Comprehensive Physiology Wiley Online Library

Mitophagy as a Protective Mechanism against Myocardial Stress

Full Article on Wiley Online Library



ABSTRACT

Mitochondria are dynamic organelles that can undergo fusion, fission, biogenesis, and autophagic elimination to maintain mitochondrial quality control. Since the heart is in constant need of high amounts of energy, mitochondria, as a central energy supply source, play a crucial role in maintaining optimal cardiac performance. Therefore, it is reasonable to assume that mitochondrial dysfunction is associated with the pathophysiology of heart diseases. In non‐dividing, post‐mitotic cells such as cardiomyocytes, elimination of dysfunctional organelles is essential to maintaining cellular function because non‐dividing cells cannot dilute dysfunctional organelles through cell division. In this review, we discuss the recent findings regarding the physiological role of mitophagy in the heart and cardiomyocytes. Moreover, we discuss the functional role of mitophagy in the progression of cardiovascular diseases, including myocardial ischemic injury, diabetic cardiomyopathy, cardiac hypertrophy, and heart failure. © 2017 American Physiological Society. Compr Physiol 7:1407‐1424, 2017.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Mitochondrial quality control systems. During mitochondrial fusion, both Mfn1 and Mfn2 mediate OMM fusion while OPA1 simultaneously mediates IMM fusion. Membrane bounded L‐OPA1 can be cleaved to S‐OPA1 by YME1L and OMA1. The balance of between L‐OPA1 and S‐OPA1 affects mitochondrial fission and fusion. Mitochondrial fission is promoted by translocation of Drp1 to mitochondria. Translocation of Drp1 is mediated by Drp1 adaptors including MFF, MiD49, and Mid51. In addition, post‐translational modification of Drp1 regulates translocation of Drp1. Phosphorylation of Drp1 at Ser616 by Cdk1/cyclin B enhances Drp1 localization on the OMM. In contrast, phosphorylation of Drp1 at Ser637 by PKA facilitates Drp1 dissociation from the OMM. Mitochondrial Drp1 mediates fission by generating mechanical force. Depolarized mitochondria are selectively eliminated by mitophagy and, to balance the number of mitochondria, new mitochondria are generated by biogenesis.
Figure 2. Figure 2. Parkin‐mediated mitophagy. In healthy mitochondria, PINK1 is degraded by MPP and PARL protease. When mitochondria are depolarized, PINK1 is stabilized and accumulated on the OMM. Stabilized PINK1 phosphorylates Mfn2 at Thr11 and Ser442 and recruits Parkin to the OMM. Alternatively, PINK1 phosphorylates ubiquitin and Parkin, thereby promoting the recruitment of Parkin to the OMM. In the cytosol, Parkin is deubiquitinated by USP8 and translocated to the OMM. BAG3 is translocated to the OMM with Parkin, whereas p53 prevents translocation of Parkin by direct interaction. On depolarized mitochondria, recruited Parkin ubiquitinates proteins on the OMM and promotes interaction between ubiquitinated OMM proteins and mitophagy adaptors, including p62, NBR1, and HDAC6, which have both a ubiquitin binding domain and an LC3‐interacting region. Finally, LC3 recruited by adaptor proteins facilitates mitophagy. Parkin‐mediated ubiquitination of OMM proteins can be reversed by USP15 and USP30. PINK1 also promotes localization of LC3 receptors, including optineurin, NDP52 and TAXBP1. LC3 receptors can recruit LC3 and facilitate mitophagy.
Figure 3. Figure 3. Parkin‐independent mitophagy. (A) Under hypoxic conditions, the OMM protein Bnip3 promotes mitophagy. Bnip3 and NIX have an LC3 binding region that allows direct interaction with LC3, and BclxL promotes this interaction. (B) Under basal conditions, Src and CK2 phosphorylate FUNDC1 at Tyr18 and Ser13respectively and inhibit its interaction with LC3. In response to hypoxia, ULK1 phosphorylates FUNDC1 at Ser17, and PGAM5 de‐phosphorylates FUNDC1 at Ser13, thus stimulating mitophagy. (C) The IMM protein cardiolipin translocates to the OMM upon mitochondrial injury and interacts with LC3 to promote mitophagy. When mitophagy is delayed, externalized cardiolipin undergoes peroxidation and promotes apoptosis. (D) A functional mammalian homolog of Atg32, Bcl2‐L‐13 has an LC3 interacting region and, like yeast Atg32, can promote mitochondrial fragmentation. Bcl2‐L‐13 localizes on the OMM and promotes mitophagy.
Figure 4. Figure 4. Mitophagy and cardiac diseases. (A) Under ischemic conditions, cardiac cellular energy rapidly decreases and metabolic pathways are interrupted. Due to reduced energy status, the level of mitochondrial Ca2+ is increased and mitochondrial membrane potential is reduced. Finally, dysfunctional mitochondria are accumulated in the ischemic heart. In this condition, Parkin‐mediated and FUNDC1‐mediated mitophagy act protectively. (B) Upon myocardial reperfusion, the level of cellular ROS is drastically increased and mitochondrial membrane potential is increased. This causes mPTP opening, thereby causing apoptosis and necrosis. In this condition, accumulated CO2 and bicarbonate inhibit mitophagy and promote myocardial injury. Drp1‐mediated and PGAM5‐mediated mitophagy acts as a protective process. (C) Pressure overload promotes mitochondrial dysfunction and inhibits the activity of DNase‐II, which degrades mitochondrial DNA in the lysosome. Thus, accumulated mitochondrial DNA activates TLR9‐dependent inflammation. Under pressure overload conditions, Drp1‐mediated mitophagy plays an essential role in protecting the heart. (D) In type 1 diabetes, accumulated glucose increases the level of mitochondrial O2•−. This enhances mitochondrial ROS, thus promoting myocardial cell death. A high level of glucose inhibits autophagy and, simultaneously, alternative autophagy and mitophagy are activated through a compensatory mechanism.


