Comprehensive Physiology Wiley Online Library

Molecular Imaging of the Heart

Full Article on Wiley Online Library



ABSTRACT

Multimodality cardiovascular imaging is routinely used to assess cardiac function, structure, and physiological parameters to facilitate the diagnosis, characterization, and phenotyping of numerous cardiovascular diseases (CVD), as well as allows for risk stratification and guidance in medical therapy decision‐making. Although useful, these imaging strategies are unable to assess the underlying cellular and molecular processes that modulate pathophysiological changes. Over the last decade, there have been great advancements in imaging instrumentation and technology that have been paralleled by breakthroughs in probe development and image analysis. These advancements have been merged with discoveries in cellular/molecular cardiovascular biology to burgeon the field of cardiovascular molecular imaging. Cardiovascular molecular imaging aims to noninvasively detect and characterize underlying disease processes to facilitate early diagnosis, improve prognostication, and guide targeted therapy across the continuum of CVD. The most‐widely used approaches for preclinical and clinical molecular imaging include radiotracers that allow for high‐sensitivity in vivo detection and quantification of molecular processes with single photon emission computed tomography and positron emission tomography. This review will describe multimodality molecular imaging instrumentation along with established and novel molecular imaging targets and probes. We will highlight how molecular imaging has provided valuable insights in determining the underlying fundamental biology of a wide variety of CVDs, including: myocardial infarction, cardiac arrhythmias, and nonischemic and ischemic heart failure with reduced and preserved ejection fraction. In addition, the potential of molecular imaging to assist in the characterization and risk stratification of systemic diseases, such as amyloidosis and sarcoidosis will be discussed. © 2019 American Physiological Society. Compr Physiol 9:477‐533, 2019.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Lipid‐based nanoparticles for molecular imaging. (A) Schematic representation of amphiphilic lipids. (I) Amphiphiles consist of a hydrophilic head and a hydrophobic tail. (II) Micelle‐forming lipids have a relatively large head compared with the hydrophobic part, whereas (III) bilayer‐forming lipids usually have two hydrophobic tails. (IV) PEG‐lipids are used to improve pharmacokinetic properties and (V) cholesterol is used to stabilize liposomes. (B) Possible lipid aggregates for in vivo use. (I) Micelles can be prepared from micelle‐forming lipids and from PEG‐lipids. (II) A conventional liposome consists of a phospholipid bilayer. (III) Improved stabilization of liposomes can be achieved by incorporating a small amount of PEG‐lipids and cholesterol. (IV) Microemulsions consist of a surfactant (amphiphile) monolayer covering oil. (V) Micelles can contain a hydrophobic nanoparticle. (VI) Bilayer on nanoparticles of silica, mica, glass, or iron oxide. Modified, with permission, from Mulder WJ, NMR Biomed. 2006 ().
Figure 2. Figure 2. Schematic representation of the relative strengths of each imaging modality as it relates to multiple facets of cardiovascular imaging. The weight of the connecting arrows on the left indicates the relative strengths of each imaging modality as it relates to anatomical (e.g., spatial resolution), physiological (e.g., flow, function), metabolic and molecular imaging. The connecting arrows on the right links each imaging modality to specific biological targets, including: thrombosis, angiogenesis, inflammation, autonomic nervous system function, the renin angiotensin‐aldosterone system (RAAS), cell death, extracellular matrix, and tracking of cell and gene therapies. CT, computed tomography; MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy.
Figure 3. Figure 3. Schematic representation of cardiac metabolic imaging, including imaging of myocardial perfusion, substrate utilization [glycolysis, β‐oxidation, and tricarboxylic acid cycle (TCA) cycle], and high‐energy phosphate metabolism: Myocardial perfusion can be quantified with gadolinium (Gd) using first‐pass MRI or by using PET (15O‐water, 82Rb, or 13NH4) or SPECT (99mTc‐tetrofosmin, 99mTc‐sestamibi or 201Tl) radiotracers. Substrate utilization: Proton‐MRS (1H‐MRS) is used for static measurement of the triglyceride (TG) pool. 13C‐octanoate, 1‐13C‐pyruvate, and 2‐13C‐pyruvate can be used as tracers for hyperpolarized carbon‐MRS (13C‐MRS). 13C‐octanoate can be found downstream as 13C‐acetylcarnitine and can be used as an estimate of fatty acid uptake and oxidation. 1‐13C‐pyruvate will be converted to 13CO2 and 13C‐bicarbonate and can be used to determine the pyruvate dehydrogenase (PDH) fluxes as an estimate of glucose oxidation. By tracing 2‐13C‐pyruvate, the complete TCA cycle can be visualized, as the 13C label will be retained in acetyl‐CoA and downstream in lactate, acetylcarnitine, citrate, and glutamate. Metabolic trapping of β‐methyl‐11C‐heptadecanoic acid (β‐Me‐HA) and 2‐deoxy‐2‐18F‐fluoro‐D‐glucose (FDG‐glucose) enables dynamic estimates of fatty acid and glucose uptake by PET, respectively. 3‐ and 5‐Methyl‐17‐18F‐fluoroheptadecanoic acid (3‐MFHA and 5‐MFHA), 16‐18F‐fluoro‐4‐thiapalmitic acid (FTP), and 14‐18F‐fluoro‐6‐thiaheptadecanoic acid (FTHA) are used to estimate fatty acid uptake and metabolism (although metabolism and kinetics of these traces are not fully elucidated). The metabolically cleared 11C‐palmitate is used for estimation of fatty acid uptake, oxidation, and esterification; 11C‐acetate is used for the assessment of TCA activity coupled to oxygen consumption in the electron transport chain (ETC). 11C‐glucose, which is fully metabolized, enables kinetic modeling of glucose metabolism. Fatty acid tracers for SPECT are the metabolically trapped 123I‐β‐methyl‐p‐iodophenylpentadecanoic acid (BMIPP) and the fully metabolized 123I‐iodophenylpentadecanoic acid (IPPA). High‐energy phosphate metabolism: In the cytoplasm, adenosine diphosphate (ADP), formed by hydrolysis of adenosine triphosphate (ATP), can be resynthesized by cytoplasmatic creatine kinase (MM‐CK) to ATP through hydrolysis of phosphocreatine (PCr). PCr can be quickly resynthesized by mitochondrial creatine kinase (Mi‐CK) through hydrolysis of newly formed ATP in the mitochondria. PCr levels are dependent on cellular creatine (Cr) uptake, as creatine is not synthesized in the heart but actively taken up by cardiomyocytes. 1H‐MRS and phosphorus‐MRS (31P‐MRS) are used for measurement of Cr and PCr/ATP ratio, respectively. Modified, with permission, from van de Weijer T, J Appl Physiol (1985). 2018 ().
Figure 4. Figure 4. Low‐flow ischemia leads to translocation of GLUT‐4 and GLUT‐1 to the sarcolemma: (I) Immunofluorescence of glucose transporter‐4 (GLUT‐4) and GLUT‐1 in sections from nonischemic (A) and ischemic (C) regions of left ventricle by confocal microscopy. (II) Myocardial extraction (% of arterial) of glucose and lactate in the left anterior descending (LAD) and left circumflex coronary (LCx) regions during the 30 min before ischemia (Baseline) and during the last 30 min of low‐flow ischemia (Low Flow). AV extractions were calculated from quadruplicate time points. * P < 0.01 versus both baseline LAD extraction and LCx extraction during low‐flow ischemia. Values represent mean ± SEM (n = 9). (III) Sarcolemma and intracellular membrane content of GLUT‐4 and GLUT‐1 in myocardium from nonischemic and ischemic regions of the left ventricle. Glucose transporter content was quantified by 125I‐protein A binding (cpm/μg membrane protein) multiplied by yield of membrane fraction. Data for each membrane fraction are expressed as a percentage of total GLUT‐4 or GLUT‐1 content in sarcolemma and intracellular membrane fractions. Values are mean ± SEM (n = 9). * P < 0.05 versus nonischemic myocardium. Modified, with permission, from Young LH, Circulation. 1997 ().
Figure 5. Figure 5. Correlation of the myocardial free fatty‐acid analog, p‐123I‐iodophenylpentadecanoic acid (IPPA) retention with 2‐[18F] fluoro‐2‐deoxy‐D‐glucose (18F‐FDG) accumulation during experimental low‐flow ischemia: (I) After baseline (BASE) measurements, partial coronary stenosis was created in canines and maintained throughout protocol. Arterial and venous samples were obtained for metabolic measurements, and radiolabeled microspheres were injected at times designated. IPPA was injected 60 min after creation of stenosis. 18F‐FDG was injected 90 min later. (II) Myocardial 123I‐IPPA and 18F‐FDG retained activities expressed as nonischemic percentage for all segments (n = 576). Segments were segregated on basis of normalized flows in segments into 20%‐flow increments. Numbers within each bar represent number of segments falling into each flow range. (III) (A) Serial short‐axis and vertical long (v‐long) axis SPECT 123I‐IPPA images from a representative dog displayed in standard format. Time after injection is designated on left margin. Note perfusion defect in anteroseptal and anteroapical regions, which normalizes over time. (B) Myocardial 123I‐IPPA clearance curves derived from ischemic and nonischemic regions for same dog. (C) Early clearance data for same dog are also displayed as semilogarithmic plot. Early myocardial clearance appears linear on this semilogarithmic plot, suggesting early monoexponential clearance of 123I‐IPPA. Delayed myocardial 123I‐IPPA clearance is seen in ischemic region. This research was originally published in JNM. Shi CQ, Young LH, Daher E, DiBella EV, Liu YH, Heller EN, Zoghbi S, Wackers FJ, Soufer R, and Sinusas AJ. Correlation of myocardial p‐(123)I‐iodophenylpentadecanoic acid retention with ()F‐FDG accumulation during experimental low‐flow ischemia. J Nucl Med 43: 421‐431, 2002. © SNMMI. ().
Figure 6. Figure 6. SPECT imaging showing delayed recovery of regional fatty acid metabolism in heart tissue after transient exercise‐induced ischemia (“ischemic memory”): Representative stress and rest short‐axis thallium tomograms after reinjection (left two panels) demonstrate a reversible inferior defect consistent with exercise‐induced myocardial ischemia. Cardiac SPECT of a patient injected with radiolabeled [123I]‐β‐methyl‐p‐iodophenyl‐pentadecanoic acid (BMIPP), acquired at rest 22 h after exercise‐induced ischemia, shows persistent metabolic abnormality in the inferior region despite complete recovery of regional perfusion (center panel). Retention of BMIPP in the heart of a normal adult is shown as a control (right panel). Modified, with permission, from Taegtmeyer H, Nat Clin Pract Cardiovasc Med. 2008 ().
Figure 7. Figure 7. Quantitative PET imaging detects early metabolic remodeling in a mouse model of pressure‐overload left ventricular hypertrophy in vivo: Gated end‐diastolic transverse 18F‐FDG PET images for sham mice, transverse aortic constriction (TAC) mice, and TAC mice treated with propranolol at baseline, day 1, and day 7 after surgery are shown. All serial scans are from same animals. Images show increase in 18F‐FDG uptake in TAC mice starting at day 1, indicative of metabolic adaptation in pressure‐overload left ventricular hypertrophy. This research was originally published in JNM. Zhong M, Alonso CE, Taegtmeyer H, and Kundu BK. Quantitative PET imaging detects early metabolic remodeling in a mouse model of pressure‐overload left ventricular hypertrophy in vivo. J Nucl Med 54: 609‐615, 2013. © SNMMI. ().
Figure 8. Figure 8. PET scan showing perfusion–metabolism mismatch in hibernating heart tissue as an example of preserved cardiometabolic reserve: (A) 82Rubidium (82Rb) PET in short‐axis view shows markedly decreased perfusion in the apical, inferior, inferolateral, and septal regions of the left ventricle at rest, which extends from distal to basal slices. (B) Images acquired under glucose‐loaded conditions, labeled with 18F‐fluorodeoxyglucose (18F‐FDG), show perfusion‐metabolism mismatch pattern (the scintigraphic hallmark of hibernation) in all abnormally perfused myocardial regions at rest. An exception is the anteroseptal region, which demonstrates matched perfusion‐metabolism pattern (compatible with scarred myocardium). Modified, with permission, from Taegtmeyer H, Nat Clin Pract Cardiovasc Med. 2008 ().
Figure 9. Figure 9. Increased 18F‐fluorodeoxyglucose (18F‐FDG) accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol: Representative midventricular transaxial 18F‐FDG positron emission tomography images of a patient with primary pulmonary hypertension before and after the pulmonary vasodilator therapy with epoprostenol for three months. (A) Before the pulmonary vasodilator therapy, the right ventricular (RV) 18F‐FDG accumulation was highly increased and the corrected RV standardized uptake value (SUV) of 18F‐FDG was 13.4. (B) After the therapy, the corrected RV SUV of 18F‐FDG markedly decreased to 7.5. (Lower panels) Correlations between the percentage change of RV SUV of 18F‐FDG corrected for the partial volume effect and the percentage change of the pulmonary vascular resistance and peak‐systolic wall stress in the RV free wall. Modified, with permission, from Oikawa M, J Am Coll Cardiol. 2005 ().
Figure 10. Figure 10. Evaluation of the cardioprotective effects of Fv‐HSP72 by Annexin‐V based apoptosis imaging in a rabbit ischemia‐reperfusion model: the effect of a single intravenous dose of Fv‐HSP72 [the heat shock protein‐72 (HSP72) coupled to a single‐chain variable fragment (Fv) of monoclonal antibody 3E10 (3E10Fv)] was tested in rabbits undergoing left coronary artery occlusion for 40 min followed by 3 h reperfusion. Higher and more extensive uptake of 99mTc‐annexin‐V was seen in the control groups compared with the two therapy groups (pre and post ischemia reperfusion) in in vivo sagittal slices of SPECT images obtained 3 h after the injection of 99mTc‐annexin‐V (white circle = apex) and in ex vivo images of excised heart (traced with dotted lines, arrows = high uptake area; asterisk = apex). Modified, with permission, from Tanimoto T, J Am Coll Cardiol. 2017 ().
Figure 11. Figure 11. Molecular MRI imaging of cardiomyocyte apoptosis with AnxCLIO‐Cy5.5 (A, D, G) and simultaneous delayed enhancement (DE) MRI of necrosis with Gadolinium‐DTPA‐NBD (B, E, H) in a mouse with severe myocardial injury after transient coronary artery ligation (35 min): Images at three slice locations are shown, moving progressively from the midventricular level (A and B) to the left ventricular apex (G and H). (B) At the midventricular level, only a small area in the subendocardium of the lateral wall shows DE (red arrows). (E and H) The extent of DE increases progressively in the more apical slices (red arrows) and is fairly extensive at the apex. Although the accumulation of AnxCLIO‐Cy5.5 is fairly transmural, DE of Gd‐DTPA‐NBD is seen predominantly in the subendocardium. (C, F, and I) Immunohistochemistry for Gd‐DTPA‐NBD confirming the in vivo MRI findings. (C) Control area in the uninjured septum showing no evidence of DE (magnification × 200). (F) (× 200) and (I) (× 400) Sections from the antero‐apical wall of the left ventricle show positive staining for Gd‐DTPA‐NBD in areas of the subendocardium with significant amounts of cardiomyocyte degeneration. Modified, with permission, from Sosnovik DE, Circ Cardiovasc Imaging. 2009 ().
Figure 12. Figure 12. Ferumoxytol‐enhanced magnetic resonance imaging assessing inflammation after myocardial infarction: examples of myocardial edema and ferumoxytol enhancement in the infarct zone of 3 patients after myocardial infarction (1—anteroseptal, 2—lateral, and 3—inferior). Accumulation of ferumoxytol reduces T2* decay time and creates signal deficits that can be quantified and visualized using T2* MRI. To describe ferumoxytol accumulation, the relaxation rate, R2*, which is the inverse of the mean T2* was calculated for each region of interest, where the higher the value, the greater the ferumoxytol accumulation. The separate columns illustrate late gadolinium enhancement (LGE, first column), ferumoxytol enhancement (R2* map, second and third column) and edema (T2 map, fourth and fifth columns). At early time points (up to 10 days) increased inflammation was detected by ferumoxytol (dark regions on R2* maps) and edema was detected on T2 maps (light region). These changes have improved or have resolved by 3 months. Modified, with permission, from Stirrat CG, Heart. 2017 ().
Figure 13. Figure 13. Prospective evaluation of 18F‐Fluorodeoxyglucose (18F‐FDG) uptake after acute myocardial infarction by PET/MRI imaging as a prognostic marker of functional outcome: (Left panel) Short‐ and long‐axis views of late gadolinium enhancement (LGE) MRI (left), 18F‐FDG–PET images (middle), and overlay (right) of patients with anterior (A) or inferior (B) myocardial infarction. (Right Panel) (A) Correlation between LGE extent and Δ ejection fraction (EF at follow‐up ‐ EF at initial imaging), Δ end diastolic volume (EDV at follow‐up – EDV at initial imaging), and Δ end‐systolic volume (ESV at follow‐up – ESV at initial imaging). (B) Correlation between postischemic 18F‐FDG uptake in the infarct area mean standard uptake value (SUVmean) and ΔEF, ΔEDV and ΔESV. (C) Segmental analysis of the wall motion recovery at follow‐up. Comparison of LGE transmurality and 18F‐FDG uptake in the infarct (SUVmean). Modified, with permission, from Rischpler C, Circ Cardiovasc Imaging. 2016 ().
Figure 14. Figure 14. Mitochondrial translocator protein (TSPO)‐targeted positron emission tomography reveals myocardial inflammation and neuroinflammation in patients after acute myocardial infarction (AMI): (A) tomographic images of the heart display elevated TSPO signal in the hypoperfused infarct region in a representative patient (arrows). Images were acquired 4 to 6 days after reperfusion for first AMI. (B) Parametric brain images (statistical parametric mapping) show regional group difference of TSPO signal between infarct patients and healthy volunteers, superimposed to a magnetic resonance imaging template. Elevation of signal is regionally seen in the frontal and temporal cortex. HLA, horizontal long axis; VLA, vertical long axis. Modified, with permission, from Thackeray JT, J Am Coll Cardiol. 2018 ().
Figure 15. Figure 15. Myocardial contrast echocardiographic (MCE) ischemic memory in dogs with selectin‐targeted microbubbles: (A) mean (± SEM) video intensity in the risk and remote areas after selectin‐targeted microbubble administration in dogs undergoing ischemia‐reperfusion, and in both left anterior descending coronary artery and left circumflex territories together in closed‐chest nonischemic controls (n for closed‐chest represents region rather than animal number). (B) Example of MCE from a closed‐chest control animal. (C‐E) Examples of MCE, triphenyltetrazolium chloride staining and risk area by method of intracoronary injection of contrast from a single animal undergoing left circumflex ischemia reperfusion. ANOVA, analysis of variance. Modified, with permission, from Mott B, JACC Cardiovasc Imaging. 2016 ().
Figure 16. Figure 16. Patients with imaging evidence of active cardiac sarcoidosis on hybrid PET/MRI: late gadolinium enhancement (LGE) MRI images on the left with hybrid 18F‐fluorodeoxyglucose (18F‐FDG) PET/MRI images on the right. (A) Subepicardial (near transmural) LGE in the basal anteroseptum extending in to the right ventricular free wall with increased 18F‐FDG uptake localizing to exactly the same region on fused PET/MRI. (B) Subepicardial LGE in the basal anterolateral wall with increased 18F‐FDG uptake colocalizing to exactly that region on PET/MRI. (C) Patchy midwall LGE in the anterolateral wall with matched increased 18F‐FDG uptake on PET/MRI. (D) Multifocal LGE in the lateral wall with matched increased 18F‐FDG uptake on PET/MRI. Modified, with permission, from Dweck MR, JACC Cardiovasc Imaging. 2018 ().
Figure 17. Figure 17. 11C‐Methionine PET of myocardial inflammation in a rat model of experimental autoimmune myocarditis (EAM): (A) representative 11C‐methionine PET images in a rat model of EAM 30 min after intravenous tracer administration. Strong focal cardiac 11C‐methionine uptake was observed in EAM rats but not in control animals. Extracardiac tracer accumulation in thymus (asterisk) and the liver (arrowheads) was noted in both EAM and control rats, whereas respective tracer activities in lungs and blood pool were rather low. (B) Cardiac tracer uptake in EAM rats (black bar) was significantly higher than that in control rats (white bar). (C) Representative short‐axis PET images and time‐activity curves of dynamic PET imaging in EAM rat. Ten to 20 min after administration, tracer uptake increased in heart together with rapid clearance of blood activity. Cardiac signals remained stable for 30 to 40 min. Gray scale images serve as reference for location of heart. This research was originally published in JNM. Maya Y, Werner RA, Schutz C, Wakabayashi H, Samnick S, Lapa C, Zechmeister C, Jahns R, Jahns V, and Higuchi T. 11C‐Methionine PET of Myocardial Inflammation in a Rat Model of Experimental Autoimmune Myocarditis. J Nucl Med 57: 1985‐1990, 2016. © SNMMI. ().
Figure 18. Figure 18. In vivo and ex vivo 111In‐RP748 and 99mTc‐sestamibi (99mTc‐MIBI) images from dogs with chronic infarction: (A) Serial in vivo 111In‐RP748 SPECT short axis, vertical long axis (VLA), and horizontal long axis (HLA) images in a dog 3 weeks after left anterior descending coronary artery (LAD) infarction at 20 min and 75 min after injection in standard format. 111In‐RP748 SPECT images were registered with 99mTc‐MIBI perfusion images (third row). The 75‐min 111In‐RP748 SPECT images were colored red and fused with 99mTc‐MIBI images (green) to better demonstrate localization of 111In‐RP748 activity within the heart (color fusion, bottom row). Right ventricular (RV) and left ventricular (LV) blood pool activity is seen at 20 min. White arrows indicate region of increased 111In‐RP748 uptake in anterior wall. This corresponds to the anteroapical 99mTc‐sestamibi perfusion defect (yellow arrows). (B) Sequential 99mTc‐sestamibi (top row) and 111In‐RP748 in vivo SPECT HLA images at 90 min after injection (middle row) from a dog at 8 h (acute), 1 week, and 3 weeks after LAD infarction. Increased myocardial 111In‐RP748 uptake is seen in the anteroapical wall at all three time points. Color fusion 99mTc‐MIBI (green) and 111In‐RP748 (red) images (bottom row) demonstrate 111In‐RP748 uptake within 99mTc‐MIBI perfusion defect. (C) Ex vivo 99mTc‐sestamibi (left) and 111In‐RP748 (center) images of myocardial slices from a dog 3 weeks after LAD occlusion, with color fusion image on the right. Short axis slices are in the standard orientation. Yellow arrows indicate anterior location of nontransmural perfusion defect region; white arrows indicate corresponding area of increased 111In‐RP748 uptake. Reprinted with permission ().
Figure 19. Figure 19. Assessment of cardiac αVβ3 integrin expression following acute myocardial infarction in humans by 18F‐Fluciclatide PET imaging: (Left panel) 18F‐Fluciclatide uptake in three patients with recent subendocardial myocardial infarction (MI). (A) Patient 1, 13 days after anterior MI, displaying a short‐axis PET image of the left ventricle with crescentic 18F‐fluciclatide uptake that correlates with the interventricular septum and anterior wall on CT angiography (B). The fused PET/CT‐angiography image (C) shows this uptake to correspond exactly with the region of late gadolinium enhancement (LGE) on magnetic resonance imaging (MRI) (D). Further delineation of myocardial uptake on PET/CT is clearer in the two‐chamber view (E) and on a fused CT/three‐dimensional‐Patlak image, which shows this uptake to follow a watershed‐pattern emerging from the coronary stents present in the left anterior descending coronary artery (F). (G and H) Patient 2, 8 days following anterior MI, displaying focal uptake of 18F‐fluciclatide in the anterior wall and apex in the three‐chamber view on PET/CT (G) which corresponds to the region of infarction on LGE MRI imaging (H). (I and J) Patient 3, showing focal uptake of 18F‐fluciclatide in the inferior wall 19 days following MI on PET/CT (I) that again corresponds to the infarction on MRI LGE imaging (J). (Right Panel) 18F‐Fluciclatide uptake in MI is shown. Uptake of 18F‐fluciclatide in (A) patients with acute MI at 2 and 10 weeks, patients with chronic total occlusion (CTO) and healthy control subjects is shown. Uptake was greatest at 2 weeks after MI (B). 18F‐Fluciclatide uptake in the acute MI group was greater in regions of hypokinesis when compared with sites of normal function or akinesis (C). This translated to a higher 18F‐fluciclatide uptake in those regions, which subsequently improved in function on follow‐up cardiac magnetic resonance (D). CTO, chronic total occlusion; TBR, tissue‐to‐background ratio. WMA, wall motion abnormality. Modified, with permission, from Jenkins WS, Heart. 2017 ().
Figure 20. Figure 20. Postinfarction myocardial scarring in mice: molecular MRI imaging with use of a collagen‐targeting contrast agent: Midventricular short‐axis double inversion‐recovery gradient‐echo MRI images (A, B, D, and E) and corresponding picrosirius red‐stained histologic sections (C and F) of the mouse left ventricle 6 weeks after left anterior descending artery occlusion‐reperfusion. Arrows point to area of scarring. (A and D) Standard anatomic MR images acquired by using a double inversion‐recovery gradient‐echo sequence. (B and E) Midventricular short‐axis MR images of the left ventricles at two section locations obtained 40 min after injection of a gadolinium‐based collagen‐targeting contrast agent EP‐3533. The regions of contrast enhancement correlate closely with (C and F) photomicrographs of picrosirius red‐stained tissue sections. Modified, with permission, from Helm PA et al. Radiology 2008 ().
Figure 21. Figure 21. Noninvasive targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling: hybrid micro‐SPECT/CT reconstructed short‐axis images were acquired without x‐ray contrast (A) in a control sham‐operated mouse (left) and selected mice at 1 week (middle) and 3 weeks (right) after surgical myocardial infarction (MI), after injection of 201Tl (top row, green) and 99mTc‐RP805, (middle row, red). A black‐and‐white and multicolor fusion image is shown on bottom. Control heart demonstrates normal myocardial perfusion and no focal 99mTc‐RP805 uptake within the heart, although some uptake is seen in chest wall at the thoracotomy site (dashed arrows). All post‐MI mice have a large anterolateral 201Tl perfusion defect (yellow arrows) and focal uptake of 99mTc‐RP805 in defect area. A dashed circle is drawn around the heart to demonstrate localization of 99mTc‐RP805, within the infarcted area of the heart. Some activity is also seen in the peri‐infarct border zone. Additional micro‐SPECT/CT images were acquired by use of a higher‐resolution SPECT detector after the administration of x‐ray contrast, at 1 week (B) and 3 weeks (C) after MI. The contrast agent permitted better definition of the LV myocardium, which is highlighted by white dotted line. Representative short‐axis (SA), horizontal long‐axis (HLA), and vertical long‐axis (VLA) images are shown for two additional mice by use of the same format and color scheme. Focal uptake of 99mTc‐RP805 is seen within the central infarct and peri‐infarct regions, which again corresponds to 201Tl perfusion defect. Modified, with permission, from Su H, Circulation. 2005 ().
Figure 22. Figure 22. Dual‐isotope in vivo SPECT/CT imaging reflecting myocardial perfusion (201Thallium) and matrix metalloproteinase activity (99mTc‐RP805): In vivo Thallium‐201 and 99mTc‐RP805 SPECT/CT images of pigs at 1 week, 2 weeks and 4 weeks post myocardial infarction are shown in transaxial, coronal, and sagittal views. Note the perfusion defect in the lateral wall and the time dependent changes in the intensity of 99mTc‐RP805 retention in the same regions (green arrows). The yellow double arrows point to 99mTc‐RP805 activity in the surgical sternal wound. A known point source (orange arrow) can be used to quantify hotspot uptake. Scale bars: 2 cm. Modified, with permission, from Sahul ZH, Circ Cardiovasc Imaging. 2011 ()
Figure 23. Figure 23. Positon emission tomography (PET)/computed tomography (CT) of angiotensin II type 1 receptors (AT1R) in healthy pigs: panel A shows anterior maximum intensity projections (MIP, left), transaxial fusion images (middle) and reangulated PET images (right) (SA, short axis; HL, horizontal long axis; VL, vertical long axis), using AT1R ligand [11C]‐KR31173 (top row), and myocardial perfusion tracer [13N]‐ammonia (NH3) (bottom row). Panel B shows myocardial kinetics of [11C]‐KR31173 at baseline, and (panel C) after intravenous AT1R blockade (representative coronal PET slices on top, time activity curves for arterial blood (pink) and myocardium (cyan) on bottom). Modified, with permission, from Fukushima K, J Am Coll Cardiol. 2012 ().
Figure 24. Figure 24. In vivo visualization of amyloid deposits in the heart with Pittsburgh compound B (11C‐PIB) and PET: short‐axis images of the Pittsburgh compound B (11C‐PIB) retention index and myocardial blood flow (MBF) in (left to right) patients with high, intermediate, and partially increased 11C‐PIB retention and a healthy control. Liver is clearly visible in 11C‐PIB images of the second patient and healthy control and is just outside PET field of view for other 2 patients. Liver uptake is due to biliary excretion of 11C‐PIB and is likely not related to amyloid binding. This research was originally published in JNM. Antoni G, Lubberink M, Estrada S, Axelsson J, Carlson K, Lindsjo L, Kero T, Langstrom B, Granstam SO, Rosengren S, Vedin O, Wassberg C, Wikstrom G, Westermark P, and Sorensen J. In vivo visualization of amyloid deposits in the heart with 11C‐PIB and PET. J Nucl Med 54: 213‐220, 2013. © SNMMI ().
Figure 25. Figure 25. First‐in‐human study of a novel 18F‐labeled tracer LMI1195 for imaging myocardial sympathetic innervation: Representative series of whole body [18F]‐LMI 1195 coronal images at mid‐myocardial level in a healthy human volunteer acquired 5 hours after injection (average, 193.5  ±  37.4 MBq [5.23  ±  1.01 mCi]). Each whole‐body image is scaled to maximum value within that image. This research was originally published in JNM. Sinusas AJ, Lazewatsky J, Brunetti J, Heller G, Srivastava A, Liu YH, Sparks R, Puretskiy A, Lin SF, Crane P, Carson RE, and Lee LV. Biodistribution and radiation dosimetry of LMI1195: first‐in‐human study of a novel 18F‐labeled tracer for imaging myocardial innervation. J Nucl Med 55: 1445‐1451, 2014. © SNMMI ().
Figure 26. Figure 26. Depiction of postganglionic sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) nerve endings: (Left panel) The synthesis and release of norepinephrine in postganglionic SNS nerve endings and subsequent binding to postsynaptic receptors on cardiomyocytes. The tracers in red depict SNS pre‐ and postsynaptic radioanalogs. (Right panel) the synthesis and release of acetylcholine in the terminal nerve ending and varicosities of postganglionic PNS nerve endings and subsequent binding to postsynaptic receptors on cardiomyocytes. Tracers in blue depict PNS pre‐ and postsynaptic radioanalogs. AC, adenylyl cyclase; ACh, acetylcholine; AChE, acetylcholinesterase; ATP, adenosine triphosphate; CAT, choline‐acetyl‐transferase; COM, catechol‐O‐methyltransferase; cAMP, cyclic adenosine monophosphate; MAO, monoamine oxidase; mIBG, metaiodobenzylguanidine; MR2, muscarinic receptor 2; NE, norepinephrine; NR, nicotinic receptor; VMAT, vesicular monoamine transporter; 18F‐6F‐DA, 6‐18F‐fluorodopamine; PHEN, phenylephrine; EPI, epinephrine; HED, hydroxyephedrine; MQNB, (R,S)‐N‐[11C]‐methyl‐quinuclidin‐3‐yl benzilate. Modified, with permission, from Boutagy NE, Curr Cardiol Rep. 2017 ().
Figure 27. Figure 27. 123I‐metaiodobenzylguanidine (123I‐mIBG) imaging for prediction of mortality and potentially fatal events in heart failure: representative 123I‐mIBG images from patients from the ADMIRE‐HFX Study. (A) Image from 37‐year‐old man with nonischemic cardiomyopathy demonstrated 123I‐mIBG heart to mediastinum (H/M) ratio of 1.69. (B) Image from 51‐year‐old woman with ischemic cardiomyopathy showed H/M ratio of 1.80. Right panel shows 2‐year all‐cause mortality rates based on 0.1 increments of H/M indicating progressive decline from maximum of 29.4% for H/M < 1.10. There were no deaths among subjects with H/M ≥1.80. This research was originally published in JNM. Narula J, Gerson M, Thomas GS, Cerqueira MD, and Jacobson AF. 123I‐mIBG imaging for prediction of mortality and potentially fatal events in heart failure: the ADMIRE‐HFX study. Journal of Nuclear Medicine 56: 1011‐1018, 2015 ().
Figure 28. Figure 28. Regional myocardial sympathetic denervation assessment by [11C]‐meta‐hydroxyephedrine (HED) PET in ischemic cardiomyopathy: (Top panel) PET images from two representative subjects from the PAREPET trial comparing resting flow (measured by 13N‐ammonia [13NH3]), viability (by insulin‐stimulated 18F‐fluorodeoxyglucose [18F‐FDG]), and myocardial sympathetic innervation (by 11C‐HED) are shown. (Bottom panel) Kaplan‐Meier curves show the incidence of sudden cardiac arrest for tertiles of PET‐defined myocardial substrates (median follow‐up 4.1 years). As continuous variables, the total volume of denervated myocardium, as well as viable denervated myocardium, predicted sudden cardiac arrest. Neither infarct volume nor hibernating myocardium was significant as continuous variables. Modified, with permission, from Fallavollita JA, J Am Coll Cardiol. 2014 ().
Figure 29. Figure 29. Tracking of human induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment and distribution by hybrid SPECT/CT imaging of sodium iodide symporter transgene expression: In vivo SPECT/CT imaging ∼1 h following intracoronary injection of 123I demonstrating long‐term surviving derivatives of sodium iodide symporter (NIS) positive (pos) transgenic human induced pluripotent stem cells (NISpos‐hiPSCs, each site 5 × 107 cells) in pig hearts after 5 days and 15 weeks, respectively. Note, NISpos‐hiPSCs were only visualized when co‐injected with an equal number of mesenchymal stem cells (MSC). Immunohistochemical staining of tissue sections of corresponding areas of the left ventricular wall confirmed the presence of hiPSC derivatives, since delivered NISpos‐hiPSCs were also transfected to express the reporter protein, venus. Notably, the vast majority of venus positive iPSC derivatives were found to represent endothelial cells integrated into the cardiac vasculature 15 weeks after cell transplantation. Modified, with permission, from Templin C, Circulation 2012 ().


