Comprehensive Physiology Wiley Online Library

Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles

Full Article on Wiley Online Library



ABSTRACT

Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open‐state‐probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage‐gated K+ (KV) channels, large‐conductance Ca2+‐activated K+ (BKCa) channels, strong‐inward‐rectifier K+ (KIR) channels, ATP‐sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5‐trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure‐induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485‐581, 2017.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Principal ion channels expressed in vascular SMCs. In the plasma membrane (gray), the following channels are expressed: at least two members of the inward‐rectifier K+ channel (KIR) family; large‐conductance, Ca2+‐activated K+ channels (KCa1.1); at least six members of the voltage‐dependent K+ channel (Kv) family; at least two voltage‐dependent Ca2+ channels (Cav); and a number of TRP channels. In the endoplasmic reticular membrane (brown), RyRs and IP3R are expressed.
Figure 2. Figure 2. Pore‐forming subunits of ion channels. All ion channels share a similar topology, wherein the S5 and S6 transmembrane domains (M1 and M2 for KIR channels) form the ion‐permeable pore. These two domains are linked by a pore‐loop (P‐loop), which contains multiple residues responsible for regulating pore function and ion selectivity. See text for details.
Figure 3. Figure 3. Regulation of CaV1.2 channels by vasoconstrictors and vasodilators. Schematic of the plasma membrane of a vascular SMC showing, from left to right, a CaV1.2 channel, a Gq‐protein coupled receptor (GqPCR), an α5β1 Integrin and a Gs‐protein coupled receptor (GSPCR). Black lines and arrows indicate stimulation, activativation or increases; red lines indicate inhibition. Pathways to the right of the CaV1.2 activate these channels, while those to the left are inhibitory. Membrane depolarization due to opening of membrane channels that conduct Na+, Ca2+, or Cl or due to closue of K+ channels represents the major stimulus for opening CaV1.2 channels. Vasoconstictor agonists that act through GqPCRs (norepinephrine, endothelin, angiotensin II, 5‐HT, etc.) are coupled to phospholipase Cβ (PLCβ), which acts on q membrane phophoinositol bisphosphate to form diacylglycerol (DAG), which, in the presence of Ca2+, activates PKC. PKC phosphorylates CaV1.2 to increase its open‐state probability. GqPCR activation can also stimulate phosphatidyl inostitol trisphosphate kinase (PIP3K), which acts on novel PKCs to activate the tyrosine kinase SRC, as shown. SRC phosphorylates CaV1.2 channels, increasing their activity. Activation of CaV1.2 by PIP3K independent of PKC and SRC has also been reported. SRC can also be activated by activated inetgrins as shown, also increasing CaV1.2 activity. Agonists for GsPCR (isoproterenol, adenosine, prostacyclin, CGRP, etc.) activate adenylate cyclase (AC) to increase the formation of cAMP which activates PKA. PKA phosphorylates CaV1.2 to increase the activity of this channel. Membrane hyperpolarization due to opening of K+ channels or closure of channels conducting Na+, Ca2+, or Cl represents the main stimulus for deactivation of CaV1.2 channels. In addition, nitric oxide (NO) acting through soluble guanylate cyclase (sGC), and other agents that increase cGMP, activate protein kinase G (PKG) which can phosphorylate CaV1.2 channels to decrease their activity. In addition, high levels of cAMP can transactivate PKG accounting for the inhibitory effects of high levels of activation of GsPCR or direct activators of AC such as forskolin on CaV1.2 channel activity. See text for details and references.
Figure 4. Figure 4. Calcium signaling in feed arteries versus downstream arterioles. Feed arteries display both Ca2+ sparks and Ca2+ waves, as shown. Ca2+ sparks in feed arteries arise from RyRs that may be activated by Ca2+ influx through CaV 3.2 channels via Ca2+‐induced Ca2+ release. In feed arteries, Ca2+ sparks activate BKCa channels, hyperpolarizing the membrane and deactivating CaV 1.2 channels, which contributes to the negative feedback regulation of myogenic tone. Ca2+ waves in feed arteries depend on the activity of both RyRs and IP3Rs. In arterioles, Ca2+ influx through CaV 1.2 and other VGCCs provides the Ca2+ signal for activation of BKCa channels and the negative feedback regulation of membrane potential and VGCC activity. Ca2+ waves in arterioles depend solely on the activity of IP3R. RyRs are expressed in arteriolar SMCs but are silent under resting conditions. See text for details.
Figure 5. Figure 5. Regulation of KV channels by vasoconstrictors and vasodilators. Schematic of the plasma membrane of a vascular SMC showing, from left to right, a Gq‐protein‐coupled receptor (GqPCR), associated G‐proteins and phospholipase C‐β (PLCβ); a generic KV channel; and a Gs‐protein‐coupled receptor, associated G‐proteins and adenylate cyclase (AC). Black lines and arrows indicate stimulation, activation or increases; red lines indicate inhibition. Pathways to the right of the KV channel activate these channels, while those to the left are inhibitory. Membrane depolarization due to opening of membrane channels that conduct Na+, Ca2+, or Cl or due to closure of other K+ channels represents the major stimulus for opening KV channels. Vasodilator agonists that act at GsPCR (isoproterenol, adenosine, prostacyclin, CGRP, etc.), stimulate the formation of cAMP, activation of PKA and phosphorylation of KV channels leading to their activation. In addition, the Gβγ‐subunits can directly interact with some KV channels also leading to their activation. NO, acting through sGC, and other vasodilators that stimulate the production of cGMP, activeate PKG, phosphorylating KV channels and increasing their activity. Other vasodilators, such as H2S and H2O2 also can activate KV channels as shown. Hyperpolarization, induced by opening of other K+ channels or closure of channels conducting Na+, Ca2+, or Cl, represents the major stimulus for closure of KV channels. In addition, vasoconstrictors that act through Gq‐coupled receptors can inhibit KV channels through several mecahisms including: (A) the activation of PLCβ, the formation of DAG and activation of PKC; (B) PKC‐dependent activation of the tyrosine kinase SRC; (C) Rho‐guanine‐nuclotide exchange factor (Rho‐GEF)‐dependent activation of RhoA and Rho kinase (Rho K); and (D) agonist‐induced increases in intracellular Ca2+. See text for more information.
Figure 6. Figure 6. Regulation of BKCa channels by vasoconstrictors and vasodilators. Schematic of the plasma membrane of a vascular SMC showing, from left to right, a Gq‐protein‐coupled receptor (GqPCR), associated G‐proteins and PLCβ; a BKCa channel; and a Gs‐protein‐coupled receptor, associated G‐proteins and AC. Black lines and arrows indicate stimulation, activation or increases; red lines indicate inhibition. Pathways to the right of the BKCa channel activate these channels, while those to the left are inhibitory. Membrane depolarization due to opening of membrane channels that conduct Na+, Ca2+, or Cl or due to closure of other K+ channels as well as increases in subsarcolemmal Ca2+ are the major stimulae for opening BKCa channels. Vasodilator agonists that act at GsPCR (isoproterenol, adenosine, prostacyclin, CGRP, etc.), stimulate the formation of cAMP, activation of PKA and phosphorylation of BKCa channels leading to their activation. Vasodilators that lead to increased production of cAMP als may active BKCa channels through exchange EPACs. NO, acting through sGC, and other vasodilators that stimulate the production of cGMP, activate PKG, phosphorylating BKCa channels and increasing their activity. Other vasodilators, such as H2S and H2O2 also can activate KV channels as shown. NO or carbon monoxide (CO) also may directly interact with BKCa channels or associated heme‐proteins to increase channel activity. BKCa channels also are activated by H2O2. Conversely, hyperpolarization, induced by opening of other K+ channels or closure of channels conducting Na+, Ca2+, or Cl, and/or a fall in subsarcolemmal Ca2+ represent the major stimulae for closure of KV channels. In addition, vasoconstrictors that act through Gq‐coupled receptors can inhibit BKCa channels through activation of PLCβ, the formation of diacylglycerol (DAG) and activation of PKC. See text for more information.
Figure 7. Figure 7. Regulation of KIR channels by vasoconstrictors and vasodilators. Schematic of the plasma membrane of a vascular SMC showing, from left to right, a Gq‐protein‐coupled receptor (GqPCR), associated G‐proteins and PLCβ; a KIR channel; and a Gs‐protein‐coupled receptor, associated G‐proteins and AC. Black lines and arrows indicate stimulation, activation or increases; red lines indicate inhibition. Hyperpolarization induced by the activation of other K+ channels, or the closure of channels conducting Na+, Ca2+, or Cl and/or increases in extracellular K+ concentration are the major stimuli for activation of vascular SMC KIR channels. In addition, vasodilators that act at GsPCRs (isoproterenol, adenosine, prostacyclin, CGRP, etc.), stimulate AC, increase the production of cAMP and activate PKA lead to activation of KIR channels. Similarly, NO, acting through sGC to increase production of cGMP, activated protein kinase G which can activate KIR channels. Conversely, membrane depolarization due to closure of other K+ channels or opening of channels that conduct Na+, Ca2+, or Cl will close KIR channels. Vasoconstrictors that act through GqPCRs (norepinephrine, endothelin, angiotensin II, 5‐HT, etc.) to activate PLCβ, the production of DAG and PKC activation lead to closure of KIR channels. See text for more information.
Figure 8. Figure 8. Regulation of KATP channels by vasoconstrictors and vasodilators. Schematic of the plasma membrane of a vascular SMC showing, from left to right, a Gq‐protein‐coupled receptor (GqPCR), associated G‐proteins and PLCβ; a KATP channel; and a Gs‐protein‐coupled receptor, associated G‐proteins and AC. Black lines and arrows indicate stimulation, activation or increases; red lines indicate inhibition. These channels can be activated by a fall in intracellular ATP in the environment of these channels. In addition, vasodilators that act at GSPCRs (isoproterenol, adenosine, prostacyclin, CGRP, etc.), stimulate AC, increase the production of cAMP and activate PKA lead to activation of KATP channels. Similarly, NO, acting through sGC to increase production of cGMP, activating PKG which can activate KATP channels. These channels also can be activated by H2S, as shown. Conversely, increases in ATP close KATP channels. Vasoconstrictors that act through GqPCRs (norepinephrine, endothelin, angiotensin II, serotonin, etc.) to activate PLCβ, the production of DAG and PKC activation will lead to closure of KIR channels. Increases in intracellular Ca2+ that accompany SMC stimulation by vasoconstrictors activates protein phosphatase 2B (calcineurin), which also closes KATP channels by dephosphorylation. See text for more information.
Figure 9. Figure 9. Regulation of RyRs. Schematic of the plasma membrane and the ER membrane of a vascular SMC showing, from left to right in the plasma membrane, a BKCa channel and a Gs‐protein‐coupled receptor, associated G‐proteins and AC, and a RyR in the membrane of the ER. Moderate increases in cytoplasmic Ca2+ in the environment of a RyR, or increases in the concentration of Ca2+ in the lumen of the ER are the primary stimulae for activation of RyRs. Activation of RyR by cytosolic Ca2+ is mediated by direct actions of Ca2+ on the channels, through activation of calcium‐calmodulin‐dependent protein kinase (CaMK) and phosphorylation of the channels, or interactions of Ca2+ with the Ca2+‐binding protein S100A which competes with calmodulin for binding to the RyR. Vasodilators that act at GsPCRs (isoproterenol, adenosine, prostacyclin, CGRP, etc.), activate AC to increase production of cAMP which then can activate PKA to phosphorylate RyRs and increase their activity increasing the frequency of production of Ca2+ sparks. Elevated cAMP can also increase RyR activity through activation of EPACs. The increase in RyR‐depedent Ca2+ spark activity is transduced into membrane hyperpolarization and vasodilation through activation of overlying BKCa channels, as shown. Conversely, high levels of intracellular Ca2+ inhibit RyR activity through mechanisms involving the Ca2+‐binding proteins sorcin (SORC) or calmodulin (CaM). The activity of RyRs also may be decreased by interactions with FK‐506 binding proteins 12 and 12A FKBPs. See text for more information.
Figure 10. Figure 10. Regulation of IP3 receptors by vasoconstrictors and vasodilators. Schematic of the plasma membrane and the ER membrane of a vascular SMC showing, from left to right in the plasma membrane, a Gs‐protein‐coupled receptor, associated G‐proteins and AC, a BKCa channel, a TRPC3 channel and a Gq‐protein‐coupled receptor (GqPCR), associated G‐proteins and phospholipase C‐β (PLCβ), and an IP3 receptor (IP3R) in the membrane of the ER. Increases in IP3 and moderate increases in cytoplasmic Ca2+ in the environment of an IP3R are the primary stimulae for activation. Activation of IP3Rs by cytosolic Ca2+ is mediated by direct actions of Ca2+ on the channels, or through activation of calcium‐calmodulin‐dependent protein kinase (CaMK) and phosphorylation of the channels. Vasoconstrictors acting through GqPCRs and activation of PLCβ increase the production of IP3, stimulating Ca2+ release through IP3R. Activated IP3Rs have been shown to physically interact with, and activate plasma membrane BKCa and TRPC3 channels, as shown. Conversely, high levels of intracellular Ca2+ inhibit IP3R activity through mechanisms involving the Ca2+ binding protein, CaM. NO, through activation of soluble guanylate cyclase, increased production of cGMP and activation of PKG phosphorylates IRAG which inhibits IP3R activity. Vasodilators that act at GsPCRs (isoproterenol, adenosine, prostacyclin, CGRP, etc.), activate AC to increase producting of cAMP which then can activate PKA to phosphorylate IP3Rs to decrease their activity. See text for more information.
Figure 11. Figure 11. TRP channel regulation of myogenic and agonist‐induced smooth muscle contractility. Increased intravascular pressure activates a stretch‐sensitive Gq‐protein‐coupled‐receptor (GqPCR; e.g., angiotensin type 1 receptor, AT1R), which then causes the hydrolysis of PIP2 by phospholipase C‐ γ1 (PLCγ1) to form DAG and IP3. DAG activates TRPC6 channels to increase cytosolic Ca2+ concentration, combined with IP3‐mediated Ca2+ release through IP3Rs in the ER. This local increase in cytosolic Ca2+ concentration activates TRPM4‐dependent Na+ influx, membrane depolarization, and opening of Cav1.2 channels. This results in SMC contraction (myogenic tone). A similar mechanism is activated in response to a GqPCR agonist, through activation of PLCβ and TRPC3 channels. Figure adapted, with permission, from Earley and Brayden (). See text for more information.


Figure 1. Principal ion channels expressed in vascular SMCs. In the plasma membrane (gray), the following channels are expressed: at least two members of the inward‐rectifier K+ channel (KIR) family; large‐conductance, Ca2+‐activated K+ channels (KCa1.1); at least six members of the voltage‐dependent K+ channel (Kv) family; at least two voltage‐dependent Ca2+ channels (Cav); and a number of TRP channels. In the endoplasmic reticular membrane (brown), RyRs and IP3R are expressed.


Figure 2. Pore‐forming subunits of ion channels. All ion channels share a similar topology, wherein the S5 and S6 transmembrane domains (M1 and M2 for KIR channels) form the ion‐permeable pore. These two domains are linked by a pore‐loop (P‐loop), which contains multiple residues responsible for regulating pore function and ion selectivity. See text for details.


Figure 3. Regulation of CaV1.2 channels by vasoconstrictors and vasodilators. Schematic of the plasma membrane of a vascular SMC showing, from left to right, a CaV1.2 channel, a Gq‐protein coupled receptor (GqPCR), an α5β1 Integrin and a Gs‐protein coupled receptor (GSPCR). Black lines and arrows indicate stimulation, activativation or increases; red lines indicate inhibition. Pathways to the right of the CaV1.2 activate these channels, while those to the left are inhibitory. Membrane depolarization due to opening of membrane channels that conduct Na+, Ca2+, or Cl or due to closue of K+ channels represents the major stimulus for opening CaV1.2 channels. Vasoconstictor agonists that act through GqPCRs (norepinephrine, endothelin, angiotensin II, 5‐HT, etc.) are coupled to phospholipase Cβ (PLCβ), which acts on q membrane phophoinositol bisphosphate to form diacylglycerol (DAG), which, in the presence of Ca2+, activates PKC. PKC phosphorylates CaV1.2 to increase its open‐state probability. GqPCR activation can also stimulate phosphatidyl inostitol trisphosphate kinase (PIP3K), which acts on novel PKCs to activate the tyrosine kinase SRC, as shown. SRC phosphorylates CaV1.2 channels, increasing their activity. Activation of CaV1.2 by PIP3K independent of PKC and SRC has also been reported. SRC can also be activated by activated inetgrins as shown, also increasing CaV1.2 activity. Agonists for GsPCR (isoproterenol, adenosine, prostacyclin, CGRP, etc.) activate adenylate cyclase (AC) to increase the formation of cAMP which activates PKA. PKA phosphorylates CaV1.2 to increase the activity of this channel. Membrane hyperpolarization due to opening of K+ channels or closure of channels conducting Na+, Ca2+, or Cl represents the main stimulus for deactivation of CaV1.2 channels. In addition, nitric oxide (NO) acting through soluble guanylate cyclase (sGC), and other agents that increase cGMP, activate protein kinase G (PKG) which can phosphorylate CaV1.2 channels to decrease their activity. In addition, high levels of cAMP can transactivate PKG accounting for the inhibitory effects of high levels of activation of GsPCR or direct activators of AC such as forskolin on CaV1.2 channel activity. See text for details and references.


Figure 4. Calcium signaling in feed arteries versus downstream arterioles. Feed arteries display both Ca2+ sparks and Ca2+ waves, as shown. Ca2+ sparks in feed arteries arise from RyRs that may be activated by Ca2+ influx through CaV 3.2 channels via Ca2+‐induced Ca2+ release. In feed arteries, Ca2+ sparks activate BKCa channels, hyperpolarizing the membrane and deactivating CaV 1.2 channels, which contributes to the negative feedback regulation of myogenic tone. Ca2+ waves in feed arteries depend on the activity of both RyRs and IP3Rs. In arterioles, Ca2+ influx through CaV 1.2 and other VGCCs provides the Ca2+ signal for activation of BKCa channels and the negative feedback regulation of membrane potential and VGCC activity. Ca2+ waves in arterioles depend solely on the activity of IP3R. RyRs are expressed in arteriolar SMCs but are silent under resting conditions. See text for details.


Figure 5. Regulation of KV channels by vasoconstrictors and vasodilators. Schematic of the plasma membrane of a vascular SMC showing, from left to right, a Gq‐protein‐coupled receptor (GqPCR), associated G‐proteins and phospholipase C‐β (PLCβ); a generic KV channel; and a Gs‐protein‐coupled receptor, associated G‐proteins and adenylate cyclase (AC). Black lines and arrows indicate stimulation, activation or increases; red lines indicate inhibition. Pathways to the right of the KV channel activate these channels, while those to the left are inhibitory. Membrane depolarization due to opening of membrane channels that conduct Na+, Ca2+, or Cl or due to closure of other K+ channels represents the major stimulus for opening KV channels. Vasodilator agonists that act at GsPCR (isoproterenol, adenosine, prostacyclin, CGRP, etc.), stimulate the formation of cAMP, activation of PKA and phosphorylation of KV channels leading to their activation. In addition, the Gβγ‐subunits can directly interact with some KV channels also leading to their activation. NO, acting through sGC, and other vasodilators that stimulate the production of cGMP, activeate PKG, phosphorylating KV channels and increasing their activity. Other vasodilators, such as H2S and H2O2 also can activate KV channels as shown. Hyperpolarization, induced by opening of other K+ channels or closure of channels conducting Na+, Ca2+, or Cl, represents the major stimulus for closure of KV channels. In addition, vasoconstrictors that act through Gq‐coupled receptors can inhibit KV channels through several mecahisms including: (A) the activation of PLCβ, the formation of DAG and activation of PKC; (B) PKC‐dependent activation of the tyrosine kinase SRC; (C) Rho‐guanine‐nuclotide exchange factor (Rho‐GEF)‐dependent activation of RhoA and Rho kinase (Rho K); and (D) agonist‐induced increases in intracellular Ca2+. See text for more information.


Figure 6. Regulation of BKCa channels by vasoconstrictors and vasodilators. Schematic of the plasma membrane of a vascular SMC showing, from left to right, a Gq‐protein‐coupled receptor (GqPCR), associated G‐proteins and PLCβ; a BKCa channel; and a Gs‐protein‐coupled receptor, associated G‐proteins and AC. Black lines and arrows indicate stimulation, activation or increases; red lines indicate inhibition. Pathways to the right of the BKCa channel activate these channels, while those to the left are inhibitory. Membrane depolarization due to opening of membrane channels that conduct Na+, Ca2+, or Cl or due to closure of other K+ channels as well as increases in subsarcolemmal Ca2+ are the major stimulae for opening BKCa channels. Vasodilator agonists that act at GsPCR (isoproterenol, adenosine, prostacyclin, CGRP, etc.), stimulate the formation of cAMP, activation of PKA and phosphorylation of BKCa channels leading to their activation. Vasodilators that lead to increased production of cAMP als may active BKCa channels through exchange EPACs. NO, acting through sGC, and other vasodilators that stimulate the production of cGMP, activate PKG, phosphorylating BKCa channels and increasing their activity. Other vasodilators, such as H2S and H2O2 also can activate KV channels as shown. NO or carbon monoxide (CO) also may directly interact with BKCa channels or associated heme‐proteins to increase channel activity. BKCa channels also are activated by H2O2. Conversely, hyperpolarization, induced by opening of other K+ channels or closure of channels conducting Na+, Ca2+, or Cl, and/or a fall in subsarcolemmal Ca2+ represent the major stimulae for closure of KV channels. In addition, vasoconstrictors that act through Gq‐coupled receptors can inhibit BKCa channels through activation of PLCβ, the formation of diacylglycerol (DAG) and activation of PKC. See text for more information.


Figure 7. Regulation of KIR channels by vasoconstrictors and vasodilators. Schematic of the plasma membrane of a vascular SMC showing, from left to right, a Gq‐protein‐coupled receptor (GqPCR), associated G‐proteins and PLCβ; a KIR channel; and a Gs‐protein‐coupled receptor, associated G‐proteins and AC. Black lines and arrows indicate stimulation, activation or increases; red lines indicate inhibition. Hyperpolarization induced by the activation of other K+ channels, or the closure of channels conducting Na+, Ca2+, or Cl and/or increases in extracellular K+ concentration are the major stimuli for activation of vascular SMC KIR channels. In addition, vasodilators that act at GsPCRs (isoproterenol, adenosine, prostacyclin, CGRP, etc.), stimulate AC, increase the production of cAMP and activate PKA lead to activation of KIR channels. Similarly, NO, acting through sGC to increase production of cGMP, activated protein kinase G which can activate KIR channels. Conversely, membrane depolarization due to closure of other K+ channels or opening of channels that conduct Na+, Ca2+, or Cl will close KIR channels. Vasoconstrictors that act through GqPCRs (norepinephrine, endothelin, angiotensin II, 5‐HT, etc.) to activate PLCβ, the production of DAG and PKC activation lead to closure of KIR channels. See text for more information.


Figure 8. Regulation of KATP channels by vasoconstrictors and vasodilators. Schematic of the plasma membrane of a vascular SMC showing, from left to right, a Gq‐protein‐coupled receptor (GqPCR), associated G‐proteins and PLCβ; a KATP channel; and a Gs‐protein‐coupled receptor, associated G‐proteins and AC. Black lines and arrows indicate stimulation, activation or increases; red lines indicate inhibition. These channels can be activated by a fall in intracellular ATP in the environment of these channels. In addition, vasodilators that act at GSPCRs (isoproterenol, adenosine, prostacyclin, CGRP, etc.), stimulate AC, increase the production of cAMP and activate PKA lead to activation of KATP channels. Similarly, NO, acting through sGC to increase production of cGMP, activating PKG which can activate KATP channels. These channels also can be activated by H2S, as shown. Conversely, increases in ATP close KATP channels. Vasoconstrictors that act through GqPCRs (norepinephrine, endothelin, angiotensin II, serotonin, etc.) to activate PLCβ, the production of DAG and PKC activation will lead to closure of KIR channels. Increases in intracellular Ca2+ that accompany SMC stimulation by vasoconstrictors activates protein phosphatase 2B (calcineurin), which also closes KATP channels by dephosphorylation. See text for more information.


Figure 9. Regulation of RyRs. Schematic of the plasma membrane and the ER membrane of a vascular SMC showing, from left to right in the plasma membrane, a BKCa channel and a Gs‐protein‐coupled receptor, associated G‐proteins and AC, and a RyR in the membrane of the ER. Moderate increases in cytoplasmic Ca2+ in the environment of a RyR, or increases in the concentration of Ca2+ in the lumen of the ER are the primary stimulae for activation of RyRs. Activation of RyR by cytosolic Ca2+ is mediated by direct actions of Ca2+ on the channels, through activation of calcium‐calmodulin‐dependent protein kinase (CaMK) and phosphorylation of the channels, or interactions of Ca2+ with the Ca2+‐binding protein S100A which competes with calmodulin for binding to the RyR. Vasodilators that act at GsPCRs (isoproterenol, adenosine, prostacyclin, CGRP, etc.), activate AC to increase production of cAMP which then can activate PKA to phosphorylate RyRs and increase their activity increasing the frequency of production of Ca2+ sparks. Elevated cAMP can also increase RyR activity through activation of EPACs. The increase in RyR‐depedent Ca2+ spark activity is transduced into membrane hyperpolarization and vasodilation through activation of overlying BKCa channels, as shown. Conversely, high levels of intracellular Ca2+ inhibit RyR activity through mechanisms involving the Ca2+‐binding proteins sorcin (SORC) or calmodulin (CaM). The activity of RyRs also may be decreased by interactions with FK‐506 binding proteins 12 and 12A FKBPs. See text for more information.


Figure 10. Regulation of IP3 receptors by vasoconstrictors and vasodilators. Schematic of the plasma membrane and the ER membrane of a vascular SMC showing, from left to right in the plasma membrane, a Gs‐protein‐coupled receptor, associated G‐proteins and AC, a BKCa channel, a TRPC3 channel and a Gq‐protein‐coupled receptor (GqPCR), associated G‐proteins and phospholipase C‐β (PLCβ), and an IP3 receptor (IP3R) in the membrane of the ER. Increases in IP3 and moderate increases in cytoplasmic Ca2+ in the environment of an IP3R are the primary stimulae for activation. Activation of IP3Rs by cytosolic Ca2+ is mediated by direct actions of Ca2+ on the channels, or through activation of calcium‐calmodulin‐dependent protein kinase (CaMK) and phosphorylation of the channels. Vasoconstrictors acting through GqPCRs and activation of PLCβ increase the production of IP3, stimulating Ca2+ release through IP3R. Activated IP3Rs have been shown to physically interact with, and activate plasma membrane BKCa and TRPC3 channels, as shown. Conversely, high levels of intracellular Ca2+ inhibit IP3R activity through mechanisms involving the Ca2+ binding protein, CaM. NO, through activation of soluble guanylate cyclase, increased production of cGMP and activation of PKG phosphorylates IRAG which inhibits IP3R activity. Vasodilators that act at GsPCRs (isoproterenol, adenosine, prostacyclin, CGRP, etc.), activate AC to increase producting of cAMP which then can activate PKA to phosphorylate IP3Rs to decrease their activity. See text for more information.