Figure 1. Mitochondrial quality control systems. During mitochondrial fusion, both Mfn1 and Mfn2 mediate OMM fusion while OPA1 simultaneously mediates IMM fusion. Membrane bounded L‐OPA1 can be cleaved to S‐OPA1 by YME1L and OMA1. The balance of between L‐OPA1 and S‐OPA1 affects mitochondrial fission and fusion. Mitochondrial fission is promoted by translocation of Drp1 to mitochondria. Translocation of Drp1 is mediated by Drp1 adaptors including MFF, MiD49, and Mid51. In addition, post‐translational modification of Drp1 regulates translocation of Drp1. Phosphorylation of Drp1 at Ser616 by Cdk1/cyclin B enhances Drp1 localization on the OMM. In contrast, phosphorylation of Drp1 at Ser637 by PKA facilitates Drp1 dissociation from the OMM. Mitochondrial Drp1 mediates fission by generating mechanical force. Depolarized mitochondria are selectively eliminated by mitophagy and, to balance the number of mitochondria, new mitochondria are generated by biogenesis.


Figure 2. Parkin‐mediated mitophagy. In healthy mitochondria, PINK1 is degraded by MPP and PARL protease. When mitochondria are depolarized, PINK1 is stabilized and accumulated on the OMM. Stabilized PINK1 phosphorylates Mfn2 at Thr11 and Ser442 and recruits Parkin to the OMM. Alternatively, PINK1 phosphorylates ubiquitin and Parkin, thereby promoting the recruitment of Parkin to the OMM. In the cytosol, Parkin is deubiquitinated by USP8 and translocated to the OMM. BAG3 is translocated to the OMM with Parkin, whereas p53 prevents translocation of Parkin by direct interaction. On depolarized mitochondria, recruited Parkin ubiquitinates proteins on the OMM and promotes interaction between ubiquitinated OMM proteins and mitophagy adaptors, including p62, NBR1, and HDAC6, which have both a ubiquitin binding domain and an LC3‐interacting region. Finally, LC3 recruited by adaptor proteins facilitates mitophagy. Parkin‐mediated ubiquitination of OMM proteins can be reversed by USP15 and USP30. PINK1 also promotes localization of LC3 receptors, including optineurin, NDP52 and TAXBP1. LC3 receptors can recruit LC3 and facilitate mitophagy.


Figure 3. Parkin‐independent mitophagy. (A) Under hypoxic conditions, the OMM protein Bnip3 promotes mitophagy. Bnip3 and NIX have an LC3 binding region that allows direct interaction with LC3, and BclxL promotes this interaction. (B) Under basal conditions, Src and CK2 phosphorylate FUNDC1 at Tyr18 and Ser13respectively and inhibit its interaction with LC3. In response to hypoxia, ULK1 phosphorylates FUNDC1 at Ser17, and PGAM5 de‐phosphorylates FUNDC1 at Ser13, thus stimulating mitophagy. (C) The IMM protein cardiolipin translocates to the OMM upon mitochondrial injury and interacts with LC3 to promote mitophagy. When mitophagy is delayed, externalized cardiolipin undergoes peroxidation and promotes apoptosis. (D) A functional mammalian homolog of Atg32, Bcl2‐L‐13 has an LC3 interacting region and, like yeast Atg32, can promote mitochondrial fragmentation. Bcl2‐L‐13 localizes on the OMM and promotes mitophagy.