Figure 1. Lipid‐based nanoparticles for molecular imaging. (A) Schematic representation of amphiphilic lipids. (I) Amphiphiles consist of a hydrophilic head and a hydrophobic tail. (II) Micelle‐forming lipids have a relatively large head compared with the hydrophobic part, whereas (III) bilayer‐forming lipids usually have two hydrophobic tails. (IV) PEG‐lipids are used to improve pharmacokinetic properties and (V) cholesterol is used to stabilize liposomes. (B) Possible lipid aggregates for in vivo use. (I) Micelles can be prepared from micelle‐forming lipids and from PEG‐lipids. (II) A conventional liposome consists of a phospholipid bilayer. (III) Improved stabilization of liposomes can be achieved by incorporating a small amount of PEG‐lipids and cholesterol. (IV) Microemulsions consist of a surfactant (amphiphile) monolayer covering oil. (V) Micelles can contain a hydrophobic nanoparticle. (VI) Bilayer on nanoparticles of silica, mica, glass, or iron oxide. Modified, with permission, from Mulder WJ, NMR Biomed. 2006 ().


Figure 2. Schematic representation of the relative strengths of each imaging modality as it relates to multiple facets of cardiovascular imaging. The weight of the connecting arrows on the left indicates the relative strengths of each imaging modality as it relates to anatomical (e.g., spatial resolution), physiological (e.g., flow, function), metabolic and molecular imaging. The connecting arrows on the right links each imaging modality to specific biological targets, including: thrombosis, angiogenesis, inflammation, autonomic nervous system function, the renin angiotensin‐aldosterone system (RAAS), cell death, extracellular matrix, and tracking of cell and gene therapies. CT, computed tomography; MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy.


Figure 3. Schematic representation of cardiac metabolic imaging, including imaging of myocardial perfusion, substrate utilization [glycolysis, β‐oxidation, and tricarboxylic acid cycle (TCA) cycle], and high‐energy phosphate metabolism: Myocardial perfusion can be quantified with gadolinium (Gd) using first‐pass MRI or by using PET (15O‐water, 82Rb, or 13NH4) or SPECT (99mTc‐tetrofosmin, 99mTc‐sestamibi or 201Tl) radiotracers. Substrate utilization: Proton‐MRS (1H‐MRS) is used for static measurement of the triglyceride (TG) pool. 13C‐octanoate, 1‐13C‐pyruvate, and 2‐13C‐pyruvate can be used as tracers for hyperpolarized carbon‐MRS (13C‐MRS). 13C‐octanoate can be found downstream as 13C‐acetylcarnitine and can be used as an estimate of fatty acid uptake and oxidation. 1‐13C‐pyruvate will be converted to 13CO2 and 13C‐bicarbonate and can be used to determine the pyruvate dehydrogenase (PDH) fluxes as an estimate of glucose oxidation. By tracing 2‐13C‐pyruvate, the complete TCA cycle can be visualized, as the 13C label will be retained in acetyl‐CoA and downstream in lactate, acetylcarnitine, citrate, and glutamate. Metabolic trapping of β‐methyl‐11C‐heptadecanoic acid (β‐Me‐HA) and 2‐deoxy‐2‐18F‐fluoro‐D‐glucose (FDG‐glucose) enables dynamic estimates of fatty acid and glucose uptake by PET, respectively. 3‐ and 5‐Methyl‐17‐18F‐fluoroheptadecanoic acid (3‐MFHA and 5‐MFHA), 16‐18F‐fluoro‐4‐thiapalmitic acid (FTP), and 14‐18F‐fluoro‐6‐thiaheptadecanoic acid (FTHA) are used to estimate fatty acid uptake and metabolism (although metabolism and kinetics of these traces are not fully elucidated). The metabolically cleared 11C‐palmitate is used for estimation of fatty acid uptake, oxidation, and esterification; 11C‐acetate is used for the assessment of TCA activity coupled to oxygen consumption in the electron transport chain (ETC). 11C‐glucose, which is fully metabolized, enables kinetic modeling of glucose metabolism. Fatty acid tracers for SPECT are the metabolically trapped 123I‐β‐methyl‐p‐iodophenylpentadecanoic acid (BMIPP) and the fully metabolized 123I‐iodophenylpentadecanoic acid (IPPA). High‐energy phosphate metabolism: In the cytoplasm, adenosine diphosphate (ADP), formed by hydrolysis of adenosine triphosphate (ATP), can be resynthesized by cytoplasmatic creatine kinase (MM‐CK) to ATP through hydrolysis of phosphocreatine (PCr). PCr can be quickly resynthesized by mitochondrial creatine kinase (Mi‐CK) through hydrolysis of newly formed ATP in the mitochondria. PCr levels are dependent on cellular creatine (Cr) uptake, as creatine is not synthesized in the heart but actively taken up by cardiomyocytes. 1H‐MRS and phosphorus‐MRS (31P‐MRS) are used for measurement of Cr and PCr/ATP ratio, respectively. Modified, with permission, from van de Weijer T, J Appl Physiol (1985). 2018 ().


Figure 4. Low‐flow ischemia leads to translocation of GLUT‐4 and GLUT‐1 to the sarcolemma: (I) Immunofluorescence of glucose transporter‐4 (GLUT‐4) and GLUT‐1 in sections from nonischemic (A) and ischemic (C) regions of left ventricle by confocal microscopy. (II) Myocardial extraction (% of arterial) of glucose and lactate in the left anterior descending (LAD) and left circumflex coronary (LCx) regions during the 30 min before ischemia (Baseline) and during the last 30 min of low‐flow ischemia (Low Flow). AV extractions were calculated from quadruplicate time points. * P < 0.01 versus both baseline LAD extraction and LCx extraction during low‐flow ischemia. Values represent mean ± SEM (n = 9). (III) Sarcolemma and intracellular membrane content of GLUT‐4 and GLUT‐1 in myocardium from nonischemic and ischemic regions of the left ventricle. Glucose transporter content was quantified by 125I‐protein A binding (cpm/μg membrane protein) multiplied by yield of membrane fraction. Data for each membrane fraction are expressed as a percentage of total GLUT‐4 or GLUT‐1 content in sarcolemma and intracellular membrane fractions. Values are mean ± SEM (n = 9). * P < 0.05 versus nonischemic myocardium. Modified, with permission, from Young LH, Circulation. 1997 ().


Figure 5. Correlation of the myocardial free fatty‐acid analog, p‐123I‐iodophenylpentadecanoic acid (IPPA) retention with 2‐[18F] fluoro‐2‐deoxy‐D‐glucose (18F‐FDG) accumulation during experimental low‐flow ischemia: (I) After baseline (BASE) measurements, partial coronary stenosis was created in canines and maintained throughout protocol. Arterial and venous samples were obtained for metabolic measurements, and radiolabeled microspheres were injected at times designated. IPPA was injected 60 min after creation of stenosis. 18F‐FDG was injected 90 min later. (II) Myocardial 123I‐IPPA and 18F‐FDG retained activities expressed as nonischemic percentage for all segments (n = 576). Segments were segregated on basis of normalized flows in segments into 20%‐flow increments. Numbers within each bar represent number of segments falling into each flow range. (III) (A) Serial short‐axis and vertical long (v‐long) axis SPECT 123I‐IPPA images from a representative dog displayed in standard format. Time after injection is designated on left margin. Note perfusion defect in anteroseptal and anteroapical regions, which normalizes over time. (B) Myocardial 123I‐IPPA clearance curves derived from ischemic and nonischemic regions for same dog. (C) Early clearance data for same dog are also displayed as semilogarithmic plot. Early myocardial clearance appears linear on this semilogarithmic plot, suggesting early monoexponential clearance of 123I‐IPPA. Delayed myocardial 123I‐IPPA clearance is seen in ischemic region. This research was originally published in JNM. Shi CQ, Young LH, Daher E, DiBella EV, Liu YH, Heller EN, Zoghbi S, Wackers FJ, Soufer R, and Sinusas AJ. Correlation of myocardial p‐(123)I‐iodophenylpentadecanoic acid retention with ()F‐FDG accumulation during experimental low‐flow ischemia. J Nucl Med 43: 421‐431, 2002. © SNMMI. ().


Figure 6. SPECT imaging showing delayed recovery of regional fatty acid metabolism in heart tissue after transient exercise‐induced ischemia (“ischemic memory”): Representative stress and rest short‐axis thallium tomograms after reinjection (left two panels) demonstrate a reversible inferior defect consistent with exercise‐induced myocardial ischemia. Cardiac SPECT of a patient injected with radiolabeled [123I]‐β‐methyl‐p‐iodophenyl‐pentadecanoic acid (BMIPP), acquired at rest 22 h after exercise‐induced ischemia, shows persistent metabolic abnormality in the inferior region despite complete recovery of regional perfusion (center panel). Retention of BMIPP in the heart of a normal adult is shown as a control (right panel). Modified, with permission, from Taegtmeyer H, Nat Clin Pract Cardiovasc Med. 2008 ().


Figure 7. Quantitative PET imaging detects early metabolic remodeling in a mouse model of pressure‐overload left ventricular hypertrophy in vivo: Gated end‐diastolic transverse 18F‐FDG PET images for sham mice, transverse aortic constriction (TAC) mice, and TAC mice treated with propranolol at baseline, day 1, and day 7 after surgery are shown. All serial scans are from same animals. Images show increase in 18F‐FDG uptake in TAC mice starting at day 1, indicative of metabolic adaptation in pressure‐overload left ventricular hypertrophy. This research was originally published in JNM. Zhong M, Alonso CE, Taegtmeyer H, and Kundu BK. Quantitative PET imaging detects early metabolic remodeling in a mouse model of pressure‐overload left ventricular hypertrophy in vivo. J Nucl Med 54: 609‐615, 2013. © SNMMI. ().


Figure 8. PET scan showing perfusion–metabolism mismatch in hibernating heart tissue as an example of preserved cardiometabolic reserve: (A) 82Rubidium (82Rb) PET in short‐axis view shows markedly decreased perfusion in the apical, inferior, inferolateral, and septal regions of the left ventricle at rest, which extends from distal to basal slices. (B) Images acquired under glucose‐loaded conditions, labeled with 18F‐fluorodeoxyglucose (18F‐FDG), show perfusion‐metabolism mismatch pattern (the scintigraphic hallmark of hibernation) in all abnormally perfused myocardial regions at rest. An exception is the anteroseptal region, which demonstrates matched perfusion‐metabolism pattern (compatible with scarred myocardium). Modified, with permission, from Taegtmeyer H, Nat Clin Pract Cardiovasc Med. 2008 ().


Figure 9. Increased 18F‐fluorodeoxyglucose (18F‐FDG) accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol: Representative midventricular transaxial 18F‐FDG positron emission tomography images of a patient with primary pulmonary hypertension before and after the pulmonary vasodilator therapy with epoprostenol for three months. (A) Before the pulmonary vasodilator therapy, the right ventricular (RV) 18F‐FDG accumulation was highly increased and the corrected RV standardized uptake value (SUV) of 18F‐FDG was 13.4. (B) After the therapy, the corrected RV SUV of 18F‐FDG markedly decreased to 7.5. (Lower panels) Correlations between the percentage change of RV SUV of 18F‐FDG corrected for the partial volume effect and the percentage change of the pulmonary vascular resistance and peak‐systolic wall stress in the RV free wall. Modified, with permission, from Oikawa M, J Am Coll Cardiol. 2005 ().


Figure 10. Evaluation of the cardioprotective effects of Fv‐HSP72 by Annexin‐V based apoptosis imaging in a rabbit ischemia‐reperfusion model: the effect of a single intravenous dose of Fv‐HSP72 [the heat shock protein‐72 (HSP72) coupled to a single‐chain variable fragment (Fv) of monoclonal antibody 3E10 (3E10Fv)] was tested in rabbits undergoing left coronary artery occlusion for 40 min followed by 3 h reperfusion. Higher and more extensive uptake of 99mTc‐annexin‐V was seen in the control groups compared with the two therapy groups (pre and post ischemia reperfusion) in in vivo sagittal slices of SPECT images obtained 3 h after the injection of 99mTc‐annexin‐V (white circle = apex) and in ex vivo images of excised heart (traced with dotted lines, arrows = high uptake area; asterisk = apex). Modified, with permission, from Tanimoto T, J Am Coll Cardiol. 2017 ().


Figure 11. Molecular MRI imaging of cardiomyocyte apoptosis with AnxCLIO‐Cy5.5 (A, D, G) and simultaneous delayed enhancement (DE) MRI of necrosis with Gadolinium‐DTPA‐NBD (B, E, H) in a mouse with severe myocardial injury after transient coronary artery ligation (35 min): Images at three slice locations are shown, moving progressively from the midventricular level (A and B) to the left ventricular apex (G and H). (B) At the midventricular level, only a small area in the subendocardium of the lateral wall shows DE (red arrows). (E and H) The extent of DE increases progressively in the more apical slices (red arrows) and is fairly extensive at the apex. Although the accumulation of AnxCLIO‐Cy5.5 is fairly transmural, DE of Gd‐DTPA‐NBD is seen predominantly in the subendocardium. (C, F, and I) Immunohistochemistry for Gd‐DTPA‐NBD confirming the in vivo MRI findings. (C) Control area in the uninjured septum showing no evidence of DE (magnification × 200). (F) (× 200) and (I) (× 400) Sections from the antero‐apical wall of the left ventricle show positive staining for Gd‐DTPA‐NBD in areas of the subendocardium with significant amounts of cardiomyocyte degeneration. Modified, with permission, from Sosnovik DE, Circ Cardiovasc Imaging. 2009 ().


Figure 12. Ferumoxytol‐enhanced magnetic resonance imaging assessing inflammation after myocardial infarction: examples of myocardial edema and ferumoxytol enhancement in the infarct zone of 3 patients after myocardial infarction (1—anteroseptal, 2—lateral, and 3—inferior). Accumulation of ferumoxytol reduces T2* decay time and creates signal deficits that can be quantified and visualized using T2* MRI. To describe ferumoxytol accumulation, the relaxation rate, R2*, which is the inverse of the mean T2* was calculated for each region of interest, where the higher the value, the greater the ferumoxytol accumulation. The separate columns illustrate late gadolinium enhancement (LGE, first column), ferumoxytol enhancement (R2* map, second and third column) and edema (T2 map, fourth and fifth columns). At early time points (up to 10 days) increased inflammation was detected by ferumoxytol (dark regions on R2* maps) and edema was detected on T2 maps (light region). These changes have improved or have resolved by 3 months. Modified, with permission, from Stirrat CG, Heart. 2017 ().


Figure 13. Prospective evaluation of 18F‐Fluorodeoxyglucose (18F‐FDG) uptake after acute myocardial infarction by PET/MRI imaging as a prognostic marker of functional outcome: (Left panel) Short‐ and long‐axis views of late gadolinium enhancement (LGE) MRI (left), 18F‐FDG–PET images (middle), and overlay (right) of patients with anterior (A) or inferior (B) myocardial infarction. (Right Panel) (A) Correlation between LGE extent and Δ ejection fraction (EF at follow‐up ‐ EF at initial imaging), Δ end diastolic volume (EDV at follow‐up – EDV at initial imaging), and Δ end‐systolic volume (ESV at follow‐up – ESV at initial imaging). (B) Correlation between postischemic 18F‐FDG uptake in the infarct area mean standard uptake value (SUVmean) and ΔEF, ΔEDV and ΔESV. (C) Segmental analysis of the wall motion recovery at follow‐up. Comparison of LGE transmurality and 18F‐FDG uptake in the infarct (SUVmean). Modified, with permission, from Rischpler C, Circ Cardiovasc Imaging. 2016 ().


Figure 14. Mitochondrial translocator protein (TSPO)‐targeted positron emission tomography reveals myocardial inflammation and neuroinflammation in patients after acute myocardial infarction (AMI): (A) tomographic images of the heart display elevated TSPO signal in the hypoperfused infarct region in a representative patient (arrows). Images were acquired 4 to 6 days after reperfusion for first AMI. (B) Parametric brain images (statistical parametric mapping) show regional group difference of TSPO signal between infarct patients and healthy volunteers, superimposed to a magnetic resonance imaging template. Elevation of signal is regionally seen in the frontal and temporal cortex. HLA, horizontal long axis; VLA, vertical long axis. Modified, with permission, from Thackeray JT, J Am Coll Cardiol. 2018 ().


Figure 15. Myocardial contrast echocardiographic (MCE) ischemic memory in dogs with selectin‐targeted microbubbles: (A) mean (± SEM) video intensity in the risk and remote areas after selectin‐targeted microbubble administration in dogs undergoing ischemia‐reperfusion, and in both left anterior descending coronary artery and left circumflex territories together in closed‐chest nonischemic controls (n for closed‐chest represents region rather than animal number). (B) Example of MCE from a closed‐chest control animal. (C‐E) Examples of MCE, triphenyltetrazolium chloride staining and risk area by method of intracoronary injection of contrast from a single animal undergoing left circumflex ischemia reperfusion. ANOVA, analysis of variance. Modified, with permission, from Mott B, JACC Cardiovasc Imaging. 2016 ().


Figure 16. Patients with imaging evidence of active cardiac sarcoidosis on hybrid PET/MRI: late gadolinium enhancement (LGE) MRI images on the left with hybrid 18F‐fluorodeoxyglucose (18F‐FDG) PET/MRI images on the right. (A) Subepicardial (near transmural) LGE in the basal anteroseptum extending in to the right ventricular free wall with increased 18F‐FDG uptake localizing to exactly the same region on fused PET/MRI. (B) Subepicardial LGE in the basal anterolateral wall with increased 18F‐FDG uptake colocalizing to exactly that region on PET/MRI. (C) Patchy midwall LGE in the anterolateral wall with matched increased 18F‐FDG uptake on PET/MRI. (D) Multifocal LGE in the lateral wall with matched increased 18F‐FDG uptake on PET/MRI. Modified, with permission, from Dweck MR, JACC Cardiovasc Imaging. 2018 ().


