Comprehensive Physiology Wiley Online Library

Slc26 Family of Anion Transporters in the Gastrointestinal Tract: Expression, Function, Regulation, and Role in Disease

Full Article on Wiley Online Library



ABSTRACT

SLC26 family members are multifunctional transporters of small anions, including Cl, HCO3, sulfate, oxalate, and formate. Most SLC26 isoforms act as secondary (coupled) anion transporters, while others mediate uncoupled electrogenic transport resembling Cl channels. Of the 11 described SLC26 isoforms, the SLC26A1,2,3,6,7,9,11 are expressed in the gastrointestinal tract, where they participate in salt and water transport, surface pH‐microclimate regulation, affect the microbiome composition, the absorption, and secretion of oxalate and sulfate, and other functions that require further study. Several intestinal or extra‐intestinal diseases are related to SLC26A mutations. Patients with congenital chloride diarrhea (CLD) suffer from Cl‐rich acidic diarrhea and systemic alkalosis due to SLC26A3 mutations. Patients with osteochondrodysplastic syndromes experience skeletal defects due to SLC26A2 mutations, resulting in defective sulfate absorption in enterocytes and sulfate uptake in chondrocytes. Because of functional interactions between SLC26 and other proteins, such as the Cl channel CFTR, some of the intestinal cystic fibrosis manifestations may be attributed to impaired SLC26 isoform localization and function. The altered expression of SLC26 members due to inflammation or operative procedures have important consequences on intestinal transport and barrier function in common diseases as inflammatory bowel disease or bariatric surgery. The present review gives an overview on the current state of knowledge of the intestinally expressed SLC26A isoforms (SLC26A1,2,3,6,7,9,11) from the history of their functional identification, cloning and expression, the insights into their function, interaction partners and regulation gained in heterologous expression systems and Slc26a‐deficient mice, to information about their transcriptional regulation and roles in gastrointestinal disease manifestations. © 2019 American Physiological Society. Compr Physiol 9:839‐872, 2019.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. In 1970, Turnberg and co‐workers described their view on ileal salt and water absorption in a cartoon that best explained their findings obtained in double balloon intestinal perfusion studies in normal subjects. Na+ is absorbed from the lumen in exchange for protons, Cl is absorbed in exchange for HCO3 , luminal H+, and HCO3 form CO2 and water, CO2 permeates back into the enterocyte, water follows the absorbed electrolytes following the osmotic gradient. Based on Turnberg et al., 1970 (334) with permission.
Figure 2. Figure 2. (A) In 1985, Knickelbein, Aronson and co‐workers described their model of the coupling of the ileal brush border membrane Na+/H+ and the Cl/HCO3 exchanger during intestinal salt absorption. They isolated brush border membrane vesicles from rabbit ileum, loaded the vesicles with buffers of defined ionic conditions, and utilized isotope flux studies and a rapid filtration technique to determine pH‐gradient driven, carbonic anhydrase (CA)‐dependent vesicular Cl uptake. They were able to localize CA activity to the apical membrane. The cartoon is reproduced from the original report by Knickelbein et al., with permission of the publisher (158). (B) We now know that cytoplasmic CAII is tethered close to the intracellular transport site of many acid/base transporters, and membrane‐bound CAs are found at the luminal membranes of enterocytes, with their catalytic domain in the extracellular space. The rapid generation of H+ or HCO3 destined for transport, as well as the rapid removal of protons or base from the ion‐binding site, will allow a rapid movement of protons or base through an acid/base transport system and has been shown to increase the transport rate several fold.