Figure 4. Mitophagy and cardiac diseases. (A) Under ischemic conditions, cardiac cellular energy rapidly decreases and metabolic pathways are interrupted. Due to reduced energy status, the level of mitochondrial Ca2+ is increased and mitochondrial membrane potential is reduced. Finally, dysfunctional mitochondria are accumulated in the ischemic heart. In this condition, Parkin‐mediated and FUNDC1‐mediated mitophagy act protectively. (B) Upon myocardial reperfusion, the level of cellular ROS is drastically increased and mitochondrial membrane potential is increased. This causes mPTP opening, thereby causing apoptosis and necrosis. In this condition, accumulated CO2 and bicarbonate inhibit mitophagy and promote myocardial injury. Drp1‐mediated and PGAM5‐mediated mitophagy acts as a protective process. (C) Pressure overload promotes mitochondrial dysfunction and inhibits the activity of DNase‐II, which degrades mitochondrial DNA in the lysosome. Thus, accumulated mitochondrial DNA activates TLR9‐dependent inflammation. Under pressure overload conditions, Drp1‐mediated mitophagy plays an essential role in protecting the heart. (D) In type 1 diabetes, accumulated glucose increases the level of mitochondrial O2•−. This enhances mitochondrial ROS, thus promoting myocardial cell death. A high level of glucose inhibits autophagy and, simultaneously, alternative autophagy and mitophagy are activated through a compensatory mechanism.
References
 1.Andres AM, Hernandez G, Lee P, Huang C, Ratliff EP, Sin J, Thornton CA, Damasco MV, Gottlieb RA. Mitophagy is required for acute cardioprotection by simvastatin. Antioxid Redox Signal 21: 1960‐1973, 2014.
 2.Arun B, Akar U, Gutierrez‐Barrera AM, Hortobagyi GN, Ozpolat B. The PARP inhibitor AZD2281 (Olaparib) induces autophagy/mitophagy in BRCA1 and BRCA2 mutant breast cancer cells. Int J Oncol 47: 262‐268, 2015.
 3.Bellot G, Garcia‐Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM. Hypoxia‐induced autophagy is mediated through hypoxia‐inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29: 2570‐2581, 2009.
 4.Bhandari P, Song M, Chen Y, Burelle Y, Dorn GW, II. Mitochondrial contagion induced by Parkin deficiency in Drosophila hearts and its containment by suppressing mitofusin. Circ Res 114: 257‐265, 2014.
 5.Billia F, Hauck L, Konecny F, Rao V, Shen J, Mak TW. PTEN‐inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proc Natl Acad Sci U S A 108: 9572‐9577, 2011.
 6.Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation 115: 3213‐3223, 2007.
 7.Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol 15: 713‐720, 2013.
 8.Cahill TJ, Leo V, Kelly M, Stockenhuber A, Kennedy NW, Bao L, Cereghetti G, Harper AR, Czibik G, Lao C, Bellahcene M, Steeples V, Ghaffari S, Yavari A, Mayer A, Poulton J, Ferguson DJ, Scorrano L, Hettiarachchi NT, Peers C, Boyle J, Hill RB, Simmons A, Watkins H, Dear TN, Ashrafian H. Resistance of dynamin‐related protein 1 oligomers to disassembly impairs mitophagy, resulting in myocardial inflammation and heart failure. J Biol Chem 290: 25907‐25919, 2015.
 9.Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C, Bernardi P, Scorrano L. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci U S A 105: 15803‐15808, 2008.
 10.Chang CR, Blackstone C. Cyclic AMP‐dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem 282: 21583‐21587, 2007.
 11.Chen G, Han Z, Feng D, Chen Y, Chen L, Wu H, Huang L, Zhou C, Cai X, Fu C, Duan L, Wang X, Liu L, Liu X, Shen Y, Zhu Y, Chen Q. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor‐mediated mitophagy. Mol Cell 54: 362‐377, 2014.
 12.Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160: 189‐200, 2003.
 13.Chen H, Ren S, Clish C, Jain M, Mootha V, McCaffery JM, Chan DC. Titration of mitochondrial fusion rescues Mff‐deficient cardiomyopathy. J Cell Biol 211: 795‐805, 2015.
 14.Chen M, Chen Z, Wang Y, Tan Z, Zhu C, Li Y, Han Z, Chen L, Gao R, Liu L, Chen Q. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy 12: 689‐702, 2016.
 15.Chen Y, Dorn GW, II. PINK1‐phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340: 471‐475, 2013.
 16.Chen Y, Liu Y, Dorn GW, II. Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res 109: 1327‐1331, 2011.
 17.Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA. S‐nitrosylation of Drp1 mediates beta‐amyloid‐related mitochondrial fission and neuronal injury. Science 324: 102‐105, 2009.
 18.Chu CT, Ji J, Dagda RK, Jiang JF, Tyurina YY, Kapralov AA, Tyurin VA, Yanamala N, Shrivastava IH, Mohammadyani D, Qiang Wang KZ, Zhu J, Klein‐Seetharaman J, Balasubramanian K, Amoscato AA, Borisenko G, Huang Z, Gusdon AM, Cheikhi A, Steer EK, Wang R, Baty C, Watkins S, Bahar I, Bayir H, Kagan VE. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol 15: 1197‐1205, 2013.
 19.Cribbs JT, Strack S. Reversible phosphorylation of Drp1 by cyclic AMP‐dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8: 939‐944, 2007.
 20.de Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456: 605‐610, 2008.
 21.Disatnik MH, Ferreira JC, Campos JC, Gomes KS, Dourado PM, Qi X, Mochly‐Rosen D. Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long‐term cardiac dysfunction. J Am Heart Assoc 2: e000461, 2013.
 22.Dominy JE, Puigserver P. Mitochondrial biogenesis through activation of nuclear signaling proteins. Cold Spring Harb Perspect Biol 5(7): a015008, 2013.
 23.Dorn GW, II. Mitochondrial pruning by Nix and BNip3: An essential function for cardiac‐expressed death factors. J Cardiovasc Transl Res 3: 374‐383, 2010.
 24.Dorn GW, II. Parkin‐dependent mitophagy in the heart. J Mol Cell Cardiol 95: 42‐49, 2016.
 25.Drew BG, Ribas V, Le JA, Henstridge DC, Phun J, Zhou Z, Soleymani T, Daraei P, Sitz D, Vergnes L, Wanagat J, Reue K, Febbraio MA, Hevener AL. HSP72 is a mitochondrial stress sensor critical for Parkin action, oxidative metabolism, and insulin sensitivity in skeletal muscle. Diabetes 63: 1488‐1505, 2014.
 26.Durcan TM, Fon EA. The three ‘P's of mitophagy: PARKIN, PINK1, and post‐translational modifications. Genes Dev 29: 989‐999, 2015.
 27.Durcan TM, Tang MY, Perusse JR, Dashti EA, Aguileta MA, McLelland GL, Gros P, Shaler TA, Faubert D, Coulombe B, Fon EA. USP8 regulates mitophagy by removing K6‐linked ubiquitin conjugates from Parkin. EMBO J 33: 2473‐2491, 2014.