Figure 11. TRP channel regulation of myogenic and agonist‐induced smooth muscle contractility. Increased intravascular pressure activates a stretch‐sensitive Gq‐protein‐coupled‐receptor (GqPCR; e.g., angiotensin type 1 receptor, AT1R), which then causes the hydrolysis of PIP2 by phospholipase C‐ γ1 (PLCγ1) to form DAG and IP3. DAG activates TRPC6 channels to increase cytosolic Ca2+ concentration, combined with IP3‐mediated Ca2+ release through IP3Rs in the ER. This local increase in cytosolic Ca2+ concentration activates TRPM4‐dependent Na+ influx, membrane depolarization, and opening of Cav1.2 channels. This results in SMC contraction (myogenic tone). A similar mechanism is activated in response to a GqPCR agonist, through activation of PLCβ and TRPC3 channels. Figure adapted, with permission, from Earley and Brayden (). See text for more information.
References
 1.Aalkjaer C, Nilsson H. Vasomotion: Cellular background for the oscillator and for the synchronization of smooth muscle cells. Br J Pharmacol 144: 605‐616, 2005.
 2.Abbink EJ, Wollersheim H, Netten PM, Russel FG, Lutterman JA, Smits P. Microcirculatory effects of KATP channel blockade by sulphonylurea derivatives in humans. Eur J Clin Invest 32: 163‐171, 2002.
 3.Abd El‐Rahman RR, Harraz OF, Brett SE, Anfinogenova Y, Mufti RE, Goldman D, Welsh DG. Identification of L‐ and T‐type Ca2+ channels in rat cerebral arteries: Role in myogenic tone development. Am J Physiol Heart Circ Physiol 304: H58‐H71, 2013.
 4.Abdel‐Latif AA. Cross talk between cyclic nucleotides and polyphosphoinositide hydrolysis, protein kinases, and contraction in smooth muscle. Exp Biol Med (Maywood) 226: 153‐163, 2001.
 5.Abdi A, Mazzocco C, Legeron FP, Yvert B, Macrez N, Morel JL. TRPP2 modulates ryanodine‐ and inositol‐1,4,5‐trisphosphate receptors‐dependent Ca2+ signals in opposite ways in cerebral arteries. Cell Calcium 58: 467‐475, 2015.
 6.Abou‐Saleh H, Pathan AR, Daalis A, Hubrack S, Abou‐Jassoum H, Al‐Naeimi H, Rusch NJ, Machaca K. Inositol 1,4,5‐trisphosphate (IP3) receptor up‐regulation in hypertension is associated with sensitization of Ca2+ release and vascular smooth muscle contractility. J Biol Chem 288: 32941‐32951, 2013.
 7.Abraham NG, Drummond GS, Lutton JD, Kappas A. The biological significance and physiological role of heme oxygenase. Cell Physiol Biochem 6: 129‐168, 1996.
 8.Abramowitz J, Birnbaumer L. Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J 23: 297‐328, 2009.
 9.Adams DJ. Ionic channels in vascular endothelial cells. Trends Cardiovasc Med 4: 18‐26, 1994.
 10.Adebiyi A, McNally EM, Jaggar JH. Vasodilation induced by oxygen/glucose deprivation is attenuated in cerebral arteries of SUR2 null mice. Am J Physiol Heart Circ Physiol 301: H1360‐H1368, 2011.
 11.Adebiyi A, Narayanan D, Jaggar JH. Caveolin‐1 assembles type 1 inositol 1,4,5‐trisphosphate receptors and canonical transient receptor potential 3 channels into a functional signaling complex in arterial smooth muscle cells. J Biol Chem 286: 4341‐4348, 2011.
 12.Adebiyi A, Zhao G, Narayanan D, Thomas‐Gatewood CM, Bannister JP, Jaggar JH. Isoform‐selective physical coupling of TRPC3 channels to IP3 receptors in smooth muscle cells regulates arterial contractility. Circ Res 106: 1603‐1612, 2010.
 13.Adelman JP, Shen KZ, Kavanaugh MP, Warren RA, Wu YN, Lagrutta A, Bond CT, North RA. Calcium‐activated potassium channels expressed from cloned complementary DNAs. Neuron 9: 209‐216, 1992.
 14.Aghdasi B, Ye K, Resnick A, Huang A, Ha HC, Guo X, Dawson TM, Dawson VL, Snyder SH. FKBP12, the 12‐kDa FK506‐binding protein, is a physiologic regulator of the cell cycle. Proc Natl Acad Sci U S A 98: 2425‐2430, 2001.
 15.Aguilar‐Bryan L, Clement JPt, Gonzalez G, Kunjilwar K, Babenko A, Bryan J. Toward understanding the assembly and structure of KATP channels. Physiol Rev 78: 227‐245, 1998.
 16.Ahern GP, Hsu SF, Jackson MB. Direct actions of nitric oxide on rat neurohypophysial K+ channels. J Physiol 520(Pt 1): 165‐176, 1999.
 17.Ahmad K, Lewis JJ. The effects of gallamine, carbachol, nicotine, ryanodine and protoveratrine A and B upon flux of calcium‐47 in frog skeletal muscle. J Pharm Pharmacol 13: 383‐384, 1961.
 18.Aiello EA, Clement‐Chomienne O, Sontag DP, Walsh MP, Cole WC. Protein kinase C inhibits delayed rectifier K+ current in rabbit vascular smooth muscle cells. Am J Physiol 271: H109‐H119, 1996.
 19.Aiello EA, Malcolm AT, Walsh MP, Cole WC. Beta‐adrenoceptor activation and PKA regulate delayed rectifier K+ channels of vascular smooth muscle cells. Am J Physiol 275: H448‐H459, 1998.
 20.Aiello EA, Walsh MP, Cole WC. Isoproterenol and forskolin increase and PKI inhibits delayed rectifier K+ current in vascular myocytes isolated from rabbit coronary artery and portal vein. Can J Physiol Pharmacol 72: 47, 1994.
 21.Aiello EA, Walsh MP, Cole WC. Phosphorylation by protein kinase A enhances delayed rectifier K+ current in rabbit vascular smooth muscle cells. Am J Physiol 268: H926‐H934, 1995.
 22.Aihara Y, Jahromi BS, Yassari R, Nikitina E, Agbaje‐Williams M, Macdonald RL. Molecular profile of vascular ion channels after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 24: 75‐83, 2004.
 23.Aiken SP, Zaczek R, Brown BS. Pharmacology of the neurotransmitter release enhancer linopirdine (DuP 996), and insights into its mechanism of action. Adv Pharmacol 35: 349‐384, 1996.
 24.Akatsuka Y, Egashira K, Katsuda Y, Narishige T, Ueno H, Shimokawa H, Takeshita A. ATP sensitive potassium channels are involved in adenosine A2 receptor mediated coronary vasodilatation in the dog. Cardiovasc Res 28: 906‐911, 1994.
 25.Akbulut Y, Gaunt HJ, Muraki K, Ludlow MJ, Amer MS, Bruns A, Vasudev NS, Radtke L, Willot M, Hahn S, Seitz T, Ziegler S, Christmann M, Beech DJ, Waldmann H. (−)‐Englerin A is a potent and selective activator of TRPC4 and TRPC5 calcium channels. Angew Chem Int Ed Engl 54: 3787‐3791, 2015.
 26.Alagem N, Dvir M, Reuveny E. Mechanism of Ba(2+) block of a mouse inwardly rectifying K+ channel: Differential contribution by two discrete residues. J Physiol 534: 381‐393, 2001.
 27.Albarwani S, Al‐Siyabi S, Baomar H, Hassan MO. Exercise training attenuates ageing‐induced BKCa channel downregulation in rat coronary arteries. Exp Physiol 95: 746‐755, 2010.
 28.Albarwani S, Nemetz LT, Madden JA, Tobin AA, England SK, Pratt PF, Rusch NJ. Voltage‐gated K+ channels in rat small cerebral arteries: Molecular identity of the functional channels. J Physiol 551: 751‐763, 2003.
 29.Albarwani S, Robertson BE, Nye PC, Kozlowski RZ. Biophysical properties of Ca(2+)‐ and Mg‐ATP‐activated K+ channels in pulmonary arterial smooth muscle cells isolated from the rat. Pflugers Arch 428: 446‐454, 1994.
 30.Albert AP, Large WA. Store‐operated Ca2+‐permeable non‐selective cation channels in smooth muscle cells. Cell Calcium 33: 345‐356, 2003.
 31.Albert AP, Large WA. Synergism between inositol phosphates and diacylglycerol on native TRPC6‐like channels in rabbit portal vein myocytes. J Physiol 552: 789‐795, 2003.
 32.Albert AP, Piper AS, Large WA. Role of phospholipase D and diacylglycerol in activating constitutive TRPC‐like cation channels in rabbit ear artery myocytes. J Physiol 566: 769‐780, 2005.
 33.Albert AP, Saleh SN, Large WA. Inhibition of native TRPC6 channel activity by phosphatidylinositol 4,5‐bisphosphate in mesenteric artery myocytes. J Physiol 586: 3087‐3095, 2008.
 34.Alioua A, Huggins JP, Rousseau E. PKG‐I alpha phosphorylates the alpha‐subunit and upregulates reconstituted GKCa channels from tracheal smooth muscle. Am J Physiol 268: L1057‐L1063, 1995.
 35.Alioua A, Tanaka Y, Wallner M, Hofmann F, Ruth P, Meera P, Toro L. The large conductance, voltage‐dependent, and calcium‐sensitive K+ channel, Hslo, is a target of cGMP‐dependent protein kinase phosphorylation in vivo. J Biol Chem 273: 32950‐32956, 1998.
 36.Allen T, Iftinca M, Cole WC, Plane F. Smooth muscle membrane potential modulates endothelium‐dependent relaxation of rat basilar artery via myo‐endothelial gap junctions. J Physiol 545: 975‐986, 2002.
 37.Almassy J, Begenisich T. The LRRC26 protein selectively alters the efficacy of BK channel activators. Mol Pharmacol 81: 21‐30, 2012.
 38.Almeida MC, Hew‐Butler T, Soriano RN, Rao S, Wang W, Wang J, Tamayo N, Oliveira DL, Nucci TB, Aryal P, Garami A, Bautista D, Gavva NR, Romanovsky AA. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature. J Neurosci 32: 2086‐2099, 2012.
 39.Amberg GC, Bonev AD, Rossow CF, Nelson MT, Santana LF. Modulation of the molecular composition of large conductance, Ca(2+) activated K(+) channels in vascular smooth muscle during hypertension. J Clin Invest 112: 717‐724, 2003.
 40.Amberg GC, Koh SD, Imaizumi Y, Ohya S, Sanders KM. A‐type potassium currents in smooth muscle. Am J Physiol Cell Physiol 284: C583‐595, 2003.
 41.Amberg GC, Navedo MF, Nieves‐Cintron M, Molkentin JD, Santana LF. Calcium sparklets regulate local and global calcium in murine arterial smooth muscle. J Physiol 579: 187‐201, 2007.
 42.Amberg GC, Rossow CF, Navedo MF, Santana LF. NFATc3 regulates Kv2.1 expression in arterial smooth muscle. J Biol Chem 279: 47326‐47334, 2004.
 43.Amberg GC, Santana LF. Downregulation of the BK channel beta1 subunit in genetic hypertension. Circ Res 93: 965‐971, 2003.
 44.Amberg GC, Santana LF. Kv2 channels oppose myogenic constriction of rat cerebral arteries. Am J Physiol Cell Physiol 291: C348‐356, 2006.
 45.Ambroisine ML, Favre J, Oliviero P, Rodriguez C, Gao J, Thuillez C, Samuel JL, Richard V, Delcayre C. Aldosterone‐induced coronary dysfunction in transgenic mice involves the calcium‐activated potassium (BKCa) channels of vascular smooth muscle cells. Circulation 116: 2435‐2443, 2007.
 46.Ambudkar IS, Ong HL. Organization and function of TRPC channelosomes. Pflugers Arch 455: 187‐200, 2007.
 47.Ambudkar IS, Ong HL, Liu X, Bandyopadhyay BC, Cheng KT. TRPC1: The link between functionally distinct store‐operated calcium channels. Cell Calcium 42: 213‐223, 2007.
 48.Andersson DA, Chase HW, Bevan S. TRPM8 activation by menthol, icilin, and cold is differentially modulated by intracellular pH. J Neurosci 24: 5364‐5369, 2004.
 49.Ando H, Mizutani A, Kiefer H, Tsuzurugi D, Michikawa T, Mikoshiba K. IRBIT suppresses IP3 receptor activity by competing with IP3 for the common binding site on the IP3 receptor. Mol Cell 22: 795‐806, 2006.
 50.Ando H, Mizutani A, Matsu‐ura T, Mikoshiba K. IRBIT, a novel inositol 1,4,5‐trisphosphate (IP3) receptor‐binding protein, is released from the IP3 receptor upon IP3 binding to the receptor. J Biol Chem 278: 10602‐10612, 2003.
 51.Antigny F, Jousset H, Konig S, Frieden M. Thapsigargin activates Ca(2)+ entry both by store‐dependent, STIM1/Orai1‐mediated, and store‐independent, TRPC3/PLC/PKC‐mediated pathways in human endothelial cells. Cell Calcium 49: 115‐127, 2011.
 52.Anyatonwu GI, Estrada M, Tian X, Somlo S, Ehrlich BE. Regulation of ryanodine receptor‐dependent calcium signaling by polycystin‐2. Proc Natl Acad Sci U S A 104: 6454‐6459, 2007.
 53.Aoki K, Asano M. Effects of Bay K 8644 and nifedipine on femoral arteries of spontaneously hypertensive rats. Br J Pharmacol 88: 221‐230, 1986.
 54.Archer SL, Huang JM, Hampl V, Nelson DP, Shultz PJ, Weir EK. Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin‐sensitive K channel by cGMP‐dependent protein kinase. Proc Natl Acad Sci U S A 91: 7583‐7587, 1994.
 55.Arii T, Ohyanagi M, Shibuya J, Iwasaki T. Increased function of the voltage‐dependent calcium channels, without increase of Ca2+ release from the sarcoplasmic reticulum in the arterioles of spontaneous hypertensive rats. Am J Hypertens 12: 1236‐1242, 1999.
 56.Armstead WM. Opioids and nitric oxide contribute to hypoxia‐induced pial arterial vasodilation in newborn pigs. Am J Physiol 268: H226‐232, 1995.
 57.Armstead WM. Role of ATP‐sensitive K+ channels in cGMP‐mediated pial artery vasodilation. Am J Physiol 270: H423‐426, 1996.
 58.Armstead WM. Role of activation of calcium‐sensitive K+ channels and cAMP in opioid‐induced pial artery dilation. Brain Res 747: 252‐258, 1997.
 59.Armstead WM. Role of activation of calcium‐sensitive K+ channels in NO‐ and hypoxia‐induced pial artery vasodilation. Am J Physiol 272: H1785‐1790, 1997.
 60.Armstead WM. Brain injury impairs prostaglandin cerebrovasodilation. J Neurotrauma 15: 721‐729, 1998.
 61.Armstead WM. Superoxide generation links protein kinase C activation to impaired ATP‐sensitive K+ channel function after brain injury. Stroke 30: 153‐159, 1999.
 62.Armstead WM. Vasopressin‐induced protein kinase C‐dependent superoxide generation contributes to atp‐sensitive potassium channel but not calcium‐sensitive potassium channel function impairment after brain injury. Stroke 32: 1408‐1414, 2001.
 63.Armstrong ML, Dua AK, Murrant CL. Potassium initiates vasodilatation induced by a single skeletal muscle contraction in hamster cremaster muscle. J Physiol 581: 841‐852, 2007.
 64.Arun KH, Kaul CL, Ramarao P. AT1 receptors and L‐type calcium channels: Functional coupling in supersensitivity to angiotensin II in diabetic rats. Cardiovasc Res 65: 374‐386, 2005.
 65.Asano M, Masuzawa‐Ito K, Matsuda T. Charybdotoxin‐sensitive K+ channels regulate the myogenic tone in the resting state of arteries from spontaneously hypertensive rats. Br J Pharmacol 108: 214‐222, 1993.
 66.Asano M, Masuzawa‐Ito K, Matsuda T, Suzuki Y, Oyama H, Shibuya M, Sugita K. Increased Ca2+ influx in the resting state maintains the myogenic tone and activates charybdotoxin‐sensitive K+ channels in dog basilar artery. J Cereb Blood Flow Metab 13: 969‐977, 1993.
 67.Asano M, Matsuda T, Hayakawa M, Ito KM, Ito K. Increased resting Ca2+ maintains the myogenic tone and activates K+ channels in arteries from young spontaneously hypertensive rats. Eur J Pharmacol 247: 295‐304, 1993.
 68.Ashcroft FM. Adenosine 5′‐triphosphate‐sensitive potassium channels. Annu Rev Neurosci 11: 97‐118, 1988.
 69.Ashcroft SJ, Ashcroft FM. The sulfonylurea receptor. Biochim Biophys Acta 1175: 45‐59, 1992.
 70.Ashcroft FM, Gribble FM. Correlating structure and function in ATP‐sensitive K+ channels. Trends Neurosci 21: 288‐294, 1998.
 71.Atwal KS. Advances in the structure‐activity‐relationships, mechanisms of action, and therapeutic utilities of Atp‐sensitive potassium channel openers. Drug Dev Res 33: 250‐262, 1994.
 72.Atwal KS. Pharmacology and structure‐activity relationships for KATP modulators: Tissue‐selective KATP openers. J Cardiovasc Pharmacol 24(Suppl 4): S12‐S17, 1994.
 73.Aversano T, Ouyang P, Silverman H. Blockade of the ATP‐sensitive potassium channel modulates reactive hyperemia in the canine coronary circulation. Circ Res 69: 618‐622, 1991.
 74.Aversano T, Ouyang P, Silverman H, Ziegelstein RC, Gips S. Effect of blockade of the ATP‐sensitive potassium channel on metabolic coronary vasodilation in the dog. Pharmacology 47: 360‐368, 1993.
 75.Aziz Q, Thomas AM, Gomes J, Ang R, Sones WR, Li Y, Ng KE, Gee L, Tinker A. The ATP‐sensitive potassium channel subunit, Kir6.1, in vascular smooth muscle plays a major role in blood pressure control. Hypertension 64: 523‐529, 2014.
 76.Babenko AP, Aguilar‐Bryan L, Bryan J. A view of sur/KIR6.X, KATP channels. Annu Rev Physiol 60: 667‐687, 1998.
 77.Bache RJ, Quanbeck D, Homans DC, Dai XZ. Effects of nifedipine on coronary reactive and exercise induced hyperaemia. Cardiovasc Res 21: 766‐771, 1987.
 78.Bae YM, Kim A, Kim J, Park SW, Kim TK, Lee YR, Kim B, Cho SI. Serotonin depolarizes the membrane potential in rat mesenteric artery myocytes by decreasing voltage‐gated K+ currents. Biochem Biophys Res Commun 347: 468‐476, 2006.
 79.Baez S. An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy. Microvasc Res 5: 384‐394, 1973.
 80.Bai Y, Sanderson MJ. Airway smooth muscle relaxation results from a reduction in the frequency of Ca2+ oscillations induced by a cAMP‐mediated inhibition of the IP3 receptor. Respir Res 7: 34, 2006.
 81.Balasubramanian L, Ahmed A, Lo CM, Sham JS, Yip KP. Integrin‐mediated mechanotransduction in renal vascular smooth muscle cells: Activation of calcium sparks. Am J Physiol Regul Integr Comp Physiol 293: R1586‐R1594, 2007.
 82.Baldwin TJ, Isacoff E, Li M, Lopez GA, Sheng M, Tsaur ML, Yan YN, Jan LY. Elucidation of biophysical and biological properties of voltage‐gated potassium channels. Cold Spring Harb Symp Quant Biol 57: 491‐499, 1992.
 83.Bang S, Kim KY, Yoo S, Lee SH, Hwang SW. Transient receptor potential V2 expressed in sensory neurons is activated by probenecid. Neurosci Lett 425: 120‐125, 2007.
 84.Bang S, Yoo S, Yang TJ, Cho H, Hwang SW. 17(R)‐resolvin D1 specifically inhibits transient receptor potential ion channel vanilloid 3 leading to peripheral antinociception. Br J Pharmacol 165: 683‐692, 2012.
 85.Banitt PF, Smits P, Williams SB, Ganz P, Creager MA. Activation of ATP‐sensitive potassium channels contributes to reactive hyperemia in humans. Am J Physiol 271: H1594‐H1598, 1996.
 86.Bank AJ, Sih R, Mullen K, Osayamwen M, Lee PC. Vascular ATP‐dependent potassium channels, nitric oxide, and human forearm reactive hyperemia. Cardiovasc Drugs Ther 14: 23‐29, 2000.
 87.Bannister JP, Adebiyi A, Zhao G, Narayanan D, Thomas CM, Feng JY, Jaggar JH. Smooth muscle cell alpha2delta‐1 subunits are essential for vasoregulation by CaV1.2 channels. Circ Res 105: 948‐955, 2009.
 88.Bannister JP, Bulley S, Narayanan D, Thomas‐Gatewood C, Luzny P, Pachuau J, Jaggar JH. Transcriptional upregulation of alpha2delta‐1 elevates arterial smooth muscle cell voltage‐dependent Ca2+ channel surface expression and cerebrovascular constriction in genetic hypertension. Hypertension 60: 1006‐1015, 2012.
 89.Bannister JP, Leo MD, Narayanan D, Jangsangthong W, Nair A, Evanson KW, Pachuau J, Gabrick KS, Boop FA, Jaggar JH. The voltage‐dependent L‐type Ca2+ (CaV1.2) channel C‐terminus fragment is a bi‐modal vasodilator. J Physiol 591: 2987‐2998, 2013.
 90.Bari F, Louis TM, Busija DW. Calcium‐activated K+ channels in cerebral arterioles in piglets are resistant to ischemia. J Cereb Blood Flow Metab 17: 1152‐1156, 1997.
 91.Bari F, Louis TM, Meng W, Busija DW. Global ischemia impairs ATP‐sensitive K+ channel function in cerebral arterioles in piglets. Stroke 27: 1874‐1880; discussion 1880‐1871, 1996.
 92.Barlow RS, White RE. Hydrogen peroxide relaxes porcine coronary arteries by stimulating BKCa channel activity. Am J Physiol 275: H1283‐H1289, 1998.
 93.Bartlett IS, Crane GJ, Neild TO, Segal SS. Electrophysiological basis of arteriolar vasomotion in vivo. J Vasc Res 37: 568‐575, 2000.
 94.Bastide M, Bordet R, Pu Q, Robin E, Puisieux F, Dupuis B. Relationship between inward rectifier potassium current impairment and brain injury after cerebral ischemia/reperfusion. J Cereb Blood Flow Metab 19: 1309‐1315, 1999.
 95.Bastide M, Gele P, Petrault O, Pu Q, Caliez A, Robin E, Deplanque D, Duriez P, Bordet R. Delayed cerebrovascular protective effect of lipopolysaccharide in parallel to brain ischemic tolerance. J Cereb Blood Flow Metab 23: 399‐405, 2003.
 96.Bauman AL, Michel JJ, Henson E, Dodge‐Kafka KL, Kapiloff MS. The mAKAP signalosome and cardiac myocyte hypertrophy. IUBMB Life 59: 163‐169, 2007.
 97.Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124: 1269‐1282, 2006.
 98.Bayer KU, Harbers K, Schulman H. alphaKAP is an anchoring protein for a novel CaM kinase II isoform in skeletal muscle. Embo J 17: 5598‐5605, 1998.
 99.Baylie RL, Brayden JE. TRPV channels and vascular function. Acta Physiol (Oxf) 203: 99‐116, 2011.
 100.Bean BP. Two kinds of calcium channels in canine atrial cells. Differences in kinetics, selectivity, and pharmacology. J Gen Physiol 86: 1‐30, 1985.
 101.Bean BP. Classes of calcium channels in vertebrate cells. Annu Rev Physiol 51: 367‐384, 1989.
 102.Bean BP, Sturek M, Puga A, Hermsmeyer K. Calcium channels in muscle cells isolated from rat mesenteric arteries: Modulation by dihydropyridine drugs. Circ Res 59: 229‐235, 1986.
 103.Beech DJ. Ion channel switching and activation in smooth‐muscle cells of occlusive vascular diseases. Biochem Soc Trans 35: 890‐894, 2007.
 104.Beech DJ, Bolton TB. The effects of tetraethylammonium ions, 4‐aminopyridine or quinidine on K+‐currents in single smooth muscle cells of the rabbit portal vein. Biomed Biochim Acta 46: S673‐S676, 1987.
 105.Beech DJ, Bolton TB. Two components of potassium current activated by depolarization of single smooth muscle cells from the rabbit portal vein. J Physiol 418: 293‐309, 1989.
 106.Beech DJ, Bolton TB. A voltage‐dependent outward current with fast kinetics in single smooth muscle cells isolated from rabbit portal vein. J Physiol 412: 397‐414, 1989.
 107.Behrendt HJ, Germann T, Gillen C, Hatt H, Jostock R. Characterization of the mouse cold‐menthol receptor TRPM8 and vanilloid receptor type‐1 VR1 using a fluorometric imaging plate reader (FLIPR) assay. Br J Pharmacol 141: 737‐745, 2004.
 108.Belardinelli L, Harder D, Sperelakis N, Rubio R, Berne RM. Cardiac glycoside stimulation of inward Ca++ current in vascular smooth muscle of canine coronary artery. J Pharmacol Exp Ther 209: 62‐66, 1979.
 109.Beleznai T, Takano H, Hamill C, Yarova P, Douglas G, Channon K, Dora K. Enhanced K(+)‐channel‐mediated endothelium‐dependent local and conducted dilation of small mesenteric arteries from ApoE(−/−) mice. Cardiovasc Res 92: 199‐208, 2011.
 110.Benham CD, Bolton TB. Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of the rabbit. J Physiol 381: 385‐406, 1986.
 111.Benham CD, Bolton TB, Lang RJ, Takewaki T. Calcium‐activated potassium channels in single smooth muscle cells of rabbit jejunum and guinea‐pig mesenteric artery. J Physiol 371: 45‐67, 1986.
 112.Benham CD, Gunthorpe MJ, Davis JB. TRPV channels as temperature sensors. Cell Calcium 33: 479‐487, 2003.
 113.Benham CD, Hess P, Tsien RW. Two types of calcium channels in single smooth muscle cells from rabbit ear artery studied with whole‐cell and single‐channel recordings. Circ Res 61: I10‐16, 1987.
 114.Benham CD, Tsien RW. Noradrenaline modulation of calcium channels in single smooth muscle cells from rabbit ear artery. J Physiol 404: 767‐784, 1988.
 115.Benkusky NA, Farrell EF, Valdivia HH. Ryanodine receptor channelopathies. Biochem Biophys Res Commun 322: 1280‐1285, 2004.
 116.Berczi V, Stekiel WJ, Contney SJ, Rusch NJ. Pressure‐induced activation of membrane K+ current in rat saphenous artery. Hypertension 19: 725‐729, 1992.
 117.Berg T. The vascular response to the K+ channel inhibitor 4‐aminopyridine in hypertensive rats. Eur J Pharmacol 466: 301‐310, 2003.
 118.Bergdahl A, Gomez MF, Dreja K, Xu SZ, Adner M, Beech DJ, Broman J, Hellstrand P, Sward K. Cholesterol depletion impairs vascular reactivity to endothelin‐1 by reducing store‐operated Ca2+ entry dependent on TRPC1. Circ Res 93: 839‐847, 2003.
 119.Berger MG, Vandier C, Bonnet P, Jackson WF, Rusch NJ. Intracellular acidosis differentially regulates KV channels in coronary and pulmonary vascular muscle. Am J Physiol 275: H1351‐H1359, 1998.
 120.Berkefeld H, Sailer CA, Bildl W, Rohde V, Thumfart JO, Eble S, Klugbauer N, Reisinger E, Bischofberger J, Oliver D, Knaus HG, Schulte U, Fakler B. BKCa‐Cav channel complexes mediate rapid and localized Ca2+‐activated K+ signaling. Science 314: 615‐620, 2006.
 121.Bernier S, Guillemette G. Increased inositol 1,4,5‐trisphosphate binding capacity in vascular smooth muscle of spontaneously hypertensive rats. Am J Hypertens 6: 217‐225, 1993.
 122.Berridge MJ. Inositol trisphosphate and calcium signalling. Nature 361: 315‐325, 1993.
 123.Berridge MJ. Elementary and global aspects of calcium signalling. J Physiol 499(Pt 2): 291‐306, 1997.
 124.Berridge MJ, Irvine RF. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315‐321, 1984.
 125.Berwick ZC, Dick GM, Moberly SP, Kohr MC, Sturek M, Tune JD. Contribution of voltage‐dependent K(+) channels to metabolic control of coronary blood flow. J Mol Cell Cardiol 52: 912‐919, 2012.
 126.Berwick ZC, Dick GM, O'Leary HA, Bender SB, Goodwill AG, Moberly SP, Owen MK, Miller SJ, Obukhov AG, Tune JD. Contribution of electromechanical coupling between Kv and Ca v1.2 channels to coronary dysfunction in obesity. Basic Res Cardiol 108: 370, 2013.
 127.Berwick ZC, Moberly SP, Kohr MC, Morrical EB, Kurian MM, Dick GM, Tune JD. Contribution of voltage‐dependent K+ and Ca2+ channels to coronary pressure‐flow autoregulation. Basic Res Cardiol 107: 264, 2012.
 128.Berwick ZC, Payne GA, Lynch B, Dick GM, Sturek M, Tune JD. Contribution of adenosine A(2A) and A(2B) receptors to ischemic coronary dilation: Role of K(V) and K(ATP) channels. Microcirculation 17: 600‐607, 2010.
 129.Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE. TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest 118: 1899‐1910, 2008.
 130.Bett GC, Morales MJ, Beahm DL, Duffey ME, Rasmusson RL. Ancillary subunits and stimulation frequency determine the potency of chromanol 293B block of the KCNQ1 potassium channel. J Physiol 576: 755‐767, 2006.
 131.Betts LC, Kozlowski RZ. Electrophysiological effects of endothelin‐1 and their relationship to contraction in rat renal arterial smooth muscle. Br J Pharmacol 130: 787‐796, 2000.
 132.Betzenhauser MJ, Yule DI. Chapter 12: Regulation of inositol 1,4,5‐trisphosphate receptors by phosphorylation and adenine nucleotides. In: Serysheva I, editor. Curr Top Membr. Burlington, MA: Academic Press, 2010, pp. 273‐298.
 133.Bevan JA. Selective action of diltiazem on cerebral vascular smooth muscle in the rabbit: Antagonism of extrinsic but not intrinsic maintained tone. Am J Cardiol 49: 519‐524, 1982.
 134.Bevan S, Quallo T, Andersson DA. Trpv1. Handb Exp Pharmacol 222: 207‐245, 2014.
 135.Bi D, Toyama K, Lemaitre V, Takai J, Fan F, Jenkins DP, Wulff H, Gutterman DD, Park F, Miura H. The intermediate conductance calcium‐activated potassium channel KCa3.1 regulates vascular smooth muscle cell proliferation via controlling calcium‐dependent signaling. J Biol Chem 288: 15843‐15853, 2013.
 136.Bialecki RA, Stinson‐Fisher C. KCa channel antagonists reduce NO donor‐mediated relaxation of vascular and tracheal smooth muscle. Am J Physiol 268: L152‐L159, 1995.
 137.Bijlstra PJ, den Arend JA, Lutterman JA, Russel FG, Thien T, Smits P. Blockade of vascular ATP‐sensitive potassium channels reduces the vasodilator response to ischaemia in humans. Diabetologia 39: 1562‐1568, 1996.
 138.Bilek I, Laven R, Peiper U, Regnat K. The effect of verapamil on the response to noradrenaline or to potassium‐depolarization in isolated vascular strips. Microvasc Res 7: 181‐189, 1974.
 139.Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 66: 513‐569, 2014.
 140.Bjorling K, Morita H, Olsen MF, Prodan A, Hansen PB, Lory P, Holstein‐Rathlou NH, Jensen LJ. Myogenic tone is impaired at low arterial pressure in mice deficient in the low‐voltage‐activated CaV 3.1 T‐type Ca(2+) channel. Acta Physiol (Oxf) 207: 709‐720, 2013.
 141.Blanco‐Rivero J, Gamallo C, Aras‐Lopez R, Cobeno L, Cogolludo A, Perez‐Vizcaino F, Ferrer M, Balfagon G. Decreased expression of aortic KIR6.1 and SUR2B in hypertension does not correlate with changes in the functional role of K(ATP) channels. Eur J Pharmacol 587: 204‐208, 2008.
 142.Blatter LA, Wier WG. Agonist‐induced [Ca2+]i waves and Ca(2+)‐induced Ca2+ release in mammalian vascular smooth muscle cells. Am J Physiol 263: H576‐H586, 1992.
 143.Blum CA, Caldwell T, Zheng X, Bakthavatchalam R, Capitosti S, Brielmann H, De Lombaert S, Kershaw MT, Matson D, Krause JE, Cortright D, Crandall M, Martin WJ, Murphy BA, Boyce S, Jones AB, Mason G, Rycroft W, Perrett H, Conley R, Burnaby‐Davies N, Chenard BL, Hodgetts KJ. Discovery of novel 6,6‐heterocycles as transient receptor potential vanilloid (TRPV1) antagonists. J Med Chem 53: 3330‐3348, 2010.
 144.Blum JJ, Creese R, Jenden DJ, Scholes NW. The mechanism of action of ryanodine on skeletal muscle. J Pharmacol Exp Ther 121: 477‐486, 1957.
 145.Boehning DF. Chapter 9: Molecular architecture of the inositol 1,4,5‐trisphosphate receptor pore. In: Serysheva I, editor. Curr Top Membr. Burlington, MA: Academic Press, 2010, pp. 191‐207.
 146.Bognar IT, Enero MA. Influence of a receptor reserve on the inhibition by calcium channel blockers of alpha adrenoceptor‐mediated responses in rat isolated vascular tissues. J Pharmacol Exp Ther 245: 673‐681, 1988.
 147.Bohlen HG, Gore RW. Preparation of rat intestinal muscle and mucosa for quantitative microcirculatory studies. Microvasc Res 11: 103‐110, 1976.
 148.Boittin FX, Dipp M, Kinnear NP, Galione A, Evans AM. Vasodilation by the calcium‐mobilizing messenger cyclic ADP‐ribose. J Biol Chem 278: 9602‐9608, 2003.
 149.Boittin FX, Macrez N, Halet G, Mironneau J. Norepinephrine‐induced Ca(2+) waves depend on InsP(3) and ryanodine receptor activation in vascular myocytes. Am J Physiol 277: C139‐C151, 1999.
 150.Bolotina VM. Orai, STIM1 and iPLA2beta: A view from a different perspective. J Physiol 586: 3035‐3042, 2008.
 151.Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates calcium‐dependent potassium channels in vascular smooth muscle. Nature 368: 850‐853, 1994.
 152.Bolton TB, Prestwich SA, Zholos AV, Gordienko DV. Excitation‐contraction coupling in gastrointestinal and other smooth muscles. Annu Rev Physiol 61: 85‐115, 1999.
 153.Bonev AD, Jaggar JH, Rubart M, Nelson MT. Activators of protein kinase C decrease Ca2+ spark frequency in smooth muscle cells from cerebral arteries. Am J Physiol 273: C2090‐C2095, 1997.
 154.Bonev AD, Nelson MT. ATP‐sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder. Am J Physiol 264: C1190‐C1200, 1993.
 155.Bonev AD, Nelson MT. Vasoconstrictors inhibit ATP‐sensitive K+ channels in arterial smooth muscle through protein kinase C. J Gen Physiol 108: 315‐323, 1996.
 156.Bootman MD, Collins TJ, Mackenzie L, Roderick HL, Berridge MJ, Peppiatt CM. 2‐aminoethoxydiphenyl borate (2‐APB) is a reliable blocker of store‐operated Ca2+ entry but an inconsistent inhibitor of InsP3‐induced Ca2+ release. FASEB J 16: 1145‐1150, 2002.
 157.Borbouse L, Dick GM, Asano S, Bender SB, Dincer UD, Payne GA, Neeb ZP, Bratz IN, Sturek M, Tune JD. Impaired function of coronary BK(Ca) channels in metabolic syndrome. Am J Physiol Heart Circ Physiol 297: H1629‐H1637, 2009.
 158.Borbouse L, Dick GM, Payne GA, Payne BD, Svendsen MC, Neeb ZP, Alloosh M, Bratz IN, Sturek M, Tune JD. Contribution of BK(Ca) channels to local metabolic coronary vasodilation: Effects of metabolic syndrome. Am J Physiol Heart Circ Physiol 298: H966‐H973, 2010.
 159.Boric MP, Donoso V, Fournier A, St Pierre S, Huidobro‐Toro JP. Endothelin reduces microvascular blood flow by acting on arterioles and venules of the hamster cheek pouch. Eur J Pharmacol 190: 123‐133, 1990.
 160.Borisova L, Wray S, Eisner DA, Burdyga T. How structure, Ca signals, and cellular communications underlie function in precapillary arterioles. Circ Res 105: 803‐810, 2009.
 161.Bouchard JF, Dumont E, Lamontagne D. Evidence that prostaglandins I2, E2, and D2 may activate ATP sensitive potassium channels in the isolated rat heart. Cardiovasc Res 28: 901‐905, 1994.
 162.Bouchard JF, Dumont EC, Lamontagne D. Modification of vasodilator response in streptozotocin‐induced diabetic rat. Can J Physiol Pharmacol 77: 980‐985, 1999.
 163.Boulay G, Brown DM, Qin N, Jiang M, Dietrich A, Zhu MX, Chen Z, Birnbaumer M, Mikoshiba K, Birnbaumer L. Modulation of Ca(2+) entry by polypeptides of the inositol 1,4, 5‐trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): Evidence for roles of TRP and IP3R in store depletion‐activated Ca(2+) entry. Proc Natl Acad Sci U S A 96: 14955‐14960, 1999.
 164.Bouron A, Kiselyov K, Oberwinkler J. Permeation, regulation and control of expression of TRP channels by trace metal ions. Pflugers Arch 467: 1143‐1164, 2015.
 165.Bowles DK, Heaps CL, Turk JR, Maddali KK, Price EM. Hypercholesterolemia inhibits L‐type calcium current in coronary macro‐, not microcirculation. J Appl Physiol (1985) 96: 2240‐2248, 2004.
 166.Boyd AE, III, Aguilar‐Bryan L, Nelson DA. Molecular mechanisms of action of glyburide on the beta cell. Am J Med 89: 3S‐10S; discussion 51S‐53S, 1990.
 167.Bradley KN, Currie S, MacMillan D, Muir TC, McCarron JG. Cyclic ADP‐ribose increases Ca2+ removal in smooth muscle. J Cell Sci 116: 4291‐4306, 2003.
 168.Bradley KK, Jaggar JH, Bonev AD, Heppner TJ, Flynn ER, Nelson MT, Horowitz B. Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells. J Physiol 515(Pt 3): 639‐651, 1999.
 169.Brandt L, Ljunggren B, Andersson KE, Edvinsson L, MacKenzie E, Tamura A, Teasdale G. Effects of topical application of a calcium antagonist (nifedipine) on feline cortical pial microvasculature under normal conditions and in focal ischemia. J Cereb Blood Flow Metab 3: 44‐50, 1983.
 170.Bratz IN, Dick GM, Partridge LD, Kanagy NL. Reduced molecular expression of K(+) channel proteins in vascular smooth muscle from rats made hypertensive with N{omega}‐nitro‐L‐arginine. Am J Physiol Heart Circ Physiol 289: H1277‐H1283, 2005.
 171.Bratz IN, Swafford AN, Jr, Kanagy NL, Dick GM. Reduced functional expression of K(+) channels in vascular smooth muscle cells from rats made hypertensive with N{omega}‐nitro‐L‐arginine. Am J Physiol Heart Circ Physiol 289: H1284‐H1290, 2005.
 172.Brauchi S, Orta G, Salazar M, Rosenmann E, Latorre R. A hot‐sensing cold receptor: C‐terminal domain determines thermosensation in transient receptor potential channels. J Neurosci 26: 4835‐4840, 2006.
 173.Braunstein TH, Inoue R, Cribbs L, Oike M, Ito Y, Holstein‐Rathlou NH, Jensen LJ. The role of L‐ and T‐type calcium channels in local and remote calcium responses in rat mesenteric terminal arterioles. J Vasc Res 46: 138‐151, 2009.
 174.Brayden JE. Membrane hyperpolarization is a mechanism of endothelium‐dependent cerebral vasodilation. Am J Physiol 259: H668‐H673, 1990.
 175.Brayden JE, Nelson MT. Regulation of arterial tone by activation of calcium‐dependent potassium channels. Science 256: 532‐535, 1992.
 176.Brenner R, Perez GJ, Bonev AD, Eckman DM, Kosek JC, Wiler SW, Patterson AJ, Nelson MT, Aldrich RW. Vasoregulation by the beta1 subunit of the calcium‐activated potassium channel. Nature 407: 870‐876, 2000.
 177.Brochet DX, Langton PD. Dual effect of initial [K] on vascular tone in rat mesenteric arteries. Pflugers Arch 453: 33‐41, 2006.
 178.Bruch L, Bychkov R, Kastner A, Bulow T, Ried C, Gollasch M, Baumann G, Luft FC, Haller H. Pituitary adenylate‐cyclase‐activating peptides relax human coronary arteries by activating K(ATP) and K(Ca) channels in smooth muscle cells. J Vasc Res 34: 11‐18, 1997.
 179.Brueggemann LI, Haick JM, Cribbs LL, Byron KL. Differential activation of vascular smooth muscle Kv7.4, Kv7.5, and Kv7.4/7.5 channels by ML213 and ICA‐069673. Mol Pharmacol 86: 330‐341, 2014.
 180.Bryan J, Aguilar‐Bryan L. The ABCs of ATP‐sensitive potassium channels: More pieces of the puzzle. Curr Opin Cell Biol 9: 553‐559, 1997.
 181.Bubolz AH, Li H, Wu Q, Liu Y. Enhanced oxidative stress impairs cAMP‐mediated dilation by reducing Kv channel function in small coronary arteries of diabetic rats. Am J Physiol Heart Circ Physiol 289: H1873‐H1880, 2005.
 182.Buckley JF, Singer M, Clapp LH. Role of KATP channels in sepsis. Cardiovasc Res 72: 220‐230, 2006.
 183.Bukiya AN, Vaithianathan T, Kuntamallappanavar G, Asuncion‐Chin M, Dopico AM. Smooth muscle cholesterol enables BK beta1 subunit‐mediated channel inhibition and subsequent vasoconstriction evoked by alcohol. Arterioscler Thromb Vasc Biol 31: 2410‐2423, 2011.
 184.Bulley S, Neeb ZP, Burris SK, Bannister JP, Thomas‐Gatewood CM, Jangsangthong W, Jaggar JH. TMEM16A/ANO1 channels contribute to the myogenic response in cerebral arteries. Circ Res 111: 1027‐1036, 2012.
 185.Burns WR, Cohen KD, Jackson WF. K+‐induced dilation of hamster cremasteric arterioles involves both the Na+/K+‐ATPase and inward‐rectifier K+ channels. Microcirculation 11: 279‐293, 2004.
 186.Busse R, Edwards G, Feletou M, Fleming I, Vanhoutte PM, Weston AH. EDHF: Bringing the concepts together. Trends Pharmacol Sci 23: 374‐380, 2002.
 187.Butler A, Tsunoda S, McCobb DP, Wei A, Salkoff L. mSlo, a complex mouse gene encoding “maxi” calcium‐activated potassium channels. Science 261: 221‐224, 1993.
 188.Buxton IL, Kaiser RA, Malmquist NA, Tichenor S. NO‐induced relaxation of labouring and non‐labouring human myometrium is not mediated by cyclic GMP. Br J Pharmacol 134: 206‐214, 2001.
 189.Bychkov R, Gollasch M, Ried C, Luft FC, Haller H. Regulation of spontaneous transient outward potassium currents in human coronary arteries. Circulation 95: 503‐510, 1997.
 190.Bychkov R, Gollasch M, Steinke T, Ried C, Luft FC, Haller H. Calcium‐activated potassium channels and nitrate‐induced vasodilation in human coronary arteries. J Pharmacol Exp Ther 285: 293‐298, 1998.
 191.Cabell F, Weiss DS, Price JM. Inhibition of adenosine‐induced coronary vasodilation by block of large‐conductance Ca(2+)‐activated K+ channels. Am J Physiol 267: H1455‐H1460, 1994.
 192.Callaghan B, Koh SD, Keef KD. Muscarinic M2 receptor stimulation of Cav1.2b requires phosphatidylinositol 3‐kinase, protein kinase C, and c‐Src. Circ Res 94: 626‐633, 2004.
 193.Callera GE, Yogi A, Tostes RC, Rossoni LV, Bendhack LM. Ca2+‐activated K+ channels underlying the impaired acetylcholine‐induced vasodilation in 2K‐1C hypertensive rats. J Pharmacol Exp Ther 309: 1036‐1042, 2004.
 194.Campbell WB, Gebremedhin D, Pratt PF, Harder DR. Identification of epoxyeicosatrienoic acids as endothelium‐derived hyperpolarizing factors. Circ Res 78: 415‐423, 1996.
 195.Campiglio M, Flucher BE. The role of auxiliary subunits for the functional diversity of voltage‐gated calcium channels. J Cell Physiol 230: 2019‐2031, 2015.
 196.Cankar K, Strucl M. The effect of glibenclamide on cutaneous laser‐Doppler flux. Microvasc Res 75: 97‐103, 2008.
 197.Cannell MB, Cheng H, Lederer WJ. The control of calcium release in heart muscle. Science 268: 1045‐1049, 1995.
 198.Carl A, Lee HK, Sanders KM. Regulation of ion channels in smooth muscles by calcium. Am J Physiol 271: C9‐C34, 1996.
 199.Carnevale D, Vecchione C, Mascio G, Esposito G, Cifelli G, Martinello K, Landolfi A, Selvetella G, Grieco P, Damato A, Franco E, Haase H, Maffei A, Ciraolo E, Fucile S, Frati G, Mazzoni O, Hirsch E, Lembo G. PI3Kgamma inhibition reduces blood pressure by a vasorelaxant Akt/L‐type calcium channel mechanism. Cardiovasc Res 93: 200‐209, 2012.
 200.Caron AZ, Chaloux B, Arguin G, Guillemette G. Protein kinase C decreases the apparent affinity of the inositol 1,4,5‐trisphosphate receptor type 3 in RINm5F cells. Cell Calcium 42: 323‐331, 2007.
 201.Carroll MA, Doumad AB, Li J, Cheng MK, Falck JR, McGiff JC. Adenosine2A receptor vasodilation of rat preglomerular microvessels is mediated by EETs that activate the cAMP/PKA pathway. Am J Physiol Renal Physiol 291: F155‐F161, 2006.
 202.Casalini ED, Goodwill AG, Owen MK, Moberly SP, Berwick ZC, Tune JD. Contribution of hydrogen sulfide to the control of coronary blood flow. Microcirculation 21: 104‐111, 2014.
 203.Cason BA, Shubayev I, Hickey RF. Blockade of adenosine triphosphate‐sensitive potassium channels eliminates isoflurane‐induced coronary artery vasodilation. Anesthesiology 81: 1245‐1255; discussion 1227A‐1228A, 1994.
 204.Catalucci D, Zhang DH, DeSantiago J, Aimond F, Barbara G, Chemin J, Bonci D, Picht E, Rusconi F, Dalton ND, Peterson KL, Richard S, Bers DM, Brown JH, Condorelli G. Akt regulates L‐type Ca2+ channel activity by modulating Cavalpha1 protein stability. J Cell Biol 184: 923‐933, 2009.
 205.Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D. A capsaicin‐receptor homologue with a high threshold for noxious heat. Nature 398: 436‐441, 1999.
 206.Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: A heat‐activated ion channel in the pain pathway. Nature 389: 816‐824, 1997.
 207.Catterall WA. From ionic currents to molecular mechanisms: The structure and function of voltage‐gated sodium channels. Neuron 26: 13‐25, 2000.
 208.Catterall WA. Structure and regulation of voltage‐gated Ca2+ channels. Annu Rev Cell Dev Biol 16: 521‐555, 2000.
 209.Catterall WA. Voltage‐gated calcium channels. Cold Spring Harb Perspect Biol 3: a003947, 2011.
 210.Catterall WA, Striessnig J, Snutch TP, Perez‐Reyes E, International Union of P. International Union of Pharmacology. XL. Compendium of voltage‐gated ion channels: Calcium channels. Pharmacol Rev 55: 579‐581, 2003.
 211.Cauvin C, Tejerina M, Hwang O, Kai‐Yamamoto M, van Breemen C. The effects of Ca2+ antagonists on isolated rat and rabbit mesenteric resistance vessels. What determines the sensitivity of agonist‐activated vessels to Ca2+ antagonists? Ann N Y Acad Sci 522: 338‐350, 1988.
 212.Cauvin C, Weir SW, Wallnofer A, Ruegg U. Agonist‐induced activation of rat mesenteric resistance vessels: Comparison between noradrenaline and vasopressin. J Cardiovasc Pharmacol 12(Suppl 5): S128‐S133, 1988.
 213.Cauwels A, Brouckaert P. Critical role for small and large conductance calcium‐dependent potassium channels in endotoxemia and TNF toxicity. Shock 29: 577‐582, 2008.
 214.Chadha PS, Jepps TA, Carr G, Stott JB, Zhu HL, Cole WC, Greenwood IA. Contribution of kv7.4/kv7.5 heteromers to intrinsic and calcitonin gene‐related peptide‐induced cerebral reactivity. Arterioscler Thromb Vasc Biol 34: 887‐893, 2014.
 215.Chadha PS, Zunke F, Davis AJ, Jepps TA, Linders JT, Schwake M, Towart R, Greenwood IA. Pharmacological dissection of K(v)7.1 channels in systemic and pulmonary arteries. Br J Pharmacol 166: 1377‐1387, 2012.
 216.Chadha PS, Zunke F, Zhu HL, Davis AJ, Jepps TA, Olesen SP, Cole WC, Moffatt JD, Greenwood IA. Reduced KCNQ4‐encoded voltage‐dependent potassium channel activity underlies impaired beta‐adrenoceptor‐mediated relaxation of renal arteries in hypertension. Hypertension 59: 877‐884, 2012.
 217.Chai Q, Liu Z, Chen L. Effects of streptozotocin‐induced diabetes on Kv channels in rat small coronary smooth muscle cells. Chin J Physiol 48: 57‐63, 2005.
 218.Chai Q, Xu X, Jia Q, Dong Q, Liu Z, Zhang W, Chen L. Molecular basis of dysfunctional Kv channels in small coronary artery smooth muscle cells of streptozotocin‐induced diabetic rats. Chin J Physiol 50: 171‐177, 2007.
 219.Challinor‐Rogers JL, McPherson GA. Potassium channel openers and other regulators of KATP channels. Clin Exp Pharmacol Physiol 21: 583‐597, 1994.
 220.Champion HC, Kadowitz PJ. Vasodilator responses to acetylcholine, bradykinin, and substance P are mediated by a TEA‐sensitive mechanism. Am J Physiol 273: R414‐R422, 1997.
 221.Chao JT, Gui P, Zamponi GW, Davis GE, Davis MJ. Spatial association of the Cav1.2 calcium channel with alpha5beta1‐integrin. Am J Physiol Cell Physiol 300: C477‐C489, 2011.
 222.Chauhan SD, Nilsson H, Ahluwalia A, Hobbs AJ. Release of C‐type natriuretic peptide accounts for the biological activity of endothelium‐derived hyperpolarizing factor. Proc Natl Acad Sci U S A 100: 1426‐1431, 2003.
 223.Cheang WS, Wong WT, Shen B, Lau CW, Tian XY, Tsang SY, Yao X, Chen ZY, Huang Y. 4‐aminopyridine‐sensitive K+ channels contributes to NaHS‐induced membrane hyperpolarization and relaxation in the rat coronary artery. Vascul Pharmacol 53: 94‐98, 2010.
 224.Chelu MG, Danila CI, Gilman CP, Hamilton SL. Regulation of ryanodine receptors by FK506 binding proteins. Trends Cardiovasc Med 14: 227‐234, 2004.
 225.Chen G, Cheung DW. Effect of K(+)‐channel blockers on ACh‐induced hyperpolarization and relaxation in mesenteric arteries. Am J Physiol 272: H2306‐H2312, 1997.
 226.Chen J, Crossland RF, Noorani MM, Marrelli SP. Inhibition of TRPC1/TRPC3 by PKG contributes to NO‐mediated vasorelaxation. Am J Physiol Heart Circ Physiol 297: H417‐H424, 2009.
 227.Chen J, Joshi SK, DiDomenico S, Perner RJ, Mikusa JP, Gauvin DM, Segreti JA, Han P, Zhang XF, Niforatos W, Bianchi BR, Baker SJ, Zhong C, Simler GH, McDonald HA, Schmidt RG, McGaraughty SP, Chu KL, Faltynek CR, Kort ME, Reilly RM, Kym PR. Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation. Pain 152: 1165‐1172, 2011.
 228.Chen CC, Lamping KG, Nuno DW, Barresi R, Prouty SJ, Lavoie JL, Cribbs LL, England SK, Sigmund CD, Weiss RM, Williamson RA, Hill JA, Campbell KP. Abnormal coronary function in mice deficient in alpha1H T‐type Ca2+ channels. Science 302: 1416‐1418, 2003.
 229.Chen SR, Li X, Ebisawa K, Zhang L. Functional characterization of the recombinant type 3 Ca2+ release channel (ryanodine receptor) expressed in HEK293 cells. J Biol Chem 272: 24234‐24246, 1997.
 230.Chen M, Li J, Zhang F, Liu Z. Isolation and characterization of SsmTx‐I, a Specific Kv2.1 blocker from the venom of the centipede Scolopendra Subspinipes Mutilans L. Koch. J Pept Sci 20: 159‐164, 2014.
 231.Chen TT, Luykenaar KD, Walsh EJ, Walsh MP, Cole WC. Key role of Kv1 channels in vasoregulation. Circ Res 99: 53‐60, 2006.
 232.Chen SR, MacLennan DH. Identification of calmodulin‐, Ca(2+)‐, and ruthenium red‐binding domains in the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. J Biol Chem 269: 22698‐22704, 1994.
 233.Chen W, Wang R, Chen B, Zhong X, Kong H, Bai Y, Zhou Q, Xie C, Zhang J, Guo A, Tian X, Jones PP, O'Mara ML, Liu Y, Mi T, Zhang L, Bolstad J, Semeniuk L, Cheng H, Zhang J, Chen J, Tieleman DP, Gillis AM, Duff HJ, Fill M, Song LS, Chen SR. The ryanodine receptor store‐sensing gate controls Ca2+ waves and Ca2+‐triggered arrhythmias. Nat Med 20: 184‐192, 2014.
 234.Chen YF, Wang C, Zhang R, Wang H, Ma R, Jin S, Xiang JZ, Tang Q. Tacrolimus inhibits vasoconstriction by increasing Ca(2+) sparks in rat aorta. J Huazhong Univ Sci Technolog Med Sci 36: 8‐13, 2016.
 235.Cheng H, Lederer WJ. Calcium sparks. Physiol Rev 88: 1491‐1545, 2008.
 236.Cheng X, Liu J, Asuncion‐Chin M, Blaskova E, Bannister JP, Dopico AM, Jaggar JH. A novel Ca(V)1.2 N terminus expressed in smooth muscle cells of resistance size arteries modifies channel regulation by auxiliary subunits. J Biol Chem 282: 29211‐29221, 2007.
 237.Cheng X, Pachuau J, Blaskova E, Asuncion‐Chin M, Liu J, Dopico AM, Jaggar JH. Alternative splicing of Cav1.2 channel exons in smooth muscle cells of resistance‐size arteries generates currents with unique electrophysiological properties. Am J Physiol Heart Circ Physiol 297: H680‐H688, 2009.
 238.Cheng Y, Ndisang JF, Tang G, Cao K, Wang R. Hydrogen sulfide‐induced relaxation of resistance mesenteric artery beds of rats. Am J Physiol Heart Circ Physiol 287: H2316‐H2323, 2004.