Figure 17. 11C‐Methionine PET of myocardial inflammation in a rat model of experimental autoimmune myocarditis (EAM): (A) representative 11C‐methionine PET images in a rat model of EAM 30 min after intravenous tracer administration. Strong focal cardiac 11C‐methionine uptake was observed in EAM rats but not in control animals. Extracardiac tracer accumulation in thymus (asterisk) and the liver (arrowheads) was noted in both EAM and control rats, whereas respective tracer activities in lungs and blood pool were rather low. (B) Cardiac tracer uptake in EAM rats (black bar) was significantly higher than that in control rats (white bar). (C) Representative short‐axis PET images and time‐activity curves of dynamic PET imaging in EAM rat. Ten to 20 min after administration, tracer uptake increased in heart together with rapid clearance of blood activity. Cardiac signals remained stable for 30 to 40 min. Gray scale images serve as reference for location of heart. This research was originally published in JNM. Maya Y, Werner RA, Schutz C, Wakabayashi H, Samnick S, Lapa C, Zechmeister C, Jahns R, Jahns V, and Higuchi T. 11C‐Methionine PET of Myocardial Inflammation in a Rat Model of Experimental Autoimmune Myocarditis. J Nucl Med 57: 1985‐1990, 2016. © SNMMI. ().


Figure 18. In vivo and ex vivo 111In‐RP748 and 99mTc‐sestamibi (99mTc‐MIBI) images from dogs with chronic infarction: (A) Serial in vivo 111In‐RP748 SPECT short axis, vertical long axis (VLA), and horizontal long axis (HLA) images in a dog 3 weeks after left anterior descending coronary artery (LAD) infarction at 20 min and 75 min after injection in standard format. 111In‐RP748 SPECT images were registered with 99mTc‐MIBI perfusion images (third row). The 75‐min 111In‐RP748 SPECT images were colored red and fused with 99mTc‐MIBI images (green) to better demonstrate localization of 111In‐RP748 activity within the heart (color fusion, bottom row). Right ventricular (RV) and left ventricular (LV) blood pool activity is seen at 20 min. White arrows indicate region of increased 111In‐RP748 uptake in anterior wall. This corresponds to the anteroapical 99mTc‐sestamibi perfusion defect (yellow arrows). (B) Sequential 99mTc‐sestamibi (top row) and 111In‐RP748 in vivo SPECT HLA images at 90 min after injection (middle row) from a dog at 8 h (acute), 1 week, and 3 weeks after LAD infarction. Increased myocardial 111In‐RP748 uptake is seen in the anteroapical wall at all three time points. Color fusion 99mTc‐MIBI (green) and 111In‐RP748 (red) images (bottom row) demonstrate 111In‐RP748 uptake within 99mTc‐MIBI perfusion defect. (C) Ex vivo 99mTc‐sestamibi (left) and 111In‐RP748 (center) images of myocardial slices from a dog 3 weeks after LAD occlusion, with color fusion image on the right. Short axis slices are in the standard orientation. Yellow arrows indicate anterior location of nontransmural perfusion defect region; white arrows indicate corresponding area of increased 111In‐RP748 uptake. Reprinted with permission ().


Figure 19. Assessment of cardiac αVβ3 integrin expression following acute myocardial infarction in humans by 18F‐Fluciclatide PET imaging: (Left panel) 18F‐Fluciclatide uptake in three patients with recent subendocardial myocardial infarction (MI). (A) Patient 1, 13 days after anterior MI, displaying a short‐axis PET image of the left ventricle with crescentic 18F‐fluciclatide uptake that correlates with the interventricular septum and anterior wall on CT angiography (B). The fused PET/CT‐angiography image (C) shows this uptake to correspond exactly with the region of late gadolinium enhancement (LGE) on magnetic resonance imaging (MRI) (D). Further delineation of myocardial uptake on PET/CT is clearer in the two‐chamber view (E) and on a fused CT/three‐dimensional‐Patlak image, which shows this uptake to follow a watershed‐pattern emerging from the coronary stents present in the left anterior descending coronary artery (F). (G and H) Patient 2, 8 days following anterior MI, displaying focal uptake of 18F‐fluciclatide in the anterior wall and apex in the three‐chamber view on PET/CT (G) which corresponds to the region of infarction on LGE MRI imaging (H). (I and J) Patient 3, showing focal uptake of 18F‐fluciclatide in the inferior wall 19 days following MI on PET/CT (I) that again corresponds to the infarction on MRI LGE imaging (J). (Right Panel) 18F‐Fluciclatide uptake in MI is shown. Uptake of 18F‐fluciclatide in (A) patients with acute MI at 2 and 10 weeks, patients with chronic total occlusion (CTO) and healthy control subjects is shown. Uptake was greatest at 2 weeks after MI (B). 18F‐Fluciclatide uptake in the acute MI group was greater in regions of hypokinesis when compared with sites of normal function or akinesis (C). This translated to a higher 18F‐fluciclatide uptake in those regions, which subsequently improved in function on follow‐up cardiac magnetic resonance (D). CTO, chronic total occlusion; TBR, tissue‐to‐background ratio. WMA, wall motion abnormality. Modified, with permission, from Jenkins WS, Heart. 2017 ().


Figure 20. Postinfarction myocardial scarring in mice: molecular MRI imaging with use of a collagen‐targeting contrast agent: Midventricular short‐axis double inversion‐recovery gradient‐echo MRI images (A, B, D, and E) and corresponding picrosirius red‐stained histologic sections (C and F) of the mouse left ventricle 6 weeks after left anterior descending artery occlusion‐reperfusion. Arrows point to area of scarring. (A and D) Standard anatomic MR images acquired by using a double inversion‐recovery gradient‐echo sequence. (B and E) Midventricular short‐axis MR images of the left ventricles at two section locations obtained 40 min after injection of a gadolinium‐based collagen‐targeting contrast agent EP‐3533. The regions of contrast enhancement correlate closely with (C and F) photomicrographs of picrosirius red‐stained tissue sections. Modified, with permission, from Helm PA et al. Radiology 2008 ().


Figure 21. Noninvasive targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling: hybrid micro‐SPECT/CT reconstructed short‐axis images were acquired without x‐ray contrast (A) in a control sham‐operated mouse (left) and selected mice at 1 week (middle) and 3 weeks (right) after surgical myocardial infarction (MI), after injection of 201Tl (top row, green) and 99mTc‐RP805, (middle row, red). A black‐and‐white and multicolor fusion image is shown on bottom. Control heart demonstrates normal myocardial perfusion and no focal 99mTc‐RP805 uptake within the heart, although some uptake is seen in chest wall at the thoracotomy site (dashed arrows). All post‐MI mice have a large anterolateral 201Tl perfusion defect (yellow arrows) and focal uptake of 99mTc‐RP805 in defect area. A dashed circle is drawn around the heart to demonstrate localization of 99mTc‐RP805, within the infarcted area of the heart. Some activity is also seen in the peri‐infarct border zone. Additional micro‐SPECT/CT images were acquired by use of a higher‐resolution SPECT detector after the administration of x‐ray contrast, at 1 week (B) and 3 weeks (C) after MI. The contrast agent permitted better definition of the LV myocardium, which is highlighted by white dotted line. Representative short‐axis (SA), horizontal long‐axis (HLA), and vertical long‐axis (VLA) images are shown for two additional mice by use of the same format and color scheme. Focal uptake of 99mTc‐RP805 is seen within the central infarct and peri‐infarct regions, which again corresponds to 201Tl perfusion defect. Modified, with permission, from Su H, Circulation. 2005 ().


Figure 22. Dual‐isotope in vivo SPECT/CT imaging reflecting myocardial perfusion (201Thallium) and matrix metalloproteinase activity (99mTc‐RP805): In vivo Thallium‐201 and 99mTc‐RP805 SPECT/CT images of pigs at 1 week, 2 weeks and 4 weeks post myocardial infarction are shown in transaxial, coronal, and sagittal views. Note the perfusion defect in the lateral wall and the time dependent changes in the intensity of 99mTc‐RP805 retention in the same regions (green arrows). The yellow double arrows point to 99mTc‐RP805 activity in the surgical sternal wound. A known point source (orange arrow) can be used to quantify hotspot uptake. Scale bars: 2 cm. Modified, with permission, from Sahul ZH, Circ Cardiovasc Imaging. 2011 ()


Figure 23. Positon emission tomography (PET)/computed tomography (CT) of angiotensin II type 1 receptors (AT1R) in healthy pigs: panel A shows anterior maximum intensity projections (MIP, left), transaxial fusion images (middle) and reangulated PET images (right) (SA, short axis; HL, horizontal long axis; VL, vertical long axis), using AT1R ligand [11C]‐KR31173 (top row), and myocardial perfusion tracer [13N]‐ammonia (NH3) (bottom row). Panel B shows myocardial kinetics of [11C]‐KR31173 at baseline, and (panel C) after intravenous AT1R blockade (representative coronal PET slices on top, time activity curves for arterial blood (pink) and myocardium (cyan) on bottom). Modified, with permission, from Fukushima K, J Am Coll Cardiol. 2012 ().


Figure 24. In vivo visualization of amyloid deposits in the heart with Pittsburgh compound B (11C‐PIB) and PET: short‐axis images of the Pittsburgh compound B (11C‐PIB) retention index and myocardial blood flow (MBF) in (left to right) patients with high, intermediate, and partially increased 11C‐PIB retention and a healthy control. Liver is clearly visible in 11C‐PIB images of the second patient and healthy control and is just outside PET field of view for other 2 patients. Liver uptake is due to biliary excretion of 11C‐PIB and is likely not related to amyloid binding. This research was originally published in JNM. Antoni G, Lubberink M, Estrada S, Axelsson J, Carlson K, Lindsjo L, Kero T, Langstrom B, Granstam SO, Rosengren S, Vedin O, Wassberg C, Wikstrom G, Westermark P, and Sorensen J. In vivo visualization of amyloid deposits in the heart with 11C‐PIB and PET. J Nucl Med 54: 213‐220, 2013. © SNMMI ().


Figure 25. First‐in‐human study of a novel 18F‐labeled tracer LMI1195 for imaging myocardial sympathetic innervation: Representative series of whole body [18F]‐LMI 1195 coronal images at mid‐myocardial level in a healthy human volunteer acquired 5 hours after injection (average, 193.5  ±  37.4 MBq [5.23  ±  1.01 mCi]). Each whole‐body image is scaled to maximum value within that image. This research was originally published in JNM. Sinusas AJ, Lazewatsky J, Brunetti J, Heller G, Srivastava A, Liu YH, Sparks R, Puretskiy A, Lin SF, Crane P, Carson RE, and Lee LV. Biodistribution and radiation dosimetry of LMI1195: first‐in‐human study of a novel 18F‐labeled tracer for imaging myocardial innervation. J Nucl Med 55: 1445‐1451, 2014. © SNMMI ().


Figure 26. Depiction of postganglionic sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) nerve endings: (Left panel) The synthesis and release of norepinephrine in postganglionic SNS nerve endings and subsequent binding to postsynaptic receptors on cardiomyocytes. The tracers in red depict SNS pre‐ and postsynaptic radioanalogs. (Right panel) the synthesis and release of acetylcholine in the terminal nerve ending and varicosities of postganglionic PNS nerve endings and subsequent binding to postsynaptic receptors on cardiomyocytes. Tracers in blue depict PNS pre‐ and postsynaptic radioanalogs. AC, adenylyl cyclase; ACh, acetylcholine; AChE, acetylcholinesterase; ATP, adenosine triphosphate; CAT, choline‐acetyl‐transferase; COM, catechol‐O‐methyltransferase; cAMP, cyclic adenosine monophosphate; MAO, monoamine oxidase; mIBG, metaiodobenzylguanidine; MR2, muscarinic receptor 2; NE, norepinephrine; NR, nicotinic receptor; VMAT, vesicular monoamine transporter; 18F‐6F‐DA, 6‐18F‐fluorodopamine; PHEN, phenylephrine; EPI, epinephrine; HED, hydroxyephedrine; MQNB, (R,S)‐N‐[11C]‐methyl‐quinuclidin‐3‐yl benzilate. Modified, with permission, from Boutagy NE, Curr Cardiol Rep. 2017 ().


Figure 27. 123I‐metaiodobenzylguanidine (123I‐mIBG) imaging for prediction of mortality and potentially fatal events in heart failure: representative 123I‐mIBG images from patients from the ADMIRE‐HFX Study. (A) Image from 37‐year‐old man with nonischemic cardiomyopathy demonstrated 123I‐mIBG heart to mediastinum (H/M) ratio of 1.69. (B) Image from 51‐year‐old woman with ischemic cardiomyopathy showed H/M ratio of 1.80. Right panel shows 2‐year all‐cause mortality rates based on 0.1 increments of H/M indicating progressive decline from maximum of 29.4% for H/M < 1.10. There were no deaths among subjects with H/M ≥1.80. This research was originally published in JNM. Narula J, Gerson M, Thomas GS, Cerqueira MD, and Jacobson AF. 123I‐mIBG imaging for prediction of mortality and potentially fatal events in heart failure: the ADMIRE‐HFX study. Journal of Nuclear Medicine 56: 1011‐1018, 2015 ().


Figure 28. Regional myocardial sympathetic denervation assessment by [11C]‐meta‐hydroxyephedrine (HED) PET in ischemic cardiomyopathy: (Top panel) PET images from two representative subjects from the PAREPET trial comparing resting flow (measured by 13N‐ammonia [13NH3]), viability (by insulin‐stimulated 18F‐fluorodeoxyglucose [18F‐FDG]), and myocardial sympathetic innervation (by 11C‐HED) are shown. (Bottom panel) Kaplan‐Meier curves show the incidence of sudden cardiac arrest for tertiles of PET‐defined myocardial substrates (median follow‐up 4.1 years). As continuous variables, the total volume of denervated myocardium, as well as viable denervated myocardium, predicted sudden cardiac arrest. Neither infarct volume nor hibernating myocardium was significant as continuous variables. Modified, with permission, from Fallavollita JA, J Am Coll Cardiol. 2014 ().