 28.East DA, Fagiani F, Crosby J, Georgakopoulos ND, Bertrand H, Schaap M, Fowkes A, Wells G, Campanella M. PMI: A DeltaPsim independent pharmacological regulator of mitophagy. Chem Biol 21: 1585‐1596, 2014.
 29.Eisenberg T, Abdellatif M, Schroeder S, Primessnig U, Stekovic S, Pendl T, Harger A, Schipke J, Zimmermann A, Schmidt A, Tong M, Ruckenstuhl C, Dammbrueck C, Gross AS, Herbst V, Magnes C, Trausinger G, Narath S, Meinitzer A, Hu Z, Kirsch A, Eller K, Carmona‐Gutierrez D, Buttner S, Pietrocola F, Knittelfelder O, Schrepfer E, Rockenfeller P, Simonini C, Rahn A, Horsch M, Moreth K, Beckers J, Fuchs H, Gailus‐Durner V, Neff F, Janik D, Rathkolb B, Rozman J, de Angelis MH, Moustafa T, Haemmerle G, Mayr M, Willeit P, von Frieling‐Salewsky M, Pieske B, Scorrano L, Pieber T, Pechlaner R, Willeit J, Sigrist SJ, Linke WA, Muhlfeld C, Sadoshima J, Dengjel J, Kiechl S, Kroemer G, Sedej S, Madeo F. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med 22: 1428‐1438, 2016.
 30.Eisner V, Csordas G, Hajnoczky G. Interactions between sarco‐endoplasmic reticulum and mitochondria in cardiac and skeletal muscle: Pivotal roles in Ca(2)(+) and reactive oxygen species signaling. J Cell Sci 126: 2965‐2978, 2013.
 31.Elgass K, Pakay J, Ryan MT, Palmer CS. Recent advances into the understanding of mitochondrial fission. Biochim Biophys Acta 1833: 150‐161, 2013.
 32.Epstein PN, Overbeek PA, Means AR. Calmodulin‐induced early‐onset diabetes in transgenic mice. Cell 58: 1067‐1073, 1989.
 33.Fillmore N, Mori J, Lopaschuk GD. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol 171: 2080‐2090, 2014.
 34.Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P, Piacentini M, Chowdhury K, Cecconi F. Ambra1 regulates autophagy and development of the nervous system. Nature 447: 1121‐1125, 2007.
 35.Franco A, Kitsis RN, Fleischer JA, Gavathiotis E, Kornfeld OS, Gong G, Biris N, Benz A, Qvit N, Donnelly SK, Chen Y, Mennerick S, Hodgson L, Mochly‐Rosen D, Dorn GW, II. Correcting mitochondrial fusion by manipulating mitofusin conformations. Nature 540: 74‐79, 2016.
 36.Gandre‐Babbe S, van der Bliek AM. The novel tail‐anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 19: 2402‐2412, 2008.
 37.Gao J, Li M, Qin S, Zhang T, Jiang S, Hu Y, Deng Y, Zhang C, You D, Li H, Mu D, Zhang Z, Jiang C. Cytosolic PINK1 promotes the targeting of ubiquitinated proteins to the aggresome‐autophagy pathway during proteasomal stress. Autophagy 12: 632‐647, 2016.
 38.Gong G, Song M, Csordas G, Kelly DP, Matkovich SJ, Dorn GW, II. Parkin‐mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science 350: aad2459, 2015.
 39.Graef M. A dividing matter: Drp1/Dnm1‐independent mitophagy. J Cell Biol 215: 599‐601, 2016.
 40.Guo W, Sun Y, Liu W, Wu X, Guo L, Cai P, Wu X, Wu X, Shen Y, Shu Y, Gu Y, Xu Q. Small molecule‐driven mitophagy‐mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis‐associated cancer. Autophagy 10: 972‐985, 2014.
 41.Hall AR, Burke N, Dongworth RK, Hausenloy DJ. Mitochondrial fusion and fission proteins: Novel therapeutic targets for combating cardiovascular disease. Br J Pharmacol 171: 1890‐1906, 2014.
 42.Hamacher‐Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, Gottlieb RA, Gustafsson AB. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 14: 146‐157, 2007.
 43.Hammerling BC, Najor RH, Cortez MQ, Shires SE, Leon LJ, Gonzalez ER, Boassa D, Phan S, Thor A, Jimenez RE, Li H, Kitsis RN, Dorn Ii GW, Sadoshima J, Ellisman MH, Gustafsson AB. A Rab5 endosomal pathway mediates Parkin‐dependent mitochondrial clearance. Nat Commun 8: 14050, 2017.
 44.Han XJ, Lu YF, Li SA, Kaitsuka T, Sato Y, Tomizawa K, Nairn AC, Takei K, Matsui H, Matsushita M. CaM kinase I alpha‐induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol 182: 573‐585, 2008.
 45.Haque ME, Thomas KJ, D'Souza C, Callaghan S, Kitada T, Slack RS, Fraser P, Cookson MR, Tandon A, Park DS. Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. Proc Natl Acad Sci U S A 105: 1716‐1721, 2008.
 46.Hasson SA, Kane LA, Yamano K, Huang CH, Sliter DA, Buehler E, Wang C, Heman‐Ackah SM, Hessa T, Guha R, Martin SE, Youle RJ. High‐content genome‐wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504: 291‐295, 2013.
 47.Hertz NT, Berthet A, Sos ML, Thorn KS, Burlingame AL, Nakamura K, Shokat KM. A neo‐substrate that amplifies catalytic activity of parkinson's‐disease‐related kinase PINK1. Cell 154: 737‐747, 2013.
 48.Hirota Y, Yamashita S, Kurihara Y, Jin X, Aihara M, Saigusa T, Kang D, Kanki T. Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways. Autophagy 11: 332‐343, 2015.
 49.Hollville E, Carroll RG, Cullen SP, Martin SJ. Bcl‐2 family proteins participate in mitochondrial quality control by regulating Parkin/PINK1‐dependent mitophagy. Mol Cell 55: 451‐466, 2014.
 50.Hoshino A, Mita Y, Okawa Y, Ariyoshi M, Iwai‐Kanai E, Ueyama T, Ikeda K, Ogata T, Matoba S. Cytosolic p53 inhibits Parkin‐mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat Commun 4: 2308, 2013.
 51.Hsu HC, Chen CY, Lee BC, Chen MF. High‐fat diet induces cardiomyocyte apoptosis via the inhibition of autophagy. Eur J Nutr 55: 2245‐2254, 2016.
 52.Huang C, Andres AM, Ratliff EP, Hernandez G, Lee P, Gottlieb RA. Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS One 6: e20975, 2011.
 53.Ikeda Y, Shirakabe A, Maejima Y, Zhai P, Sciarretta S, Toli J, Nomura M, Mihara K, Egashira K, Ohishi M, Abdellatif M, Sadoshima J. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res 116: 264‐278, 2015.
 54.Jang SY, Kang HT, Hwang ES. Nicotinamide‐induced mitophagy: Event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J Biol Chem 287: 19304‐19314, 2012.
 55.Jin SM, Youle RJ. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin‐mediated mitophagy of polarized mitochondria. Autophagy 9: 1750‐1757, 2013.
 56.Kageyama Y, Hoshijima M, Seo K, Bedja D, Sysa‐Shah P, Andrabi SA, Chen W, Hoke A, Dawson VL, Dawson TM, Gabrielson K, Kass DA, Iijima M, Sesaki H. Parkin‐independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. EMBO J 33: 2798‐2813, 2014.
 57.Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205: 143‐153, 2014.
 58.Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17: 98‐109, 2009.
 59.Kashatus DF, Lim KH, Brady DC, Pershing NL, Cox AD, Counter CM. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat Cell Biol 13: 1108‐1115, 2011.
