Faustino EV, Donnelly DF. Lamotrigine and phenytoin, but not amiodarone, impair peripheral chemoreceptor responses to hypoxia. J Appl Physiol (1985). 101(6): 1633‐1640, 2006.
 93.Feldman JL, Mitchell GS, Nattie EE. Breathing: Rhythmicity, plasticity, chemosensitivity. Annu Rev Neurosci 26: 239‐266, 2003.
 94.Fields DP, Mitchell GS. Spinal metaplasticity in respiratory motor control. Frontiers in Neural Circuits 9: 2, 2015.
 95.Fitzgerald RS, Lahiri S. Reflex responses to chemoreceptor stimulation. Compr Physiol 11: 313‐362, 2011.
 96.Forster HV. Plasticity in the control of breathing following sensory denervation. J Appl Physiol 94(2): 784‐794, 2003.
 97.Forster HV, Bisgard GE, Klein JP. Effect of peripheral chemoreceptor denervation on acclimatization of goats during hypoxia. J Appl Physiol 50(2): 392‐398, 1981.
 98.Forster HV, Bisgard GE, Rasmussen B, Orr JA, Buss DD, Manohar M. Ventilatory control in peripheral chemoreceptor‐denervated ponies during chronic hypoxemia. J Appl Physiol 41(6): 878‐885, 1976.
 99.Forster HV, Dempsey JA, Birnbaum ML, Reddan WG, Thoden J, Grover RF, Rankin J. Effect of chronic exposure to hypoxia on ventilatory response to CO2 and hypoxia. J Appl Physiol 31(4): 586‐592, 1971.
 100.Forster HV, Dempsey JA, Vidruk E, Do Pico G. Evidence of altered regulation of ventilation during exposure to hypoxia. Respir Physiol 20(3): 379‐392, 1974.
 101.Foster GE, McKenzie DC, Milsom WK, Sheel AW. Effects of two protocols of intermittent hypoxia on human ventilatory, cardiovascular and cerebral responses to hypoxia. J Physiol 567(Pt 2): 689‐699, 2005.
 102.Fregosi RF. Short‐term potentiation of breathing in humans. J Appl Physiol 71(3): 892‐899, 1991.
 103.Fregosi RF, Mitchell GS. Long‐term facilitation of inspiratory intercostal nerve activity following carotid sinus nerve stimulation in cats. J Physiol 477(Pt 3): 469‐479, 1994.
 104.Fuller DD. Episodic hypoxia induces long‐term facilitation of neural drive to tongue protrudor and retractor muscles. J Appl Physiol 98(5): 1761‐1767, 2005.
 105.Fuller DD, Bach KB, Baker TL, Kinkead R, Mitchell GS. Long‐term facilitation of phrenic motor output. Respir Physiol 121(2‐3): 135‐146, 2000.
 106.Fuller DD, Baker TL, Behan M, Mitchell GS. Expression of hypoglossal long‐term facilitation differs between substrains of Sprague‐Dawley rat. Physiol Genomics 4(3): 175‐181, 2001.
 107.Fuller DD, Zabka AG, Baker TL, Mitchell GS. Phrenic long‐term facilitation requires 5‐HT receptor activation during but not following episodic hypoxia. J Appl Physiol 90(5): 2001‐2006; discussion 0, 2001.
 108.Gaiarsa JL, Caillard O, Ben‐Ari Y. Long‐term plasticity at GABAergic and glycinergic synapses: Mechanisms and functional significance. Trends Neurosci 25(11): 564‐570, 2002.
 109.Garcia N, Hopkins SR, Elliott AR, Aaron EA, Weinger MB, Powell FL. Ventilatory response to 2‐h sustained hypoxia in humans. Respir Physiol 124(1): 11‐22, 2001.
 110.Garcia N, Hopkins SR, Powell FL. Effects of intermittent hypoxia on the isocapnic hypoxic ventilatory response and erythropoiesis in humans. Respir Physiol 123(1‐2): 39‐49, 2000.
 111.Gassmann M, Pfistner C, Doan VD, Vogel J, Soliz J. Impaired ventilatory acclimatization to hypoxia in female mice overexpressing erythropoietin: Unexpected deleterious effect of estradiol in carotid bodies. Am J Physiol Regul Integr Comp Physiol 299(6): R1511‐R1520, 2010.
 112.Gauda EB, Bamford O, Gerfen CR. Developmental expression of tyrosine hydroxylase, D2‐dopamine receptor and substance P genes in the carotid body of the rat. Neuroscience 75(3): 969‐977, 1996.
 113.Gauda EB, Bamford OS, Northington FJ. Lack of induction of substance P gene expression by hypoxia and absence of neurokinin 1‐receptor mRNAs in the rat carotid body. J Auton Nerv Syst 74(2‐3): 100‐108, 1998.
 114.Gautier H, Peslin R, Grassino A, Milic‐Emili J, Hannhart B, Powell E, Miserocchi G, Bonora M, Fischer JT. Mechanical properties of the lungs during acclimatization to altitude. J Appl Physiol 52(6): 1407‐1415, 1982.
 115.Ge RL, Chen QH, He LG. Characteristics of hypoxic ventilatory response in Tibetan living at moderate and high altitudes. Zhonghua Jie He He Hu Xi Za Zhi 17(6): 364‐366, 84, 1994.
 116.Ge RL, Chen QH, Wang LH, Gen D, Yang P, Kubo K, Fujimoto K, Matsuzawa Y, Yoshimura K, Takeoka M, Kobayashi T. Higher exercise performance and lower VO2max in Tibetan than Han residents at 4,700 m altitude. J Appl Physiol 77(2): 684‐691, 1994.
 117.Ge RL, Kubo K, Kobayashi T, Sekiguchi M, Honda T. Blunted hypoxic pulmonary vasoconstrictive response in the rodent Ochotona curzoniae (pika) at high altitude. Am J Physiol 274(5 Pt 2): H1792‐H1799, 1998.
 118.Georgopoulos D, Walker S, Anthonisen NR. Effect of sustained hypoxia on ventilatory response to CO2 in normal adults. J Appl Physiol 68(3): 891‐896, 1990.
 119.Gerrow K, Triller A. Synaptic stability and plasticity in a floating world. Curr Opin Neurobiol 20(5): 631‐639, 2010.
 120.Gershan WM, Forster HV, Lowry TF, Garber AK. Effect of theophylline on ventilatory roll‐off during hypoxia in goats. Respir Physiol 103(2): 157‐164, 1996.
 121.Gershan WM, Forster HV, Lowry TF, Korducki MJ, Forster AL, Forster MA, Ohtake PJ, Aaron EA, Garber AK. Effect of metabolic rate on ventilatory roll‐off during hypoxia. J Appl Physiol 76(6): 2310‐2314, 1994.
 122.Gladwin MT. Polycythemia, HIF‐1alpha and pulmonary hypertension in Chuvash. Haematologica 91(6): 722, 2006.
 123.Glaum SR, Miller RJ. Metabotropic glutamate receptors mediate excitatory transmission in the nucleus of the solitary tract. J Neurosci 12(6): 2251‐2258, 1992.
 124.Go AD, Fu ZX, Johnson RS, Powell FL. HIF‐1a gene deletion in the nucleus tractus solitarii (NTS) blunts ventilatory acclimatization to hypoxia (VAH). FASEB J 26: 704.15, 2012.
 125.Goiny M, Lagercrantz H, Srinivasan M, Ungerstedt U, Yamamoto Y. Hypoxia‐mediated in vivo release of dopamine in nucleus tractus solitarii of rabbits. J Appl Physiol 70(6): 2395‐2400, 1991.
 126.Golder FJ, Mitchell GS. Spinal synaptic enhancement with acute intermittent hypoxia improves respiratory function after chronic cervical spinal cord injury. J Neurosci 25(11): 2925‐2932, 2005.
 127.Golder FJ, Ranganathan L, Satriotomo I, Hoffman M, Lovett‐Barr MR, Watters JJ, Baker‐Herman TL, Mitchell GS. Spinal adenosine A2a receptor activation elicits long‐lasting phrenic motor facilitation. J Neurosci 28(9): 2033‐2042, 2008.
 128.Golder FJ, Zabka AG, Bavis RW, Baker‐Herman T, Fuller DD, Mitchell GS. Differences in time‐dependent hypoxic phrenic responses among inbred rat strains. J Appl Physiol 98(3): 838‐844, 2005.
 129.Gonzalez C, Almaraz L, Obeso A, Rigual R. Carotid body chemoreceptors: From natural stimuli to sensory discharges. Physiol Rev 74(4): 829‐898, 1994.
 130.Gou X, Wang Z, Li N, Qiu F, Xu Z, Yan D, Yang S, Jia J, Kong X, Wei Z, Lu S, Lian L, Wu C, Wang X, Li G, Ma T, Jiang Q, Zhao X, Yang J, Liu B, Wei D, Li H, Yang J, Yan Y, Zhao G, Dong X, Li M, Deng W, Leng J, Wei C, Wang C, Mao H, Zhang H, Ding G, Li Y. Whole‐genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high‐altitude hypoxia. Genome Research 24(8): 1308‐1315, 2014.
 131.Gourine AV, Atkinson L, Deuchars J, Spyer KM. Purinergic signalling in the medullary mechanisms of respiratory control in the rat: Respiratory neurones express the P2X2 receptor subunit. J Physiol 552(Pt 1): 197‐211, 2003.
 132.Gourine AV, Llaudet E, Dale N, Spyer KM. Release of ATP in the ventral medulla during hypoxia in rats: Role in hypoxic ventilatory response. J Neurosci 25(5): 1211‐1218, 2005.
 133.Gozal D, Simakajornboon N, Czapla MA, Xue YD, Gozal E, Vlasic V, Lasky JA, Liu JY. Brainstem activation of platelet‐derived growth factor‐beta receptor modulates the late phase of the hypoxic ventilatory response. J Neurochem 74(1): 310‐319, 2000.
 134.Granjeiro EM, Machado BH. NO in the caudal NTS modulates the increase in respiratory frequency in response to chemoreflex activation in awake rats. Respir Physiol Neurobiol 166(1): 32‐40, 2009.