 239.Cheong A, Dedman AM, Beech DJ. Expression and function of native potassium channel [K(V)alpha1] subunits in terminal arterioles of rabbit. J Physiol 534: 691‐700, 2001.
 240.Cheong A, Dedman AM, Xu SZ, Beech DJ. K(V)alpha1 channels in murine arterioles: Differential cellular expression and regulation of diameter. Am J Physiol Heart Circ Physiol 281: H1057‐H1065, 2001.
 241.Cheranov SY, Jaggar JH. Sarcoplasmic reticulum calcium load regulates rat arterial smooth muscle calcium sparks and transient K(Ca) currents. J Physiol 544: 71‐84, 2002.
 242.Cheranov SY, Jaggar JH. TNF‐alpha dilates cerebral arteries via NAD(P)H oxidase‐dependent Ca2+ spark activation. Am J Physiol Cell Physiol 290: C964‐C971, 2006.
 243.Cheung DW. Modulation of spontaneous transient Ca2+‐activated K+ channel currents by cADP‐ribose in vascular smooth muscle cells. Eur J Pharmacol 458: 57‐59, 2003.
 244.Chilian WM, Layne SM, Eastham CL, Marcus ML. Heterogeneous microvascular coronary alpha‐adrenergic vasoconstriction. Circ Res 64: 376‐388, 1989.
 245.Chilton L, Loutzenhiser K, Morales E, Breaks J, Kargacin GJ, Loutzenhiser R. Inward rectifier K(+) currents and Kir2.1 expression in renal afferent and efferent arterioles. J Am Soc Nephrol 19: 69‐76, 2008.
 246.Chilton L, Loutzenhiser R. Functional evidence for an inward rectifier potassium current in rat renal afferent arterioles. Circ Res 88: 152‐158, 2001.
 247.Chilton L, Smirnov SV, Loutzenhiser K, Wang X, Loutzenhiser R. Segment‐specific differences in the inward rectifier K(+) current along the renal interlobular artery. Cardiovasc Res 92: 169‐177, 2011.
 248.Chin D, Means AR. Calmodulin: A prototypical calcium sensor. Trends Cell Biol 10: 322‐328, 2000.
 249.Chrissobolis S, Sobey CG. Inhibitory effects of protein kinase C on inwardly rectifying K+‐ and ATP‐sensitive K+ channel‐mediated responses of the basilar artery. Stroke 33: 1692‐1697, 2002.
 250.Chrissobolis S, Ziogas J, Anderson CR, Chu Y, Faraci FM, Sobey CG. Neuronal NO mediates cerebral vasodilator responses to K+ in hypertensive rats. Hypertension 39: 880‐885, 2002.
 251.Chuang RS, Jaffe H, Cribbs L, Perez‐Reyes E, Swartz KJ. Inhibition of T‐type voltage‐gated calcium channels by a new scorpion toxin. Nat Neurosci 1: 668‐674, 1998.
 252.Chubanov V, Gudermann T. Trpm6. Handb Exp Pharmacol 222: 503‐520, 2014.
 253.Chubanov V, Waldegger S, Mederosy Schnitzler M, Vitzthum H, Sassen MC, Seyberth HW, Konrad M, Gudermann T. Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci U S A 101: 2894‐2899, 2004.
 254.Chung AW, Au Yeung K, Chum E, Okon EB, van Breemen C. Diabetes modulates capacitative calcium entry and expression of transient receptor potential canonical channels in human saphenous vein. Eur J Pharmacol 613: 114‐118, 2009.
 255.Chung MK, Guler AD, Caterina MJ. Biphasic currents evoked by chemical or thermal activation of the heat‐gated ion channel, TRPV3. J Biol Chem 280: 15928‐15941, 2005.
 256.Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ. 2‐Aminoethoxydiphenyl borate activates and sensitizes the heat‐gated ion channel TRPV3. J Neurosci 24: 5177‐5182, 2004.
 257.Cipolla MJ, Sweet J, Chan SL, Tavares MJ, Gokina N, Brayden JE. Increased pressure‐induced tone in rat parenchymal arterioles vs. middle cerebral arteries: Role of ion channels and calcium sensitivity. J Appl Physiol (1985) 117: 53‐59, 2014.
 258.Clapham DE. TRP channels as cellular sensors. Nature 426: 517‐524, 2003.
 259.Clapham DE, DeCaen P, Carvacho I, Chaudhuri D, Doerner JF, Julius D, Kahle KT, McKemy D, Oancea E, Sah R, Stotz SC, Tong D, Wu L‐J, Xu H, Nilius B, Owsianik G. Transient Receptor Potential channels. http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=78. [9 Feb 2016, 2016].
 260.Clapham DE, Julius D, Montell C, Schultz G. International Union of Pharmacology. XLIX. Nomenclature and structure‐function relationships of transient receptor potential channels. Pharmacol Rev 57: 427‐450, 2005.
 261.Clark K, Middelbeek J, Morrice NA, Figdor CG, Lasonder E, van Leeuwen FN. Massive autophosphorylation of the Ser/Thr‐rich domain controls protein kinase activity of TRPM6 and TRPM7. PLoS One 3: e1876, 2008.
 262.Clayton FC, Hess TA, Smith MA, Grover GJ. Coronary reactive hyperemia and adenosine‐induced vasodilation are mediated partially by a glyburide‐sensitive mechanism. Pharmacology 44: 92‐100, 1992.
 263.Clement‐Chomienne O, Walsh MP, Cole WC. Angiotensin II activation of protein kinase C decreases delayed rectifier K+ current in rabbit vascular myocytes. J Physiol 495(Pt 3): 689‐700, 1996.
 264.Cogolludo A, Frazziano G, Briones AM, Cobeno L, Moreno L, Lodi F, Salaices M, Tamargo J, Perez‐Vizcaino F. The dietary flavonoid quercetin activates BKCa currents in coronary arteries via production of H2O2. Role in vasodilatation. Cardiovasc Res 73: 424‐431, 2007.
 265.Cogolludo A, Moreno L, Lodi F, Frazziano G, Cobeno L, Tamargo J, Perez‐Vizcaino F. Serotonin inhibits voltage‐gated K+ currents in pulmonary artery smooth muscle cells: Role of 5‐HT2A receptors, caveolin‐1, and KV1.5 channel internalization. Circ Res 98: 931‐938, 2006.
 266.Cohen KD, Jackson WF. Hypoxia inhibits contraction but not calcium channel currents or changes in intracellular calcium in arteriolar muscle cells. Microcirculation 10: 133‐141, 2003.
 267.Cohen NA, Sha Q, Makhina EN, Lopatin AN, Linder ME, Snyder SH, Nichols CG. Inhibition of an inward rectifier potassium channel (Kir2.3) by G‐protein betagamma subunits. J Biol Chem 271: 32301‐32305, 1996.
 268.Cole WC, Malcolm T, Walsh MP, Light PE. Inhibition by protein kinase C of the K(NDP) subtype of vascular smooth muscle ATP‐sensitive potassium channel. Circ Res 87: 112‐117, 2000.
 269.Collier ML, Ji G, Wang Y, Kotlikoff MI. Calcium‐induced calcium release in smooth muscle: Loose coupling between the action potential and calcium release. J Gen Physiol 115: 653‐662, 2000.
 270.Contreras GF, Castillo K, Enrique N, Carrasquel‐Ursulaez W, Castillo JP, Milesi V, Neely A, Alvarez O, Ferreira G, Gonzalez C, Latorre R. A BK (Slo1) channel journey from molecule to physiology. Channels (Austin) 7: 442‐458, 2013.
 271.Cook NS. Effect of some potassium channel blockers on contractile responses of the rabbit aorta. J Cardiovasc Pharmacol 13: 299‐306, 1989.
 272.Cook NS, Chapman ID. Therapeutic potential of potassium channel openers in peripheral vascular disease and asthma. Cardiovasc Drugs Ther 7(Suppl 3): 555‐563, 1993.
 273.Cook NS, Quast U. Potassium channel pharmacology. In: Cook NS, editor. Potassium channels: Structure, Classification, Function and Thereapeutic Potential. Chichester: Ellis Horwood, 1989, pp. 181‐255.
 274.Cooke JP, Rossitch E, Jr, Andon NA, Loscalzo J, Dzau VJ. Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J Clin Invest 88: 1663‐1671, 1991.
 275.Copello JA, Barg S, Onoue H, Fleischer S. Heterogeneity of Ca2+ gating of skeletal muscle and cardiac ryanodine receptors. Biophys J 73: 141‐156, 1997.
 276.Cortes SF, Lemos VS, Stoclet JC. Alterations in calcium stores in aortic myocytes from spontaneously hypertensive rats. Hypertension 29: 1322‐1328, 1997.
 277.Cosens DJ, Manning A. Abnormal electroretinogram from a Drosophila mutant. Nature 224: 285‐287, 1969.
 278.Coussin F, Macrez N, Morel JL, Mironneau J. Requirement of ryanodine receptor subtypes 1 and 2 for Ca(2+)‐induced Ca(2+) release in vascular myocytes. J Biol Chem 275: 9596‐9603, 2000.
 279.Cox RH. Comparison of K+ channel properties in freshly isolated myocytes from thoracic aorta of WKY and SHR. Am J Hypertens 9: 884‐894, 1996.
 280.Cox RH. Changes in the expression and function of arterial potassium channels during hypertension. Vascul Pharmacol 38: 13‐23, 2002.
 281.Cox RH. Molecular determinants of voltage‐gated potassium currents in vascular smooth muscle. Cell Biochem Biophys 42: 167‐195, 2005.
 282.Cox RH, Folander K, Swanson R. Differential expression of voltage‐gated K(+) channel genes in arteries from spontaneously hypertensive and Wistar‐Kyoto rats. Hypertension 37: 1315‐1322, 2001.
 283.Cox RH, Fromme S. Expression of calcium channel subunit variants in small mesenteric arteries of WKY and SHR. Am J Hypertens 28: 1229‐1239, 2015.
 284.Cox RH, Fromme S. Comparison of voltage gated K+ currents in arterial myocytes with heterologously expressed Kv subunits. Cell Biochem Biophys 74: 499‐511, 2016.
 285.Cox RH, Fromme S. Functional expression profile of voltage‐gated K(+) channel subunits in rat small mesenteric arteries. Cell Biochem Biophys 74: 263‐276, 2016.
 286.Cox RH, Fromme SJ, Folander KL, Swanson RJ. Voltage gated K+ channel expression in arteries of Wistar‐Kyoto and spontaneously hypertensive rats. Am J Hypertens 21: 213‐218, 2008.
 287.Cox RH, Lozinskaya IM. Ca2+ channel inactivation in small mesenteric arteries of WKY and SHR. Am J Hypertens 21: 406‐412, 2008.
 288.Cox RH, Lozinskaya I, Dietz NJ. Differences in K+ current components in mesenteric artery myocytes from WKY and SHR. Am J Hypertens 14: 897‐907, 2001.
 289.Cox RH, Petrou S. Ca(2+) influx inhibits voltage‐dependent and augments Ca(2+)‐dependent K(+) currents in arterial myocytes. Am J Physiol 277: C51‐C63, 1999.
 290.Cox RH, Rusch NJ. New expression profiles of voltage‐gated ion channels in arteries exposed to high blood pressure. Microcirculation 9: 243‐257, 2002.
 291.Crane GJ, Walker SD, Dora KA, Garland CJ. Evidence for a differential cellular distribution of inward rectifier K channels in the rat isolated mesenteric artery. J Vasc Res 40: 159‐168, 2003.
 292.Crecelius AR, Kirby BS, Luckasen GJ, Larson DG, Dinenno FA. ATP‐mediated vasodilatation occurs via activation of inwardly rectifying potassium channels in humans. J Physiol 590: 5349‐5359, 2012.
 293.Crecelius AR, Kirby BS, Luckasen GJ, Larson DG, Dinenno FA. Mechanisms of rapid vasodilation after a brief contraction in human skeletal muscle. Am J Physiol Heart Circ Physiol 305: H29‐H40, 2013.
 294.Crecelius AR, Luckasen GJ, Larson DG, Dinenno FA. KIR channel activation contributes to onset and steady‐state exercise hyperemia in humans. Am J Physiol Heart Circ Physiol 307: H782‐H791, 2014.
 295.Crecelius AR, Richards JC, Luckasen GJ, Larson DG, Dinenno FA. Reactive hyperemia occurs via activation of inwardly rectifying potassium channels and Na+/K+‐ATPase in humans. Circ Res 113: 1023‐1032, 2013.
 296.Crystal GJ, Gurevicius J, Salem MR, Zhou X. Role of adenosine triphosphate‐sensitive potassium channels in coronary vasodilation by halothane, isoflurane, and enflurane. Anesthesiology 86: 448‐458, 1997.
 297.Curtis TM, Tumelty J, Dawicki J, Scholfield CN, McGeown JG. Identification and spatiotemporal characterization of spontaneous Ca2+ sparks and global Ca2+ oscillations in retinal arteriolar smooth muscle cells. Invest Ophthalmol Vis Sci 45: 4409‐4414, 2004.
 298.Curtis TM, Tumelty J, Stewart MT, Arora AR, Lai FA, McGahon MK, Scholfield CN, McGeown JG. Modification of smooth muscle Ca2+‐sparks by tetracaine: Evidence for sequential RyR activation. Cell Calcium 43: 142‐154, 2008.
 299.D'Angelo G, Davis MJ, Meininger GA. Calcium and mechanotransduction of the myogenic response. Am J Physiol 273: H175‐H182, 1997.
 300.Dabertrand F, Morel JL, Sorrentino V, Mironneau J, Mironneau C, Macrez N. Modulation of calcium signalling by dominant negative splice variant of ryanodine receptor subtype 3 in native smooth muscle cells. Cell Calcium 40: 11‐21, 2006.
 301.Dabertrand F, Nelson MT, Brayden JE. Acidosis dilates brain parenchymal arterioles by conversion of calcium waves to sparks to activate BK channels. Circ Res 110: 285‐294, 2012.
 302.Dai S, Hall DD, Hell JW. Supramolecular assemblies and localized regulation of voltage‐gated ion channels. Physiol Rev 89: 411‐452, 2009.
 303.Dam VS, Boedtkjer DM, Aalkjaer C, Matchkov V. The bestrophin‐ and TMEM16A‐associated Ca(2+)‐ activated Cl(−) channels in vascular smooth muscles. Channels (Austin) 8: 361‐369, 2014.
 304.Dam VS, Boedtkjer DM, Nyvad J, Aalkjaer C, Matchkov V. TMEM16A knockdown abrogates two different Ca(2+)‐activated Cl(−) currents and contractility of smooth muscle in rat mesenteric small arteries. Pflugers Arch 466: 1391‐1409, 2014.
 305.Dankelman J, Van der Ploeg CP, Spaan JA. Glibenclamide decelerates the responses of coronary regulation in the goat. Am J Physiol 266: H1715‐H1721, 1994.
 306.Danoff SK, Ferris CD, Donath C, Fischer GA, Munemitsu S, Ullrich A, Snyder SH, Ross CA. Inositol 1,4,5‐trisphosphate receptors: distinct neuronal and nonneuronal forms derived by alternative splicing differ in phosphorylation. Proc Natl Acad Sci U S A 88: 2951‐2955, 1991.
 307.Dart C, Leyland ML. Targeting of an A kinase‐anchoring protein, AKAP79, to an inwardly rectifying potassium channel, Kir2.1. J Biol Chem 276: 20499‐20505, 2001.
 308.Dart C, Standen NB. Adenosine‐activated potassium current in smooth muscle cells isolated from the pig coronary artery. J Physiol 471: 767‐786, 1993.
 309.Dart C, Standen NB. Activation of ATP‐dependent K+ channels by hypoxia in smooth muscle cells isolated from the pig coronary artery. J Physiol 483(Pt 1): 29‐39, 1995.
 310.Daut J, Maier‐Rudolph W, von Beckerath N, Mehrke G, Gunther K, Goedel‐Meinen L. Hypoxic dilation of coronary arteries is mediated by ATP‐sensitive potassium channels. Science 247: 1341‐1344, 1990.
 311.Daut J, Standen NB, Nelson MT. The role of the membrane potential of endothelial and smooth muscle cells in the regulation of coronary blood flow. J Cardiovasc Electrophysiol 5: 154‐181, 1994.
 312.Davare MA, Avdonin V, Hall DD, Peden EM, Burette A, Weinberg RJ, Horne MC, Hoshi T, Hell JW. A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science 293: 98‐101, 2001.
 313.Davies LM, Purves GI, Barrett‐Jolley R, Dart C. Interaction with caveolin‐1 modulates vascular ATP‐sensitive potassium (KATP) channel activity. J Physiol 588: 3255‐3266, 2010.
 314.Davis MJ. Perspective: Physiological role(s) of the vascular myogenic response. Microcirculation 19: 99‐114, 2012.
 315.Davis MJ, Hill MA. Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79: 387‐423, 1999.
 316.Davis MJ, Hill MA, Kuo L. Local regulation of microvascular perfusion. In: Compr Physiol. Hoboken, NJ: John Wiley & Sons, 2011, pp. 161‐284.
 317.Davis MJ, Wu X, Nurkiewicz TR, Kawasaki J, Davis GE, Hill MA, Meininger GA. Integrins and mechanotransduction of the vascular myogenic response. Am J Physiol Heart Circ Physiol 280: H1427‐H1433, 2001.
 318.Dawes M, Sieniawska C, Delves T, Dwivedi R, Chowienczyk PJ, Ritter JM. Barium reduces resting blood flow and inhibits potassium‐induced vasodilation in the human forearm. Circulation 105: 1323‐1328, 2002.
 319.de Clerck I, Guyssens B, Pannier JL, Van de Voorde J. Hyperosmolarity causes BK Ca‐dependent vasodilatations in rat skeletal muscle arteries. Med Sci Sports Exerc 37: 1697‐1703, 2005.
 320.de Kreutzenberg SV, Puato M, Kiwanuka E, Del Prato S, Pauletto P, Pasini L, Tiengo A, Avogaro A. Elevated non‐esterified fatty acids impair nitric oxide independent vasodilation, in humans: Evidence for a role of inwardly rectifying potassium channels. Atherosclerosis 169: 147‐153, 2003.
 321.De Paoli P, Cerbai E, Koidl B, Kirchengast M, Sartiani L, Mugelli A. Selectivity of different calcium antagonists on T‐ and L‐type calcium currents in guinea‐pig ventricular myocytes. Pharmacol Res 46: 491‐497, 2002.
 322.de Weille JR. Modulation of ATP sensitive potassium channels. Cardiovasc Res 26: 1017‐1020, 1992.
 323.DeCaen PG, Delling M, Vien TN, Clapham DE. Direct recording and molecular identification of the calcium channel of primary cilia. Nature 504: 315‐318, 2013.
 324.del Camino D, Murphy S, Heiry M, Barrett LB, Earley TJ, Cook CA, Petrus MJ, Zhao M, D'Amours M, Deering N, Brenner GJ, Costigan M, Hayward NJ, Chong JA, Fanger CM, Woolf CJ, Patapoutian A, Moran MM. TRPA1 contributes to cold hypersensitivity. J Neurosci 30: 15165‐15174, 2010.
 325.del Corsso C, Ostrovskaya O, McAllister CE, Murray K, Hatton WJ, Gurney AM, Spencer NJ, Wilson SM. Effects of aging on Ca2+ signaling in murine mesenteric arterial smooth muscle cells. Mech Ageing Dev 127: 315‐323, 2006.
 326.Del Valle‐Rodriguez A, Calderon E, Ruiz M, Ordonez A, Lopez‐Barneo J, Urena J. Metabotropic Ca(2+) channel‐induced Ca(2+) release and ATP‐dependent facilitation of arterial myocyte contraction. Proc Natl Acad Sci U S A 103: 4316‐4321, 2006.
 327.del Valle‐Rodriguez A, Lopez‐Barneo J, Urena J. Ca2+ channel‐sarcoplasmic reticulum coupling: A mechanism of arterial myocyte contraction without Ca2+ influx. Embo J 22: 4337‐4345, 2003.
 328.Desai PN, Zhang X, Wu S, Janoshazi A, Bolimuntha S, Putney JW, Trebak M. Multiple types of calcium channels arising from alternative translation initiation of the Orai1 message. Sci Signal 8: ra74, 2015.
 329.Desilets M, Driska SP, Baumgarten CM. Current fluctuations and oscillations in smooth muscle cells from hog carotid artery. Role of the sarcoplasmic reticulum. Circ Res 65: 708‐722, 1989.
 330.Devogelaere B, Verbert L, Parys JB, Missiaen L, De Smedt H. The complex regulatory function of the ligand‐binding domain of the inositol 1,4,5‐trisphosphate receptor. Cell Calcium 43: 17‐27, 2008.
 331.Dick GM, Bratz IN, Borbouse L, Payne GA, Dincer UD, Knudson JD, Rogers PA, Tune JD. Voltage‐dependent K+ channels regulate the duration of reactive hyperemia in the canine coronary circulation. Am J Physiol Heart Circ Physiol 294: H2371‐H2381, 2008.
 332.Dick GM, Tune JD. Role of potassium channels in coronary vasodilation. Exp Biol Med (Maywood) 235: 10‐22, 2010.
 333.Dietrich A, Kalwa H, Rost BR, Gudermann T. The diacylgylcerol‐sensitive TRPC3/6/7 subfamily of cation channels: Functional characterization and physiological relevance. Pflugers Arch 451: 72‐80, 2005.
 334.Dietrich A, Kalwa H, Storch U, Mederos y Schnitzler M, Salanova B, Pinkenburg O, Dubrovska G, Essin K, Gollasch M, Birnbaumer L, Gudermann T. Pressure‐induced and store‐operated cation influx in vascular smooth muscle cells is independent of TRPC1. Pflugers Arch 455: 465‐477, 2007.
 335.Diochot S, Drici MD, Moinier D, Fink M, Lazdunski M. Effects of phrixotoxins on the Kv4 family of potassium channels and implications for the role of Ito1 in cardiac electrogenesis. Br J Pharmacol 126: 251‐263, 1999.
 336.Dong H, Waldron GJ, Cole WC, Triggle CR. Roles of calcium‐activated and voltage‐gated delayed rectifier potassium channels in endothelium‐dependent vasorelaxation of the rabbit middle cerebral artery. Br J Pharmacol 123: 821‐832, 1998.
 337.Dong H, Waldron GJ, Galipeau D, Cole WC, Triggle CR. NO/PGI2‐independent vasorelaxation and the cytochrome P450 pathway in rabbit carotid artery. Br J Pharmacol 120: 695‐701, 1997.
 338.Dong L, Xie MJ, Zhang P, Ji LL, Liu WC, Dong MQ, Gao F. Rotenone partially reverses decreased BK Ca currents in cerebral artery smooth muscle cells from streptozotocin‐induced diabetic mice. Clin Exp Pharmacol Physiol 36: e57‐e64, 2009.
 339.Dreja K, Nordstrom I, Hellstrand P. Rat arterial smooth muscle devoid of ryanodine receptor function: Effects on cellular Ca(2+) handling. Br J Pharmacol 132: 1957‐1966, 2001.
 340.Drummond HA. Yes, no, maybe so: ENaC proteins as mediators of renal myogenic constriction. Hypertension 54: 962‐963, 2009.
 341.Drummond HA, Gebremedhin D, Harder DR. Degenerin/epithelial Na+ channel proteins: Components of a vascular mechanosensor. Hypertension 44: 643‐648, 2004.
 342.Drummond HA, Grifoni SC, Jernigan NL. A new trick for an old dogma: ENaC proteins as mechanotransducers in vascular smooth muscle. Physiology (Bethesda) 23: 23‐31, 2008.
 343.Du H, Wang X, Wu J, Qian Q. Phenylephrine induces elevated RhoA activation and smooth muscle alpha‐actin expression in Pkd2+/‐ vascular smooth muscle cells. Hypertens Res 33: 37‐42, 2010.
 344.Du X, Zhang H, Lopes C, Mirshahi T, Rohacs T, Logothetis DE. Characteristic interactions with phosphatidylinositol 4,5‐bisphosphate determine regulation of kir channels by diverse modulators. J Biol Chem 279: 37271‐37281, 2004.
 345.Dulhunty A, Haarmann C, Green D, Hart J. How many cysteine residues regulate ryanodine receptor channel activity? Antioxid Redox Signal 2: 27‐34, 2000.
 346.Dulhunty AF, Junankar PR, Eager KR, Ahern GP, Laver DR. Ion channels in the sarcoplasmic reticulum of striated muscle. Acta Physiol Scand 156: 375‐385, 1996.
 347.Dulhunty AF, Pouliquin P. What we don't know about the structure of ryanodine receptor calcium release channels. Clin Exp Pharmacol Physiol 30: 713‐723, 2003.
 348.Duling BR. The preparation and use of the hamster cheek pouch for studies of the microcirculation. Microvasc Res 5: 423‐429, 1973.
 349.Duling BR, Gore RW, Dacey RG, Jr, Damon DN. Methods for isolation, cannulation, and in vitro study of single microvessels. Am J Physiol 241: H108‐H116, 1981.
 350.Duncan LM, Deeds J, Hunter J, Shao J, Holmgren LM, Woolf EA, Tepper RI, Shyjan AW. Down‐regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res 58: 1515‐1520, 1998.
 351.Duncker DJ, Oei HH, Hu F, Stubenitsky R, Verdouw PD. Role of K(ATP)(+) channels in regulation of systemic, pulmonary, and coronary vasomotor tone in exercising swine. Am J Physiol Heart Circ Physiol 280: H22‐H33, 2001.
 352.Duncker DJ, Van Zon NS, Altman JD, Pavek TJ, Bache RJ. Role of K+ATP channels in coronary vasodilation during exercise. Circulation 88: 1245‐1253, 1993.
 353.Duncker DJ, van Zon NS, Ishibashi Y, Bache RJ. Role of K+ ATP channels and adenosine in the regulation of coronary blood flow during exercise with normal and restricted coronary blood flow. J Clin Invest 97: 996‐1009, 1996.
 354.Duncker DJ, van Zon NS, Pavek TJ, Herrlinger SK, Bache RJ. Endogenous adenosine mediates coronary vasodilation during exercise after K(ATP)+ channel blockade. J Clin Invest 95: 285‐295, 1995.
 355.Durham WJ, Wehrens XH, Sood S, Hamilton SL. Diseases associated with altered ryanodine receptor activity. Subcell Biochem 45: 273‐321, 2007.
 356.Dwivedi R, Saha S, Chowienczyk PJ, Ritter JM. Block of inward rectifying K+ channels (KIR) inhibits bradykinin‐induced vasodilatation in human forearm resistance vasculature. Arterioscler Thromb Vasc Biol 25: e7‐e9, 2005.
 357.Eager KR, Dulhunty AF. Cardiac ryanodine receptor activity is altered by oxidizing reagents in either the luminal or cytoplasmic solution. J Membr Biol 167: 205‐214, 1999.
 358.Eager KR, Roden LD, Dulhunty AF. Actions of sulfhydryl reagents on single ryanodine receptor Ca(2+)‐release channels from sheep myocardium. Am J Physiol 272: C1908‐C1918, 1997.
 359.Earley S. TRPA1 channels in the vasculature. Br J Pharmacol 167: 13‐22, 2012.
 360.Earley S. TRPM4 channels in smooth muscle function. Pflugers Arch 465: 1223‐1231, 2013.
 361.Earley S, Brayden JE. Transient receptor potential channels in the vasculature. Physiol Rev 95: 645‐690, 2015.
 362.Earley S, Gonzales AL, Crnich R. Endothelium‐dependent cerebral artery dilation mediated by TRPA1 and Ca2+‐Activated K+ channels. Circ Res 104: 987‐994, 2009.
 363.Earley S, Gonzales AL, Garcia ZI. A dietary agonist of transient receptor potential cation channel V3 elicits endothelium‐dependent vasodilation. Mol Pharmacol 77: 612‐620, 2010.
 364.Earley S, Heppner TJ, Nelson MT, Brayden JE. TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circ Res 97: 1270‐1279, 2005.
 365.Earley S, Pauyo T, Drapp R, Tavares MJ, Liedtke W, Brayden JE. TRPV4‐dependent dilation of peripheral resistance arteries influences arterial pressure. Am J Physiol Heart Circ Physiol 297: H1096‐H1102, 2009.
 366.Earley S, Straub SV, Brayden JE. Protein kinase C regulates vascular myogenic tone through activation of TRPM4. Am J Physiol Heart Circ Physiol 292: H2613‐H2622, 2007.
 367.Earley S, Waldron BJ, Brayden JE. Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ Res 95: 922‐929, 2004.
 368.Eckenrode EF, Yang J, Velmurugan GV, Foskett JK, White C. Apoptosis protection by Mcl‐1 and Bcl‐2 modulation of inositol 1,4,5‐trisphosphate receptor‐dependent Ca2+ signaling. J Biol Chem 285: 13678‐13684, 2010.
 369.Eckert RE, Karsten AJ, Utz J, Ziegler M. Regulation of renal artery smooth muscle tone by alpha1‐adrenoceptors: Role of voltage‐gated calcium channels and intracellular calcium stores. Urol Res 28: 122‐127, 2000.
 370.Eckman DM, Hopkins N, McBride C, Keef KD. Endothelium‐dependent relaxation and hyperpolarization in guinea‐pig coronary artery: Role of epoxyeicosatrienoic acid. Br J Pharmacol 124: 181‐189, 1998.
 371.Edvinsson L, Jansen Olesen I, Kingman TA, McCulloch J, Uddman R. Modification of vasoconstrictor responses in cerebral blood vessels by lesioning of the trigeminal nerve: Possible involvement of CGRP. Cephalalgia 15: 373‐383, 1995.
 372.Edwards FR, Hirst GD. Inward rectification in submucosal arterioles of guinea‐pig ileum. J Physiol 404: 437‐454, 1988.
 373.Edwards FR, Hirst GD, Silverberg GD. Inward rectification in rat cerebral arterioles; involvement of potassium ions in autoregulation. J Physiol 404: 455‐466, 1988.
 374.Edwards G, Weston AH. The pharmacology of ATP‐sensitive potassium channels. Annu Rev Pharmacol Toxicol 33: 597‐637, 1993.
 375.Edwards G, Weston AH. Pharmacology of the potassium channel openers. Cardiovasc Drugs Ther 9(Suppl 2): 185‐193, 1995.
 376.Edwards GA, Weiant EA, Slocombe AG, Roeder KD. The action of ryanodine on the contractile process in striated muscle. Science 108: 330‐332, 1948.
 377.Efremov RG, Leitner A, Aebersold R, Raunser S. Architecture and conformational switch mechanism of the ryanodine receptor. Nature 517: 39‐43, 2015.
 378.Eguchi S, Kawano T, Yinhua, Tanaka K, Yasui S, Mawatari K, Takahashi A, Nakaya Y, Oshita S, Nakajo N. Effects of prostaglandin E1 on vascular ATP‐sensitive potassium channels. J Cardiovasc Pharmacol 50: 686‐691, 2007.
 379.Embrey RP, Brooks LA, Dellsperger KC. Mechanism of coronary microvascular responses to metabolic stimulation. Cardiovasc Res 35: 148‐157, 1997.
 380.Emerson GG, Segal SS. Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries: Role in vasomotor control. Circ Res 87: 474‐479, 2000.
 381.Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev 57: 71‐108, 1977.
 382.Epshtein Y, Chopra AP, Rosenhouse‐Dantsker A, Kowalsky GB, Logothetis DE, Levitan I. Identification of a C‐terminus domain critical for the sensitivity of Kir2.1 to cholesterol. Proc Natl Acad Sci U S A 106: 8055‐8060, 2009.
 383.Epstein A, Beall A, Wynn J, Mulloy L, Brophy CM. Cyclosporine, but not FK506, selectively induces renal and coronary artery smooth muscle contraction. Surgery 123: 456‐460, 1998.
 384.Erdos B, Miller AW, Busija DW. Alterations in KATP and KCa channel function in cerebral arteries of insulin‐resistant rats. Am J Physiol Heart Circ Physiol 283: H2472‐H2477, 2002.
 385.Erdos B, Simandle SA, Snipes JA, Miller AW, Busija DW. Potassium channel dysfunction in cerebral arteries of insulin‐resistant rats is mediated by reactive oxygen species. Stroke 35: 964‐969, 2004.
 386.Erler I, Al‐Ansary DM, Wissenbach U, Wagner TF, Flockerzi V, Niemeyer BA. Trafficking and assembly of the cold‐sensitive TRPM8 channel. J Biol Chem 281: 38396‐38404, 2006.
 387.Escoubas P, Diochot S, Celerier ML, Nakajima T, Lazdunski M. Novel tarantula toxins for subtypes of voltage‐dependent potassium channels in the Kv2 and Kv4 subfamilies. Mol Pharmacol 62: 48‐57, 2002.
 388.Essin K, Gollasch M. Role of ryanodine receptor subtypes in initiation and formation of calcium sparks in arterial smooth muscle: comparison with striated muscle. J Biomed Biotechnol 2009: 135249, 2009.
 389.Essin K, Welling A, Hofmann F, Luft FC, Gollasch M, Moosmang S. Indirect coupling between Cav1.2 channels and ryanodine receptors to generate Ca2+ sparks in murine arterial smooth muscle cells. J Physiol 584: 205‐219, 2007.
 390.Evans AM, Wyatt CN, Kinnear NP, Clark JH, Blanco EA. Pyridine nucleotides and calcium signalling in arterial smooth muscle: From cell physiology to pharmacology. Pharmacol Ther 107: 286‐313, 2005.
 391.Evanson KW, Bannister JP, Leo MD, Jaggar JH. LRRC26 is a functional BK channel auxiliary gamma subunit in arterial smooth muscle cells. Circ Res 115: 423‐431, 2014.
 392.Everaerts W, Zhen X, Ghosh D, Vriens J, Gevaert T, Gilbert JP, Hayward NJ, McNamara CR, Xue F, Moran MM, Strassmaier T, Uykal E, Owsianik G, Vennekens R, De Ridder D, Nilius B, Fanger CM, Voets T. Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide‐induced cystitis. Proc Natl Acad Sci U S A 107: 19084‐19089, 2010.
 393.Fairfax ST, Mauban JR, Hao S, Rizzo MA, Zhang J, Wier WG. Ca(2+) signaling in arterioles and small arteries of conscious, restrained, optical biosensor mice. Front Physiol 5: 387, 2014.
 394.Fairhurst AS. A ryanodine‐caffeine‐sensitive membrane fraction of skeletal muscle. Am J Physiol 227: 1124‐1131, 1974.
 395.Fairhurst AS, Hasselbach W. Calcium efflux from a heavy sarcotubular fraction. Effects of ryanodine, caffeine and magnesium. Eur J Biochem 13: 504‐509, 1970.
 396.Fakler B, Brandle U, Glowatzki E, Weidemann S, Zenner HP, Ruppersberg JP. Strong voltage‐dependent inward rectification of inward rectifier K+ channels is caused by intracellular spermine. Cell 80: 149‐154, 1995.
 397.Fan LH, Tian HY, Ma AQ, Hu Z, Huo JH, Cao YX. Altered ATP‐sensitive potassium channels may underscore obesity‐triggered increase in blood pressure. Acta Pharmacol Sin 29: 1167‐1174, 2008.
 398.Fan LH, Tian HY, Wang J, Huo JH, Hu Z, Ma AQ, Cao YX. Downregulation of Kir6.1/SUR2B channels in the obese rat aorta. Nutrition 25: 359‐363, 2009.
 399.Fan LH, Tian HY, Yang ML, Ma AQ, Hu Z, Bai XJ, Cao YX. High‐fat diet may impair K(ATP) channels in vascular smooth muscle cells. Biomed Pharmacother 63: 165‐170, 2009.
 400.Fang Y, Mohler ER, III, Hsieh E, Osman H, Hashemi SM, Davies PF, Rothblat GH, Wilensky RL, Levitan I. Hypercholesterolemia suppresses inwardly rectifying K+ channels in aortic endothelium in vitro and in vivo. Circ Res 98: 1064‐1071, 2006.
 401.Faraci FM, Breese KR, Heistad DD. Cerebral vasodilation during hypercapnia. Role of glibenclamide‐sensitive potassium channels and nitric oxide. Stroke 25: 1679‐1683, 1994.
 402.Faraci FM, Heistad DD. Regulation of the cerebral circulation: Role of endothelium and potassium channels. Physiol Rev 78: 53‐97, 1998.
 403.Faraci FM, Sobey CG. Role of potassium channels in regulation of cerebral vascular tone. J Cereb Blood Flow Metab 18: 1047‐1063, 1998.
 404.Faraci FM, Sobey CG, Chrissobolis S, Lund DD, Heistad DD, Weintraub NL. Arachidonate dilates basilar artery by lipoxygenase‐dependent mechanism and activation of K(+) channels. Am J Physiol Regul Integr Comp Physiol 281: R246‐R253, 2001.
 405.Farouque HM, Meredith IT. Effects of inhibition of ATP‐sensitive potassium channels on metabolic vasodilation in the human forearm. Clin Sci (Lond) 104: 39‐46, 2003.
 406.Farouque HM, Meredith IT. Inhibition of vascular ATP‐sensitive K+ channels does not affect reactive hyperemia in human forearm. Am J Physiol Heart Circ Physiol 284: H711‐H718, 2003.
 407.Farouque HM, Meredith IT. Effect of adenosine triphosphate‐sensitive potassium channel inhibitors on coronary metabolic vasodilation. Trends Cardiovasc Med 17: 63‐68, 2007.
 408.Farouque HM, Worthley SG, Meredith IT. Effect of ATP‐sensitive potassium channel inhibition on coronary metabolic vasodilation in humans. Arterioscler Thromb Vasc Biol 24: 905‐910, 2004.
 409.Farouque HM, Worthley SG, Meredith IT, Skyrme‐Jones RA, Zhang MJ. Effect of ATP‐sensitive potassium channel inhibition on resting coronary vascular responses in humans. Circ Res 90: 231‐236, 2002.
 410.Farrell EF, Antaramian A, Benkusky N, Zhu X, Rueda A, Gomez AM, Valdivia HH. Regulation of cardiac excitation‐contraction coupling by sorcin, a novel modulator of ryanodine receptors. Biol Res 37: 609‐612, 2004.
 411.Farrell EF, Antaramian A, Rueda A, Gomez AM, Valdivia HH. Sorcin inhibits calcium release and modulates excitation‐contraction coupling in the heart. J Biol Chem 278: 34660‐34666, 2003.
 412.Fatt P, Katz B. The electrical properties of crustacean muscle fibres. J Physiol 120: 171‐204, 1953.
 413.Fecher‐Trost C, Weissgerber P, Wissenbach U. TRPV6 channels. Handb Exp Pharmacol 222: 359‐384, 2014.
 414.Felix JP, Bugianesi RM, Schmalhofer WA, Borris R, Goetz MA, Hensens OD, Bao JM, Kayser F, Parsons WH, Rupprecht K, Garcia ML, Kaczorowski GJ, Slaughter RS. Identification and biochemical characterization of a novel nortriterpene inhibitor of the human lymphocyte voltage‐gated potassium channel, Kv1.3. Biochemistry 38: 4922‐4930, 1999.
 415.Fellner SK, Arendshorst WJ. Angiotensin II Ca2+ signaling in rat afferent arterioles: Stimulation of cyclic ADP ribose and IP3 pathways. Am J Physiol Renal Physiol 288: F785‐F791, 2005.
 416.Fellner SK, Arendshorst WJ. Voltage‐gated Ca2+ entry and ryanodine receptor Ca2+‐induced Ca2+ release in preglomerular arterioles. Am J Physiol Renal Physiol 292: F1568‐F1572, 2007.
 417.Feng MG, Li M, Navar LG. T‐type calcium channels in the regulation of afferent and efferent arterioles in rats. Am J Physiol Renal Physiol 286: F331‐F337, 2004.
 418.Feng W, Tu J, Pouliquin P, Cabrales E, Shen X, Dulhunty A, Worley PF, Allen PD, Pessah IN. Dynamic regulation of ryanodine receptor type 1 (RyR1) channel activity by Homer 1. Cell Calcium 43: 307‐314, 2008.
 419.Fernandez‐Tenorio M, Gonzalez‐Rodriguez P, Porras C, Castellano A, Moosmang S, Hofmann F, Urena J, Lopez‐Barneo J. Short communication: Genetic ablation of L‐type Ca2+ channels abolishes depolarization‐induced Ca2+ release in arterial smooth muscle. Circ Res 106: 1285‐1289, 2010.
 420.Fernandez‐Tenorio M, Porras‐Gonzalez C, Castellano A, Del Valle‐Rodriguez A, Lopez‐Barneo J, Urena J. Metabotropic regulation of RhoA/Rho‐associated kinase by L‐type Ca2+ channels: New mechanism for depolarization‐evoked mammalian arterial contraction. Circ Res 108: 1348‐1357, 2011.
 421.Fernandez‐Velasco M, Ruiz‐Hurtado G, Gomez AM, Rueda A. Ca(2+) handling alterations and vascular dysfunction in diabetes. Cell Calcium 56: 397‐407, 2014.
 422.Ferris CD, Cameron AM, Bredt DS, Huganir RL, Snyder SH. Inositol 1,4,5‐trisphosphate receptor is phosphorylated by cyclic AMP‐dependent protein kinase at serines 1755 and 1589. Biochem Biophys Res Commun 175: 192‐198, 1991.
 423.Ferris CD, Huganir RL, Supattapone S, Snyder SH. Purified inositol 1,4,5‐trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles. Nature 342: 87‐89, 1989.
 424.Ficker E, Taglialatela M, Wible BA, Henley CM, Brown AM. Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science 266: 1068‐1072, 1994.
 425.Fill M, Copello JA. Ryanodine receptor calcium release channels. Physiol Rev 82: 893‐922, 2002.
 426.Filosa JA, Bonev AD, Straub SV, Meredith AL, Wilkerson MK, Aldrich RW, Nelson MT. Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci 9: 1397‐1403, 2006.
 427.Filosa JA, Yao X, Rath G. TRPV4 and the regulation of vascular tone. J Cardiovasc Pharmacol 61: 113‐119, 2013.
 428.Fioretti B, Trequattrini C, Sforna L, Harper A, Catacuzzeno L, Franciolini F. Cromakalim activates the K(ATP) and enhances spontaneous transient outward potassium currents in rat saphenous arterial myocytes. Pharmacol Res 57: 398‐402, 2008.
 429.Fleckenstein A. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Annu Rev Pharmacol Toxicol 17: 149‐166, 1977.
 430.Fleig A, Chubanov V. Trpm7. Handb Exp Pharmacol 222: 521‐546, 2014.
 431.Fleig A, Penner R. The TRPM ion channel subfamily: Molecular, biophysical and functional features. Trends Pharmacol Sci 25: 633‐639, 2004.
 432.Fleischer S, Ogunbunmi EM, Dixon MC, Fleer EA. Localization of Ca2+ release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum of fast skeletal muscle. Proc Natl Acad Sci U S A 82: 7256‐7259, 1985.
 433.Foggensteiner L, Bevan AP, Thomas R, Coleman N, Boulter C, Bradley J, Ibraghimov‐Beskrovnaya O, Klinger K, Sandford R. Cellular and subcellular distribution of polycystin‐2, the protein product of the PKD2 gene. J Am Soc Nephrol 11: 814‐827, 2000.
 434.Foskett JK, White C, Cheung KH, Mak DO. Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87: 593‐658, 2007.
 435.Foskett KJ, Mak DD. Chapter 11: Regulation of IP3R channel gating by Ca2+ and Ca2+ binding proteins. In: Serysheva I, editor. Curr Top Membr. Burlington, MA: Academic Press, 2010, pp. 235‐272.
 436.Foster MN, Coetzee WA. KATP channels in the cardiovascular system. Physiol Rev 96: 177‐252, 2016.
 437.Fredricks KT, Liu Y, Rusch NJ, Lombard JH. Role of endothelium and arterial K+ channels in mediating hypoxic dilation of middle cerebral arteries. Am J Physiol 267: H580‐H586, 1994.
 438.Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B. Lack of an endothelial store‐operated Ca2+ current impairs agonist‐dependent vasorelaxation in TRP4‐/‐ mice. Nat Cell Biol 3: 121‐127, 2001.
 439.Freichel M, Tsvilovskyy V, Camacho‐Londono JE. TRPC4‐ and TRPC4‐containing channels. Handb Exp Pharmacol 222: 85‐128, 2014.
 440.Frisbee JC, Maier KG, Stepp DW. Oxidant stress‐induced increase in myogenic activation of skeletal muscle resistance arteries in obese Zucker rats. Am J Physiol Heart Circ Physiol 283: H2160‐H2168, 2002.
 441.Frohlich ED, Scott JB, Haddy FJ. Effect of cations on resistance and responsiveness of renal and forelimb vascular beds. Am J Physiol 203: 583‐587, 1962.
 442.Fruen BR, Bardy JM, Byrem TM, Strasburg GM, Louis CF. Differential Ca(2+) sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. Am J Physiol Cell Physiol 279: C724‐C733, 2000.
 443.Fruen BR, Black DJ, Bloomquist RA, Bardy JM, Johnson JD, Louis CF, Balog EM. Regulation of the RYR1 and RYR2 Ca2+ release channel isoforms by Ca2+‐insensitive mutants of calmodulin. Biochemistry 42: 2740‐2747, 2003.
 444.Fu Y, Westenbroek RE, Scheuer T, Catterall WA. Basal and beta‐adrenergic regulation of the cardiac calcium channel CaV1.2 requires phosphorylation of serine 1700. Proc Natl Acad Sci U S A 111: 16598‐16603, 2014.
 445.Fujii K, Heistad DD, Faraci FM. Flow‐mediated dilatation of the basilar artery in vivo. Circ Res 69: 697‐705, 1991.
 446.Fujino K, Nakaya S, Wakatsuki T, Miyoshi Y, Nakaya Y, Mori H, Inoue I. Effects of nitroglycerin on ATP‐induced Ca(++)‐mobilization, Ca(++)‐activated K channels and contraction of cultured smooth muscle cells of porcine coronary artery. J Pharmacol Exp Ther 256: 371‐377, 1991.
 447.Fujita H, Ogura T, Tamagawa M, Uemura H, Sato T, Ishida A, Imamaki M, Kimura F, Miyazaki M, Nakaya H. A key role for the subunit SUR2B in the preferential activation of vascular KATP channels by isoflurane. Br J Pharmacol 149: 573‐580, 2006.
 448.Fujiwara Y, Minor DL, Jr. X‐ray crystal structure of a TRPM assembly domain reveals an antiparallel four‐stranded coiled‐coil. J Mol Biol 383: 854‐870, 2008.
 449.Fukami Y, Toki Y, Numaguchi Y, Nakashima Y, Mukawa H, Matsui H, Okumura K, Ito T. Nitroglycerin‐induced aortic relaxation mediated by calcium‐activated potassium channel is markedly diminished in hypertensive rats. Life Sci 63: 1047‐1055, 1998.
 450.Fukao M, Mason HS, Britton FC, Kenyon JL, Horowitz B, Keef KD. Cyclic GMP‐dependent protein kinase activates cloned BKCa channels expressed in mammalian cells by direct phosphorylation at serine 1072. J Biol Chem 274: 10927‐10935, 1999.
 451.Fuller MD, Emrick MA, Sadilek M, Scheuer T, Catterall WA. Molecular mechanism of calcium channel regulation in the fight‐or‐flight response. Sci Signal 3: ra70, 2010.
 452.Furspan PB, Webb RC. Decreased ATP sensitivity of a K+ channel and enhanced vascular smooth muscle relaxation in genetically hypertensive rats. J Hypertens 11: 1067‐1072, 1993.
 453.Furstenau M, Lohn M, Ried C, Luft FC, Haller H, Gollasch M. Calcium sparks in human coronary artery smooth muscle cells resolved by confocal imaging. J Hypertens 18: 1215‐1222, 2000.
 454.Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, Mikoshiba K. Primary structure and functional expression of the inositol 1,4,5‐trisphosphate‐binding protein P400. Nature 342: 32‐38, 1989.
 455.Futatsugi A, Kuwajima G, Mikoshiba K. Tissue‐specific and developmentally regulated alternative splicing in mouse skeletal muscle ryanodine receptor mRNA. Biochem J 305(Pt 2): 373‐378, 1995.
 456.Gafni J, Munsch JA, Lam TH, Catlin MC, Costa LG, Molinski TF, Pessah IN. Xestospongins: potent membrane permeable blockers of the inositol 1,4,5‐trisphosphate receptor. Neuron 19: 723‐733, 1997.
 457.Gamperl AK, Hein TW, Kuo L, Cason BA. Isoflurane‐induced dilation of porcine coronary microvessels is endothelium dependent and inhibited by glibenclamide. Anesthesiology 96: 1465‐1471, 2002.
 458.Ganitkevich V, Isenberg G. Isolated guinea pig coronary smooth muscle cells. Acetylcholine induces hyperpolarization due to sarcoplasmic reticulum calcium release activating potassium channels. Circ Res 67: 525‐528, 1990.
 459.Ganitkevich V, Isenberg G. Membrane potential modulates inositol 1,4,5‐trisphosphate‐mediated Ca2+ transients in guinea‐pig coronary myocytes. J Physiol 470: 35‐44, 1993.
 460.Gannon KP, Vanlandingham LG, Jernigan NL, Grifoni SC, Hamilton G, Drummond HA. Impaired pressure‐induced constriction in mouse middle cerebral arteries of ASIC2 knockout mice. Am J Physiol Heart Circ Physiol 294: H1793‐H1803, 2008.
 461.Garcia Z, Earley S. PLC gamma‐1 is required for IP3‐mediated activation of TRPM4 and pressure‐induced depolarization and vasoconstriction in cerebral arteries. Faseb Journal 25: 1024.1016, 2011.
 462.Garcia‐Elias A, Mrkonjic S, Jung C, Pardo‐Pastor C, Vicente R, Valverde MA. The TRPV4 channel. Handb Exp Pharmacol 222: 293‐319, 2014.
 463.Gardiner SM, March JE, Kemp PA, Maguire JJ, Kuc RE, Davenport AP, Bennett T. Regional heterogeneity in the haemodynamic responses to urotensin II infusion in relation to UT receptor localisation. Br J Pharmacol 147: 612‐621, 2006.
 464.Gardos G. The function of calcium in the potassium permeability of human erythrocytes. Biochim Biophys Acta 30: 653‐654, 1958.
 465.Garland CJ, McPherson GA. Evidence that nitric oxide does not mediate the hyperpolarization and relaxation to acetylcholine in the rat small mesenteric artery. Br J Pharmacol 105: 429‐435, 1992.
 466.Gaudet R. A primer on ankyrin repeat function in TRP channels and beyond. Mol Biosyst 4: 372‐379, 2008.
 467.Ge ZD, Zhang XH, Fung PC, He GW. Endothelium‐dependent hyperpolarization and relaxation resistance to N(G)‐nitro‐L‐arginine and indomethacin in coronary circulation. Cardiovasc Res 46: 547‐556, 2000.
 468.Gebremedhin D, Kaldunski M, Jacobs ER, Harder DR, Roman RJ. Coexistence of two types of Ca(2+)‐activated K+ channels in rat renal arterioles. Am J Physiol 270: F69‐F81, 1996.
 469.Geiger J, Zou AP, Campbell WB, Li PL. Inhibition of cADP‐ribose formation produces vasodilation in bovine coronary arteries. Hypertension 35: 397‐402, 2000.
 470.Geiselhoringer A, Werner M, Sigl K, Smital P, Worner R, Acheo L, Stieber J, Weinmeister P, Feil R, Feil S, Wegener J, Hofmann F, Schlossmann J. IRAG is essential for relaxation of receptor‐triggered smooth muscle contraction by cGMP kinase. Embo J 23: 4222‐4231, 2004.
 471.Gelband CH, Ishikawa T, Post JM, Keef KD, Hume JR. Intracellular divalent cations block smooth muscle K+ channels. Circ Res 73: 24‐34, 1993.
 472.Ghafouri S, Hajizadeh S, Mani AR. Enhancement of insulin‐induced cutaneous vasorelaxation by exercise in rats: A role for nitric oxide and K(Ca2+) channels. Eur J Pharmacol 652: 89‐95, 2011.
 473.Ghisdal P, Gomez JP, Morel N. Action of a NO donor on the excitation‐contraction pathway activated by noradrenaline in rat superior mesenteric artery. J Physiol 522(Pt 1): 83‐96, 2000.
 474.Ghosh M, Hanna ST, Wang R, McNeill JR. Altered vascular reactivity and KATP channel currents in vascular smooth muscle cells from deoxycorticosterone acetate (DOCA)‐salt hypertensive rats. J Cardiovasc Pharmacol 44: 525‐531, 2004.
 475.Ghosh P, Mora Solis FR, Dominguez JM, II, Spier SA, Donato AJ, Delp MD, Muller‐Delp JM. Exercise training reverses aging‐induced impairment of myogenic constriction in skeletal muscle arterioles. J Appl Physiol (1985) 118: 904‐911, 2015.
 476.Giangiacomo KM, Kamassah A, Harris G, McManus OB. Mechanism of maxi‐K channel activation by dehydrosoyasaponin‐I. J Gen Physiol 112: 485‐501, 1998.
 477.Giannini G, Conti A, Mammarella S, Scrobogna M, Sorrentino V. The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol 128: 893‐904, 1995.
 478.Gidday JM, Maceren RG, Shah AR, Meier JA, Zhu Y. KATP channels mediate adenosine‐induced hyperemia in retina. Invest Ophthalmol Vis Sci 37: 2624‐2633, 1996.
 479.Girouard H, Bonev AD, Hannah RM, Meredith A, Aldrich RW, Nelson MT. Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction. Proc Natl Acad Sci U S A 107: 3811‐3816, 2010.
 480.Gloerich M, Bos JL. Epac: Defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol 50: 355‐375, 2010.
 481.Gogelein H, Bruggemann A, Gerlach U, Brendel J, Busch AE. Inhibition of IKs channels by HMR 1556. Naunyn Schmiedebergs Arch Pharmacol 362: 480‐488, 2000.
 482.Golenhofen K, Hermstein N, Lammel E. Membrane potential and contraction of vascular smooth muscle (portal vein) during application of noradrenaline and high potassium, and selective inhibitory effects of iproveratril (verapamil). Microvasc Res 5: 73‐80, 1973.
 483.Gollasch M, Lohn M, Furstenau M, Nelson MT, Luft FC, Haller H. Ca2+ channels, Ca2+ sparks, and regulation of arterial smooth muscle function. Z Kardiol 89(Suppl 2): 15‐19, 2000.
 484.Gollasch M, Ried C, Bychkov R, Luft FC, Haller H. K+ currents in human coronary artery vascular smooth muscle cells. Circ Res 78: 676‐688, 1996.
 485.Gomez‐Hernandez JM, Lorra C, Pardo LA, Stuhmer W, Pongs O, Heinemann SH, Elliott AA. Molecular basis for different pore properties of potassium channels from the rat brain Kv1 gene family. Pflugers Arch 434: 661‐668, 1997.
 486.Gonzales AL, Amberg GC, Earley S. Ca2+ release from the sarcoplasmic reticulum is required for sustained TRPM4 activity in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 299: C279‐C288, 2010.
 487.Gonzales AL, Earley S. Endogenous cytosolic Ca(2+) buffering is necessary for TRPM4 activity in cerebral artery smooth muscle cells. Cell Calcium 51: 82‐93, 2012.
 488.Gonzales AL, Yang Y, Sullivan MN, Sanders L, Dabertrand F, Hill‐Eubanks DC, Nelson MT, Earley S. A PLCgamma1‐dependent, force‐sensitive signaling network in the myogenic constriction of cerebral arteries. Sci Signal 7: ra49, 2014.