 60.Kim KY, Stevens MV, Akter MH, Rusk SE, Huang RJ, Cohen A, Noguchi A, Springer D, Bocharov AV, Eggerman TL, Suen DF, Youle RJ, Amar M, Remaley AT, Sack MN. Parkin is a lipid‐responsive regulator of fat uptake in mice and mutant human cells. J Clin Invest 121: 3701‐3712, 2011.
 61.Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N. Mutations in the Parkin gene cause autosomal recessive juvenile Parkinsonism. Nature 392: 605‐608, 1998.
 62.Kobayashi S, Liang Q. Autophagy and mitophagy in diabetic cardiomyopathy. Biochim Biophys Acta 1852: 252‐261, 2015.
 63.Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, Gourlay R, Burchell L, Walden H, Macartney TJ, Deak M, Knebel A, Alessi DR, Muqit MM. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2: 120080, 2012.
 64.Kubli DA, Cortez MQ, Moyzis AG, Najor RH, Lee Y, Gustafsson AB. PINK1 is dispensable for mitochondrial recruitment of Parkin and activation of mitophagy in cardiac myocytes. PLoS One 10: e0130707, 2015.
 65.Kubli DA, Quinsay MN, Gustafsson AB. Parkin deficiency results in accumulation of abnormal mitochondria in aging myocytes. Commun Integr Biol 6: e24511, 2013.
 66.Kubli DA, Zhang X, Lee Y, Hanna RA, Quinsay MN, Nguyen CK, Jimenez R, Petrosyan S, Murphy AN, Gustafsson AB. Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem 288: 915‐926, 2013.
 67.Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524: 309‐314, 2015.
 68.Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP. Disease‐causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6‐dependent mitophagy. J Cell Biol 189: 671‐679, 2010.
 69.Lee SB, Kim JJ, Nam HJ, Gao B, Yin P, Qin B, Yi SY, Ham H, Evans D, Kim SH, Zhang J, Deng M, Liu T, Zhang H, Billadeau DD, Wang L, Giaime E, Shen J, Pang YP, Jen J, van Deursen JM, Lou Z. Parkin regulates mitosis and genomic stability through Cdc20/Cdh1. Mol Cell 60: 21‐34, 2015.
 70.Lee Y, Lee HY, Hanna RA, Gustafsson AB. Mitochondrial autophagy by Bnip3 involves Drp1‐mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am J Physiol Heart Circ Physiol 301: H1924‐H1931, 2011.
 71.Liao X, Zhang R, Lu Y, Prosdocimo DA, Sangwung P, Zhang L, Zhou G, Anand P, Lai L, Leone TC, Fujioka H, Ye F, Rosca MG, Hoppel CL, Schulze PC, Abel ED, Stamler JS, Kelly DP, Jain MK. Kruppel‐like factor 4 is critical for transcriptional control of cardiac mitochondrial homeostasis. J Clin Invest 125: 3461‐3476, 2015.
 72.Lopaschuk GD, Jaswal JS. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol 56: 130‐140, 2010.
 73.Loson OC, Song Z, Chen H, Chan DC. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 24: 659‐667, 2013.
 74.Lu W, Sun J, Yoon JS, Zhang Y, Zheng L, Murphy E, Mattson MP, Lenardo MJ. Mitochondrial protein PGAM5 regulates mitophagic protection against cell necroptosis. PLoS One 11: e0147792, 2016.
 75.Lv M, Wang C, Li F, Peng J, Wen B, Gong Q, Shi Y, Tang Y. Structural insights into the recognition of phosphorylated FUNDC1 by LC3B in mitophagy. Protein Cell 8: 25‐38, 2017.
 76.Ma X, Liu H, Murphy JT, Foyil SR, Godar RJ, Abuirqeba H, Weinheimer CJ, Barger PM, Diwan A. Regulation of the transcription factor EB‐PGC1alpha axis by beclin‐1 controls mitochondrial quality and cardiomyocyte death under stress. Mol Cell Biol 35: 956‐976, 2015.
 77.MacVicar T, Langer T. OPA1 processing in cell death and disease: The long and short of it. J Cell Sci 129: 2297‐2306, 2016.
 78.McLelland GL, Lee SA, McBride HM, Fon EA. Syntaxin‐17 delivers PINK1/Parkin‐dependent mitochondrial vesicles to the endolysosomal system. J Cell Biol 214: 275‐291, 2016.
 79.McLelland GL, Soubannier V, Chen CX, McBride HM, Fon EA. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J 33: 282‐295, 2014.
 80.Mellor KM, Bell JR, Young MJ, Ritchie RH, Delbridge LM. Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose‐fed mice. J Mol Cell Cardiol 50: 1035‐1043, 2011.
 81.Melser S, Chatelain EH, Lavie J, Mahfouf W, Jose C, Obre E, Goorden S, Priault M, Elgersma Y, Rezvani HR, Rossignol R, Benard G. Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab 17: 719‐730, 2013.
 82.Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27: 107‐132, 2011.
 83.Moore AS, Holzbaur EL. Dynamic recruitment and activation of ALS‐associated TBK1 with its target optineurin are required for efficient mitophagy. Proc Natl Acad Sci U S A 113: E3349‐E3358, 2016.
 84.Morais VA, Haddad D, Craessaerts K, De Bock PJ, Swerts J, Vilain S, Aerts L, Overbergh L, Grunewald A, Seibler P, Klein C, Gevaert K, Verstreken P, De Strooper B. PINK1 loss‐of‐function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science 344: 203‐207, 2014.
 85.Mozdy AD, McCaffery JM, Shaw JM. Dnm1p GTPase‐mediated mitochondrial fission is a multi‐step process requiring the novel integral membrane component Fis1p. J Cell Biol 151: 367‐380, 2000.
 86.Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T, Oka T, Yasui H, Ueda H, Akazawa Y, Nakayama H, Taneike M, Misaka T, Omiya S, Shah AM, Yamamoto A, Nishida K, Ohsumi Y, Okamoto K, Sakata Y, Otsu K. Bcl‐2‐like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun 6: 7527, 2015.
 87.Murata H, Sakaguchi M, Jin Y, Sakaguchi Y, Futami J, Yamada H, Kataoka K, Huh NH. A new cytosolic pathway from a Parkinson disease‐associated kinase, BRPK/PINK1: Activation of AKT via mTORC2. J Biol Chem 286: 7182‐7189, 2011.
 88.Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 417: 1‐13, 2009.
 89.Nah J, Yuan J, Jung YK. Autophagy in neurodegenerative diseases: From mechanism to therapeutic approach. Mol Cells 38: 381‐389, 2015.
 90.Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ. p62/SQSTM1 is required for Parkin‐induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6: 1090‐1106, 2010.
 91.Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183: 795‐803, 2008.
 92.Narendra D, Walker JE, Youle R. Mitochondrial quality control mediated by PINK1 and Parkin: Links to Parkinsonism. Cold Spring Harb Perspect Biol 4(11): a011338, 2012.
 93.Naylor K, Ingerman E, Okreglak V, Marino M, Hinshaw JE, Nunnari J. Mdv1 interacts with assembled dnm1 to promote mitochondrial division. J Biol Chem 281: 2177‐2183, 2006.
 94.Nguyen TN, Padman BS, Lazarou M. Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol 26: 733‐744, 2016.
 95.Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, Komatsu M, Otsu K, Tsujimoto Y, Shimizu S. Discovery of Atg5/Atg7‐independent alternative macroautophagy. Nature 461: 654‐658, 2009.