 135.Groves BM, Droma T, Sutton JR, McCullough RG, McCullough RE, Zhuang J, Rapmund G, Sun S, Janes C, Moore LG. Minimal hypoxic pulmonary hypertension in normal Tibetans at 3,658 m. J Appl Physiol (1985). 74(1): 312‐318, 1993.
 136.Guner I, Yelmen N, Sahin G, Oruc T. The effect of intracerebroventricular dopamine administration on the respiratory response to hypoxia. Tohoku J Exp Med 196(4): 219‐230, 2002.
 137.Guyenet PG. The 2008 Carl Ludwig Lecture: Retrotrapezoid nucleus, CO2 homeostasis, and breathing automaticity. J Appl Physiol (1985). 105(2): 404‐416, 2008.
 138.Haddad GG, Donnelly DF, Bazzu‐Asaad AR. Developmental control of respiration: Neurobiological basis. In: Dempsey JA, Pack AIJ, editors. Regulation of Breathing. New York: Marcel Dekker, 1995.
 139.Hahn RA, Wardell JR, Jr, Sarau HM, Ridley PT. Characterization of the peripheral and central effects of SK&F 82526, a novel dopamine receptor agonist. J Pharmacol Exp Ther 223(2): 305‐313, 1982.
 140.Halker RB, Pierchala LA, Badr MS. Upper airway mechanics and post‐hypoxic ventilatory decline during NREM sleep. Sleep Breath 11(3): 165‐170, 2007.
 141.Harris DP, Balasubramaniam A, Badr MS, Mateika JH. Long‐term facilitation of ventilation and genioglossus muscle activity is evident in the presence of elevated levels of carbon dioxide in awake humans. Am J Physiol Regul Integr Comp Physiol 291(4): R1111‐R1119, 2006.
 142.Harris MB, Milsom WK. The influence of NMDA receptor‐mediated processes on breathing pattern in ground squirrels. Respir Physiol 125(3): 181‐197, 2001.
 143.Haxhiu MA, Chang CH, Dreshaj IA, Erokwu B, Prabhakar NR, Cherniack NS. Nitric oxide and ventilatory response to hypoxia. Respir Physiol 101(3): 257‐266, 1995.
 144.Hayashi F, Coles SK, Bach KB, Mitchell GS, McCrimmon DR. Time‐dependent phrenic nerve responses to carotid afferent activation: Intact vs. decerebellate rats. Am J Physiol 265(4 Pt 2): R811‐R819, 1993.
 145.Hayes HB, Jayaraman A, Herrmann M, Mitchell GS, Rymer WZ, Trumbower RD. Daily intermittent hypoxia enhances walking after chronic spinal cord injury: A randomized trial. Neurology 82(2): 104‐113, 2014.
 146.Hedner J, Hedner T, Jonason J, Lundberg D. Evidence for a dopamine interaction with the central respiratory control system in the rat. Eur J Pharmacol 81(4): 603‐615, 1982.
 147.Hedner J, Hedner T, Wessberg P, Jonason J. Interaction of substance P with the respiratory control system in the rat. J Pharmacol Exp Ther 228(1): 196‐201, 1984.
 148.Henry JL, Sessle BJ. Effects of glutamate, substance P and eledoisin‐related peptide on solitary tract neurones involved in respiration and respiratory reflexes. Neuroscience 14(3): 863‐873, 1985.
 149.Heym J, Steinfels GF, Jacobs BL. Activity of serotonin‐containing neurons in the nucleus raphe pallidus of freely moving cats. Brain Res 251(2): 259‐276, 1982.
 150.Hickner S, Hussain N, Angoa‐Perez M, Francescutti DM, Kuhn DM, Mateika JH. Ventilatory long‐term facilitation is evident after initial and repeated exposure to intermittent hypoxia in mice genetically depleted of brain serotonin. J Appl Physiol (1985). 116(3): 240‐250, 2014.
 151.Hoffman MS, Golder FJ, Mahamed S, Mitchell GS. Spinal adenosine A2(A) receptor inhibition enhances phrenic long term facilitation following acute intermittent hypoxia. J Physiol 588(Pt 1): 255‐266, 2010.
 152.Hoffman MS, Mitchell GS. Spinal 5‐HT7 receptor activation induces long‐lasting phrenic motor facilitation. J Physiol 589(Pt 6): 1397‐1407, 2011.
 153.Hoffman MS, Nichols NL, Macfarlane PM, Mitchell GS. Phrenic long‐term facilitation after acute intermittent hypoxia requires spinal ERK activation but not TrkB synthesis. J Appl Physiol 113(8): 1184‐1193, 2012.
 154.Hogg N. The biochemistry and physiology of S‐nitrosothiols. Annu Rev Pharmacol Toxicol 42: 585‐600, 2002.
 155.Honda Y. Ventilatory depression during mild hypoxia in adult humans. Jpn J Physiol 45(6): 947‐959, 1995.
 156.Hoop B, Beagle JL, Maher TJ, Kazemi H. Brainstem amino acid neurotransmitters and hypoxic ventilatory response. Respir Physiol 118(2‐3): 117‐129, 1999.
 157.Hoop B, Masjedi MR, Shih VE, Kazemi H. Brain glutamate metabolism during hypoxia and peripheral chemodenervation. J Appl Physiol 69(1): 147‐154, 1990.
 158.Housley GD, Sinclair JD. Localization by kainic acid lesions of neurones transmitting the carotid chemoreceptor stimulus for respiration in rat. J Physiol 406: 99‐114, 1988.
 159.Howard LS, Robbins PA. Alterations in respiratory control during 8 h of isocapnic and poikilocapnic hypoxia in humans. J Appl Physiol 78(3): 1098‐1107, 1995.
 160.Hsiao C, Lahiri S, Mokashi A. Peripheral and central dopamine receptors in respiratory control. Respir Physiol 76(3): 327‐336, 1989.
 161.Huang J, Suguihara C, Hehre D, Lin J, Bancalari E. Effects of GABA receptor blockage on the respiratory response to hypoxia in sedated newborn piglets. J Appl Physiol 77(2): 1006‐1010, 1994.
 162.Huang ZR, Zhu SC, Ba ZF, Hu ST. Ventilatory control in Tibetan highlanders. In: Liu DS, editor. Geological and Ecological Studies of Qinghai‐Xizang Plateau. Beijing: Science Press, 1981, pp. 1363‐1369.
 163.Huey KA, Brown IP, Jordan MC, Powell FL. Changes in dopamine D(2)‐receptor modulation of the hypoxic ventilatory response with chronic hypoxia. Respir Physiol 123(3): 177‐187, 2000.
 164.Huey KA, Low MJ, Kelly MA, Juarez R, Szewczak JM, Powell FL. Ventilatory responses to acute and chronic hypoxia in mice: Effects of dopamine D(2) receptors. J Appl Physiol 89(3): 1142‐1150, 2000.
 165.Huey KA, Powell FL. Time‐dependent changes in dopamine D(2)‐receptor mRNA in the arterial chemoreflex pathway with chronic hypoxia. Brain Res Mol Brain Res 75(2): 264‐270, 2000.
 166.Huey KA, Szewczak JM, Powell FL. Dopaminergic mechanisms of neural plasticity in respiratory control: Transgenic approaches. Resp Physiol Neurobi 135(2‐3): 133‐144, 2003.
 167.Hupperets MD, Hopkins SR, Pronk MG, Tiemessen IJ, Garcia N, Wagner PD, Powell FL. Increased hypoxic ventilatory response during 8 weeks at 3800 m altitude. Respir Physiol Neurobiol 142(2‐3): 145‐152, 2004.
 168.Huxtable AG, MacFarlane PM, Vinit S, Nichols NL, Dale EA, Mitchell GS. Adrenergic alpha(1) receptor activation is sufficient, but not necessary for phrenic long‐term facilitation. J Appl Physiol (1985). 116(11): 1345‐1352, 2014.
 169.Ichikawa H. Innervation of the carotid body: Immunohistochemical, denervation, and retrograde tracing studies. Microsc Res Tech 59(3): 188‐195, 2002.
 170.Ichikawa H, Rabchevsky A, Helke CJ. Presence and coexistence of putative neurotransmitters in carotid sinus baro‐ and chemoreceptor afferent neurons. Brain Res 611(1): 67‐74, 1993.
 171.Iturriaga R, Larrain C, Zapata P. Effects of dopaminergic blockade upon carotid chemosensory activity and its hypoxia‐induced excitation. Brain Res 663(1): 145‐154, 1994.
 172.Jacobs BL, Martin‐Cora FJ, Fornal CA. Activity of medullary serotonergic neurons in freely moving animals. Brain Res Brain Res Rev 40(1‐3): 45‐52, 2002.
 173.Janssen PA, Niemegeers CJ, Awouters F, Schellekens KH, Megens AA, Meert TF. Pharmacology of risperidone (R 64 766), a new antipsychotic with serotonin‐S2 and dopamine‐D2 antagonistic properties. J Pharmacol Exp Ther 244(2): 685‐693, 1988.
 174.Janssen PL, O'Halloran KD, Pizarro J, Dwinell MR, Bisgard GE. Carotid body dopaminergic mechanisms are functional after acclimatization to hypoxia in goats. Respir Physiol 111(1): 25‐32, 1998.
 175.Javaheri S, Teppema LJ, Evers JA. Effects of aminophylline on hypoxemia‐induced ventilatory depression in the cat. J Appl Physiol 64(5): 1837‐1843, 1988.
 176.Jiang C, Mitchell GS, Lipski J. Prolonged augmentation of respiratory discharge in hypoglossal motoneurons following superior laryngeal nerve stimulation. Brain Res 538(2): 215‐225, 1991.
 177.Jodkowski JS, Coles SK, Dick TE. Prolongation in expiration evoked from ventrolateral pons of adult rats. J Appl Physiol 82(2): 377‐381, 1997.
 178.Julian CG, Wilson MJ, Moore LG. Evolutionary adaptation to high altitude: A view from in utero. Am J Hum Biol 21(5): 614‐622, 2009.
 179.Kalia M, Fuxe K, Goldstein M. Rat medulla oblongata. II. Dopaminergic, noradrenergic (A1 and A2) and adrenergic neurons, nerve fibers, and presumptive terminal processes. J Comp Neurol 233(3): 308‐332, 1985.