 489.Gonzalez C, Baez‐Nieto D, Valencia I, Oyarzun I, Rojas P, Naranjo D, Latorre R. K(+) channels: Function‐structural overview. Compr Physiol 2: 2087‐2149, 2012.
 490.Gonzalez‐Perez V, Xia XM, Lingle CJ. Functional regulation of BK potassium channels by gamma1 auxiliary subunits. Proc Natl Acad Sci U S A 111: 4868‐4873, 2014.
 491.Goodwill AG, Fu L, Noblet JN, Casalini ED, Sassoon D, Berwick ZC, Kassab GS, Tune JD, Dick GM. KV7 channels contribute to paracrine, but not metabolic or ischemic, regulation of coronary vascular reactivity in swine. Am J Physiol Heart Circ Physiol 310: H693‐H704, 2016.
 492.Goodwill AG, Noblet JN, Sassoon D, Fu L, Kassab GS, Schepers L, Herring BP, Rottgen TS, Tune JD, Dick GM. Critical contribution of KV1 channels to the regulation of coronary blood flow. Basic Res Cardiol 111: 56, 2016.
 493.Gordienko DV, Bolton TB. Crosstalk between ryanodine receptors and IP(3) receptors as a factor shaping spontaneous Ca(2+)‐release events in rabbit portal vein myocytes. J Physiol 542: 743‐762, 2002.
 494.Gordienko DV, Clausen C, Goligorsky MS. Ionic currents and endothelin signaling in smooth muscle cells from rat renal resistance arteries. Am J Physiol 266: F325‐F341, 1994.
 495.Gordienko D, Povstyan O, Sukhanova K, Raphael M, Harhun M, Dyskina Y, Lehen'kyi V, Jama A, Lu ZL, Skryma R, Prevarskaya N. Impaired P2X signalling pathways in renal microvascular myocytes in genetic hypertension. Cardiovasc Res 105: 131‐142, 2015.
 496.Goto K, Kasuya Y, Matsuki N, Takuwa Y, Kurihara H, Ishikawa T, Kimura S, Yanagisawa M, Masaki T. Endothelin activates the dihydropyridine‐sensitive, voltage‐dependent Ca2+ channel in vascular smooth muscle. Proc Natl Acad Sci U S A 86: 3915‐3918, 1989.
 497.Grand T, Demion M, Norez C, Mettey Y, Launay P, Becq F, Bois P, Guinamard R. 9‐Phenanthrol inhibits human TRPM4 but not TRPM5 cationic channels. Br J Pharmacol 153: 1697‐1705, 2008.
 498.Grayson TH, Haddock RE, Murray TP, Wojcikiewicz RJ, Hill CE. Inositol 1,4,5‐trisphosphate receptor subtypes are differentially distributed between smooth muscle and endothelial layers of rat arteries. Cell Calcium 36: 447‐458, 2004.
 499.Greenwood IA, Ohya S. New tricks for old dogs: KCNQ expression and role in smooth muscle. Br J Pharmacol 156: 1196‐1203, 2009.
 500.Gribkoff VK, Starrett JE, Jr, Dworetzky SI, Hewawasam P, Boissard CG, Cook DA, Frantz SW, Heman K, Hibbard JR, Huston K, Johnson G, Krishnan BS, Kinney GG, Lombardo LA, Meanwell NA, Molinoff PB, Myers RA, Moon SL, Ortiz A, Pajor L, Pieschl RL, Post‐Munson DJ, Signor LJ, Srinivas N, Taber MT, Thalody G, Trojnacki JT, Wiener H, Yeleswaram K, Yeola SW. Targeting acute ischemic stroke with a calcium‐sensitive opener of maxi‐K potassium channels. Nat Med 7: 471‐477, 2001.
 501.Griffin MD, Torres VE, Grande JP, Kumar R. Vascular expression of polycystin. J Am Soc Nephrol 8: 616‐626, 1997.
 502.Grifoni SC, Chiposi R, McKey SE, Ryan MJ, Drummond HA. Altered whole kidney blood flow autoregulation in a mouse model of reduced beta‐ENaC. Am J Physiol Renal Physiol 298: F285‐F292, 2010.
 503.Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C. Molecular and functional characterization of the melastatin‐related cation channel TRPM3. J Biol Chem 278: 21493‐21501, 2003.
 504.Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, Karmilowicz MJ, Auperin DD, Chandy KG. Pharmacological characterization of five cloned voltage‐gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol 45: 1227‐1234, 1994.
 505.Gros R, Van Wert R, You X, Thorin E, Husain M. Effects of age, gender, and blood pressure on myogenic responses of mesenteric arteries from C57BL/6 mice. Am J Physiol Heart Circ Physiol 282: H380‐H388, 2002.
 506.Gross GJ, Auchampach JA. Role of ATP dependent potassium channels in myocardial ischaemia. Cardiovasc Res 26: 1011‐1016, 1992.
 507.Gross SA, Guzman GA, Wissenbach U, Philipp SE, Zhu MX, Bruns D, Cavalie A. TRPC5 is a Ca2+‐activated channel functionally coupled to Ca2+‐selective ion channels. J Biol Chem 284: 34423‐34432, 2009.
 508.Grunnet M, Kaufmann WA. Coassembly of big conductance Ca2+‐activated K+ channels and L‐type voltage‐gated Ca2+ channels in rat brain. J Biol Chem 279: 36445‐36453, 2004.
 509.Grupe A, Schroter KH, Ruppersberg JP, Stocker M, Drewes T, Beckh S, Pongs O. Cloning and expression of a human voltage‐gated potassium channel. A novel member of the RCK potassium channel family. Embo J 9: 1749‐1756, 1990.
 510.Guan Z, Pollock JS, Cook AK, Hobbs JL, Inscho EW. Effect of epithelial sodium channel blockade on the myogenic response of rat juxtamedullary afferent arterioles. Hypertension 54: 1062‐1069, 2009.
 511.Guarini G, Ohanyan VA, Kmetz JG, DelloStritto DJ, Thoppil RJ, Thodeti CK, Meszaros JG, Damron DS, Bratz IN. Disruption of TRPV1‐mediated coupling of coronary blood flow to cardiac metabolism in diabetic mice: Role of nitric oxide and BK channels. Am J Physiol Heart Circ Physiol 303: H216‐H223, 2012.
 512.Guerrero‐Hernandez A, Gomez‐Viquez L, Guerrero‐Serna G, Rueda A. Ryanodine receptors in smooth muscle. Front Biosci 7: d1676‐d1688, 2002.
 513.Gui P, Wu X, Ling S, Stotz SC, Winkfein RJ, Wilson E, Davis GE, Braun AP, Zamponi GW, Davis MJ. Integrin receptor activation triggers converging regulation of Cav1.2 calcium channels by c‐Src and protein kinase A pathways. J Biol Chem 281: 14015‐14025, 2006.
 514.Guia A, Wan X, Courtemanche M, Leblanc N. Local Ca2+ entry through L‐type Ca2+ channels activates Ca2+‐dependent K+ channels in rabbit coronary myocytes. Circ Res 84: 1032‐1042, 1999.
 515.Gulia J, Navedo MF, Gui P, Chao JT, Mercado JL, Santana LF, Davis MJ. Regulation of L‐type calcium channel sparklet activity by c‐Src and PKC‐alpha. Am J Physiol Cell Physiol 305: C568‐C577, 2013.
 516.Gunther M. Perfusion imaging. J Magn Reson Imaging 40: 269‐279, 2014.
 517.Gunthorpe MJ, Large CH, Sankar R. The mechanism of action of retigabine (ezogabine), a first‐in‐class K+ channel opener for the treatment of epilepsy. Epilepsia 53: 412‐424, 2012.
 518.Guo L, Qiu Z, Wei L, Yu X, Gao X, Jiang S, Tian H, Jiang C, Zhu D. The microRNA‐328 regulates hypoxic pulmonary hypertension by targeting at insulin growth factor 1 receptor and L‐type calcium channel‐alpha1C. Hypertension 59: 1006‐1013, 2012.
 519.Gupta PK, Subramani J, Leo MD, Sikarwar AS, Parida S, Prakash VR, Mishra SK. Role of voltage‐dependent potassium channels and myo‐endothelial gap junctions in 4‐aminopyridine‐induced inhibition of acetylcholine relaxation in rat carotid artery. Eur J Pharmacol 591: 171‐176, 2008.
 520.Gurney A, Manoury B. Two‐pore potassium channels in the cardiovascular system. Eur Biophys J 38: 305‐318, 2009.
 521.Gustafsson F, Andreasen D, Salomonsson M, Jensen BL, Holstein‐Rathlou N. Conducted vasoconstriction in rat mesenteric arterioles: Role for dihydropyridine‐insensitive Ca(2+) channels. Am J Physiol Heart Circ Physiol 280: H582‐H590, 2001.
 522.Gustafsson H, Bulow A, Nilsson H. Rhythmic contractions of isolated, pressurized small arteries from rat. Acta Physiol Scand 152: 145‐152, 1994.
 523.Gustafsson H, Nilsson H. Rhythmic contractions of isolated small arteries from rat: Role of calcium. Acta Physiol Scand 149: 283‐291, 1993.
 524.Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W, Wang X. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage‐gated potassium channels. Pharmacol Rev 57: 473‐508, 2005.
 525.Gyorke I, Gyorke S. Regulation of the cardiac ryanodine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. Biophys J 75: 2801‐2810, 1998.
 526.Gyorke S, Terentyev D. Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovasc Res 77: 245‐255, 2008.
 527.Haarmann CS, Fink RH, Dulhunty AF. Oxidation and reduction of pig skeletal muscle ryanodine receptors. Biophys J 77: 3010‐3022, 1999.
 528.Haddock RE, Grayson TH, Morris MJ, Howitt L, Chadha PS, Sandow SL. Diet‐induced obesity impairs endothelium‐derived hyperpolarization via altered potassium channel signaling mechanisms. PLoS One 6: e16423, 2011.
 529.Haddock RE, Hill CE. Differential activation of ion channels by inositol 1,4,5‐trisphosphate (IP3)‐ and ryanodine‐sensitive calcium stores in rat basilar artery vasomotion. J Physiol 545: 615‐627, 2002.
 530.Haddock RE, Hirst GD, Hill CE. Voltage independence of vasomotion in isolated irideal arterioles of the rat. J Physiol 540: 219‐229, 2002.
 531.Haddy FJ, Vanhoutte PM, Feletou M. Role of potassium in regulating blood flow and blood pressure. Am J Physiol Regul Integr Comp Physiol 290: R546‐R552, 2006.
 532.Hagiwara S, Mitsui M, Karaki H. Effects of felodipine, nifedipine and verapamil on cytosolic Ca2+ and contraction in vascular smooth muscle. Eur J Pharmacol 234: 1‐7, 1993.
 533.Hagiwara S, Miyazaki S, Moody W, Patlak J. Blocking effects of barium and hydrogen ions on the potassium current during anomalous rectification in the starfish egg. J Physiol 279: 167‐185, 1978.
 534.Hagiwara S, Takahashi K. The anomalous rectification and cation selectivity of the membrane of a starfish egg cell. J Membr Biol 18: 61‐80, 1974.
 535.Hain J, Onoue H, Mayrleitner M, Fleischer S, Schindler H. Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from cardiac muscle. J Biol Chem 270: 2074‐2081, 1995.
 536.Haitin Y, Attali B. The C‐terminus of Kv7 channels: A multifunctional module. J Physiol 586: 1803‐1810, 2008.
 537.Hajnoczky G, Thomas AP. Minimal requirements for calcium oscillations driven by the IP3 receptor. Embo J 16: 3533‐3543, 1997.
 538.Hakamata Y, Nakai J, Takeshima H, Imoto K. Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett 312: 229‐235, 1992.
 539.Halaszovich CR, Zitt C, Jungling E, Luckhoff A. Inhibition of TRP3 channels by lanthanides. Block from the cytosolic side of the plasma membrane. J Biol Chem 275: 37423‐37428, 2000.
 540.Hald BO, Jacobsen JC, Braunstein TH, Inoue R, Ito Y, Sorensen PG, Holstein‐Rathlou NH, Jensen LJ. BKCa and KV channels limit conducted vasomotor responses in rat mesenteric terminal arterioles. Pflugers Arch 463: 279‐295, 2012.
 541.Halliday FC, Aaronson PI, Evans AM, Gurney AM. The pharmacological properties of K +currents from rabbit isolated aortic smooth muscle cells. Br J Pharmacol 116: 3139‐3148, 1995.
 542.Halpern W, Osol G, Coy GS. Mechanical behavior of pressurized in vitro prearteriolar vessels determined with a video system. Ann Biomed Eng 12: 463‐479, 1984.
 543.Hamilton SL. Ryanodine receptors. Cell Calcium 38: 253‐260, 2005.
 544.Hamilton TC, Beerahee A, Moen JS, Price RK, Ramji JV, Clapham JC. Levcromakalim. Cardiovascular Drug Reviews 11: 199‐222, 1993.
 545.Hamilton SL, Serysheva, II. Ryanodine receptor structure: Progress and challenges. J Biol Chem 284: 4047‐4051, 2009.
 546.Hamilton SL, Yatani A, Brush K, Schwartz A, Brown AM. A comparison between the binding and electrophysiological effects of dihydropyridines on cardiac membranes. Mol Pharmacol 31: 221‐231, 1987.
 547.Hammer LW, Ligon AL, Hester RL. Differential inhibition of functional dilation of small arterioles by indomethacin and glibenclamide. Hypertension 37: 599‐603, 2001.
 548.Han H, Rosenhouse‐Dantsker A, Gnanasambandam R, Epshtein Y, Chen Z, Sachs F, Minshall RD, Levitan I. Silencing of Kir2 channels by caveolin‐1: Cross‐talk with cholesterol. J Physiol 592: 4025‐4038, 2014.
 549.Hansen PB, Jensen BL, Andreasen D, Friis UG, Skott O. Vascular smooth muscle cells express the alpha(1A) subunit of a P‐/Q‐type voltage‐dependent Ca(2+)channel, and it is functionally important in renal afferent arterioles. Circ Res 87: 896‐902, 2000.
 550.Hansen PB, Jensen BL, Andreasen D, Skott O. Differential expression of T‐ and L‐type voltage‐dependent calcium channels in renal resistance vessels. Circ Res 89: 630‐638, 2001.
 551.Hansen PR, Olesen SP. Relaxation of rat resistance arteries by acetylcholine involves a dual mechanism: Activation of K+ channels and formation of nitric oxide. Pharmacol Toxicol 80: 280‐285, 1997.
 552.Hansen PB, Poulsen CB, Walter S, Marcussen N, Cribbs LL, Skott O, Jensen BL. Functional importance of L‐ and P/Q‐type voltage‐gated calcium channels in human renal vasculature. Hypertension 58: 464‐470, 2011.
 553.Hara Y, Kitamura K, Kuriyama H. Actions of 4‐aminopyridine on vascular smooth muscle tissues of the guinea‐pig. Br J Pharmacol 68: 99‐106, 1980.
 554.Harder DR, Sperelakis N. Action potentials induced in guinea pig arterial smooth muscle by tetraethylammonium. Am J Physiol 237: C75‐C80, 1979.
 555.Harnett KM, Biancani P. Calcium‐dependent and calcium‐independent contractions in smooth muscles. Am J Med 115(Suppl 3A): 24S‐30S, 2003.
 556.Harootunian AT, Kao JP, Paranjape S, Tsien RY. Generation of calcium oscillations in fibroblasts by positive feedback between calcium and IP3. Science 251: 75‐78, 1991.
 557.Harraz OF, Abd El‐Rahman RR, Bigdely‐Shamloo K, Wilson SM, Brett SE, Romero M, Gonzales AL, Earley S, Vigmond EJ, Nygren A, Menon BK, Mufti RE, Watson T, Starreveld Y, Furstenhaupt T, Muellerleile PR, Kurjiaka DT, Kyle BD, Braun AP, Welsh DG. Ca(V)3.2 channels and the induction of negative feedback in cerebral arteries. Circ Res 115: 650‐661, 2014.
 558.Harraz OF, Brett SE, Welsh DG. Nitric oxide suppresses vascular voltage‐gated T‐type Ca2+ channels through cGMP/PKG signaling. Am J Physiol Heart Circ Physiol 306: H279‐H285, 2014.
 559.Harraz OF, Brett SE, Zechariah A, Romero M, Puglisi JL, Wilson SM, Welsh DG. Genetic ablation of CaV3.2 channels enhances the arterial myogenic response by modulating the RyR‐BKCa axis. Arterioscler Thromb Vasc Biol 35: 1843‐1851, 2015.
 560.Harraz OF, Welsh DG. Protein kinase A regulation of T‐type Ca2+ channels in rat cerebral arterial smooth muscle. J Cell Sci 126: 2944‐2954, 2013.
 561.Harteneck C. Function and pharmacology of TRPM cation channels. Naunyn Schmiedebergs Arch Pharmacol 371: 307‐314, 2005.
 562.Harteneck C, Gollasch M. Pharmacological modulation of diacylglycerol‐sensitive TRPC3/6/7 channels. Curr Pharm Biotechnol 12: 35‐41, 2011.
 563.Harteneck C, Reiter B. TRP channels activated by extracellular hypo‐osmoticity in epithelia. Biochem Soc Trans 35: 91‐95, 2007.
 564.Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, Blum R, Dietrich A, Freichel M, Flockerzi V, Birnbaumer L, Konnerth A. TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59: 392‐398, 2008.
 565.Harvey RD, Hell JW. CaV1.2 signaling complexes in the heart. J Mol Cell Cardiol 58: 143‐152, 2013.
 566.Hashemzadeh‐Gargari H, Rembold CM. Histamine activates whole cell K+ currents in swine carotid arterial smooth muscle cell. Comp Biochem Physiol C 102: 33‐37, 1992.
 567.Hassane S, Claij N, Jodar M, Dedman A, Lauritzen I, Duprat F, Koenderman JS, van der Wal A, Breuning MH, de Heer E, Honore E, DeRuiter MC, Peters DJ. Pkd1‐inactivation in vascular smooth muscle cells and adaptation to hypertension. Lab Invest 91: 24‐32, 2011.
 568.Hassett CC. Effect of ryanodine on the oxygen consumption of periplaneta americana. Science 108: 138‐139, 1948.
 569.Hayabuchi Y, Dart C, Standen NB. Evidence for involvement of A‐kinase anchoring protein in activation of rat arterial K(ATP) channels by protein kinase A. J Physiol 536: 421‐427, 2001.
 570.Hayabuchi Y, Davies NW, Standen NB. Angiotensin II inhibits rat arterial KATP channels by inhibiting steady‐state protein kinase A activity and activating protein kinase Ce. J Physiol 530: 193‐205, 2001.
 571.Hayabuchi Y, Standen NB, Davies NW. Angiotensin II inhibits and alters kinetics of voltage‐gated K(+) channels of rat arterial smooth muscle. Am J Physiol Heart Circ Physiol 281: H2480‐H2489, 2001.
 572.Hayashi T, Su TP. Regulating ankyrin dynamics: Roles of sigma‐1 receptors. Proc Natl Acad Sci U S A 98: 491‐496, 2001.
 573.Hayoz S, Bradley V, Boerman EM, Nourian Z, Segal SS, Jackson WF. Aging increases capacitance and spontaneous transient outward current amplitude of smooth muscle cells from murine superior epigastric arteries. Am J Physiol Heart Circ Physiol 306: H1512‐H1524, 2014.
 574.He LP, Hewavitharana T, Soboloff J, Spassova MA, Gill DL. A functional link between store‐operated and TRPC channels revealed by the 3,5‐bis(trifluoromethyl)pyrazole derivative, BTP2. J Biol Chem 280: 10997‐11006, 2005.
 575.He Y, Kang Y, Leung YM, Xia F, Gao X, Xie H, Gaisano HY, Tsushima RG. Modulation of Kv2.1 channel gating and TEA sensitivity by distinct domains of SNAP‐25. Biochem J 396: 363‐369, 2006.
 576.Heady TN, Gomora JC, Macdonald TL, Perez‐Reyes E. Molecular pharmacology of T‐type Ca2+ channels. Jpn J Pharmacol 85: 339‐350, 2001.
 577.Heaps CL, Bowles DK. Gender‐specific K(+)‐channel contribution to adenosine‐induced relaxation in coronary arterioles. J Appl Physiol (1985) 92: 550‐558, 2002.
 578.Heaps CL, Tharp DL, Bowles DK. Hypercholesterolemia abolishes voltage‐dependent K+ channel contribution to adenosine‐mediated relaxation in porcine coronary arterioles. Am J Physiol Heart Circ Physiol 288: H568‐H576, 2005.
 579.Hedegaard ER, Nielsen BD, Kun A, Hughes AD, Kroigaard C, Mogensen S, Matchkov VV, Frobert O, Simonsen U. KV 7 channels are involved in hypoxia‐induced vasodilatation of porcine coronary arteries. Br J Pharmacol 171: 69‐82, 2014.
 580.Hein TW, Kuo L. cAMP‐independent dilation of coronary arterioles to adenosine: Role of nitric oxide, G proteins, and K(ATP) channels. Circ Res 85: 634‐642, 1999.
 581.Hein TW, Xu W, Kuo L. Dilation of retinal arterioles in response to lactate: Role of nitric oxide, guanylyl cyclase, and ATP‐sensitive potassium channels. Invest Ophthalmol Vis Sci 47: 693‐699, 2006.
 582.Hein TW, Xu W, Ren Y, Kuo L. Cellular signalling pathways mediating dilation of porcine pial arterioles to adenosine A(2)A receptor activation. Cardiovasc Res 99: 156‐163, 2013.
 583.Heintz A, Damm M, Brand M, Koch T, Deussen A. Coronary flow regulation in mouse heart during hypercapnic acidosis: role of NO and its compensation during eNOS impairment. Cardiovasc Res 77: 188‐196, 2008.
 584.Heinze C, Seniuk A, Sokolov MV, Huebner AK, Klementowicz AE, Szijarto IA, Schleifenbaum J, Vitzthum H, Gollasch M, Ehmke H, Schroeder BC, Hubner CA. Disruption of vascular Ca2+‐activated chloride currents lowers blood pressure. J Clin Invest 124: 675‐686, 2014.
 585.Hellwig N, Albrecht N, Harteneck C, Schultz G, Schaefer M. Homo‐ and heteromeric assembly of TRPV channel subunits. J Cell Sci 118: 917‐928, 2005.
 586.Helmchen F, Denk W, Kerr JN. Miniaturization of two‐photon microscopy for imaging in freely moving animals. Cold Spring Harb Protoc 2013: 904‐913, 2013.
 587.Helmchen F, Kleinfeld D. Chapter 10. In vivo measurements of blood flow and glial cell function with two‐photon laser‐scanning microscopy. Methods Enzymol 444: 231‐254, 2008.
 588.Hempelmann RG, Seebeck J, Kruse ML, Ziegler A, Mehdorn HM. Role of potassium channels in the relaxation induced by the nitric oxide (NO) donor DEA/NO in the isolated rat basilar artery. Neurosci Lett 313: 21‐24, 2001.
 589.Hendriks MG, Pfaffendorf M, van Zwieten PA. The role of nitric oxide and potassium channels in endothelium‐dependent vasodilation in SHR. Blood Press 2: 233‐243, 1993.
 590.Hennig GW, Smith CB, O'Shea DM, Smith TK. Patterns of intracellular and intercellular Ca2+ waves in the longitudinal muscle layer of the murine large intestine in vitro. J Physiol 543: 233‐253, 2002.
 591.Henry P, Pearson WL, Nichols CG. Protein kinase C inhibition of cloned inward rectifier (HRK1/KIR2.3) K+ channels expressed in Xenopus oocytes. J Physiol 495(Pt 3): 681‐688, 1996.
 592.Hermsmeyer K, Harder D. Membrane ATPase mechanism of K+‐return relaxation in arterial muscles of stroke‐prone SHR and WKY. Am J Physiol 250: C557‐C562, 1986.
 593.Hernanz R, Alonso MJ, Baena AB, Salaices M, Alvarez L, Castillo‐Olivares JL, Marin J. Mechanisms involved in relaxation induced by exogenous nitric oxide in pig coronary arteries. Methods Find Exp Clin Pharmacol 21: 155‐160, 1999.
 594.Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: Their structure, function, and physiological roles. Physiol Rev 90: 291‐366, 2010.
 595.Hill MA, Davis MJ. Coupling a change in intraluminal pressure to vascular smooth muscle depolarization: Still stretching for an explanation. Am J Physiol Heart Circ Physiol 292: H2570‐H2572, 2007.
 596.Hill MA, Davis MJ, Meininger GA, Potocnik SJ, Murphy TV. Arteriolar myogenic signalling mechanisms: Implications for local vascular function. Clin Hemorheol Microcirc 34: 67‐79, 2006.
 597.Hill MA, Falcone JC, Meininger GA. Evidence for protein kinase C involvement in arteriolar myogenic reactivity. Am J Physiol 259: H1586‐H1594, 1990.
 598.Hill CE, Kirton A, Wu DD, Vanner SJ. Role of maxi‐K+ channels in endothelin‐induced vasoconstriction of mesenteric and submucosal arterioles. Am J Physiol 273: G1087‐G1093, 1997.
 599.Hill MA, Meininger GA. Calcium entry and myogenic phenomena in skeletal muscle arterioles. Am J Physiol 267: H1085‐H1092, 1994.
 600.Hill MA, Zou H, Potocnik SJ, Meininger GA, Davis MJ. Invited review: Arteriolar smooth muscle mechanotransduction: Ca(2+) signaling pathways underlying myogenic reactivity. J Appl Physiol (1985) 91: 973‐983, 2001.
 601.Hill‐Eubanks DC, Gonzales AL, Sonkusare SK, Nelson MT. Vascular TRP channels: Performing under pressure and going with the flow. Physiology (Bethesda) 29: 343‐360, 2014.
 602.Hille B. Ionic Channels of Excitable Membranes. Sunderland: Sinauer Associates, 2001, pp. 814.
 603.Hinman A, Chuang HH, Bautista DM, Julius D. TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A 103: 19564‐19568, 2006.
 604.Ho WS, Zheng X, Zhang DX. Role of endothelial TRPV4 channels in vascular actions of the endocannabinoid, 2‐arachidonoylglycerol. Br J Pharmacol 172: 5251‐5264, 2015.
 605.Hobai IA, Bates JA, Howarth FC, Levi AJ. Inhibition by external Cd2+ of Na/Ca exchange and L‐type Ca channel in rabbit ventricular myocytes. Am J Physiol 272: H2164‐H2172, 1997.
 606.Hodgkin AL, Huxley AF. Current carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116: 449‐472, 1952.
 607.Hodgkin AL, Huxley AF, Katz B. Ionic currents underlying activity in the giant axon of the squid. Arch Sci Physiol 3: 129‐150, 1949.
 608.Hodnett BL, Xiang L, Dearman JA, Carter CB, Hester RL. K(ATP)‐mediated vasodilation is impaired in obese Zucker rats. Microcirculation 15: 485‐494, 2008.
 609.Hofherr A, Kottgen M. TRPP channels and polycystins. Adv Exp Med Biol 704: 287‐313, 2011.
 610.Hofmann T, Chubanov V, Gudermann T, Montell C. TRPM5 is a voltage‐modulated and Ca(2+)‐activated monovalent selective cation channel. Curr Biol 13: 1153‐1158, 2003.
 611.Hofmann F, Flockerzi V, Kahl S, Wegener JW. L‐type CaV1.2 calcium channels: From in vitro findings to in vivo function. Physiol Rev 94: 303‐326, 2014.
 612.Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397: 259‐263, 1999.
 613.Hojs N, Strucl M, Cankar K. The effect of glibenclamide on acetylcholine and sodium nitroprusside induced vasodilatation in human cutaneous microcirculation. Clin Physiol Funct Imaging 29: 38‐44, 2009.
 614.Holdsworth CT, Copp SW, Ferguson SK, Sims GE, Poole DC, Musch TI. Acute inhibition of ATP‐sensitive K+ channels impairs skeletal muscle vascular control in rats during treadmill exercise. Am J Physiol Heart Circ Physiol 308: H1434‐H1442, 2015.
 615.Hondeghem LM, Ayad MJ, Robertson RM. Verapamil, diltiazem and nifedipine block the depolarization‐induced potentiation of norepinephrine contractions in rabbit aorta and porcine coronary arteries. J Pharmacol Exp Ther 239: 808‐813, 1986.
 616.Hong KW, Pyo KM, Lee WS, Yu SS, Rhim BY. Pharmacological evidence that calcitonin gene‐related peptide is implicated in cerebral autoregulation. Am J Physiol 266: H11‐H16, 1994.
 617.Hong KW, Yoo SE, Yu SS, Lee JY, Rhim BY. Pharmacological coupling and functional role for CGRP receptors in the vasodilation of rat pial arterioles. Am J Physiol 270: H317‐H323, 1996.
 618.Horinaka N, Kuang TY, Pak H, Wang R, Jehle J, Kennedy C, Sokoloff L. Blockade of cerebral blood flow response to insulin‐induced hypoglycemia by caffeine and glibenclamide in conscious rats. J Cereb Blood Flow Metab 17: 1309‐1318, 1997.
 619.Horiuchi T, Dietrich HH, Tsugane S, Dacey RG, Jr. Role of potassium channels in regulation of brain arteriolar tone: Comparison of cerebrum versus brain stem. Stroke 32: 218‐224, 2001.
 620.Horowitz A, Menice CB, Laporte R, Morgan KG. Mechanisms of smooth muscle contraction. Physiol Rev 76: 967‐1003, 1996.
 621.Hoshi T, Pantazis A, Olcese R. Transduction of voltage and Ca2+ signals by Slo1 BK channels. Physiology (Bethesda) 28: 172‐189, 2013.
 622.Hoshi T, Tian Y, Xu R, Heinemann SH, Hou S. Mechanism of the modulation of BK potassium channel complexes with different auxiliary subunit compositions by the omega‐3 fatty acid DHA. Proc Natl Acad Sci U S A 110: 4822‐4827, 2013.
 623.Hoshi T, Zagotta WN, Aldrich RW. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250: 533‐538, 1990.
 624.Hoshi T, Zagotta WN, Aldrich RW. Two types of inactivation in Shaker K+ channels: Effects of alterations in the carboxy‐terminal region. Neuron 7: 547‐556, 1991.
 625.House SJ, Potier M, Bisaillon J, Singer HA, Trebak M. The non‐excitable smooth muscle: Calcium signaling and phenotypic switching during vascular disease. Pflugers Arch 456: 769‐785, 2008.
 626.Howard J, Bechstedt S. Hypothesis: A helix of ankyrin repeats of the NOMPC‐TRP ion channel is the gating spring of mechanoreceptors. Curr Biol 14: R224‐R226, 2004.
 627.Howitt L, Chaston DJ, Sandow SL, Matthaei KI, Edwards FR, Hill CE. Spreading vasodilatation in the murine microcirculation: Attenuation by oxidative stress‐induced change in electromechanical coupling. J Physiol 591: 2157‐2173, 2013.
 628.Howitt L, Kuo IY, Ellis A, Chaston DJ, Shin HS, Hansen PB, Hill CE. Chronic deficit in nitric oxide elicits oxidative stress and augments T‐type calcium‐channel contribution to vascular tone of rodent arteries and arterioles. Cardiovasc Res 98: 449‐457, 2013.
 629.Howitt L, Sandow SL, Grayson TH, Ellis ZE, Morris MJ, Murphy TV. Differential effects of diet‐induced obesity on BKCa {beta}1‐subunit expression and function in rat skeletal muscle arterioles and small cerebral arteries. Am J Physiol Heart Circ Physiol 301: H29‐H40, 2011.
 630.Hu XQ, Zhang L. Function and regulation of large conductance Ca(2+)‐activated K+ channel in vascular smooth muscle cells. Drug Discov Today 17: 974‐987, 2012.
 631.Huang A, Sun D, Jacobson A, Carroll MA, Falck JR, Kaley G. Epoxyeicosatrienoic acids are released to mediate shear stress‐dependent hyperpolarization of arteriolar smooth muscle. Circ Res 96: 376‐383, 2005.
 632.Hubner CA, Schroeder BC, Ehmke H. Regulation of vascular tone and arterial blood pressure: Role of chloride transport in vascular smooth muscle. Pflugers Arch 467: 605‐614, 2015.
 633.Hulme JT, Yarov‐Yarovoy V, Lin TW, Scheuer T, Catterall WA. Autoinhibitory control of the CaV1.2 channel by its proteolytically processed distal C‐terminal domain. J Physiol 576: 87‐102, 2006.
 634.Hungerford JE, Sessa WC, Segal SS. Vasomotor control in arterioles of the mouse cremaster muscle. FASEB J 14: 197‐207, 2000.
 635.Hutri‐Kahonen N, Kahonen M, Wu X, Sand J, Nordback I, Taurio J, Porsti I. Control of vascular tone in isolated mesenteric arterial segments from hypertensive patients. Br J Pharmacol 127: 1735‐1743, 1999.
 636.Hymel L, Inui M, Fleischer S, Schindler H. Purified ryanodine receptor of skeletal muscle sarcoplasmic reticulum forms Ca2+‐activated oligomeric Ca2+ channels in planar bilayers. Proc Natl Acad Sci U S A 85: 441‐445, 1988.
 637.Iida H, Ohata H, Iida M, Watanabe Y, Dohi S. Isoflurane and sevoflurane induce vasodilation of cerebral vessels via ATP‐sensitive K+ channel activation. Anesthesiology 89: 954‐960, 1998.
 638.Iino M. Calcium‐induced calcium release mechanism in guinea pig taenia caeci. J Gen Physiol 94: 363‐383, 1989.
 639.Iino M. Calcium release mechanisms in smooth muscle. Jpn J Pharmacol 54: 345‐354, 1990.
 640.Iino M, Kasai H, Yamazawa T. Visualization of neural control of intracellular Ca2+ concentration in single vascular smooth muscle cells in situ. Embo J 13: 5026‐5031, 1994.
 641.Imamura Y, Tomoike H, Narishige T, Takahashi T, Kasuya H, Takeshita A. Glibenclamide decreases basal coronary blood flow in anesthetized dogs. Am J Physiol 263: H399‐H404, 1992.
 642.Imig JD, Dimitropoulou C, Reddy DS, White RE, Falck JR. Afferent arteriolar dilation to 11, 12‐EET analogs involves PP2A activity and Ca2+‐activated K+ channels. Microcirculation 15: 137‐150, 2008.
 643.Imig JD, Walsh KA, Hye Khan MA, Nagasawa T, Cherian‐Shaw M, Shaw SM, Hammock BD. Soluble epoxide hydrolase inhibition and peroxisome proliferator activated receptor gamma agonist improve vascular function and decrease renal injury in hypertensive obese rats. Exp Biol Med (Maywood) 237: 1402‐1412, 2012.
 644.Inagaki N, Gonoi T, Clement JP, Wang CZ, Aguilar‐Bryan L, Bryan J, Seino S. A family of sulfonylurea receptors determines the pharmacological properties of ATP‐sensitive K+ channels. Neuron 16: 1011‐1017, 1996.
 645.Inoue R, Jensen LJ, Shi J, Morita H, Nishida M, Honda A, Ito Y. Transient receptor potential channels in cardiovascular function and disease. Circ Res 99: 119‐131, 2006.
 646.Inoue R, Kitamura K, Kuriyama H. Two Ca‐dependent K‐channels classified by the application of tetraethylammonium distribute to smooth muscle membranes of the rabbit portal vein. Pflugers Arch 405: 173‐179, 1985.
 647.Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, Ito Y, Mori Y. The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)‐adrenoceptor‐activated Ca(2+)‐permeable cation channel. Circ Res 88: 325‐332, 2001.
 648.Inoue Y, Oike M, Nakao K, Kitamura K, Kuriyama H. Endothelin augments unitary calcium channel currents on the smooth muscle cell membrane of guinea‐pig portal vein. J Physiol 423: 171‐191, 1990.
 649.Inui M, Saito A, Fleischer S. Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures. J Biol Chem 262: 15637‐15642, 1987.
 650.Inui M, Saito A, Fleischer S. Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J Biol Chem 262: 1740‐1747, 1987.
 651.Ionescu L, Cheung KH, Vais H, Mak DO, White C, Foskett JK. Graded recruitment and inactivation of single InsP3 receptor Ca2+‐release channels: Implications for quantal [corrected] Ca2+ release. J Physiol 573: 645‐662, 2006.
 652.Irat AM, Aslamaci S, Karasu C, Ari N. Alteration of vascular reactivity in diabetic human mammary artery and the effects of thiazolidinediones. J Pharm Pharmacol 58: 1647‐1653, 2006.
 653.Irion GL, Vasthare US, Tuma RF. Age‐related change in skeletal muscle blood flow in the rat. J Gerontol 42: 660‐665, 1987.
 654.Ishibashi Y, Duncker DJ, Zhang J, Bache RJ. ATP‐sensitive K+ channels, adenosine, and nitric oxide‐mediated mechanisms account for coronary vasodilation during exercise. Circ Res 82: 346‐359, 1998.
 655.Ishiguro M, Morielli AD, Zvarova K, Tranmer BI, Penar PL, Wellman GC. Oxyhemoglobin‐induced suppression of voltage‐dependent K+ channels in cerebral arteries by enhanced tyrosine kinase activity. Circ Res 99: 1252‐1260, 2006.
 656.Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP, Maylie J. A human intermediate conductance calcium‐activated potassium channel. Proc Natl Acad Sci U S A 94: 11651‐11656, 1997.
 657.Ishikawa T, Hume JR, Keef KD. Modulation of K+ and Ca2+ channels by histamine H1‐receptor stimulation in rabbit coronary artery cells. J Physiol 468: 379‐400, 1993.
 658.Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci U S A 103: 12569‐12574, 2006.
 659.Ishizaka H, Kuo L. Acidosis‐induced coronary arteriolar dilation is mediated by ATP‐sensitive potassium channels in vascular smooth muscle. Circ Res 78: 50‐57, 1996.
 660.Isomoto S, Kondo C, Yamada M, Matsumoto S, Higashiguchi O, Horio Y, Matsuzawa Y, Kurachi Y. A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP‐sensitive K+ channel. J Biol Chem 271: 24321‐24324, 1996.
 661.Isomoto S, Yamada M, Horio Y, Kurachi Y. Molecular aspects of ATP‐sensitive K+ channels in the cardiovascular system. Jpn J Physiol 47(Suppl 1): S5‐S6, 1997.
 662.Ito I, Jarajapu YP, Grant MB, Knot HJ. Characteristics of myogenic tone in the rat ophthalmic artery. Am J Physiol Heart Circ Physiol 292: H360‐H368, 2007.
 663.Jabr RI, Yamazaki J, Hume JR. Lysophosphatidylcholine triggers intracellular calcium release and activation of non‐selective cation channels in renal arterial smooth muscle cells. Pflugers Arch 439: 495‐500, 2000.
 664.Jackson WF. Arteriolar tone is determined by activity of ATP‐sensitive potassium channels. Am J Physiol 265: H1797‐H1803, 1993.
 665.Jackson WF. Potassium channels and regulation of the microcirculation. Microcirculation 5: 85‐90, 1998.
 666.Jackson WF. Ion channels and vascular tone. Hypertension 35: 173‐178, 2000.
 667.Jackson WF. Potassium channels in the circulation of skeletal muscle. In: Archer SL, Rusch NJ, editors. Potassium Channels in the Cardiovascular Biology. New York: Kluwer Academic/Plenum Publishers, 2001, pp. 505‐522.
 668.Jackson WF. Potassium channels in the peripheral microcirculation. Microcirculation 12: 113‐127, 2005.
 669.Jackson WF. Vascular smooth muscle store‐operated Ca2+ channels: What a TRP! Am J Physiol Heart Circ Physiol 291: H2592‐H2594, 2006.
 670.Jackson WF. Chapter 89: Microcirculation. In: Olson JA, Hill EN, editors. Muscle. Boston/Waltham: Academic Press, 2012, pp. 1197‐1206.
 671.Jackson WF. Endothelial cell ion channel expression and function in arterioles and resistance arteries. In: Levitan I, Dopico AM, editors. Vascular Ion Channels in Physiology and Disease. Switzerland: Springer International Publishing, 2016, p. 431.
 672.Jackson WF, Blair KL. Characterization and function of Ca(2+)‐activated K+ channels in arteriolar muscle cells. Am J Physiol 274: H27‐H34, 1998.
 673.Jackson WF, Huebner JM, Rusch NJ. Enzymatic isolation and characterization of single vascular smooth muscle cells from cremasteric arterioles. Microcirculation 4: 35‐50, 1997.
 674.Jackson WF, Konig A, Dambacher T, Busse R. Prostacyclin‐induced vasodilation in rabbit heart is mediated by ATP‐sensitive potassium channels. Am J Physiol 264: H238‐H243, 1993.
 675.Jackson‐Weaver O, Osmond JM, Naik JS, Gonzalez Bosc LV, Walker BR, Kanagy NL. Intermittent hypoxia in rats reduces activation of Ca2+ sparks in mesenteric arteries. Am J Physiol Heart Circ Physiol 309: H1915‐H1922, 2015.
 676.Jackson‐Weaver O, Osmond JM, Riddle MA, Naik JS, Gonzalez Bosc LV, Walker BR, Kanagy NL. Hydrogen sulfide dilates rat mesenteric arteries by activating endothelial large‐conductance Ca(2)(+)‐activated K(+) channels and smooth muscle Ca(2)(+) sparks. Am J Physiol Heart Circ Physiol 304: H1446‐H1454, 2013.
 677.Jackson‐Weaver O, Paredes DA, Gonzalez Bosc LV, Walker BR, Kanagy NL. Intermittent hypoxia in rats increases myogenic tone through loss of hydrogen sulfide activation of large‐conductance Ca(2+)‐activated potassium channels. Circ Res 108: 1439‐1447, 2011.
 678.Jaggar JH. Intravascular pressure regulates local and global Ca(2+) signaling in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 281: C439‐C448, 2001.
 679.Jaggar JH, Leffler CW, Cheranov SY, Tcheranova D, Shuyu E, Cheng X. Carbon monoxide dilates cerebral arterioles by enhancing the coupling of Ca2+ sparks to Ca2+‐activated K+ channels. Circ Res 91: 610‐617, 2002.
 680.Jaggar JH, Li A, Parfenova H, Liu J, Umstot ES, Dopico AM, Leffler CW. Heme is a carbon monoxide receptor for large‐conductance Ca2+‐activated K+ channels. Circ Res 97: 805‐812, 2005.
 681.Jaggar JH, Nelson MT. Differential regulation of Ca(2+) sparks and Ca(2+) waves by UTP in rat cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 279: C1528‐C1539, 2000.
 682.Jaggar JH, Porter VA, Lederer WJ, Nelson MT. Calcium sparks in smooth muscle. Am J Physiol Cell Physiol 278: C235‐C256, 2000.
 683.Jaggar JH, Stevenson AS, Nelson MT. Voltage dependence of Ca2+ sparks in intact cerebral arteries. Am J Physiol 274: C1755‐C1761, 1998.
 684.Jaggar JH, Wellman GC, Heppner TJ, Porter VA, Perez GJ, Gollasch M, Kleppisch T, Rubart M, Stevenson AS, Lederer WJ, Knot HJ, Bonev AD, Nelson MT. Ca2+ channels, ryanodine receptors and Ca(2+)‐activated K+ channels: A functional unit for regulating arterial tone. Acta Physiol Scand 164: 577‐587, 1998.
 685.Jahromi BS, Aihara Y, Ai J, Zhang ZD, Weyer G, Nikitina E, Yassari R, Houamed KM, Macdonald RL. Temporal profile of potassium channel dysfunction in cerebrovascular smooth muscle after experimental subarachnoid haemorrhage. Neurosci Lett 440: 81‐86, 2008.
 686.Jameel MN, Xiong Q, Mansoor A, Bache RJ, Zhang J. ATP sensitive K(+) channels are critical for maintaining myocardial perfusion and high energy phosphates in the failing heart. J Mol Cell Cardiol 92: 116‐121, 2016.
 687.Jan LY, Jan YN. Structural elements involved in specific K+ channel functions. Annu Rev Physiol 54: 537‐555, 1992.
 688.Jan LY, Jan YN. Voltage‐gated and inwardly rectifying potassium channels. J Physiol 505(Pt 2): 267‐282, 1997.
 689.Jantzi MC, Brett SE, Jackson WF, Corteling R, Vigmond EJ, Welsh DG. Inward rectifying potassium channels facilitate cell‐to‐cell communication in hamster retractor muscle feed arteries. Am J Physiol Heart Circ Physiol 291: H1319‐H1328, 2006.
 690.Jarajapu YP, Knot HJ. Relative contribution of Rho kinase and protein kinase C to myogenic tone in rat cerebral arteries in hypertension. Am J Physiol Heart Circ Physiol 289: H1917‐H1922, 2005.
 691.Jeffries O, McGahon MK, Bankhead P, Lozano MM, Scholfield CN, Curtis TM, McGeown JG. cAMP/PKA‐dependent increases in Ca Sparks, oscillations and SR Ca stores in retinal arteriolar myocytes after exposure to vasopressin. Invest Ophthalmol Vis Sci 51: 1591‐1598, 2010.
 692.Jensen LJ, Salomonsson M, Jensen BL, Holstein‐Rathlou NH. Depolarization‐induced calcium influx in rat mesenteric small arterioles is mediated exclusively via mibefradil‐sensitive calcium channels. Br J Pharmacol 142: 709‐718, 2004.
 693.Jeon JP, Hong C, Park EJ, Jeon JH, Cho NH, Kim IG, Choe H, Muallem S, Kim HJ, So I. Selective Galphai subunits as novel direct activators of transient receptor potential canonical (TRPC)4 and TRPC5 channels. J Biol Chem 287: 17029‐17039, 2012.
 694.Jepps TA, Carr G, Lundegaard PR, Olesen SP, Greenwood IA. Fundamental role for the KCNE4 ancillary subunit in Kv7.4 regulation of arterial tone. J Physiol 593: 5325‐5340, 2015.
 695.Jepps TA, Chadha PS, Davis AJ, Harhun MI, Cockerill GW, Olesen SP, Hansen RS, Greenwood IA. Downregulation of Kv7.4 channel activity in primary and secondary hypertension. Circulation 124: 602‐611, 2011.
 696.Jepps TA, Olesen SP, Greenwood IA. One man's side effect is another man's therapeutic opportunity: Targeting Kv7 channels in smooth muscle disorders. Br J Pharmacol 168: 19‐27, 2013.
 697.Jernigan NL, Drummond HA. Vascular ENaC proteins are required for renal myogenic constriction. Am J Physiol Renal Physiol 289: F891‐F901, 2005.
 698.Jernigan NL, Drummond HA. Myogenic vasoconstriction in mouse renal interlobar arteries: Role of endogenous beta and gammaENaC. Am J Physiol Renal Physiol 291: F1184‐F1191, 2006.
 699.Jewell RP, Saundry CM, Bonev AD, Tranmer BI, Wellman GC. Inhibition of Ca++ sparks by oxyhemoglobin in rabbit cerebral arteries. J Neurosurg 100: 295‐302, 2004.
 700.Jeyakumar LH, Copello JA, O'Malley AM, Wu GM, Grassucci R, Wagenknecht T, Fleischer S. Purification and characterization of ryanodine receptor 3 from mammalian tissue. J Biol Chem 273: 16011‐16020, 1998.
 701.Ji J, Benishin CG, Pang PK. Nitric oxide selectively inhibits intracellular Ca++ release elicited by inositol trisphosphate but not caffeine in rat vascular smooth muscle. J Pharmacol Exp Ther 285: 16‐21, 1998.
 702.Ji G, Feldman ME, Greene KS, Sorrentino V, Xin HB, Kotlikoff MI. RYR2 proteins contribute to the formation of Ca(2+) sparks in smooth muscle. J Gen Physiol 123: 377‐386, 2004.
 703.Jiang ZG, Si JQ, Lasarev MR, Nuttall AL. Two resting potential levels regulated by the inward‐rectifier potassium channel in the guinea‐pig spiral modiolar artery. J Physiol 537: 829‐842, 2001.
 704.Jiang J, Thoren P, Caligiuri G, Hansson GK, Pernow J. Enhanced phenylephrine‐induced rhythmic activity in the atherosclerotic mouse aorta via an increase in opening of KCa channels: Relation to Kv channels and nitric oxide. Br J Pharmacol 128: 637‐646, 1999.
 705.Jiang B, Wu L, Wang R. Sulphonylureas induced vasorelaxation of mouse arteries. Eur J Pharmacol 577: 124‐128, 2007.
 706.Jiang D, Xiao B, Li X, Chen SR. Smooth muscle tissues express a major dominant negative splice variant of the type 3 Ca2+ release channel (ryanodine receptor). J Biol Chem 278: 4763‐4769, 2003.
 707.Jiang D, Xiao B, Yang D, Wang R, Choi P, Zhang L, Cheng H, Chen SR. RyR2 mutations linked to ventricular tachycardia and sudden death reduce the threshold for store‐overload‐induced Ca2+ release (SOICR). Proc Natl Acad Sci U S A 101: 13062‐13067, 2004.
 708.Jiao J, Garg V, Yang B, Elton TS, Hu K. Protein kinase C‐epsilon induces caveolin‐dependent internalization of vascular adenosine 5′‐triphosphate‐sensitive K+ channels. Hypertension 52: 499‐506, 2008.
 709.Jin CZ, Kim HS, Seo EY, Shin DH, Park KS, Chun YS, Zhang YH, Kim SJ. Exercise training increases inwardly rectifying K(+) current and augments K(+)‐mediated vasodilatation in deep femoral artery of rats. Cardiovasc Res 91: 142‐150, 2011.
 710.Johnson RP, El‐Yazbi AF, Hughes MF, Schriemer DC, Walsh EJ, Walsh MP, Cole WC. Identification and functional characterization of protein kinase A‐catalyzed phosphorylation of potassium channel Kv1.2 at serine 449. J Biol Chem 284: 16562‐16574, 2009.
 711.Johnson TD, Marrelli SP, Steenberg ML, Childres WF, Bryan RM, Jr. Inward rectifier potassium channels in the rat middle cerebral artery. Am J Physiol 274: R541‐R547, 1998.
 712.Johnson CD, Melanaphy D, Purse A, Stokesberry SA, Dickson P, Zholos AV. Transient receptor potential melastatin 8 channel involvement in the regulation of vascular tone. Am J Physiol Heart Circ Physiol 296: H1868‐H1877, 2009.
 713.Joiner WJ, Wang LY, Tang MD, Kaczmarek LK. hSK4, a member of a novel subfamily of calcium‐activated potassium channels. Proc Natl Acad Sci U S A 94: 11013‐11018, 1997.
 714.Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427: 260‐265, 2004.
 715.Joseph SK. The inositol triphosphate receptor family. Cell Signal 8: 1‐7, 1996.
 716.Joseph BK, Thakali KM, Moore CL, Rhee SW. Ion channel remodeling in vascular smooth muscle during hypertension: Implications for novel therapeutic approaches. Pharmacol Res 70: 126‐138, 2013.
 717.Joshua IG, Miller FN, Dowe JP. In vivo arteriolar reactivity to norepinephrine and calcium in one‐kidney, one‐clip Goldblatt hypertensive rats. Clin Exp Hypertens A 9: 1691‐1711, 1987.
 718.Ju M, Shi J, Saleh SN, Albert AP, Large WA. Ins(1,4,5)P3 interacts with PIP2 to regulate activation of TRPC6/C7 channels by diacylglycerol in native vascular myocytes. J Physiol 588: 1419‐1433, 2010.
 719.Jung S, Strotmann R, Schultz G, Plant TD. TRPC6 is a candidate channel involved in receptor‐stimulated cation currents in A7r5 smooth muscle cells. Am J Physiol Cell Physiol 282: C347‐C359, 2002.
 720.Juvin V, Penna A, Chemin J, Lin YL, Rassendren FA. Pharmacological characterization and molecular determinants of the activation of transient receptor potential V2 channel orthologs by 2‐aminoethoxydiphenyl borate. Mol Pharmacol 72: 1258‐1268, 2007.
 721.Kaczmarek JS, Riccio A, Clapham DE. Calpain cleaves and activates the TRPC5 channel to participate in semaphorin 3A‐induced neuronal growth cone collapse. Proc Natl Acad Sci U S A 109: 7888‐7892, 2012.
 722.Kalliovalkama J, Jolma P, Tolvanen JP, Kahonen M, Hutri‐Kahonen N, Wu X, Holm P, Porsti I. Arterial function in nitric oxide‐deficient hypertension: Influence of long‐term angiotensin II receptor antagonism. Cardiovasc Res 42: 773‐782, 1999.
 723.Kalman K, Pennington MW, Lanigan MD, Nguyen A, Rauer H, Mahnir V, Paschetto K, Kem WR, Grissmer S, Gutman GA, Christian EP, Cahalan MD, Norton RS, Chandy KG. ShK‐Dap22, a potent Kv1.3‐specific immunosuppressive polypeptide. J Biol Chem 273: 32697‐32707, 1998.
 724.Kam KL, Pfaffendorf M, van Zwieten PA. Drug‐induced endothelium‐dependent and ‐independent relaxations in isolated resistance vessels taken from simultaneously hypertensive and streptozotocin‐diabetic rats. Blood Press 3: 418‐427, 1994.
 725.Kamata K, Miyata N, Kasuya Y. Functional changes in potassium channels in aortas from rats with streptozotocin‐induced diabetes. Eur J Pharmacol 166: 319‐323, 1989.
 726.Kamouchi M, Van Den Bremt K, Eggermont J, Droogmans G, Nilius B. Modulation of inwardly rectifying potassium channels in cultured bovine pulmonary artery endothelial cells. J Physiol 504(Pt 3): 545‐556, 1997.
 727.Kanagy NL, Ansari MN, Ghosh S, Webb RC. Recycling and buffering of intracellular calcium in vascular smooth muscle from genetically hypertensive rats. J Hypertens 12: 1365‐1372, 1994.
 728.Kanatsuka H, Sekiguchi N, Sato K, Akai K, Wang Y, Komaru T, Ashikawa K, Takishima T. Microvascular sites and mechanisms responsible for reactive hyperemia in the coronary circulation of the beating canine heart. Circ Res 71: 912‐922, 1992.
 729.Kane GC, Lam CF, O'Cochlain F, Hodgson DM, Reyes S, Liu XK, Miki T, Seino S, Katusic ZS, Terzic A. Gene knockout of the KCNJ8‐encoded Kir6.1 K(ATP) channel imparts fatal susceptibility to endotoxemia. FASEB J 20: 2271‐2280, 2006.
 730.Kang LS, Kim S, Dominguez JM, II, Sindler AL, Dick GM, Muller‐Delp JM. Aging and muscle fiber type alter K+ channel contributions to the myogenic response in skeletal muscle arterioles. J Appl Physiol (1985) 107: 389‐398, 2009.
 731.Kanzaki M, Zhang YQ, Mashima H, Li L, Shibata H, Kojima I. Translocation of a calcium‐permeable cation channel induced by insulin‐like growth factor‐I. Nature Cell Biology 1: 165‐170, 1999.
 732.Karashima Y, Talavera K, Everaerts W, Janssens A, Kwan KY, Vennekens R, Nilius B, Voets T. TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci U S A 106: 1273‐1278, 2009.
 733.Kark T, Bagi Z, Lizanecz E, Pasztor ET, Erdei N, Czikora A, Papp Z, Edes I, Porszasz R, Toth A. Tissue‐specific regulation of microvascular diameter: opposite functional roles of neuronal and smooth muscle located vanilloid receptor‐1. Mol Pharmacol 73: 1405‐1412, 2008.