 96.Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, Oyabu J, Murakawa T, Nakayama H, Nishida K, Akira S, Yamamoto A, Komuro I, Otsu K. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485: 251‐255, 2012.
 97.Okamoto K, Kondo‐Okamoto N, Ohsumi Y. Mitochondria‐anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17: 87‐97, 2009.
 98.Ong SB, Hausenloy DJ. Mitochondrial morphology and cardiovascular disease. Cardiovasc Res 88: 16‐29, 2010.
 99.Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121: 2012‐2022, 2010.
 100.Osellame LD, Singh AP, Stroud DA, Palmer CS, Stojanovski D, Ramachandran R, Ryan MT. Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission. J Cell Sci 129: 2170‐2181, 2016.
 101.Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, Youle RJ, Mihara K. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 191: 1141‐1158, 2010.
 102.Palikaras K, Lionaki E, Tavernarakis N. Balancing mitochondrial biogenesis and mitophagy to maintain energy metabolism homeostasis. Cell Death Differ 22: 1399‐1401, 2015.
 103.Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, Frazier AE, Ryan MT. MiD49 and MiD51: New components of the mitochondrial fission machinery. EMBO Rep 12: 565‐573, 2011.
 104.Pasdois P, Parker JE, Griffiths EJ, Halestrap AP. The role of oxidized cytochrome C in regulating mitochondrial reactive oxygen species production and its perturbation in ischaemia. Biochem J 436: 493‐505, 2011.
 105.Pellegrino MW, Haynes CM. Mitophagy and the mitochondrial unfolded protein response in neurodegeneration and bacterial infection. BMC Biol 13: 22, 2015.
 106.Picca A, Lezza AM. Regulation of mitochondrial biogenesis through TFAM‐mitochondrial DNA interactions: Useful insights from aging and calorie restriction studies. Mitochondrion 25: 67‐75, 2015.
 107.Piquereau J, Caffin F, Novotova M, Lemaire C, Veksler V, Garnier A, Ventura‐Clapier R, Joubert F. Mitochondrial dynamics in the adult cardiomyocytes: Which roles for a highly specialized cell? Front Physiol 4: 102, 2013.
 108.Piquereau J, Caffin F, Novotova M, Prola A, Garnier A, Mateo P, Fortin D, Huynh le H, Nicolas V, Alavi MV, Brenner C, Ventura‐Clapier R, Veksler V, Joubert F. Down‐regulation of OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation to pressure overload. Cardiovasc Res 94: 408‐417, 2012.
 109.Queliconi BB, Kowaltowski AJ, Gottlieb RA. Bicarbonate increases ischemia‐reperfusion damage by inhibiting mitophagy. PLoS One 11: e0167678, 2016.
 110.Ren M, Phoon CK, Schlame M. Metabolism and function of mitochondrial cardiolipin. Prog Lipid Res 55: 1‐16, 2014.
 111.Richter B, Sliter DA, Herhaus L, Stolz A, Wang C, Beli P, Zaffagnini G, Wild P, Martens S, Wagner SA, Youle RJ, Dikic I. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci U S A 113: 4039‐4044, 2016.
 112.Riehle C, Wende AR, Sena S, Pires KM, Pereira RO, Zhu Y, Bugger H, Frank D, Bevins J, Chen D, Perry CN, Dong XC, Valdez S, Rech M, Sheng X, Weimer BC, Gottlieb RA, White MF, Abel ED. Insulin receptor substrate signaling suppresses neonatal autophagy in the heart. J Clin Invest 123: 5319‐5333, 2013.
 113.Roberts DJ, Miyamoto S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ 22: 248‐257, 2015.
 114.Roberts DJ, Tan‐Sah VP, Ding EY, Smith JM, Miyamoto S. Hexokinase‐II positively regulates glucose starvation‐induced autophagy through TORC1 inhibition. Mol Cell 53: 521‐533, 2014.
 115.Saito T, Asai K, Sato S, Hayashi M, Adachi A, Sasaki Y, Takano H, Mizuno K, Shimizu W. Autophagic vacuoles in cardiomyocytes of dilated cardiomyopathy with initially decompensated heart failure predict improved prognosis. Autophagy 12: 579‐587, 2016.
 116.Saito T, Sadoshima J. Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ Res 116: 1477‐1490, 2015.
 117.Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454: 232‐235, 2008.
 118.Sarraf SA, Raman M, Guarani‐Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW. Landscape of the PARKIN‐dependent ubiquitylome in response to mitochondrial depolarization. Nature 496: 372‐376, 2013.
 119.Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88: 611‐638, 2008.
 120.Scott I, Webster BR, Chan CK, Okonkwo JU, Han K, Sack MN. GCN5‐like protein 1 (GCN5L1) controls mitochondrial content through coordinated regulation of mitochondrial biogenesis and mitophagy. J Biol Chem 289: 2864‐2872, 2014.
 121.Sharp WW, Fang YH, Han M, Zhang HJ, Hong Z, Banathy A, Morrow E, Ryan JJ, Archer SL. Dynamin‐related protein 1 (Drp1)‐mediated diastolic dysfunction in myocardial ischemia‐reperfusion injury: Therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. FASEB J 28: 316‐326, 2014.
 122.Shi G, McQuibban GA. The mitochondrial rhomboid protease PARL is regulated by PDK2 to integrate mitochondrial quality control and metabolism. Cell Rep 18: 1458‐1472, 2017.
 123.Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, Troconso JC, Dawson VL, Dawson TM. PARIS (ZNF746) repression of PGC‐1alpha contributes to neurodegeneration in Parkinson's disease. Cell 144: 689‐702, 2011.
 124.Shirakabe A, Zhai P, Ikeda Y, Saito T, Maejima Y, Hsu CP, Nomura M, Egashira K, Levine B, Sadoshima J. Drp1‐dependent mitochondrial autophagy plays a protective role against pressure overload‐induced mitochondrial dysfunction and heart failure. Circulation 133: 1249‐1263, 2016.
 125.Shires SE, Gustafsson AB. Mitophagy and heart failure. J Mol Med (Berl) 93: 253‐262, 2015.
 126.Shoji‐Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z, Kinch L, Wilkins AD, Sun Q, Pallauf K, MacDuff D, Huerta C, Virgin HW, Helms JB, Eerland R, Tooze SA, Xavier R, Lenschow DJ, Yamamoto A, King D, Lichtarge O, Grishin NV, Spector SA, Kaloyanova DV, Levine B. Identification of a candidate therapeutic autophagy‐inducing peptide. Nature 494: 201‐206, 2013.
 127.Smirnova E, Griparic L, Shurland DL, van der Bliek AM. Dynamin‐related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12: 2245‐2256, 2001.
 128.Song M, Chen Y, Gong G, Murphy E, Rabinovitch PS, Dorn GW, II. Super‐suppression of mitochondrial reactive oxygen species signaling impairs compensatory autophagy in primary mitophagic cardiomyopathy. Circ Res 115: 348‐353, 2014.
 129.Song M, Gong G, Burelle Y, Gustafsson AB, Kitsis RN, Matkovich SJ, Dorn GW, II. Interdependence of Parkin‐mediated mitophagy and mitochondrial fission in adult mouse hearts. Circ Res 117: 346‐351, 2015.