 180.Kanjhan R, Lipski J, Kruszewska B, Rong W. A comparative study of pre‐sympathetic and Botzinger neurons in the rostral ventrolateral medulla (RVLM) of the rat. Brain Res 699(1): 19‐32, 1995.
 181.Kasai T, Bradley TD. Obstructive sleep apnea and heart failure: Pathophysiologic and therapeutic implications. J Am Coll Cardiol 57(2): 119‐127, 2011.
 182.Katayama K, Smith CA, Henderson KS, Dempsey JA. Chronic intermittent hypoxia increases the CO2 reserve in sleeping dogs. J Appl Physiol 103(6): 1942‐1949, 2007.
 183.Kawamoto EM, Vivar C, Camandola S. Physiology and pathology of calcium signaling in the brain. Front Pharmacol 3: 61, 2012.
 184.Kazemi H, Hoop B. Glutamic acid and gamma‐aminobutyric acid neurotransmitters in central control of breathing. J Appl Physiol 70(1): 1‐7, 1991.
 185.Khodadadeh B, Badr MS, Mateika JH. The ventilatory response to carbon dioxide and sustained hypoxia is enhanced after episodic hypoxia in OSA patients. Respir Physiol Neurobiol 150(2‐3): 122‐134, 2006.
 186.Kim EB, Fang X, Fushan AA, Huang Z, Lobanov AV, Han L, Marino SM, Sun X, Turanov AA, Yang P, Yim SH, Zhao X, Kasaikina MV, Stoletzki N, Peng C, Polak P, Xiong Z, Kiezun A, Zhu Y, Chen Y, Kryukov GV, Zhang Q, Peshkin L, Yang L, Bronson RT, Buffenstein R, Wang B, Han C, Li Q, Chen L, Zhao W, Sunyaev SR, Park TJ, Zhang G, Wang J, Gladyshev VN. Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 479(7372): 223‐227, 2011.
 187.Kinkead R, Bach KB, Johnson SM, Hodgeman BA, Mitchell GS. Plasticity in respiratory motor control: Intermittent hypoxia and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems. Comp Biochem Physiol A Mol Integr Physiol 130(2): 207‐218, 2001.
 188.Kinkead R, Mitchell GS. Time‐dependent hypoxic ventilatory responses in rats: Effects of ketanserin and 5‐carboxamidotryptamine. Am J Physiol 277(3 Pt 2): R658‐R666, 1999.
 189.Kishino A, Nakayama C. Enhancement of BDNF and activated‐ERK immunoreactivity in spinal motor neurons after peripheral administration of BDNF. Brain Res 964(1): 56‐66, 2003.
 190.Kline DD, Overholt JL, Prabhakar NR. Mutant mice deficient in NOS‐1 exhibit attenuated long‐term facilitation and short‐term potentiation in breathing. J Physiol 539(Pt 1): 309‐315, 2002.
 191.Kline DD, Peng YJ, Manalo DJ, Semenza GL, Prabhakar NR. Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia‐inducible factor 1 alpha. Proc Natl Acad Sci U S A 99(2): 821‐826, 2002.
 192.Kline DD, Prabhakar NR. Role of nitric oxide in short‐term potentiation and long‐term facilitation: Involvement of NO in breathing stability. Adv Exp Med Biol 499: 215‐219, 2001.
 193.Kline DD, Yang T, Huang PL, Prabhakar NR. Altered respiratory responses to hypoxia in mutant mice deficient in neuronal nitric oxide synthase. J Physiol 511(Pt 1): 273‐287, 1998.
 194.Kline DD, Yang T, Premkumar DR, Thomas AJ, Prabhakar NR. Blunted respiratory responses to hypoxia in mutant mice deficient in nitric oxide synthase‐3. J Appl Physiol 88(4): 1496‐1508, 2000.
 195.Knowles RG, Palacios M, Palmer RM, Moncada S. Formation of nitric oxide from L‐arginine in the central nervous system: A transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci U S A 86(13): 5159‐5162, 1989.
 196.Koch H, Garcia AJ III, Ramirez JM. Network reconfiguration and neuronal plasticity in rhythm‐generating networks. Integr Comp Biol 51(6): 856‐868, 2011.
 197.Kumar GK, Prabhakar NR. Tachykinins in the control of breathing by hypoxia: Pre‐ and post‐genomic era. Respir Physiol Neurobiol 135(2‐3): 145‐154, 2003.
 198.Kumar P, Prabhakar N. Peripheral chemoreceptors: Function and plasticity of the carotid body. Compr Physiol 2: 141‐219, 2012.
 199.Kumar P, Prabhakar NR. Peripheral chemoreceptors: Function and plasticity of the carotid body. Compr Physiol 2(1): 141‐219, 2012.
 200.Kusakabe T, Powell FL, Ellisman MH. Ultrastructure of the glomus cells in the carotid body of chronically hypoxic rats: With special reference to the similarity of amphibian glomus cells. Anat Rec 237(2): 220‐227, 1993.
 201.Lahiri S. Alveolar gas pressures in man with life‐time hypoxia. Respir Physiol 4(3): 373‐386, 1968.
 202.Lahiri S. Role of arterial O2 flow in peripheral chemoreceptor excitation. Fed Proc 39(9): 2648‐2652, 1980.
 203.Lahiri S, DeLaney RG, Brody JS, Simpser M, Velasquez T, Motoyama EK, Polgar C. Relative role of environmental and genetic factors in respiratory adaptation to high altitude. Nature 261(5556): 133‐135, 1976.
 204.Lahiri S, Kao FF, Velasquez T, Martinez C, Pezzia W. Irreversible blunted respiratory sensitivity to hypoxia in high altitude natives. Respir Physiol 6(3): 360‐374, 1969.
 205.Lahiri S, Milledge JS. Sherpa physiology. Nature 207(997): 610‐612, 1965.
 206.Lam SY, Tipoe GL, Liong EC, Fung ML. Chronic hypoxia upregulates the expression and function of proinflammatory cytokines in the rat carotid body. Histochem Cell Biol 130(3): 549‐559, 2008.
 207.Lee DS, Badr MS, Mateika JH. Progressive augmentation and ventilatory long‐term facilitation are enhanced in sleep apnoea patients and are mitigated by antioxidant administration. J Physiol 587(Pt 22): 5451‐567, 2009.
 208.Lee KZ, Fuller DD. Hypoxia‐induced short‐term potentiation of respiratory‐modulated facial motor output in the rat. Respir Physiol Neurobiol 173(1): 107‐111, 2010.
 209.Leon‐Velarde F, Maggiorini M, Reeves JT, Aldashev A, Asmus I, Bernardi L, Ge RL, Hackett P, Kobayashi T, Moore LG, Penaloza D, Richalet JP, Roach R, Wu T, Vargas E, Zubieta‐Castillo G, Zubieta‐Calleja G. Consensus statement on chronic and subacute high altitude diseases. High Alt Med Biol 6(2): 147‐157, 2005.
 210.Li HG, Ren YM, Guo SC, Cheng L, Wang DP, Yang J, Chang ZJ, Zhao XQ. The protein level of hypoxia‐inducible factor‐1alpha is increased in the plateau pika (Ochotona curzoniae) inhabiting high altitudes. J Exp Zool A Ecol Genet Physiol 311(2): 134‐141, 2009.
 211.Liang PJ, Bascom DA, Robbins PA. Extended models of the ventilatory response to sustained isocapnic hypoxia in humans. J Appl Physiol 82(2): 667‐677, 1997.
 212.Lin LH, Taktakishvili OM, Talman WT. Colocalization of neurokinin‐1, N‐methyl‐D‐aspartate, and AMPA receptors on neurons of the rat nucleus tractus solitarii. Neuroscience 154(2): 690‐700, 2008.
 213.Ling L. Serotonin and NMDA receptors in respiratory long‐term facilitation. Respir Physiol Neurobiol 164(1‐2): 233‐241, 2008.
 214.Ling L, Fuller DD, Bach KB, Kinkead R, Olson EB, Jr, Mitchell GS. Chronic intermittent hypoxia elicits serotonin‐dependent plasticity in the central neural control of breathing. J Neurosci 21(14): 5381‐5388, 2001.
 215.Ling L, Olson EB, Jr, Vidruk EH, Mitchell GS. Integrated phrenic responses to carotid afferent stimulation in adult rats following perinatal hyperoxia. J Physiol 500(Pt 3): 787‐796, 1997.
 216.Lipski J, McAllen RM, Spyer KM. The carotid chemoreceptor input to the respiratory neurones of the nucleus of tractus solitarus. J Physiol 269(3): 797‐810, 1977.
 217.Lipton AJ, Johnson MA, Macdonald T, Lieberman MW, Gozal D, Gaston B. S‐nitrosothiols signal the ventilatory response to hypoxia. Nature 413(6852): 171‐174, 2001.
 218.Lisman J, Raghavachari S. A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. Sci STKE 2006(356): re11, 2006.
 219.Liu X, He L, Dinger B, Gonzalez C, Stensaas L, Fidone S. A chronic pain: Inflammation‐dependent chemoreceptor adaptation in rat carotid body. Respir Physiol Neurobiol 178(3): 362‐369, 2011.
 220.Liu Y, Ji ES, Xiang S, Tamisier R, Tong J, Huang J, Weiss JW. Exposure to cyclic intermittent hypoxia increases expression of functional NMDA receptors in the rat carotid body. J Appl Physiol 106(1): 259‐267, 2009.
 221.Llansola M, Sanchez‐Perez A, Cauli O, Felipo V. Modulation of NMDA receptors in the cerebellum. 1. Properties of the NMDA receptor that modulate its function. Cerebellum 4(3): 154‐161, 2005.
 222.Lorenzo FR, Huff C, Myllymaki M, Olenchock B, Swierczek S, Tashi T, Gordeuk V, Wuren T, Ri‐Li G, McClain DA, Khan TM, Koul PA, Guchhait P, Salama ME, Xing J, Semenza GL, Liberzon E, Wilson A, Simonson TS, Jorde LB, Kaelin WG, Jr, Koivunen P, Prchal JT. A genetic mechanism for Tibetan high‐altitude adaptation. Nat Genet 46(9): 951‐956, 2014.
 223.MacFarlane PM, Mitchell GS. Episodic spinal serotonin receptor activation elicits long‐lasting phrenic motor facilitation by an NADPH oxidase‐dependent mechanism. J Physiol 587(Pt 22): 5469‐5481, 2009.