 734.Kasai Y, Yamazawa T, Sakurai T, Taketani Y, Iino M. Endothelium‐dependent frequency modulation of Ca2+ signalling in individual vascular smooth muscle cells of the rat. J Physiol 504(Pt 2): 349‐357, 1997.
 735.Kasemsri T, Armstead WM. Endothelin impairs ATP‐sensitive K+ channel function after brain injury. Am J Physiol 273: H2639‐H2647, 1997.
 736.Katsuda Y, Egashira K, Ueno H, Akatsuka Y, Narishige T, Arai Y, Takayanagi T, Shimokawa H, Takeshita A. Glibenclamide, a selective inhibitor of ATP‐sensitive K+ channels, attenuates metabolic coronary vasodilatation induced by pacing tachycardia in dogs. Circulation 92: 511‐517, 1995.
 737.Katz B. Les Constantes electriques de la membrane du muscle. Arch Sci Physiol 3: 285‐299, 1949.
 738.Kawano T, Tanaka K, Mawatari K, Oshita S, Takahashi A, Nakaya Y. Hyperglycemia impairs isoflurane‐induced adenosine triphosphate‐sensitive potassium channel activation in vascular smooth muscle cells. Anesth Analg 106: 858‐864, 2008.
 739.Kawata T, Mimuro T, Onuki T, Tsuchiya K, Nihei H, Koike T. The K(ATP) channel opener nicorandil: Effect on renal hemodynamics in spontaneously hypertensive and Wistar Kyoto rats. Kidney Int Suppl 67: S231‐S233, 1998.
 740.Keef KD, Hume JR, Zhong J. Regulation of cardiac and smooth muscle Ca(2+) channels (Ca(V)1.2a,b) by protein kinases. Am J Physiol Cell Physiol 281: C1743‐C1756, 2001.
 741.Kerr PM, Clement‐Chomienne O, Thorneloe KS, Chen TT, Ishii K, Sontag DP, Walsh MP, Cole WC. Heteromultimeric Kv1.2‐Kv1.5 channels underlie 4‐aminopyridine‐sensitive delayed rectifier K(+) current of rabbit vascular myocytes. Circ Res 89: 1038‐1044, 2001.
 742.Kersten JR, Brooks LA, Dellsperger KC. Impaired microvascular response to graded coronary occlusion in diabetic and hyperglycemic dogs. Am J Physiol 268: H1667‐H1674, 1995.
 743.Khan SA, Mathews WR, Meisheri KD. Role of calcium‐activated K+ channels in vasodilation induced by nitroglycerine, acetylcholine and nitric oxide. J Pharmacol Exp Ther 267: 1327‐1335, 1993.
 744.Khanamiri S, Soltysinska E, Jepps TA, Bentzen BH, Chadha PS, Schmitt N, Greenwood IA, Olesen SP. Contribution of Kv7 channels to basal coronary flow and active response to ischemia. Hypertension 62: 1090‐1097, 2013.
 745.Kharade SV, Sonkusare SK, Srivastava AK, Thakali KM, Fletcher TW, Rhee SW, Rusch NJ. The beta3 subunit contributes to vascular calcium channel upregulation and hypertension in angiotensin II‐infused C57BL/6 mice. Hypertension 61: 137‐142, 2013.
 746.Kharitonov VG, Sharma VS, Pilz RB, Magde D, Koesling D. Basis of guanylate cyclase activation by carbon monoxide. Proc Natl Acad Sci U S A 92: 2568‐2571, 1995.
 747.Kilpatrick EV, Cocks TM. Evidence for differential roles of nitric oxide (NO) and hyperpolarization in endothelium‐dependent relaxation of pig isolated coronary artery. Br J Pharmacol 112: 557‐565, 1994.
 748.Kim HR, Appel S, Vetterkind S, Gangopadhyay SS,Morgan KG. Smooth muscle signalling pathways in health and disease. J Cell Mol Med 12: 2165‐2180, 2008.
 749.Kim MY, Liang GH, Kim JA, Park SH, Hah JS, Suh SH. Contribution of Na+‐K+ pump and KIR currents to extracellular pH‐dependent changes of contractility in rat superior mesenteric artery. Am J Physiol Heart Circ Physiol 289: H792‐H800, 2005.
 750.Kimura T, Lueck JD, Harvey PJ, Pace SM, Ikemoto N, Casarotto MG, Dirksen RT, Dulhunty AF. Alternative splicing of RyR1 alters the efficacy of skeletal EC coupling. Cell Calcium 45: 264‐274, 2009.
 751.Kimura T, Pace SM, Wei L, Beard NA, Dirksen RT, Dulhunty AF. A variably spliced region in the type 1 ryanodine receptor may participate in an inter‐domain interaction. Biochem J 401: 317‐324, 2007.
 752.Kinoshita H, Azma T, Iranami H, Nakahata K, Kimoto Y, Dojo M, Yuge O, Hatano Y. Synthetic peroxisome proliferator‐activated receptor‐gamma agonists restore impaired vasorelaxation via ATP‐sensitive K+ channels by high glucose. J Pharmacol Exp Ther 318: 312‐318, 2006.
 753.Kinoshita H, Matsuda N, Kaba H, Hatakeyama N, Azma T, Nakahata K, Kuroda Y, Tange K, Iranami H, Hatano Y. Roles of phosphatidylinositol 3‐kinase‐Akt and NADPH oxidase in adenosine 5′‐triphosphate‐sensitive K+ channel function impaired by high glucose in the human artery. Hypertension 52: 507‐513, 2008.
 754.Kirsch GE, Drewe JA, Verma S, Brown AM, Joho RH. Electrophysiological characterization of a new member of the RCK family of rat brain K+ channels. FEBS Lett 278: 55‐60, 1991.
 755.Kirsch GE, Shieh CC, Drewe JA, Vener DF, Brown AM. Segmental exchanges define 4‐aminopyridine binding and the inner mouth of K+ pores. Neuron 11: 503‐512, 1993.
 756.Kiselyov K, Mignery GA, Zhu MX, Muallem S. The N‐terminal domain of the IP3 receptor gates store‐operated hTrp3 channels. Mol Cell 4: 423‐429, 1999.
 757.Kiselyov K, Shin DM, Kim JY, Yuan JP, Muallem S. TRPC channels: Interacting proteins. Handb Exp Pharmacol 559‐574, 2007.
 758.Kitazono T, Heistad DD, Faraci FM. ATP‐sensitive potassium channels in the basilar artery during chronic hypertension. Hypertension 22: 677‐681, 1993.
 759.Kitazono T, Heistad DD, Faraci FM. Role of ATP‐sensitive K+ channels in CGRP‐induced dilatation of basilar artery in vivo. Am J Physiol 265: H581‐H585, 1993.
 760.Klein MG, Cheng H, Santana LF, Jiang YH, Lederer WJ, Schneider MF. Two mechanisms of quantized calcium release in skeletal muscle. Nature 379: 455‐458, 1996.
 761.Kleppisch T, Nelson MT. Adenosine activates ATP‐sensitive potassium channels in arterial myocytes via A2 receptors and cAMP‐dependent protein kinase. Proc Natl Acad Sci U S A 92: 12441‐12445, 1995.
 762.Kleppisch T, Nelson MT. ATP‐sensitive K+ currents in cerebral arterial smooth muscle: Pharmacological and hormonal modulation. Am J Physiol 269: H1634‐H1640, 1995.
 763.Knot HJ, Nelson MT. Regulation of membrane potential and diameter by voltage‐dependent K+ channels in rabbit myogenic cerebral arteries. Am J Physiol 269: H348‐H355, 1995.
 764.Knot HJ, Nelson MT. Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J Physiol 508(Pt 1): 199‐209, 1998.
 765.Knot HJ, Standen NB, Nelson MT. Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+‐dependent K+ channels. J Physiol 508(Pt 1): 211‐221, 1998.
 766.Knot HJ, Zimmermann PA, Nelson MT. Extracellular K(+)‐induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K(+) channels. J Physiol 492(Pt 2): 419‐430, 1996.
 767.Knowlton WM, Daniels RL, Palkar R, McCoy DD, McKemy DD. Pharmacological blockade of TRPM8 ion channels alters cold and cold pain responses in mice. PLoS One 6: e25894, 2011.
 768.Knudson JD, Dincer UD, Bratz IN, Sturek M, Dick GM, Tune JD. Mechanisms of coronary dysfunction in obesity and insulin resistance. Microcirculation 14: 317‐338, 2007.
 769.Ko EA, Han J, Jung ID, Park WS. Physiological roles of K+ channels in vascular smooth muscle cells. J Smooth Muscle Res 44: 65‐81, 2008.
 770.Ko EA, Park WS, Firth AL, Hong DH, Choi SW, Heo HJ, Kim MH, Noh JH, Ko JH, Kim N, Earm YE, Song DK, Han J. Increased sensitivity of serotonin on the voltage‐dependent K+ channels in mesenteric arterial smooth muscle cells of OLETF rats. Prog Biophys Mol Biol 103: 88‐94, 2010.
 771.Ko EA, Park WS, Firth AL, Kim N, Yuan JX, Han J. Pathophysiology of voltage‐gated K+ channels in vascular smooth muscle cells: Modulation by protein kinases. Prog Biophys Mol Biol 103: 95‐101, 2010.
 772.Kochukov MY, Balasubramanian A, Noel RC, Marrelli SP. Role of TRPC1 and TRPC3 channels in contraction and relaxation of mouse thoracic aorta. J Vasc Res 50: 11‐20, 2013.
 773.Koh SD, Jun JY, Kim TW, Sanders KM. A Ca(2+)‐inhibited non‐selective cation conductance contributes to pacemaker currents in mouse interstitial cell of Cajal. J Physiol 540: 803‐814, 2002.
 774.Kohler M, Hirschberg B, Bond CT, Kinzie JM, Marrion NV, Maylie J, Adelman JP. Small‐conductance, calcium‐activated potassium channels from mammalian brain. Science 273: 1709‐1714, 1996.
 775.Koide M, Nystoriak MA, Krishnamoorthy G, O'Connor KP, Bonev AD, Nelson MT, Wellman GC. Reduced Ca2+ spark activity after subarachnoid hemorrhage disables BK channel control of cerebral artery tone. J Cereb Blood Flow Metab 31: 3‐16, 2011.
 776.Koide M, Syed AU, Braas KM, May V, Wellman GC. Pituitary adenylate cyclase activating polypeptide (PACAP) dilates cerebellar arteries through activation of large‐conductance Ca(2+)‐activated (BK) and ATP‐sensitive (K ATP) K (+) channels. J Mol Neurosci 54: 443‐450, 2014.
 777.Kojima I, Nagasawa M. Trpv2. Handb Exp Pharmacol 222: 247‐272, 2014.
 778.Kokita N, Stekiel TA, Yamazaki M, Bosnjak ZJ, Kampine JP, Stekiel WJ. Potassium channel‐mediated hyperpolarization of mesenteric vascular smooth muscle by isoflurane. Anesthesiology 90: 779‐788, 1999.
 779.Kolias TJ, Chai S, Webb RC. Potassium channel antagonists and vascular reactivity in stroke‐prone spontaneously hypertensive rats. Am J Hypertens 6: 528‐533, 1993.
 780.Komaru T, Kanatsuka H, Dellsperger K, Takishima T. The role of ATP‐sensitive potassium channels in regulating coronary microcirculation. Biorheology 30: 371‐380, 1993.
 781.Komaru T, Lamping KG, Eastham CL, Dellsperger KC. Role of ATP‐sensitive potassium channels in coronary microvascular autoregulatory responses. Circ Res 69: 1146‐1151, 1991.
 782.Komori S, Bolton TB. Actions of guanine nucleotides and cyclic nucleotides on calcium stores in single patch‐clamped smooth muscle cells from rabbit portal vein. Br J Pharmacol 97: 973‐982, 1989.
 783.Koschak A, Bugianesi RM, Mitterdorfer J, Kaczorowski GJ, Garcia ML, Knaus HG. Subunit composition of brain voltage‐gated potassium channels determined by hongotoxin‐1, a novel peptide derived from Centruroides limbatus venom. J Biol Chem 273: 2639‐2644, 1998.
 784.Kosmas EN, Levy RD, Hussain SN. Acute effects of glyburide on the regulation of peripheral blood flow in normal humans. Eur J Pharmacol 274: 193‐199, 1995.
 785.Kotecha N, Hill MA. Myogenic contraction in rat skeletal muscle arterioles: Smooth muscle membrane potential and Ca(2+) signaling. Am J Physiol Heart Circ Physiol 289: H1326‐H1334, 2005.
 786.Kotlikoff MI. Potassium channels in airway smooth muscle: a tale of two channels. Pharmacol Ther 58: 1‐12, 1993.
 787.Kottgen M, Buchholz B, Garcia‐Gonzalez MA, Kotsis F, Fu X, Doerken M, Boehlke C, Steffl D, Tauber R, Wegierski T, Nitschke R, Suzuki M, Kramer‐Zucker A, Germino GG, Watnick T, Prenen J, Nilius B, Kuehn EW, Walz G. TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182: 437‐447, 2008.
 788.Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S. Polycystin‐2 is an intracellular calcium release channel. Nat Cell Biol 4: 191‐197, 2002.
 789.Kraft R. The Na+/Ca2+ exchange inhibitor KB‐R7943 potently blocks TRPC channels. Biochem Biophys Res Commun 361: 230‐236, 2007.
 790.Kraft R, Harteneck C. The mammalian melastatin‐related transient receptor potential cation channels: An overview. Pflugers Arch 451: 204‐211, 2005.
 791.Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, Lazdunski M, Nichols CG, Seino S, Vandenberg CA. International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacol Rev 57: 509‐526, 2005.
 792.Kubo Y, Baldwin TJ, Jan YN, Jan LY. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362: 127‐133, 1993.
 793.Kubo M, Nakaya Y, Matsuoka S, Saito K, Kuroda Y. Atrial natriuretic factor and isosorbide dinitrate modulate the gating of ATP‐sensitive K+ channels in cultured vascular smooth muscle cells. Circ Res 74: 471‐476, 1994.
 794.Kudlacek PE, Pluznick JL, Ma R, Padanilam B, Sansom SC. Role of hbeta1 in activation of human mesangial BK channels by cGMP kinase. Am J Physiol Renal Physiol 285: F289‐F294, 2003.
 795.Kudryavtseva O, Herum KM, Dam VS, Straarup MS, Kamaev D, Briggs Boedtkjer DM, Matchkov VV, Aalkjaer C. Downregulation of L‐type Ca2+ channel in rat mesenteric arteries leads to loss of smooth muscle contractile phenotype and inward hypertrophic remodeling. Am J Physiol Heart Circ Physiol 306: H1287‐H1301, 2014.
 796.Kuemmerle JF, Makhlouf GM. Agonist‐stimulated cyclic ADP ribose. Endogenous modulator of Ca(2+)‐induced Ca2+ release in intestinal longitudinal muscle. J Biol Chem 270: 25488‐25494, 1995.
 797.Kukuljan M, Labarca P, Latorre R. Molecular determinants of ion conduction and inactivation in K+ channels. Am J Physiol 268: C535‐C556, 1995.
 798.Kukuljan M, Rojas E, Catt KJ, Stojilkovic SS. Membrane potential regulates inositol 1,4,5‐trisphosphate‐controlled cytoplasmic Ca2+ oscillations in pituitary gonadotrophs. J Biol Chem 269: 4860‐4865, 1994.
 799.Kume H, Graziano MP, Kotlikoff MI. Stimulatory and inhibitory regulation of calcium‐activated potassium channels by guanine nucleotide‐binding proteins. Proc Natl Acad Sci U S A 89: 11051‐11055, 1992.
 800.Kume H, Hall IP, Washabau RJ, Takagi K, Kotlikoff MI. Beta‐adrenergic agonists regulate KCa channels in airway smooth muscle by cAMP‐dependent and ‐independent mechanisms. J Clin Invest 93: 371‐379, 1994.
 801.Kume H, Takai A, Tokuno H, Tomita T. Regulation of Ca2+‐dependent K+‐channel activity in tracheal myocytes by phosphorylation. Nature 341: 152‐154, 1989.
 802.Kuo IY, Ellis A, Seymour VA, Sandow SL, Hill CE. Dihydropyridine‐insensitive calcium currents contribute to function of small cerebral arteries. J Cereb Blood Flow Metab 30: 1226‐1239, 2010.
 803.Kuo IY, Howitt L, Sandow SL, McFarlane A, Hansen PB, Hill CE. Role of T‐type channels in vasomotor function: Team player or chameleon? Pflugers Arch 466: 767‐779, 2014.
 804.Kur J, Bankhead P, Scholfield CN, Curtis TM, McGeown JG. Ca(2+) sparks promote myogenic tone in retinal arterioles. Br J Pharmacol 168: 1675‐1686, 2013.
 805.Kuschinsky W, Wahl M, Bosse O, Thurau K. Perivascular potassium and pH as determinants of local pial arterial diameter in cats. A microapplication study. Circ Res 31: 240‐247, 1972.
 806.Kwan HY, Shen B, Ma X, Kwok YC, Huang Y, Man YB, Yu S, Yao X. TRPC1 associates with BK(Ca) channel to form a signal complex in vascular smooth muscle cells. Circ Res 104: 670‐678, 2009.
 807.Kyle BD, Hurst S, Swayze RD, Sheng J, Braun AP. Specific phosphorylation sites underlie the stimulation of a large conductance, Ca(2+)‐activated K(+) channel by cGMP‐dependent protein kinase. FASEB J 27: 2027‐2038, 2013.
 808.Labadia A, Costa G, Jimenez E, Triguero D, Garcia‐Pascual A. Endothelin receptor‐mediated Ca2+ mobilization and contraction in bovine oviductal arteries: Comparison with noradrenaline and potassium. Gen Pharmacol 29: 611‐619, 1997.
 809.Lagaud GJ, Randriamboavonjy V, Roul G, Stoclet JC, Andriantsitohaina R. Mechanism of Ca2+ release and entry during contraction elicited by norepinephrine in rat resistance arteries. Am J Physiol 276: H300‐H308, 1999.
 810.Lagrutta A, Shen KZ, North RA, Adelman JP. Functional differences among alternatively spliced variants of Slowpoke, a Drosophila calcium‐activated potassium channel. J Biol Chem 269: 20347‐20351, 1994.
 811.Lai FA, Erickson HP, Rousseau E, Liu QY, Meissner G. Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331: 315‐319, 1988.
 812.Lal C, Leahy MJ. An updated review of methods and advancements in microvascular blood flow imaging. Microcirculation 23: 345‐363, 2016.
 813.Landry DW, Oliver JA. The ATP‐sensitive K+ channel mediates hypotension in endotoxemia and hypoxic lactic acidosis in dog. J Clin Invest 89: 2071‐2074, 1992.
 814.Lang RJ, Harvey JR, McPhee GJ, Klemm MF. Nitric oxide and thiol reagent modulation of Ca2+‐activated K+ (BKCa) channels in myocytes of the guinea‐pig taenia caeci. J Physiol 525(Pt 2): 363‐376, 2000.
 815.Lang RJ, Harvey JR, Mulholland EL. Sodium (2‐sulfonatoethyl) methanethiosulfonate prevents S‐nitroso‐l‐cysteine activation of Ca2+‐activated K+ (BKCa) channels in myocytes of the guinea‐pig taenia caeca. Br J Pharmacol 139: 1153‐1163, 2003.
 816.Lang MG, Paterno R, Faraci FM, Heistad DD. Mechanisms of adrenomedullin‐induced dilatation of cerebral arterioles. Stroke 28: 181‐185, 1997.
 817.Lange A, Gebremedhin D, Narayanan J, Harder D. 20‐Hydroxyeicosatetraenoic acid‐induced vasoconstriction and inhibition of potassium current in cerebral vascular smooth muscle is dependent on activation of protein kinase C. J Biol Chem 272: 27345‐27352, 1997.
 818.Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: Structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2: a003996, 2010.
 819.Larach DR, Schuler HG. Potassium channel blockade and halothane vasodilation in conducting and resistance coronary arteries. J Pharmacol Exp Ther 267: 72‐81, 1993.
 820.Large WA. Receptor‐operated Ca2(+)‐permeable nonselective cation channels in vascular smooth muscle: A physiologic perspective. J Cardiovasc Electrophysiol 13: 493‐501, 2002.
 821.Large WA, Saleh SN, Albert AP. Role of phosphoinositol 4,5‐bisphosphate and diacylglycerol in regulating native TRPC channel proteins in vascular smooth muscle. Cell Calcium 45: 574‐582, 2009.
 822.Latorre R, Oberhauser A, Labarca P, Alvarez O. Varieties of calcium‐activated potassium channels. Annu Rev Physiol 51: 385‐399, 1989.
 823.Latorre R, Vargas G, Orta G, Brauchi S. Voltage and temperature gating of thermoTRP channels. In: Liedtke WB, Heller S, editors. TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades. Boca Raton, FL: CRC Press, 2007.
 824.Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP. TRPM4 is a Ca2+‐activated nonselective cation channel mediating cell membrane depolarization. Cell 109: 397‐407, 2002.
 825.Laver DR, Roden LD, Ahern GP, Eager KR, Junankar PR, Dulhunty AF. Cytoplasmic Ca2+ inhibits the ryanodine receptor from cardiac muscle. J Membr Biol 147: 7‐22, 1995.
 826.Lazdunski M. ATP‐sensitive potassium channels: An overview. J Cardiovasc Pharmacol 24(Suppl 4): S1‐S5, 1994.
 827.Lazdunski M, Allard B, Bernardi H, De Weille J, Fosset M, Heurteaux C, Honore E. ATP‐sensitive K+ channels. Ren Physiol Biochem 17: 118‐120, 1994.
 828.Le Blanc C, Mironneau C, Barbot C, Henaff M, Bondeva T, Wetzker R, Macrez N. Regulation of vascular L‐type Ca2+ channels by phosphatidylinositol 3,4,5‐trisphosphate. Circ Res 95: 300‐307, 2004.
 829.Leblanc N, Forrest AS, Ayon RJ, Wiwchar M, Angermann JE, Pritchard HA, Singer CA, Valencik ML, Britton F, Greenwood IA. Molecular and functional significance of Ca(2+)‐activated Cl(−) channels in pulmonary arterial smooth muscle. Pulm Circ 5: 244‐268, 2015.
 830.Leblanc N, Wan X, Leung PM. Physiological role of Ca(2+)‐activated and voltage‐dependent K+ currents in rabbit coronary myocytes. Am J Physiol 266: C1523‐C1537, 1994.
 831.Ledbetter MW, Preiner JK, Louis CF, Mickelson JR. Tissue distribution of ryanodine receptor isoforms and alleles determined by reverse transcription polymerase chain reaction. J Biol Chem 269: 31544‐31551, 1994.
 832.Ledoux J, Werner ME, Brayden JE, Nelson MT. Calcium‐activated potassium channels and the regulation of vascular tone. Physiology (Bethesda) 21: 69‐78, 2006.
 833.Lee JH, Gomora JC, Cribbs LL, Perez‐Reyes E. Nickel block of three cloned T‐type calcium channels: Low concentrations selectively block alpha1H. Biophys J 77: 3034‐3042, 1999.
 834.Lee WS, Kwon YJ, Yu SS, Rhim BY, Hong KW. Disturbances in autoregulatory responses of rat pial arteries by sulfonylureas. Life Sci 52: 1527‐1534, 1993.
 835.Lee CH, Poburko D, Kuo KH, Seow CY, van Breemen C. Ca(2+) oscillations, gradients, and homeostasis in vascular smooth muscle. Am J Physiol Heart Circ Physiol 282: H1571‐H1583, 2002.
 836.Lee MW, Severson DL. Signal transduction in vascular smooth muscle: Diacylglycerol second messengers and PKC action. Am J Physiol 267: C659‐C678, 1994.
 837.Leeb T, Brenig B. cDNA cloning and sequencing of the human ryanodine receptor type 3 (RYR3) reveals a novel alternative splice site in the RYR3 gene. FEBS Lett 423: 367‐370, 1998.
 838.Leffler CW, Parfenova H, Basuroy S, Jaggar JH, Umstot ES, Fedinec AL. Hydrogen sulfide and cerebral microvascular tone in newborn pigs. Am J Physiol Heart Circ Physiol 300: H440‐H447, 2011.
 839.Leffler CW, Smith JS, Edrington JL, Zuckerman SL, Parfenova H. Mechanisms of hypoxia‐induced cerebrovascular dilation in the newborn pig. Am J Physiol 272: H1323‐H1332, 1997.
 840.Leichtle A, Rauch U, Albinus M, Benohr P, Kalbacher H, Mack AF, Veh RW, Quast U, Russ U. Electrophysiological and molecular characterization of the inward rectifier in juxtaglomerular cells from rat kidney. J Physiol 560: 365‐376, 2004.
 841.Lemonnier L, Trebak M, Putney JW, Jr. Complex regulation of the TRPC3, 6 and 7 channel subfamily by diacylglycerol and phosphatidylinositol‐4,5‐bisphosphate. Cell Calcium 43: 506‐514, 2008.
 842.Leo MD, Bannister JP, Narayanan D, Nair A, Grubbs JE, Gabrick KS, Boop FA, Jaggar JH. Dynamic regulation of beta1 subunit trafficking controls vascular contractility. Proc Natl Acad Sci U S A 111: 2361‐2366, 2014.
 843.Leo MD, Bulley S, Bannister JP, Kuruvilla KP, Narayanan D, Jaggar JH. Angiotensin II stimulates internalization and degradation of arterial myocyte plasma membrane BK channels to induce vasoconstriction. Am J Physiol Cell Physiol 309: C392‐C402, 2015.
 844.Leonoudakis D, Conti LR, Anderson S, Radeke CM, McGuire LM, Adams ME, Froehner SC, Yates JR, III, Vandenberg CA. Protein trafficking and anchoring complexes revealed by proteomic analysis of inward rectifier potassium channel (Kir2.x)‐associated proteins. J Biol Chem 279: 22331‐22346, 2004.
 845.Lepretre N, Mironneau J, Morel JL. Both alpha 1A‐ and alpha 2A‐adrenoreceptor subtypes stimulate voltage‐operated L‐type calcium channels in rat portal vein myocytes. Evidence for two distinct transduction pathways. J Biol Chem 269: 29546‐29552, 1994.
 846.Leung FP, Yung LM, Yao X, Laher I, Huang Y. Store‐operated calcium entry in vascular smooth muscle. Br J Pharmacol 153: 846‐857, 2008.
 847.Levasseur JE, Wei EP, Raper AJ, Kontos AA, Patterson JL. Detailed description of a cranial window technique for acute and chronic experiments. Stroke 6: 308‐317, 1975.
 848.Lew MJ, Rivers RJ, Duling BR. Arteriolar smooth muscle responses are modulated by an intramural diffusion barrier. Am J Physiol 257: H10‐H16, 1989.
 849.Li H, Chai Q, Gutterman DD, Liu Y. Elevated glucose impairs cAMP‐mediated dilation by reducing Kv channel activity in rat small coronary smooth muscle cells. Am J Physiol Heart Circ Physiol 285: H1213‐H1219, 2003.
 850.Li G, Cheung DW. Modulation of Ca(2+)‐dependent K(+) currents in mesenteric arterial smooth muscle cells by adenosine. Eur J Pharmacol 394: 35‐40, 2000.
 851.Li SS, Cui N, Yang Y, Trower TC, Wei YM, Wu Y, Zhang S, Jin X, Jiang C. Impairment of the vascular KATP channel imposes fatal susceptibility to experimental diabetes due to multi‐organ injuries. J Cell Physiol 230: 2915‐2926, 2015.
 852.Li H, Gutterman DD, Rusch NJ, Bubolz A, Liu Y. Nitration and functional loss of voltage‐gated K+ channels in rat coronary microvessels exposed to high glucose. Diabetes 53: 2436‐2442, 2004.
 853.Li M, Jiang J, Yue L. Functional characterization of homo‐ and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 127: 525‐537, 2006.
 854.Li PL, Jin MW, Campbell WB. Effect of selective inhibition of soluble guanylyl cyclase on the K(Ca) channel activity in coronary artery smooth muscle. Hypertension 31: 303‐308, 1998.
 855.Li A, Knutsen RH, Zhang H, Osei‐Owusu P, Moreno‐Dominguez A, Harter TM, Uchida K, Remedi MS, Dietrich HH, Bernal‐Mizrachi C, Blumer KJ, Mecham RP, Koster JC, Nichols CG. Hypotension due to Kir6.1 gain‐of‐function in vascular smooth muscle. J Am Heart Assoc 2: e000365, 2013.
 856.Li Y, Kranias EG, Mignery GA, Bers DM. Protein kinase A phosphorylation of the ryanodine receptor does not affect calcium sparks in mouse ventricular myocytes. Circ Res 90: 309‐316, 2002.
 857.Li N, Li Y, Gao Q, Li D, Tang J, Sun M, Zhang P, Liu B, Mao C, Xu Z. Chronic fetal exposure to caffeine altered resistance vessel functions via RyRs‐BKCa down‐regulation in rat offspring. Sci Rep 5: 13225, 2015.
 858.Li Z, Liu L, Deng Y, Ji W, Du W, Xu P, Chen L, Xu T. Graded activation of CRAC channel by binding of different numbers of STIM1 to Orai1 subunits. Cell Res 21: 305‐315, 2011.
 859.Li X, Lu W, Fu X, Zhang Y, Yang K, Zhong N, Ran P, Wang J. BMP4 increases canonical transient receptor potential protein expression by activating p38 MAPK and ERK1/2 signaling pathways in pulmonary arterial smooth muscle cells. Am J Respir Cell Mol Biol 49: 212‐220, 2013.
 860.Li Z, Lu N, Shi L. Exercise training reverses alterations in Kv and BKCa channel molecular expression in thoracic aorta smooth muscle cells from spontaneously hypertensive rats. J Vasc Res 51: 447‐457, 2014.
 861.Li N, Teggatz EG, Li PL, Allaire R, Zou AP. Formation and actions of cyclic ADP‐ribose in renal microvessels. Microvasc Res 60: 149‐159, 2000.
 862.Li C, Wang X, Vais H, Thompson CB, Foskett JK, White C. Apoptosis regulation by Bcl‐x(L) modulation of mammalian inositol 1,4,5‐trisphosphate receptor channel isoform gating. Proc Natl Acad Sci U S A 104: 12565‐12570, 2007.
 863.Li Y, Wright JM, Qian F, Germino GG, Guggino WB. Polycystin 2 interacts with type I inositol 1,4,5‐trisphosphate receptor to modulate intracellular Ca2+ signaling. J Biol Chem 280: 41298‐41306, 2005.
 864.Li SS, Wu Y, Jin X, Jiang C. The SUR2B subunit of rat vascular KATP channel is targeted by miR‐9a‐3p induced by prolonged exposure to methylglyoxal. Am J Physiol Cell Physiol 308: C139‐C145, 2015.
 865.Li A, Xi Q, Umstot ES, Bellner L, Schwartzman ML, Jaggar JH, Leffler CW. Astrocyte‐derived CO is a diffusible messenger that mediates glutamate‐induced cerebral arteriolar dilation by activating smooth muscle Cell KCa channels. Circ Res 102: 234‐241, 2008.
 866.Li XQ, Zheng YM, Rathore R, Ma J, Takeshima H, Wang YX. Genetic evidence for functional role of ryanodine receptor 1 in pulmonary artery smooth muscle cells. Pflugers Arch 457: 771‐783, 2009.
 867.Li PL, Zou AP, Campbell WB. Regulation of potassium channels in coronary arterial smooth muscle by endothelium‐derived vasodilators. Hypertension 29: 262‐267, 1997.
 868.Li N, Zou AP, Ge ZD, Campbell WB, Li PL. Effect of nitric oxide on calcium‐induced calcium release in coronary arterial smooth muscle. Gen Pharmacol 35: 37‐45, 2000.
 869.Liang GH, Adebiyi A, Leo MD, McNally EM, Leffler CW, Jaggar JH. Hydrogen sulfide dilates cerebral arterioles by activating smooth muscle cell plasma membrane KATP channels. Am J Physiol Heart Circ Physiol 300: H2088‐H2095, 2011.
 870.Liang CF, Au AL, Leung SW, Ng KF, Feletou M, Kwan YW, Man RY, Vanhoutte PM. Endothelium‐derived nitric oxide inhibits the relaxation of the porcine coronary artery to natriuretic peptides by desensitizing big conductance calcium‐activated potassium channels of vascular smooth muscle. J Pharmacol Exp Ther 334: 223‐231, 2010.
 871.Liang GH, Xi Q, Leffler CW, Jaggar JH. Hydrogen sulfide activates Ca(2)(+) sparks to induce cerebral arteriole dilatation. J Physiol 590: 2709‐2720, 2012.
 872.Liao P, Yu D, Li G, Yong TF, Soon JL, Chua YL, Soong TW. A smooth muscle Cav1.2 calcium channel splice variant underlies hyperpolarized window current and enhanced state‐dependent inhibition by nifedipine. J Biol Chem 282: 35133‐35142, 2007.
 873.Liapi A, Wood JN. Extensive co‐localization and heteromultimer formation of the vanilloid receptor‐like protein TRPV2 and the capsaicin receptor TRPV1 in the adult rat cerebral cortex. Eur J Neurosci 22: 825‐834, 2005.
 874.Lievremont JP, Bird GS, Putney JW, Jr. Mechanism of inhibition of TRPC cation channels by 2‐aminoethoxydiphenylborane. Mol Pharmacol 68: 758‐762, 2005.
 875.Liman ER, Corey DP, Dulac C. TRP2: A candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci U S A 96: 5791‐5796, 1999.
 876.Lin MJ, Leung GP, Zhang WM, Yang XR, Yip KP, Tse CM, Sham JS. Chronic hypoxia‐induced upregulation of store‐operated and receptor‐operated Ca2+ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension. Circ Res 95: 496‐505, 2004.
 877.Lindauer U, Vogt J, Schuh‐Hofer S, Dreier JP, Dirnagl U. Cerebrovascular vasodilation to extraluminal acidosis occurs via combined activation of ATP‐sensitive and Ca2+‐activated potassium channels. J Cereb Blood Flow Metab 23: 1227‐1238, 2003.
 878.Lindsey SH, Songu‐Mize E. Stretch‐induced TRPC4 downregulation is accompanied by reduced capacitative Ca2+ entry in WKY but not SHR mesenteric smooth muscle cells. Clin Exp Hypertens 32: 288‐292, 2010.
 879.Link TE, Murakami K, Beem‐Miller M, Tranmer BI, Wellman GC. Oxyhemoglobin‐induced expression of R‐type Ca2+ channels in cerebral arteries. Stroke 39: 2122‐2128, 2008.
 880.Lintschinger B, Balzer‐Geldsetzer M, Baskaran T, Graier WF, Romanin C, Zhu MX, Groschner K. Coassembly of Trp1 and Trp3 proteins generates diacylglycerol‐ and Ca2+‐sensitive cation channels. J Biol Chem 275: 27799‐27805, 2000.
 881.Liu GX, Derst C, Schlichthorl G, Heinen S, Seebohm G, Bruggemann A, Kummer W, Veh RW, Daut J, Preisig‐Muller R. Comparison of cloned Kir2 channels with native inward rectifier K+ channels from guinea‐pig cardiomyocytes. J Physiol 532: 115‐126, 2001.
 882.Liu Q, Flavahan NA. Hypoxic dilatation of porcine small coronary arteries: role of endothelium and KATP‐channels. Br J Pharmacol 120: 728‐734, 1997.
 883.Liu X, Gebremedhin D, Harder DR, Koehler RC. Contribution of epoxyeicosatrienoic acids to the cerebral blood flow response to hypoxemia. J Appl Physiol (1985) 119: 1202‐1209, 2015.
 884.Liu Y, Gutterman DD. The coronary circulation in diabetes: Influence of reactive oxygen species on K+ channel‐mediated vasodilation. Vascul Pharmacol 38: 43‐49, 2002.
 885.Liu J, Hill MA, Meininger GA. Mechanisms of myogenic enhancement by norepinephrine. Am J Physiol 266: H440‐H446, 1994.
 886.Liu Y, Hudetz AG, Knaus HG, Rusch NJ. Increased expression of Ca2+‐sensitive K+ channels in the cerebral microcirculation of genetically hypertensive rats: Evidence for their protection against cerebral vasospasm. Circ Res 82: 729‐737, 1998.
 887.Liu Y, Jones AW, Sturek M. Increased barium influx and potassium current in stroke‐prone spontaneously hypertensive rats. Hypertension 23: 1091‐1095, 1994.
 888.Liu Y, Jones AW, Sturek M. Ca(2+)‐dependent K+ current in arterial smooth muscle cells from aldosterone‐salt hypertensive rats. Am J Physiol 269: H1246‐H1257, 1995.
 889.Liu XR, Liu Q, Chen GY, Hu Y, Sham JS, Lin MJ. Down‐regulation of TRPM8 in pulmonary arteries of pulmonary hypertensive rats. Cell Physiol Biochem 31: 892‐904, 2013.
 890.Liu Y, Pleyte K, Knaus HG, Rusch NJ. Increased expression of Ca2+‐sensitive K+ channels in aorta of hypertensive rats. Hypertension 30: 1403‐1409, 1997.
 891.Liu G, Shi J, Yang L, Cao L, Park SM, Cui J, Marx SO. Assembly of a Ca2+‐dependent BK channel signaling complex by binding to beta2 adrenergic receptor. Embo J 23: 2196‐2205, 2004.
 892.Liu Y, Terata K, Rusch NJ, Gutterman DD. High glucose impairs voltage‐gated K(+) channel current in rat small coronary arteries. Circ Res 89: 146‐152, 2001.
 893.Liu P, Xi Q, Ahmed A, Jaggar JH, Dopico AM. Essential role for smooth muscle BK channels in alcohol‐induced cerebrovascular constriction. Proc Natl Acad Sci U S A 101: 18217‐18222, 2004.
 894.Liu D, Yang D, He H, Chen X, Cao T, Feng X, Ma L, Luo Z, Wang L, Yan Z, Zhu Z, Tepel M. Increased transient receptor potential canonical type 3 channels in vasculature from hypertensive rats. Hypertension 53: 70‐76, 2009.
 895.Liu QH, Zheng YM, Korde AS, Yadav VR, Rathore R, Wess J, Wang YX. Membrane depolarization causes a direct activation of G protein‐coupled receptors leading to local Ca2+ release in smooth muscle. Proc Natl Acad Sci U S A 106: 11418‐11423, 2009.
 896.Liu QH, Zheng YM, Wang YX. Two distinct signaling pathways for regulation of spontaneous local Ca2+ release by phospholipase C in airway smooth muscle cells. Pflugers Arch 453: 531‐541, 2007.
 897.Lizanecz E, Bagi Z, Pasztor ET, Papp Z, Edes I, Kedei N, Blumberg PM, Toth A. Phosphorylation‐dependent desensitization by anandamide of vanilloid receptor‐1 (TRPV1) function in rat skeletal muscle arterioles and in Chinese hamster ovary cells expressing TRPV1. Mol Pharmacol 69: 1015‐1023, 2006.
 898.Loeb AL, Godeny I, Longnecker DE. Functional evidence for inward‐rectifier potassium channels in rat cremaster muscle arterioles. Microvasc Res 59: 1‐6, 2000.
 899.Loga F, Domes K, Freichel M, Flockerzi V, Dietrich A, Birnbaumer L, Hofmann F, Wegener JW. The role of cGMP/cGKI signalling and Trpc channels in regulation of vascular tone. Cardiovasc Res 100: 280‐287, 2013.
 900.Lohn M, Jessner W, Furstenau M, Wellner M, Sorrentino V, Haller H, Luft FC, Gollasch M. Regulation of calcium sparks and spontaneous transient outward currents by RyR3 in arterial vascular smooth muscle cells. Circ Res 89: 1051‐1057, 2001.
 901.Long W, Zhao Y, Zhang L, Longo LD. Role of Ca(2+) channels in NE‐induced increase in [Ca(2+)](i) and tension in fetal and adult cerebral arteries. Am J Physiol 277: R286‐R294, 1999.
 902.Longden TA, Dabertrand F, Hill‐Eubanks DC, Hammack SE, Nelson MT. Stress‐induced glucocorticoid signaling remodels neurovascular coupling through impairment of cerebrovascular inwardly rectifying K+ channel function. Proc Natl Acad Sci U S A 111: 7462‐7467, 2014.
 903.Longden TA, Nelson MT. Vascular inward rectifier K+ channels as external K+ sensors in the control of cerebral blood flow. Microcirculation 22: 183‐196, 2015.
 904.Lopatin AN, Makhina EN, Nichols CG. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372: 366‐369, 1994.
 905.Lopatin AN, Nichols CG. [K+] dependence of open‐channel conductance in cloned inward rectifier potassium channels (IRK1, Kir2.1). Biophys J 71: 682‐694, 1996.
 906.Loutzenhiser RD, Parker MJ. Hypoxia inhibits myogenic reactivity of renal afferent arterioles by activating ATP‐sensitive K+ channels. Circ Res 74: 861‐869, 1994.
 907.Lovren F, Triggle C. Nitric oxide and sodium nitroprusside‐induced relaxation of the human umbilical artery. Br J Pharmacol 131: 521‐529, 2000.
 908.Lu Z. Mechanism of rectification in inward‐rectifier K+ channels. Annu Rev Physiol 66: 103‐129, 2004.
 909.Lu Y, Hanna ST, Tang G, Wang R. Contributions of Kv1.2, Kv1.5 and Kv2.1 subunits to the native delayed rectifier K(+) current in rat mesenteric artery smooth muscle cells. Life Sci 71: 1465‐1473, 2002.
 910.Lu S, Xiang L, Clemmer JS, Gowdey AR, Mittwede PN, Hester RL. Impaired vascular KATP function attenuates exercise capacity in obese zucker rats. Microcirculation 20: 662‐669, 2013.
 911.Lucchesi PA, Belmadani S, Matrougui K. Hydrogen peroxide acts as both vasodilator and vasoconstrictor in the control of perfused mouse mesenteric resistance arteries. J Hypertens 23: 571‐579, 2005.
 912.Luykenaar KD, Brett SE, Wu BN, Wiehler WB,Welsh DG. Pyrimidine nucleotides suppress KDR currents and depolarize rat cerebral arteries by activating Rho kinase. Am J Physiol Heart Circ Physiol 286: H1088‐H1100, 2004.
 913.Luykenaar KD, El‐Rahman RA, Walsh MP, Welsh DG. Rho‐kinase‐mediated suppression of KDR current in cerebral arteries requires an intact actin cytoskeleton. Am J Physiol Heart Circ Physiol 296: H917‐H926, 2009.
 914.Luykenaar KD, Welsh DG. Activators of the PKA and PKG pathways attenuate RhoA‐mediated suppression of the KDR current in cerebral arteries. Am J Physiol Heart Circ Physiol 292: H2654‐H2663, 2007.
 915.Lynch FM, Austin C, Heagerty AM, Izzard AS. Adenosine and hypoxic dilation of rat coronary small arteries: Roles of the ATP‐sensitive potassium channel, endothelium, and nitric oxide. Am J Physiol Heart Circ Physiol 290: H1145‐H1150, 2006.
 916.Ma Z, Lou XJ, Horrigan FT. Role of charged residues in the S1‐S4 voltage sensor of BK channels. J Gen Physiol 127: 309‐328, 2006.
 917.Ma Y, Zhang P, Li J, Lu J, Ge J, Zhao Z, Ma X, Wan S, Yao X, Shen B. Epoxyeicosatrienoic acids act through TRPV4‐TRPC1‐KCa1.1 complex to induce smooth muscle membrane hyperpolarization and relaxation in human internal mammary arteries. Biochim Biophys Acta 1852: 552‐559, 2015.
 918.Ma L, Zhu B, Chen X, Liu J, Guan Y, Ren J. Abnormalities of sarcoplasmic reticulum Ca2+ mobilization in aortic smooth muscle cells from streptozotocin‐induced diabetic rats. Clin Exp Pharmacol Physiol 35: 568‐573, 2008.
 919.Mackie AR, Brueggemann LI, Henderson KK, Shiels AJ, Cribbs LL, Scrogin KE, Byron KL. Vascular KCNQ potassium channels as novel targets for the control of mesenteric artery constriction by vasopressin, based on studies in single cells, pressurized arteries, and in vivo measurements of mesenteric vascular resistance. J Pharmacol Exp Ther 325: 475‐483, 2008.
 920.Mackie AR, Byron KL. Cardiovascular KCNQ (Kv7) potassium channels: Physiological regulators and new targets for therapeutic intervention. Mol Pharmacol 74: 1171‐1179, 2008.
 921.Mackrill JJ. Ryanodine receptor calcium channels and their partners as drug targets. Biochem Pharmacol 79: 1535‐1543, 2010.
 922.MacMillan D. FK506 binding proteins: Cellular regulators of intracellular Ca2+ signalling. Eur J Pharmacol 700: 181‐193, 2013.
 923.MacMillan D, Currie S, Bradley KN, Muir TC, McCarron JG. In smooth muscle, FK506‐binding protein modulates IP3 receptor‐evoked Ca2+ release by mTOR and calcineurin. J Cell Sci 118: 5443‐5451, 2005.
 924.MacMillan D, Currie S, McCarron JG. FK506‐binding protein (FKBP12) regulates ryanodine receptor‐evoked Ca2+ release in colonic but not aortic smooth muscle. Cell Calcium 43: 539‐549, 2008.
 925.MacMillan D, McCarron JG. Regulation by FK506 and rapamycin of Ca2+ release from the sarcoplasmic reticulum in vascular smooth muscle: The role of FK506 binding proteins and mTOR. Br J Pharmacol 158: 1112‐1120, 2009.
 926.Macpherson LJ, Hwang SW, Miyamoto T, Dubin AE, Patapoutian A, Story GM. More than cool: Promiscuous relationships of menthol and other sensory compounds. Mol Cell Neurosci 32: 335‐343, 2006.
 927.Macrez N, Morel JL, Kalkbrenner F, Viard P, Schultz G, Mironneau J. A betagamma dimer derived from G13 transduces the angiotensin AT1 receptor signal to stimulation of Ca2+ channels in rat portal vein myocytes. J Biol Chem 272: 23180‐23185, 1997.
 928.Macrez‐Lepretre N, Kalkbrenner F, Morel JL, Schultz G, Mironneau J. G protein heterotrimer Galpha13beta1gamma3 couples the angiotensin AT1A receptor to increases in cytoplasmic Ca2+ in rat portal vein myocytes. J Biol Chem 272: 10095‐10102, 1997.
 929.Magnusson L, Sorensen CM, Braunstein TH, Holstein‐Rathlou NH, Salomonsson M. Renovascular BK(Ca) channels are not activated in vivo under resting conditions and during agonist stimulation. Am J Physiol Regul Integr Comp Physiol 292: R345‐R353, 2007.
 930.Mahaut‐Smith MP, Martinez‐Pinna J, Gurung IS. A role for membrane potential in regulating GPCRs? Trends Pharmacol Sci 29: 421‐429, 2008.
 931.Mahoney MG, Slakey LL, Hepler PK, Gross DJ. Independent modes of propagation of calcium waves in smooth muscle cells. J Cell Sci 104(Pt 4): 1101‐1107, 1993.
 932.Majeed Y, Bahnasi Y, Seymour VA, Wilson LA, Milligan CJ, Agarwal AK, Sukumar P, Naylor J, Beech DJ. Rapid and contrasting effects of rosiglitazone on transient receptor potential TRPM3 and TRPC5 channels. Mol Pharmacol 79: 1023‐1030, 2011.
 933.Mak DO, Foskett JK. Inositol 1,4,5‐trisphosphate receptors in the endoplasmic reticulum: A single‐channel point of view. Cell Calcium 58: 67‐78, 2015.
 934.Mak DO, McBride S, Foskett JK. Inositol 1,4,5‐trisphosphate [correction of tris‐phosphate] activation of inositol trisphosphate [correction of tris‐phosphate] receptor Ca2+ channel by ligand tuning of Ca2+ inhibition. Proc Natl Acad Sci U S A 95: 15821‐15825, 1998.
 935.Mak DO, McBride S, Foskett JK. Regulation by Ca2+ and inositol 1,4,5‐trisphosphate (InsP3) of single recombinant type 3 InsP3 receptor channels. Ca2+ activation uniquely distinguishes types 1 and 3 insp3 receptors. J Gen Physiol 117: 435‐446, 2001.
 936.Makhina EN, Kelly AJ, Lopatin AN, Mercer RW, Nichols CG. Cloning and expression of a novel human brain inward rectifier potassium channel. J Biol Chem 269: 20468‐20474, 1994.
 937.Makino A, Firth AL, Yuan JX. Endothelial and smooth muscle cell ion channels in pulmonary vasoconstriction and vascular remodeling. Compr Physiol 1: 1555‐1602, 2011.
 938.Mandala M, Heppner TJ, Bonev AD, Nelson MT. Effect of endogenous and exogenous nitric oxide on calcium sparks as targets for vasodilation in rat cerebral artery. Nitric Oxide 16: 104‐109, 2007.
 939.Mandinova A, Atar D, Schafer BW, Spiess M, Aebi U, Heizmann CW. Distinct subcellular localization of calcium binding S100 proteins in human smooth muscle cells and their relocation in response to rises in intracellular calcium. J Cell Sci 111(Pt 14): 2043‐2054, 1998.
 940.Manna PT, Smith AJ, Taneja TK, Howell GJ, Lippiat JD, Sivaprasadarao A. Constitutive endocytic recycling and protein kinase C‐mediated lysosomal degradation control K(ATP) channel surface density. J Biol Chem 285: 5963‐5973, 2010.
 941.Mannhold R. KATP channel openers: Structure‐activity relationships and therapeutic potential. Med Res Rev 24: 213‐266, 2004.
 942.Marijic J, Li Q, Song M, Nishimaru K, Stefani E, Toro L. Decreased expression of voltage‐ and Ca(2+)‐activated K(+) channels in coronary smooth muscle during aging. Circ Res 88: 210‐216, 2001.
 943.Marks AR. Cellular functions of immunophilins. Physiol Rev 76: 631‐649, 1996.
 944.Marrelli SP, Johnson TD, Khorovets A, Childres WF, Bryan RM, Jr. Altered function of inward rectifier potassium channels in cerebrovascular smooth muscle after ischemia/reperfusion. Stroke 29: 1469‐1474, 1998.
 945.Marshall JM, Thomas T, Turner L. A link between adenosine, ATP‐sensitive K+ channels, potassium and muscle vasodilatation in the rat in systemic hypoxia. J Physiol 472: 1‐9, 1993.
 946.Martelli A, Testai L, Breschi MC, Lawson K, McKay NG, Miceli F, Taglialatela M, Calderone V. Vasorelaxation by hydrogen sulphide involves activation of Kv7 potassium channels. Pharmacol Res 70: 27‐34, 2013.
 947.Martens JR, Gelband CH. Alterations in rat interlobar artery membrane potential and K +channels in genetic and nongenetic hypertension. Circ Res 79: 295‐301, 1996.
 948.Martin RL, Lee JH, Cribbs LL, Perez‐Reyes E, Hanck DA. Mibefradil block of cloned T‐type calcium channels. J Pharmacol Exp Ther 295: 302‐308, 2000.
 949.Martinez AC, Pagan RM, Prieto D, Recio P, Garcia‐Sacristan A, Hernandez M, Benedito S. Modulation of noradrenergic neurotransmission in isolated rat radial artery. J Pharmacol Sci 111: 299‐311, 2009.
 950.Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba K. 2APB, 2‐aminoethoxydiphenyl borate, a membrane‐penetrable modulator of Ins(1,4,5)P3‐induced Ca2+ release. J Biochem 122: 498‐505, 1997.
 951.Marvar PJ, Falck JR, Boegehold MA. High dietary salt reduces the contribution of 20‐HETE to arteriolar oxygen responsiveness in skeletal muscle. Am J Physiol Heart Circ Physiol 292: H1507‐H1515, 2007.
 952.Marvar PJ, Hammer LW, Boegehold MA. Hydrogen peroxide‐dependent arteriolar dilation in contracting muscle of rats fed normal and high salt diets. Microcirculation 14: 779‐791, 2007.
 953.Marx SO, Ondrias K, Marks AR. Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors). Science 281: 818‐821, 1998.
 954.Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): Defective regulation in failing hearts. Cell 101: 365‐376, 2000.
 955.Marziali G, Rossi D, Giannini G, Charlesworth A, Sorrentino V. cDNA cloning reveals a tissue specific expression of alternatively spliced transcripts of the ryanodine receptor type 3 (RyR3) calcium release channel. FEBS Lett 394: 76‐82, 1996.
 956.Matchkov VV, Boedtkjer DM, Aalkjaer C. The role of Ca(2+) activated Cl(−) channels in blood pressure control. Curr Opin Pharmacol 21: 127‐137, 2015.
 957.Matchkov VV, Secher Dam V, Bodtkjer DM, Aalkjaer C. Transport and function of chloride in vascular smooth muscles. J Vasc Res 50: 69‐87, 2013.
 958.Mathar I, Vennekens R, Meissner M, Kees F, Van der Mieren G, Camacho Londono JE, Uhl S, Voets T, Hummel B, van den Bergh A, Herijgers P, Nilius B, Flockerzi V, Schweda F, Freichel M. Increased catecholamine secretion contributes to hypertension in TRPM4‐deficient mice. J Clin Invest 120: 3267‐3279, 2010.
 959.Matsuda K, Lozinskaya I, Cox RH. Augmented contributions of voltage‐gated Ca2+ channels to contractile responses in spontaneously hypertensive rat mesenteric arteries. Am J Hypertens 10: 1231‐1239, 1997.
 960.Matsuda H, Saigusa A, Irisawa H. Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+. Nature 325: 156‐159, 1987.
 961.Matsumoto T, Szasz T, Tostes RC, Webb RC. Impaired beta‐adrenoceptor‐induced relaxation in small mesenteric arteries from DOCA‐salt hypertensive rats is due to reduced K(Ca) channel activity. Pharmacol Res 65: 537‐545, 2012.
 962.Matsushita K, Puro DG. Topographical heterogeneity of K(IR) currents in pericyte‐containing microvessels of the rat retina: Effect of diabetes. J Physiol 573: 483‐495, 2006.
 963.Matter N, Ritz MF, Freyermuth S, Rogue P, Malviya AN. Stimulation of nuclear protein kinase C leads to phosphorylation of nuclear inositol 1,4,5‐trisphosphate receptor and accelerated calcium release by inositol 1,4,5‐trisphosphate from isolated rat liver nuclei. J Biol Chem 268: 732‐736, 1993.
 964.Mattmann ME, Yu H, Lin Z, Xu K, Huang X, Long S, Wu M, McManus OB, Engers DW, Le UM, Li M, Lindsley CW, Hopkins CR. Identification of (R)‐N‐(4‐(4‐methoxyphenyl)thiazol‐2‐yl)‐1‐tosylpiperidine‐2‐carboxamide, ML277, as a novel, potent and selective K(v)7.1 (KCNQ1) potassium channel activator. Bioorg Med Chem Lett 22: 5936‐5941, 2012.
 965.Mauban JR, Lamont C, Balke CW, Wier WG. Adrenergic stimulation of rat resistance arteries affects Ca(2+) sparks, Ca(2+) waves, and Ca(2+) oscillations. Am J Physiol Heart Circ Physiol 280: H2399‐H2405, 2001.
 966.Mauban JR, Zacharia J, Fairfax S, Wier WG. PC‐PLC/sphingomyelin synthase activity plays a central role in the development of myogenic tone in murine resistance arteries. Am J Physiol Heart Circ Physiol 308: H1517‐H1524, 2015.
 967.Mauban JR, Zacharia J, Zhang J, Wier WG. Vascular tone and Ca(2+) signaling in murine cremaster muscle arterioles in vivo. Microcirculation 20: 269‐277, 2013.
 968.Mayhan WG. Effect of diabetes mellitus on response of the basilar artery to activation of ATP‐sensitive potassium channels. Brain Res 636: 35‐39, 1994.
 969.Mayhan WG, Faraci FM. Responses of cerebral arterioles in diabetic rats to activation of ATP‐sensitive potassium channels. Am J Physiol 265: H152‐H157, 1993.