 130.Song M, Mihara K, Chen Y, Scorrano L, Dorn GW, II. Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab 21: 273‐285, 2015.
 131.Soubannier V, McLelland GL, Zunino R, Braschi E, Rippstein P, Fon EA, McBride HM. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr Biol 22: 135‐141, 2012.
 132.Stotland A, Gottlieb RA. Alpha‐MHC MitoTimer mouse: In vivo mitochondrial turnover model reveals remarkable mitochondrial heterogeneity in the heart. J Mol Cell Cardiol 90: 53‐58, 2016.
 133.Strappazzon F, Nazio F, Corrado M, Cianfanelli V, Romagnoli A, Fimia GM, Campello S, Nardacci R, Piacentini M, Campanella M, Cecconi F. AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1. Cell Death Differ 22: 517, 2015.
 134.Strappazzon F, Vietri‐Rudan M, Campello S, Nazio F, Florenzano F, Fimia GM, Piacentini M, Levine B, Cecconi F. Mitochondrial BCL‐2 inhibits AMBRA1‐induced autophagy. EMBO J 30: 1195‐1208, 2011.
 135.Sugiura A, McLelland GL, Fon EA, McBride HM. A new pathway for mitochondrial quality control: Mitochondrial‐derived vesicles. EMBO J 33: 2142‐2156, 2014.
 136.Sun N, Yun J, Liu J, Malide D, Liu C, Rovira II, Holmstrom KM, Fergusson MM, Yoo YH, Combs CA, Finkel T. Measuring in vivo mitophagy. Mol Cell 60: 685‐696, 2015.
 137.Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K. Mitotic phosphorylation of dynamin‐related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282: 11521‐11529, 2007.
 138.Tahrir FG, Knezevic T, Gupta MK, Gordon J, Cheung JY, Feldman AM, Khalili K. Evidence for the role of BAG3 in mitochondrial quality control in cardiomyocytes. J Cell Physiol 232: 797‐805, 2017.
 139.Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, Youle RJ. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191: 1367‐1380, 2010.
 140.Tsuboyama K, Koyama‐Honda I, Sakamaki Y, Koike M, Morishita H, Mizushima N. The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science 354: 1036‐1041, 2016.
 141.Valente EM, Abou‐Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez‐Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW. Hereditary early‐onset Parkinson's disease caused by mutations in PINK1. Science 304: 1158‐1160, 2004.
 142.van der Bliek AM, Shen Q, Kawajiri S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol 5(6): a011072, 2013.
 143.Van Humbeeck C, Cornelissen T, Hofkens H, Mandemakers W, Gevaert K, De Strooper B, Vandenberghe W. Parkin interacts with Ambra1 to induce mitophagy. J Neurosci 31: 10249‐10261, 2011.
 144.Varanita T, Soriano ME, Romanello V, Zaglia T, Quintana‐Cabrera R, Semenzato M, Menabo R, Costa V, Civiletto G, Pesce P, Viscomi C, Zeviani M, Di Lisa F, Mongillo M, Sandri M, Scorrano L. The OPA1‐dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab 21: 834‐844, 2015.
 145.Vasquez‐Trincado C, Garcia‐Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA, Lavandero S. Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol 594: 509‐525, 2016.
 146.Vincow ES, Merrihew G, Thomas RE, Shulman NJ, Beyer RP, MacCoss MJ, Pallanck LJ. The PINK1‐Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc Natl Acad Sci U S A 110: 6400‐6405, 2013.
 147.Wai T, Garcia‐Prieto J, Baker MJ, Merkwirth C, Benit P, Rustin P, Ruperez FJ, Barbas C, Ibanez B, Langer T. Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science 350: aad0116, 2015.
 148.Wang J, Fang Y, Yan L, Yuan N, Zhang S, Xu L, Nie M, Zhang X, Wang J. Erythroleukemia cells acquire an alternative mitophagy capability. Sci Rep 6: 24641, 2016.
 149.Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D, Rice S, Steen J, LaVoie MJ, Schwarz TL. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147: 893‐906, 2011.
 150.Wauer T, Simicek M, Schubert A, Komander D. Mechanism of phospho‐ubiquitin‐induced PARKIN activation. Nature 524: 370‐374, 2015.
 151.Wei Y, Chiang WC, Sumpter R, Jr., Mishra P, Levine B. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168: 224‐238e210, 2017.
 152.Wiedemann N, Frazier AE, Pfanner N. The protein import machinery of mitochondria. J Biol Chem 279: 14473‐14476, 2004.
 153.Wu S, Zhou F, Zhang Z, Xing D. Bax is essential for Drp1‐mediated mitochondrial fission but not for mitochondrial outer membrane permeabilization caused by photodynamic therapy. J Cell Physiol 226: 530‐541, 2011.
 154.Wu W, Tian W, Hu Z, Chen G, Huang L, Li W, Zhang X, Xue P, Zhou C, Liu L, Zhu Y, Zhang X, Li L, Zhang L, Sui S, Zhao B, Feng D. ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep 15: 566‐575, 2014.
 155.Xie Z, Lau K, Eby B, Lozano P, He C, Pennington B, Li H, Rathi S, Dong Y, Tian R, Kem D, Zou MH. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 60: 1770‐1778, 2011.
 156.Xu X, Kobayashi S, Chen K, Timm D, Volden P, Huang Y, Gulick J, Yue Z, Robbins J, Epstein PN, Liang Q. Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J Biol Chem 288: 18077‐18092, 2013.
 157.Yamashita SI, Jin X, Furukawa K, Hamasaki M, Nezu A, Otera H, Saigusa T, Yoshimori T, Sakai Y, Mihara K, Kanki T. Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy. J Cell Biol 215: 649‐665, 2016.
 158.Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12: 9‐14, 2011.
 159.Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science 337: 1062‐1065, 2012.
 160.Yun J, Finkel T. Mitohormesis. Cell Metab 19: 757‐766, 2014.
 161.Zaffagnini G, Martens S. Mechanisms of selective autophagy. J Mol Biol 428: 1714‐1724, 2016.
 162.Zhang H, Bosch‐Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL. Mitochondrial autophagy is an HIF‐1‐dependent adaptive metabolic response to hypoxia. J Biol Chem 283: 10892‐10903, 2008.
 163.Zhang H, Wang P, Bisetto S, Yoon Y, Chen Q, Sheu SS, Wang W. A novel fission‐independent role of dynamin‐related protein 1 in cardiac mitochondrial respiration. Cardiovasc Res 113: 160‐170, 2017.
 164.Zhang T, Xue L, Li L, Tang C, Wan Z, Wang R, Tan J, Tan Y, Han H, Tian R, Billiar TR, Tao WA, Zhang Z. BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy. J Biol Chem 291: 21616‐21629, 2016.
 165.Zhang W, Ren H, Xu C, Zhu C, Wu H, Liu D, Wang J, Liu L, Li W, Ma Q, Du L, Zheng M, Zhang C, Liu J, Chen Q. Hypoxic mitophagy regulates mitochondrial quality and platelet activation and determines severity of I/R heart injury. Elife 5: e21407, 2016.
 166.Zhao T, Huang X, Han L, Wang X, Cheng H, Zhao Y, Chen Q, Chen J, Cheng H, Xiao R, Zheng M. Central role of mitofusin 2 in autophagosome‐lysosome fusion in cardiomyocytes. J Biol Chem 287: 23615‐23625, 2012.