 224.MacFarlane PM, Mitchell GS. Respiratory long‐term facilitation following intermittent hypoxia requires reactive oxygen species formation. Neuroscience 152(1): 189‐197, 2008.
 225.MacFarlane PM, Satriotomo I, Windelborn JA, Mitchell GS. NADPH oxidase activity is necessary for acute intermittent hypoxia‐induced phrenic long‐term facilitation. J Physiol 587(Pt 9): 1931‐1942, 2009.
 226.MacFarlane PM, Wilkerson JE, Lovett‐Barr MR, Mitchell GS. Reactive oxygen species and respiratory plasticity following intermittent hypoxia. Respir Physiol Neurobiol 164(1‐2): 263‐271, 2008.
 227.Mahamed S, Mitchell GS. Is there a link between intermittent hypoxia‐induced respiratory plasticity and obstructive sleep apnoea? Exp Physiol 92(1): 27‐37, 2007.
 228.Malenka RC, Nicoll RA. Long‐term potentiation—a decade of progress? Science 285(5435): 1870‐1874, 1999.
 229.Martin‐Body RL. Brain transections demonstrate the central origin of hypoxic ventilatory depression in carotid body‐denervated rats. J Physiol 407: 41‐52, 1988.
 230.Maruyama R, Yoshida A, Fukuda Y. Differential sensitivity to hypoxic inhibition of respiratory processes in the anesthetized rat. Jpn J Physiol 39(6): 857‐871, 1989.
 231.Mateika JH, Fregosi RF. Long‐term facilitation of upper airway muscle activities in vagotomized and vagally intact cats. J Appl Physiol 82(2): 419‐425, 1997.
 232.Mateika JH, Mendello C, Obeid D, Badr MS. Peripheral chemoreflex responsiveness is increased at elevated levels of carbon dioxide after episodic hypoxia in awake humans. J Appl Physiol 96(3): 1197‐1205; discussion 6, 2004.
 233.Mateika JH, Narwani G. Intermittent hypoxia and respiratory plasticity in humans and other animals: Does exposure to intermittent hypoxia promote or mitigate sleep apnoea? Exp Physiol 94(3): 279‐296, 2009.
 234.Mateika JH, Sandhu KS. Experimental protocols and preparations to study respiratory long‐term facilitation. Respir Physiol Neurobiol 176(1‐2): 1‐11, 2011.
 235.Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3(11): e442, 2006.
 236.McCrimmon DR, Zuperku EJ, Hayashi F, Dogas Z, Hinrichsen CF, Stuth EA, Tonkovic‐Capin M, Krolo M, Hopp FA. Modulation of the synaptic drive to respiratory premotor and motor neurons. Respir Physiol 110(2‐3): 161‐176, 1997.
 237.McEvoy RD, Popovic RM, Saunders NA, White DP. Effects of sustained and repetitive isocapnic hypoxia on ventilation and genioglossal and diaphragmatic EMGs. J Appl Physiol 81(2): 866‐875, 1996.
 238.McGregor KH, Gil J, Lahiri S. A morphometric study of the carotid body in chronically hypoxic rats. J Appl Physiol Respir Environ Exerc Physiol 57(5): 1430‐1438, 1984.
 239.McGuinness N, Anwyl R, Rowan M. Trans‐ACPD enhances long‐term potentiation in the hippocampus. Eur J Pharmacol 197(2‐3): 231‐232, 1991.
 240.McGuire M, Zhang Y, White DP, Ling L. Effect of hypoxic episode number and severity on ventilatory long‐term facilitation in awake rats. J Appl Physiol 93(6): 2155‐2161, 2002.
 241.McGuire M, Zhang Y, White DP, Ling L. Phrenic long‐term facilitation requires NMDA receptors in the phrenic motonucleus in rats. J Physiol 567(Pt 2): 599‐5611, 2005.
 242.McGuire M, Zhang Y, White DP, Ling L. Serotonin receptor subtypes required for ventilatory long‐term facilitation and its enhancement after chronic intermittent hypoxia in awake rats. Am J Physiol Regul Integr Comp Physiol 286(2): R334‐R341, 2004.
 243.McKay LC, Janczewski WA, Feldman JL. Episodic hypoxia evokes long‐term facilitation of genioglossus muscle activity in neonatal rats. J Physiol 557(Pt 1): 13‐18, 2004.
 244.Mejia OM, Prchal JT, Leon‐Velarde F, Hurtado A, Stockton DW. Genetic association analysis of chronic mountain sickness in an Andean high‐altitude population. Haematologica 90(1): 13‐19, 2005.
 245.Melton JE, Neubauer JA, Edelman NH. GABA antagonism reverses hypoxic respiratory depression in the cat. J Appl Physiol 69(4): 1296‐1301, 1990.
 246.Menendez AA, Nuckton TJ, Torres JE, Gozal D. Short‐term potentiation of ventilation after different levels of hypoxia. J Appl Physiol 86(5): 1478‐1482, 1999.
 247.Mifflin SW. Short‐term potentiation of carotid sinus nerve inputs to neurons in the nucleus of the solitary tract. Respir Physiol 110(2‐3): 229‐236, 1997.
 248.Milledge JS, Lahiri S. Respiratory control in lowlanders and Sherpa highlanders at altitude. Respir Physiol 2(3): 310‐322, 1967.
 249.Miller WF, Geumei AM. Respiratory and pharmacological therapy in COPD. In: Respiratory and Pharmacological Therapy in COPD. Petty TL, editor. New York: Marcel Dekker, 1985.
 250.Millhorn DE, Eldridge FL, Kiley JP, Waldrop TG. Prolonged inhibition of respiration following acute hypoxia in glomectomized cats. Respir Physiol 57(3): 331‐340, 1984.
 251.Millhorn DE, Eldridge FL, Waldrop TG. Prolonged stimulation of respiration by a new central neural mechanism. Respir Physiol 41(1): 87‐103, 1980.
 252.Milsom WK, Jackson DC. Hibernation and gas exchange. Compr Physiol 1(1): 397‐420, 2011.
 253.Mir AK, McQueen DS, Pallot DJ, Nahorski SR. Direct biochemical and neuropharmacological identification of dopamine D2‐receptors in the rabbit carotid body. Brain Res 291(2): 273‐283, 1984.
 254.Mitchell GS, Baker TL, Nanda SA, Fuller DD, Zabka AG, Hodgeman BA, Bavis RW, Mack KJ, Olson EB, Jr. Invited review: Intermittent hypoxia and respiratory plasticity. J Appl Physiol 90(6): 2466‐2475, 2001.
 255.Mitchell GS, Johnson SM. Neuroplasticity in respiratory motor control. J Appl Physiol 94(1): 358‐374, 2003.
 256.Mitchell GS, Powell FL, Hopkins SR, Milsom WK. Time domains of the hypoxic ventilatory response in awake ducks: Episodic and continuous hypoxia. Respir Physiol 124(2): 117‐128, 2001.
 257.Mitchell GS, Terada J. Should we standardize protocols and preparations used to study respiratory plasticity? Respir Physiol Neurobiol 177(2): 93‐97, 2011.
 258.Mitchell RA, Sinha AK, McDonald DM. Chemoreceptive properties of regenerated endings of the carotid sinus nerve. Brain Res 43(2): 681‐685, 1972.
 259.Mizusawa A, Ogawa H, Kikuchi Y, Hida W, Kurosawa H, Okabe S, Takishima T, Shirato K. In vivo release of glutamate in nucleus tractus solitarii of the rat during hypoxia. J Physiol 478 (Pt 1): 55‐66, 1994.
 260.Moncada S, Higgs A. The L‐arginine‐nitric oxide pathway. N Engl J Med 329(27): 2002‐2012, 1993.
 261.Monfort P, Munoz MD, Kosenko E, Felipo V. Long‐term potentiation in hippocampus involves sequential activation of soluble guanylate cyclase, cGMP‐dependent protein kinase, and cGMP‐degrading phosphodiesterase. J Neurosci 22(23): 10116‐10122, 2002.
 262.Monge C. Life in the Andes and chronic mountain sickness. Science 95(2456): 79‐84, 1942.
 263.Montague PR, Gancayco CD, Winn MJ, Marchase RB, Friedlander MJ. Role of NO production in NMDA receptor‐mediated neurotransmitter release in cerebral cortex. Science 263(5149): 973‐977, 1994.
 264.Moore LG. Comparative human ventilatory adaptation to high altitude. Respir Physiol 121(2‐3): 257‐276, 2000.
 265.Moore LG, Harrison GL, McCullough RE, McCullough RG, Micco AJ, Tucker A, Weil JV, Reeves JT. Low acute hypoxic ventilatory response and hypoxic depression in acute altitude sickness. J Appl Physiol 60(4): 1407‐1412, 1986.
 266.Moore LG, Niermeyer S, Vargas E. Does chronic mountain sickness (CMS) have perinatal origins? Respir Physiol Neurobiol 158(2‐3): 180‐189, 2007.
 267.Moore MW, Chai S, Gillombardo CB, Carlo A, Donovan LM, Netzer N, Strohl KP. Two weeks of buspirone protects against posthypoxic ventilatory pauses in the C57BL/6J mouse strain. Respir Physiol Neurobiol 183(1): 35‐40, 2012.
 268.Morris KF, Arata A, Shannon R, Lindsey BG. Inspiratory drive and phase duration during carotid chemoreceptor stimulation in the cat: Medullary neurone correlations. J Physiol 491(Pt 1): 241‐259, 1996.
 269.Morris KF, Gozal D. Persistent respiratory changes following intermittent hypoxic stimulation in cats and human beings. Respir Physiol Neurobiol 140(1): 1‐8, 2004.
 270.Mortola EC, Maskrey M. Metabolism, temperature, and ventilation. Compr Physiol 1: 1679‐1709, 2011.
 271.Nakamura A, Olson EB, Jr, Terada J, Wenninger JM, Bisgard GE, Mitchell GS. Sleep state dependence of ventilatory long‐term facilitation following acute intermittent hypoxia in Lewis rats. J Appl Physiol 109(2): 323‐331, 2010.
 272.Nattie E, Li A. Central chemoreception is a complex system function that involves multiple brain stem sites. J Appl Physiol 106(4): 1464‐1466, 2009.