Figure 29. Tracking of human induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment and distribution by hybrid SPECT/CT imaging of sodium iodide symporter transgene expression: In vivo SPECT/CT imaging ∼1 h following intracoronary injection of 123I demonstrating long‐term surviving derivatives of sodium iodide symporter (NIS) positive (pos) transgenic human induced pluripotent stem cells (NISpos‐hiPSCs, each site 5 × 107 cells) in pig hearts after 5 days and 15 weeks, respectively. Note, NISpos‐hiPSCs were only visualized when co‐injected with an equal number of mesenchymal stem cells (MSC). Immunohistochemical staining of tissue sections of corresponding areas of the left ventricular wall confirmed the presence of hiPSC derivatives, since delivered NISpos‐hiPSCs were also transfected to express the reporter protein, venus. Notably, the vast majority of venus positive iPSC derivatives were found to represent endothelial cells integrated into the cardiac vasculature 15 weeks after cell transplantation. Modified, with permission, from Templin C, Circulation 2012 ().
References
 1. Abou‐Elkacem L , Bachawal SV , Willmann JK . Ultrasound molecular imaging: Moving toward clinical translation. Eur J Radiol 84: 1685‐1693, 2015.
 2. Abraham A , Nichol G , Williams KA , Guo A , deKemp RA , Garrard L , Davies RA , Duchesne L , Haddad H , Chow B , DaSilva J , Beanlands RS . 18F‐FDG PET imaging of myocardial viability in an experienced center with access to 18F‐FDG and integration with clinical management teams: The Ottawa‐FIVE substudy of the PARR 2 trial. J Nucl Med 51: 567‐574, 2010.
 3. Ahmadian A , Pawar S , Govender P , Berman J , Ruberg FL , Miller EJ . The response of FDG uptake to immunosuppressive treatment on FDG PET/CT imaging for cardiac sarcoidosis. J Nucl Cardiol 24: 413‐424, 2017.
 4. Aikawa T , Naya M , Obara M , Manabe O , Tomiyama Y , Magota K , Yamada S , Katoh C , Tamaki N , Tsutsui H . Impaired myocardial sympathetic innervation is associated with diastolic dysfunction in heart failure with preserved ejection fraction: (11)C‐Hydroxyephedrine PET study. J Nucl Med 58: 784‐790, 2017.
 5. Alam SR , Shah AS , Richards J , Lang NN , Barnes G , Joshi N , MacGillivray T , McKillop G , Mirsadraee S , Payne J , Fox KA , Henriksen P , Newby DE , Semple SI . Ultrasmall superparamagnetic particles of iron oxide in patients with acute myocardial infarction: Early clinical experience. Circ Cardiovasc Imaging 5: 559‐565, 2012.
 6. Algalarrondo V , Antonini T , Theaudin M , Chemla D , Benmalek A , Lacroix C , Castaing D , Cauquil C , Dinanian S , Eliahou L , Samuel D , Adams D , Le Guludec D , Slama MS , Rouzet F . Cardiac dysautonomia predicts long‐term survival in hereditary transthyretin amyloidosis after liver transplantation. JACC Cardiovasc Imaging 9: 1432‐1441, 2016.
 7. Allman KC , Wieland DM , Muzik O , Degrado TR , Wolfe ER, Jr. , Schwaiger M . Carbon‐11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. J Am Coll Cardiol 22: 368‐375, 1993.
 8. Antoni G , Lubberink M , Estrada S , Axelsson J , Carlson K , Lindsjo L , Kero T , Langstrom B , Granstam SO , Rosengren S , Vedin O , Wassberg C , Wikstrom G , Westermark P , Sorensen J . In vivo visualization of amyloid deposits in the heart with 11C‐PIB and PET. J Nucl Med 54: 213‐220, 2013.
 9. Arksey N , Hadizad T , Ismail B , Hachem M , Valdivia AC , Beanlands RS , DaSilva JN . Synthesis and evaluation of the novel 2‐[18 F] fluoro‐3‐propoxy‐triazole‐pyridine‐substituted losartan for imaging AT 1 receptors. Bioorg Med Chem 22: 3931‐3937, 2014.
 10. Arora R , Ferrick KJ , Nakata T , Kaplan RC , Rozengarten M , Latif F , Ng K , Marcano V , Heller S , Fisher JD . I‐123 MIBG imaging and heart rate variability analysis to predict the need for an implantable cardioverter defibrillator. J Nucl Cardiol 10: 121‐131, 2003.
 11. Assomull RG , Prasad SK , Lyne J , Smith G , Burman ED , Khan M , Sheppard MN , Poole‐Wilson PA , Pennell DJ . Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48: 1977‐1985, 2006.
 12. Atherton HJ , Schroeder MA , Dodd MS , Heather LC , Carter EE , Cochlin LE , Nagel S , Sibson NR , Radda GK , Clarke K . Validation of the in vivo assessment of pyruvate dehydrogenase activity using hyperpolarised 13C MRS. NMR Biomed 24: 201‐208, 2011.
 13. Ball DR , Rowlands B , Dodd MS , Le Page L , Ball V , Carr CA , Clarke K , Tyler DJ . Hyperpolarized butyrate: A metabolic probe of short chain fatty acid metabolism in the heart. Magn Reson Med 71: 1663‐1669, 2014.
 14. Barron HV , Lesh MD . Autonomic nervous system and sudden cardiac death. J Am Coll Cardiol 27: 1053‐1060, 1996.
 15. Bastiaansen JA , Cheng T , Lei H , Gruetter R , Comment A . Direct noninvasive estimation of myocardial tricarboxylic acid cycle flux in vivo using hyperpolarized 13 C magnetic resonance. J Mol Cell Cardiol 87: 129‐137, 2015.
 16. Battipaglia I , Lanza GA . The autonomic nervous system of the heart. In: Autonomic Innervation of the Heart. New York City, NY: Springer, 2015, pp. 1‐12.
 17. Bax JJ , Delgado V . Myocardial viability as integral part of the diagnostic and therapeutic approach to ischemic heart failure. J Nucl Cardiol 22: 229‐245, 2015.
 18. Bax JJ , Kraft O , Buxton AE , Fjeld JG , Pařízek P , Agostini D , Knuuti J , Flotats A , Arrighi J , Muxi A . 123I‐mIBG scintigraphy to predict inducibility of ventricular arrhythmias on cardiac electrophysiology testing CLINICAL PERSPECTIVE: A prospective multicenter pilot study. Circ Cardiovasc Imaging 1: 131‐140, 2008.
 19. Bax JJ , Poldermans D , Elhendy A , Boersma E , Rahimtoola SH . Sensitivity, specificity, and predictive accuracies of various noninvasive techniques for detecting hibernating myocardium. Curr Probl Cardiol 26: 147‐186, 2001.
 20. Beanlands RS , Nichol G , Huszti E , Humen D , Racine N , Freeman M , Gulenchyn KY , Garrard L , deKemp R , Guo A , Ruddy TD , Benard F , Lamy A , Iwanochko RM . F‐18‐fluorodeoxyglucose positron emission tomography imaging‐assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: A randomized, controlled trial (PARR‐2). J Am Coll Cardiol 50: 2002‐2012, 2007.
 21. Behm CZ , Kaufmann BA , Carr C , Lankford M , Sanders JM , Rose CE , Kaul S , Lindner JR . Molecular imaging of endothelial vascular cell adhesion molecule‐1 expression and inflammatory cell recruitment during vasculogenesis and ischemia‐mediated arteriogenesis. Circulation 117: 2902‐2911, 2008.
 22. Bengel FM , Barthel P , Matsunari I , Schmidt G , Schwaiger M . Kinetics of 123I‐MIBG after acute myocardial infarction and reperfusion therapy. J Nucl Med 40: 904‐910, 1999.
 23. Bengel FM , Permanetter B , Ungerer M , Nekolla SG , Schwaiger M . Relationship between altered sympathetic innervation, oxidative metabolism and contractile function in the cardiomyopathic human heart; a non‐invasive study using positron emission tomography. Eur Heart J 22: 1594‐1600, 2001.
 24. Bengel FM , Ueberfuhr P , Hesse T , Schiepel N , Ziegler SI , Scholz S , Nekolla SG , Reichart B , Schwaiger M . Clinical determinants of ventricular sympathetic reinnervation after orthotopic heart transplantation. Circulation 106: 831‐835, 2002.
 25. Bengel FM , Ueberfuhr P , Schäfer D , Nekolla SG , Reichart B , Schwaiger M . Effect of diabetes mellitus on sympathetic neuronal regeneration studied in the model of transplant reinnervation. J Nucl Med 47: 1413‐1419, 2006.
 26. Bengel FM , Ueberfuhr P , Schiepel N , Nekolla SG , Reichart B , Schwaiger M . Effect of sympathetic reinnervation on cardiac performance after heart transplantation. N Engl J Med 345: 731‐738, 2001.
 27. Bengel FM , Ueberfuhr P , Ziegler SI , Nekolla S , Reichart B , Schwaiger M . Serial assessment of sympathetic reinnervation after orthotopic heart transplantation. A longitudinal study using PET and C‐11 hydroxyephedrine. Circulation 99: 1866‐1871, 1999.
 28. Bengel FM , Ueberfuhr P , Ziegler SI , Nekolla SG , Odaka K , Reichart B , Schwaiger M . Non‐invasive assessment of the effect of cardiac sympathetic innervation on metabolism of the human heart. Eur J Nucl Med 27: 1650‐1657, 2000.
 29. Benjamin EJ , Blaha MJ , Chiuve SE , Cushman M , Das SR , Deo R , de Ferranti SD , Floyd J , Fornage M , Gillespie C . Heart disease and stroke statistics—2017 update: A report from the American Heart Association. Circulation 135: e146‐e603, 2017.
 30. Bennink RJ , van den Hoff MJ , van Hemert FJ , de Bruin KM , Spijkerboer AL , Vanderheyden JL , Steinmetz N , van Eck‐Smit BL . Annexin V imaging of acute doxorubicin cardiotoxicity (apoptosis) in rats. J Nucl Med 45: 842‐848, 2004.
 31. Berr SS , Xu Y , Roy RJ , Kundu B , Williams MB , French BA . Serial multimodality assessment of myocardial infarction in mice using magnetic resonance imaging and micro–positron emission tomography provides complementary information on the progression of scar formation. Circulation 115: e428‐e429, 2007.
 32. Bhavane R , Badea C , Ghaghada KB , Clark D , Vela D , Moturu A , Annapragada A , Johnson GA , Willerson JT , Annapragada A . Dual‐energy computed tomography imaging of atherosclerotic plaques in a mouse model using a liposomal‐iodine nanoparticle contrast agent. Circ Cardiovasc Imaging 6: 285‐294, 2013.
 33. Birnie DH , Sauer WH , Bogun F , Cooper JM , Culver DA , Duvernoy CS , Judson MA , Kron J , Mehta D , Cosedis Nielsen J , Patel AR , Ohe T , Raatikainen P , Soejima K . HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm 11: 1305‐1323, 2014.
 34. Bizino MB , Hammer S , Lamb HJ . Metabolic imaging of the human heart: Clinical application of magnetic resonance spectroscopy. Heart 100: 881‐890, 2013.
 35. Blanchflower S , Menezes L , Wicks E , Elliot P . Patient preparation for FDG PET/CT imaging to assess cardiac inflammation. J Nucl Med 54: 2606‐2606, 2013.
 36. Blankenberg FG , Katsikis PD , Tait JF , Davis RE , Naumovski L , Ohtsuki K , Kopiwoda S , Abrams MJ , Strauss HW . Imaging of apoptosis (programmed cell death) with 99mTc annexin V. J Nucl Med 40: 184‐191, 1999.
 37. Blankstein R , Osborne M , Naya M , Waller A , Kim CK , Murthy VL , Kazemian P , Kwong RY , Tokuda M , Skali H , Padera R , Hainer J , Stevenson WG , Dorbala S , Di Carli MF . Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol 63: 329‐336, 2014.
 38. Bogdanov A , Weissleder R . In vivo imaging of gene delivery and expression. Trends Biotechnol 20: S11‐S18, 2002.
 39. Bokhari S , Castano A , Pozniakoff T , Deslisle S , Latif F , Maurer MS . (99m)Tc‐pyrophosphate scintigraphy for differentiating light‐chain cardiac amyloidosis from the transthyretin‐related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging 6: 195‐201, 2013.
 40. Bokhari S , Raina A , Rosenweig EB , Schulze PC , Bokhari J , Einstein AJ , Barst RJ , Johnson LL . PET imaging may provide a novel biomarker and understanding of right ventricular dysfunction in patients with idiopathic pulmonary arterial hypertension. Circ Cardiovasc Imaging 4: 641‐647, 2011.
 41. Bokhari S , Shahzad R , Castano A , Maurer MS . Nuclear imaging modalities for cardiac amyloidosis. J Nucl Cardiol 21: 175‐184, 2014.
 42. Boogers MJ , Borleffs CJW , Henneman MM , van Bommel RJ , van Ramshorst J , Boersma E , Dibbets‐Schneider P , Stokkel MP , van der Wall EE , Schalij MJ . Cardiac sympathetic denervation assessed with 123‐iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter‐defibrillator patients. J Am Coll Cardiol 55: 2769‐2777, 2010.
 43. Borer JS , Truter S , Herrold EM , Falcone DJ , Pena M , Carter JN , Dumlao TF , Lee JA , Supino PG . Myocardial fibrosis in chronic aortic regurgitation. Circulation 105: 1837‐1842, 2002.
 44. Boriani G , Regoli F , Saporito D , Martignani C , Toselli T , Biffi M , Francolini G , Diemberger I , Bacchi L , Rapezzi C . Neurohormones and inflammatory mediators in patients with heart failure undergoing cardiac resynchronization therapy: Time courses and prediction of response. Peptides 27: 1776‐1786, 2006.
 45. Boutagy NE , Sinusas AJ . Recent advances and clinical applications of PET cardiac autonomic nervous system imaging. Curr Cardiol Rep 19: 33, 2017.
 46. Breyholz HJ , Wagner S , Levkau B , Schober O , Schafers M , Kopka K . A 18F‐radiolabeled analogue of CGS 27023A as a potential agent for assessment of matrix‐metalloproteinase activity in vivo. Q J Nucl Med Mol Imaging 51: 24‐32, 2007.
 47. Brown M , Marshall DR , Sobel BE , Bergmann SR . Delineation of myocardial oxygen utilization with carbon‐11‐labeled acetate. Circulation 76: 687‐696, 1987.
 48. Bucci M , Borra R , Någren K , Pärkkä JP , Del Ry S , Maggio R , Tuunanen H , Viljanen T , Cabiati M , Rigazio S . Trimetazidine reduces endogenous free fatty acid oxidation and improves myocardial efficiency in obese humans. Cardiovasc Ther 30: 333‐341, 2012.
 49. Bucerius J , Joe AY , Schmaljohann J , Gündisch D , Minnerop M , Biersack H‐J , Wüllner U , Reinhardt MJ . Feasibility of 2–deoxy–2–[18 F] fluoro–D–glucose–A85380–PET for imaging of human cardiac nicotinic acetylcholine receptors in vivo. Clin Res Cardiol 95: 105‐109, 2006.
 50. Bulow HP , Stahl F , Lauer B , Nekolla SG , Schuler G , Schwaiger M , Bengel FM . Alterations of myocardial presynaptic sympathetic innervation in patients with multi‐vessel coronary artery disease but without history of myocardial infarction. Nucl Med Commun 24: 233‐239, 2003.
 51. Burchfield JS , Xie M , Hill JA . Pathological ventricular remodeling. Circulation 128: 388‐400, 2013.
 52. Burri H , Sunthorn H , Somsen A , Fleury E , Stettler C , Shah D , Righetti A . Improvement in cardiac sympathetic nerve activity in responders to resynchronization therapy. Europace 10: 374‐378, 2008.
 53. Caldwell JH , Link JM , Levy WC , Poole JE , Stratton JR . Evidence for pre‐ to postsynaptic mismatch of the cardiac sympathetic nervous system in ischemic congestive heart failure. J Nucl Med 49: 234‐241, 2008.
 54. Camici P , Araujo LI , Spinks T , Lammertsma AA , Kaski JC , Shea MJ , Selwyn AP , Jones T , Maseri A . Increased uptake of 18F‐fluorodeoxyglucose in postischemic myocardium of patients with exercise‐induced angina. Circulation 74: 81‐88, 1986.
 55. Can MM , Kaymaz C , Tanboga IH , Tokgoz HC , Canpolat N , Turkyilmaz E , Sonmez K , Ozdemir N . Increased right ventricular glucose metabolism in patients with pulmonary arterial hypertension. Clin Nucl Med 36: 743‐748, 2011.
 56. Caobelli F , Wollenweber T , Bavendiek U , Kuhn C , Schutze C , Geworski L , Thackeray JT , Bauersachs J , Haverich A , Bengel FM . Simultaneous dual‐isotope solid‐state detector SPECT for improved tracking of white blood cells in suspected endocarditis. Eur Heart J 38: 436‐443, 2017.
 57. Capitanio S , Nanni C , Marini C , Bonfiglioli R , Martignani C , Dib B , Fuccio C , Boriani G , Picori L , Boschi S , Morbelli S , Fanti S , Sambuceti G . Heterogeneous response of cardiac sympathetic function to cardiac resynchronization therapy in heart failure documented by 11[C]‐hydroxy‐ephedrine and PET/CT. Nucl Med Biol 42: 858‐863, 2015.
 58. Caravan P , Das B , Dumas S , Epstein FH , Helm PA , Jacques V , Koerner S , Kolodziej A , Shen L , Sun WC , Zhang Z . Collagen‐targeted MRI contrast agent for molecular imaging of fibrosis. Angew Chem (Int Ed Engl) 46: 8171‐8173, 2007.
 59. Carmeliet P . Angiogenesis in health and disease. Nat Med 9: 653‐660, 2003.
 60. Castano A , Haq M , Narotsky DL , Goldsmith J , Weinberg RL , Morgenstern R , Pozniakoff T , Ruberg FL , Miller EJ , Berk JL , Dispenzieri A , Grogan M , Johnson G , Bokhari S , Maurer MS . Multicenter study of planar technetium 99m pyrophosphate cardiac imaging: Predicting survival for patients with ATTR cardiac amyloidosis. JAMA Cardiol 1: 880‐889, 2016.
 61. Cha YM , Oh J , Miyazaki C , Hayes DL , Rea RF , Shen WK , Asirvatham SJ , Kemp BJ , Hodge DO , Chen PS . Cardiac resynchronization therapy upregulates cardiac autonomic control. J Cardiovasc Electrophysiol 19: 1045‐1052, 2008.
 62. Chan C , Liu H , Grobshtein Y , Stacy MR , Sinusas AJ , Liu C . Noise suppressed partial volume correction for cardiac SPECT/CT. Med Phys 43: 5225‐5239, 2016.
 63. Chatterjee K . Neurohormonal activation in congestive heart failure and the role of vasopressin. Am J Cardiol 95: 8b‐13b, 2005.
 64. Chen IY , Wu JC . Cardiovascular molecular imaging: Focus on clinical translation. Circulation 123: 425‐443, 2011.
 65. Chen J , Tung C‐H , Allport JR , Chen S , Weissleder R , Huang PL . Near‐infrared fluorescent imaging of matrix metalloproteinase activity after myocardial infarction. Circulation 111: 1800‐1805, 2005.
 66. Chen X , Werner RA , Lapa C , Nose N , Hirano M , Javadi MS , Robinson S , Higuchi T . Subcellular storage and release mode of the novel (18)F‐labeled sympathetic nerve PET tracer LMI1195. EJNMMI Res 8: 12, 2018.
 67. Cherry SR , Sorenson J , Phelps ME , Methe BM . Physics in nuclear medicine. Med Phys 31: 2370‐2371, 2004.
 68. Chhour P , Naha PC , O'Neill SM , Litt HI , Reilly MP , Ferrari VA , Cormode DP . Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography. Biomaterials 87: 93‐103, 2016.
 69. Chow LH , Radio SJ , Sears TD , McManus BM . Insensitivity of right ventricular endomyocardial biopsy in the diagnosis of myocarditis. J Am Coll Cardiol 14: 915‐920, 1989.
 70. Christen T , Nahrendorf M , Wildgruber M , Swirski FK , Aikawa E , Waterman P , Shimizu K , Weissleder R , Libby P . Molecular imaging of innate immune cell function in transplant rejection. Circulation 119: 1925‐1932, 2009.
 71. Ciesienski KL , Caravan P . Molecular MRI of thrombosis. Curr Cardiovasc Imaging Rep 4: 77‐84, 2010.
 72. Cohn JN , Tognoni G . A randomized trial of the angiotensin‐receptor blocker valsartan in chronic heart failure. N Engl J Med 345: 1667‐1675, 2001.
 73. Corbett JR , Lewis M , Willerson JT , Nicod PH , Huxley RL , Simon T , Rude RE , Henderson E , Parkey R , Rellas JS , et al. 99mTc‐pyrophosphate imaging in patients with acute myocardial infarction: Comparison of planar imaging with single‐photon tomography with and without blood pool overlay. Circulation 69: 1120‐1128, 1984.
 74. Coutinho MC , Cortez‐Dias N , Cantinho G , Conceicao I , Oliveira A , Bordalo e Sa A , Goncalves S , Almeida AG , de Carvalho M , Diogo AN . Reduced myocardial 123‐iodine metaiodobenzylguanidine uptake: A prognostic marker in familial amyloid polyneuropathy. Circ Cardiovasc Imaging 6: 627‐636, 2013.
 75. Danila D , Johnson E , Kee P . CT imaging of myocardial scars with collagen‐targeting gold nanoparticles. Nanomedicine 9: 1067‐1076, 2013.
 76. Daubert C , Behar N , Martins RP , Mabo P , Leclercq C . Avoiding non‐responders to cardiac resynchronization therapy: A practical guide. Eur Heart J 38: 1463‐1472, 2016.
 77. Davidson BP , Chadderdon SM , Belcik JT , Gupta S , Lindner JR . Ischemic memory imaging in nonhuman primates with echocardiographic molecular imaging of selectin expression. J Am Soc Echocardiogr 27: 786‐793.e782, 2014.
 78. Davidson BP , Kaufmann BA , Belcik JT , Xie A , Qi Y , Lindner JR . Detection of antecedent myocardial ischemia with multiselectin molecular imaging. J Am Coll Cardiol 60: 1690‐1697, 2012.
 79. Davila‐Roman VG , Vedala G , Herrero P , de las Fuentes L , Rogers JG , Kelly DP , Gropler RJ . Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 40: 271‐277, 2002.
 80. De Haas HJ , Arbustini E , Fuster V , Kramer CM , Narula J . Molecular imaging of the cardiac extracellular matrix. Circ Res 114: 903‐915, 2014.
 81. de Jong RM , Willemsen AT , Slart RH , Blanksma PK , van Waarde A , Cornel JH , Vaalburg W , van Veldhuisen DJ , Elsinga PH . Myocardial beta‐adrenoceptor downregulation in idiopathic dilated cardiomyopathy measured in vivo with PET using the new radioligand (S)‐[11C]CGP12388. Eur J Nucl Med Mol Imaging 32: 443‐447, 2005.
 82. de las Fuentes L , Herrero P , Peterson LR , Kelly DP , Gropler RJ , Davila‐Roman VG . Myocardial fatty acid metabolism: Independent predictor of left ventricular mass in hypertensive heart disease. Hypertension (Dallas, Tex: 1979) 41: 83‐87, 2003.
 83. de las Fuentes L , Soto PF , Cupps BP , Pasque MK , Herrero P , Gropler RJ , Waggoner AD , Davila‐Roman VG . Hypertensive left ventricular hypertrophy is associated with abnormal myocardial fatty acid metabolism and myocardial efficiency. J Nucl Cardiol 13: 369‐377, 2006.
 84. DeGrado TR , Bhattacharyya F , Pandey MK , Belanger AP , Wang S . Synthesis and preliminary evaluation of 18‐18F‐fluoro‐4‐thia‐oleate as a PET probe of fatty acid oxidation. J Nucl Med 51: 1310‐1317, 2010.
 85. DeGrado TR , Coenen HH , Stocklin G . 14(R,S)‐[18F]fluoro‐6‐thia‐heptadecanoic acid (FTHA): Evaluation in mouse of a new probe of myocardial utilization of long chain fatty acids. J Nucl Med 32: 1888‐1896, 1991.
 86. DeGrado TR , Kitapci MT , Wang S , Ying J , Lopaschuk GD . Validation of 18F‐fluoro‐4‐thia‐palmitate as a PET probe for myocardial fatty acid oxidation: Effects of hypoxia and composition of exogenous fatty acids. J Nucl Med 47: 173‐181, 2006.
 87. DeGrado TR , Mulholland GK , Wieland DM , Schwaiger M . Evaluation of (−)[18F] fluoroethoxybenzovesamicol as a new PET tracer of cholinergic neurons of the heart. Nucl Med Biol 21: 189‐195, 1994.
 88. Del Rosario RB , Jung Y‐W , Caraher J , Chakraborty PK , Wieland DM . Synthesis and preliminary evaluation of [11C]‐(−)‐phenylepnrine as a functional heart neuronal PET agent. Nucl Med Biol 23: 611‐616, 1996.
 89. Delforge J , Janier M , Syrota A , Crouzel C , Vallois J , Cayla J , Lancon J , Mazoyer BM . Noninvasive quantification of muscarinic receptors in vivo with positron emission tomography in the dog heart. Circulation 82: 1494‐1504, 1990.
 90. Delforge J , Le DG , Syrota A , Bendriem B , Crouzel C , Slama M , Merlet P . Quantification of myocardial muscarinic receptors with PET in humans. J Nucl Med 34: 981‐991, 1993.
 91. Delforge J , Syrota A , Mazoyer B . Identifiability analysis and parameter identification of an in vivo ligand‐receptor model from PET data. IEEE Trans Biomed Eng 37: 653‐661, 1990.
 92. Dhein S , Van Koppen CJ , Brodde O‐E . Muscarinic receptors in the mammalian heart. Pharmacol Res 44: 161‐182, 2001.
 93. Di Carli MF , Tobes MC , Mangner T , Levine AB , Muzik O , Chakroborty P , Levine TB . Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med 336: 1208‐1215, 1997.
 94. Dijkgraaf I , Boerman OC . Radionuclide imaging of tumor angiogenesis. Cancer Biother Radiopharm 24: 637‐647, 2009.
 95. Dilsizian V , Bateman TM , Bergmann SR , Des Prez R , Magram MY , Goodbody AE , Babich JW , Udelson JE . Metabolic imaging with beta‐methyl‐p‐[(123)I]‐iodophenyl‐pentadecanoic acid identifies ischemic memory after demand ischemia. Circulation 112: 2169‐2174, 2005.
 96. Dilsizian V , Eckelman WC , Loredo ML , Jagoda EM , Shirani J . Evidence for tissue angiotensin‐converting enzyme in explanted hearts of ischemic cardiomyopathy using targeted radiotracer technique. J Nucl Med 48: 182‐187, 2007.
 97. Dilsizian V , Zynda TK , Petrov A , Ohshima S , Tahara N , Haider N , Donohue A , Aras O , Femia FJ , Hillier SM . Molecular imaging of human ACE‐1 expression in transgenic rats. JACC Cardiovasc Imaging 5: 409‐418, 2012.
 98. Dimastromatteo J , Riou LM , Ahmadi M , Pons G , Pellegrini E , Broisat A , Sancey L , Gavrilina T , Boturyn D , Dumy P . In vivo molecular imaging of myocardial angiogenesis using the αvβ3 integrin‐targeted tracer 99mTc‐RAFT‐RGD. J Nucl Cardiol 17: 435‐443, 2010.
 99. Dobrucki LW , De Muinck ED , Lindner JR , Sinusas AJ . Approaches to multimodality imaging of angiogenesis. J Nucl Med 51: 66S‐79S, 2010.
 100. Dobrucki LW , Tsutsumi Y , Kalinowski L , Dean J , Gavin M , Sen S , Mendizabal M , Sinusas AJ , Aikawa R . Analysis of angiogenesis induced by local IGF‐1 expression after myocardial infarction using microSPECT‐CT imaging. J Mol Cell Cardiol 48: 1071‐1079, 2010.
 101. Doenst T , Nguyen TD , Abel ED . Cardiac metabolism in heart failure. Circ Res 113: 709‐724, 2013.
 102. Dorbala S , Vangala D , Semer J , Strader C , Bruyere JR, Jr. , Di Carli MF , Moore SC , Falk RH . Imaging cardiac amyloidosis: A pilot study using (1)(8)F‐florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging 41: 1652‐1662, 2014.
 103. Drozd K , Ahmadi A , Deng Y , Jiang B , Petryk J , Thorn S , Stewart D , Beanlands R , deKemp RA , DaSilva JN , Mielniczuk LM . Effects of an endothelin receptor antagonist, Macitentan, on right ventricular substrate utilization and function in a Sugen 5416/hypoxia rat model of severe pulmonary arterial hypertension. J Nucl Cardiol 24: 1979‐1989, 2017.
 104. Du W , Wang Y , Luo Q , Liu B‐F . Optical molecular imaging for systems biology: From molecule to organism. Anal Bioanal Chem 386: 444, 2006.
 105. Dumont EA , Reutelingsperger CP , Smits JF , Daemen MJ , Doevendans PA , Wellens HJ , Hofstra L . Real‐time imaging of apoptotic cell‐membrane changes at the single‐cell level in the beating murine heart. Nat Med 7: 1352‐1355, 2001.
 106. Duvall WL , Croft LB , Ginsberg ES , Einstein AJ , Guma KA , George T , Henzlova MJ . Reduced isotope dose and imaging time with a high‐efficiency CZT SPECT camera. J Nucl Cardiol 18: 847‐857, 2011.
 107. Dweck MR , Abgral R , Trivieri MG , Robson PM , Karakatsanis N , Mani V , Palmisano A , Miller MA , Lala A , Chang HL , Sanz J , Contreras J , Narula J , Fuster V , Padilla M , Fayad ZA , Kovacic JC . Hybrid magnetic resonance imaging and positron emission tomography with fluorodeoxyglucose to diagnose active cardiac sarcoidosis. JACC Cardiovasc Imaging 11: 94‐107, 2018.
 108. Dweck MR , Aikawa E , Newby DE , Tarkin JM , Rudd JH , Narula J , Fayad ZA . Noninvasive molecular imaging of disease activity in atherosclerosis. Circ Res 119: 330, 2016.
 109. Eckelman WC , Babich JW . Synthesis and validation of fatty acid analogs radiolabeled by nonisotopic substitution. J Nucl Cardiol 14: S100‐S109, 2007.
 110. Elsinga PH , Doze P , van Waarde A , Pieterman RM , Blanksma PK , Willemsen AT , Vaalburg W . Imaging of β‐adrenoceptors in the human thorax using (S)‐[11C] CGP12388 and positron emission tomography. Eur J Pharmacol 433: 173‐176, 2001.
 111. Epstein AE , DiMarco JP , Ellenbogen KA , Estes NM , Freedman RA , Gettes LS , Gillinov AM , Gregoratos G , Hammill SC , Hayes DL . ACC/AHA/HRS 2008 guidelines for device‐based therapy of cardiac rhythm abnormalities: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices) developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. J Am Coll Cardiol 51: e1‐e62, 2008.
 112. Esler M , Kaye D . Sympathetic nervous system activation in essential hypertension, cardiac failure and psychosomatic heart disease. J Cardiovasc Pharmacol 35: S1‐7, 2000.
 113. Estorch M , Camprecios M , Flotats A , Mari C , Berna L , Catafau AM , Ballester M , Narula J , Carrio I . Sympathetic reinnervation of cardiac allografts evaluated by 123I‐MIBG imaging. J Nucl Med 40: 911‐916, 1999.
 114. Fallavollita JA , Heavey BM , Luisi AJ , Michalek SM , Baldwa S , Mashtare TL , Hutson AD , Haka MS , Sajjad M , Cimato TR . Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol 63: 141‐149, 2014.