Teaching Material

J. Nah, S. Miyamoto, J. Sadoshima. Mitophagy as a Protective Mechanism against Myocardial Stress. Compr Physiol 7: 2017, 1407-1424. doi:10.1002/cphy.c170005

Didactic Synopsis

The information in this article will help with the teaching of the following specific topics at the graduate or advanced undergraduate level. We described how the structure and function of mitochondria are maintained in cardiomyocytes at baseline and in response to stress. The major teaching points are:

  • The quality of mitochondria in cells is maintained by well-coordinated actions of mitochondrial fission and fusion, mitophagy, and mitochondrial biogenesis.
  • A mitochondria-specific form of macroautophagy, namely, mitophagy, plays a major role in the degradation of mitochondria.
  • Mitochondrial depolarization activates PINK1, which in turn recruits Parkin to the outer mitochondrial membrane through phosphorylation of Mfn2 or Parkin, which turn recruits LC3 receptors/adapters and induces sequestration of damaged mitochondria by autophagosomes.
  • Although mitophagy is mediated primarily by PINK1-Parkin-dependent mechanisms, other alternative mechanisms exist to maintain the quality of mitochondria.
  • Cardiomyocytes have a high rate of mitophagy, which plays an important role in maintaining mitochondrial homeostasis in cardiomyocytes.
  • Mitophagy is activated during cardiac stress as a compensatory mechanism whereas insufficient activation of mitophagy leads to mitochondrial dysfunction and heart failure.

Didactic Legends

The figures—in a freely downloadable PowerPoint format—can be found on the Images tab along with the formal legends published in the article. The following legends to the same figures are written to be useful for teaching.

Figure 1. Teaching Points: The quality of mitochondria is maintained by mitochondrial fusion, fission, mitophagy, and mitochondrial biogenesis. These four steps are mediated by distinct molecular mechanisms, but their activities are regulated in a coordinated manner through less well-characterized mechanisms. The goal of these processes is to maintain the level of healthy mitochondria.

Figure 2. Teaching Points: PINK1-Parkin-mediated mitophagy is one of the most well-characterized forms of mitophagy in many cell types. It is activated by mitochondrial depolarization, marks damaged mitochondria through polyubiquitination, and recruits receptors/adapters for LC3. These mechanisms allow damaged mitochondria to be selectively sequestrated by autophagosomes and transferred to lysosomes for degradation.

Figure 3. Teaching Points: Although PINK1-Parkin-mediated mitophagy is one of the most well-characterized mechanisms of mitophagy, there are many forms of autophagy which do not require Parkin.

Figure 4. Teaching Points: Mitophagy is activated by myocardial stress in many forms of heart disease. Activation of mitophagy in these conditions is generally protective and preserves mitochondrial function. Insufficient activation or downregulation of mitophagy induces mitochondrial dysfunction and leads to myocardial injury or heart failure.


Related Articles:

Mitochondrial Dynamics and Heart Failure
Myocardial Cell Signaling During the Transition to Heart Failure
Ischemia/Reperfusion

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Jihoon Nah, Shigeki Miyamoto, Junichi Sadoshima. Mitophagy as a Protective Mechanism against Myocardial Stress. Compr Physiol 2017, 7: 1407-1424. doi: 10.1002/cphy.c170005