 273.Nattie EE, Li A. Retrotrapezoid nucleus glutamate injections: Long‐term stimulation of phrenic activity. J Appl Physiol (1985). 76(2): 760‐772, 1994.
 274.Navarrete‐Opazo A, Mitchell GS. Therapeutic potential of intermittent hypoxia: A matter of dose. Am J Physiol Regul Integr Comp Physiol 307(10): R1181‐R1197, 2014.
 275.Navarrete‐Opazo A, Vinit S, Dougherty BJ, Mitchell GS. Daily acute intermittent hypoxia elicits functional recovery of diaphragm and inspiratory intercostal muscle activity after acute cervical spinal injury. Exp Neurol 266C: 1‐10, 2015.
 276.Nelson DO, Cohen HL, Feldman JL, McCrimmon DR. Cardiovascular function is altered by picomole injections of glutamate into rat medulla. J Neurosci 8(5): 1684‐1693, 1988.
 277.Nelson NR, Bird IM, Behan M. Testosterone restores respiratory long‐term facilitation in old male rats by an aromatase‐dependent mechanism. J Physiol 589(Pt 2): 409‐421, 2011.
 278.Neubauer JA, Melton JE, Edelman NH. Modulation of respiration during brain hypoxia. J Appl Physiol 68(2): 441‐451, 1990.
 279.Neubauer JA, Posner MA, Santiago TV, Edelman NH. Naloxone reduces ventilatory depression of brain hypoxia. J Appl Physiol 63(2): 699‐706, 1987.
 280.Neubauer JA, Sunderram J. Heme oxygenase‐1 and chronic hypoxia. Respir Physiol Neurobiol 184(2): 178‐185, 2012.
 281.Neubauer JA, Sunderram J. Oxygen‐sensing neurons in the central nervous system. J Appl Physiol (1985). 96(1): 367‐374, 2004.
 282.Neverova NV, Saywell SA, Nashold LJ, Mitchell GS, Feldman JL. Episodic stimulation of alpha1‐adrenoreceptors induces protein kinase C‐dependent persistent changes in motoneuronal excitability. J Neurosci 27(16): 4435‐4442, 2007.
 283.Nichols NL, Dale EA, Mitchell GS. Severe acute intermittent hypoxia elicits phrenic long‐term facilitation by a novel adenosine‐dependent mechanism. J Appl Physiol 112(10): 1678‐1688, 2012.
 284.Nichols NL, Wilkinson KA, Powell FL, Dean JB, Putnam RW. Chronic hypoxia suppresses the CO2 response of solitary complex (SC) neurons from rats. Respir Physiol Neurobiol 168(3): 272‐280, 2009.
 285.Nielsen AM, Bisgard GE, Vidruk EH. Carotid chemoreceptor activity during acute and sustained hypoxia in goats. J Appl Physiol 65(4): 1796‐1802, 1988.
 286.Nishino T, Lahiri S. Effects of dopamine on chemoreflexes in breathing. J Appl Physiol 50(4): 892‐897, 1981.
 287.Ogawa H, Mizusawa A, Kikuchi Y, Hida W, Miki H, Shirato K. Nitric oxide as a retrograde messenger in the nucleus tractus solitarii of rats during hypoxia. J Physiol 486(Pt 2): 495‐504, 1995.
 288.O'Halloran KD, Janssen PL, Bisgard GE. Dopaminergic modulation of respiratory motor output in peripherally chemodenervated goats. J Appl Physiol 85(3): 946‐954, 1998.
 289.O'Halloran KD, McGuire M, O'Hare T, Bradford A. Chronic intermittent asphyxia impairs rat upper airway muscle responses to acute hypoxia and asphyxia. Chest 122(1): 269‐275, 2002.
 290.Ohtake PJ, Torres JE, Gozal YM, Graff GR, Gozal D. NMDA receptors mediate peripheral chemoreceptor afferent input in the conscious rat. J Appl Physiol 84(3): 853‐861, 1998.
 291.Okada J, Miura M. Transmitter substances contained in the petrosal ganglion cells determined by a double‐labeling method in the rat. Neurosci Lett 146(1): 33‐36, 1992.
 292.Olson EB, Jr, Bohne CJ, Dwinell MR, Podolsky A, Vidruk EH, Fuller DD, Powell FL, Mitchel GS. Ventilatory long‐term facilitation in unanesthetized rats. J Appl Physiol 91(2): 709‐716, 2001.
 293.Olson EB, Jr, Dempsey JA. Rat as a model for humanlike ventilatory adaptation to chronic hypoxia. J Appl Physiol 44(5): 763‐769, 1978.
 294.Olson EB, Jr, Vidruk EH, Dempsey JA. Carotid body excision significantly changes ventilatory control in awake rats. J Appl Physiol 64(2): 666‐671, 1988.
 295.Olson LG, Saunders NA. The effect of central and peripheral dopamine‐agonists on ventilation in the mouse. Respir Physiol 61(3): 335‐345, 1985.
 296.Ou LC, Chen J, Fiore E, Leiter JC, Brinck‐Johnsen T, Birchard GF, Clemons G, Smith RP. Ventilatory and hematopoietic responses to chronic hypoxia in two rat strains. J Appl Physiol 72(6): 2354‐2363, 1992.
 297.Palmer LA, May WJ, deRonde K, Brown‐Steinke K, Bates JN, Gaston B, Lewis SJ. Ventilatory responses during and following exposure to a hypoxic challenge in conscious mice deficient or null in S‐nitrosoglutathione reductase. Respir Physiol Neurobiol 185(3): 571‐581, 2013.
 298.Pamenter ME. Mitochondria: A multimodal hub of hypoxia tolerance. Can J Zool 92(7): 569‐589, 2014.
 299.Pamenter ME, Carr JA, Go A, Fu ZX, Reid SG, Powell FL. Glutamate receptors in the nucleus tractus solitarius contribute to ventilatory acclimatization to hypoxia in rat. J Physiol‐London 592(8): 1839‐1856, 2014.
 300.Pamenter ME, Dzal YA, Milsom WK. Adenosine receptors mediate the hypoxic ventilatory response but not the hypoxic metabolic response in the naked mole rat during acute hypoxia. Proc Biol Sci 282(1800): 20141722, 2015.
 301.Pamenter ME, Go A, Fu Z, Powell FL. No evidence of a role for neuronal nitric oxide synthase in the nucleus tractus solitarius in ventilatory responses to acute or chronic hypoxia in awake rats. J Appl Physiol (1985) 118: 750‐759, 2015.
 302.Pamenter ME, Nguyen J, Carr JA, Powell FL. The effect of combined glutamate receptor blockade in the NTS on the hypoxic ventilatory response in awake rats differs from the effect of individual glutamate receptor blockade. Physiol Rep 2(8): pii: e12092, 2014.
 303.Pamenter ME, Powell FL. Signalling mechanisms of long term facilitation of breathing with intermittent hypoxia. F1000Prime Rep 5: 23, 2013.
 304.Pascual O, Denavit‐Saubie M, Dumas S, Kietzmann T, Ghilini G, Mallet J, Pequignot JM. Selective cardiorespiratory and catecholaminergic areas express the hypoxia‐inducible factor‐1alpha (HIF‐1alpha) under in vivo hypoxia in rat brainstem. Eur J Neurosci 14(12): 1981‐1991, 2001.
 305.Pedersen ME, Dorrington KL, Robbins PA. Effects of dopamine and domperidone on ventilatory sensitivity to hypoxia after 8 h of isocapnic hypoxia. J Appl Physiol 86(1): 222‐229, 1999.
 306.Pedersen ME, Dorrington KL, Robbins PA. Effects of haloperidol on ventilation during isocapnic hypoxia in humans. J Appl Physiol 83(4): 1110‐1115, 1997.
 307.Pei SX, Chen XJ, Si Ren BZ, Liu YH, Cheng XS, Harris EM, Anand IS, Harris PC. Chronic mountain sickness in Tibet. Q J Med 71(266): 555‐574, 1989.
 308.Peng Y, Yang Z, Zhang H, Cui C, Qi X, Luo X, Tao X, Wu T, Ouzhuluobu, Basang, Ciwangsangbu, Danzengduojie, Chen H, Shi H, Su B. Genetic variations in Tibetan populations and high‐altitude adaptation at the Himalayas. Mol Biol Evol 28(2): 1075‐1081, 2011.
 309.Peng YJ, Overholt JL, Kline D, Kumar GK, Prabhakar NR. Induction of sensory long‐term facilitation in the carotid body by intermittent hypoxia: Implications for recurrent apneas. Proc Natl Acad Sci U S A 100(17): 10073‐10078, 2003.
 310.Peng YJ, Prabhakar NR. Effect of two paradigms of chronic intermittent hypoxia on carotid body sensory activity. J Appl Physiol 96(3): 1236‐1242; discussion 196, 2004.
 311.Peng YJ, Yuan G, Jacono FJ, Kumar GK, Prabhakar NR. 5‐HT evokes sensory long‐term facilitation of rodent carotid body via activation of NADPH oxidase. J Physiol 576(Pt 1): 289‐295, 2006.
 312.Peng YJ, Yuan G, Ramakrishnan D, Sharma SD, Bosch‐Marce M, Kumar GK, Semenza GL, Prabhakar NR. Heterozygous HIF‐1alpha deficiency impairs carotid body‐mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. J Physiol 577(Pt 2): 705‐716, 2006.
 313.Petousi N, Croft QP, Cavalleri GL, Cheng HY, Formenti F, Ishida K, Lunn D, McCormack M, Shianna KV, Talbot NP, Ratcliffe PJ, Robbins PA. Tibetans living at sea level have a hyporesponsive hypoxia‐inducible factor system and blunted physiological responses to hypoxia. J Appl Physiol (1985). 116(7): 893‐904, 2014.
 314.Pichon A, Zhenzhong B, Favret F, Jin G, Shufeng H, Marchant D, Richalet JP, Ge RL. Long‐term ventilatory adaptation and ventilatory response to hypoxia in plateau pika (Ochotona curzoniae): Role of nNOS and dopamine. Am J Physiol Regul Integr Comp Physiol 297(4): R978‐R987, 2009.