 115. Feher A , Cassuto J , Szabo A , Patel V , Vinayak Kamath M , Bagi Z . Increased tissue angiotensin‐converting enzyme activity impairs bradykinin‐induced dilation of coronary arterioles in obesity. Circ J 77: 1867‐1876, 2013.
 116. Feher A , Sinusas AJ . Assessment of right ventricular metabolism: An emerging tool for monitoring pulmonary artery hypertension. J Nucl Cardiol 24: 1990‐1993, 2017.
 117. Flogel U , Ding Z , Hardung H , Jander S , Reichmann G , Jacoby C , Schubert R , Schrader J . In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 118: 140‐148, 2008.
 118. Flori A , Liserani M , Frijia F , Giovannetti G , Lionetti V , Casieri V , Positano V , Aquaro GD , Recchia FA , Santarelli MF . Real‐time cardiac metabolism assessed with hyperpolarized [1‐13C]acetate in a large‐animal model. Contrast Media Mol Imaging 10: 194‐202, 2015.
 119. Florian A , Ludwig A , Rosch S , Yildiz H , Klumpp S , Sechtem U , Yilmaz A . Positive effect of intravenous iron‐oxide administration on left ventricular remodelling in patients with acute ST‐elevation myocardial infarction ‐ a cardiovascular magnetic resonance (CMR) study. Int J Cardiol 173: 184‐189, 2014.
 120. Flotats A , Carrió I . Non‐invasive in vivo imaging of myocardial apoptosis and necrosis. Eur J Nucl Med Mol Imaging 30: 615‐630, 2003.
 121. Foo RS , Mani K , Kitsis RN . Death begets failure in the heart. J Clin Invest 115: 565‐571, 2005.
 122. Freemerman AJ , Johnson AR , Sacks GN , Milner JJ , Kirk EL , Troester MA , Macintyre AN , Goraksha‐Hicks P , Rathmell JC , Makowski L . Metabolic reprogramming of macrophages glucose transporter 1 (GLUT1)‐mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem 289: 7884‐7896, 2014.
 123. French BA , Kramer CM . Mechanisms of postinfarct left ventricular remodeling. Drug Discov Today Dis Mech 4: 185‐196, 2007.
 124. Fricke E , Eckert S , Dongas A , Fricke H , Preuss R , Lindner O , Horstkotte D , Burchert W . Myocardial sympathetic innervation in patients with symptomatic coronary artery disease: Follow‐up after 1 year with neurostimulation. J Nucl Med 49: 1458‐1464, 2008.
 125. Frist W , Yasuda T , Segall G , Khaw BA , Strauss HW , Gold H , Stinson E , Oyer P , Baldwin J , Billingham M , et al. Noninvasive detection of human cardiac transplant rejection with indium‐111 antimyosin (Fab) imaging. Circulation 76: V81‐85, 1987.
 126. Fujita W , Matsunari I , Aoki H , Nekolla SG , Kajinami K . Prediction of all‐cause death using (11)C‐hydroxyephedrine positron emission tomography in Japanese patients with left ventricular dysfunction. Ann Nucl Med 30: 461‐467, 2016.
 127. Fukushima K , Bravo PE , Higuchi T , Schuleri KH , Lin X , Abraham MR , Xia J , Mathews WB , Dannals RF , Lardo AC . Molecular hybrid positron emission tomography/computed tomography imaging of cardiac angiotensin II type 1 receptors. J Am Coll Cardiol 60: 2527‐2534, 2012.
 128. Gao M , Miller MA , DeGrado TR , Mock BH , Lopshire JC , Rosenberger JG , Dusa C , Das MK , Groh WJ , Zipes DP . Evaluation of [11C] hemicholinium‐15 and [18F] hemicholinium‐15 as new potential PET tracers for the high‐affinity choline uptake system in the heart. Bioorg Med Chem 15: 1289‐1297, 2007.
 129. Gewirtz H , Dilsizian V . Myocardial viability: Survival mechanisms and molecular imaging targets in acute and chronic ischemia. Circ Res 120: 1197‐1212, 2017.
 130. Goff DC , Lloyd‐Jones DM , Bennett G , Coady S , D'Agostino RB , Gibbons R , Greenland P , Lackland DT , Levy D , O'Donnell CJ . 2013 ACC/AHA guideline on the assessment of cardiovascular risk. Circulation 129: S49‐S73, 2014.
 131. Goldberg IJ , Trent CM , Schulze PC . Lipid metabolism and toxicity in the heart. Cell metabolism 15: 805‐812, 2012.
 132. Goldstein RA , Klein MS , Welch MJ , Sobel BE . External assessment of myocardial metabolism with C‐11 palmitate in vivo. J Nucl Med 21: 342‐348, 1980.
 133. Golman K , Petersson JS , Magnusson P , Johansson E , Åkeson P , Chai CM , Hansson G , Månsson S . Cardiac metabolism measured noninvasively by hyperpolarized 13C MRI. Magn Reson Med 59: 1005‐1013, 2008.
 134. Graham BB , Kumar R , Mickael C , Sanders L , Gebreab L , Huber KM , Perez M , Smith‐Jones P , Serkova NJ , Tuder RM . Severe pulmonary hypertension is associated with altered right ventricle metabolic substrate uptake. Am J Physiol Lung Cell Mol Physiol 309: L435‐440, 2015.
 135. Granados U , Fuster D , Pericas JM , Llopis JL , Ninot S , Quintana E , Almela M , Pare C , Tolosana JM , Falces C , Moreno A , Pons F , Lomena F , Miro JM . Diagnostic accuracy of 18F‐FDG PET/CT in infective endocarditis and implantable cardiac electronic device infection: A cross‐sectional study. J Nucl Med 57: 1726‐1732, 2016.
 136. Gregori M , Tocci G , Marra A , Pignatelli G , Santolamazza C , Befani A , Ciavarella GM , Ferrucci A , Paneni F . Inadequate RAAS suppression is associated with excessive left ventricular mass and systo‐diastolic dysfunction. Clin Res Cardiol 102: 725‐733, 2013.
 137. Gropler RJ . Recent advances in metabolic imaging. J Nucl Cardiol 20: 1147‐1172, 2013.
 138. Gropler RJ , Malloy CR . Imaging myocardial metabolism. In: Lewis JS , Keshari KR , editors. Imaging and Metabolism. Cham: Springer International Publishing, 2018, pp. 243‐279.
 139. Hadizad T , Collins J , Antoun RE , Beanlands RS , DaSilva JN . [11C] Methyl‐losartan as a potential ligand for PET imaging angiotensin II AT1 receptors. J Label Compd Radiopharm 54: 754‐757, 2011.
 140. Hadizad T , Kirkpatrick SA , Mason S , Burns K , Beanlands RS , DaSilva JN . Novel O‐[11 C] methylated derivatives of candesartan as angiotensin II AT 1 receptor imaging ligands: Radiosynthesis and ex vivo evaluation in rats. Bioorg Med Chem 17: 7971‐7977, 2009.
 141. Haider N , Baliga RR , Chandrashekhar Y , Narula J . Adrenergic excess, hNET1 down‐regulation, and compromised mIBG uptake in heart failure: Poverty in the presence of plenty. JACC Cardiovasc Imaging 3: 71‐75, 2010.
 142. Hall JE. Guyton and Hall Textbook of Medical Physiology e‐Book. New York City, NY: Elsevier Health Sciences, 2015.
 143. Hansson GK . Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352: 1685‐1695, 2005.
 144. Haris M , Singh A , Cai K , Kogan F , McGarvey J , DeBrosse C , Zsido GA , Witschey WR , Koomalsingh K , Pilla JJ . A technique for in vivo mapping of myocardial creatine kinase metabolism. Nat Med 20: 209, 2014.
 145. Hartikainen J , Mustonen J , Kuikka J , Vanninen E , Kettunen R . Cardiac sympathetic denervation in patients with coronary artery disease without previous myocardial infarction. Am J Cardiol 80: 273‐277, 1997.
 146. Hashimoto H , Nakanishi R , Mizumura S , Hashimoto Y , Okamura Y , Kiuchi S , Yamazaki J , Ikeda T . Prognostic value of (123)I‐BMIPP SPECT in patients with nonischemic heart failure with preserved ejection fraction. J Nucl Med 59: 259‐265, 2018.
 147. Hatefi Y . The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54: 1015‐1069, 1985.
 148. Hauck AJ , Kearney DL , Edwards WD . Evaluation of postmortem endomyocardial biopsy specimens from 38 patients with lymphocytic myocarditis: Implications for role of sampling error. Mayo Clin Proc 64: 1235‐1245, 1989.
 149. He ZX , Shi RF , Wu YJ , Tian YQ , Liu XJ , Wang SW , Shen R , Qin XW , Gao RL , Narula J , Jain D . Direct imaging of exercise‐induced myocardial ischemia with fluorine‐18‐labeled deoxyglucose and Tc‐99m‐sestamibi in coronary artery disease. Circulation 108: 1208‐1213, 2003.
 150. Helm PA , Caravan P , French BA , Jacques V , Shen L , Xu Y , Beyers RJ , Roy RJ , Kramer CM , Epstein FH . Postinfarction myocardial scarring in mice: molecular MR imaging with use of a collagen‐targeting contrast agent. Radiology 247: 788‐796, 2008.
 151. Hendrikx G , De Saint‐Hubert M , Dijkgraaf I , Bauwens M , Douma K , Wierts R , Pooters I , Van den Akker NM , Hackeng TM , Post MJ . Molecular imaging of angiogenesis after myocardial infarction by 111 In‐DTPA‐cNGR and 99m Tc‐sestamibi dual‐isotope myocardial SPECT. EJNMMI research 5: 2, 2015.
 152. Hendrikx G , Vöö S , Bauwens M , Post MJ , Mottaghy FM . SPECT and PET imaging of angiogenesis and arteriogenesis in pre‐clinical models of myocardial ischemia and peripheral vascular disease. Eur J Nucl Med Mol Imaging 43: 2433‐2447, 2016.
 153. Henneman MM , Bengel FM , van der Wall EE , Knuuti J , Bax JJ . Cardiac neuronal imaging: Application in the evaluation of cardiac disease. J Nucl Cardiol 15: 442‐455, 2008.
 154. Herrero P , Dence CS , Coggan AR , Kisrieva‐Ware Z , Eisenbeis P , Gropler RJ . L‐3‐11C‐lactate as a PET tracer of myocardial lactate metabolism: A feasibility study. J Nucl Med 48: 2046‐2055, 2007.
 155. Herrero P , Sharp TL , Dence C , Haraden BM , Gropler RJ . Comparison of 1‐(11)C‐glucose and (18)F‐FDG for quantifying myocardial glucose use with PET. J Nucl Med 43: 1530‐1541, 2002.
 156. Higuchi T , Fukushima K , Xia J , Mathews WB , Lautamäki R , Bravo PE , Javadi MS , Dannals RF , Szabo Z , Bengel FM . Radionuclide imaging of angiotensin II type 1 receptor upregulation after myocardial ischemia–reperfusion injury. J Nucl Med 51: 1956‐1961, 2010.
 157. Higuchi T , Schwaiger M . Imaging cardiac neuronal function and dysfunction. Curr Cardiol Rep 8: 131‐138, 2006.
 158. Hiller KH , Waller C , Nahrendorf M , Bauer WR , Jakob PM . Assessment of cardiovascular apoptosis in the isolated rat heart by magnetic resonance molecular imaging. Molecular imaging 5: 115‐121, 2006.
 159. Hofmann U , Beyersdorf N , Weirather J , Podolskaya A , Bauersachs J , Ertl G , Kerkau T , Frantz S . Activation of CD4+ T‐lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation 125: 1652‐1663, 2012.
 160. Hofstra L , Liem H , Dumont EA , Boersma HH , van Heerde WL , Doevendans PA , DeMuinck E , Wellens H , Kemerink GJ , Reutelingsperger CP . Visualisation of cell death in vivo in patients with acute myocardial infarction. The Lancet 356: 209‐212, 2000.
 161. Holloway CJ , Suttie J , Dass S , Neubauer S . Clinical cardiac magnetic resonance spectroscopy. Prog Cardiovasc Dis 54: 320‐327, 2011.
 162. Hongo M , Urushibata K , Kai R , Takahashi W , Koizumi T , Uchikawa S , Imamura H , Kinoshita O , Owa M , Fujii T . Iodine‐123 metaiodobenzylguanidine scintigraphic analysis of myocardial sympathetic innervation in patients with AL (primary) amyloidosis. Am Heart J 144: 122‐129, 2002.
 163. Hua J , Dobrucki LW , Sadeghi MM , Zhang J , Bourke BN , Cavaliere P , Song J , Chow C , Jahanshad N , van Royen N , Buschmann I , Madri JA , Mendizabal M , Sinusas AJ . Noninvasive imaging of angiogenesis with a 99mTc‐labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia. Circulation 111: 3255‐3260, 2005.
 164. Huang S , Chen HH , Yuan H , Dai G , Schuhle DT , Mekkaoui C , Ngoy S , Liao R , Caravan P , Josephson L , Sosnovik DE . Molecular MRI of acute necrosis with a novel DNA‐binding gadolinium chelate: Kinetics of cell death and clearance in infarcted myocardium. Circ Cardiovasc Imaging 4: 729‐737, 2011.
 165. Hulot J‐S , Ishikawa K , Hajjar RJ . Gene therapy for the treatment of heart failure: Promise postponed. Eur Heart J 37: 1651‐1658, 2016.
 166. Hyafil F , Cornily JC , Feig JE , Gordon R , Vucic E , Amirbekian V , Fisher EA , Fuster V , Feldman LJ , Fayad ZA . Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med 13: 636‐641, 2007.
 167. Hyafil F , Cornily JC , Rudd JH , Machac J , Feldman LJ , Fayad ZA . Quantification of inflammation within rabbit atherosclerotic plaques using the macrophage‐specific CT contrast agent N1177: A comparison with 18F‐FDG PET/CT and histology. J Nucl Med 50: 959‐965, 2009.
 168. Hyvelin JM , Tardy I , Bettinger T , von Wronski M , Costa M , Emmel P , Colevret D , Bussat P , Lassus A , Botteron C , Nunn A , Frinking P , Tranquart F . Ultrasound molecular imaging of transient acute myocardial ischemia with a clinically translatable P‐ and E‐selectin targeted contrast agent: Correlation with the expression of selectins. Invest Radiol 49: 224‐235, 2014.
 169. Ibrahim I , Sanad M . Radiolabeling and biological evaluation of losartan as a possible cardiac imaging agent. Radiochemistry 55: 336‐340, 2013.
 170. Iida H , Rhodes CG , Araujo LI , Yamamoto Y , de Silva R , Maseri A , Jones T . Noninvasive quantification of regional myocardial metabolic rate for oxygen by use of 15O2 inhalation and positron emission tomography. Theory, error analysis, and application in humans. Circulation 94: 792‐807, 1996.
 171. Jacobson AF , Senior R , Cerqueira MD , Wong ND , Thomas GS , Lopez VA , Agostini D , Weiland F , Chandna H , Narula J . Myocardial iodine‐123 meta‐iodobenzylguanidine imaging and cardiac events in heart failure: Results of the prospective ADMIRE‐HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 55: 2212‐2221, 2010.
 172. Jaffer FA , Libby P , Weissleder R . Optical and multimodality molecular imaging: Insights into atherosclerosis. Arterioscler Thromb Vasc Biol 29: 1017‐1024, 2009.
 173. Jaffer FA , Sosnovik DE , Nahrendorf M , Weissleder R . Molecular imaging of myocardial infarction. J Mol Cell Cardiol 41: 921‐933, 2006.
 174. Jaswal JS , Keung W , Wang W , Ussher JR , Lopaschuk GD . Targeting fatty acid and carbohydrate oxidation–a novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta 1813: 1333‐1350, 2011.
 175. Jathoul AP , Laufer J , Ogunlade O , Treeby B , Cox B , Zhang E , Johnson P , Pizzey AR , Philip B , Marafioti T . Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase‐based genetic reporter. Nature Photonics 9: 239, 2015.
 176. Jayaweera AR , Edwards N , Glasheen WP , Villanueva FS , Abbott RD , Kaul S . In vivo myocardial kinetics of air‐filled albumin microbubbles during myocardial contrast echocardiography. Comparison with radiolabeled red blood cells. Circ Res 74: 1157‐1165, 1994.
 177. Jefferson A , Wijesurendra RS , McAteer MA , Digby JE , Douglas G , Bannister T , Perez‐Balderas F , Bagi Z , Lindsay AC , Choudhury RP . Molecular imaging with optical coherence tomography using ligand‐conjugated microparticles that detect activated endothelial cells: Rational design through target quantification. Atherosclerosis 219: 579‐587, 2011.
 178. Jenkins WS , Vesey AT , Stirrat C , Connell M , Lucatelli C , Neale A , Moles C , Vickers A , Fletcher A , Pawade T . Cardiac αVβ3 integrin expression following acute myocardial infarction in humans. Heart 103: 607‐615, 2016.
 179. Jensen PR , Peitersen T , Karlsson M , Gisselsson A , Hansson G , Meier S , Lerche MH . Tissue‐specific short chain fatty acid metabolism and slow metabolic recovery after ischemia from hyperpolarized NMR in vivo. J Biol Chem 284: 36077‐36082, 2009.
 180. John AS , Mongillo M , Depre C , Khan MT , Rimoldi OE , Pepper JR , Dreyfus GD , Pennell DJ , Camici PG . Pre‐ and post‐synaptic sympathetic function in human hibernating myocardium. Eur J Nucl Med Mol Imaging 34: 1973‐1980, 2007.
 181. Johnson LL , Schofield L , Donahay T , Bouchard M , Poppas A , Haubner R . Radiolabeled arginine‐glycine‐aspartic acid peptides to image angiogenesis in swine model of hibernating myocardium. JACC Cardiovasc Imaging 1: 500‐510, 2008.
 182. Kalinowski L , Dobrucki LW , Meoli DF , Dione DP , Sadeghi MM , Madri JA , Sinusas AJ . Targeted imaging of hypoxia‐induced integrin activation in myocardium early after infarction. J Appl Physiol (1985) 104: 1504‐1512, 2008.
 183. Kang CM , Koo HJ , An GI , Choe YS , Choi JY , Lee KH , Kim BT . Hybrid PET/optical imaging of integrin alphaVbeta3 receptor expression using a (64)Cu‐labeled streptavidin/biotin‐based dimeric RGD peptide. EJNMMI Res 5: 60, 2015.
 184. Kanno S , Wu YJ , Lee PC , Dodd SJ , Williams M , Griffith BP , Ho C . Macrophage accumulation associated with rat cardiac allograft rejection detected by magnetic resonance imaging with ultrasmall superparamagnetic iron oxide particles. Circulation 104: 934‐938, 2001.
 185. Kaufmann BA , Lewis C , Xie A , Mirza‐Mohd A , Lindner JR . Detection of recent myocardial ischaemia by molecular imaging of P‐selectin with targeted contrast echocardiography. Eur Heart J 28: 2011‐2017, 2007.
 186. Kawai Y , Tsukamoto E , Nozaki Y , Morita K , Sakurai M , Tamaki N . Significance of reduced uptake of iodinated fatty acid analogue for the evaluation of patients with acute chest pain. J Am Coll Cardiol 38: 1888‐1894, 2001.
 187. Keen HG , Dekker BA , Disley L , Hastings D , Lyons S , Reader AJ , Ottewell P , Watson A , Zweit J . Imaging apoptosis in vivo using 124I‐annexin V and PET. Nucl Med Biol 32: 395‐402, 2005.
 188. Ketchum ES , Jacobson AF , Caldwell JH , Senior R , Cerqueira MD , Thomas GS , Agostini D , Narula J , Levy WC . Selective improvement in Seattle Heart Failure Model risk stratification using iodine‐123 meta‐iodobenzylguanidine imaging. J Nucl Cardiol 19: 1007‐1016, 2012.
 189. Kim H , Lee S‐J , Davies‐Venn C , Kim JS , Yang BY , Yao Z , Kim I , Paik CH , Bluemke DA . 64Cu‐DOTA as a surrogate positron analog of Gd‐DOTA for cardiac fibrosis detection with PET: Pharmacokinetic study in a rat model of chronic MI. Nucl Med Commun 37: 188‐196, 2016.
 190. Kim H , Lee S‐J , Kim JS , Davies‐Venn C , Cho H‐J , Won SJ , Dejene E , Yao Z , Kim I , Paik CH . Pharmacokinetics and microbiodistribution of 64Cu‐labeled collagen‐binding peptides in chronic myocardial infarction. Nucl Med Commun 37: 1306‐1317, 2016.
 191. Kim JY , Ryu JH , Schellingerhout D , Sun IC , Lee SK , Jeon S , Kim J , Kwon IC , Nahrendorf M , Ahn CH , Kim K , Kim DE . Direct imaging of cerebral thromboemboli using computed tomography and fibrin‐targeted gold nanoparticles. Theranostics 5: 1098‐1114, 2015.
 192. Kim Y , Goto H , Kobayashi K , Sawada Y , Miyake Y , Fujiwara G , Chiba H , Okada T , Nishimura T . Detection of impaired fatty acid metabolism in right ventricular hypertrophy: Assessment by I‐123 beta‐methyl iodophenyl pentadecanoic acid (BMIPP) myocardial single‐photon emission computed tomography. Ann Nucl Med 11: 207‐212, 1997.
 193. Kircher MF , Willmann JK . Molecular body imaging: MR imaging, CT, and US. Part II. Applications. Radiology 264: 349‐368, 2012.
 194. Kisrieva‐Ware Z , Coggan AR , Sharp TL , Dence CS , Gropler RJ , Herrero P . Assessment of myocardial triglyceride oxidation with PET and 11 C‐palmitate. J Nucl Cardiol 16: 411, 2009.
 195. Klink A , Heynens J , Herranz B , Lobatto ME , Arias T , Sanders HM , Strijkers GJ , Merkx M , Nicolay K , Fuster V , Tedgui A , Mallat Z , Mulder WJ , Fayad ZA . In vivo characterization of a new abdominal aortic aneurysm mouse model with conventional and molecular magnetic resonance imaging. J Am Coll Cardiol 58: 2522‐2530, 2011.
 196. Klink A , Lancelot E , Ballet S , Vucic E , Fabre JE , Gonzalez W , Medina C , Corot C , Mulder WJ , Mallat Z , Fayad ZA . Magnetic resonance molecular imaging of thrombosis in an arachidonic acid mouse model using an activated platelet targeted probe. Arterioscler Thromb Vasc Biol 30: 403‐410, 2010.
 197. Knapp FF, Jr. , Ambrose KR , Goodman MM . New radioiodinated methyl‐branched fatty acids for cardiac studies. Eur J Nucl Med 12(Suppl): S39‐44, 1986.
 198. Kocher A , Schuster M , Szabolcs M , Takuma S , Burkhoff D , Wang J , Homma S , Edwards N , Itescu S . Neovascularization of ischemic myocardium by human bone‐marrow–derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7: 430, 2001.
 199. Kothari P , De B , He B , Chen A , Chiuchiolo M , Kim D , Nikolopoulou A , Amor‐Coarasa A , Dyke J , Voss H . Radioiodinated capsids facilitate in vivo non‐invasive tracking of adeno‐associated gene transfer vectors. Scientific reports 7: 1‐10, 2017.
 200. Kramer CM , Sinusas AJ , Sosnovik DE , French BA , Bengel FM . Multimodality imaging of myocardial injury and remodeling. J Nucl Med 51(Suppl 1): 107s‐121s, 2010.
 201. Krivokapich J , Huang SC , Selin CE , Phelps ME . Fluorodeoxyglucose rate constants, lumped constant, and glucose metabolic rate in rabbit heart. Am J Physiol 252: H777‐H787, 1987.
 202. Kruse MJ , Kovell L , Kasper EK , Pomper MG , Moller DR , Solnes L , Chen ES , Schindler TH . Myocardial blood flow and inflammatory cardiac sarcoidosis. JACC Cardiovasc Imaging 10: 157‐167, 2017.
 203. Labbé SM , Grenier‐Larouche T , Croteau E , Normand‐Lauzière F , Frisch F , Ouellet R , Guérin B , Turcotte EE , Carpentier AC . Organ‐specific dietary fatty acid uptake in humans using positron emission tomography coupled to computed tomography. Am J Physiol Endocrinol Metab 300: E445‐E453, 2010.
 204. Labbé SM , Grenier‐Larouche T , Noll C , Phoenix S , Guérin B , Turcotte EE , Carpentier AC . Increased myocardial uptake of dietary fatty acids linked to cardiac dysfunction in glucose‐intolerant humans. Diabetes 61: 2701‐2710, 2012.
 205. Lahorte C , Slegers G , Philippé J , Van de Wiele C , Dierckx R . Synthesis and in vitro evaluation of 123 I‐labelled human recombinant annexin V. Biomol Eng 17: 51‐53, 2001.
 206. Laitinen I , Notni J , Pohle K , Rudelius M , Farrell E , Nekolla SG , Henriksen G , Neubauer S , Kessler H , Wester H‐J . Comparison of cyclic RGD peptides for αvβ3 integrin detection in a rat model of myocardial infarction. EJNMMI research 3: 38, 2013.
 207. Law MP , Osman S , Pike VW , Davenport RJ , Cunningham VJ , Rimoldi O , Rhodes CG , Giardina D , Camici PG . Evaluation of [11C]GB67, a novel radioligand for imaging myocardial alpha 1‐adrenoceptors with positron emission tomography. Eur J Nucl Med 27: 7‐17, 2000.
 208. Le Guludec D , Cohen‐Solal A , Delforge J , Delahaye N , Syrota A , Merlet P . Increased myocardial muscarinic receptor density in idiopathic dilated cardiomyopathy: An in vivo PET study. Circulation 96: 3416‐3422, 1997.
 209. Le Guludec D , Delforge J , Dollé F . Imaging the parasympathetic cardiac innervation with PET. In: Autonomic Innervation of the Heart. New York City, NY: Springer, 2015, p. 111‐135.
 210. Le Guludec D , Delforge J , Syrota A , Desruennes M , Valette H , Gandjbakhch I , Merlet P . In vivo quantification of myocardial muscarinic receptors in heart transplant patients. Circulation 90: 172‐178, 1994.
 211. Lee AS , Xu D , Plews JR , Nguyen PK , Nag D , Lyons JK , Han L , Hu S , Lan F , Liu J , Huang M , Narsinh KH , Long CT , de Almeida PE , Levi B , Kooreman N , Bangs C , Pacharinsak C , Ikeno F , Yeung AC , Gambhir SS , Robbins RC , Longaker MT , Wu JC . Preclinical derivation and imaging of autologously transplanted canine induced pluripotent stem cells. J Biol Chem 286: 32697‐32704, 2011.
 212. Lee CS , Tkacs NC . Current concepts of neurohormonal activation in heart failure mediators and mechanisms. AACN Adv Crit Care 19: 364‐385, 2008.
 213. Lee SP , Lee ES , Choi H , Im HJ , Koh Y , Lee MH , Kwon JH , Paeng JC , Kim HK , Cheon GJ , Kim YJ , Kim I , Yoon SS , Seo JW , Sohn DW . 11C‐Pittsburgh B PET imaging in cardiac amyloidosis. JACC Cardiovasc Imaging 8: 50‐59, 2015.
 214. Lee SS , Goo HW , Park SB , Lim CH , Gong G , Seo JB , Lim TH . MR imaging of reperfused myocardial infarction: comparison of necrosis‐specific and intravascular contrast agents in a cat model. Radiology 226: 739‐747, 2003.
 215. Lee WW , Marinelli B , van der Laan AM , Sena BF , Gorbatov R , Leuschner F , Dutta P , Iwamoto Y , Ueno T , Begieneman MP . PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol 59: 153‐163, 2012.
 216. Lekakis J , Prassopoulos V , Athanassiadis P , Kostamis P , Moulopoulos S . Doxorubicin‐induced cardiac neurotoxicity: Study with iodine 123‐labeled metaiodobenzylguanidine scintigraphy. J Nucl Cardiol 3: 37‐41, 1996.
 217. Levashova Z , Backer M , Backer JM , Blankenberg FG . Direct site‐specific labeling of the Cys‐tag moiety in scVEGF with technetium 99m. Bioconjug Chem 19: 1049‐1054, 2008.
 218. Li S , Sinusas AJ , Dobrucki LW , Liu Y‐H . New approach to quantification of molecularly targeted radiotracer uptake from hybrid cardiac SPECT/CT: Methodology and validation. J Nucl Med 54: 2175‐2181, 2013.
 219. Li W , Luehmann HP , Hsiao HM , Tanaka S , Higashikubo R , Gauthier JM , Sultan D , Lavine KJ , Brody SL , Gelman AE , Gropler RJ , Liu Y , Kreisel D . Visualization of monocytic cells in regressing atherosclerotic plaques by intravital 2‐photon and positron emission tomography‐based imaging‐brief report. Arterioscler Thromb Vasc Biol 38: 1030‐1036, 2018.
 220. Liedtke AJ . Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis 23: 321‐336, 1981.
 221. Lindsey ML , Escobar GP , Dobrucki LW , Goshorn DK , Bouges S , Mingoia JT , McClister Jr DM , Su H , Gannon J , MacGillivray C . Matrix metalloproteinase‐9 gene deletion facilitates angiogenesis after myocardial infarction. Am J Physiol Heart Circ Physiol 290: H232‐H239, 2006.
 222. Liu Y , Li W , Luehmann HP , Zhao Y , Detering L , Sultan DH , Hsiao HM , Krupnick AS , Gelman AE , Combadiere C , Gropler RJ , Brody SL , Kreisel D . Noninvasive imaging of CCR2(+) cells in ischemia‐reperfusion injury after lung transplantation. Am J Transplant 16: 3016‐3023, 2016.
 223. Lohrke J , Siebeneicher H , Berger M , Reinhardt M , Berndt M , Mueller A , Zerna M , Koglin N , Oden F , Bauser M , Friebe M , Dinkelborg LM , Huetter J , Stephens AW . (18)F‐GP1, a novel PET tracer designed for high‐sensitivity, low‐background detection of thrombi. J Nucl Med 58: 1094‐1099, 2017.
 224. Lu E , Wagner WR , Schellenberger U , Abraham JA , Klibanov AL , Woulfe SR , Csikari MM , Fischer D , Schreiner GF , Brandenburger GH . Targeted in vivo labeling of receptors for vascular endothelial growth factor. Circulation 108: 97‐103, 2003.
 225. Luisi AJ, Jr. , Suzuki G , Dekemp R , Haka MS , Toorongian SA , Canty JM, Jr. , Fallavollita JA . Regional 11C‐hydroxyephedrine retention in hibernating myocardium: Chronic inhomogeneity of sympathetic innervation in the absence of infarction. J Nucl Med 46: 1368‐1374, 2005.
 226. Lundgrin EL , Park MM , Sharp J , Tang WH , Thomas JD , Asosingh K , Comhair SA , DiFilippo FP , Neumann DR , Davis L , Graham BB , Tuder RM , Dostanic I , Erzurum SC . Fasting 2‐deoxy‐2‐[18F]fluoro‐D‐glucose positron emission tomography to detect metabolic changes in pulmonary arterial hypertension hearts over 1 year. Ann Am Thorac Soc 10: 1‐9, 2013.
 227. Majmudar MD , Keliher EJ , Heidt T , Leuschner F , Truelove J , Sena BF , Gorbatov R , Iwamoto Y , Dutta P , Wojtkiewicz G . Monocyte‐directed RNAi targeting CCR2 improves infarct healing in atherosclerosis‐prone mice. Circulation 127: 2038‐2046, 2013.
 228. Makowski M , Keithahn A , Beer A , Ebersberger U , Hoffmann E , Dirschinger J , Nekolla S , Schwaiger M . [18F] Galacto‐RGD PET demonstrates elevated myocardial αvβ3 expression in patients after myocardial infarction. J Nucl Med 49: 70P‐70P, 2008.
 229. Malpas SC . Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol Rev 90: 513‐557, 2010.
 230. Mariani G , Villa G , Rossettin PF , Spallarossa P . Detection of acute myocardial infarction by 99mTc‐labeled D‐glucaric acid imaging in patients with acute chest pain. J Nucl Med 40: 1832, 1999.