 970.Mayhan WG, Mayhan JF, Sun H, Patel KP. In vivo properties of potassium channels in cerebral blood vessels during diabetes mellitus. Microcirculation 11: 605‐613, 2004.
 971.McCarron JG, Chalmers S, Bradley KN, MacMillan D, Muir TC. Ca2+ microdomains in smooth muscle. Cell Calcium 40: 461‐493, 2006.
 972.McCarron JG, Halpern W. Impaired potassium‐induced dilation in hypertensive rat cerebral arteries does not reflect altered Na+,K(+)‐ATPase dilation. Circ Res 67: 1035‐1039, 1990.
 973.McCarron JG, Halpern W. Potassium dilates rat cerebral arteries by two independent mechanisms. Am J Physiol 259: H902‐908, 1990.
 974.McCobb DP, Fowler NL, Featherstone T, Lingle CJ, Saito M, Krause JE, Salkoff L. A human calcium‐activated potassium channel gene expressed in vascular smooth muscle. Am J Physiol 269: H767‐H777, 1995.
 975.McGahon MK, Dash DP, Arora A, Wall N, Dawicki J, Simpson DA, Scholfield CN, McGeown JG, Curtis TM. Diabetes downregulates large‐conductance Ca2+‐activated potassium beta 1 channel subunit in retinal arteriolar smooth muscle. Circ Res 100: 703‐711, 2007.
 976.McGahon MK, Dawicki JM, Arora A, Simpson DA, Gardiner TA, Stitt AW, Scholfield CN, McGeown JG, Curtis TM. Kv1.5 is a major component underlying the A‐type potassium current in retinal arteriolar smooth muscle. Am J Physiol Heart Circ Physiol 292: H1001‐H1008, 2007.
 977.McGahon MK, Dawicki JM, Scholfield CN, McGeown JG, Curtis TM. A‐type potassium current in retinal arteriolar smooth muscle cells. Invest Ophthalmol Vis Sci 46: 3281‐3287, 2005.
 978.McGowan TA, Sharma K. Regulation of inositol 1,4,5‐trisphosphate receptors by transforming growth factor‐beta: Implications for vascular dysfunction in diabetes. Kidney Int Suppl 77: S99‐S103, 2000.
 979.McIntyre P, McLatchie LM, Chambers A, Phillips E, Clarke M, Savidge J, Toms C, Peacock M, Shah K, Winter J, Weerasakera N, Webb M, Rang HP, Bevan S, James IF. Pharmacological differences between the human and rat vanilloid receptor 1 (VR1). Br J Pharmacol 132: 1084‐1094, 2001.
 980.McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416: 52‐58, 2002.
 981.McManus OB. Calcium‐activated potassium channels: Regulation by calcium. J Bioenerg Biomembr 23: 537‐560, 1991.
 982.McManus OB, Helms LM, Pallanck L, Ganetzky B, Swanson R, Leonard RJ. Functional role of the beta subunit of high conductance calcium‐activated potassium channels. Neuron 14: 645‐650, 1995.
 983.McNamara CR, Mandel‐Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA, Julius D, Moran MM, Fanger CM. TRPA1 mediates formalin‐induced pain. Proc Natl Acad Sci U S A 104: 13525‐13530, 2007.
 984.McPherson GA. Current trends in the study of potassium channel openers. Gen Pharmacol 24: 275‐281, 1993.
 985.Mederos y Schnitzler M, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K, Gollasch M, Gudermann T. Gq‐coupled receptors as mechanosensors mediating myogenic vasoconstriction. Embo J 27: 3092‐3103, 2008.
 986.Meech RW. Intracellular calcium injection causes increased potassium conductance in Aplysia nerve cells. Comp Biochem Physiol A Comp Physiol 42: 493‐499, 1972.
 987.Meech RW. The sensitivity of Helix aspersa neurones to injected calcium ions. J Physiol 237: 259‐277, 1974.
 988.Meera P, Wallner M, Jiang Z, Toro L. A calcium switch for the functional coupling between alpha (hslo) and beta subunits (KV,Ca beta) of maxi K channels. FEBS Lett 382: 84‐88, 1996.
 989.Meera P, Wallner M, Song M, Toro L. Large conductance voltage‐ and calcium‐dependent K+ channel, a distinct member of voltage‐dependent ion channels with seven N‐terminal transmembrane segments (S0‐S6), an extracellular N terminus, and an intracellular (S9‐S10) C terminus. Proc Natl Acad Sci U S A 94: 14066‐14071, 1997.
 990.Meisheri KD, Khan SA, Martin JL. Vascular pharmacology of ATP‐sensitive K+ channels: Interactions between glyburide and K+ channel openers. J Vasc Res 30: 2‐12, 1993.
 991.Meisheri KD, Swirtz MA, Purohit SS, Cipkus‐Dubray LA, Khan SA, Oleynek JJ. Characterization of K+ channel‐dependent as well as ‐independent components of pinacidil‐induced vasodilation. J Pharmacol Exp Ther 256: 492‐499, 1991.
 992.Meissner G. Regulation of ryanodine receptor ion channels through posttranslational modifications. Curr Top Membr 66: 91‐113, 2010.
 993.Mellander S. Functional aspects of myogenic vascular control. J Hypertens Suppl 7: S21‐S30; discussion S31, 1989.
 994.Mercado J, Baylie R, Navedo MF, Yuan C, Scott JD, Nelson MT, Brayden JE, Santana LF. Local control of TRPV4 channels by AKAP150‐targeted PKC in arterial smooth muscle. J Gen Physiol 143: 559‐575, 2014.
 995.Merkus D, Haitsma DB, Fung TY, Assen YJ, Verdouw PD, Duncker DJ. Coronary blood flow regulation in exercising swine involves parallel rather than redundant vasodilator pathways. Am J Physiol Heart Circ Physiol 285: H424‐H433, 2003.
 996.Merkus D, Sorop O, Houweling B, Hoogteijling BA, Duncker DJ. KCa+ channels contribute to exercise‐induced coronary vasodilation in swine. Am J Physiol Heart Circ Physiol 291: H2090‐H2097, 2006.
 997.Mery L, Magnino F, Schmidt K, Krause KH, Dufour JF. Alternative splice variants of hTrp4 differentially interact with the C‐terminal portion of the inositol 1,4,5‐trisphosphate receptors. FEBS Lett 487: 377‐383, 2001.
 998.Messing M, Van Essen H, Smith TL, Smits JF, Struyker‐Boudier HA. Microvascular actions of calcium channel antagonists. Eur J Pharmacol 198: 189‐195, 1991.
 999.Meyers MB, Pickel VM, Sheu SS, Sharma VK, Scotto KW, Fishman GI. Association of sorcin with the cardiac ryanodine receptor. J Biol Chem 270: 26411‐26418, 1995.
 1000.Michelakis ED, Reeve HL, Huang JM, Tolarova S, Nelson DP, Weir EK, Archer SL. Potassium channel diversity in vascular smooth muscle cells. Can J Physiol Pharmacol 75: 889‐897, 1997.
 1001.Miki T, Suzuki M, Shibasaki T, Uemura H, Sato T, Yamaguchi K, Koseki H, Iwanaga T, Nakaya H, Seino S. Mouse model of Prinzmetal angina by disruption of the inward rectifier Kir6.1. Nat Med 8: 466‐472, 2002.
 1002.Miller M, Shi J, Zhu Y, Kustov M, Tian JB, Stevens A, Wu M, Xu J, Long S, Yang P, Zholos AV, Salovich JM, Weaver CD, Hopkins CR, Lindsley CW, McManus O, Li M, Zhu MX. Identification of ML204, a novel potent antagonist that selectively modulates native TRPC4/C5 ion channels. J Biol Chem 286: 33436‐33446, 2011.
 1003.Miller AW, Tulbert C, Puskar M, Busija DW. Enhanced endothelin activity prevents vasodilation to insulin in insulin resistance. Hypertension 40: 78‐82, 2002.
 1004.Minami K, Fukuzawa K, Nakaya Y. Protein kinase C inhibits the Ca(2+)‐activated K+ channel of cultured porcine coronary artery smooth muscle cells. Biochem Biophys Res Commun 190: 263‐269, 1993.
 1005.Ming Z, Parent R, Lavallee M. Beta 2‐adrenergic dilation of resistance coronary vessels involves KATP channels and nitric oxide in conscious dogs. Circulation 95: 1568‐1576, 1997.
 1006.Minke B, Wu C, Pak WL. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature 258: 84‐87, 1975.
 1007.Miriel VA, Mauban JR, Blaustein MP, Wier WG. Local and cellular Ca2+ transients in smooth muscle of pressurized rat resistance arteries during myogenic and agonist stimulation. J Physiol 518(Pt 3): 815‐824, 1999.
 1008.Mironneau J, Coussin F, Jeyakumar LH, Fleischer S, Mironneau C, Macrez N. Contribution of ryanodine receptor subtype 3 to Ca2+ responses in Ca2+‐overloaded cultured rat portal vein myocytes. J Biol Chem 276: 11257‐11264, 2001.
 1009.Mironneau J, Macrez‐Lepretre N. Modulation of Ca2+ channels by alpha 1A‐ and alpha 2A‐adrenoceptors in vascular myocytes: Involvement of different transduction pathways. Cell Signal 7: 471‐479, 1995.
 1010.Misfeldt MW, Aalkjaer C, Simonsen U, Bek T. Voltage‐gated calcium channels are involved in the regulation of calcium oscillations in vascular smooth muscle cells from isolated porcine retinal arterioles. Exp Eye Res 91: 69‐75, 2010.
 1011.Mistry DK, Garland CJ. Nitric oxide (NO)‐induced activation of large conductance Ca2+‐dependent K+ channels (BK(Ca)) in smooth muscle cells isolated from the rat mesenteric artery. Br J Pharmacol 124: 1131‐1140, 1998.
 1012.Mistry DK, Garland CJ. The influence of phenylephrine outward potassium currents in single smooth muscle cells from the rabbit mesenteric artery. Gen Pharmacol 33: 389‐399, 1999.
 1013.Miura H, Wachtel RE, Loberiza FR, Jr, Saito T, Miura M, Nicolosi AC, Gutterman DD. Diabetes mellitus impairs vasodilation to hypoxia in human coronary arterioles: Reduced activity of ATP‐sensitive potassium channels. Circ Res 92: 151‐158, 2003.
 1014.Miyata N, Tsuchida K, Otomo S. Functional changes in potassium channels in carotid arteries from stroke‐prone spontaneously hypertensive rats. Eur J Pharmacol 182: 209‐210, 1990.
 1015.Miyatake R, Furukawa A, Matsushita M, Iwahashi K, Nakamura K, Ichikawa Y, Suwaki H. Tissue‐specific alternative splicing of mouse brain type ryanodine receptor/calcium release channel mRNA. FEBS Lett 395: 123‐126, 1996.
 1016.Miyoshi Y, Nakaya Y. Angiotensin II blocks ATP‐sensitive K+ channels in porcine coronary artery smooth muscle cells. Biochem Biophys Res Commun 181: 700‐706, 1991.
 1017.Miyoshi H, Nakaya Y, Moritoki H. Nonendothelial‐derived nitric oxide activates the ATP‐sensitive K+ channel of vascular smooth muscle cells. FEBS Lett 345: 47‐49, 1994.
 1018.Miyoshi Y, Nakaya Y, Wakatsuki T, Nakaya S, Fujino K, Saito K, Inoue I. Endothelin blocks ATP‐sensitive K+ channels and depolarizes smooth muscle cells of porcine coronary artery. Circ Res 70: 612‐616, 1992.
 1019.Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272: 1339‐1342, 1996.
 1020.Mokelke EA, Dietz NJ, Eckman DM, Nelson MT, Sturek M. Diabetic dyslipidemia and exercise affect coronary tone and differential regulation of conduit and microvessel K+ current. Am J Physiol Heart Circ Physiol 288: H1233‐H1241, 2005.
 1021.Mokelke EA, Hu Q, Song M, Toro L, Reddy HK, Sturek M. Altered functional coupling of coronary K+ channels in diabetic dyslipidemic pigs is prevented by exercise. J Appl Physiol (1985) 95: 1179‐1193, 2003.
 1022.Montell C, Birnbaumer L, Flockerzi V. The TRP channels, a remarkably functional family. Cell 108: 595‐598, 2002.
 1023.Montell C, Rubin GM. Molecular characterization of the Drosophila trp locus: A putative integral membrane protein required for phototransduction. Neuron 2: 1313‐1323, 1989.
 1024.Moore CL, Nelson PL, Parelkar NK, Rusch NJ, Rhee SW. Protein kinase A‐phosphorylated KV1 channels in PSD95 signaling complex contribute to the resting membrane potential and diameter of cerebral arteries. Circ Res 114: 1258‐1267, 2014.
 1025.Moosmang S, Haider N, Bruderl B, Welling A, Hofmann F. Antihypertensive effects of the putative T‐type calcium channel antagonist mibefradil are mediated by the L‐type calcium channel Cav1.2. Circ Res 98: 105‐110, 2006.
 1026.Moosmang S, Schulla V, Welling A, Feil R, Feil S, Wegener JW, Hofmann F, Klugbauer N. Dominant role of smooth muscle L‐type calcium channel Cav1.2 for blood pressure regulation. Embo J 22: 6027‐6034, 2003.
 1027.Morelli A, Lange M, Ertmer C, Broeking K, Van Aken H, Orecchioni A, Rocco M, Bachetoni A, Traber DL, Landoni G, Pietropaoli P, Westphal M. Glibenclamide dose response in patients with septic shock: Effects on norepinephrine requirements, cardiopulmonary performance, and global oxygen transport. Shock 28: 530‐535, 2007.
 1028.Moreno‐Dominguez A, Cidad P, Miguel‐Velado E, Lopez‐Lopez JR, Perez‐Garcia MT. De novo expression of Kv6.3 contributes to changes in vascular smooth muscle cell excitability in a hypertensive mice strain. J Physiol 587: 625‐640, 2009.
 1029.Mori H, Chujo M, Tanaka E, Yamakawa A, Shinozaki Y, Mohamed MU, Nakazawa H. Modulation of adrenergic coronary vasoconstriction via ATP‐sensitive potassium channel. Am J Physiol 268: H1077‐H1085, 1995.
 1030.Mori A, Suzuki S, Sakamoto K, Nakahara T, Ishii K. BMS‐191011, an opener of large‐conductance Ca2+‐activated potassium channels, dilates rat retinal arterioles in vivo. Biol Pharm Bull 34: 150‐152, 2011.
 1031.Morita T, Okada M, Yamawaki H. Mechanisms underlying a decrease in KCl‐induced contraction after long‐term serum‐free organ culture of rat isolated mesenteric artery. J Vet Med Sci 76: 963‐969, 2014.
 1032.Morita H, Shi J, Ito Y, Inoue R. T‐channel‐like pharmacological properties of high voltage‐activated, nifedipine‐insensitive Ca2+ currents in the rat terminal mesenteric artery. Br J Pharmacol 137: 467‐476, 2002.
 1033.Moriyama K, Osugi S, Shimamura K, Sunano S. Caffeine‐induced contraction in arteries from stroke‐prone spontaneously hypertensive rats. Blood Vessels 26: 280‐289, 1989.
 1034.Movahed P, Evilevitch V, Andersson TL, Jonsson BA, Wollmer P, Zygmunt PM, Hogestatt ED. Vascular effects of anandamide and N‐acylvanillylamines in the human forearm and skin microcirculation. Br J Pharmacol 146: 171‐179, 2005.
 1035.Mufti RE, Brett SE, Tran CH, Abd El‐Rahman R, Anfinogenova Y, El‐Yazbi A, Cole WC, Jones PP, Chen SR, Welsh DG. Intravascular pressure augments cerebral arterial constriction by inducing voltage‐insensitive Ca2+ waves. J Physiol 588: 3983‐4005, 2010.
 1036.Mufti RE, Zechariah A, Sancho M, Mazumdar N, Brett SE, Welsh DG. Implications of alphavbeta3 integrin signaling in the regulation of Ca2+ waves and myogenic tone in cerebral arteries. Arterioscler Thromb Vasc Biol 35: 2571‐2578, 2015.
 1037.Munoz E, Hernandez‐Morales M, Sobradillo D, Rocher A, Nunez L, Villalobos C. Intracellular Ca(2+) remodeling during the phenotypic journey of human coronary smooth muscle cells. Cell Calcium 54: 375‐385, 2013.
 1038.Murakami M, Yamamura H, Murakami A, Okamura T, Nunoki K, Mitui‐Saito M, Muraki K, Hano T, Imaizumi Y, Flockerzi T, Yanagisawa T. Conserved smooth muscle contractility and blood pressure increase in response to high‐salt diet in mice lacking the beta3 subunit of the voltage‐dependent calcium channel. J Cardiovasc Pharmacol 36(Suppl 2): S69‐S73, 2000.
 1039.Murakami M, Yamamura H, Suzuki T, Kang MG, Ohya S, Murakami A, Miyoshi I, Sasano H, Muraki K, Hano T, Kasai N, Nakayama S, Campbell KP, Flockerzi V, Imaizumi Y, Yanagisawa T, Iijima T. Modified cardiovascular L‐type channels in mice lacking the voltage‐dependent Ca2+ channel beta3 subunit. J Biol Chem 278: 43261‐43267, 2003.
 1040.Murphy ME, Brayden JE. Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP‐sensitive potassium channels. J Physiol 486(Pt 1): 47‐58, 1995.
 1041.Murrant CL, Sarelius IH. Multiple dilator pathways in skeletal muscle contraction‐induced arteriolar dilations. Am J Physiol Regul Integr Comp Physiol 282: R969‐R978, 2002.
 1042.Murthy KS, Zhou H. Selective phosphorylation of the IP3R‐I in vivo by cGMP‐dependent protein kinase in smooth muscle. Am J Physiol Gastrointest Liver Physiol 284: G221‐G230, 2003.
 1043.Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R, Amzel LM, Berkowitz DE, Snyder SH. Hydrogen sulfide as endothelium‐derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109: 1259‐1268, 2011.
 1044.Nagaoka T, Hein TW, Yoshida A, Kuo L. Resveratrol, a component of red wine, elicits dilation of isolated porcine retinal arterioles: Role of nitric oxide and potassium channels. Invest Ophthalmol Vis Sci 48: 4232‐4239, 2007.
 1045.Nagasaki K, Fleischer S. Ryanodine sensitivity of the calcium release channel of sarcoplasmic reticulum. Cell Calcium 9: 1‐7, 1988.
 1046.Nagata K, Duggan A, Kumar G, Garcia‐Anoveros J. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci 25: 4052‐4061, 2005.
 1047.Nakahata K, Kinoshita H, Tokinaga Y, Ishida Y, Kimoto Y, Dojo M, Mizumoto K, Ogawa K, Hatano Y. Vasodilation mediated by inward rectifier K+ channels in cerebral microvessels of hypertensive and normotensive rats. Anesth Analg 102: 571‐576, 2006.
 1048.Nakashima M, Vanhoutte PM. Isoproterenol causes hyperpolarization through opening of ATP‐sensitive potassium channels in vascular smooth muscle of the canine saphenous vein. J Pharmacol Exp Ther 272: 379‐384, 1995.
 1049.Nakhostine N, Lamontagne D. Adenosine contributes to hypoxia‐induced vasodilation through ATP‐sensitive K+ channel activation. Am J Physiol 265: H1289‐H1293, 1993.
 1050.Nakhostine N, Lamontagne D. Contribution of prostaglandins in hypoxia‐induced vasodilation in isolated rabbit hearts. Relation to adenosine and KATP channels. Pflugers Arch 428: 526‐532, 1994.
 1051.Nalli AD, Kumar DP, Al‐Shboul O, Mahavadi S, Kuemmerle JF, Grider JR, Murthy KS. Regulation of Gbetagammai‐dependent PLC‐beta3 activity in smooth muscle: Inhibitory phosphorylation of PLC‐beta3 by PKA and PKG and stimulatory phosphorylation of Galphai‐GTPase‐activating protein RGS2 by PKG. Cell Biochem Biophys 70: 867‐880, 2014.
 1052.Nara M, Dhulipala PD, Ji GJ, Kamasani UR, Wang YX, Matalon S, Kotlikoff MI. Guanylyl cyclase stimulatory coupling to K(Ca) channels. Am J Physiol Cell Physiol 279: C1938‐C1945, 2000.
 1053.Nara M, Dhulipala PD, Wang YX, Kotlikoff MI. Reconstitution of beta‐adrenergic modulation of large conductance, calcium‐activated potassium (maxi‐K) channels in Xenopus oocytes. Identification of the camp‐dependent protein kinase phosphorylation site. J Biol Chem 273: 14920‐14924, 1998.
 1054.Narahashi T, Tsunoo A, Yoshii M. Characterization of two types of calcium channels in mouse neuroblastoma cells. J Physiol 383: 231‐249, 1987.
 1055.Narayanan D, Adebiyi A, Jaggar JH. Inositol trisphosphate receptors in smooth muscsle cells. Am J Physiol Heart Circ Physiol 302: H2190‐H2210, 2012.
 1056.Narayanan D, Bulley S, Leo MD, Burris SK, Gabrick KS, Boop FA, Jaggar JH. Smooth muscle cell transient receptor potential polycystin‐2 (TRPP2) channels contribute to the myogenic response in cerebral arteries. J Physiol 591: 5031‐5046, 2013.
 1057.Narishige T, Egashira K, Akatsuka Y, Imamura Y, Takahashi T, Kasuya H, Takeshita A. Glibenclamide prevents coronary vasodilation induced by beta 1‐adrenoceptor stimulation in dogs. Am J Physiol 266: H84‐H92, 1994.
 1058.Narishige T, Egashira K, Akatsuka Y, Katsuda Y, Numaguchi K, Sakata M, Takeshita A. Glibenclamide, a putative ATP‐sensitive K+ channel blocker, inhibits coronary autoregulation in anesthetized dogs. Circ Res 73: 771‐776, 1993.
 1059.Navarro‐Dorado J, Garcia‐Alonso M, van Breemen C, Tejerina T, Fameli N. Calcium oscillations in human mesenteric vascular smooth muscle. Biochem Biophys Res Commun 445: 84‐88, 2014.
 1060.Navarro‐Gonzalez MF, Grayson TH, Meaney KR, Cribbs LL, Hill CE. Non‐L‐type voltage‐dependent calcium channels control vascular tone of the rat basilar artery. Clin Exp Pharmacol Physiol 36: 55‐66, 2009.
 1061.Navedo MF, Amberg GC, Votaw VS, Santana LF. Constitutively active L‐type Ca2+ channels. Proc Natl Acad Sci U S A 102: 11112‐11117, 2005.
 1062.Navedo MF, Cheng EP, Yuan C, Votaw S, Molkentin JD, Scott JD, Santana LF. Increased coupled gating of L‐type Ca2+ channels during hypertension and Timothy syndrome. Circ Res 106: 748‐756, 2010.
 1063.Navedo MF, Nieves‐Cintron M, Amberg GC, Yuan C, Votaw VS, Lederer WJ, McKnight GS, Santana LF. AKAP150 is required for stuttering persistent Ca2+ sparklets and angiotensin II‐induced hypertension. Circ Res 102: e1‐e11, 2008.
 1064.Navedo MF, Santana LF. CaV1.2 sparklets in heart and vascular smooth muscle. J Mol Cell Cardiol 58: 67‐76, 2013.
 1065.Navedo MF, Takeda Y, Nieves‐Cintron M, Molkentin JD, Santana LF. Elevated Ca2+ sparklet activity during acute hyperglycemia and diabetes in cerebral arterial smooth muscle cells. Am J Physiol Cell Physiol 298: C211‐C220, 2010.
 1066.Needham M, McGahon MK, Bankhead P, Gardiner TA, Scholfield CN, Curtis TM, McGeown JG. The role of K+ and Cl− channels in the regulation of retinal arteriolar tone and blood flow. Invest Ophthalmol Vis Sci 55: 2157‐2165, 2014.
 1067.Neeper MP, Liu Y, Hutchinson TL, Wang Y, Flores CM, Qin N. Activation properties of heterologously expressed mammalian TRPV2: Evidence for species dependence. J Biol Chem 282: 15894‐15902, 2007.
 1068.Nelson CP, Rainbow RD, Brignell JL, Perry MD, Willets JM, Davies NW, Standen NB, Challiss RA. Principal role of adenylyl cyclase 6 in K(+) channel regulation and vasodilator signalling in vascular smooth muscle cells. Cardiovasc Res 91: 694‐702, 2011.
 1069.Nelson MT. Regulation of arterial tone by potassium channels. Jpn J Pharmacol 58(Suppl 2): 238P‐242P, 1992.
 1070.Nelson MT. Ca(2+)‐activated potassium channels and ATP‐sensitive potassium channels as modulators of vascular tone. Trends Cardiovasc Med 3: 54‐60, 1993.
 1071.Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ. Relaxation of arterial smooth muscle by calcium sparks. Science 270: 633‐637, 1995.
 1072.Nelson MT, Huang Y, Brayden JE, Hescheler J, Standen NB. Arterial dilations in response to calcitonin gene‐related peptide involve activation of K+ channels. Nature 344: 770‐773, 1990.
 1073.Nelson MT, Patlak JB, Worley JF, Standen NB. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol 259: C3‐C18, 1990.
 1074.Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268: C799‐C822, 1995.
 1075.Nelson MT, Standen NB, Brayden JE, Worley JF, III. Noradrenaline contracts arteries by activating voltage‐dependent calcium channels. Nature 336: 382‐385, 1988.
 1076.Neylon CB, Hoyland J, Mason WT, Irvine RF. Spatial dynamics of intracellular calcium in agonist‐stimulated vascular smooth muscle cells. Am J Physiol 259: C675‐C686, 1990.
 1077.Neylon CB, Lang RJ, Fu Y, Bobik A, Reinhart PH. Molecular cloning and characterization of the intermediate‐conductance Ca(2+)‐activated K(+) channel in vascular smooth muscle: Relationship between K(Ca) channel diversity and smooth muscle cell function. Circ Res 85: e33‐e43, 1999.
 1078.Ng LC, McCormack MD, Airey JA, Singer CA, Keller PS, Shen XM, Hume JR. TRPC1 and STIM1 mediate capacitative Ca2+ entry in mouse pulmonary arterial smooth muscle cells. J Physiol 587: 2429‐2442, 2009.
 1079.Ngo AT, Riemann M, Holstein‐Rathlou NH, Torp‐Pedersen C, Jensen LJ. Significance of K(ATP) channels, L‐type Ca(2)(+) channels and CYP450‐4A enzymes in oxygen sensing in mouse cremaster muscle arterioles in vivo. BMC Physiol 13: 8, 2013.
 1080.Nichols CG, Lopatin AN. Inward rectifier potassium channels. Annu Rev Physiol 59: 171‐191, 1997.
 1081.Nie L, Oishi Y, Doi I, Shibata H, Kojima I. Inhibition of proliferation of MCF‐7 breast cancer cells by a blocker of Ca(2+)‐permeable channel. Cell Calcium 22: 75‐82, 1997.
 1082.Nieves‐Cintron M, Amberg GC, Nichols CB, Molkentin JD, Santana LF. Activation of NFATc3 down‐regulates the beta1 subunit of large conductance, calcium‐activated K +channels in arterial smooth muscle and contributes to hypertension. J Biol Chem 282: 3231‐3240, 2007.
 1083.Nieves‐Cintron M, Nystoriak MA, Prada MP, Johnson K, Fayer W, Dell'Acqua ML, Scott JD, Navedo MF. Selective down‐regulation of KV2.1 function contributes to enhanced arterial tone during diabetes. J Biol Chem 290: 7918‐7929, 2015.
 1084.Nilius B, Droogmans G. Ion channels and their functional role in vascular endothelium. Physiol Rev 81: 1415‐1459, 2001.
 1085.Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T. The Ca2+‐activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5‐biphosphate. Embo J 25: 467‐478, 2006.
 1086.Nilius B, Owsianik G. The transient receptor potential family of ion channels. Genome Biol 12: 218, 2011.
 1087.Nilius B, Prenen J, Droogmans G, Voets T, Vennekens R, Freichel M, Wissenbach U, Flockerzi V. Voltage dependence of the Ca2+‐activated cation channel TRPM4. J Biol Chem 278: 30813‐30820, 2003.
 1088.Nilius B, Prenen J, Janssens A, Owsianik G, Wang C, Zhu MX, Voets T. The selectivity filter of the cation channel TRPM4. J Biol Chem 280: 22899‐22906, 2005.
 1089.Nilius B, Prenen J, Janssens A, Voets T, Droogmans G. Decavanadate modulates gating of TRPM4 cation channels. J Physiol 560: 753‐765, 2004.
 1090.Nilius B, Prenen J, Owsianik G. Irritating channels: The case of TRPA1. J Physiol 589: 1543‐1549, 2011.
 1091.Nilius B, Prenen J, Tang J, Wang C, Owsianik G, Janssens A, Voets T, Zhu MX. Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J Biol Chem 280: 6423‐6433, 2005.
 1092.Nilius B, Prenen J, Voets T, Droogmans G. Intracellular nucleotides and polyamines inhibit the Ca2+‐activated cation channel TRPM4b. Pflugers Arch 448: 70‐75, 2004.
 1093.Nims JC, Irwin JW. Chamber techniques to study the microvasculature. Microvasc Res 5: 105‐118, 1973.
 1094.Nishimaru K, Eghbali M, Lu R, Marijic J, Stefani E, Toro L. Functional and molecular evidence of MaxiK channel beta1 subunit decrease with coronary artery ageing in the rat. J Physiol 559: 849‐862, 2004.
 1095.Nixon GF, Mignery GA, Somlyo AV. Immunogold localization of inositol 1,4,5‐trisphosphate receptors and characterization of ultrastructural features of the sarcoplasmic reticulum in phasic and tonic smooth muscle. J Muscle Res Cell Motil 15: 682‐700, 1994.
 1096.Nnorom CC, Davis C, Fedinec AL, Howell K, Jaggar JH, Parfenova H, Pourcyrous M, Leffler CW. Contributions of KATP and KCa channels to cerebral arteriolar dilation to hypercapnia in neonatal brain. Physiol Rep 2: e12127, 2014.
 1097.Noma A. ATP‐regulated K+ channels in cardiac muscle. Nature 305: 147‐148, 1983.
 1098.Nourian Z, Li M, Leo MD, Jaggar JH, Braun AP, Hill MA. Large conductance Ca2+‐activated K +channel (BKCa) alpha‐subunit splice variants in resistance arteries from rat cerebral and skeletal muscle vasculature. PLoS One 9: e98863, 2014.
 1099.Nystoriak MA, Nieves‐Cintron M, Nygren PJ, Hinke SA, Nichols CB, Chen CY, Puglisi JL, Izu LT, Bers DM, Dell'acqua ML, Scott JD, Santana LF, Navedo MF. AKAP150 contributes to enhanced vascular tone by facilitating large‐conductance Ca2+‐activated K+ channel remodeling in hyperglycemia and diabetes mellitus. Circ Res 114: 607‐615, 2014.
 1100.O'Brien F, Venturi E, Sitsapesan R. The ryanodine receptor provides high throughput Ca2+‐release but is precisely regulated by networks of associated proteins: A focus on proteins relevant to phosphorylation. Biochem Soc Trans 43: 426‐433, 2015.
 1101.Obukhov AG, Nowycky MC. A cytosolic residue mediates Mg2+ block and regulates inward current amplitude of a transient receptor potential channel. J Neurosci 25: 1234‐1239, 2005.
 1102.Ohya S, Sergeant GP, Greenwood IA, Horowitz B. Molecular variants of KCNQ channels expressed in murine portal vein myocytes: A role in delayed rectifier current. Circ Res 92: 1016‐1023, 2003.
 1103.Ohya Y, Setoguchi M, Fujii K, Nagao T, Abe I, Fujishima M. Impaired action of levcromakalim on ATP‐sensitive K+ channels in mesenteric artery cells from spontaneously hypertensive rats. Hypertension 27: 1234‐1239, 1996.
 1104.Okabe K, Kitamura K, Kuriyama H. Features of 4‐aminopyridine sensitive outward current observed in single smooth muscle cells from the rabbit pulmonary artery. Pflugers Arch 409: 561‐568, 1987.
 1105.Okada Y, Yanagisawa T, Taira N. BRL 38227 (levcromakalim)‐induced hyperpolarization reduces the sensitivity to Ca2+ of contractile elements in canine coronary artery. Naunyn Schmiedebergs Arch Pharmacol 347: 438‐444, 1993.
 1106.Okon EB, Chung AW, Rauniyar P, Padilla E, Tejerina T, McManus BM, Luo H, van Breemen C. Compromised arterial function in human type 2 diabetic patients. Diabetes 54: 2415‐2423, 2005.
 1107.Olesen SP, Munch E, Moldt P, Drejer J. Selective activation of Ca(2+)‐dependent K+ channels by novel benzimidazolone. Eur J Pharmacol 251: 53‐59, 1994.
 1108.Onoue H, Katusic ZS. Role of potassium channels in relaxations of canine middle cerebral arteries induced by nitric oxide donors. Stroke 28: 1264‐1270; discussion 1270‐1261, 1997.
 1109.Onoue H, Katusic ZS. The effect of 1H‐[1,2,4]oxadiazolo[4,3‐a]quinoxalin‐1‐one (ODQ) and charybdotoxin (CTX) on relaxations of isolated cerebral arteries to nitric oxide. Brain Res 785: 107‐113, 1998.
 1110.Onoue H, Katusic ZS. The effect of subarachnoid hemorrhage on mechanisms of vasodilation mediated by cyclic adenosine monophosphate. J Neurosurg 89: 111‐117, 1998.
 1111.Opie LH. Modulation of ischemia by regulation of the ATP‐sensitive potassium channel. Cardiovasc Drugs Ther 7(Suppl 3): 507‐513, 1993.
 1112.Orie NN, Fry CH, Clapp LH. Evidence that inward rectifier K+ channels mediate relaxation by the PGI2 receptor agonist cicaprost via a cyclic AMP‐independent mechanism. Cardiovasc Res 69: 107‐115, 2006.
 1113.Osol G, Laher I, Cipolla M. Protein kinase C modulates basal myogenic tone in resistance arteries from the cerebral circulation. Circ Res 68: 359‐367, 1991.
 1114.Osol G, Laher I, Kelley M. Myogenic tone is coupled to phospholipase C and G protein activation in small cerebral arteries. Am J Physiol 265: H415‐H420, 1993.
 1115.Ouchi Y, Han SZ, Kim S, Akishita M, Kozaki K, Toba K, Orimo H. Augmented contractile function and abnormal Ca2+ handling in the aorta of Zucker obese rats with insulin resistance. Diabetes 45(Suppl 3): S55‐S58, 1996.
 1116.Overbeck HW. Vascular responses to cations, osmolality, and angiotensin in renal hypertensive dogs. Am J Physiol 223: 1358‐1364, 1972.
 1117.Overbeck HW, Clark DW. Vasodilator responses to K+ in genetic hypertensive and in renal hypertensive rats. J Lab Clin Med 86: 973‐983, 1975.
 1118.Overbeck HW, Derifield RS, Pamnani MB, Sozen T. Attenuated vasodilator responses to K +in essential hypertensive men. J Clin Invest 53: 678‐686, 1974.
 1119.Overbeck HW, Molnar JI, Haddy FJ. Resistance to blood flow through the vascular bed of the dog forelimb. Local effects of sodium, potassium, calcium, magnesium, acetate, hypertonicity and hypotonicity. Am J Cardiol 8: 533‐541, 1961.
 1120.Overturf KE, Russell SN, Carl A, Vogalis F, Hart PJ, Hume JR, Sanders KM, Horowitz B. Cloning and characterization of a Kv1.5 delayed rectifier K+ channel from vascular and visceral smooth muscles. Am J Physiol 267: C1231‐C1238, 1994.
 1121.Owsianik G, Talavera K, Voets T, Nilius B. Permeation and selectivity of TRP channels. Annu Rev Physiol 68: 685‐717, 2006.
 1122.Ozkor MA, Hayek SS, Rahman AM, Murrow JR, Kavtaradze N, Lin J, Manatunga A, Quyyumi AA. Contribution of endothelium‐derived hyperpolarizing factor to exercise‐induced vasodilation in health and hypercholesterolemia. Vasc Med 20: 14‐22, 2015.
 1123.Ozkor MA, Murrow JR, Rahman AM, Kavtaradze N, Lin J, Manatunga A, Quyyumi AA. Endothelium‐derived hyperpolarizing factor determines resting and stimulated forearm vasodilator tone in health and in disease. Circulation 123: 2244‐2253, 2011.
 1124.Pagan RM, Martinez AC, Martinez MP, Hernandez M, Garcia‐Sacristan A, Correa C, Prieto D, Benedito S. Endothelial and potassium channel dependent modulation of noradrenergic vasoconstriction in the pig radial artery. Eur J Pharmacol 616: 166‐174, 2009.
 1125.Paisansathan C, Xu H, Vetri F, Hernandez M, Pelligrino DA. Interactions between adenosine and K+ channel‐related pathways in the coupling of somatosensory activation and pial arteriolar dilation. Am J Physiol Heart Circ Physiol 299: H2009‐H2017, 2010.
 1126.Pallanck L, Ganetzky B. Cloning and characterization of human and mouse homologs of the Drosophila calcium‐activated potassium channel gene, slowpoke. Hum Mol Genet 3: 1239‐1243, 1994.
 1127.Pallotta BS, Wagoner PK. Voltage‐dependent potassium channels since Hodgkin and Huxley. Physiol Rev 72: S49‐S67, 1992.
 1128.Park WS, Han J, Earm YE. Physiological role of inward rectifier K(+) channels in vascular smooth muscle cells. Pflugers Arch 457: 137‐147, 2008.
 1129.Park WS, Han J, Kim N, Ko JH, Kim SJ, Earm YE. Activation of inward rectifier K+ channels by hypoxia in rabbit coronary arterial smooth muscle cells. Am J Physiol Heart Circ Physiol 289: H2461‐H2467, 2005.
 1130.Park WS, Han J, Kim N, Youm JB, Joo H, Kim HK, Ko JH, Earm YE. Endothelin‐1 inhibits inward rectifier K+ channels in rabbit coronary arterial smooth muscle cells through protein kinase C. J Cardiovasc Pharmacol 46: 681‐689, 2005.
 1131.Park HW, Kim JY, Choi SK, Lee YH, Zeng W, Kim KH, Muallem S, Lee MG. Serine‐threonine kinase with‐no‐lysine 4 (WNK4) controls blood pressure via transient receptor potential canonical 3 (TRPC3) in the vasculature. Proc Natl Acad Sci U S A 108: 10750‐10755, 2011.
 1132.Park JK, Kim YC, Sim JH, Choi MY, Choi W, Hwang KK, Cho MC, Kim KW, Lim SW, Lee SJ. Regulation of membrane excitability by intracellular pH (pHi) changers through Ca2+‐activated K+ current (BK channel) in single smooth muscle cells from rabbit basilar artery. Pflugers Arch 454: 307‐319, 2007.
 1133.Park WS, Kim N, Youm JB, Warda M, Ko JH, Kim SJ, Earm YE, Han J. Angiotensin II inhibits inward rectifier K+ channels in rabbit coronary arterial smooth muscle cells through protein kinase Calpha. Biochem Biophys Res Commun 341: 728‐735, 2006.
 1134.Park WS, Ko JH, Kim N, Son YK, Kang SH, Warda M, Jung ID, Park YM, Han J. Increased inhibition of inward rectifier K+ channels by angiotensin II in small‐diameter coronary artery of isoproterenol‐induced hypertrophied model. Arterioscler Thromb Vasc Biol 27: 1768‐1775, 2007.
 1135.Park SW, Noh HJ, Sung DJ, Kim JG, Kim JM, Ryu SY, Kang K, Kim B, Bae YM, Cho H. Hydrogen peroxide induces vasorelaxation by enhancing 4‐aminopyridine‐sensitive Kv currents through S‐glutathionylation. Pflugers Arch 467: 285‐297, 2015.
 1136.Park WS, Son YK, Kim N, Ko JH, Kang SH, Warda M, Earm YE, Jung ID, Park YM, Han J. Acute hypoxia induces vasodilation and increases coronary blood flow by activating inward rectifier K(+) channels. Pflugers Arch 454: 1023‐1030, 2007.
 1137.Park CK, Xu ZZ, Liu T, Lu N, Serhan CN, Ji RR. Resolvin D2 is a potent endogenous inhibitor for transient receptor potential subtype V1/A1, inflammatory pain, and spinal cord synaptic plasticity in mice: Distinct roles of resolvin D1, D2, and E1. J Neurosci 31: 18433‐18438, 2011.
 1138.Parkinson NA, Hughes AD. The mechanism of action of alpha 2‐adrenoceptors in human isolated subcutaneous resistance arteries. Br J Pharmacol 115: 1463‐1468, 1995.
 1139.Paterno R, Faraci FM, Heistad DD. Role of Ca(2+)‐dependent K+ channels in cerebral vasodilatation induced by increases in cyclic GMP and cyclic AMP in the rat. Stroke 27: 1603‐1607; discussion 1607‐1608, 1996.
 1140.Paterno R, Heistad DD, Faraci FM. Functional activity of Ca2+‐dependent K+ channels is increased in basilar artery during chronic hypertension. Am J Physiol 272: H1287‐H1291, 1997.
 1141.Paterno R, Heistad DD, Faraci FM. Potassium channels modulate cerebral autoregulation during acute hypertension. Am J Physiol Heart Circ Physiol 278: H2003‐H2007, 2000.
 1142.Pathan AR, Rusch NJ. Two‐pore domain K(+) channels: Evidence for TWIK‐2 in blood pressure regulation. Hypertension 58: 539‐541, 2011.
 1143.Patterson RL, Boehning D, Snyder SH. Inositol 1,4,5‐trisphosphate receptors as signal integrators. Annu Rev Biochem 73: 437‐465, 2004.
 1144.Patterson RL, van Rossum DB, Barrow RK, Snyder SH. RACK1 binds to inositol 1,4,5‐trisphosphate receptors and mediates Ca2+ release. Proc Natl Acad Sci U S A 101: 2328‐2332, 2004.
 1145.Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB. Polycystin‐2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol 12: R378‐R380, 2002.
 1146.Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A. A TRP channel that senses cold stimuli and menthol. Cell 108: 705‐715, 2002.
 1147.Peiper U, Griebel L, Wende W. Activation of vascular smooth muscle of rat aorta by noradrenaline and depolarization: Two different mechanisms. Pflugers Arch 330: 74‐89, 1971.
 1148.Pelucchi B, Aguiari G, Pignatelli A, Manzati E, Witzgall R, Del Senno L, Belluzzi O. Nonspecific cation current associated with native polycystin‐2 in HEK‐293 cells. J Am Soc Nephrol 17: 388‐397, 2006.
 1149.Pemberton M, Anderson GL, Barker JH. Characterization of microvascular vasoconstriction following ischemia/reperfusion in skeletal muscle using videomicroscopy. Microsurgery 17: 9‐16, 1996.
 1150.Peng H, Matchkov V, Ivarsen A, Aalkjaer C, Nilsson H. Hypothesis for the initiation of vasomotion. Circ Res 88: 810‐815, 2001.
 1151.Peppiatt‐Wildman CM, Albert AP, Saleh SN, Large WA. Endothelin‐1 activates a Ca2+‐permeable cation channel with TRPC3 and TRPC7 properties in rabbit coronary artery myocytes. J Physiol 580: 755‐764, 2007.
 1152.Percival AL, Williams AJ, Kenyon JL, Grinsell MM, Airey JA, Sutko JL. Chicken skeletal muscle ryanodine receptor isoforms: Ion channel properties. Biophys J 67: 1834‐1850, 1994.
 1153.Perez GJ, Bonev AD, Nelson MT. Micromolar Ca(2+) from sparks activates Ca(2+)‐sensitive K(+) channels in rat cerebral artery smooth muscle. Am J Physiol Cell Physiol 281: C1769‐C1775, 2001.
 1154.Perez GJ, Bonev AD, Patlak JB, Nelson MT. Functional coupling of ryanodine receptors to KCa channels in smooth muscle cells from rat cerebral arteries. J Gen Physiol 113: 229‐238, 1999.
 1155.Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM. ADP‐ribose gating of the calcium‐permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411: 595‐599, 2001.
 1156.Perraud AL, Schmitz C, Scharenberg AM. TRPM2 Ca2+ permeable cation channels: From gene to biological function. Cell Calcium 33: 519‐531, 2003.
 1157.Pessah IN, Waterhouse AL, Casida JE. The calcium‐ryanodine receptor complex of skeletal and cardiac muscle. Biochem Biophys Res Commun 128: 449‐456, 1985.
 1158.Phillips AM, Bull A, Kelly LE. Identification of a Drosophila gene encoding a calmodulin‐binding protein with homology to the trp phototransduction gene. Neuron 8: 631‐642, 1992.
 1159.Phillips AA, Chan FH, Zheng MM, Krassioukov AV, Ainslie PN. Neurovascular coupling in humans: Physiology, methodological advances and clinical implications. J Cereb Blood Flow Metab 36: 647‐664, 2016.
 1160.Pinho JF, Medeiros MA, Capettini LS, Rezende BA, Campos PP, Andrade SP, Cortes SF, Cruz JS, Lemos VS. Phosphatidylinositol 3‐kinase‐delta up‐regulates L‐type Ca2+ currents and increases vascular contractility in a mouse model of type 1 diabetes. Br J Pharmacol 161: 1458‐1471, 2010.
 1161.Plane F, Garland CJ. Differential effects of acetylcholine, nitric oxide and levcromakalim on smooth muscle membrane potential and tone in the rabbit basilar artery. Br J Pharmacol 110: 651‐656, 1993.
 1162.Plane F, Hurrell A, Jeremy JY, Garland CJ. Evidence that potassium channels make a major contribution to SIN‐1‐evoked relaxation of rat isolated mesenteric artery. Br J Pharmacol 119: 1557‐1562, 1996.
 1163.Plane F, Johnson R, Kerr P, Wiehler W, Thorneloe K, Ishii K, Chen T, Cole W. Heteromultimeric Kv1 channels contribute to myogenic control of arterial diameter. Circ Res 96: 216‐224, 2005.
 1164.Plane F, Sampson LJ, Smith JJ, Garland CJ. Relaxation to authentic nitric oxide and SIN‐1 in rat isolated mesenteric arteries: Variable role for smooth muscle hyperpolarization. Br J Pharmacol 133: 665‐672, 2001.
 1165.Plane F, Wiley KE, Jeremy JY, Cohen RA, Garland CJ. Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide and nitric oxide donors in the rabbit isolated carotid artery. Br J Pharmacol 123: 1351‐1358, 1998.
 1166.Plant TD, Schaefer M. TRPC4 and TRPC5: Receptor‐operated Ca2+‐permeable nonselective cation channels. Cell Calcium 33: 441‐450, 2003.
 1167.Plant TD, Schaefer M. Receptor‐operated cation channels formed by TRPC4 and TRPC5. Naunyn Schmiedebergs Arch Pharmacol 371: 266‐276, 2005.
 1168.Pluger S, Faulhaber J, Furstenau M, Lohn M, Waldschutz R, Gollasch M, Haller H, Luft FC, Ehmke H, Pongs O. Mice with disrupted BK channel beta1 subunit gene feature abnormal Ca(2+) spark/STOC coupling and elevated blood pressure. Circ Res 87: E53‐E60, 2000.
 1169.Porter VA, Bonev AD, Knot HJ, Heppner TJ, Stevenson AS, Kleppisch T, Lederer WJ, Nelson MT. Frequency modulation of Ca2+ sparks is involved in regulation of arterial diameter by cyclic nucleotides. Am J Physiol 274: C1346‐C1355, 1998.
 1170.Potier M, Gonzalez JC, Motiani RK, Abdullaev IF, Bisaillon JM, Singer HA, Trebak M. Evidence for STIM1‐ and Orai1‐dependent store‐operated calcium influx through ICRAC in vascular smooth muscle cells: Role in proliferation and migration. FASEB J 23: 2425‐2437, 2009.
 1171.Potocnik SJ, Murphy TV, Kotecha N, Hill MA. Effects of mibefradil and nifedipine on arteriolar myogenic responsiveness and intracellular Ca(2+). Br J Pharmacol 131: 1065‐1072, 2000.
 1172.Poulsen CB, Al‐Mashhadi RH, Cribbs LL, Skott O, Hansen PB. T‐type voltage‐gated calcium channels regulate the tone of mouse efferent arterioles. Kidney Int 79: 443‐451, 2011.
 1173.Povstyan OV, Harhun MI, Gordienko DV. Ca2+ entry following P2X receptor activation induces IP3 receptor‐mediated Ca2+ release in myocytes from small renal arteries. Br J Pharmacol 162: 1618‐1638, 2011.
 1174.Price JM, Hellermann A. Inhibition of cGMP mediated relaxation in small rat coronary arteries by block of CA2+ activated K+ channels. Life Sci 61: 1185‐1192, 1997.
 1175.Prior HM, Webster N, Quinn K, Beech DJ, Yates MS. K(+)‐induced dilation of a small renal artery: no role for inward rectifier K+ channels. Cardiovasc Res 37: 780‐790, 1998.
 1176.Prior HM, Yates MS, Beech DJ. Functions of large conductance Ca2+‐activated (BKCa), delayed rectifier (KV) and background K+ channels in the control of membrane potential in rabbit renal arcuate artery. J Physiol 511(Pt 1): 159‐169, 1998.
 1177.Prosser BL, Wright NT, Hernandez‐Ochoa EO, Varney KM, Liu Y, Olojo RO, Zimmer DB, Weber DJ, Schneider MF. S100A1 binds to the calmodulin‐binding site of ryanodine receptor and modulates skeletal muscle excitation‐contraction coupling. J Biol Chem 283: 5046‐5057, 2008.
 1178.Pucovsky V, Bolton TB. Localisation, function and composition of primary Ca(2+) spark discharge region in isolated smooth muscle cells from guinea‐pig mesenteric arteries. Cell Calcium 39: 113‐129, 2006.
 1179.Pucovsky V, Gordienko DV, Bolton TB. Effect of nitric oxide donors and noradrenaline on Ca2+ release sites and global intracellular Ca2+ in myocytes from guinea‐pig small mesenteric arteries. J Physiol 539: 25‐39, 2002.
 1180.Qian Q, Hunter LW, Du H, Ren Q, Han Y, Sieck GC. Pkd2+/‐ vascular smooth muscles develop exaggerated vasocontraction in response to phenylephrine stimulation. J Am Soc Nephrol 18: 485‐493, 2007.
 1181.Qin N, Neeper MP, Liu Y, Hutchinson TL, Lubin ML, Flores CM. TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J Neurosci 28: 6231‐6238, 2008.
 1182.Quast U. Potassium channel openers: Pharmacological and clinical aspects. Fundam Clin Pharmacol 6: 279‐293, 1992.
 1183.Quast U, Guillon JM, Cavero I. Cellular pharmacology of potassium channel openers in vascular smooth muscle. Cardiovasc Res 28: 805‐810, 1994.
 1184.Quayle JM, Bonev AD, Brayden JE, Nelson MT. Calcitonin gene‐related peptide activated ATP‐sensitive K+ currents in rabbit arterial smooth muscle via protein kinase A. J Physiol 475: 9‐13, 1994.
 1185.Quayle JM, Dart C, Standen NB. The properties and distribution of inward rectifier potassium currents in pig coronary arterial smooth muscle. J Physiol 494(Pt 3): 715‐726, 1996.
 1186.Quayle JM, McCarron JG, Brayden JE, Nelson MT. Inward rectifier K+ currents in smooth muscle cells from rat resistance‐sized cerebral arteries. Am J Physiol 265: C1363‐C1370, 1993.
 1187.Quayle JM, Nelson MT, Standen NB. ATP‐sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev 77: 1165‐1232, 1997.
 1188.Quayle JM, Standen NB. KATP channels in vascular smooth muscle. Cardiovasc Res 28: 797‐804, 1994.
 1189.Quignard JF, Mironneau J, Carricaburu V, Fournier B, Babich A, Nurnberg B, Mironneau C, Macrez N. Phosphoinositide 3‐kinase gamma mediates angiotensin II‐induced stimulation of L‐type calcium channels in vascular myocytes. J Biol Chem 276: 32545‐32551, 2001.
 1190.Quinn KV, Cui Y, Giblin JP, Clapp LH, Tinker A. Do anionic phospholipids serve as cofactors or second messengers for the regulation of activity of cloned ATP‐sensitive K +channels? Circ Res 93: 646‐655, 2003.
 1191.Quinn KV, Giblin JP, Tinker A. Multisite phosphorylation mechanism for protein kinase A activation of the smooth muscle ATP‐sensitive K+ channel. Circ Res 94: 1359‐1366, 2004.
 1192.Rainbow RD, Hardy ME, Standen NB, Davies NW. Glucose reduces endothelin inhibition of voltage‐gated potassium channels in rat arterial smooth muscle cells. J Physiol 575: 833‐844, 2006.
 1193.Randall MD. The involvement of ATP‐sensitive potassium channels and adenosine in the regulation of coronary flow in the isolated perfused rat heart. Br J Pharmacol 116: 3068‐3074, 1995.
 1194.Reading SA, Earley S, Waldron BJ, Welsh DG, Brayden JE. TRPC3 mediates pyrimidine receptor‐induced depolarization of cerebral arteries. Am J Physiol Heart Circ Physiol 288: H2055‐H2061, 2005.
 1195.Regan JN, Waning DL, Guise TA. Skeletal muscle Ca(2+) mishandling: Another effect of bone‐to‐muscle signaling. Semin Cell Dev Biol 49: 24‐29, 2016.
 1196.Reggiani C, te Kronnie T. RyR isoforms and fibre type‐specific expression of proteins controlling intracellular calcium concentration in skeletal muscles. J Muscle Res Cell Motil 27: 327‐335, 2006.
 1197.Ren Y, Xu X, Wang X. Altered mRNA expression of ATP‐sensitive and inward rectifier potassium channel subunits in streptozotocin‐induced diabetic rat heart and aorta. J Pharmacol Sci 93: 478‐483, 2003.
 1198.Ren YJ, Xu XH, Zhong CB, Feng N, Wang XL. Hypercholesterolemia alters vascular functions and gene expression of potassium channels in rat aortic smooth muscle cells. Acta Pharmacol Sin 22: 274‐278, 2001.
 1199.Renigunta V, Schlichthorl G, Daut J. Much more than a leak: Structure and function of K(2)p‐channels. Pflugers Arch 467: 867‐894, 2015.
 1200.Reuter H. The dependence of slow inward current in Purkinje fibres on the extracellular calcium‐concentration. J Physiol 192: 479‐492, 1967.
 1201.Ribalet B, Eddlestone GT. Characterization of the G protein coupling of SRIF and beta‐adrenergic receptors to the maxi KCa channel in insulin‐secreting cells. J Membr Biol 148: 111‐125, 1995.
 1202.Richmond KN, Tune JD, Gorman MW, Feigl EO. Role of K+ ATP channels in local metabolic coronary vasodilation. Am J Physiol 277: H2115‐H2123, 1999.
 1203.Richmond KN, Tune JD, Gorman MW, Feigl EO. Role of K(ATP)(+) channels and adenosine in the control of coronary blood flow during exercise. J Appl Physiol (1985) 89: 529‐536, 2000.
 1204.Rivers RJ, Hein TW, Zhang C, Kuo L. Activation of barium‐sensitive inward rectifier potassium channels mediates remote dilation of coronary arterioles. Circulation 104: 1749‐1753, 2001.
 1205.Robbins J. KCNQ potassium channels: Physiology, pathophysiology, and pharmacology. Pharmacol Ther 90: 1‐19, 2001.