 315.Popa D, Fu ZX, Go A, Powell FL. Ibuprofen blocks time‐dependent increases in hypoxic ventilation in rats. Resp Physiol Neurobi 178(3): 381‐386, 2011.
 316.Porteus C, Hedrick MS, Hicks JW, Wang T, Milsom WK. Time domains of the hypoxic ventilatory response in ectothermic vertebrates. J Comp Physiol B 181(3): 311‐333, 2011.
 317.Powell FL. The influence of chronic hypoxia upon chemoreception. Respir Physiol Neurobiol 157(1): 154‐161, 2007.
 318.Powell FL. Heme oxygenase is necessary for the excitatory response of cultured neonatal rat rostral ventrolateral medulla neurons to hypoxia by D'Agostino D, Mazza E, and Neubauer JA. Am J Physiol Regul Integr Comp Physiol 296(1): R100‐R118, 2009.
 319.Powell FL, Fu ZX. HIF‐1 and ventilatory acclimatization to chronic hypoxia. Resp Physiol Neurobi 164(1‐2): 282‐287, 2008.
 320.Powell FL, Huey KA, Dwinell MR. Central nervous system mechanisms of ventilatory acclimatization to hypoxia. Respir Physiol 121(2‐3): 223‐236, 2000.
 321.Powell FL, Milsom WK, Mitchell GS. Time domains of the hypoxic ventilatory response. Respir Physiol 112(2): 123‐134, 1998.
 322.Prabhakar NR. Gases as chemical messengers in the carotid body. Role of nitric oxide and carbon monoxide in chemoreception. Adv Exp Med Biol 393: 309‐312, 1995.
 323.Prabhakar NR, Kumar GK. Oxidative stress in the systemic and cellular responses to intermittent hypoxia. Biological Chemistry 385(3‐4): 217‐221, 2004.
 324.Prabhakar NR, Pieramici SF, Premkumar DR, Kumar GK, Kalaria RN. Activation of nitric oxide synthase gene expression by hypoxia in central and peripheral neurons. Brain Res Mol Brain Res 43(1‐2): 341‐346, 1996.
 325.Prabhakar NR, Runold M, Yamamoto Y, Lagercrantz H, von Euler C. Effect of substance P antagonist on the hypoxia‐induced carotid chemoreceptor activity. Acta Physiol Scand 121(3): 301‐303, 1984.
 326.Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia‐inducible factors 1 and 2. Physiol Rev 92(3): 967‐1003, 2012.
 327.Prasad M, Fearon IM, Zhang M, Laing M, Vollmer C, Nurse CA. Expression of P2X2 and P2X3 receptor subunits in rat carotid body afferent neurones: Role in chemosensory signalling. J Physiol 537(Pt 3): 667‐677, 2001.
 328.Prosser‐Loose E, Hassan A, Mitchell GS, Muir G. Delayed intervention with intermittent hypoxia and task‐training improves forelimb function in a rat model of cervical spinal injury. J Neurotrauma 32: 1403‐1412, 2015.
 329.Qiu Q, Zhang G, Ma T, Qian W, Wang J, Ye Z, Cao C, Hu Q, Kim J, Larkin DM, Auvil L, Capitanu B, Ma J, Lewin HA, Qian X, Lang Y, Zhou R, Wang L, Wang K, Xia J, Liao S, Pan S, Lu X, Hou H, Wang Y, Zang X, Yin Y, Ma H, Zhang J, Wang Z, Zhang Y, Zhang D, Yonezawa T, Hasegawa M, Zhong Y, Liu W, Huang Z, Zhang S, Long R, Yang H, Lenstra JA, Cooper DN, Wu Y, Shi P, Liu J. The yak genome and adaptation to life at high altitude. Nat Genet 44(8): 946‐949, 2012.
 330.Rabie T, Marti HH. Brain protection by erythropoietin: A manifold task. Physiology (Bethesda) 23: 263‐274, 2008.
 331.Rahn H, Otis AB. Man's respiratory response during and after acclimatization to high altitude. Am J Physiol 157(3): 445‐462, 1949.
 332.Ramirez JM, Doi A, Garcia AJ, Elsen FP, Koch H, Wei AD. The cellular building blocks of breathing. Compr Physiol 2: 2683‐2731, 2012.
 333.Ramirez JM, Schwarzacher SW, Pierrefiche O, Olivera BM, Richter DW. Selective lesioning of the cat pre‐Botzinger complex in vivo eliminates breathing but not gasping. J Physiol 507(Pt 3): 895‐907, 1998.
 334.Rankin EB, Biju MP, Liu Q, Unger TL, Rha J, Johnson RS, Simon MC, Keith B, Haase VH. Hypoxia‐inducible factor‐2 (HIF‐2) regulates hepatic erythropoietin in vivo. J Clin Invest 117(4): 1068‐1077, 2007.
 335.Reeves SR, Gozal E, Guo SZ, Sachleben LR, Jr, Brittian KR, Lipton AJ, Gozal D. Effect of long‐term intermittent and sustained hypoxia on hypoxic ventilatory and metabolic responses in the adult rat. J Appl Physiol 95(5): 1767‐1774, 2003.
 336.Reid SG, Powell FL. Effects of chronic hypoxia on MK‐801‐induced changes in the acute hypoxic ventilatory response. J Appl Physiol 99(6): 2108‐2114, 2005.
 337.Rekling JC, Shao XM, Feldman JL. Electrical coupling and excitatory synaptic transmission between rhythmogenic respiratory neurons in the preBotzinger complex. J Neurosci 20(23): RC113, 2000.
 338.Rey S, Del Rio R, Alcayaga J, Iturriaga R. Chronic intermittent hypoxia enhances cat chemosensory and ventilatory responses to hypoxia. J Physiol 560(Pt 2): 577‐586, 2004.
 339.Richter DW, Schmidt‐Garcon P, Pierrefiche O, Bischoff AM, Lalley PM. Neurotransmitters and neuromodulators controlling the hypoxic respiratory response in anaesthetized cats. J Physiol 514(Pt 2): 567‐578, 1999.
 340.Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG, Karin M. NF‐kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF‐1alpha. Nature 453(7196): 807‐811, 2008.
 341.Rong W, Gourine AV, Cockayne DA, Xiang Z, Ford AP, Spyer KM, Burnstock G. Pivotal role of nucleotide P2X2 receptor subunit of the ATP‐gated ion channel mediating ventilatory responses to hypoxia. J Neurosci 23(36): 11315‐11321, 2003.
 342.Roskoski R, Jr. ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacol Res 66(2): 105‐143, 2012.
 343.Rowley NM, Madsen KK, Schousboe A, Steve White H. Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochem Int 61(4): 546‐558, 2012.
 344.Roy AA, Nunn C, Ming H, Zou MX, Penninger J, Kirshenbaum LA, Dixon SJ, Chidiac P. Up‐regulation of endogenous RGS2 mediates cross‐desensitization between Gs and Gq signaling in osteoblasts. J Biol Chem 281(43): 32684‐32693, 2006.
 345.Ryan S, Nolan P. Episodic hypoxia induces long‐term facilitation of upper airway muscle activity in spontaneously breathing anaesthetized rats. J Physiol 587(Pt 13): 3329‐3342, 2009.
 346.Ryan S, Nolan P. Long‐term facilitation of upper airway muscle activity induced by episodic upper airway negative pressure and hypoxia in spontaneously breathing anaesthetized rats. J Physiol 587(Pt 13): 3343‐3353, 2009.
 347.Sanchez‐Perez A, Llansola M, Cauli O, Felipo V. Modulation of NMDA receptors in the cerebellum. II. Signaling pathways and physiological modulators regulating NMDA receptor function. Cerebellum 4(3): 162‐170, 2005.
 348.Sandhu MS, Lee KZ, Fregosi RF, Fuller DD. Phrenicotomy alters phrenic long‐term facilitation following intermittent hypoxia in anesthetized rats. J Appl Physiol 109(2): 279‐287, 2010.
 349.Santolaya RB, Lahiri S, Alfaro RT, Schoene RB. Respiratory adaptation in the highest inhabitants and highest Sherpa mountaineers. Respir Physiol 77(2): 253‐262, 1989.
 350.Sato M, Severinghaus JW, Bickler P. Time course of augmentation and depression of hypoxic ventilatory responses at altitude. J Appl Physiol 77(1): 313‐316, 1994.
 351.Sato M, Severinghaus JW, Powell FL, Xu FD, Spellman MJ, Jr. Augmented hypoxic ventilatory response in men at altitude. J Appl Physiol 73(1): 101‐107, 1992.
 352.Satriotomo I, Dale EA, Dahlberg JM, Mitchell GS. Repetitive acute intermittent hypoxia increases expression of proteins associated with plasticity in the phrenic motor nucleus. Exp Neurol 237(1): 103‐115, 2012.
 353.Schlenker EH, Prestbo A. Elimination of the post‐hypoxic frequency decline in conscious rats lesioned in pontine A5 region. Respir Physiol Neurobiol 138(2‐3): 179‐191, 2003.
 354.Schoepp D, Bockaert J, Sladeczek F. Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors. Trends Pharmacol Sci 11(12): 508‐515, 1990.
 355.Seaborn T, Gonzales M, Villalpando G, Grenacher B, Soria R, Soliz J. Enhanced erythropoietin expression in the brainstem of newborn rats at high altitude. Neurosci Lett 502(1): 33‐36, 2011.
 356.Semenza GL. Regulation of oxygen homeostasis by hypoxia‐inducible factor 1. Physiology (Bethesda) 24: 97‐106, 2009.
 357.Severinghaus JW, Bainton CR, Carcelen A. Respiratory insensitivity to hypoxia in chronically hypoxic man. Respir Physiol 1(3): 308‐334, 1966.
 358.Severinghaus JW, Mitchell RA, Richardson BW, Singer MM. Respiratory control at high altitude suggesting active transport regulation of Csf Ph. J Appl Physiol 18: 1155‐1166, 1963.
 359.Simakajornboon N, Kuptanon T. Maturational changes in neuromodulation of central pathways underlying hypoxic ventilatory response. Respir Physiol Neurobiol 149(1‐3): 273‐286, 2005.
 360.Simonson TS, Wei G, Wagner HE, Wuren T, Bui A, Fine JM, Qin G, Beltrami FG, Yan M, Wagner PD, Ge RL. Increased blood‐oxygen binding affinity in Tibetan and Han Chinese residents at 4200 m. Exp Physiol 99(12): 1624‐1635, 2014.