 231. Martignani C , Diemberger I , Nanni C , Biffi M , Ziacchi M , Boschi S , Corzani A , Fanti S , Sambuceti G , Boriani G . Cardiac resynchronization therapy and cardiac sympathetic function. Eur J Clin Invest 45: 792‐799, 2015.
 232. Matsumori A , Yamada T , Tamaki N , Kawai C , Watanabe Y , Yonekura Y , Endo K , Konishi J , Yoshida A , Tamaki S . Persistent uptake of indium‐111‐antimyosin monoclonal antibody in patients with myocardial infarction. Am Heart J 120: 1026‐1030, 1990.
 233. Matsunari I , Aoki H , Nomura Y , Takeda N , Chen WP , Taki J , Nakajima K , Nekolla SG , Kinuya S , Kajinami K . Iodine‐123 metaiodobenzylguanidine imaging and carbon‐11 hydroxyephedrine positron emission tomography compared in patients with left ventricular dysfunction. Circ Cardiovasc Imaging 3: 595‐603, 2010.
 234. Mattison SP , Kim W , Park J , Applegate BE . Molecular imaging in optical coherence tomography. Current molecular imaging 3: 88‐105, 2014.
 235. Maury P , Monteil B , Marty L , Duparc A , Mondoly P , Rollin A . Three‐dimensional mapping in the electrophysiological laboratory. Arch Cardiovasc Dis 111: 456‐464, 2018.
 236. Maya Y , Werner RA , Schutz C , Wakabayashi H , Samnick S , Lapa C , Zechmeister C , Jahns R , Jahns V , Higuchi T . 11C‐methionine PET of myocardial inflammation in a rat model of experimental autoimmune myocarditis. J Nucl Med 57: 1985‐1990, 2016.
 237. Mazzadi AN , Pineau J , Costes N , Le Bars D , Bonnefoi F , Croisille P , Porcher R , Chevalier P . Muscarinic receptor upregulation in patients with myocardial infarction: A new paradigm. Circ Cardiovasc Imaging 2: 365‐372, 2009.
 238. McCommis KS , Goldstein TA , Abendschein DR , Herrero P , Misselwitz B , Gropler RJ , Zheng J . Quantification of regional myocardial oxygenation by magnetic resonance imaging: Validation with positron emission tomography. Circ Cardiovasc Imaging 3: 41‐46, 2010.
 239. McCommis KS , O'Connor R , Lesniak D , Lyons M , Woodard PK , Gropler RJ , Zheng J . Quantification of global myocardial oxygenation in humans: Initial experience. J Cardiovasc Magn Reson 12: 34, 2010.
 240. McNulty PH , Sinusas AJ , Shi CQ , Dione D , Young LH , Cline GC , Shulman GI . Glucose metabolism distal to a critical coronary stenosis in a canine model of low‐flow myocardial ischemia. J Clin Invest 98: 62‐69, 1996.
 241. Meoli DF , Sadeghi MM , Krassilnikova S , Bourke BN , Giordano FJ , Dione DP , Su H , Edwards DS , Liu S , Harris TD , Madri JA , Zarat BL and Sinusas AJ . Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J Clin Invest 113: 1684, 2004.
 242. Merlet P , Valette H , Dubois‐Randé J‐L , Moyse D , Duboc D , Dove P , Bourguignon MH , Benvenuti C , Duval AM , Agostini D . Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med 33: 471‐477, 1992.
 243. Merz CNB , Elboudwarej O , Mehta P . The autonomic nervous system and cardiovascular health and disease: A complex balancing act. JACC Heart Failure 3: 383‐385, 2015.
 244. Mielniczuk LM , Birnie D , Ziadi MC , deKemp RA , DaSilva JN , Burwash I , Tang AT , Davies RA , Haddad H , Guo A , Aung M , Williams K , Ukkonen H , Beanlands RS . Relation between right ventricular function and increased right ventricular [18F]fluorodeoxyglucose accumulation in patients with heart failure. Circ Cardiovasc Imaging 4: 59‐66, 2011.
 245. Minardo JD , Tuli MM , Mock BH , Weiner RE , Pride HP , Wellman HN , Zipes DP . Scintigraphic and electrophysiological evidence of canine myocardial sympathetic denervation and reinnervation produced by myocardial infarction or phenol application. Circulation 78: 1008‐1019, 1988.
 246. Miserus RJ , Herias MV , Prinzen L , Lobbes MB , Van Suylen RJ , Dirksen A , Hackeng TM , Heemskerk JW , van Engelshoven JM , Daemen MJ , van Zandvoort MA , Heeneman S , Kooi ME . Molecular MRI of early thrombus formation using a bimodal alpha2‐antiplasmin‐based contrast agent. JACC Cardiovasc Imaging 2: 987‐996, 2009.
 247. Miyagawa M , Anton M , Wagner B , Haubner R , Souvatzoglou M , Gansbacher B , Schwaiger M , Bengel FM . Non‐invasive imaging of cardiac transgene expression with PET: Comparison of the human sodium/iodide symporter gene and HSV1‐tk as the reporter gene. Eur J Nucl Med Mol Imaging 32: 1108‐1114, 2005.
 248. Moens S , Goveia J , Stapor PC , Cantelmo AR , Carmeliet P . The multifaceted activity of VEGF in angiogenesis–Implications for therapy responses. Cytokine Growth Factor Rev 25: 473‐482, 2014.
 249. Mohy‐ud‐Din H , Boutagy NE , Stendahl JC , Zhuang ZW , Sinusas AJ , Liu C . Quantification of intramyocardial blood volume with 99mTc‐RBC SPECT‐CT imaging: A preclinical study. J Nucl Cardiol 1‐16, 2017.
 250. Momose M , Reder S , Raffel DM , Watzlowik P . Evaluation of Cardiac [beta]‐Adrenoreceptors in the Isolated Perfused Rat Heart Using (S)‐^ sup 11^ C‐CGP12388. J Nucl Med 45: 471, 2004.
 251. Morooka M , Kubota K , Kadowaki H , Ito K , Okazaki O , Kashida M , Mitsumoto T , Iwata R , Ohtomo K , Hiroe M . 11C‐methionine PET of acute myocardial infarction. J Nucl Med 50: 1283‐1287, 2009.
 252. Mott B , Packwood W , Xie A , Belcik JT , Taylor RP , Zhao Y , Davidson BP , Lindner JR . Echocardiographic ischemic memory imaging through complement‐mediated vascular adhesion of phosphatidylserine‐containing microbubbles. JACC Cardiovasc Imaging 9: 937‐946, 2016.
 253. Moulay G , Ohtani T , Ogut O , Guenzel A , Behfar A , Zakeri R , Haines P , Storlie J , Bowen L , Pham L . Cardiac AAV9 gene delivery strategies in adult canines: Assessment by long‐term serial SPECT imaging of sodium iodide symporter expression. Mol Ther 23: 1211‐1221, 2015.
 254. Mozid AM , Holstensson M , Choudhury T , Ben‐Haim S , Allie R , Martin J , Sinusas AJ , Hutton BF , Mathur A . Clinical feasibility study to detect angiogenesis following bone marrow stem cell transplantation in chronic ischaemic heart failure. Nucl Med Commun 35: 839‐848, 2014.
 255. Mulder WJ , Strijkers GJ , van Tilborg GA , Griffioen AW , Nicolay K . Lipid‐based nanoparticles for contrast‐enhanced MRI and molecular imaging. NMR Biomed 19: 142‐164, 2006.
 256. Münch Gt , Nguyen NT , Nekolla S , Ziegler S , Muzik O , Chakraborty P , Wieland DM , Schwaiger M . Evaluation of sympathetic nerve terminals with [11C] epinephrine and [11C] hydroxyephedrine and positron emission tomography. Circulation 101: 516‐523, 2000.
 257. Murakami Y , Takamatsu H , Taki J , Tatsumi M , Noda A , Ichise R , Tait JF , Nishimura S . 18F‐labelled annexin V: A PET tracer for apoptosis imaging. Eur J Nucl Med Mol Imaging 31: 469‐474, 2004.
 258. Muzard J , Sarda‐Mantel L , Loyau S , Meulemans A , Louedec L , Bantsimba‐Malanda C , Hervatin F , Marchal‐Somme J , Michel JB , Le Guludec D . Non‐invasive molecular imaging of fibrosis using a collagen‐targeted peptidomimetic of the platelet collagen receptor glycoprotein VI. PLoS One 4: e5585, 2009.
 259. Nagahara D , Nakata T , Hashimoto A , Wakabayashi T , Kyuma M , Noda R , Shimoshige S , Uno K , Tsuchihashi K , Shimamoto K . Predicting the need for an implantable cardioverter defibrillator using cardiac metaiodobenzylguanidine activity together with plasma natriuretic peptide concentration or left ventricular function. J Nucl Med 49: 225‐233, 2008.
 260. Nagaya N , Goto Y , Satoh T , Uematsu M , Hamada S , Kuribayashi S , Okano Y , Kyotani S , Shimotsu Y , Fukuchi K , Nakanishi N , Takamiya M , Ishida Y . Impaired regional fatty acid uptake and systolic dysfunction in hypertrophied right ventricle. J Nucl Med 39: 1676‐1680, 1998.
 261. Nahrendorf M , Aikawa E , Figueiredo JL , Stangenberg L , van den Borne SW , Blankesteijn WM , Sosnovik DE , Jaffer FA , Tung CH , Weissleder R . Transglutaminase activity in acute infarcts predicts healing outcome and left ventricular remodelling: Implications for FXIII therapy and antithrombin use in myocardial infarction. Eur Heart J 29: 445‐454, 2008.
 262. Nahrendorf M , Pittet MJ , Swirski FK . Monocytes: Protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121: 2437‐2445, 2010.
 263. Nahrendorf M , Sosnovik D , Chen JW , Panizzi P , Figueiredo JL , Aikawa E , Libby P , Swirski FK , Weissleder R . Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia‐reperfusion injury. Circulation 117: 1153‐1160, 2008.
 264. Nahrendorf M , Sosnovik DE , French BA , Swirski FK , Bengel F , Sadeghi MM , Lindner JR , Wu JC , Kraitchman DL , Fayad ZA . Multimodality cardiovascular molecular imaging, Part II. Circ Cardiovasc Imaging 2: 56‐70, 2009.
 265. Nahrendorf M , Sosnovik DE , Waterman P , Swirski FK , Pande AN , Aikawa E , Figueiredo J‐L , Pittet MJ , Weissleder R . Dual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct. Circ Res 100: 1218‐1225, 2007.
 266. Nahrendorf M , Swirski FK . Monocyte and macrophage heterogeneity in the heart. Circ Res 112: 1624‐1633, 2013.
 267. Nahrendorf M , Swirski FK , Aikawa E , Stangenberg L , Wurdinger T , Figueiredo J‐L , Libby P , Weissleder R , Pittet MJ . The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204: 3037‐3047, 2007.
 268. Nakahara T , Dweck MR , Narula N , Pisapia D , Narula J , Strauss HW . Coronary artery calcification: From mechanism to molecular imaging. JACC Cardiovasc Imaging 10: 582‐593, 2017.
 269. Nakata T , Miyamoto K , Doi A , Sasao H , Wakabayashi T , Kobayashi H , Tsuchihashi K , Shimamoto K . Cardiac death prediction and impaired cardiac sympathetic innervation assessed by MIBG in patients with failing and nonfailing hearts. J Nucl Cardiol 5: 579‐590, 1998.
 270. Narula J , Acio ER , Narula N , Samuels LE , Fyfe B , Wood D , Fitzpatrick JM , Raghunath PN , Tomaszewski JE , Kelly C , Steinmetz N , Green A , Tait JF , Leppo J , Blankenberg FG , Jain D , Strauss HW . Annexin‐V imaging for noninvasive detection of cardiac allograft rejection. Nat Med 7: 1347‐1352, 2001.
 271. Narula J , Gerson M , Thomas GS , Cerqueira MD , Jacobson AF . 123I‐MIBG imaging for prediction of mortality and potentially fatal events in heart failure: The ADMIRE‐HFX study. J Nucl Med 56: 1011‐1018, 2015.
 272. Naya M , Tsukamoto T , Morita K , Katoh C , Nishijima K , Komatsu H , Yamada S , Kuge Y , Tamaki N , Tsutsui H . Myocardial beta‐adrenergic receptor density assessed by 11C‐CGP12177 PET predicts improvement of cardiac function after carvedilol treatment in patients with idiopathic dilated cardiomyopathy. J Nucl Med 50: 220‐225, 2009.
 273. Nelson GS , Berger RD , Fetics BJ , Talbot M , Spinelli JC , Hare JM , Kass DA . Left ventricular or biventricular pacing improves cardiac function at diminished energy cost in patients with dilated cardiomyopathy and left bundle‐branch block. Circulation 102: 3053‐3059, 2000.
 274. Nensa F , Kloth J , Tezgah E , Poeppel TD , Heusch P , Goebel J , Nassenstein K , Schlosser T . Feasibility of FDG‐PET in myocarditis: Comparison to CMR using integrated PET/MRI. J Nucl Cardiol 2016.
 275. Nguyen PK , Rhee JW , Wu JC . Adult stem cell therapy and heart failure, 2000 to 2016: A systematic review. JAMA Cardiol 1: 831‐841, 2016.
 276. Nishijima K , Kuge Y , Seki K , Ohkura K , Morita K , Nakada K , Tamaki N . Preparation and pharmaceutical evaluation for clinical application of high specific activity S‐(−)[11C] CGP‐12177, a radioligand for β‐adrenoreceptors. Nucl Med Commun 25: 845‐849, 2004.
 277. Nishijima K‐i , Kuge Y , Seki K‐i , Ohkura K , Motoki N , Nagatsu K , Tanaka A , Tsukamoto E , Tamaki N . A simplified and improved synthesis of [11C] phosgene with iron and iron (III) oxide. Nucl Med Biol 29: 345‐350, 2002.
 278. Nishioka SAO , Martinelli Filho M , Brandão SCS , Giorgi MC , Vieira ML , Costa R , Mathias W , Meneghetti JC . Cardiac sympathetic activity pre and post resynchronization therapy evaluated by 123I‐MIBG myocardial scintigraphy. J Nucl Cardiol 14: 852‐859, 2007.
 279. Nishisato K , Hashimoto A , Nakata T , Doi T , Yamamoto H , Nagahara D , Shimoshige S , Yuda S , Tsuchihashi K , Shimamoto K . Impaired cardiac sympathetic innervation and myocardial perfusion are related to lethal arrhythmia: Quantification of cardiac tracers in patients with ICDs. J Nucl Med 51: 1241‐1249, 2010.
 280. Njeim M , Desjardins B , Bogun F . Multimodality imaging for guiding EP ablation procedures. JACC Cardiovasc Imaging 9: 873‐886, 2016.
 281. Noordzij W , Glaudemans AW , van Rheenen RW , Hazenberg BP , Tio RA , Dierckx RA , Slart RH . (123)I‐Labelled metaiodobenzylguanidine for the evaluation of cardiac sympathetic denervation in early stage amyloidosis. Eur J Nucl Med Mol Imaging 39: 1609‐1617, 2012.
 282. Norikane T , Yamamoto Y , Maeda Y , Noma T , Dobashi H , Nishiyama Y . Comparative evaluation of (18)F‐FLT and (18)F‐FDG for detecting cardiac and extra‐cardiac thoracic involvement in patients with newly diagnosed sarcoidosis. EJNMMI Res 7: 69, 2017.
 283. Odaka K , Uehara T , Arano Y , Adachi S , Tadokoro H , Yoshida K , Hasegawa H , Imanaka‐Yoshida K , Yoshida T , Hiroe M , Irie T , Tanada S , Komuro I . Noninvasive detection of cardiac repair after acute myocardial infarction in rats by 111 In Fab fragment of monoclonal antibody specific for tenascin‐C. Int Heart J 49: 481‐492, 2008.
 284. Oemrawsingh RM , Akkerhuis KM , Van Vark LC , Redekop WK , Rudez G , Remme WJ , Bertrand ME , Fox KM , Ferrari R , Danser AJ . Individualized angiotensin‐converting enzyme (ACE)‐inhibitor therapy in stable coronary artery disease based on clinical and pharmacogenetic determinants: The PERindopril GENEtic (PERGENE) risk model. J Am Heart Assoc 5: e002688, 2016.
 285. Ohte N , Narita H , Iida A , Fukuta H , Iizuka N , Hayano J , Kuge Y , Tamaki N , Kimura G . Cardiac beta‐adrenergic receptor density and myocardial systolic function in the remote noninfarcted region after prior myocardial infarction with left ventricular remodelling. Eur J Nucl Med Mol Imaging 39: 1246‐1253, 2012.
 286. Oikawa M , Kagaya Y , Otani H , Sakuma M , Demachi J , Suzuki J , Takahashi T , Nawata J , Ido T , Watanabe J , Shirato K . Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol. J Am Coll Cardiol 45: 1849‐1855, 2005.
 287. Oliveira BL , Blasi F , Rietz TA , Rotile NJ , Day H , Caravan P . Multimodal molecular imaging reveals high target uptake and specificity of 111In‐ and 68Ga‐labeled fibrin‐binding probes for thrombus detection in rats. J Nucl Med 56: 1587‐1592, 2015.
 288. Olshansky B , Sabbah HN , Hauptman PJ , Colucci WS . Parasympathetic nervous system and heart failure: Pathophysiology and potential implications for therapy. Circulation 118: 863‐871, 2008.
 289. Orbay H , Zhang Y , Valdovinos HF , Song G , Hernandez R , Theuer CP , Hacker TA , Nickles RJ , Cai W . Positron emission tomography imaging of CD105 expression in a rat myocardial infarction model with 64Cu‐NOTA‐TRC105. Am J Nucl Med Mol Imaging 4: 1, 2014.
 290. Ovize M , Revel D , de LORGERIL M , Pichard J‐b , Dandis G , Delaye J , Renaud S , Amiel M . Quantitation of reperfused myocardial infarction by Gd‐DOTA‐enhanced magnetic resonance imaging: An experimental study. Invest Radiol 26: 1065‐1070, 1991.
 291. Ozawa K , Funabashi N , Daimon M , Takaoka H , Takano H , Uehara M , Kobayashi Y . Determination of optimum periods between onset of suspected acute myocarditis and (1)(8)F‐fluorodeoxyglucose positron emission tomography in the diagnosis of inflammatory left ventricular myocardium. Int J Cardiol 169: 196‐200, 2013.
 292. Pan D , Roessl E , Schlomka JP , Caruthers SD , Senpan A , Scott MJ , Allen JS , Zhang H , Hu G , Gaffney PJ . Computed tomography in color: NanoK‐enhanced spectral CT molecular imaging. Angew Chem 122: 9829‐9833, 2010.
 293. Pan D , Schirra CO , Senpan A , Schmieder AH , Stacy AJ , Roessl E , Thran A , Wickline SA , Proska R , Lanza GM . An early investigation of ytterbium nanocolloids for selective and quantitative “multicolor” spectral CT imaging. ACS Nano 6: 3364‐3370, 2012.
 294. Pan T , Mawlawi O , Luo D , Liu HH , Chi PcM , Mar MV , Gladish G , Truong M , Erasmus J , Liao Z . Attenuation correction of PET cardiac data with low‐dose average CT in PET/CT. Med Phys 33: 3931‐3938, 2006.
 295. Park MA , Padera RF , Belanger A , Dubey S , Hwang DH , Veeranna V , Falk RH , Di Carli MF , Dorbala S . 18F‐Florbetapir binds specifically to myocardial light chain and transthyretin amyloid deposits: Autoradiography study. Circ Cardiovasc Imaging 8: 2015.
 296. Park‐Holohan SJ , Asselin MC , Turton DR , Williams SL , Hume SP , Camici PG , Rimoldi OE . Quantification of [11C]GB67 binding to cardiac alpha1‐adrenoceptors with positron emission tomography: Validation in pigs. Eur J Nucl Med Mol Imaging 35: 1624‐1635, 2008.
 297. Paul M , Mehr AP , Kreutz R . Physiology of local renin‐angiotensin systems. Physiol Rev 86: 747‐803, 2006.
 298. Pearson TA , Mensah GA , Alexander RW , Anderson JL , Cannon RO , Criqui M , Fadl YY , Fortmann SP , Hong Y , Myers GL . Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107: 499‐511, 2003.
 299. Peker C , Sarda‐Mantel L , Loiseau P , Rouzet F , Nazneen L , Martet G , Vrigneaud JM , Meulemans A , Saumon G , Michel JB , Le Guludec D . Imaging apoptosis with (99m)Tc‐annexin‐V in experimental subacute myocarditis. J Nucl Med 45: 1081‐1086, 2004.
 300. Perea RJ , Ortiz‐Perez JT , Sole M , Cibeira MT , de Caralt TM , Prat‐Gonzalez S , Bosch X , Berruezo A , Sanchez M , Blade J . T1 mapping: Characterisation of myocardial interstitial space. Insights Imaging 6: 189‐202, 2015.
 301. Peterson LR , Gropler RJ . Radionuclide imaging of myocardial metabolism. Circ Cardiovasc Imaging 3: 211‐222, 2010.
 302. Petrou M , Frey KA , Kilbourn MR , Scott P , Raffel DM , Bohnen NI , Muller M , Albin RL , Koeppe RA . In vivo imaging of human cholinergic nerve terminals with (‐)‐5‐(18) F‐fluoroethoxybenzovesamicol: Biodistribution, dosimetry, and tracer kinetic analyses. J Nucl Med 55: 396‐404, 2014.
 303. Phatharajaree W , Phrommintikul A , Chattipakorn N . Matrix metalloproteinases and myocardial infarction. Can J Cardiol 23: 727‐733, 2007.
 304. Piao L , Fang YH , Cadete VJ , Wietholt C , Urboniene D , Toth PT , Marsboom G , Zhang HJ , Haber I , Rehman J , Lopaschuk GD , Archer SL . The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: Resuscitating the hibernating right ventricle. J Mol Med (Berl) 88: 47‐60, 2010.
 305. Pietila M , Malminiemi K , Ukkonen H , Saraste M , Nagren K , Lehikoinen P , Voipio‐Pulkki LM . Reduced myocardial carbon‐11 hydroxyephedrine retention is associated with poor prognosis in chronic heart failure. Eur J Nucl Med 28: 373‐376, 2001.
 306. Prasad R , Thorn S , Chan C , Fan P , Lin S‐f , Gallezot J‐D , Lampert R , Carson R , Sinusas A , Liu C . Quantification and kinetic modeling of 123I‐mIBG using dynamic SPECT for cardiac innervation. J Nucl Med 56: 408‐408, 2015.
 307. Quail MA , Sinusas AJ . PET‐CMR in heart failure‐synergistic or redundant imaging? Heart Failure Reviews 1‐13, 2017.
 308. Rahmim A , Zaidi H . PET versus SPECT: Strengths, limitations and challenges. Nucl Med Commun 29: 193‐207, 2008.
 309. Ravera S , Reyna‐Neyra A , Ferrandino G , Amzel LM , Carrasco N . The sodium/iodide symporter (NIS): Molecular physiology and preclinical and clinical applications. Annu Rev Physiol 79: 261‐289, 2017.
 310. Rijnierse MT , Allaart CP , de Haan S , Harms HJ , Huisman MC , Wu L , Beek AM , Lammertsma AA , van Rossum AC , Knaapen P . Sympathetic denervation is associated with microvascular dysfunction in non‐infarcted myocardium in patients with cardiomyopathy. Eur Heart J Cardiovasc Imaging 16: 788‐798, 2015.
 311. Rischpler C , Dirschinger RJ , Nekolla SG , Kossmann H , Nicolosi S , Hanus F , van Marwick S , Kunze KP , Meinicke A , Götze K . Prospective evaluation of 18 F‐fluorodeoxyglucose uptake in postischemic myocardium by simultaneous positron emission tomography/magnetic resonance imaging as a prognostic marker of functional outcome. Circ Cardiovasc Imaging 9: e004316, 2016.
 312. Rix A , Fokong S , Heringer S , Pjontek R , Kabelitz L , Theek B , Brockmann MA , Wiesmann M , Kiessling F . Molecular ultrasound imaging of alphavbeta3‐integrin expression in carotid arteries of pigs after vessel injury. Invest Radiol 51: 767‐775, 2016.
 313. Rodriguez‐Porcel M , Cai W , Gheysens O , Willmann JK , Chen K , Wang H , Chen IY , He L , Wu JC , Li Z‐b . Imaging of VEGF receptor in a rat myocardial infarction model using PET. J Nucl Med 49: 667‐673, 2008.
 314. Rudy Y , Lindsay BD . Electrocardiographic imaging of heart rhythm disorders: From bench to bedside. Card Electrophysiol Clin 7: 17‐35, 2015.
 315. Ruggiero A , Thorek DL , Guenoun J , Krestin GP , Bernsen MR . Cell tracking in cardiac repair: What to image and how to image. Eur Radiol 22: 189‐204, 2012.
 316. Ruiter G , Wong YY , Raijmakers P , Huisman MC , Lammertsma AA , Knaapen P , de Man FS , Westerhof N , van der Laarse WJ , Vonk‐Noordegraaf A . Pulmonary 2‐deoxy‐2‐[(18)F]‐fluoro‐d‐glucose uptake is low in treated patients with idiopathic pulmonary arterial hypertension. Pulm Circ 3: 647‐653, 2013.
 317. Russo AM , Stainback RF , Bailey SR , Epstein AE , Heidenreich PA , Jessup M , Kapa S , Kremers MS , Lindsay BD , Stevenson LW . Accf/hrs/aha/ase/hfsa/scai/scct/scmr 2013 appropriate use criteria for implantable cardioverter‐defibrillators and cardiac resynchronization therapy: A report of the american college of cardiology foundation appropriate use criteria task force, heart rhythm society, american heart association, american society of echocardiography, heart failure society of america, society for cardiovascular angiography and interventions, society of cardiovascular computed tomography, and society for cardiovascular magnetic resonance. J Am Coll Cardiol 61: 1318‐1368, 2013.
 318. Ryan JJ , Archer SL . The right ventricle in pulmonary arterial hypertension: Disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circ Res 115: 176‐188, 2014.
 319. Saby L , Laas O , Habib G , Cammilleri S , Mancini J , Tessonnier L , Casalta JP , Gouriet F , Riberi A , Avierinos JF , Collart F , Mundler O , Raoult D , Thuny F . Positron emission tomography/computed tomography for diagnosis of prosthetic valve endocarditis: Increased valvular 18F‐fluorodeoxyglucose uptake as a novel major criterion. J Am Coll Cardiol 61: 2374‐2382, 2013.
 320. Sahul ZH , Mukherjee R , Song J , McAteer J , Stroud RE , Dione DP , Staib L , Papademetris X , Dobrucki LW , Duncan JS , Spinale FG , Sinusas AJ . Targeted imaging of the spatial and temporal variation of matrix metalloproteinase activity in a porcine model of postinfarct remodeling: Relationship to myocardial dysfunction. Circ Cardiovasc Imaging 4: 381‐391, 2011.
 321. Sakata K , Mochizuki M , Yoshida H , Nawada R , Ohbayashi K , Ishikawa J , Tamekiyo H . Cardiac sympathetic dysfunction contributes to left ventricular remodeling after acute myocardial infarction. Eur J Nucl Med 27: 1641‐1649, 2000.
 322. Sasano T , Abraham MR , Chang KC , Ashikaga H , Mills KJ , Holt DP , Hilton J , Nekolla SG , Dong J , Lardo AC , Halperin H , Dannals RF , Marban E , Bengel FM . Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. J Am Coll Cardiol 51: 2266‐2275, 2008.
 323. Sato M , Toyozaki T , Odaka K , Uehara T , Arano Y , Hasegawa H , Yoshida K , Imanaka‐Yoshida K , Yoshida T , Hiroe M , Tadokoro H , Irie T , Tanada S , Komuro I . Detection of experimental autoimmune myocarditis in rats by 111In monoclonal antibody specific for tenascin‐C. Circulation 106: 1397‐1402, 2002.
 324. Schäfer MK‐H , Weihe E , Erickson JD , Eiden LE . Human and monkey cholinergic neurons visualized in paraffin‐embedded tissues by immunoreactivity for VAChT, the vesicular acetylcholine transporter. J Mol Neurosci 6: 225‐235, 1995.
 325. Schinkel AF , Bax JJ , Poldermans D , Elhendy A , Ferrari R , Rahimtoola SH . Hibernating myocardium: Diagnosis and patient outcomes. Curr Probl Cardiol 32: 375‐410, 2007.
 326. Schirra CO , Brendel B , Anastasio MA , Roessl E . Spectral CT: A technology primer for contrast agent development. Contrast Media Mol Imaging 9: 62‐70, 2014.
 327. Schofer J , Spielmann R , Schuchert A , Weber K , Schlüter M . Iodine‐123 meta‐iodobenzylguanidine scintigraphy: A noninvasive method to demonstrate myocardial adrenergic nervous system disintegrity in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 12: 1252‐1258, 1988.
 328. Schon HR , Schelbert HR , Najafi A , Hansen H , Huang H , Barrio J , Phelps ME . C‐11 labeled palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron‐computed tomography. II. Kinetics of C‐11 palmitic acid in acutely ischemic myocardium. Am Heart J 103: 548‐561, 1982.
 329. Schon HR , Schelbert HR , Robinson G , Najafi A , Huang SC , Hansen H , Barrio J , Kuhl DE , Phelps ME . C‐11 labeled palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron‐computed tomography. I. Kinetics of C‐ 11 palmitic acid in normal myocardium. Am Heart J 103: 532‐547, 1982.
 330. Schroeder MA , Atherton HJ , Ball DR , Cole MA , Heather LC , Griffin JL , Clarke K , Radda GK , Tyler DJ . Real‐time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy. FASEB 23: 2529‐2538, 2009.
 331. Schwaiger M , Hutchins GD , Kalff V , Rosenspire K , Haka MS , Mallette S , Deeb GM , Abrams GD , Wieland D . Evidence for regional catecholamine uptake and storage sites in the transplanted human heart by positron emission tomography. J Clin Invest 87: 1681‐1690, 1991.
 332. Schwaiger M , Schelbert HR , Ellison D , Hansen H , Yeatman L , Vinten‐Johansen J , Selin C , Barrio J , Phelps M . Sustained regional abnormalities in cardiac metabolism after transient ischemia in the chronic dog model. J Am Coll Cardiol 6: 336‐347, 1985.
 333. Senior R , Agostini D , Travin M , Caldwell JH , Gerson MC , Jacobson AF . Imaging of myocardial sympathetic innervation for prediction of arrhythmic events in heart failure patients: Insights from the ADMIRE‐HF trial. Circulation 120(18): S349, 2009.
 334. Shekhar A , Heeger P , Reutelingsperger C , Arbustini E , Narula N , Hofstra L , Bax JJ , Narula J . Targeted imaging for cell death in cardiovascular disorders. JACC Cardiovasc Imaging 11: 476‐493, 2018.
 335. Sherif HM , Saraste A , Nekolla SG , Weidl E , Reder S , Tapfer A , Rudelius M , Higuchi T , Botnar RM , Wester H‐J . Molecular imaging of early αvβ3 integrin expression predicts long‐term left‐ventricle remodeling after myocardial infarction in rats. J Nucl Med 53: 318‐323, 2012.
 336. Shi CQ , Young LH , Daher E , DiBella EV , Liu YH , Heller EN , Zoghbi S , Wackers FJ , Soufer R , Sinusas AJ . Correlation of myocardial p‐(123)I‐iodophenylpentadecanoic acid retention with (18)F‐FDG accumulation during experimental low‐flow ischemia. J Nucl Med 43: 421‐431, 2002.
 337. Shirani J , Dilsizian V . Molecular imaging in heart failure. Curr Opin Biotechnol 18: 65‐72, 2007.
 338. Shirani J , Singh A , Agrawal S , Dilsizian V . Cardiac molecular imaging to track left ventricular remodeling in heart failure. J Nucl Cardiol 24: 574‐590, 2017.
 339. Shoghi KI , Gropler RJ . PET measurements of organ metabolism: The devil is in the details. Diabetes 64: 2332‐2334, 2015.