 1206.Roberts OL, Kamishima T, Barrett‐Jolley R, Quayle JM, Dart C. Exchange protein activated by cAMP (Epac) induces vascular relaxation by activating Ca2+‐sensitive K+ channels in rat mesenteric artery. J Physiol 591: 5107‐5123, 2013.
 1207.Robertson BE, Bonev AD, Nelson MT. Inward rectifier K+ currents in smooth muscle cells from rat coronary arteries: Block by Mg2+, Ca2+, and Ba2+. Am J Physiol 271: H696‐H705, 1996.
 1208.Robertson B, Owen D, Stow J, Butler C, Newland C. Novel effects of dendrotoxin homologues on subtypes of mammalian Kv1 potassium channels expressed in Xenopus oocytes. FEBS Lett 383: 26‐30, 1996.
 1209.Robertson BE, Schubert R, Hescheler J, Nelson MT. cGMP‐dependent protein kinase activates Ca‐activated K channels in cerebral artery smooth muscle cells. Am J Physiol 265: C299‐C303, 1993.
 1210.Rogers PA, Chilian WM, Bratz IN, Bryan RM, Jr, Dick GM. H2O2 activates redox‐ and 4‐aminopyridine‐sensitive Kv channels in coronary vascular smooth muscle. Am J Physiol Heart Circ Physiol 292: H1404‐H1411, 2007.
 1211.Rogers PA, Dick GM, Knudson JD, Focardi M, Bratz IN, Swafford AN, Jr, Saitoh S, Tune JD, Chilian WM. H2O2‐induced redox‐sensitive coronary vasodilation is mediated by 4‐aminopyridine‐sensitive K+ channels. Am J Physiol Heart Circ Physiol 291: H2473‐H2482, 2006.
 1212.Rogers EF, Koniuszy FR, Shavel J, Folkers K. Plant insecticides; ryanodine, a new alkaloid from Ryania speciosa Vahl. J Am Chem Soc 70: 3086‐3088, 1948.
 1213.Rohacs T, Lopes CM, Michailidis I, Logothetis DE. PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8: 626‐634, 2005.
 1214.Romanenko VG, Fang Y, Byfield F, Travis AJ, Vandenberg CA, Rothblat GH, Levitan I. Cholesterol sensitivity and lipid raft targeting of Kir2.1 channels. Biophys J 87: 3850‐3861, 2004.
 1215.Romanenko VG, Rothblat GH, Levitan I. Modulation of endothelial inward‐rectifier K+ current by optical isomers of cholesterol. Biophys J 83: 3211‐3222, 2002.
 1216.Rosenhouse‐Dantsker A, Logothetis DE, Levitan I. Cholesterol sensitivity of KIR2.1 is controlled by a belt of residues around the cytosolic pore. Biophys J 100: 381‐389, 2011.
 1217.Rosenhouse‐Dantsker A, Noskov S, Durdagi S, Logothetis DE, Levitan I. Identification of novel cholesterol‐binding regions in Kir2 channels. J Biol Chem 288: 31154‐31164, 2013.
 1218.Rosenhouse‐Dantsker A, Noskov S, Logothetis DE, Levitan I. Cholesterol sensitivity of KIR2.1 depends on functional inter‐links between the N and C termini. Channels (Austin) 7: 303‐312, 2013.
 1219.Ross J, Armstead WM. Differential role of PTK and ERK MAPK in superoxide impairment of K(ATP) and K(Ca) channel cerebrovasodilation. Am J Physiol Regul Integr Comp Physiol 285: R149‐R154, 2003.
 1220.Rossi AM, Taylor CW. Ca2+ regulation of inositol 1,4,5‐trisphosphate receptors: Can Ca2+ function without calmodulin? Mol Pharmacol 66: 199‐203, 2004.
 1221.Rozsa Z, Pataricza J, Nemeth J, Papp JG. Differential efficacy of vasodilators in hypercholesterolaemic rabbits. J Pharm Pharmacol 50: 1035‐1044, 1998.
 1222.Rueda A, Fernandez‐Velasco M, Benitah JP, Gomez AM. Abnormal Ca2+ spark/STOC coupling in cerebral artery smooth muscle cells of obese type 2 diabetic mice. PLoS One 8: e53321, 2013.
 1223.Rueda A, Song M, Toro L, Stefani E, Valdivia HH. Sorcin modulation of Ca2+ sparks in rat vascular smooth muscle cells. J Physiol 576: 887‐901, 2006.
 1224.Ruehlmann DO, Lee CH, Poburko D, van Breemen C. Asynchronous Ca(2+) waves in intact venous smooth muscle. Circ Res 86: E72‐E79, 2000.
 1225.Ruehr ML, Russell MA, Ferguson DG, Bhat M, Ma J, Damron DS, Scott JD, Bond M. Targeting of protein kinase A by muscle A kinase‐anchoring protein (mAKAP) regulates phosphorylation and function of the skeletal muscle ryanodine receptor. J Biol Chem 278: 24831‐24836, 2003.
 1226.Rusch NJ. BK channels in cardiovascular disease: A complex story of channel dysregulation. Am J Physiol Heart Circ Physiol 297: H1580‐H1582, 2009.
 1227.Rusch NJ, De Lucena RG, Wooldridge TA, England SK, Cowley AW, Jr. A Ca(2+)‐dependent K+ current is enhanced in arterial membranes of hypertensive rats. Hypertension 19: 301‐307, 1992.
 1228.Rusch NJ, Liu Y. Potassium channels in hypertension: Homeostatic pathways to buffer arterial contraction. J Lab Clin Med 130: 245‐251, 1997.
 1229.Ryckmans T, Aubdool AA, Bodkin JV, Cox P, Brain SD, Dupont T, Fairman E, Hashizume Y, Ishii N, Kato T, Kitching L, Newman J, Omoto K, Rawson D, Strover J. Design and pharmacological evaluation of PF‐4840154, a non‐electrophilic reference agonist of the TrpA1 channel. Bioorg Med Chem Lett 21: 4857‐4859, 2011.
 1230.Sadoshima J, Akaike N, Kanaide H, Nakamura M. Cyclic AMP modulates Ca‐activated K channel in cultured smooth muscle cells of rat aortas. Am J Physiol 255: H754‐H759, 1988.
 1231.Saito Y, McKay M, Eraslan A, Hester RL. Functional hyperemia in striated muscle is reduced following blockade of ATP‐sensitive potassium channels. Am J Physiol 270: H1649‐1654, 1996.
 1232.Saito A, Seiler S, Chu A, Fleischer S. Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J Cell Biol 99: 875‐885, 1984.
 1233.Saitoh S, Zhang C, Tune JD, Potter B, Kiyooka T, Rogers PA, Knudson JD, Dick GM, Swafford A, Chilian WM. Hydrogen peroxide: A feed‐forward dilator that couples myocardial metabolism to coronary blood flow. Arterioscler Thromb Vasc Biol 26: 2614‐2621, 2006.
 1234.Sakai N, Mizuno R, Ono N, Kato H, Ohhashi T. High oxygen tension constricts epineurial arterioles of the rat sciatic nerve via reactive oxygen species. Am J Physiol Heart Circ Physiol 293: H1498‐H1507, 2007.
 1235.Sakmann B, Trube G. Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea‐pig heart. J Physiol 347: 641‐657, 1984.
 1236.Salata JJ, Jurkiewicz NK, Wang J, Evans BE, Orme HT, Sanguinetti MC. A novel benzodiazepine that activates cardiac slow delayed rectifier K+ currents. Mol Pharmacol 54: 220‐230, 1998.
 1237.Saleem H, Tovey SC, Molinski TF, Taylor CW. Interactions of antagonists with subtypes of inositol 1,4,5‐trisphosphate (IP3) receptor. Br J Pharmacol 171: 3298‐3312, 2014.
 1238.Saleh SN, Albert AP, Large WA. Activation of native TRPC1/C5/C6 channels by endothelin‐1 is mediated by both PIP3 and PIP2 in rabbit coronary artery myocytes. J Physiol 587: 5361‐5375, 2009.
 1239.Saleh SN, Albert AP, Peppiatt CM, Large WA. Angiotensin II activates two cation conductances with distinct TRPC1 and TRPC6 channel properties in rabbit mesenteric artery myocytes. J Physiol 577: 479‐495, 2006.
 1240.Salido GM, Sage SO, Rosado JA. TRPC channels and store‐operated Ca(2+) entry. Biochim Biophys Acta 1793: 223‐230, 2009.
 1241.Salomone S, Soydan G, Moskowitz MA, Sims JR. Inhibition of cerebral vasoconstriction by dantrolene and nimodipine. Neurocrit Care 10: 93‐102, 2009.
 1242.Salomonsson M, Arendshorst WJ. Calcium recruitment in renal vasculature: NE effects on blood flow and cytosolic calcium concentration. Am J Physiol 276: F700‐F710, 1999.
 1243.Salomonsson M, Braunstein TH, Holstein‐Rathlou NH, Jensen LJ. Na+‐independent, nifedipine‐resistant rat afferent arteriolar Ca2+ responses to noradrenaline: Possible role of TRPC channels. Acta Physiol (Oxf) 200: 265‐278, 2010.
 1244.Salter KJ, Kozlowski RZ. Differential electrophysiological actions of endothelin‐1 on Cl− and K+ currents in myocytes isolated from aorta, basilar and pulmonary artery. J Pharmacol Exp Ther 284: 1122‐1131, 1998.
 1245.Salzman AL, Vromen A, Denenberg A, Szabo C. K(ATP)‐channel inhibition improves hemodynamics and cellular energetics in hemorrhagic shock. Am J Physiol 272: H688‐H694, 1997.
 1246.Samaha FF, Heineman FW, Ince C, Fleming J, Balaban RS. ATP‐sensitive potassium channel is essential to maintain basal coronary vascular tone in vivo. Am J Physiol 262: C1220‐C1227, 1992.
 1247.Sammels E, Devogelaere B, Mekahli D, Bultynck G, Missiaen L, Parys JB, Cai Y, Somlo S, De Smedt H. Polycystin‐2 activation by inositol 1,4,5‐trisphosphate‐induced Ca2+ release requires its direct association with the inositol 1,4,5‐trisphosphate receptor in a signaling microdomain. J Biol Chem 285: 18794‐18805, 2010.
 1248.Samora JB, Frisbee JC, Boegehold MA. Growth‐dependent changes in endothelial factors regulating arteriolar tone. Am J Physiol Heart Circ Physiol 292: H207‐H214, 2007.
 1249.Sampson LJ, Davies LM, Barrett‐Jolley R, Standen NB, Dart C. Angiotensin II‐activated protein kinase C targets caveolae to inhibit aortic ATP‐sensitive potassium channels. Cardiovasc Res 76: 61‐70, 2007.
 1250.Sampson LJ, Hayabuchi Y, Standen NB, Dart C. Caveolae localize protein kinase A signaling to arterial ATP‐sensitive potassium channels. Circ Res 95: 1012‐1018, 2004.
 1251.Sandow SL, Senadheera S, Bertrand PP, Murphy TV, Tare M. Myoendothelial contacts, gap junctions, and microdomains: Anatomical links to function? Microcirculation 19: 403‐415, 2012.
 1252.Sanguinetti MC, Kass RS. Voltage‐dependent block of calcium channel current in the calf cardiac Purkinje fiber by dihydropyridine calcium channel antagonists. Circ Res 55: 336‐348, 1984.
 1253.Sarazan RD. Cardiovascular pressure measurement in safety assessment studies: Technology requirements and potential errors. J Pharmacol Toxicol Methods 70: 210‐223, 2014.
 1254.Satake N, Shibata M, Shibata S. The inhibitory effects of iberiotoxin and 4‐aminopyridine on the relaxation induced by beta 1‐ and beta 2‐adrenoceptor activation in rat aortic rings. Br J Pharmacol 119: 505‐510, 1996.
 1255.Sausbier M, Schubert R, Voigt V, Hirneiss C, Pfeifer A, Korth M, Kleppisch T, Ruth P, Hofmann F. Mechanisms of NO/cGMP‐dependent vasorelaxation. Circ Res 87: 825‐830, 2000.
 1256.Savoia CP, Liu QH, Zheng YM, Yadav V, Zhang Z, Wu LG, Wang YX. Calcineurin upregulates local Ca(2+) signaling through ryanodine receptor‐1 in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 307: L781‐L790, 2014.
 1257.Sawmiller DR, Ashtari M, Urueta H, Leschinsky M, Henning RJ. Mechanisms of vasoactive intestinal peptide‐elicited coronary vasodilation in the isolated perfused rat heart. Neuropeptides 40: 349‐355, 2006.
 1258.Schaefer M, Plant TD, Obukhov AG, Hofmann T, Gudermann T, Schultz G. Receptor‐mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem 275: 17517‐17526, 2000.
 1259.Scherer D, Kiesecker C, Kulzer M, Gunth M, Scholz EP, Kathofer S, Thomas D, Maurer M, Kreuzer J, Bauer A, Katus HA, Karle CA, Zitron E. Activation of inwardly rectifying Kir2.x potassium channels by beta 3‐adrenoceptors is mediated via different signaling pathways with a predominant role of PKC for Kir2.1 and of PKA for Kir2.2. Naunyn Schmiedebergs Arch Pharmacol 375: 311‐322, 2007.
 1260.Schiefer A, Meissner G, Isenberg G. Ca2+ activation and Ca2+ inactivation of canine reconstituted cardiac sarcoplasmic reticulum Ca(2+)‐release channels. J Physiol 489(Pt 2): 337‐348, 1995.
 1261.Schleifenbaum J, Kassmann M, Szijarto IA, Hercule HC, Tano JY, Weinert S, Heidenreich M, Pathan AR, Anistan YM, Alenina N, Rusch NJ, Bader M, Jentsch TJ, Gollasch M. Stretch‐activation of angiotensin II type 1a receptors contributes to the myogenic response of mouse mesenteric and renal arteries. Circ Res 115: 263‐272, 2014.
 1262.Schleifenbaum J, Kohn C, Voblova N, Dubrovska G, Zavarirskaya O, Gloe T, Crean CS, Luft FC, Huang Y, Schubert R, Gollasch M. Systemic peripheral artery relaxation by KCNQ channel openers and hydrogen sulfide. J Hypertens 28: 1875‐1882, 2010.
 1263.Schleifer H, Doleschal B, Lichtenegger M, Oppenrieder R, Derler I, Frischauf I, Glasnov TN, Kappe CO, Romanin C, Groschner K. Novel pyrazole compounds for pharmacological discrimination between receptor‐operated and store‐operated Ca(2+) entry pathways. Br J Pharmacol 167: 1712‐1722, 2012.
 1264.Schlossmann J, Desch M. IRAG and novel PKG targeting in the cardiovascular system. Am J Physiol Heart Circ Physiol 301: H672‐H682, 2011.
 1265.Schmidt M, Dubin AE, Petrus MJ, Earley TJ, Patapoutian A. Nociceptive signals induce trafficking of TRPA1 to the plasma membrane. Neuron 64: 498‐509, 2009.
 1266.Schmitz C, Dorovkov MV, Zhao X, Davenport BJ, Ryazanov AG, Perraud AL. The channel kinases TRPM6 and TRPM7 are functionally nonredundant. J Biol Chem 280: 37763‐37771, 2005.
 1267.Schmitz A, Sankaranarayanan A, Azam P, Schmidt‐Lassen K, Homerick D, Hansel W, Wulff H. Design of PAP‐1, a selective small molecule Kv1.3 blocker, for the suppression of effector memory T cells in autoimmune diseases. Mol Pharmacol 68: 1254‐1270, 2005.
 1268.Schrage WG, Dietz NM, Joyner MJ. Effects of combined inhibition of ATP‐sensitive potassium channels, nitric oxide, and prostaglandins on hyperemia during moderate exercise. J Appl Physiol (1985) 100: 1506‐1512, 2006.
 1269.Schubert R, Krien U, Wulfsen I, Schiemann D, Lehmann G, Ulfig N, Veh RW, Schwarz JR, Gago H. Nitric oxide donor sodium nitroprusside dilates rat small arteries by activation of inward rectifier potassium channels. Hypertension 43: 891‐896, 2004.
 1270.Schubert R, Serebryakov VN, Mewes H, Hopp HH. Iloprost dilates rat small arteries: Role of K(ATP)‐ and K(Ca)‐channel activation by cAMP‐dependent protein kinase. Am J Physiol 272: H1147‐H1156, 1997.
 1271.Scornik FS, Codina J, Birnbaumer L, Toro L. Modulation of coronary smooth muscle KCa channels by Gs alpha independent of phosphorylation by protein kinase A. Am J Physiol 265: H1460‐H1465, 1993.
 1272.Scornik FS, Toro L. U46619, a thromboxane A2 agonist, inhibits KCa channel activity from pig coronary artery. Am J Physiol 262: C708‐C713, 1992.
 1273.Scott JB, Frohlich ED, Hardin RA, Haddy FJ. Na, K, Ca, and Mg ion action on coronary vascular resistance in the dog heart. Am J Physiol 201: 1095‐1100, 1961.
 1274.Searls YM, Loganathan R, Smirnova IV, Stehno‐Bittel L. Intracellular Ca2+ regulating proteins in vascular smooth muscle cells are altered with type 1 diabetes due to the direct effects of hyperglycemia. Cardiovasc Diabetol 9: 8, 2010.
 1275.Seebohm G, Chen J, Strutz N, Culberson C, Lerche C, Sanguinetti MC. Molecular determinants of KCNQ1 channel block by a benzodiazepine. Mol Pharmacol 64: 70‐77, 2003.
 1276.Segal SS, Duling BR. Communication between feed arteries and microvessels in hamster striated‐muscle—segmental vascular‐responses are functionally coordinated. Circulation Research 59: 283‐290, 1986.
 1277.Seino S, Miki T. Gene targeting approach to clarification of ion channel function: Studies of Kir6.x null mice. J Physiol 554: 295‐300, 2004.
 1278.Semmo M, Kottgen M, Hofherr A. The TRPP subfamily and polycystin‐1 proteins. Handb Exp Pharmacol 222: 675‐711, 2014.
 1279.Semtner M, Schaefer M, Pinkenburg O, Plant TD. Potentiation of TRPC5 by protons. J Biol Chem 282: 33868‐33878, 2007.
 1280.Seo MD, Enomoto M, Ishiyama N, Stathopulos PB, Ikura M. Structural insights into endoplasmic reticulum stored calcium regulation by inositol 1,4,5‐trisphosphate and ryanodine receptors. Biochim Biophys Acta 1853: 1980‐1991, 2015.
 1281.Seo EY, Kim HJ, Zhao ZH, Jang JH, Jin CZ, Yoo HY, Zhang YH, Kim SJ. Low K(+) current in arterial myocytes with impaired K(+)‐vasodilation and its recovery by exercise in hypertensive rats. Pflugers Arch 466: 2101‐2111, 2014.
 1282.Seo MD, Velamakanni S, Ishiyama N, Stathopulos PB, Rossi AM, Khan SA, Dale P, Li C, Ames JB, Ikura M, Taylor CW. Structural and functional conservation of key domains in InsP3 and ryanodine receptors. Nature 483: 108‐112, 2012.
 1283.Sepulveda FV, Pablo Cid L, Teulon J, Niemeyer MI. Molecular aspects of structure, gating, and physiology of pH‐sensitive background K2P and Kir K+‐transport channels. Physiol Rev 95: 179‐217, 2015.
 1284.Serysheva II. Toward a high‐resolution structure of IP(3)R channel. Cell Calcium 56: 125‐132, 2014.
 1285.Sharif‐Naeini R, Folgering JH, Bichet D, Duprat F, Lauritzen I, Arhatte M, Jodar M, Dedman A, Chatelain FC, Schulte U, Retailleau K, Loufrani L, Patel A, Sachs F, Delmas P, Peters DJ, Honore E. Polycystin‐1 and ‐2 dosage regulates pressure sensing. Cell 139: 587‐596, 2009.
 1286.Sharifi‐Sanjani M, Zhou X, Asano S, Tilley S, Ledent C, Teng B, Dick GM, Mustafa SJ. Interactions between A(2A) adenosine receptors, hydrogen peroxide, and KATP channels in coronary reactive hyperemia. Am J Physiol Heart Circ Physiol 304: H1294‐H1301, 2013.
 1287.Sharma K, Wang L, Zhu Y, DeGuzman A, Cao GY, Lynn RB, Joseph SK. Renal type I inositol 1,4,5‐trisphosphate receptor is reduced in streptozotocin‐induced diabetic rats and mice. Am J Physiol 276: F54‐F61, 1999.
 1288.Shaw L, O'Neill S, Jones CJ, Austin C, Taggart MJ. Comparison of U46619‐, endothelin‐1‐ or phenylephrine‐induced changes in cellular Ca2+ profiles and Ca2+ sensitisation of constriction of pressurised rat resistance arteries. Br J Pharmacol 141: 678‐688, 2004.
 1289.Sherkheli MA, Gisselman G, Vogt‐Eisele AK, Doerner JF, Hatt H. H H. Menthol derivative WS‐12 selectively activates transient receptor potential melastatin‐8 (TRPM8) ion channels. Pak J Pharm Sci 21: 370‐378, 2008.
 1290.Shi Y, Chen X, Wu Z, Shi W, Yang Y, Cui N, Jiang C, Harrison RW. cAMP‐dependent protein kinase phosphorylation produces interdomain movement in SUR2B leading to activation of the vascular KATP channel. J Biol Chem 283: 7523‐7530, 2008.
 1291.Shi W, Cui N, Shi Y, Zhang X, Yang Y, Jiang C. Arginine vasopressin inhibits Kir6.1/SUR2B channel and constricts the mesenteric artery via V1a receptor and protein kinase C. Am J Physiol Regul Integr Comp Physiol 293: R191‐R199, 2007.
 1292.Shi W, Cui N, Wu Z, Yang Y, Zhang S, Gai H, Zhu D, Jiang C. Lipopolysaccharides up‐regulate Kir6.1/SUR2B channel expression and enhance vascular KATP channel activity via NF‐kappaB‐dependent signaling. J Biol Chem 285: 3021‐3029, 2010.
 1293.Shi J, Ju M, Abramowitz J, Large WA, Birnbaumer L, Albert AP. TRPC1 proteins confer PKC and phosphoinositol activation on native heteromeric TRPC1/C5 channels in vascular smooth muscle: Comparative study of wild‐type and TRPC1−/− mice. FASEB J 26: 409‐419, 2012.
 1294.Shi J, Ju M, Saleh SN, Albert AP, Large WA. TRPC6 channels stimulated by angiotensin II are inhibited by TRPC1/C5 channel activity through a Ca2+‐ and PKC‐dependent mechanism in native vascular myocytes. J Physiol 588: 3671‐3682, 2010.
 1295.Shi L, Liu B, Li N, Xue Z, Liu X. Aerobic exercise increases BK(Ca) channel contribution to regulation of mesenteric arterial tone by upregulating beta1‐subunit. Exp Physiol 98: 326‐336, 2013.
 1296.Shi Y, Wu Z, Cui N, Shi W, Yang Y, Zhang X, Rojas A, Ha BT, Jiang C. PKA phosphorylation of SUR2B subunit underscores vascular KATP channel activation by beta‐adrenergic receptors. Am J Physiol Regul Integr Comp Physiol 293: R1205‐R1214, 2007.
 1297.Shimizu T, Higuchi T, Fujii T, Nilius B, Sakai H. Bimodal effect of alkalization on the polycystin transient receptor potential channel, PKD2L1. Pflugers Arch 461: 507‐513, 2011.
 1298.Shimizu T, Janssens A, Voets T, Nilius B. Regulation of the murine TRPP3 channel by voltage, pH, and changes in cell volume. Pflugers Arch 457: 795‐807, 2009.
 1299.Shimizu S, Paul RJ. The endothelium‐dependent, substance P relaxation of porcine coronary arteries resistant to nitric oxide synthesis inhibition is partially mediated by 4‐aminopyridine‐sensitive voltage‐dependent K+ channels. Endothelium 5: 287‐295, 1997.
 1300.Shimizu S, Yokoshiki H, Sperelakis N, Paul RJ. Role of voltage‐dependent and Ca(2+)‐activated K(+) channels on the regulation of isometric force in porcine coronary artery. J Vasc Res 37: 16‐25, 2000.
 1301.Shinde AV, Motiani RK, Zhang X, Abdullaev IF, Adam AP, Gonzalez‐Cobos JC, Zhang W, Matrougui K, Vincent PA, Trebak M. STIM1 controls endothelial barrier function independently of Orai1 and Ca2+ entry. Sci Signal 6: ra18, 2013.
 1302.Shinoda M, Toki Y, Murase K, Mokuno S, Okumura K, Ito T. Types of potassium channels involved in coronary reactive hyperemia depend on duration of preceding ischemia in rat hearts. Life Sci 61: 997‐1007, 1997.
 1303.Siegl D, Koeppen M, Wolfle SE, Pohl U, de Wit C. Myoendothelial coupling is not prominent in arterioles within the mouse cremaster microcirculation in vivo. Circ Res 97: 781‐788, 2005.
 1304.Silberberg SD, Poder TC, Lacerda AE. Endothelin increases single‐channel calcium currents in coronary arterial smooth muscle cells. FEBS Lett 247: 68‐72, 1989.
 1305.Silva DF, de Almeida MM, Chaves CG, Braz AL, Gomes MA, Pinho‐da‐Silva L, Pesquero JL, Andrade VA, Leite Mde F, de Albuquerque JG, Araujo IG, Nunes XP, Barbosa‐Filho JM, Cruz Jdos S, Correia Nde A, de Medeiros IA. TRPM8 channel activation induced by monoterpenoid rotundifolone underlies mesenteric artery relaxation. PLoS One 10: e0143171, 2015.
 1306.Simmerman HK, Jones LR. Phospholamban: Protein structure, mechanism of action, and role in cardiac function. Physiol Rev 78: 921‐947, 1998.
 1307.Simonsen U, Prieto D, Sanez de Tejada I, Garcia‐Sacristan A. Involvement of nitric oxide in the non‐adrenergic non‐cholinergic neurotransmission of horse deep penile arteries: Role of charybdotoxin‐sensitive K(+)‐channels. Br J Pharmacol 116: 2582‐2590, 1995.
 1308.Singh DK, Shentu TP, Enkvetchakul D, Levitan I. Cholesterol regulates prokaryotic Kir channel by direct binding to channel protein. Biochim Biophys Acta 1808: 2527‐2533, 2011.
 1309.Smart D, Gunthorpe MJ, Jerman JC, Nasir S, Gray J, Muir AI, Chambers JK, Randall AD, Davis JB. The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br J Pharmacol 129: 227‐230, 2000.
 1310.Smart D, Jerman JC, Gunthorpe MJ, Brough SJ, Ranson J, Cairns W, Hayes PD, Randall AD, Davis JB. Characterisation using FLIPR of human vanilloid VR1 receptor pharmacology. Eur J Pharmacol 417: 51‐58, 2001.
 1311.Smirnov SV, Aaronson PI. Ca(2+)‐activated and voltage‐gated K+ currents in smooth muscle cells isolated from human mesenteric arteries. J Physiol 457: 431‐454, 1992.
 1312.Smirnov SV, Loutzenhiser K, Loutzenhiser R. Voltage‐activated Ca(2+) channels in rat renal afferent and efferent myocytes: No evidence for the T‐type Ca(2+) current. Cardiovasc Res 97: 293‐301, 2013.
 1313.Smith PD, Brett SE, Luykenaar KD, Sandow SL, Marrelli SP, Vigmond EJ, Welsh DG. KIR channels function as electrical amplifiers in rat vascular smooth muscle. J Physiol 586: 1147‐1160, 2008.
 1314.Smith JS, Coronado R, Meissner G. Sarcoplasmic reticulum contains adenine nucleotide‐activated calcium channels. Nature 316: 446‐449, 1985.
 1315.Sobey CG. Potassium channel function in vascular disease. Arterioscler Thromb Vasc Biol 21: 28‐38, 2001.
 1316.Sobey CG, Faraci FM. Effect of nitric oxide and potassium channel agonists and inhibitors on basilar artery diameter. Am J Physiol 272: H256‐H262, 1997.
 1317.Sobey CG, Faraci FM. Inhibitory effect of 4‐aminopyridine on responses of the basilar artery to nitric oxide. Br J Pharmacol 126: 1437‐1443, 1999.
 1318.Sobey CG, Heistad DD, Faraci FM. Effect of subarachnoid hemorrhage on cerebral vasodilatation in response to activation of ATP‐sensitive K+ channels in chronically hypertensive rats. Stroke 28: 392‐396; discussion 396‐397, 1997.
 1319.Sobey CG, Heistad DD, Faraci FM. Mechanisms of bradykinin‐induced cerebral vasodilatation in rats. Evidence that reactive oxygen species activate K+ channels. Stroke 28: 2290‐2294; discussion 2295, 1997.
 1320.Sobey CG, Heistad DD, Faraci FM. Potassium channels mediate dilatation of cerebral arterioles in response to arachidonate. Am J Physiol 275: H1606‐H1612, 1998.
 1321.Sogaard R, Ljungstrom T, Pedersen KA, Olesen SP, Jensen BS. KCNQ4 channels expressed in mammalian cells: Functional characteristics and pharmacology. Am J Physiol Cell Physiol 280: C859‐C866, 2001.
 1322.Sommese L, Valverde CA, Blanco P, Castro MC, Rueda OV, Kaetzel M, Dedman J, Anderson ME, Mattiazzi A, Palomeque J. Ryanodine receptor phosphorylation by CaMKII promotes spontaneous Ca(2+) release events in a rodent model of early stage diabetes: The arrhythmogenic substrate. Int J Cardiol 202: 394‐406, 2016.
 1323.Son YK, Park WS, Ko JH, Han J, Kim N, Earm YE. Protein kinase A‐dependent activation of inward rectifier potassium channels by adenosine in rabbit coronary smooth muscle cells. Biochem Biophys Res Commun 337: 1145‐1152, 2005.
 1324.Song WJ, Tkatch T, Baranauskas G, Ichinohe N, Kitai ST, Surmeier DJ. Somatodendritic depolarization‐activated potassium currents in rat neostriatal cholinergic interneurons are predominantly of the A type and attributable to coexpression of Kv4.2 and Kv4.1 subunits. J Neurosci 18: 3124‐3137, 1998.
 1325.Sonkusare SK, Dalsgaard T, Bonev AD, Hill‐Eubanks DC, Kotlikoff MI, Scott JD, Santana LF, Nelson MT. AKAP150‐dependent cooperative TRPV4 channel gating is central to endothelium‐dependent vasodilation and is disrupted in hypertension. Sci Signal 7: ra66, 2014.
 1326.Sonkusare SK, Dalsgaard T, Bonev AD, Nelson MT. Inward rectifier potassium (Kir2.1) channels as end‐stage boosters of endothelium‐dependent vasodilators. J Physiol 594: 3271‐3285, 2016.
 1327.Sordi R, Fernandes D, Heckert BT, Assreuy J. Early potassium channel blockade improves sepsis‐induced organ damage and cardiovascular dysfunction. Br J Pharmacol 163: 1289‐1301, 2011.
 1328.Sorrentino V, Volpe P. Ryanodine receptors: How many, where and why? Trends Pharmacol Sci 14: 98‐103, 1993.
 1329.Soulsby MD, Alzayady K, Xu Q, Wojcikiewicz RJ. The contribution of serine residues 1588 and 1755 to phosphorylation of the type I inositol 1,4,5‐trisphosphate receptor by PKA and PKG. FEBS Lett 557: 181‐184, 2004.
 1330.Spallarossa P, Schiavo M, Rossettin P, Cordone S, Olivotti L, Cordera R, Brunelli C. Sulfonylurea treatment of type 2 diabetic patients does not reduce the vasodilator response to ischemia. Diabetes Care 24: 738‐742, 2001.
 1331.Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci U S A 103: 16586‐16591, 2006.
 1332.Standen NB. The G. L. Brown Lecture. Potassium channels, metabolism and muscle. Exp Physiol 77: 1‐25, 1992.
 1333.Stehno‐Bittel L, Laughlin MH, Sturek M. Exercise training depletes sarcoplasmic reticulum calcium in coronary smooth muscle. J Appl Physiol (1985) 71: 1764‐1773, 1991.
 1334.Stehno‐Bittel L, Sturek M. Spontaneous sarcoplasmic reticulum calcium release and extrusion from bovine, not porcine, coronary artery smooth muscle. J Physiol 451: 49‐78, 1992.
 1335.Steinberg SF. PI3King the L‐type calcium channel activation mechanism. Circ Res 89: 641‐644, 2001.
 1336.Stepp DW, Kroll K, Feigl EO. K+ ATP channels and adenosine are not necessary for coronary autoregulation. Am J Physiol 273: H1299‐H1308, 1997.
 1337.Stevens MJ, Moulds RF. Antagonism by nifedipine of alpha‐1 and alpha‐2 adrenoceptor‐mediated responses of human digital arteries. J Pharmacol Exp Ther 236: 764‐769, 1986.
 1338.Stockbridge N, Zhang H, Weir B. Potassium currents of rat basilar artery smooth muscle cells. Pflugers Arch 421: 37‐42, 1992.
 1339.Stokes AJ, Wakano C, Del Carmen KA, Koblan‐Huberson M, Turner H. Formation of a physiological complex between TRPV2 and RGA protein promotes cell surface expression of TRPV2. J Cell Biochem 94: 669‐683, 2005.
 1340.Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A. ANKTM1, a TRP‐like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112: 819‐829, 2003.
 1341.Stott JB, Barrese V, Jepps TA, Leighton EV, Greenwood IA. Contribution of Kv7 channels to natriuretic peptide mediated vasodilation in normal and hypertensive rats. Hypertension 65: 676‐682, 2015.
 1342.Stott JB, Povstyan OV, Carr G, Barrese V, Greenwood IA. G‐protein betagamma subunits are positive regulators of Kv7.4 and native vascular Kv7 channel activity. Proc Natl Acad Sci U S A 112: 6497‐6502, 2015.
 1343.Straub SV, Wagner LE, II, Bruce JI, Yule DI. Modulation of cytosolic calcium signaling by protein kinase A‐mediated phosphorylation of inositol 1,4,5‐trisphosphate receptors. Biol Res 37: 593‐602, 2004.
 1344.Streb H, Irvine RF, Berridge MJ, Schulz I. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol‐1,4,5‐trisphosphate. Nature 306: 67‐69, 1983.
 1345.Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2: 695‐702, 2000.
 1346.Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE. Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278: 39014‐39019, 2003.
 1347.Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE. TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29: 645‐655, 2001.
 1348.Sturek M. Tuning in to the ‘right’ calcium channel regulation in experimental models of diabetes. Br J Pharmacol 161: 1455‐1457, 2010.
 1349.Sturek M, Hermsmeyer K. Calcium and sodium channels in spontaneously contracting vascular muscle cells. Science 233: 475‐478, 1986.
 1350.Suematsu E, Hirata M, Hashimoto T, Kuriyama H. Inositol 1,4,5‐trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery. Biochem Biophys Res Commun 120: 481‐485, 1984.
 1351.Sukhanova KY, Harhun MI, Bouryi VA, Gordienko DV. Mechanisms of [Ca2+]i elevation following P2X receptor activation in the guinea‐pig small mesenteric artery myocytes. Pharmacol Rep 65: 152‐163, 2013.
 1352.Sukhanova KY, Thugorka OM, Bouryi VA, Harhun MI, Gordienko DV. Mechanisms of the sarcoplasmic reticulum Ca2+ release induced by P2X receptor activation in mesenteric artery myocytes. Pharmacol Rep 66: 363‐372, 2014.
 1353.Sullivan MN, Gonzales AL, Pires PW, Bruhl A, Leo MD, Li W, Oulidi A, Boop FA, Feng Y, Jaggar JH, Welsh DG, Earley S. Localized TRPA1 channel Ca2+ signals stimulated by reactive oxygen species promote cerebral artery dilation. Sci Signal 8: ra2, 2015.
 1354.Sumiyoshi R, Nishimura J, Kawasaki J, Kobayashi S, Takahashi S, Kanaide H. Diadenosine polyphosphates directly relax porcine coronary arterial smooth muscle. J Pharmacol Exp Ther 283: 548‐556, 1997.
 1355.Sun X, Gu XQ, Haddad GG. Calcium influx via L‐ and N‐type calcium channels activates a transient large‐conductance Ca2+‐activated K+ current in mouse neocortical pyramidal neurons. J Neurosci 23: 3639‐3648, 2003.
 1356.Sun CW, Falck JR, Okamoto H, Harder DR, Roman RJ. Role of cGMP versus 20‐HETE in the vasodilator response to nitric oxide in rat cerebral arteries. Am J Physiol Heart Circ Physiol 279: H339‐H350, 2000.
 1357.Sun J, Xin C, Eu JP, Stamler JS, Meissner G. Cysteine‐3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc Natl Acad Sci U S A 98: 11158‐11162, 2001.
 1358.Sun J, Yang T, Wang P, Ma S, Zhu Z, Pu Y, Li L, Zhao Y, Xiong S, Liu D, Zhu Z. Activation of cold‐sensing transient receptor potential melastatin subtype 8 antagonizes vasoconstriction and hypertension through attenuating RhoA/Rho kinase pathway. Hypertension 63: 1354‐1363, 2014.
 1359.Sun H, Zhao H, Sharpe GM, Arrick DM, Mayhan WG. Influence of chronic alcohol consumption on inward rectifier potassium channels in cerebral arterioles. Microvasc Res 75: 367‐372, 2008.
 1360.Sung DJ, Noh HJ, Kim JG, Park SW, Kim B, Cho H, Bae YM. Serotonin contracts the rat mesenteric artery by inhibiting 4‐aminopyridine‐sensitive Kv channels via the 5‐HT2A receptor and Src tyrosine kinase. Exp Mol Med 45: e67, 2013.
 1361.Supattapone S, Worley PF, Baraban JM, Snyder SH. Solubilization, purification, and characterization of an inositol trisphosphate receptor. J Biol Chem 263: 1530‐1534, 1988.
 1362.Sutton KA, Jungnickel MK, Ward CJ, Harris PC, Florman HM. Functional characterization of PKDREJ, a male germ cell‐restricted polycystin. J Cell Physiol 209: 493‐500, 2006.
 1363.Suzuki M, Li RA, Miki T, Uemura H, Sakamoto N, Ohmoto‐Sekine Y, Tamagawa M, Ogura T, Seino S, Marban E, Nakaya H. Functional roles of cardiac and vascular ATP‐sensitive potassium channels clarified by Kir6.2‐knockout mice. Circ Res 88: 570‐577, 2001.
 1364.Suzuki Y, Yamamura H, Ohya S, Imaizumi Y. Caveolin‐1 facilitates the direct coupling between large conductance Ca2+‐activated K+ (BKCa) and Cav1.2 Ca2+ channels and their clustering to regulate membrane excitability in vascular myocytes. J Biol Chem 288: 36750‐36761, 2013.
 1365.Swanson DM, Dubin AE, Shah C, Nasser N, Chang L, Dax SL, Jetter M, Breitenbucher JG, Liu C, Mazur C, Lord B, Gonzales L, Hoey K, Rizzolio M, Bogenstaetter M, Codd EE, Lee DH, Zhang SP, Chaplan SR, Carruthers NI. Identification and biological evaluation of 4‐(3‐trifluoromethylpyridin‐2‐yl)piperazine‐1‐carboxylic acid (5‐trifluoromethylpyridin‐2‐yl)amide, a high affinity TRPV1 (VR1) vanilloid receptor antagonist. J Med Chem 48: 1857‐1872, 2005.
 1366.Swayze RD, Braun AP. A catalytically inactive mutant of type I cGMP‐dependent protein kinase prevents enhancement of large conductance, calcium‐sensitive K+ channels by sodium nitroprusside and cGMP. J Biol Chem 276: 19729‐19737, 2001.
 1367.Sybertz EJ, Vander Vliet G, Baum T. Analysis of the vasoconstrictor responses to potassium depolarization and norepinephrine and their antagonism by differing classes of vasodilators in the perfused rat hindquarters. J Pharmacol Exp Ther 227: 621‐626, 1983.
 1368.Tabrizchi R, Pugsley MK. Methods of blood flow measurement in the arterial circulatory system. J Pharmacol Toxicol Methods 44: 375‐384, 2000.
 1369.Taglialatela M, Drewe JA, Brown AM. Barium blockade of a clonal potassium channel and its regulation by a critical pore residue. Mol Pharmacol 44: 180‐190, 1993.
 1370.Taguchi H, Heistad DD, Kitazono T, Faraci FM. ATP‐sensitive K+ channels mediate dilatation of cerebral arterioles during hypoxia. Circ Res 74: 1005‐1008, 1994.
 1371.Taguchi H, Heistad DD, Kitazono T, Faraci FM. Dilatation of cerebral arterioles in response to activation of adenylate cyclase is dependent on activation of Ca(2+)‐dependent K+ channels. Circ Res 76: 1057‐1062, 1995.
 1372.Tai K, Hamaide MC, Debaix H, Gailly P, Wibo M, Morel N. Agonist‐evoked calcium entry in vascular smooth muscle cells requires IP3 receptor‐mediated activation of TRPC1. Eur J Pharmacol 583: 135‐147, 2008.
 1373.Tajada S, Cidad P, Moreno‐Dominguez A, Perez‐Garcia MT, Lopez‐Lopez JR. High blood pressure associates with the remodelling of inward rectifier K+ channels in mice mesenteric vascular smooth muscle cells. J Physiol 590: 6075‐6091, 2012.
 1374.Takaba H, Nagao T, Ibayashi S, Kitazono T, Fujii K, Fujishima M. Altered cerebrovascular response to a potassium channel opener in hypertensive rats. Hypertension 28: 143‐146, 1996.
 1375.Takasago T, Imagawa T, Furukawa K, Ogurusu T, Shigekawa M. Regulation of the cardiac ryanodine receptor by protein kinase‐dependent phosphorylation. J Biochem 109: 163‐170, 1991.
 1376.Takeda S, Komaru T, Takahashi K, Sato K, Kanatsuka H, Kokusho Y, Shirato K, Shimokawa H. Beating myocardium counteracts myogenic tone of coronary microvessels: Involvement of ATP‐sensitive potassium channels. Am J Physiol Heart Circ Physiol 291: H3050‐H3057, 2006.
 1377.Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T, Numa S. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339: 439‐445, 1989.
 1378.Takezawa R, Cheng H, Beck A, Ishikawa J, Launay P, Kubota H, Kinet JP, Fleig A, Yamada T, Penner R. A pyrazole derivative potently inhibits lymphocyte Ca2+ influx and cytokine production by facilitating transient receptor potential melastatin 4 channel activity. Mol Pharmacol 69: 1413‐1420, 2006.
 1379.Tam ES, Ferguson DG, Bielefeld DR, Lorenz JN, Cohen RM, Pun RY. Norepinephrine‐mediated calcium signaling is altered in vascular smooth muscle of diabetic rat. Cell Calcium 21: 143‐150, 1997.
 1380.Tamargo J, Caballero R, Gomez R, Valenzuela C, Delpon E. Pharmacology of cardiac potassium channels. Cardiovasc Res 62: 9‐33, 2004.
 1381.Tanaka K, Kawano T, Nakamura A, Nazari H, Kawahito S, Oshita S, Takahashi A, Nakaya Y. Isoflurane activates sarcolemmal adenosine triphosphate‐sensitive potassium channels in vascular smooth muscle cells: A role for protein kinase A. Anesthesiology 106: 984‐991, 2007.
 1382.Tanaka Y, Meera P, Song M, Knaus HG, Toro L. Molecular constituents of maxi KCa channels in human coronary smooth muscle: predominant alpha + beta subunit complexes. J Physiol 502(Pt 3): 545‐557, 1997.
 1383.Tanaka Y, Mochizuki Y, Hirano H, Aida M, Tanaka H, Toro L, Shigenobu K. Role of MaxiK channels in vasoactive intestinal peptide‐induced relaxation of rat mesenteric artery. Eur J Pharmacol 383: 291‐296, 1999.
 1384.Tanaka Y, Tang G, Takizawa K, Otsuka K, Eghbali M, Song M, Nishimaru K, Shigenobu K, Koike K, Stefani E, Toro L. Kv channels contribute to nitric oxide‐ and atrial natriuretic peptide‐induced relaxation of a rat conduit artery. J Pharmacol Exp Ther 317: 341‐354, 2006.
 1385.Tanano I, Nagaoka T, Omae T, Ishibazawa A, Kamiya T, Ono S, Yoshida A. Dilation of porcine retinal arterioles to cilostazol: Roles of eNOS phosphorylation via cAMP/protein kinase A and AMP‐activated protein kinase and potassium channels. Invest Ophthalmol Vis Sci 54: 1443‐1449, 2013.
 1386.Tang WX, Chen YF, Zou AP, Campbell WB, Li PL. Role of FKBP12.6 in cADPR‐induced activation of reconstituted ryanodine receptors from arterial smooth muscle. Am J Physiol Heart Circ Physiol 282: H1304‐H1310, 2002.
 1387.Tang Y, Tang J, Chen Z, Trost C, Flockerzi V, Li M, Ramesh V, Zhu MX. Association of mammalian trp4 and phospholipase C isozymes with a PDZ domain‐containing protein, NHERF. J Biol Chem 275: 37559‐37564, 2000.
 1388.Taniguchi J, Furukawa KI, Shigekawa M. Maxi K+ channels are stimulated by cyclic guanosine monophosphate‐dependent protein kinase in canine coronary artery smooth muscle cells. Pflugers Arch 423: 167‐172, 1993.
 1389.Tano JY, Schleifenbaum J, Gollasch M. Perivascular adipose tissue, potassium channels, and vascular dysfunction. Arterioscler Thromb Vasc Biol 34: 1827‐1830, 2014.
 1390.Tao S, Yamazaki D, Komazaki S, Zhao C, Iida T, Kakizawa S, Imaizumi Y, Takeshima H. Facilitated hyperpolarization signaling in vascular smooth muscle‐overexpressing TRIC‐A channels. J Biol Chem 288: 15581‐15589, 2013.
 1391.Tasker PN, Michelangeli F, Nixon GF. Expression and distribution of the type 1 and type 3 inositol 1,4, 5‐trisphosphate receptor in developing vascular smooth muscle. Circ Res 84: 536‐542, 1999.
 1392.Tasker PN, Taylor CW, Nixon GF. Expression and distribution of InsP(3) receptor subtypes in proliferating vascular smooth muscle cells. Biochem Biophys Res Commun 273: 907‐912, 2000.
 1393.Tateishi J, Faber JE. ATP‐sensitive K+ channels mediate alpha 2D‐adrenergic receptor contraction of arteriolar smooth muscle and reversal of contraction by hypoxia. Circ Res 76: 53‐63, 1995.
 1394.Taylor CW, da Fonseca PC, Morris EP. IP(3) receptors: The search for structure. Trends Biochem Sci 29: 210‐219, 2004.
 1395.Taylor CW, Tovey SC, Rossi AM, Lopez Sanjurjo CI, Prole DL, and Rahman T. Structural organization of signalling to and from IP3 receptors. Biochem Soc Trans 42: 63‐70, 2014.
 1396.Teggatz EG, Zhang G, Zhang AY, Yi F, Li N, Zou AP, Li PL. Role of cyclic ADP‐ribose in Ca2+‐induced Ca2+ release and vasoconstriction in small renal arteries. Microvasc Res 70: 65‐75, 2005.
 1397.Teramoto N. Physiological roles of ATP‐sensitive K+ channels in smooth muscle. J Physiol 572: 617‐624, 2006.
 1398.Teramoto N, Zhu HL, Shibata A, Aishima M, Walsh EJ, Nagao M, Cole WC. ATP‐sensitive K+ channels in pig urethral smooth muscle cells are heteromultimers of Kir6.1 and Kir6.2. Am J Physiol Renal Physiol 296: F107‐F117, 2009.
 1399.Tertyshnikova S, Fein A. [Ca2+]i oscillations and [Ca2+]i waves in rat megakaryocytes. Cell Calcium 21: 331‐344, 1997.
 1400.Tertyshnikova S, Fein A. Inhibition of inositol 1,4,5‐trisphosphate‐induced Ca2+ release by cAMP‐dependent protein kinase in a living cell. Proc Natl Acad Sci U S A 95: 1613‐1617, 1998.
 1401.Texter EC, Jr, Laureta HC, Frohlich ED, Chou CC. Effects of major cations on gastric and mesenteric vascular resistances. Am J Physiol 212: 569‐573, 1967.
 1402.Tharp DL, Wamhoff BR, Turk JR, Bowles DK. Upregulation of intermediate‐conductance Ca2+‐activated K+ channel (IKCa1) mediates phenotypic modulation of coronary smooth muscle. Am J Physiol Heart Circ Physiol 291: H2493‐H2503, 2006.
 1403.Thengchaisri N, Kuo L. Hydrogen peroxide induces endothelium‐dependent and ‐independent coronary arteriolar dilation: role of cyclooxygenase and potassium channels. Am J Physiol Heart Circ Physiol 285: H2255‐H2263, 2003.
 1404.Thilo F, Loddenkemper C, Berg E, Zidek W, Tepel M. Increased TRPC3 expression in vascular endothelium of patients with malignant hypertension. Mod Pathol 22: 426‐430, 2009.
 1405.Thilo F, Scholze A, Liu DY, Zidek W, Tepel M. Association of transient receptor potential canonical type 3 (TRPC3) channel transcripts with proinflammatory cytokines. Arch Biochem Biophys 471: 57‐62, 2008.
 1406.Thorneloe KS, Chen TT, Kerr PM, Grier EF, Horowitz B, Cole WC, Walsh MP. Molecular composition of 4‐aminopyridine‐sensitive voltage‐gated K(+) channels of vascular smooth muscle. Circ Res 89: 1030‐1037, 2001.
 1407.Thorneloe KS, Cheung M, Bao W, Alsaid H, Lenhard S, Jian MY, Costell M, Maniscalco‐Hauk K, Krawiec JA, Olzinski A, Gordon E, Lozinskaya I, Elefante L, Qin P, Matasic DS, James C, Tunstead J, Donovan B, Kallal L, Waszkiewicz A, Vaidya K, Davenport EA, Larkin J, Burgert M, Casillas LN, Marquis RW, Ye G, Eidam HS, Goodman KB, Toomey JR, Roethke TJ, Jucker BM, Schnackenberg CG, Townsley MI, Lepore JJ, Willette RN. An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci Transl Med 4: 159ra148, 2012.
 1408.Thorneloe KS, Sulpizio AC, Lin Z, Figueroa DJ, Clouse AK, McCafferty GP, Chendrimada TP, Lashinger ES, Gordon E, Evans L, Misajet BA, Demarini DJ, Nation JH, Casillas LN, Marquis RW, Votta BJ, Sheardown SA, Xu X, Brooks DP, Laping NJ, Westfall TD. N‐((1S)‐1‐{[4‐((2S)‐2‐{[(2,4‐dichlorophenyl)sulfonyl]amino}‐3‐hydroxypropanoyl)‐1‐piperazinyl]carbonyl}‐3‐methylbutyl)‐1‐benzothiophene‐2‐carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: Part I. J Pharmacol Exp Ther 326: 432‐442, 2008.
 1409.Thuesen AD, Andersen H, Cardel M, Toft A, Walter S, Marcussen N, Jensen BL, Bie P, Hansen PB. Differential effect of T‐type voltage‐gated Ca2+ channel disruption on renal plasma flow and glomerular filtration rate in vivo. Am J Physiol Renal Physiol 307: F445‐F452, 2014.
 1410.Tian L, Coghill LS, McClafferty H, MacDonald SH, Antoni FA, Ruth P, Knaus HG, Shipston MJ. Distinct stoichiometry of BKCa channel tetramer phosphorylation specifies channel activation and inhibition by cAMP‐dependent protein kinase. Proc Natl Acad Sci U S A 101: 11897‐11902, 2004.
 1411.Tian L, Duncan RR, Hammond MS, Coghill LS, Wen H, Rusinova R, Clark AG, Levitan IB, Shipston MJ. Alternative splicing switches potassium channel sensitivity to protein phosphorylation. J Biol Chem 276: 7717‐7720, 2001.
 1412.Tiefenbacher CP, Tillmanns H, Niroomand F, Zimmermann R, Kubler W. Adaptation of myocardial blood flow to increased metabolic demand is not dependent on endothelial vasodilators in the rat heart. Heart 77: 147‐153, 1997.
 1413.Tikku S, Epshtein Y, Collins H, Travis AJ, Rothblat GH, Levitan I. Relationship between Kir2.1/Kir2.3 activity and their distributions between cholesterol‐rich and cholesterol‐poor membrane domains. Am J Physiol Cell Physiol 293: C440‐C450, 2007.
 1414.Tobin AA, Joseph BK, Al‐Kindi HN, Albarwani S, Madden JA, Nemetz LT, Rusch NJ, Rhee SW. Loss of cerebrovascular Shaker‐type K(+) channels: A shared vasodilator defect of genetic and renal hypertensive rats. Am J Physiol Heart Circ Physiol 297: H293‐H303, 2009.
 1415.Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D. The cloned capsaicin receptor integrates multiple pain‐producing stimuli. Neuron 21: 531‐543, 1998.
 1416.Tomiyama Y, Brian JE, Jr, Todd MM. Cerebral blood flow during hemodilution and hypoxia in rats: Role of ATP‐sensitive potassium channels. Stroke 30: 1942‐1947; discussion 1947‐1948, 1999.
 1417.Toro L, Amador M, Stefani E. ANG II inhibits calcium‐activated potassium channels from coronary smooth muscle in lipid bilayers. Am J Physiol 258: H912‐H915, 1990.
 1418.Toth P, Csiszar A, Tucsek Z, Sosnowska D, Gautam T, Koller A, Schwartzman ML, Sonntag WE, Ungvari Z. Role of 20‐HETE, TRPC channels, and BKCa in dysregulation of pressure‐induced Ca2+ signaling and myogenic constriction of cerebral arteries in aged hypertensive mice. Am J Physiol Heart Circ Physiol 305: H1698‐H1708, 2013.
 1419.Toth A, Czikora A, Pasztor ET, Dienes B, Bai P, Csernoch L, Rutkai I, Csato V, Manyine IS, Porszasz R, Edes I, Papp Z, Boczan J. Vanilloid receptor‐1 (TRPV1) expression and function in the vasculature of the rat. J Histochem Cytochem 62: 129‐144, 2014.
 1420.Touyz RM, He Y, Montezano AC, Yao G, Chubanov V, Gudermann T, Callera GE. Differential regulation of transient receptor potential melastatin 6 and 7 cation channels by ANG II in vascular smooth muscle cells from spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 290: R73‐R78, 2006.
 1421.Toyama K, Wulff H, Chandy KG, Azam P, Raman G, Saito T, Fujiwara Y, Mattson DL, Das S, Melvin JE, Pratt PF, Hatoum OA, Gutterman DD, Harder DR, Miura H. The intermediate‐conductance calcium‐activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. J Clin Invest 118: 3025‐3037, 2008.
 1422.Toyoda K, Fujii K, Ibayashi S, Kitazono T, Nagao T, Fujishima M. Role of ATP‐sensitive potassium channels in brain stem circulation during hypotension. Am J Physiol 273: H1342‐H1346, 1997.
 1423.Toyoda K, Fujii K, Takata Y, Ibayashi S, Kitazono T, Nagao T, Fujikawa M, Fujishima M. Age‐related changes in response of brain stem vessels to opening of ATP‐sensitive potassium channels. Stroke 28: 171‐175, 1997.
 1424.Traverse JH, Chen Y, Hou M, Li Y, Bache RJ. Effect of K+ ATP channel and adenosine receptor blockade during rest and exercise in congestive heart failure. Circ Res 100: 1643‐1649, 2007.
 1425.Trebak M. STIM/Orai signalling complexes in vascular smooth muscle. J Physiol 590: 4201‐4208, 2012.
 1426.Trebak M, Lemonnier L, Smyth JT, Vazquez G, Putney JW, Jr. Phospholipase C‐coupled receptors and activation of TRPC channels. Handb Exp Pharmacol 593‐614, 2007.
 1427.Treves S, Scutari E, Robert M, Groh S, Ottolia M, Prestipino G, Ronjat M, Zorzato F. Interaction of S100A1 with the Ca2+ release channel (ryanodine receptor) of skeletal muscle. Biochemistry 36: 11496‐11503, 1997.
 1428.Tripathy A, Meissner G. Sarcoplasmic reticulum lumenal Ca2+ has access to cytosolic activation and inactivation sites of skeletal muscle Ca2+ release channel. Biophys J 70: 2600‐2615, 1996.
 1429.Troncoso Brindeiro CM, Fallet RW, Lane PH, Carmines PK. Potassium channel contributions to afferent arteriolar tone in normal and diabetic rat kidney. Am J Physiol Renal Physiol 295: F171‐F178, 2008.