 361.Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Bai Z, Lorenzo FR, Xing J, Jorde LB, Prchal JT, Ge R. Genetic evidence for high‐altitude adaptation in Tibet. Science 329(5987): 72‐75, 2010.
 362.Skatrud JB, Dempsey JA, Iber C, Berssenbrugge A. Correction of CO2 retention during sleep in patients with chronic obstructive pulmonary diseases. Am Rev Respir Dis 124(3): 260‐268, 1981.
 363.Slessarev M, Mardimae A, Preiss D, Vesely A, Balaban DY, Greene R, Duffin J, Fisher JA. Differences in the control of breathing between Andean highlanders and lowlanders after 10 days acclimatization at 3850 m. J Physiol 588(Pt 9): 1607‐1621, 2010.
 364.Slessarev M, Prisman E, Ito S, Watson RR, Jensen D, Preiss D, Greene R, Norboo T, Stobdan T, Diskit D, Norboo A, Kunzang M, Appenzeller O, Duffin J, Fisher JA. Differences in the control of breathing between Himalayan and sea‐level residents. J Physiol 588(Pt 9): 1591‐1606, 2010.
 365.Smatresk NJ, Pokorski M, Lahiri S. Opposing effects of dopamine receptor blockade on ventilation and carotid chemoreceptor activity. J Appl Physiol 54(6): 1567‐1573, 1983.
 366.Smith CA, Bisgard GE, Nielsen AM, Daristotle L, Kressin NA, Forster HV, Dempsey JA. Carotid bodies are required for ventilatory acclimatization to chronic hypoxia. J Appl Physiol 60(3): 1003‐1010, 1986.
 367.Smith CA, Engwall MJ, Dempsey JA, Bisgard GE. Effects of specific carotid body and brain hypoxia on respiratory muscle control in the awake goat. J Physiol 460: 623‐640, 1993.
 368.Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL. Pre‐Bötzinger complex: A brainstem region that may generate respiratory rhythm in mammals. Science 254(5032): 726‐729, 1991.
 369.Smith TG, Brooks JT, Balanos GM, Lappin TR, Layton DM, Leedham DL, Liu C, Maxwell PH, McMullin MF, McNamara CJ, Percy MJ, Pugh CW, Ratcliffe PJ, Talbot NP, Treacy M, Robbins PA. Mutation of von Hippel‐Lindau tumour suppressor and human cardiopulmonary physiology. PLoS Med 3(7): e290, 2006.
 370.Sokolowska B, Pokorski M. Ventilatory augmentation by acute intermittent hypoxia in the rabbit. J Physiol Pharmacol 57(Suppl 4): 341‐347, 2006.
 371.Soliz J. Erythropoietin and respiratory control at adulthood and during early postnatal life. Respir Physiol Neurobiol 185(1): 87‐93, 2013.
 372.Soliz J, Joseph V, Soulage C, Becskei C, Vogel J, Pequignot JM, Ogunshola O, Gassmann M. Erythropoietin regulates hypoxic ventilation in mice by interacting with brainstem and carotid bodies. J Physiol 568(Pt 2): 559‐571, 2005.
 373.Solomon IC. Glutamate neurotransmission is not required for, but may modulate, hypoxic sensitivity of pre‐Botzinger complex in vivo. J Neurophysiol 93(3): 1278‐1284, 2005.
 374.Solomon IC, Edelman NH, Neubauer JA. Pre‐Botzinger complex functions as a central hypoxia chemosensor for respiration in vivo. J Neurophysiol 83(5): 2854‐2868, 2000.
 375.Soto‐Arape I, Burton MD, Kazemi H. Central amino acid neurotransmitters and the hypoxic ventilatory response. Am J Respir Crit Care Med 151(4): 1113‐1120, 1995.
 376.Soulier V, Dalmaz Y, Cottet‐Emard JM, Lagercrantz H, Pequignot JM. Long‐term influence of neonatal hypoxia on catecholamine activity in carotid bodies and brainstem cell groups of the rat. J Physiol 498(Pt 2): 523‐530, 1997.
 377.Steinback CD, Poulin MJ. Ventilatory responses to isocapnic and poikilocapnic hypoxia in humans. Respir Physiol Neurobiol 155(2): 104‐113, 2007.
 378.Stevens SF. Claiming the High Ground: Sherpas, Subsistence, and Environmental Change in the Highest Himalaya. Berkeley: University of California Press, 1993.
 379.Strohl KP. Periodic breathing and genetics. Respir Physiol Neurobiol 135(2‐3): 179‐185, 2003.
 380.Sun MK, Reis DJ. Central neural mechanisms mediating excitation of sympathetic neurons by hypoxia. Prog Neurobiol 44(2): 197‐219, 1994.
 381.Sunderram J, Semmlow J, Thakker‐Varia S, Bhaumik M, Hoang‐Le O, Neubauer JA. Heme oxygenase‐1‐dependent central cardiorespiratory adaptations to chronic hypoxia in mice. Am J Physiol Regul Integr Comp Physiol 297(2): R300‐R312, 2009.
 382.Tabata M, Kurosawa H, Kikuchi Y, Hida W, Ogawa H, Okabe S, Tun Y, Hattori T, Shirato K. Role of GABA within the nucleus tractus solitarii in the hypoxic ventilatory decline of awake rats. Am J Physiol Regul Integr Comp Physiol 281(5): R1411‐R1419, 2001.
 383.Tadjalli A, Duffin J, Peever J. Identification of a novel form of noradrenergic‐dependent respiratory motor plasticity triggered by vagal feedback. J Neurosci 30(50): 16886‐16895, 2010.
 384.Tagawa T, Imaizumi T, Harada S, Endo T, Shiramoto M, Hirooka Y, Takeshita A. Nitric oxide influences neuronal activity in the nucleus tractus solitarius of rat brainstem slices. Circ Res 75(1): 70‐76, 1994.
 385.Takahashi H, Shin Y, Cho SJ, Zago WM, Nakamura T, Gu Z, Ma Y, Furukawa H, Liddington R, Zhang D, Tong G, Chen HS, Lipton SA. Hypoxia enhances S‐nitrosylation‐mediated NMDA receptor inhibition via a thiol oxygen sensor motif. Neuron 53(1): 53‐64, 2007.
 386.Takakura AC, Moreira TS, Stornetta RL, West GH, Gwilt JM, Guyenet PG. Selective lesion of retrotrapezoid Phox2b‐expressing neurons raises the apnoeic threshold in rats. J Physiol 586(Pt 12): 2975‐2991, 2008.
 387.Tansley JG, Fatemian M, Howard LS, Poulin MJ, Robbins PA. Changes in respiratory control during and after 48 h of isocapnic and poikilocapnic hypoxia in humans. J Appl Physiol (1985). 85(6): 2125‐2134, 1998.
 388.Tarakanov I, Dymecka A, Pokorski M. NMDA glutamate receptor antagonism and the ventilatory response to hypoxia in the anesthetized rat. J Physiol Pharmacol 55(Suppl 3): 139‐147, 2004.
 389.Tarakanov IA, Dymetska A, Tarasova NN. Effect of MK‐801 on sensitivity of the respiratory system to oxygen deficiency and organisms resistance to hypoxia. Bull Exp Biol Med 138(4): 330‐333, 2004.
 390.Tatsumi K, Hannhart B, Moore LG. Influences of sex steroids on ventilation and ventilatory control. In: Dempsey JA, Pack AIJ, editors. Regulation of Breathing. New York: Marcel Dekker, 1995.
 391.Tatsumi K, Pickett CK, Weil JV. Attenuated carotid body hypoxic sensitivity after prolonged hypoxic exposure. J Appl Physiol 70(2): 748‐755, 1991.
 392.Tatsumi K, Pickett CK, Weil JV. Effects of haloperidol and domperidone on ventilatory roll off during sustained hypoxia in cats. J Appl Physiol 72(5): 1945‐1952, 1992.
 393.Tatsumi K, Pickett CK, Weil JV. Possible role of dopamine in ventilatory acclimatization to high altitude. Respir Physiol 99(1): 63‐73, 1995.
 394.Teppema LJ, Dahan A. The ventilatory response to hypoxia in mammals: Mechanisms, measurement, and analysis. Physiol Rev 90(2): 675‐754, 2010.
 395.Terada J, Nakamura A, Zhang W, Yanagisawa M, Kuriyama T, Fukuda Y, Kuwaki T. Ventilatory long‐term facilitation in mice can be observed during both sleep and wake periods and depends on orexin. J Appl Physiol 104(2): 499‐507, 2008.
 396.Tester NJ, Fuller DD, Fromm JS, Spiess MR, Behrman AL, Mateika JH. Long‐term facilitation of ventilation in humans with chronic spinal cord injury. Am J Respir Crit Care Med 189(1): 57‐65, 2014.
 397.Tolstykh G, Belugin S, Mifflin S. Responses to GABA(A) receptor activation are altered in NTS neurons isolated from chronic hypoxic rats. Brain Res 1006(1): 107‐113, 2004.
 398.Toyama S, Sakurai T, Tatsumi K, Kuwaki T. Attenuated phrenic long‐term facilitation in orexin neuron‐ablated mice. Respir Physiol Neurobiol 168(3): 295‐302, 2009.
 399.Turner DL, Mitchell GS. Long‐term facilitation of ventilation following repeated hypoxic episodes in awake goats. J Physiol 499(Pt 2): 543‐550, 1997.
 400.Turrigiano GG. Homeostatic plasticity in neuronal networks: The more things change, the more they stay the same. Trends Neurosci 22(5): 221‐227, 1999.
 401.van der Kooy D, Koda LY, McGinty JF, Gerfen CR, Bloom FE. The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J Comp Neurol 224(1): 1‐24, 1984.
 402.van Lunteren E, Haxhiu MA, Mitra J, Cherniack NS. Effects of dopamine, isoproterenol, and lobeline on cranial and phrenic motoneurons. J Appl Physiol 56(3): 737‐745, 1984.
 403.Vardhan A, Kachroo A, Sapru HN. Excitatory amino acid receptors in commissural nucleus of the NTS mediate carotid chemoreceptor responses. Am J Physiol 264(1 Pt 2): R41‐50, 1993.