 340. Shoup TM , Elmaleh DR , Bonab AA , Fischman AJ . Evaluation of trans‐9‐18F‐fluoro‐3,4‐Methyleneheptadecanoic acid as a PET tracer for myocardial fatty acid imaging. J Nucl Med 46: 297‐304, 2005.
 341. Simons M . Angiogenesis: Where do we stand now? Circulation 111: 1556‐1566, 2005.
 342. Singal PK , Iliskovic N . Doxorubicin‐induced cardiomyopathy. N Engl J Med 339: 900‐905, 1998.
 343. Sinusas AJ , Bengel F , Nahrendorf M , Epstein FH , Wu JC , Villanueva FS , Fayad ZA , Gropler RJ . Multimodality cardiovascular molecular imaging, part I. Circ Cardiovasc Imaging 1: 244‐256, 2008.
 344. Sinusas AJ , Lazewatsky J , Brunetti J , Heller G , Srivastava A , Liu YH , Sparks R , Puretskiy A , Lin SF , Crane P , Carson RE , Lee LV . Biodistribution and radiation dosimetry of LMI1195: First‐in‐human study of a novel 18F‐labeled tracer for imaging myocardial innervation. J Nucl Med 55: 1445‐1451, 2014.
 345. Slart RHJA , Glaudemans AWJM , Hazenberg BPC , et al. J Nucl Cardiol (2017). https://doi.org/10.1007/s12350‐017‐1059‐9.
 346. Slart R , Glaudemans A , Lancellotti P , Hyafil F , Blankstein R , Schwartz RG , Jaber WA , Russell R , Gimelli A , Rouzet F , Hacker M , Gheysens O , Plein S , Miller EJ , Dorbala S , Donal E . A joint procedural position statement on imaging in cardiac sarcoidosis: From the Cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine, the European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology. J Nucl Cardiol 25: 298‐319, 2018.
 347. Slart RH , van der Meer P , Tio RA , van Veldhuisen DJ , Elsinga PH . PET imaging of myocardial β‐adrenoceptors. In:Autonomic Innervation of the Heart. New York City, NY: Springer, 2015, pp. 235‐253.
 348. Smeenge M , Tranquart F , Mannaerts CK , de Reijke TM , van de Vijver MJ , Laguna MP , Pochon S , de la Rosette J , Wijkstra H . First‐in‐human ultrasound molecular imaging with a VEGFR2‐specific ultrasound molecular contrast agent (BR55) in prostate cancer: A safety and feasibility pilot study. Invest Radiol 52: 419‐427, 2017.
 349. Sobirin MA , Kinugawa S , Takahashi M , Fukushima A , Homma T , Ono T , Hirabayashi K , Suga T , Azalia P , Takada S . Activation of natural killer T cells ameliorates post‐infarct cardiac remodeling and failure in mice. Circ Res 111: 1037‐1047, 2012.
 350. Sohail MR , Henrikson CA , Braid‐Forbes MJ , Forbes KF , Lerner DJ . Mortality and cost associated with cardiovascular implantable electronic device infections. Arch Intern Med 171: 1821‐1828, 2011.
 351. Sosnovik DE. Molecular imaging in cardiovascular magnetic resonance imaging: Current perspective and future potential. Top Magn Reson Imaging: TMRI 19: 59‐68, 2008.
 352. Sosnovik DE , Garanger E , Aikawa E , Nahrendorf M , Figuiredo JL , Dai G , Reynolds F , Rosenzweig A , Weissleder R , Josephson L . Molecular MRI of cardiomyocyte apoptosis with simultaneous delayed‐enhancement MRI distinguishes apoptotic and necrotic myocytes in vivo: Potential for midmyocardial salvage in acute ischemia. Circ Cardiovasc Imaging 2: 460‐467, 2009.
 353. Sosnovik DE , Nahrendorf M , Deliolanis N , Novikov M , Aikawa E , Josephson L , Rosenzweig A , Weissleder R , Ntziachristos V . Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo. Circulation 115: 1384‐1391, 2007.
 354. Sosnovik DE , Nahrendorf M , Panizzi P , Matsui T , Aikawa E , Dai G , Li L , Reynolds F , Dorn GW, II , Weissleder R , Josephson L , Rosenzweig A . Molecular MRI detects low levels of cardiomyocyte apoptosis in a transgenic model of chronic heart failure. Circ Cardiovasc Imaging 2: 468‐475, 2009.
 355. Spinale FG. Matrix metalloproteinases: Regulation and dysregulation in the failing heart. Circ Res 90: 520‐530, 2002.
 356. Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: Influence on cardiac form and function. Physiol Rev 87: 1285‐1342, 2007.
 357. Spuentrup E , Botnar RM , Wiethoff AJ , Ibrahim T , Kelle S , Katoh M , Ozgun M , Nagel E , Vymazal J , Graham PB , Gunther RW , Maintz D . MR imaging of thrombi using EP‐2104R, a fibrin‐specific contrast agent: Initial results in patients. Eur Radiol 18: 1995‐2005, 2008.
 358. Spuentrup E , Fausten B , Kinzel S , Wiethoff AJ , Botnar RM , Graham PB , Haller S , Katoh M , Parsons EC, Jr. , Manning WJ , Busch T , Gunther RW , Buecker A . Molecular magnetic resonance imaging of atrial clots in a swine model. Circulation 112: 396‐399, 2005.
 359. Spyrou N , Rosen SD , Fath‐Ordoubadi F , Jagathesan R , Foale R , Kooner JS , Camici PG . Myocardial beta‐adrenoceptor density one month after acute myocardial infarction predicts left ventricular volumes at six months. J Am Coll Cardiol 40: 1216‐1224, 2002.
 360. Stacy MR , Sinusas AJ . Novel applications of radionuclide imaging in peripheral vascular disease. Cardiol Clin 34: 167‐177, 2016.
 361. Stendahl JC , Sinusas AJ . Nanoparticles for cardiovascular imaging and therapeutic delivery, Part 1: Compositions and features. J Nucl Med 56: 1469‐1475, 2015.
 362. Stendahl JC , Sinusas AJ . Nanoparticles for cardiovascular imaging and therapeutic delivery, Part 2: Radiolabeled probes. J Nucl Med 56: 1637‐1641, 2015.
 363. Stirrat CG , Alam SR , MacGillivray TJ , Gray CD , Dweck MR , Dibb K , Spath N , Payne JR , Prasad SK , Gardner RS , Mirsadraee S , Henriksen PA , Semple SI , Newby DE . Ferumoxytol‐enhanced magnetic resonance imaging in acute myocarditis. Heart 104: 300‐305, 2018.
 364. Su H , Spinale FG , Dobrucki LW , Song J , Hua J , Sweterlitsch S , Dione DP , Cavaliere P , Chow C , Bourke BN , Hu XY , Azure M , Yalamanchili P , Liu R , Cheesman EH , Robinson S , Edwards DS , Sinusas AJ . Noninvasive targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling. Circulation 112: 3157‐3167, 2005.
 365. Sun KT , Yeatman LA , Buxton DB , Chen K , Johnson JA , Huang SC , Kofoed KF , Weismueller S , Czernin J , Phelps ME , Schelbert HR . Simultaneous measurement of myocardial oxygen consumption and blood flow using [1‐carbon‐11]acetate. J Nucl Med 39: 272‐280, 1998.
 366. Sun Y , Zeng Y , Zhu Y , Feng F , Xu W , Wu C , Xing B , Zhang W , Wu P , Cui L . Application of 68Ga‐PRGD2 PET/CT for αvβ3‐integrin imaging of myocardial infarction and stroke. Theranostics 4: 778, 2014.
 367. Suzuki M , Bachelet‐Violette L , Rouzet F , Beilvert A , Autret G , Maire M , Menager C , Louedec L , Choqueux C , Saboural P , Haddad O , Chauvierre C , Chaubet F , Michel JB , Serfaty JM , Letourneur D . Ultrasmall superparamagnetic iron oxide nanoparticles coated with fucoidan for molecular MRI of intraluminal thrombus. Nanomedicine (Lond) 10: 73‐87, 2015.
 368. Taegtmeyer H. Tracing cardiac metabolism in vivo: One substrate at a time. J Nucl Med 51(Suppl 1): 80s‐87s, 2010.
 369. Taegtmeyer H , Dilsizian V . Imaging myocardial metabolism and ischemic memory. Nat Clin Pract Cardiovasc Med 5(Suppl 2): S42‐S48, 2008.
 370. Taegtmeyer H , Young ME , Lopaschuk GD , Abel ED , Brunengraber H , Darley‐Usmar V , Des Rosiers C , Gerszten R , Glatz JF , Griffin JL . Assessing cardiac metabolism: A scientific statement from the American Heart Association. Circ Res 118: 1659‐1701, 2016.
 371. Tahara N , Zandbergen HR , de Haas HJ , Petrov A , Pandurangi R , Yamaki T , Zhou J , Imaizumi T , Slart RH , Dyszlewski M , Scarabelli T , Kini A , Reutelingsperger C , Narula N , Fuster V , Narula J . Noninvasive molecular imaging of cell death in myocardial infarction using 111In‐GSAO. Sci Rep 4: 6826, 2014.
 372. Takano H , Ozawa H , Kobayashi I , Hamaoka S , Nakajima J , Nakamura T , Sato K , Kimura H , Naito A , Obata S , Koizumi K , Tamura K . Myocardial sympathetic dysinnervation in doxorubicin cardiomyopathy. J Cardiol 27: 49‐55, 1996.
 373. Takeishi Y , Minamihaba O , Yamauchi S , Arimoto T , Hirono O , Takahashi H , Akiyama H , Miyamoto T , Nitobe J , Nozaki N , Tachibana H , Okuyama M , Fukui A , Kubota I , Okada A , Takahashi K . Dynamic 123I‐BMIPP single‐photon emission computed tomography in patients with congestive heart failure: Effect of angiotensin II type‐1 receptor blockade. Clin Cardiol 27: 204‐210, 2004.
 374. Takeishi Y , Sukekawa H , Sakurai T , Saito H , Nishimura S , Shibu T , Sasaki Y , Tomoike H . Noninvasive identification of anthracycline cardiotoxicity: Comparison of 123I‐MIBG and 123I‐BMIPP imaging. Ann Nucl Med 8: 177‐182, 1994.
 375. Taki J , Inaki A , Wakabayashi H , Imanaka‐Yoshida K , Ogawa K , Hiroe M , Shiba K , Yoshida T , Kinuya S . Dynamic expression of tenascin‐C after myocardial ischemia and reperfusion: Assessment by 125I‐anti‐tenascin‐C antibody imaging. J Nucl Med 51: 1116‐1122, 2010.
 376. Tamaki N , Yamada T , Matsumori A , Yoshida A , Fujita T , Ohtani H , Watanabe Y , Yonekura Y , Endo K , Konishi J . Indium‐111‐antimyosin antibody imaging for detecting different stages of myocardial infarction: Comparison with technetium‐99m‐pyrophosphate imaging. J Nucl Med 31: 136‐142, 1990.
 377. Tamaki S , Yamada T , Okuyama Y , Morita T , Sanada S , Tsukamoto Y , Masuda M , Okuda K , Iwasaki Y , Yasui T . Cardiac iodine‐123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: results from a comparative study with signal‐averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol 53: 426‐435, 2009.
 378. Tanaka M , Fujiwara H , Onodera T , Wu D , Hamashima Y , Kawai C . Quantitative analysis of myocardial fibrosis in normals, hypertensive hearts, and hypertrophic cardiomyopathy. Heart 55: 575‐581, 1986.
 379. Tanaka M , Hongo M , Kinoshita O , Takabayashi Y , Fujii T , Yazaki Y , Isobe M , Sekiguchi M . Iodine‐123 metaiodobenzylguanidine scintigraphic assessment of myocardial sympathetic innervation in patients with familial amyloid polyneuropathy. J Am Coll Cardiol 29: 168‐174, 1997.
 380. Tandri H , Saranathan M , Rodriguez ER , Martinez C , Bomma C , Nasir K , Rosen B , Lima JA , Calkins H , Bluemke DA . Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed‐enhancement magnetic resonance imaging. J Am Coll Cardiol 45: 98‐103, 2005.
 381. Tanimoto T , Parseghian MH , Nakahara T , Kawai H , Narula N , Kim D , Nishimura R , Weisbart RH , Chan G , Richieri RA , Haider N , Chaudhry F , Reynolds GT , Billimek J , Blankenberg FG , Sengupta PP , Petrov AD , Akasaka T , Strauss HW , Narula J . Cardioprotective effects of HSP72 administration on ischemia‐reperfusion injury. J Am Coll Cardiol 70: 1479‐1492, 2017.
 382. Taruttis A , Wildgruber M , Kosanke K , Beziere N , Licha K , Haag R , Aichler M , Walch A , Rummeny E , Ntziachristos V . Multispectral optoacoustic tomography of myocardial infarction. Photoacoustics 1: 3‐8, 2013.
 383. Tatebe S , Fukumoto Y , Oikawa‐Wakayama M , Sugimura K , Satoh K , Miura Y , Aoki T , Nochioka K , Miura M , Yamamoto S , Tashiro M , Kagaya Y , Shimokawa H . Enhanced [18F]fluorodeoxyglucose accumulation in the right ventricular free wall predicts long‐term prognosis of patients with pulmonary hypertension: A preliminary observational study. Eur Heart J Cardiovasc Imaging 15: 666‐672, 2014.
 384. Tavakoli S , Vashist A , Sadeghi MM . Molecular imaging of plaque vulnerability. J Nucl Cardiol 21: 1112‐1128, 2014.
 385. Templin C , Zweigerdt R , Schwanke K , Olmer R , Ghadri J‐R , Emmert MY , Müller E , Küest SM , Cohrs S , Schibli R . Transplantation and tracking of human induced pluripotent stem cells in a pig model of myocardial infarction: Assessment of cell survival, engraftment and distribution by hybrid SPECT‐CT imaging of sodium iodide symporter trangene expression. Circulation 126: 430‐439, 2012.
 386. Thackeray JT , Bankstahl JP , Wang Y , Wollert KC , Bengel FM . Targeting amino acid metabolism for molecular imaging of inflammation early after myocardial infarction. Theranostics 6: 1768, 2016.
 387. Thackeray JT , Derlin T , Haghikia A , Napp LC , Wang Y , Ross TL , Schäfer A , Tillmanns J , Wester HJ , Wollert KC . Molecular imaging of the chemokine receptor CXCR4 after acute myocardial infarction. JACC Cardiovasc Imaging 8: 1417‐1426, 2015.
 388. Thackeray JT , Hupe HC , Wang Y , Bankstahl JP , Berding G , Ross TL , Bauersachs J , Wollert KC , Bengel FM . Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J Am Coll Cardiol 71: 263‐275, 2018.
 389. Thukkani AK , Shoghi KI , Zhou D , Xu J , Chu W , Novak E , Chen DL , Gropler RJ , Mach RH . PET imaging of in vivo caspase‐3/7 activity following myocardial ischemia‐reperfusion injury with the radiolabeled isatin sulfonamide analogue [18F] WC‐4‐116. Am J Nucl Med Mol Imaging 6: 110, 2016.
 390. Tipre DN , Fox JJ , Holt DP , Green G , Yu J , Pamper M , Dannals RF , Bengel FM . In vivo PET imaging of cardiac presynaptic sympathoneuronal mechanisms in the rat. J Nucl Med 49: 1189‐1195, 2008.
 391. Tjan TD , Kondruweit M , Scheld HH , Roeder N , Borggrefe M , Schmidt C , Schober O , Deng MC . The bad ventricle–revascularization versus transplantation. Thorac Cardiovasc Surg 48: 9‐14, 2000.
 392. Travin MI . Clinical applications of myocardial innervation imaging. Cardiol Clin 34: 133‐147, 2016.
 393. Travin MI . Multimodality molecular imaging in predicting ventricular arrhythmias and sudden cardiac death. J Nucl Cardiol 24: 239‐244, 2017.
 394. Travin MI , Feng D , Taub CC . Novel imaging approaches for predicting arrhythmic risk. Circ Cardiovasc Imaging 8: e003019, 2015.
 395. Tsujioka H , Imanishi T , Ikejima H , Kuroi A , Takarada S , Tanimoto T , Kitabata H , Okochi K , Arita Y , Ishibashi K . Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J Am Coll Cardiol 54: 130‐138, 2009.
 396. Tsukamoto T , Morita K , Naya M , Inubushi M , Katoh C , Nishijima K , Kuge Y , Okamoto H , Tsutsui H , Tamaki N . Decreased myocardial beta‐adrenergic receptor density in relation to increased sympathetic tone in patients with nonischemic cardiomyopathy. J Nucl Med 48: 1777‐1782, 2007.
 397. Tu Z , Li S , Sharp TL , Herrero P , Dence CS , Gropler RJ , Mach RH . Synthesis and evaluation of 15‐(4‐(2‐[(1)(8)F]Fluoroethoxy)phenyl)pentadecanoic acid: A potential PET tracer for studying myocardial fatty acid metabolism. Bioconjug Chem 21: 2313‐2319, 2010.
 398. Ueno T , Dutta P , Keliher E , Leuschner F , Majmudar M , Marinelli B , Iwamoto Y , Figueiredo JL , Christen T , Swirski FK , Libby P , Weissleder R , Nahrendorf M . Nanoparticle PET‐CT detects rejection and immunomodulation in cardiac allografts. Circ Cardiovasc Imaging 6: 568‐573, 2013.
 399. Uppal R , Catana C , Ay I , Benner T , Sorensen AG , Caravan P . Bimodal thrombus imaging: Simultaneous PET/MR imaging with a fibrin‐targeted dual PET/MR probe–feasibility study in rat model. Radiology 258: 812‐820, 2011.
 400. van de Weijer T , Paiman EHM , Lamb HJ . Cardiac metabolic imaging: Current imaging modalities and future perspectives. J Appl Physiol (1985) 124: 168‐181, 2018.
 401. van den Bosch TP , Caliskan K , Kraaij MD , Constantinescu AA , Manintveld OC , Leenen PJ , von der Thusen JH , Clahsen‐van Groningen MC , Baan CC , Rowshani AT . CD16+ monocytes and skewed macrophage polarization toward M2 type hallmark heart transplant acute cellular rejection. Front Immunol 8: 346, 2017.
 402. van Empel VP , Bertrand AT , Hofstra L , Crijns HJ , Doevendans PA , De Windt LJ . Myocyte apoptosis in heart failure. Cardiovasc Res 67: 21‐29, 2005.
 403. Vandsburger MH , Radoul M , Cohen B , Neeman M . MRI reporter genes: Applications for imaging of cell survival, proliferation, migration and differentiation. NMR Biomed 26: 872‐884, 2013.
 404. Velazquez EJ , Lee KL , Jones RH , Al‐Khalidi HR , Hill JA , Panza JA , Michler RE , Bonow RO , Doenst T , Petrie MC . Coronary‐artery bypass surgery in patients with ischemic cardiomyopathy. N Engl J Med 374: 1511‐1520, 2016.
 405. Velikyan I , Rosenstrom U , Estrada S , Ljungvall I , Haggstrom J , Eriksson O , Antoni G . Synthesis and preclinical evaluation of 68Ga‐labeled collagelin analogs for imaging and quantification of fibrosis. Nucl Med Biol 41: 728‐736, 2014.
 406. Verani MS , Taillefer R , Iskandrian AE , Mahmarian JJ , He ZX , Orlandi C . 123I‐IPPA SPECT for the prediction of enhanced left ventricular function after coronary bypass graft surgery. Multicenter IPPA Viability Trial Investigators. 123I‐iodophenylpentadecanoic acid. J Nucl Med 41: 1299‐1307, 2000.
 407. Verjans JW , Lovhaug D , Narula N , Petrov AD , Indrevoll B , Bjurgert E , Krasieva TB , Petersen LB , Kindberg GM , Solbakken M . Noninvasive imaging of angiotensin receptors after myocardial infarction. JACC Cardiovasc Imaging 1: 354‐362, 2008.
 408. Vita T , Okada DR , Veillet‐Chowdhury M , Bravo PE , Mullins E , Hulten E , Agrawal M , Madan R , Taqueti VR , Steigner M , Skali H , Kwong RY , Stewart GC , Dorbala S , Di Carli MF , Blankstein R . Complementary value of cardiac magnetic resonance imaging and positron emission tomography/computed tomography in the assessment of cardiac sarcoidosis. Circ Cardiovasc Imaging 11: e007030, 2018.
 409. von Elverfeldt D , Maier A , Duerschmied D , Braig M , Witsch T , Wang X , Mauler M , Neudorfer I , Menza M , Idzko M , Zirlik A , Heidt T , Bronsert P , Bode C , Peter K , von Zur Muhlen C . Dual‐contrast molecular imaging allows noninvasive characterization of myocardial ischemia/reperfusion injury after coronary vessel occlusion in mice by magnetic resonance imaging. Circulation 130: 676‐687, 2014.
 410. Vymazal J , Spuentrup E , Cardenas‐Molina G , Wiethoff AJ , Hartmann MG , Caravan P , Parsons EC, Jr. Thrombus imaging with fibrin‐specific gadolinium‐based MR contrast agent EP‐2104R: Results of a phase II clinical study of feasibility. Invest Radiol 44: 697‐704, 2009.
 411. Walling MA , Novak JA , Shepard JR . Quantum dots for live cell and in vivo imaging. Int J Mol Sci 10: 441‐491, 2009.
 412. Wang J , Qin B , Chen X , Wagner WR , Villanueva FS . Ultrasound molecular imaging of angiogenesis using vascular endothelial growth factor‐conjugated microbubbles. Mol Pharm 14: 781‐790, 2017.
 413. Wang L , Li W , Yang Y , Wu W , Cai Q , Ma X , Xiong C , He J , Fang W . Quantitative assessment of right ventricular glucose metabolism in idiopathic pulmonary arterial hypertension patients: A longitudinal study. Eur Heart J Cardiovasc Imaging 17: 1161‐1168, 2016.
 414. Wang L , Wang F , Fang W , Johnson SE , Audi S , Zimmer M , Holly TA , Lee DC , Zhu B , Zhu H . The feasibility of imaging myocardial ischemic/reperfusion injury using 99m Tc‐labeled duramycin in a porcine model. Nucl Med Biol 42: 198‐204, 2015.
 415. Wang X , Peter K . Molecular imaging of atherothrombotic diseases: Seeing is believing. Arterioscler Thromb Vasc Biol 37: 1029‐1040, 2017.
 416. Ward KM , Aletras AH , Balaban RS . A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143: 79‐87, 2000.
 417. Weissleder R , Lee AS , Khaw BA , Shen T , Brady TJ . Antimyosin‐labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology 182: 381‐385, 1992.
 418. Wellens HJ , Schwartz PJ , Lindemans FW , Buxton AE , Goldberger JJ , Hohnloser SH , Huikuri HV , Kääb S , La Rovere MT , Malik M . Risk stratification for sudden cardiac death: Current status and challenges for the future. Eur Heart J 35: 1642‐1651, 2014.
 419. Weller GE , Lu E , Csikari MM , Klibanov AL , Fischer D , Wagner WR , Villanueva FS . Ultrasound imaging of acute cardiac transplant rejection with microbubbles targeted to intercellular adhesion molecule‐1. Circulation 108: 218‐224, 2003.
 420. Westman PC , Lipinski MJ , Luger D , Waksman R , Bonow RO , Wu E , Epstein SE . Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol 67: 2050‐2060, 2016.
 421. Willmann JK , Bonomo L , Carla Testa A , Rinaldi P , Rindi G , Valluru KS , Petrone G , Martini M , Lutz AM , Gambhir SS . Ultrasound molecular imaging with BR55 in patients with breast and ovarian lesions: First‐in‐human results. J Clin Oncol 35: 2133‐2140, 2017.
 422. Willmann JrK , Paulmurugan R , Rodriguez‐Porcel M , Stein W , Brinton TJ , Connolly AJ , Nielsen CH , Lutz AM , Lyons J , Ikeno F . Imaging gene expression in human mesenchymal stem cells: From small to large animals. Radiology 252: 117‐127, 2009.
 423. Winter PM , Caruthers SD , Allen JS , Cai K , Williams TA , Lanza GM , Wickline SA . Molecular imaging of angiogenic therapy in peripheral vascular disease with ανβ3‐integrin‐targeted nanoparticles. Magn Reson Med 64: 369‐376, 2010.
 424. Winter PM , Morawski AM , Caruthers SD , Fuhrhop RW , Zhang H , Williams TA , Allen JS , Lacy EK , Robertson JD , Lanza GM , Wickline SA . Molecular imaging of angiogenesis in early‐stage atherosclerosis with alpha(v)beta3‐integrin‐targeted nanoparticles. Circulation 108: 2270‐2274, 2003.
 425. Wisenberg G , Mikami Y , White JA , Blackwood K , Tweedie EJ , Thompson TR , Prato FS . Imaging of post‐infarction myocardial inflammation with hybrid FDG PET/MR: Feasibility and preliminary findings in a canine model. J Cardiovasc Magn Reson 17: Q19, 2015.
 426. Wu J , Lin S‐f , Gallezot J‐D , Chan C , Prasad R , Thorn S , Stacy MR , Huang H , Zonouz TH , Liu Y‐H . Quantitative analysis of dynamic 123I‐mIBG SPECT imaging data in healthy humans with a population‐based metabolite correction method. J Nucl Med 57: 1226‐1232, 2016.
 427. Wu JC , Chen IY , Wang Y , Tseng JR , Chhabra A , Salek M , Min J‐J , Fishbein MC , Crystal R , Gambhir SS . Molecular imaging of the kinetics of vascular endothelial growth factor gene expression in ischemic myocardium. Circulation 110: 685‐691, 2004.
 428. Wu YL , Ye Q , Eytan DF , Liu L , Rosario BL , Hitchens TK , Yeh FC , Rooijen van N , Ho C . Magnetic resonance imaging investigation of macrophages in acute cardiac allograft rejection after heart transplantation. Circ Cardiovasc Imaging 6: 965‐973, 2013.
 429. Wu YL , Ye Q , Sato K , Foley LM , Hitchens TK , Ho C . Noninvasive evaluation of cardiac allograft rejection by cellular and functional cardiac magnetic resonance. JACC Cardiovasc Imaging 2: 731‐741, 2009.
 430. Xie M , Burchfield JS , Hill JA . Pathological ventricular remodeling. Circulation 128: 1021‐1030, 2013.
 431. Yamagishi H , Shirai N , Takagi M , Yoshiyama M , Akioka K , Takeuchi K , Yoshikawa J . Identification of cardiac sarcoidosis with (13)N‐NH(3)/(18)F‐FDG PET. J Nucl Med 44: 1030‐1036, 2003.
 432. Yamamichi Y , Kusuoka H , Morishita K , Shirakami Y , Kurami M , Okano K , Itoh O , Nishimura T . Metabolism of iodine‐123‐BMIPP in perfused rat hearts. J Nucl Med 36: 1043‐1050, 1995.
 433. Yamamoto Y , Onoguchi M , Haramoto M , Kodani N , Komatsu A , Kitagaki H , Tanabe K . Novel method for quantitative evaluation of cardiac amyloidosis using (201)TlCl and (99m)Tc‐PYP SPECT. Ann Nucl Med 26: 634‐643, 2012.
 434. Yazaki Y , Isobe M , Takahashi W , Kitabayashi H , Nishiyama O , Sekiguchi M , Takemura T . Assessment of myocardial fatty acid metabolic abnormalities in patients with idiopathic dilated cardiomyopathy using 123I BMIPP SPECT: Correlation with clinicopathological findings and clinical course. Heart 81: 153‐159, 1999.
 435. Yilmaz A , Dengler MA , van der Kuip H , Yildiz H , Rosch S , Klumpp S , Klingel K , Kandolf R , Helluy X , Hiller KH , Jakob PM , Sechtem U . Imaging of myocardial infarction using ultrasmall superparamagnetic iron oxide nanoparticles: A human study using a multi‐parametric cardiovascular magnetic resonance imaging approach. Eur Heart J 34: 462‐475, 2013.
 436. Young LH , Renfu Y , Russell R , Hu X , Caplan M , Ren J , Shulman GI , Sinusas AJ . Low‐flow ischemia leads to translocation of canine heart GLUT‐4 and GLUT‐1 glucose transporters to the sarcolemma in vivo. Circulation 95: 415‐422, 1997.
 437. Youssef G , Leung E , Mylonas I , Nery P , Williams K , Wisenberg G , Gulenchyn KY , Dekemp RA , Dasilva J , Birnie D , Wells GA , Beanlands RS . The use of 18F‐FDG PET in the diagnosis of cardiac sarcoidosis: A systematic review and metaanalysis including the Ontario experience. J Nucl Med 53: 241‐248, 2012.
 438. Yu M , Bozek J , Lamoy M , Guaraldi M , Silva P , Kagan M , Yalamanchili P , Onthank D , Mistry M , Lazewatsky J . Evaluation of LMI1195, a novel 18F‐labeled cardiac neuronal PET imaging agent, in cells and animal models. Circ Cardiovasc Imaging 4: 435‐443, 2011.
 439. Yusuf S , Pitt B , Davis CE , Hood WB , Cohn JN . Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 325: 293‐302, 1991.
 440. Zhang E , Laufer J , Pedley R , Beard P . In vivo high‐resolution 3D photoacoustic imaging of superficial vascular anatomy. Phys Med Biol 54: 1035, 2009.
 441. Zhang H , Gropler RJ , Li D , Zheng J . Assessment of myocardial oxygen extraction fraction and perfusion reserve with BOLD imaging in a canine model with coronary artery stenosis. J Magn Reson Imaging 26: 72‐79, 2007.
 442. Zhang H , Qiao H , Bakken A , Gao F , Huang B , Liu YY , El‐Deiry W , Ferrari VA , Zhou R . Utility of dual‐modality bioluminescence and MRI in monitoring stem cell survival and impact on post myocardial infarct remodeling. Acad Radiol 18: 3‐12, 2011.
 443. Zhang H , Tam S , Ingham ES , Mahakian LM , Lai CY , Tumbale SK , Teesalu T , Hubbard NE , Borowsky AD , Ferrara KW . Ultrasound molecular imaging of tumor angiogenesis with a neuropilin‐1‐targeted microbubble. Biomaterials 56: 104‐113, 2015.
 444. Zhao M , Beauregard DA , Loizou L , Davletov B , Brindle KM . Non‐invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 7: 1241‐1244, 2001.
 445. Zhao M , Zhu X , Ji S , Zhou J , Ozker KS , Fang W , Molthen RC , Hellman RS . 99mTc‐labeled C2A domain of synaptotagmin I as a target‐specific molecular probe for noninvasive imaging of acute myocardial infarction. J Nucl Med 47: 1367‐1374, 2006.
 446. Zheng Q‐H , Fei X , Liu X , Wang J‐Q , Stone KL , Martinez TD , Gay DJ , Baity WL , Miller KD , Sledge GW . Comparative studies of potential cancer biomarkers carbon‐11 labeled MMP inhibitors (S)‐2‐(4′‐[11 C] methoxybiphenyl‐4‐sulfonylamino)‐3‐methylbutyric acid and N‐hydroxy‐(R)‐2‐[[(4′‐[11 C] methoxyphenyl) sulfonyl] benzylamino]‐3‐methylbutanamide. Nucl Med Biol 31: 77‐85, 2004.
 447. Zheng Q‐H , Gao M , Mock BH , Wang S , Hara T , Nazih R , Miller MA , Receveur TJ , Lopshire JC , Groh WJ . Synthesis and biodistribution of new radiolabeled high‐affinity choline transporter inhibitors [11C] hemicholinium‐3 and [18F] hemicholinium‐3. Bioorg Med Chem Lett 17: 2220‐2224, 2007.
 448. Zhong M , Alonso CE , Taegtmeyer H , Kundu BK . Quantitative PET imaging detects early metabolic remodeling in a mouse model of pressure‐overload left ventricular hypertrophy in vivo. J Nucl Med 54: 609‐615, 2013.
 449. Zhou Y , Chakraborty S , Liu S . Radiolabeled cyclic RGD peptides as radiotracers for imaging tumors and thrombosis by SPECT. Theranostics 1: 58‐82, 2011.
 450. Zober TG , Mathews WB , Seckin E , Yoo S‐e , Hilton J , Xia J , Sandberg K , Ravert HT , Dannals RF , Szabo Z . PET Imaging of the AT 1 receptor with [11 C] KR31173. Nucl Med Biol 33: 5‐13, 2006.
 451. Zouggari Y , Ait‐Oufella H , Bonnin P , Simon T , Sage AP , Guérin C , Vilar J , Caligiuri G , Tsiantoulas D , Laurans L . B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med 19: 1273‐1280, 2013.