 1430.Troncoso Brindeiro CM, Lane PH, Carmines PK. Tempol prevents altered K(+) channel regulation of afferent arteriolar tone in diabetic rat kidney. Hypertension 59: 657‐664, 2012.
 1431.Tseng‐Crank J, Foster CD, Krause JD, Mertz R, Godinot N, DiChiara TJ, Reinhart PH. Cloning, expression, and distribution of functionally distinct Ca(2+)‐activated K+ channel isoforms from human brain. Neuron 13: 1315‐1330, 1994.
 1432.Tseng‐Crank J, Godinot N, Johansen TE, Ahring PK, Strobaek D, Mertz R, Foster CD, Olesen SP, Reinhart PH. Cloning, expression, and distribution of a Ca(2+)‐activated K+ channel beta‐subunit from human brain. Proc Natl Acad Sci U S A 93: 9200‐9205, 1996.
 1433.Tsien RW, Tsien RY. Calcium channels, stores, and oscillations. Annu Rev Cell Biol 6: 715‐760, 1990.
 1434.Tu H, Wang Z, Bezprozvanny I. Modulation of mammalian inositol 1,4,5‐trisphosphate receptor isoforms by calcium: A role of calcium sensor region. Biophys J 88: 1056‐1069, 2005.
 1435.Tu JC, Xiao B, Yuan JP, Lanahan AA, Leoffert K, Li M, Linden DJ, Worley PF. Homer binds a novel proline‐rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21: 717‐726, 1998.
 1436.Tucker SJ, Gribble FM, Proks P, Trapp S, Ryder TJ, Haug T, Reimann F, Ashcroft FM. Molecular determinants of KATP channel inhibition by ATP. Embo J 17: 3290‐3296, 1998.
 1437.Tucker SJ, Gribble FM, Zhao C, Trapp S, Ashcroft FM. Truncation of Kir6.2 produces ATP‐sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 387: 179‐183, 1997.
 1438.Tumelty J, Scholfield N, Stewart M, Curtis T, McGeown G. Ca2+‐sparks constitute elementary building blocks for global Ca2+‐signals in myocytes of retinal arterioles. Cell Calcium 41: 451‐466, 2007.
 1439.Tune JD, Richmond KN, Gorman MW, Feigl EO. K(ATP)(+) channels, nitric oxide, and adenosine are not required for local metabolic coronary vasodilation. Am J Physiol Heart Circ Physiol 280: H868‐H875, 2001.
 1440.Tune JD, Yeh C, Setty S, Downey HF. ATP‐dependent K(+) channels contribute to local metabolic coronary vasodilation in experimental diabetes. Diabetes 51: 1201‐1207, 2002.
 1441.Tung CC, Lobo PA, Kimlicka L, Van Petegem F. The amino‐terminal disease hotspot of ryanodine receptors forms a cytoplasmic vestibule. Nature 468: 585‐588, 2010.
 1442.Turner RW, Anderson D, Zamponi GW. Signaling complexes of voltage‐gated calcium channels. Channels (Austin) 5: 440‐448, 2011.
 1443.Tzeng BH, Chen YH, Huang CH, Lin SS, Lee KR, Chen CC. The Ca(v)3.1 T‐type calcium channel is required for neointimal formation in response to vascular injury in mice. Cardiovasc Res 96: 533‐542, 2012.
 1444.Uchida Y, Nakamura F, Tomaru T, Sumino S, Kato A, Sugimoto T. Phasic contractions of canine and human coronary arteries induced by potassium channel blockers. Jpn Heart J 27: 727‐740, 1986.
 1445.Ullrich ND, Voets T, Prenen J, Vennekens R, Talavera K, Droogmans G, Nilius B. Comparison of functional properties of the Ca2+‐activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium 37: 267‐278, 2005.
 1446.Ungvari Z, Koller A. Mediation of EDHF‐induced reduction of smooth muscle [Ca(2+)](i) and arteriolar dilation by K(+) channels, 5,6‐EET, and gap junctions. Microcirculation 8: 265‐274, 2001.
 1447.Ungvari Z, Pacher P, Kecskemeti V, Papp G, Szollar L, Koller A. Increased myogenic tone in skeletal muscle arterioles of diabetic rats. Possible role of increased activity of smooth muscle Ca2+ channels and protein kinase C. Cardiovasc Res 43: 1018‐1028, 1999.
 1448.Urena J, del Valle‐Rodriguez A, Lopez‐Barneo J. Metabotropic Ca2+ channel‐induced calcium release in vascular smooth muscle. Cell Calcium 42: 513‐520, 2007.
 1449.Utz J, Eckert R, Trautwein W. Changes of intracellular calcium concentrations by phenylephrine in renal arterial smooth muscle cells. Pflugers Arch 438: 725‐731, 1999.
 1450.Vaca L, Sinkins WG, Hu Y, Kunze DL, Schilling WP. Activation of recombinant trp by thapsigargin in Sf9 insect cells. Am J Physiol 267: C1501‐C1505, 1994.
 1451.Vaithianathan T, Narayanan D, Asuncion‐Chin MT, Jeyakumar LH, Liu J, Fleischer S, Jaggar JH, Dopico AM. Subtype identification and functional characterization of ryanodine receptors in rat cerebral artery myocytes. Am J Physiol Cell Physiol 299: C264‐C278, 2010.
 1452.Valdivia HH, Kaplan JH, Ellis‐Davies GC, Lederer WJ. Rapid adaptation of cardiac ryanodine receptors: modulation by Mg2+ and phosphorylation. Science 267: 1997‐2000, 1995.
 1453.Vallot O, Combettes L, Jourdon P, Inamo J, Marty I, Claret M, Lompre AM. Intracellular Ca(2+) handling in vascular smooth muscle cells is affected by proliferation. Arterioscler Thromb Vasc Biol 20: 1225‐1235, 2000.
 1454.Valverde MA, Rojas P, Amigo J, Cosmelli D, Orio P, Bahamonde MI, Mann GE, Vergara C, Latorre R. Acute activation of Maxi‐K channels (hSlo) by estradiol binding to the beta subunit. Science 285: 1929‐1931, 1999.
 1455.Van de Voorde J, Vanheel B, Leusen I. Endothelium‐dependent relaxation and hyperpolarization in aorta from control and renal hypertensive rats. Circ Res 70: 1‐8, 1992.
 1456.Van Petegem F. Ryanodine receptors: Structure and function. J Biol Chem 287: 31624‐31632, 2012.
 1457.Van Petegem F. Ryanodine receptors: Allosteric ion channel giants. J Mol Biol 427: 31‐53, 2015.
 1458.Van Petegem F, Chatelain FC, Minor DL, Jr. Insights into voltage‐gated calcium channel regulation from the structure of the CaV1.2 IQ domain‐Ca2+/calmodulin complex. Nat Struct Mol Biol 12: 1108‐1115, 2005.
 1459.van Rossum DB, Patterson RL, Ma HT, Gill DL. Ca2+ entry mediated by store depletion, S‐nitrosylation, and TRP3 channels. Comparison of coupling and function. J Biol Chem 275: 28562‐28568, 2000.
 1460.VanBavel E, Sorop O, Andreasen D, Pfaffendorf M, Jensen BL. Role of T‐type calcium channels in myogenic tone of skeletal muscle resistance arteries. Am J Physiol Heart Circ Physiol 283: H2239‐H2243, 2002.
 1461.Vandenberg CA. Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions. Proc Natl Acad Sci U S A 84: 2560‐2564, 1987.
 1462.Vanelli G, Chang HY, Gatensby AG, Hussain SN. Contribution of potassium channels to active hyperemia of the canine diaphragm. J Appl Physiol (1985) 76: 1098‐1105, 1994.
 1463.Vanelli G, Hussain SN. Effects of potassium channel blockers on basal vascular tone and reactive hyperemia of canine diaphragm. Am J Physiol 266: H43‐H51, 1994.
 1464.Vanheel B, de Hemptinne A. Influence of KATP channel modulation on net potassium efflux from ischaemic mammalian cardiac tissue. Cardiovasc Res 26: 1030‐1039, 1992.
 1465.VanLandingham LG, Gannon KP, Drummond HA. Pressure‐induced constriction is inhibited in a mouse model of reduced betaENaC. Am J Physiol Regul Integr Comp Physiol 297: R723‐R728, 2009.
 1466.VanTeeffelen JW, Constantinescu AA, Vink H, Spaan JA. Hypercholesterolemia impairs reactive hyperemic vasodilation of 2A but not 3A arterioles in mouse cremaster muscle. Am J Physiol Heart Circ Physiol 289: H447‐H454, 2005.
 1467.Vass Z, Dai CF, Steyger PS, Jancso G, Trune DR, Nuttall AL. Co‐localization of the vanilloid capsaicin receptor and substance P in sensory nerve fibers innervating cochlear and vertebro‐basilar arteries. Neuroscience 124: 919‐927, 2004.
 1468.Vazquez G, Bird GS, Mori Y, Putney JW, Jr. Native TRPC7 channel activation by an inositol trisphosphate receptor‐dependent mechanism. J Biol Chem 281: 25250‐25258, 2006.
 1469.Vazquez G, Wedel BJ, Aziz O, Trebak M, Putney JW, Jr. The mammalian TRPC cation channels. Biochim Biophys Acta 1742: 21‐36, 2004.
 1470.Vecchione C, Patrucco E, Marino G, Barberis L, Poulet R, Aretini A, Maffei A, Gentile MT, Storto M, Azzolino O, Brancaccio M, Colussi GL, Bettarini U, Altruda F, Silengo L, Tarone G, Wymann MP, Hirsch E, Lembo G. Protection from angiotensin II‐mediated vasculotoxic and hypertensive response in mice lacking PI3Kgamma. J Exp Med 201: 1217‐1228, 2005.
 1471.Velmurugan GV, White C. Calcium homeostasis in vascular smooth muscle cells is altered in type 2 diabetes by Bcl‐2 protein modulation of InsP3R calcium release channels. Am J Physiol Heart Circ Physiol 302: H124‐H134, 2012.
 1472.Vennekamp J, Wulff H, Beeton C, Calabresi PA, Grissmer S, Hansel W, Chandy KG. Kv1.3‐blocking 5‐phenylalkoxypsoralens: A new class of immunomodulators. Mol Pharmacol 65: 1364‐1374, 2004.
 1473.Vennekens R, Hoenderop JG, Prenen J, Stuiver M, Willems PH, Droogmans G, Nilius B, Bindels RJ. Permeation and gating properties of the novel epithelial Ca(2+) channel. J Biol Chem 275: 3963‐3969, 2000.
 1474.Vennekens R, Owsianik G, Nilius B. Vanilloid transient receptor potential cation channels: An overview. Curr Pharm Des 14: 18‐31, 2008.
 1475.Venturi E, Sitsapesan R, Yamazaki D, Takeshima H. TRIC channels supporting efficient Ca(2+) release from intracellular stores. Pflugers Arch 465: 187‐195, 2013.
 1476.Vetri F, Xu H, Paisansathan C, Pelligrino DA. Impairment of neurovascular coupling in type 1 diabetes mellitus in rats is linked to PKC modulation of BK(Ca) and Kir channels. Am J Physiol Heart Circ Physiol 302: H1274‐H1284, 2012.
 1477.Viard P, Butcher AJ, Halet G, Davies A, Nurnberg B, Heblich F, Dolphin AC. PI3K promotes voltage‐dependent calcium channel trafficking to the plasma membrane. Nat Neurosci 7: 939‐946, 2004.
 1478.Viard P, Exner T, Maier U, Mironneau J, Nurnberg B, Macrez N. Gbetagamma dimers stimulate vascular L‐type Ca2+ channels via phosphoinositide 3‐kinase. FASEB J 13: 685‐694, 1999.
 1479.Vigili de Kreutzenberg S, Kiwanuka E, Tiengo A, Avogaro A. Visceral obesity is characterized by impaired nitric oxide‐independent vasodilation. Eur Heart J 24: 1210‐1215, 2003.
 1480.Vincent F, Acevedo A, Nguyen MT, Dourado M, DeFalco J, Gustafson A, Spiro P, Emerling DE, Kelly MG, Duncton MA. Identification and characterization of novel TRPV4 modulators. Biochem Biophys Res Commun 389: 490‐494, 2009.
 1481.Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B. The principle of temperature‐dependent gating in cold‐ and heat‐sensitive TRP channels. Nature 430: 748‐754, 2004.
 1482.Voets T, Prenen J, Vriens J, Watanabe H, Janssens A, Wissenbach U, Bodding M, Droogmans G, Nilius B. Molecular determinants of permeation through the cation channel TRPV4. J Biol Chem 277: 33704‐33710, 2002.
 1483.von Beckerath N, Cyrys S, Dischner A, Daut J. Hypoxic vasodilatation in isolated, perfused guinea‐pig heart: An analysis of the underlying mechanisms. J Physiol 442: 297‐319, 1991.
 1484.Wagenknecht T, Radermacher M, Grassucci R, Berkowitz J, Xin HB, Fleischer S. Locations of calmodulin and FK506‐binding protein on the three‐dimensional architecture of the skeletal muscle ryanodine receptor. J Biol Chem 272: 32463‐32471, 1997.
 1485.Wagner LE, II, Yule DI. Differential regulation of the InsP(3) receptor type‐1 and ‐2 single channel properties by InsP(3), Ca(2)(+) and ATP. J Physiol 590: 3245‐3259, 2012.
 1486.Wakatsuki T, Nakaya Y, Inoue I. Vasopressin modulates K(+)‐channel activities of cultured smooth muscle cells from porcine coronary artery. Am J Physiol 263: H491‐H496, 1992.
 1487.Wakatsuki T, Nakaya Y, Miyoshi Y, Zeng XR, Nomura M, Saito K, Inoue I. Effects of vasopressin on ATP‐sensitive and Ca(2+)‐activated K+ channels of coronary arterial smooth muscle cells. Jpn J Pharmacol 58(Suppl 2): 339P, 1992.
 1488.Wan E, Kushner JS, Zakharov S, Nui XW, Chudasama N, Kelly C, Waase M, Doshi D, Liu G, Iwata S, Shiomi T, Katchman A, D'Armiento J, Homma S, Marx SO. Reduced vascular smooth muscle BK channel current underlies heart failure‐induced vasoconstriction in mice. FASEB J 27: 1859‐1867, 2013.
 1489.Wang Q, Bryan RM, Jr, Pelligrino DA. Calcium‐dependent and ATP‐sensitive potassium channels and the ‘permissive’ function of cyclic GMP in hypercapnia‐induced pial arteriolar relaxation. Brain Res 793: 187‐196, 1998.
 1490.Wang YY, Chang RB, Allgood SD, Silver WL, Liman ER. A TRPA1‐dependent mechanism for the pungent sensation of weak acids. J Gen Physiol 137: 493‐505, 2011.
 1491.Wang YY, Chang RB, Waters HN, McKemy DD, Liman ER. The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J Biol Chem 283: 32691‐32703, 2008.
 1492.Wang L, Cvetkov TL, Chance MR, Moiseenkova‐Bell VY. Identification of in vivo disulfide conformation of TRPA1 ion channel. J Biol Chem 287: 6169‐6176, 2012.
 1493.Wang SY, Friedman M, Johnson RG, Zeind AJ, Sellke FW. Adenosine triphosphate‐sensitive K+ channels mediate postcardioplegia coronary hyperemia. J Thorac Cardiovasc Surg 110: 1073‐1082, 1995.
 1494.Wang R, Wu L. The chemical modification of KCa channels by carbon monoxide in vascular smooth muscle cells. J Biol Chem 272: 8222‐8226, 1997.
 1495.Wang R, Wu L, Wang Z. The direct effect of carbon monoxide on KCa channels in vascular smooth muscle cells. Pflugers Arch 434: 285‐291, 1997.
 1496.Wang HR, Wu M, Yu H, Long S, Stevens A, Engers DW, Sackin H, Daniels JS, Dawson ES, Hopkins CR, Lindsley CW, Li M, McManus OB. Selective inhibition of the K(ir)2 family of inward rectifier potassium channels by a small molecule probe: The discovery, SAR, and pharmacological characterization of ML133. ACS Chem Biol 6: 845‐856, 2011.
 1497.Wang Y, Zhang HT, Su XL, Deng XL, Yuan BX, Zhang W, Wang XF, Yang YB. Experimental diabetes mellitus down‐regulates large‐conductance Ca2+‐activated K+ channels in cerebral artery smooth muscle and alters functional conductance. Curr Neurovasc Res 7: 75‐84, 2010.
 1498.Warrillow S, Egi M, Bellomo R. Randomized, double‐blind, placebo‐controlled crossover pilot study of a potassium channel blocker in patients with septic shock. Crit Care Med 34: 980‐985, 2006.
 1499.Watanabe H, Davis JB, Smart D, Jerman JC, Smith GD, Hayes P, Vriens J, Cairns W, Wissenbach U, Prenen J, Flockerzi V, Droogmans G, Benham CD, Nilius B. Activation of TRPV4 channels (hVRL‐2/mTRP12) by phorbol derivatives. J Biol Chem 277: 13569‐13577, 2002.
 1500.Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424: 434‐438, 2003.
 1501.Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B. Heat‐evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277: 47044‐47051, 2002.
 1502.Watts SW, Kanagy NL, Lombard JH. Receptor‐mediated events in the microcirculation. In: Compr Physiol. Hoboken, NJ: John Wiley & Sons, 2010.
 1503.Webb RC. Potassium relaxation of vascular smooth muscle from DOCA hypertensive pigs. Hypertension 4: 609‐619, 1982.
 1504.Webb RC, Bohr DF. Potassium relaxation of vascular smooth muscle from spontaneously hypertensive rats. Blood Vessels 16: 71‐79, 1979.
 1505.Weber LP, Chow WL, Abebe W, MacLeod KM. Enhanced contractile responses of arteries from streptozotocin diabetic rats to sodium fluoride. Br J Pharmacol 118: 115‐122, 1996.
 1506.Wehrens XH, Lehnart SE, Huang F, Vest JA, Reiken SR, Mohler PJ, Sun J, Guatimosim S, Song LS, Rosemblit N, D'Armiento JM, Napolitano C, Memmi M, Priori SG, Lederer WJ, Marks AR. FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise‐induced sudden cardiac death. Cell 113: 829‐840, 2003.
 1507.Wehrens XH, Lehnart SE, Reiken SR, Deng SX, Vest JA, Cervantes D, Coromilas J, Landry DW, Marks AR. Protection from cardiac arrhythmia through ryanodine receptor‐stabilizing protein calstabin2. Science 304: 292‐296, 2004.
 1508.Wehrens XH, Lehnart SE, Reiken SR, Marks AR. Ca2+/calmodulin‐dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res 94: e61‐e70, 2004.
 1509.Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H. International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium‐activated potassium channels. Pharmacol Rev 57: 463‐472, 2005.
 1510.Wei EP, Kontos HA. Blockade of ATP‐sensitive potassium channels in cerebral arterioles inhibits vasoconstriction from hypocapnic alkalosis in cats. Stroke 30: 851‐853; discussion 854, 1999.
 1511.Wei EP, Kontos HA, Beckman JS. Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite. Am J Physiol 271: H1262‐H1266, 1996.
 1512.Weidelt T, Boldt W, Markwardt F. Acetylcholine‐induced K+ currents in smooth muscle cells of intact rat small arteries. J Physiol 500(Pt 3): 617‐630, 1997.
 1513.Weidelt T, Isenberg G. Augmentation of SR Ca(2+) release by rapamycin and FK506 causes K(+)‐channel activation and membrane hyperpolarization in bladder smooth muscle. Br J Pharmacol 129: 1293‐1300, 2000.
 1514.Weiss T, Gheber L, Shoshan‐Barmatz V, Priel Z. Possible mechanism of ciliary stimulation by extracellular ATP: involvement of calcium‐dependent potassium channels and exogenous Ca2+. J Membr Biol 127: 185‐193, 1992.
 1515.Welling A, Ludwig A, Zimmer S, Klugbauer N, Flockerzi V, Hofmann F. Alternatively spliced IS6 segments of the alpha 1C gene determine the tissue‐specific dihydropyridine sensitivity of cardiac and vascular smooth muscle L‐type Ca2+ channels. Circ Res 81: 526‐532, 1997.
 1516.Wellman GC, Bevan JA. Barium inhibits the endothelium‐dependent component of flow but not acetylcholine‐induced relaxation in isolated rabbit cerebral arteries. J Pharmacol Exp Ther 274: 47‐53, 1995.
 1517.Wellman GC, Bonev AD, Nelson MT, Brayden JE. Gender differences in coronary artery diameter involve estrogen, nitric oxide, and Ca(2+)‐dependent K+ channels. Circ Res 79: 1024‐1030, 1996.
 1518.Wellman GC, Nathan DJ, Saundry CM, Perez G, Bonev AD, Penar PL, Tranmer BI, Nelson MT. Ca2+ sparks and their function in human cerebral arteries. Stroke 33: 802‐808, 2002.
 1519.Wellman GC, Nelson MT. Signaling between SR and plasmalemma in smooth muscle: Sparks and the activation of Ca2+‐sensitive ion channels. Cell Calcium 34: 211‐229, 2003.
 1520.Wellman GC, Quayle JM, Standen NB. ATP‐sensitive K+ channel activation by calcitonin gene‐related peptide and protein kinase A in pig coronary arterial smooth muscle. J Physiol 507(Pt 1): 117‐129, 1998.
 1521.Wellman GC, Santana LF, Bonev AD, Nelson MT. Role of phospholamban in the modulation of arterial Ca(2+) sparks and Ca(2+)‐activated K(+) channels by cAMP. Am J Physiol Cell Physiol 281: C1029‐C1037, 2001.
 1522.Welsh DG, Jackson WF, Segal SS. Oxygen induces electromechanical coupling in arteriolar smooth muscle cells: A role for L‐type Ca2+ channels. Am J Physiol 274: H2018‐H2024, 1998.
 1523.Welsh DG, Morielli AD, Nelson MT, Brayden JE. Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 90: 248‐250, 2002.
 1524.Welsh DG, Segal SS. Muscle length directs sympathetic nerve activity and vasomotor tone in resistance vessels of hamster retractor. Circ Res 79: 551‐559, 1996.
 1525.Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C. TRPC1, a human homolog of a Drosophila store‐operated channel. Proc Natl Acad Sci U S A 92: 9652‐9656, 1995.
 1526.Wesselman JP, Schubert R, VanBavel ED, Nilsson H, Mulvany MJ. KCa‐channel blockade prevents sustained pressure‐induced depolarization in rat mesenteric small arteries. Am J Physiol 272: H2241‐H2249, 1997.
 1527.Westcott EB, Goodwin EL, Segal SS, Jackson WF. Function and expression of ryanodine receptors and inositol 1,4,5‐trisphosphate receptors in smooth muscle cells of murine feed arteries and arterioles. J Physiol 590: 1849‐1869, 2012.
 1528.Westcott EB, Jackson WF. Heterogeneous function of ryanodine receptors, but not IP3 receptors, in hamster cremaster muscle feed arteries and arterioles. Am J Physiol Heart Circ Physiol 300: H1616‐H1630, 2011.
 1529.Wiedmann F, Schmidt C, Lugenbiel P, Staudacher I, Rahm AK, Seyler C, Schweizer PA, Katus HA, Thomas D. Therapeutic targeting of two‐pore‐domain potassium (K(2P)) channels in the cardiovascular system. Clin Sci (Lond) 130: 643‐650, 2016.
 1530.Wier WG, Morgan KG. Alpha1‐adrenergic signaling mechanisms in contraction of resistance arteries. Rev Physiol Biochem Pharmacol 150: 91‐139, 2003.
 1531.Wilde DW, Massey KD, Walker GK, Vollmer A, Grekin RJ. High‐fat diet elevates blood pressure and cerebrovascular muscle Ca(2+) current. Hypertension 35: 832‐837, 2000.
 1532.Willcox JM, Summerlee AJ, Murrant CL. Relaxin induces rapid, transient vasodilation in the microcirculation of hamster skeletal muscle. J Endocrinol 218: 179‐191, 2013.
 1533.Williams DL, Jr, Katz GM, Roy‐Contancin L, Reuben JP. Guanosine 5′‐monophosphate modulates gating of high‐conductance Ca2+‐activated K+ channels in vascular smooth muscle cells. Proc Natl Acad Sci U S A 85: 9360‐9364, 1988.
 1534.Willis BC, Ponce‐Balbuena D, Jalife J. Protein assemblies of sodium and inward rectifier potassium channels control cardiac excitability and arrhythmogenesis. Am J Physiol Heart Circ Physiol 308: H1463‐H1473, 2015.
 1535.Wilson HL, Dipp M, Thomas JM, Lad C, Galione A, Evans AM. Adp‐ribosyl cyclase and cyclic ADP‐ribose hydrolase act as a redox sensor. A primary role for cyclic ADP‐ribose in hypoxic pulmonary vasoconstriction. J Biol Chem 276: 11180‐11188, 2001.
 1536.Wilson C, Dryer SE. A mutation in TRPC6 channels abolishes their activation by hypoosmotic stretch but does not affect activation by diacylglycerol or G protein signaling cascades. Am J Physiol Renal Physiol 306: F1018‐F1025, 2014.
 1537.Wilson AJ, Jabr RI, Clapp LH. Calcium modulation of vascular smooth muscle ATP‐sensitive K(+) channels: Role of protein phosphatase‐2B. Circ Res 87: 1019‐1025, 2000.
 1538.Winquist RJ, Faison EP, Napier M, Vandlen R, Waldman SA, Murad F. The effects of atrial natriuretic factor on vascular smooth muscle. In: Bevan JA, Godfraind T, Maxwell RA, Stoclet JC, Worcel M, editors. Vascular Neuroeffector Mechanisms. Amsetrdam: Elsevier, 1985, pp. 349‐353.
 1539.Winquist RJ, Faison EP, Nutt RF. Vasodilator profile of synthetic atrial natriuretic factor. Eur J Pharmacol 102: 169‐173, 1984.
 1540.Wischmeyer E, Doring F, Karschin A. Acute suppression of inwardly rectifying Kir2.1 channels by direct tyrosine kinase phosphorylation. J Biol Chem 273: 34063‐34068, 1998.
 1541.Witcher DR, Kovacs RJ, Schulman H, Cefali DC, Jones LR. Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J Biol Chem 266: 11144‐11152, 1991.
 1542.Wolfle SE, de Wit C. Intact endothelium‐dependent dilation and conducted responses in resistance vessels of hypercholesterolemic mice in vivo. J Vasc Res 42: 475‐482, 2005.
 1543.Wong CO, Huang Y, Yao X. Genistein potentiates activity of the cation channel TRPC5 independently of tyrosine kinases. Br J Pharmacol 159: 1486‐1496, 2010.
 1544.Worley JF, III, Deitmer JW, Nelson MT. Single nisoldipine‐sensitive calcium channels in smooth muscle cells isolated from rabbit mesenteric artery. Proc Natl Acad Sci U S A 83: 5746‐5750, 1986.
 1545.Worley JF, Quayle JM, Standen NB, Nelson MT. Regulation of single calcium channels in cerebral arteries by voltage, serotonin, and dihydropyridines. Am J Physiol 261: H1951‐H1960, 1991.
 1546.Wu L, Cao K, Lu Y, Wang R. Different mechanisms underlying the stimulation of K(Ca) channels by nitric oxide and carbon monoxide. J Clin Invest 110: 691‐700, 2002.
 1547.Wu CC, Chen SJ, Garland CJ. NO and KATP channels underlie endotoxin‐induced smooth muscle hyperpolarization in rat mesenteric resistance arteries. Br J Pharmacol 142: 479‐484, 2004.
 1548.Wu L, de Champlain J. Inhibition by cyclic AMP of basal and induced inositol phosphate production in cultured aortic smooth muscle cells from Wistar‐Kyoto and spontaneously hypertensive rats. J Hypertens 14: 593‐599, 1996.
 1549.Wu X, Davis MJ. Characterization of stretch‐activated cation current in coronary smooth muscle cells. Am J Physiol Heart Circ Physiol 280: H1751‐H1761, 2001.
 1550.Wu X, Davis GE, Meininger GA, Wilson E, Davis MJ. Regulation of the L‐type calcium channel by alpha 5beta 1 integrin requires signaling between focal adhesion proteins. J Biol Chem 276: 30285‐30292, 2001.
 1551.Wu BN, Luykenaar KD, Brayden JE, Giles WR, Corteling RL, Wiehler WB, Welsh DG. Hyposmotic challenge inhibits inward rectifying K+ channels in cerebral arterial smooth muscle cells. Am J Physiol Heart Circ Physiol 292: H1085‐H1094, 2007.
 1552.Wu X, Mogford JE, Platts SH, Davis GE, Meininger GA, Davis MJ. Modulation of calcium current in arteriolar smooth muscle by alphav beta3 and alpha5 beta1 integrin ligands. J Cell Biol 143: 241‐252, 1998.
 1553.Wu LJ, Sweet TB, Clapham DE. International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev 62: 381‐404, 2010.
 1554.Wulff H, Kohler R. Endothelial small‐conductance and intermediate‐conductance KCa channels: An update on their pharmacology and usefulness as cardiovascular targets. J Cardiovasc Pharmacol 61: 102‐112, 2013.
 1555.Xi Q, Adebiyi A, Zhao G, Chapman KE, Waters CM, Hassid A, Jaggar JH. IP3 constricts cerebral arteries via IP3 receptor‐mediated TRPC3 channel activation and independently of sarcoplasmic reticulum Ca2+ release. Circ Res 102: 1118‐1126, 2008.
 1556.Xi Q, Tcheranova D, Parfenova H, Horowitz B, Leffler CW, Jaggar JH. Carbon monoxide activates KCa channels in newborn arteriole smooth muscle cells by increasing apparent Ca2+ sensitivity of alpha‐subunits. Am J Physiol Heart Circ Physiol 286: H610‐H618, 2004.
 1557.Xi Q, Umstot E, Zhao G, Narayanan D, Leffler CW, Jaggar JH. Glutamate regulates Ca2+ signals in smooth muscle cells of newborn piglet brain slice arterioles through astrocyte‐ and heme oxygenase‐dependent mechanisms. Am J Physiol Heart Circ Physiol 298: H562‐H569, 2010.
 1558.Xia Y, Fu Z, Hu J, Huang C, Paudel O, Cai S, Liedtke W, Sham JS. TRPV4 channel contributes to serotonin‐induced pulmonary vasoconstriction and the enhanced vascular reactivity in chronic hypoxic pulmonary hypertension. Am J Physiol Cell Physiol 305: C704‐C715, 2013.
 1559.Xiang L, Hester RL. Adipocyte‐derived factor reduces vasodilatory capability in ob‐/ob‐ mice. Am J Physiol Heart Circ Physiol 297: H689‐H695, 2009.
 1560.Xiang Z, Thompson AD, Brogan JT, Schulte ML, Melancon BJ, Mi D, Lewis LM, Zou B, Yang L, Morrison R, Santomango T, Byers F, Brewer K, Aldrich JS, Yu H, Dawson ES, Li M, McManus O, Jones CK, Daniels JS, Hopkins CR, Xie XS, Conn PJ, Weaver CD, Lindsley CW. The discovery and characterization of ML218: A novel, centrally active T‐type calcium channel inhibitor with robust effects in STN neurons and in a rodent model of Parkinson's disease. ACS Chem Neurosci 2: 730‐742, 2011.
 1561.Xie J, McCobb DP. Control of alternative splicing of potassium channels by stress hormones. Science 280: 443‐446, 1998.
 1562.Xu H, Delling M, Jun JC, Clapham DE. Oregano, thyme and clove‐derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci 9: 628‐635, 2006.
 1563.Xu W, Lipscombe D. Neuronal Ca(V)1.3alpha(1) L‐type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J Neurosci 21: 5944‐5951, 2001.
 1564.Xu C, Lu Y, Tang G, Wang R. Expression of voltage‐dependent K(+) channel genes in mesenteric artery smooth muscle cells. Am J Physiol 277: G1055‐G1063, 1999.
 1565.Xu XZ, Moebius F, Gill DL, Montell C. Regulation of melastatin, a TRP‐related protein, through interaction with a cytoplasmic isoform. Proc Natl Acad Sci U S A 98: 10692‐10697, 2001.
 1566.Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos‐Santiago I, Xie Y, DiStefano PS, Curtis R, Clapham DE. TRPV3 is a calcium‐permeable temperature‐sensitive cation channel. Nature 418: 181‐186, 2002.
 1567.Xu X, Rials SJ, Wu Y, Marinchak RA, Kowey PR. The properties of the inward rectifier potassium currents in rabbit coronary arterial smooth muscle cells. Pflugers Arch 438: 187‐194, 1999.
 1568.Xu SZ, Zeng F, Boulay G, Grimm C, Harteneck C, Beech DJ. Block of TRPC5 channels by 2‐aminoethoxydiphenyl borate: A differential, extracellular and voltage‐dependent effect. Br J Pharmacol 145: 405‐414, 2005.
 1569.Yada T, Hiramatsu O, Kimura A, Tachibana H, Chiba Y, Lu S, Goto M, Ogasawara Y, Tsujioka K, Kajiya F. Direct in vivo observation of subendocardial arteriolar response during reactive hyperemia. Circ Res 77: 622‐631, 1995.
 1570.Yamada M, Isomoto S, Matsumoto S, Kondo C, Shindo T, Horio Y, Kurachi Y. Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea‐sensitive but ATP‐insensitive K+ channel. J Physiol 499(Pt 3): 715‐720, 1997.
 1571.Yamagishi T, Yanagisawa T, Taira N. K+ channel openers, cromakalim and Ki4032, inhibit agonist‐induced Ca2+ release in canine coronary artery. Naunyn Schmiedebergs Arch Pharmacol 346: 691‐700, 1992.
 1572.Yamaguchi H, Kajita J, Madison JM. Isoproterenol increases peripheral [Ca2+]i and decreases inner [Ca2+]i in single airway smooth muscle cells. Am J Physiol 268: C771‐C779, 1995.
 1573.Yamamoto M, Egashira K, Arimura K, Tada H, Shimokawa H, Takeshita A. Coronary vascular K+ ATP channels contribute to the maintenance of myocardial perfusion in dogs with pacing‐induced heart failure. Jpn Circ J 64: 701‐707, 2000.
 1574.Yamamura H, Ohya S, Muraki K, Imaizumi Y. Involvement of inositol 1,4,5‐trisphosphate formation in the voltage‐dependent regulation of the Ca(2+) concentration in porcine coronary arterial smooth muscle cells. J Pharmacol Exp Ther 342: 486‐496, 2012.
 1575.Yamazaki D, Tabara Y, Kita S, Hanada H, Komazaki S, Naitou D, Mishima A, Nishi M, Yamamura H, Yamamoto S, Kakizawa S, Miyachi H, Yamamoto S, Miyata T, Kawano Y, Kamide K, Ogihara T, Hata A, Umemura S, Soma M, Takahashi N, Imaizumi Y, Miki T, Iwamoto T, Takeshima H. TRIC‐A channels in vascular smooth muscle contribute to blood pressure maintenance. Cell Metab 14: 231‐241, 2011.
 1576.Yan J, Aldrich RW. LRRC26 auxiliary protein allows BK channel activation at resting voltage without calcium. Nature 466: 513‐516, 2010.
 1577.Yan Z, Bai XC, Yan C, Wu J, Li Z, Xie T, Peng W, Yin CC, Li X, Scheres SH, Shi Y, Yan N. Structure of the rabbit ryanodine receptor RyR1 at near‐atomic resolution. Nature 517: 50‐55, 2015.
 1578.Yan J, Olsen JV, Park KS, Li W, Bildl W, Schulte U, Aldrich RW, Fakler B, Trimmer JS. Profiling the phospho‐status of the BKCa channel alpha subunit in rat brain reveals unexpected patterns and complexity. Mol Cell Proteomics 7: 2188‐2198, 2008.
 1579.Yanaga A, Goto H, Nakagawa T, Hikiami H, Shibahara N, Shimada Y. Cinnamaldehyde induces endothelium‐dependent and ‐independent vasorelaxant action on isolated rat aorta. Biol Pharm Bull 29: 2415‐2418, 2006.
 1580.Yanagisawa T, Yamagishi T, Okada Y. Hyperpolarization induced by K+ channel openers inhibits Ca2+ influx and Ca2+ release in coronary artery. Cardiovasc Drugs Ther 7(Suppl 3): 565‐574, 1993.
 1581.Yang Y, Jones AW, Thomas TR, Rubin LJ. Influence of sex, high‐fat diet, and exercise training on potassium currents of swine coronary smooth muscle. Am J Physiol Heart Circ Physiol 293: H1553‐H1563, 2007.
 1582.Yang Y, Li PY, Cheng J, Cai F, Lei M, Tan XQ, Li ML, Liu ZF, Zeng XR. IP3 decreases coronary artery tone via activating the BKCa channel of coronary artery smooth muscle cells in pigs. Biochem Biophys Res Commun 439: 363‐368, 2013.
 1583.Yang Y, Li PY, Cheng J, Mao L, Wen J, Tan XQ, Liu ZF, Zeng XR. Function of BKCa channels is reduced in human vascular smooth muscle cells from Han Chinese patients with hypertension. Hypertension 61: 519‐525, 2013.
 1584.Yang Y, Li S, Konduru AS, Zhang S, Trower TC, Shi W, Cui N, Yu L, Wang Y, Zhu D, Jiang C. Prolonged exposure to methylglyoxal causes disruption of vascular KATP channel by mRNA instability. Am J Physiol Cell Physiol 303: C1045‐C1054, 2012.
 1585.Yang XR, Lin AH, Hughes JM, Flavahan NA, Cao YN, Liedtke W, Sham JS. Upregulation of osmo‐mechanosensitive TRPV4 channel facilitates chronic hypoxia‐induced myogenic tone and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 302: L555‐L568, 2012.
 1586.Yang XR, Lin MJ, McIntosh LS, Sham JS. Functional expression of transient receptor potential melastatin‐ and vanilloid‐related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol 290: L1267‐L1276, 2006.
 1587.Yang XR, Lin MJ, Yip KP, Jeyakumar LH, Fleischer S, Leung GP, Sham JS. Multiple ryanodine receptor subtypes and heterogeneous ryanodine receptor‐gated Ca2+ stores in pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 289: L338‐L348, 2005.
 1588.Yang L, Liu G, Zakharov SI, Bellinger AM, Mongillo M, Marx SO. Protein kinase G phosphorylates Cav1.2 alpha1c and beta2 subunits. Circ Res 101: 465‐474, 2007.
 1589.Yang Y, Murphy TV, Ella SR, Grayson TH, Haddock R, Hwang YT, Braun AP, Peichun G, Korthuis RJ, Davis MJ, Hill MA. Heterogeneity in function of small artery smooth muscle BKCa: involvement of the beta1‐subunit. J Physiol 587: 3025‐3044, 2009.
 1590.Yang Y, Shi W, Chen X, Cui N, Konduru AS, Shi Y, Trower TC, Zhang S, Jiang C. Molecular basis and structural insight of vascular K(ATP) channel gating by S‐glutathionylation. J Biol Chem 286: 9298‐9307, 2011.
 1591.Yang Y, Shi W, Cui N, Wu Z, Jiang C. Oxidative stress inhibits vascular K(ATP) channels by S‐glutathionylation. J Biol Chem 285: 38641‐38648, 2010.
 1592.Yang Y, Shi Y, Guo S, Zhang S, Cui N, Shi W, Zhu D, Jiang C. PKA‐dependent activation of the vascular smooth muscle isoform of KATP channels by vasoactive intestinal polypeptide and its effect on relaxation of the mesenteric resistance artery. Biochim Biophys Acta 1778: 88‐96, 2008.
 1593.Yang Y, Sohma Y, Nourian Z, Ella SR, Li M, Stupica A, Korthuis RJ, Davis MJ, Braun AP, Hill MA. Mechanisms underlying regional differences in the Ca2+ sensitivity of BK(Ca) current in arteriolar smooth muscle. J Physiol 591: 1277‐1293, 2013.
 1594.Yang P, Zhu MX. Trpv3. Handb Exp Pharmacol 222: 273‐291, 2014.
 1595.Yao Z, Gross GJ. The ATP‐dependent potassium channel: An endogenous cardioprotective mechanism. J Cardiovasc Pharmacol 24(Suppl 4): S28‐S34, 1994.
 1596.Yashiro Y, Duling BR. Participation of intracellular Ca2+ stores in arteriolar conducted responses. Am J Physiol Heart Circ Physiol 285: H65‐H73, 2003.
 1597.Yasutsune T, Kawakami N, Hirano K, Nishimura J, Yasui H, Kitamura K, Kanaide H. Vasorelaxation and inhibition of the voltage‐operated Ca2+ channels by FK506 in the porcine coronary artery. Br J Pharmacol 126: 717‐729, 1999.
 1598.Yeung SY, Greenwood IA. Electrophysiological and functional effects of the KCNQ channel blocker XE991 on murine portal vein smooth muscle cells. Br J Pharmacol 146: 585‐595, 2005.
 1599.Yeung SY, Pucovsky V, Moffatt JD, Saldanha L, Schwake M, Ohya S, Greenwood IA. Molecular expression and pharmacological identification of a role for K(v)7 channels in murine vascular reactivity. Br J Pharmacol 151: 758‐770, 2007.
 1600.Yeung S, Schwake M, Pucovsky V, Greenwood I. Bimodal effects of the Kv7 channel activator retigabine on vascular K+ currents. Br J Pharmacol 155: 62‐72, 2008.
 1601.Yildirim E, Dietrich A, Birnbaumer L. The mouse C‐type transient receptor potential 2 (TRPC2) channel: Alternative splicing and calmodulin binding to its N terminus. Proc Natl Acad Sci U S A 100: 2220‐2225, 2003.
 1602.Yip KP, Marsh DJ. [Ca2+]i in rat afferent arteriole during constriction measured with confocal fluorescence microscopy. Am J Physiol 271: F1004‐F1011, 1996.
 1603.Yoder EJ, Kleinfeld D. Cortical imaging through the intact mouse skull using two‐photon excitation laser scanning microscopy. Microsc Res Tech 56: 304‐305, 2002.
 1604.Yokoshiki H, Sunagawa M, Seki T, Sperelakis N. ATP‐sensitive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells. Am J Physiol 274: C25‐C37, 1998.
 1605.Yokota R, Tanaka M, Yamasaki K, Araki M, Miyamae M, Maeda T, Koga K, Yabuuchi Y, Sasayama S. Blockade of ATP‐sensitive K+ channels attenuates preconditioning effect on myocardial metabolism in swine: Myocardial metabolism and ATP‐sensitive K+ channels. Int J Cardiol 67: 225‐236, 1998.
 1606.Yoo HY, Park SJ, Seo EY, Park KS, Han JA, Kim KS, Shin DH, Earm YE, Zhang YH, Kim SJ. Role of thromboxane A(2)‐activated nonselective cation channels in hypoxic pulmonary vasoconstriction of rat. Am J Physiol Cell Physiol 302: C307‐C317, 2012.
 1607.Youm JB, Park KS, Jang YJ, Leem CH. Effects of streptozotocin and unilateral nephrectomy on L‐type Ca(2)(+) channels and membrane capacitance in arteriolar smooth muscle cells. Pflugers Arch 467: 1689‐1697, 2015.
 1608.Yu M, Sun CW, Maier KG, Harder DR, Roman RJ. Mechanism of cGMP contribution to the vasodilator response to NO in rat middle cerebral arteries. Am J Physiol Heart Circ Physiol 282: H1724‐H1731, 2002.
 1609.Yu H, Wu M, Townsend SD, Zou B, Long S, Daniels JS, McManus OB, Li M, Lindsley CW, Hopkins CR. Discovery, synthesis, and structure activity relationship of a series of N‐aryl‐bicyclo[2.2.1]heptane‐2‐carboxamides: Characterization of ML213 as a novel KCNQ2 and KCNQ4 potassium channel opener. ACS Chem Neurosci 2: 572‐577, 2011.
 1610.Yu JZ, Zhang DX, Zou AP, Campbell WB, Li PL. Nitric oxide inhibits Ca(2+) mobilization through cADP‐ribose signaling in coronary arterial smooth muscle cells. Am J Physiol Heart Circ Physiol 279: H873‐H881, 2000.
 1611.Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S, Worley PF. Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114: 777‐789, 2003.
 1612.Yuan XJ, Tod ML, Rubin LJ, Blaustein MP. NO hyperpolarizes pulmonary artery smooth muscle cells and decreases the intracellular Ca2+ concentration by activating voltage‐gated K+ channels. Proc Natl Acad Sci U S A 93: 10489‐10494, 1996.
 1613.Yuill KH, McNeish AJ, Kansui Y, Garland CJ, Dora KA. Nitric oxide suppresses cerebral vasomotion by sGC‐independent effects on ryanodine receptors and voltage‐gated calcium channels. J Vasc Res 47: 93‐107, 2010.
 1614.Yule DI, Straub SV, Bruce JI. Modulation of Ca2+ oscillations by phosphorylation of Ins(1,4,5)P3 receptors. Biochem Soc Trans 31: 954‐957, 2003.
 1615.Zacharia J, Zhang J, Wier WG. Ca2+ signaling in mouse mesenteric small arteries: Myogenic tone and adrenergic vasoconstriction. Am J Physiol Heart Circ Physiol 292: H1523‐H1532, 2007.
 1616.Zagotta WN, Hoshi T, Aldrich RW. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250: 568‐571, 1990.
 1617.Zalk R, Clarke OB, des Georges A, Grassucci RA, Reiken S, Mancia F, Hendrickson WA, Frank J, Marks AR. Structure of a mammalian ryanodine receptor. Nature 517: 44‐49, 2015.
 1618.Zalk R, Lehnart SE, Marks AR. Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem 76: 367‐385, 2007.
 1619.Zanzinger J, Czachurski J, Seller H. Role of calcium‐dependent K+ channels in the regulation of arterial and venous tone by nitric oxide in pigs. Pflugers Arch 432: 671‐677, 1996.
 1620.Zarayskiy V, Monje F, Peter K, Csutora P, Khodorov BI, Bolotina VM. Store‐operated Orai1 and IP3 receptor‐operated TRPC1 channel. Channels (Austin) 1: 246‐252, 2007.
 1621.Zaritsky JJ, Eckman DM, Wellman GC, Nelson MT, Schwarz TL. Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K(+) current in K(+)‐mediated vasodilation. Circ Res 87: 160‐166, 2000.
 1622.Zaritsky JJ, Redell JB, Tempel BL, Schwarz TL. The consequences of disrupting cardiac inwardly rectifying K(+) current (I(K1)) as revealed by the targeted deletion of the murine Kir2.1 and Kir2.2 genes. J Physiol 533: 697‐710, 2001.
 1623.Zatta AJ, Headrick JP. Mediators of coronary reactive hyperaemia in isolated mouse heart. Br J Pharmacol 144: 576‐587, 2005.
 1624.Zavaritskaya O, Zhuravleva N, Schleifenbaum J, Gloe T, Devermann L, Kluge R, Mladenov M, Frey M, Gagov H, Fesus G, Gollasch M, Schubert R. Role of KCNQ channels in skeletal muscle arteries and periadventitial vascular dysfunction. Hypertension 61: 151‐159, 2013.
 1625.Zhang DM, Chai Y, Erickson JR, Brown JH, Bers DM, Lin YF. Intracellular signalling mechanism responsible for modulation of sarcolemmal ATP‐sensitive potassium channels by nitric oxide in ventricular cardiomyocytes. J Physiol 592: 971‐990, 2014.
 1626.Zhang Y, Chen Q, Sun Z, Han J, Wang L, Zheng L. Impaired capsaicin‐induced relaxation in diabetic mesenteric arteries. J Diabetes Complications 29: 747‐754, 2015.
 1627.Zhang ZR, Cui G, Zeltwanger S, McCarty NA. Time‐dependent interactions of glibenclamide with CFTR: Kinetically complex block of macroscopic currents. J Membr Biol 201: 139‐155, 2004.
 1628.Zhang Y, Gao YJ, Zuo J, Lee RM, Janssen LJ. Alteration of arterial smooth muscle potassium channel composition and BKCa current modulation in hypertension. Eur J Pharmacol 514: 111‐119, 2005.
 1629.Zhang H, Inazu M, Weir B, Daniel E. Endothelin‐1 inhibits inward rectifier potassium channels and activates nonspecific cation channels in cultured endothelial cells. Pharmacology 49: 11‐22, 1994.
 1630.Zhang Y, Tazzeo T, Chu V, Janssen LJ. Membrane potassium currents in human radial artery and their regulation by nitric oxide donor. Cardiovasc Res 71: 383‐392, 2006.
 1631.Zhang H, Weir B, Daniel EE. Activation of protein kinase C inhibits potassium currents in cultured endothelial cells. Pharmacology 50: 247‐256, 1995.
 1632.Zhang JZ, Wu Y, Williams BY, Rodney G, Mandel F, Strasburg GM, Hamilton SL. Oxidation of the skeletal muscle Ca2+ release channel alters calmodulin binding. Am J Physiol 276: C46‐C53, 1999.
 1633.Zhang Z, Yu H, Huang J, Faouzi M, Schmitz C, Penner R, Fleig A. The TRPM6 kinase domain determines the Mg. ATP sensitivity of TRPM7/M6 heteromeric ion channels. J Biol Chem 289: 5217‐5227, 2014.
 1634.Zhao G, Adebiyi A, Blaskova E, Xi Q, Jaggar JH. Type 1 inositol 1,4,5‐trisphosphate receptors mediate UTP‐induced cation currents, Ca2+ signals, and vasoconstriction in cerebral arteries. Am J Physiol Cell Physiol 295: C1376‐C1384, 2008.
 1635.Zhao G, Neeb ZP, Leo MD, Pachuau J, Adebiyi A, Ouyang K, Chen J, Jaggar JH. Type 1 IP3 receptors activate BKCa channels via local molecular coupling in arterial smooth muscle cells. J Gen Physiol 136: 283‐291, 2010.
 1636.Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. Embo J 20: 6008‐6016, 2001.
 1637.Zheng YM, Mei QB, Wang QS, Abdullaev I, Lai FA, Xin HB, Kotlikoff MI, Wang YX. Role of FKBP12.6 in hypoxia‐ and norepinephrine‐induced Ca2+ release and contraction in pulmonary artery myocytes. Cell Calcium 35: 345‐355, 2004.
 1638.Zheng W, Rampe D, Triggle DJ. Pharmacological, radioligand binding, and electrophysiological characteristics of FPL 64176, a novel nondihydropyridine Ca2+ channel activator, in cardiac and vascular preparations. Mol Pharmacol 40: 734‐741, 1991.
 1639.Zheng YM, Wang QS, Liu QH, Rathore R, Yadav V, Wang YX. Heterogeneous gene expression and functional activity of ryanodine receptors in resistance and conduit pulmonary as well as mesenteric artery smooth muscle cells. J Vasc Res 45: 469‐479, 2008.
 1640.Zheng J, Wenzhi B, Miao L, Hao Y, Zhang X, Yin W, Pan J, Yuan Z, Song B, Ji G. Ca(2+) release induced by cADP‐ribose is mediated by FKBP12.6 proteins in mouse bladder smooth muscle. Cell Calcium 47: 449‐457, 2010.
 1641.Zholos AV. Trpc5. Handb Exp Pharmacol 222: 129‐156, 2014.
 1642.Zhong XZ, Abd‐Elrahman KS, Liao CH, El‐Yazbi AF, Walsh EJ, Walsh MP, Cole WC. Stromatoxin‐sensitive, heteromultimeric Kv2.1/Kv9.3 channels contribute to myogenic control of cerebral arterial diameter. J Physiol 588: 4519‐4537, 2010.
 1643.Zhong XZ, Harhun MI, Olesen SP, Ohya S, Moffatt JD, Cole WC, Greenwood IA. Participation of KCNQ (Kv7) potassium channels in myogenic control of cerebral arterial diameter. J Physiol 588: 3277‐3293, 2010.
 1644.Zhou X, Teng B, Tilley S, Ledent C, Mustafa SJ. Metabolic hyperemia requires ATP‐sensitive K+ channels and H2O2 but not adenosine in isolated mouse hearts. Am J Physiol Heart Circ Physiol 307: H1046‐H1055, 2014.
 1645.Zhou W, Wang XL, Lamping KG, Lee HC. Inhibition of protein kinase Cbeta protects against diabetes‐induced impairment in arachidonic acid dilation of small coronary arteries. J Pharmacol Exp Ther 319: 199‐207, 2006.
 1646.Zhou C, Wu S. T‐type calcium channels in pulmonary vascular endothelium. Microcirculation 13: 645‐656, 2006.
 1647.Zhu P, Beny JL, Flammer J, Luscher TF, Haefliger IO. Relaxation by bradykinin in porcine ciliary artery. Role of nitric oxide and K(+)‐channels. Invest Ophthalmol Vis Sci 38: 1761‐1767, 1997.
 1648.Zhu X, Chu PB, Peyton M, Birnbaumer L. Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373: 193‐198, 1995.
 1649.Zhu WZ, Kwan CY, Han C. Ca2+‐dependence of vasoconstriction mediated by alpha1A‐adrenoceptors in perfused rat hindlimb: A pharmacological approach. Life Sci 63: PL89‐PL94, 1998.
 1650.ZhuGe R, Sims SM, Tuft RA, Fogarty KE, Walsh JV, Jr. Ca2+ sparks activate K+ and Cl− channels, resulting in spontaneous transient currents in guinea‐pig tracheal myocytes. J Physiol 513(Pt 3): 711‐718, 1998.
 1651.ZhuGe R, Tuft RA, Fogarty KE, Bellve K, Fay FS, Walsh JV, Jr. The influence of sarcoplasmic reticulum Ca2+ concentration on Ca2+ sparks and spontaneous transient outward currents in single smooth muscle cells. J Gen Physiol 113: 215‐228, 1999.
 1652.Zitron E, Gunth M, Scherer D, Kiesecker C, Kulzer M, Bloehs R, Scholz EP, Thomas D, Weidenhammer C, Kathofer S, Bauer A, Katus HA, Karle CA. Kir2.x inward rectifier potassium channels are differentially regulated by adrenergic alpha1A receptors. J Mol Cell Cardiol 44: 84‐94, 2008.
 1653.Zitron E, Kiesecker C, Luck S, Kathofer S, Thomas D, Kreye VA, Kiehn J, Katus HA, Schoels W, Karle CA. Human cardiac inwardly rectifying current IKir2.2 is upregulated by activation of protein kinase A. Cardiovasc Res 63: 520‐527, 2004.
 1654.Zitt C, Obukhov AG, Strubing C, Zobel A, Kalkbrenner F, Luckhoff A, Schultz G. Expression of TRPC3 in Chinese hamster ovary cells results in calcium‐activated cation currents not related to store depletion. J Cell Biol 138: 1333‐1341, 1997.
 1655.Zitt C, Zobel A, Obukhov AG, Harteneck C, Kalkbrenner F, Luckhoff A, Schultz G. Cloning and functional expression of a human Ca2+‐permeable cation channel activated by calcium store depletion. Neuron 16: 1189‐1196, 1996.
 1656.Zorzato F, Fujii J, Otsu K, Phillips M, Green NM, Lai FA, Meissner G, MacLennan DH. Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 265: 2244‐2256, 1990.
 1657.Zucchi R, Ronca‐Testoni S. The sarcoplasmic reticulum Ca2+ channel/ryanodine receptor: Modulation by endogenous effectors, drugs and disease states. Pharmacol Rev 49: 1‐51, 1997.
 1658.Zuhlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H. Calmodulin supports both inactivation and facilitation of L‐type calcium channels. Nature 399: 159‐162, 1999.
 1659.Zygmunt PM, Hogestatt ED. Trpa1. Handb Exp Pharmacol 222: 583‐630, 2014.
 1660.Zygmunt PM, Hogestatt ED, Waldeck K, Edwards G, Kirkup AJ, Weston AH. Studies on the effects of anandamide in rat hepatic artery. Br J Pharmacol 122: 1679‐1686, 1997.

Related Articles:

Diabetes and Obesity
Pulmonary Vascular Disease
Systemic Hypertension

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Nathan R. Tykocki, Erika M. Boerman, William F. Jackson. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017, 7: 485-581. doi: 10.1002/cphy.c160011