 404.Vizek M, Pickett CK, Weil JV. Biphasic ventilatory response of adult cats to sustained hypoxia has central origin. J Appl Physiol (1985). 63(4): 1658‐1664, 1987.
 405.Vizek M, Pickett CK, Weil JV. Biphasic ventilatory response of adult cats to sustained hypoxia has central origin. J Appl Physiol 63(4): 1658‐1664, 1987.
 406.Vizek M, Pickett CK, Weil JV. Increased carotid body hypoxic sensitivity during acclimatization to hypobaric hypoxia. J Appl Physiol 63(6): 2403‐2410, 1987.
 407.Wadhwa H, Gradinaru C, Gates GJ, Badr MS, Mateika JH. Impact of intermittent hypoxia on long‐term facilitation of minute ventilation and heart rate variability in men and women: Do sex differences exist? J Appl Physiol 104(6): 1625‐1633, 2008.
 408.Wang B, Zhang YB, Zhang F, Lin H, Wang X, Wan N, Ye Z, Weng H, Zhang L, Li X, Yan J, Wang P, Wu T, Cheng L, Wang J, Wang DM, Ma X, Yu J. On the origin of Tibetans and their genetic basis in adapting high‐altitude environments. PLoS One 6(2): e17002, 2011.
 409.Wang GD, Fan RX, Zhai W, Liu F, Wang L, Zhong L, Wu H, Yang HC, Wu SF, Zhu CL, Li Y, Gao Y, Ge RL, Wu CI, Zhang YP. Genetic convergence in the adaptation of dogs and humans to the high‐altitude environment of the Tibetan plateau. Genome Biol Evol 6(8): 2122‐2128, 2014.
 410.Ward DS, Bellville JW. Reduction of hypoxic ventilatory drive by dopamine. Anesth Analg 61(4): 333‐337, 1982.
 411.Wei XY, Liu JP, Zhao CH, Ju G, Wong‐Riley MT, Liu YY. Expressions of 5‐HT/5‐HT(2A) receptors and phospho‐protein kinase C theta in the pre‐Botzinger complex in normal and chronic intermittent hypoxic rats. Neuroscience 168(1): 61‐73, 2010.
 412.Weil JV. Variation in human ventilatory control‐genetic influence on the hypoxic ventilatory response. Respir Physiol Neurobiol 135(2‐3): 239‐246, 2003.
 413.Weil JV. Ventilatory control at high altitude. In: Cherniack NS, Widdicombe JG, editors. Handbook of Physiology; Section 3: The Respiratory System, Control of Breathing, vol II. Bethesda: American Physiological Society, 1986, pp. 703‐728.
 414.Weil JV, Byrne‐Quinn E, Sodal IE, Filley GF, Grover RF. Acquired attenuation of chemoreceptor function in chronically hypoxic man at high altitude. J Clin Invest 50(1): 186‐195, 1971.
 415.Wilkerson JE, Mitchell GS. Daily intermittent hypoxia augments spinal BDNF levels, ERK phosphorylation and respiratory long‐term facilitation. Exp Neurol 217(1): 116‐123, 2009.
 416.Wilkerson JE, Satriotomo I, Baker‐Herman TL, Watters JJ, Mitchell GS. Okadaic acid‐sensitive protein phosphatases constrain phrenic long‐term facilitation after sustained hypoxia. J Neurosci 28(11): 2949‐2958, 2008.
 417.Wilkinson KA, Huey K, Dinger B, He L, Fidone S, Powell FL. Chronic hypoxia increases the gain of the hypoxic ventilatory response by a mechanism in the central nervous system. J Appl Physiol 109(2): 424‐430, 2010.
 418.Wilson MH, Newman S, Imray CH. The cerebral effects of ascent to high altitudes. Lancet Neurol 8(2): 175‐191, 2009.
 419.Winslow RM, Chapman KW, Gibson CC, Samaja M, Monge CC, Goldwasser E, Sherpa M, Blume FD, Santolaya R. Different hematologic responses to hypoxia in Sherpas and Quechua Indians. J Appl Physiol 66(4): 1561‐1569, 1989.
 420.Winslow RM, Monge CC, Statham NJ, Gibson CG, Charache S, Whittembury J, Moran O, Berger RL. Variability of oxygen affinity of blood: Human subjects native to high altitude. J Appl Physiol 51(6): 1411‐1416, 1981.
 421.Wu T. Life on the high Tibetan plateau. High Alt Med Biol 5(1): 1‐2, 2004.
 422.Xing G, Qualls C, Huicho L, Rivera‐Ch M, Stobdan T, Slessarev M, Prisman E, Ito S, Wu H, Norboo A, Dolma D, Kunzang M, Norboo T, Gamboa JL, Claydon VE, Fisher J, Zenebe G, Gebremedhin A, Hainsworth R, Verma A, Appenzeller O. Adaptation and mal‐adaptation to ambient hypoxia; Andean, Ethiopian and Himalayan patterns. PLoS One 3(6): e2342, 2008.
 423.Xu S, Li S, Yang Y, Tan J, Lou H, Jin W, Yang L, Pan X, Wang J, Shen Y, Wu B, Wang H, Jin L. A genome‐wide search for signals of high‐altitude adaptation in Tibetans. Mol Biol Evol 28(2): 1003‐1011, 2011.
 424.Yaron M, Waldman N, Niermeyer S, Nicholas R, Honigman B. The diagnosis of acute mountain sickness in preverbal children. Arch Pediatr Adolesc Med 152(7): 683‐687, 1998.
 425.Yelmen KN. The role of gamma‐aminobutyric acid and glutamate for hypoxic ventilatory response in anesthetized rabbits. Tohoku J Exp Med 203(3): 219‐232, 2004.
 426.Yelmen NK, Sahin G, Oruc T, Hacibekiroglu M. Hypoxic initiation of pulmonary hypertension is mediated by serotonin secretion from neuroepithelial bodies in chemodenervated dogs. Chin J Physiol 46(1): 27‐33, 2003.
 427.Yi X, Liang Y, Huerta‐Sanchez E, Jin X, Cuo ZX, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliussen TS, Zheng H, Liu T, He W, Li K, Luo R, Nie X, Wu H, Zhao M, Cao H, Zou J, Shan Y, Li S, Yang Q, Asan, Ni P, Tian G, Xu J, Liu X, Jiang T, Wu R, Zhou G, Tang M, Qin J, Wang T, Feng S, Li G, Huasang, Luosang J, Wang W, Chen F, Wang Y, Zheng X, Li Z, Bianba Z, Yang G, Wang X, Tang S, Gao G, Chen Y, Luo Z, Gusang L, Cao Z, Zhang Q, Ouyang W, Ren X, Liang H, Huang Y, Li J, Bolund L, Kristiansen K, Li Y, Zhang Y, Zhang X, Li R, Yang H, Nielsen R, Wang J. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329(5987): 75‐78, 2010.
 428.Zabka AG, Behan M, Mitchell GS. Long term facilitation of respiratory motor output decreases with age in male rats. J Physiol 531(Pt 2): 509‐514, 2001.
 429.Zabka AG, Mitchell GS, Behan M. Ageing and gonadectomy have similar effects on hypoglossal long‐term facilitation in male Fischer rats. J Physiol 563(Pt 2): 557‐568, 2005.
 430.Zabka AG, Mitchell GS, Behan M. Conversion from testosterone to oestradiol is required to modulate respiratory long‐term facilitation in male rats. J Physiol 576(Pt 3): 903‐912, 2006.
 431.Zampronio AR, Kuzmiski JB, Florence CM, Mulligan SJ, Pittman QJ. Opposing actions of endothelin‐1 on glutamatergic transmission onto vasopressin and oxytocin neurons in the supraoptic nucleus. J Neurosci 30(50): 16855‐16863, 2010.
 432.Zhang M, Zhong H, Vollmer C, Nurse CA. Co‐release of ATP and ACh mediates hypoxic signalling at rat carotid body chemoreceptors. J Physiol 525 (Pt 1): 143‐158, 2000.
 433.Zhang W, Carreno FR, Cunningham JT, Mifflin SW. Chronic sustained and intermittent hypoxia reduce function of ATP‐sensitive potassium channels in nucleus of the solitary tract. Am J Physiol Regul Integr Comp Physiol 295(5): R1555‐R1562, 2008.
 434.Zhang W, Carreno FR, Cunningham JT, Mifflin SW. Chronic sustained hypoxia enhances both evoked EPSCs and norepinephrine inhibition of glutamatergic afferent inputs in the nucleus of the solitary tract. J Neurosci 29(10): 3093‐3102, 2009.
 435.Zhang W, Fan Z, Han E, Hou R, Zhang L, Galaverni M, Huang J, Liu H, Silva P, Li P, Pollinger JP, Du L, Zhang X, Yue B, Wayne RK, Zhang Z. Hypoxia adaptations in the grey wolf (Canis lupus chanco) from Qinghai‐Tibet Plateau. PLoS Genet 10(7): e1004466, 2014.
 436.Zhang W, Mifflin SW. Excitatory amino acid receptors within NTS mediate arterial chemoreceptor reflexes in rats. Am J Physiol 265(2 Pt 2): H770‐H773, 1993.
 437.Zhang Y, McGuire M, White DP, Ling L. Serotonin receptor subtypes involved in vagus nerve stimulation‐induced phrenic long‐term facilitation in rats. Neurosci Lett 363(2): 108‐111, 2004.
 438.Zhuang J, Droma T, Sun S, Janes C, McCullough RE, McCullough RG, Cymerman A, Huang SY, Reeves JT, Moore LG. Hypoxic ventilatory responsiveness in Tibetan compared with Han residents of 3,658 m. J Appl Physiol 74(1): 303‐311, 1993.
 439.Zinkernagel AS, Johnson RS, Nizet V. Hypoxia inducible factor (HIF) function in innate immunity and infection. J Mol Med (Berl) 85(12): 1339‐1346, 2007.
 440.Zucker RS, Regehr WG. Short‐term synaptic plasticity. Annu Rev Physiol 64: 355‐405, 2002.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Matthew E. Pamenter, Frank L. Powell. Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis. Compr Physiol 2016, 6: 1345-1385. doi: 10.1002/cphy.c150026