 

Teaching Material

N. E. Boutagy, A. Feher, I. Alkhalil, N. Umoh, A. J. Sinusas. Molecular Imaging of the Heart. Compr Physiol 9: 2019, 477-533.

Didactic Synopsis

Major Teaching Points:

  • Molecular imaging refers to the visualization, characterization, and noninvasive measurement of biological processes at the molecular and cellular levels in humans and other living systems.
  • The nuclear imaging systems, single-photon emission tomography (SPECT) and position emission tomography (PET) are the most commonly used modalities for molecular imaging.
  • Nanoparticles, contrast agents and microbubbles are used to enhance the molecular imaging capability of computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound that have inherently lower sensitivity for detection of these molecular processes.
  • Molecular imaging has provided valuable insights in determining the underlying pathophysiology and molecular processes associated with many cardiovascular diseases (CVDs), including: ischemic, hypertrophic, infiltrative or inflammatory heart disease, and complicating arrhythmias and heart failure (HF)
  • Cardiac molecular imaging is already currently used as a sensitive tool in the diagnosis of certain CVDs, such as cardiac sarcoidosis and amyloidosis.
  • Molecular imaging of the heart has the capability to provide early detection of disease, improve the understanding of the mechanisms of disease progression and allows for risk stratification.

Didactic Legends

The figures—in a freely downloadable PowerPoint format—can be found on the Images tab along with the formal legends published in the article. The following legends to the same figures are written to be useful for teaching.

Figure 1 This figure illustrates the structure of lipid-based nanoparticles currently used in molecular imaging. Amphiphilic lipids are used to assemble nanoparticles. Major lipid aggregates currently used for in vivo molecular imaging include: micelles, conventional liposomes, stabilized liposomes, microemulsions, micelles and bilayer on nanoparticles.

Figure 2 This figure illustrates the limitations and strengths of each imaging modality as it relates to multiple facets of cardiovascular imaging and also links these imaging modalities to specific biological targets, including; thrombosis, angiogenesis, inflammation, autonomic nervous system function, the renin angiotensin-aldosterone system (RAAS), cell death, extracellular matrix, and tracking of cell and gene therapies.

Figure 3 This figure illustrates the main aspects of cardiac metabolic imaging. Myocardial perfusion can be quantified with gadolinium using first-pass magnetic resonance imaging (MRI) or by using positron emission tomography (PET) or single photon emission tomography (SPECT) radiotracers. Substrate utilization can be assessed by using metabolically trapped or fully metabolized tracers to evaluate glycolysis, β-oxidation, and the tricarboxylic acid cycle with the help of PET, SPECT or hyperpolarized carbon-13 magnetic resonance spectroscopy (MRS). Proton-MRS and phosphorus-31 MRS are used for the evaluation of high-energy phosphate metabolism

Figure 4 This figure illustrates the first report of the translocation of the glucose transporter (GLUT)-4 and GLUT-1 to the sarcolemma of myocytes under low-flow ischemia. Myocardial extraction of glucose dramatically increases in the ischemic region during low-flow ischemia. There is a 200% increase in GLUT-4 and a 40% increase in GLUT-1 expression in the sarcolemma in the ischemic myocardial tissue.

Figure 5 This figure illustrates the shift in myocardial metabolism during low-flow ischemia with nuclear imaging. This figure shows the correlation between the myocardial free fatty-acid analog p-123I-iodophenylpentadecanoic acid (IPPA) retention with 2-[18F] fluoro-2-deoxy-D-glucose (18F-FDG) accumulation during experimental low-flow ischemia created by partial coronary stenosis in canines. Serial IPPA single photon emission tomography (SPECT) images show an initial defect in the ischemic region, which normalizes within 48 min because of the slower IPPA clearance from the ischemic region.

Figure 6 This figure illustrates ‘ischemic memory’, or the delayed recovery normal fatty acid metabolism after transient exercise-induced ischemia. The example shows cardiac single photon emission tomography (SPECT) images of a patient injected with radiolabeled [123I]-β-methyl-p-iodophenyl-pentadecanoic acid (BMIPP, fatty acid metabolism), acquired at rest 22 hours after exercise-induced ischemia, shows persistent metabolic abnormality despite complete recovery of regional perfusion demonstrated by thallium-201 imaging.

Figure 7 This figure illustrates early metabolic remodeling in a mouse model of pressure-overload left ventricular hypertrophy. Positron emission tomography (PET) images show increased 2-[18F] fluoro-2-deoxy-D-glucose (18F-FDG) uptake after pressure overload starting at day 1 following experimental pressure-overload, which is prevented by beta blocker treatment.

Figure 8 This figure illustrates the perfusion–metabolism mismatch in hibernating heart tissue indicating preserved metabolism, despite a reduction in tissue perfusion. 82Rubidium PET images show markedly decreased perfusion, whereas 2-[18F] fluoro-2-deoxy-D-glucose (18F-FDG) images show increase glucose uptake, demonstrating the classic perfusion–metabolism mismatch pattern commensurate with hibernating myocardium in abnormally perfused regions at rest.

Figure 9 This figure illustrates increased 2-[18F] fluoro-2-deoxy-D-glucose (18F-FDG) accumulation in the right ventricular free wall of patients with pulmonary hypertension. Before pulmonary vasodilator therapy, a patient had markedly elevated right ventricular 18F-FDG accumulation, which was significantly reduced after epoprosterenol therapy. The percentage change of right ventricular of 18F-FDG uptake, expressed as standardized uptake value (SUV), was correlated with the percentage change of the pulmonary vascular resistance and peak-systolic wall stress in the right ventricular free wall.

Figure 10 This figure illustrates the evaluation of the cardioprotective effects of Fv-HSP72 (the heat shock protein-72 [HSP72] coupled to a single-chain variable fragment [Fv] of monoclonal antibody 3E10) by Annexin-V based apoptosis imaging in a rabbit ischemia-reperfusion model. Higher and more extensive uptake of 99mTc-annexin-V was seen in the control groups compared with rabbits treated with Fv-HSP72 in in vivo and in ex vivo single photon emission tomography (SPECT) images.

Figure 11 This figure illustrates molecular magnetic resonance imaging (MRI) of cardiomyocyte apoptosis with AnxCLIO-Cy5.5 and simultaneous delayed enhancement MRI of Gadolinium-DTPA-NBD in a mouse with severe myocardial injury after transient coronary artery ligation (35 minutes). Although the accumulation of AnxCLIO-Cy5.5 is fairly transmural, delayed enhancement of Gd-DTPA-NBD is seen predominantly in the subendocardium.

Figure 12 This figure illustrates inflammation imaging by ferumoxytol-enhanced magnetic resonance imaging (MRI) after myocardial infarction. Accumulation of ferumoxytol reduces T2* decay time and creates signal deficits that can be quantified and visualized by using T2* MRI. At early timepoints (up to 10 days) increased inflammation was detected by ferumoxytol and edema was detected on T2 maps. These changes have improved or have resolved by 3 months.

Figure 13 This figure illustrates the use of 2-[18F] fluoro-2-deoxy-D-glucose (18F-FDG) uptake imaging by hybrid positron emission tomography (PET) magnetic resonance imaging (MRI) after acute myocardial infarction as a prognostic marker of functional outcome. 18F-FDG uptake in the infarcted myocardium was highest in areas with transmural scar. The change in ejection fraction, end-diastolic volume and end-systolic volume was inversely correlated to the extent of late gadolinium enhancement (LGE) and to the post-ischemic 18F-FDG uptake in the infarct area. LGE transmurality and 18F-FDG uptake in the infarct correlated with wall motion recovery at follow-up.

Figure 14 This figure illustrates mitochondrial translocator protein (TSPO)-targeted positron emission tomography (PET) imaging of myocardial inflammation and neuroinflammation in patients after acute myocardial infarction. Tomographic images of the heart display elevated TSPO signal in the hypoperfused infarct region. Parametric brain images show regional group difference of TSPO signal between infarct patients and healthy volunteers, with elevation of signal regionally seen in the frontal and temporal cortex.

Figure 15 This figure illustrates the evaluation of ischemic memory in dogs with selectin-targeted microbubbles by using myocardial contrast echocardiography. Signal in the risk area was > 5-fold higher than in closed-chest control myocardium after selectin-targeted microbubble administration in dogs that underwent experimental ischemia-reperfusion injury.

Figure 16 This figure illustrates hybrid position emission tomography (PET)/magnetic resonance imaging (MRI) of patients with active cardiac sarcoidosis by using late gadolinium enhancement MRI combined with 2-[18F] fluoro-2-deoxy-D-glucose (18F-FDG) imaging.

Figure 17 This figure illustrates 11C-methionine positron emission tomography (PET) imaging of myocardial inflammation in a rat model of experimental autoimmune myocarditis. Strong focal cardiac 11C-methionine uptake was observed in experimental autoimmune myocarditis rats, but not in control animals. Ten to 20 minutes after administration, tracer uptake increased in heart together with rapid clearance of blood activity. Cardiac signals remained stable for 30–40 min.

Figure 18 This figure illustrates in vivo and ex vivo 111In-RP748 (angiogenesis) and 99mTc-sestamibi (perfusion) single photon emission tomography (SPECT) images from dogs with chronic myocardial infarction. Increased 111In-RP748 uptake was observed in regions corresponding to perfusion defect on 99mTc-sestamibi images. Increased myocardial 111In-RP748 uptake was seen in the infarct region at 8 hours, 1 week, and 3 weeks after experimental myocardial infarction.

Figure 19 This figure illustrates the assessment of cardiac αVβ3 integrin expression in humans by 18F-Fluciclatide positron emission tomography (PET) imaging following acute myocardial infarction. 18F-Fluciclatide uptake was increased at sites of acute infarction compared with the remote, non-infarcted myocardium. 18F-Fluciclatide uptake in the acute myocardial infarction group was greater in regions of hypokinesis when compared with sites of normal function or akinesis. The areas with higher 18F-fluciclatide uptake had a higher propensity to improve function, as assessed by cardiac magnetic resonance imaging (MRI), on follow-up.

Figure 20 This figure illustrates the use of a collagen-targeting contrast agent imaged by molecular magnetic resonance imaging (MRI) for the evaluation of post-infarction myocardial scarring in mice. The regions of contrast enhancement correlated closely with photomicrographs of picrosirius red–stained (collagen) tissue sections.

Figure 21 This figure illustrates noninvasive targeted single photon emission tomography (SPECT) imaging of matrix metalloproteinase (MMP) activation (99mTc-RP805) in a murine model of post-infarction remodeling. All post-myocardial infarction mice had a large thallium-201 perfusion defect with corresponding focal uptake of 99mTc-RP805 in defect area, with some 99mTc-RP805 uptake also seen in the peri-infarct border zone.

Figure 22 This figure illustrates dual-isotope in vivo single photon emission tomography (SPECT)/computed tomography (CT) imaging assessing myocardial perfusion (Thallium-201) and matrix metalloproteinase activity (99mTc-RP805) in a porcine model of myocardial infarction. MMP activation was increased within the infarct region at 1-week post-myocardial infarction and remained elevated up to 4 weeks post-myocardial infarction.

Figure 23 This figure illustrates positron emission tomography (PET)/computed tomography (CT) evaluation of angiotensin II type 1 receptors (AT1R) by using [11C]-KR31173 in healthy pigs. Myocardial [11C]-KR31173 retention was detectable, regionally homogeneous, and specific for AT1R, as confirmed by in vivo blocking experiments.

Figure 24 This figure illustrates in vivo visualization of amyloid deposits in the heart with Pittsburgh Compound B (11C-PIB) and positron emission tomography (PET). Myocardial 11C-PIB uptake was visually evident in patients with cardiac amyloidosis and was not seen in healthy volunteers.

Figure 25 This figure illustrates the first-in-human study of a novel 18F-labeled tracer LMI1195 for imaging myocardial innervation with positron emission tomography (PET). After 18F-LMI1195 injection, blood radioactivity cleared quickly, whereas myocardial uptake remained stable and uniform throughout the heart for up to 4 hours. Liver and lung activity cleared relatively rapidly, thus providing favorable target-to-background ratios for cardiac imaging.

Figure 26 This figure illustrates the postganglionic sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) nerve endings. The synthesis and release of norepinephrine in postganglionic SNS nerve endings and subsequent binding to postsynaptic receptors on cardiomyocytes is also shown. The tracers in red depict both single photon emission tomography (SPECT) and positron emission tomography (PET) SNS pre- and postsynaptic radio-analogs. The synthesis and release of acetylcholine in the terminal nerve ending and varicosities of postganglionic PNS nerve endings and subsequent binding to postsynaptic receptors on cardiomyocytes is also shown with tracers in blue depicting PNS pre- and postsynaptic PET radioanalogs.

Figure 27 This figure illustrates the use of 123I-metaiodobenzylguanidine (123I-mIBG) single photon emission tomography (SPECT) imaging for the prediction of mortality and potentially fatal events in heart failure. Two-year all-cause mortality rates based on 0.1 increments of heart to mediastinum (H/M) ratio indicated progressive decline from maximum of 29.4% for H/M < 1.10. There were no deaths among subjects with H/M ≥ 1.80.

Figure 28 This figure illustrates the assessment of regional myocardial sympathetic denervation by [11C]-meta-hydroxyephedrine (HED) positron emission tomography (PET) in ischemic cardiomyopathy from the PARAPET trial. As continuous variables, the total volume of denervated myocardium, as well as viable denervated myocardium, predicted sudden cardiac arrest. Neither infarct volume nor hibernating myocardium were significant predictors of sudden cardiac death as continuous variables.

Figure 29 This figure illustrates the tracking of human induced pluripotent stem cells (hiPSCs) by hybrid single photon emission tomography (SPECT)/computed tomography (CT) imaging of sodium iodide symporter (NIS) transgene expression in a pig model of myocardial infarction. In vivo SPECT/CT imaging ∼ 1 hour following intracoronary injection of 123I demonstrated long-term surviving derivatives of NIS positive transgenic hiPSCs in pig hearts after 5 days and 15 weeks following transplantation. To note, NIS positive hiPSCs were only visualized when co-injected with an equal number of mesenchymal stem cells.

 


Related Articles:

Teaching Material

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Nabil E. Boutagy, Attila Feher, Imran Alkhalil, Nsini Umoh, Albert J. Sinusas. Molecular Imaging of the Heart. Compr Physiol 2019, 9: 477-533. doi: 10.1002/cphy.c180007