Figure 3. Figure 3. Dendrogram of the SLC26A family of multifunctional anion transporters. The first members of the family were cloned by different strategies, either by expression cloning like SLC26A1 (SAT‐1), by fine‐structure linkage disequilibrium mapping and positional cloning like SLC26A2 (DSDTS), 4 (Pendrin) and 5 (Prestin), by subtraction analysis of DNA libraries like SLC26A3 (DRA), etc. and therefore have alternative names, which are still preferentially used. CFEX, chloride‐formate exchange; CLD, chloride‐losing diarrhea; DRA, downregulated in adenoma; DTDST, diastrophic dysplasia sulfate transporter; KBAT, kidney brain anion transporter; PAT1, putative anion transporter 1; PDS, Pendred syndrome; SAT1, sulfate anion transporter 1. Other members were cloned by computer‐assisted search of EST sequences and have only the SLC26A names. The green text indicates human diseases linked to mutations or polymorphisms in the respective SLC26A gene, the magenta text described phenotypes observed in Slc26a knockout or mutant mice.
Figure 4. Figure 4. Schematic diagram of the intestinal/renal sulfate absorption and oxalate secretion. The electrogenic Na+‐sulfate cotransporter Slc13a1 (NaS1) is highly expressed in the brush border membrane of small intestinal and proximal tubule epithelial cells, while Slc26a1 (Sat1) is expressed in the basolateral membrane. Mice that are defective for either transporter are hyposulfatemic, indicating that NaS1 is responsible for uptake of sulfate from the lumen and Sat1 for export into the circulation. Interestingly, Sat1 knockout mice are also hyperoxalemic and develop oxalate kidney stones, irrespective of the oxalate in the diet. The apically located Slc26a6 (PAT1, CFEX) also transports oxalate, and Slc26a6−/− mice also develop oxalate kidney stones, but only on a high oxalate diet. One explanation for these findings may be that Slc26a1 imports oxalate from the circulation into the intestinal/proximal tubule cells and Slc26a6 exports it into the lumen. The counter ions are most likely Cl or HCO3 , depending on the pH in the lumen. The cartoon is from Markovich 2012, with permission from the author and the publisher (208).
Figure 5. Figure 5. Involvement of PDZ‐domain proteins in the membrane trafficking of SLC26A3. SLC26A3 is endocytosed in a PDZ‐independent manner and sorted in Rab5‐positive early endosomes (EE) where it interacts with Sorting Nexin 27 (SNX27). The initially presumed recycling pathway of SLC26A3 via Rab11‐positive recycling endosomes (RE) requires additional PDZ adapter proteins. Additionally, SNX27 is involved in an alternative, direct recycling pathway and the association of SLC26A3 with lipid rafts. SLC26A3 can also be sorted into Rab7‐positive late endosomes (LE) followed by lysosomal degradation (courtesy of Karen Bannert, University of Rostock).
Figure 6. Figure 6. Loss of firmly adherent mucus layer, altered HCO3 and fluid transport, and high intracellular pH in the enterocytes of the Slc26a3−/− mid‐distal murine colon. (A) Muc2A immunostaining of mucus granules within the goblet cells and at the mucosal surface of wt and Slc26a3−/− mid‐distal murine colon. (B) Time course of JHCO3 in the mid‐distal colon of anaesthetized wt and Slc26a3−/− mice before and after treatment with 100 µmol/L FSK. (C) Colonic fluid absorption measured in vivo was robust in wt colon and strongly inhibited by FSK. In contrast, no fluid absorption was observed in Slc26a3−/− colon. (D) Distribution of enterocytes and goblet cells at the cryptal surface of wt mid‐distal murine colon. Goblet cells (yellow cells) produce and release mucus granules (blue circles) accumulated further in continuous stratified mucus layer that adheres to the epithelium of the wt colon and an outer mucus layer. Fluid absorption is directed by NHE3, while HCO3 secretion is conducted via Slc26a3 (DRA). (E) In Slc26a3−/− mid‐distal murine colon the adherent mucus layer is absent and the outer mucus flows into the lumen of the colon. Due to absence of the Slc26a3 (DRA) the HCO3 secretion is diminished. No fluid absorption was observed in Slc26a3−/− colon, despite a strong upregulation of the expression of the sodium absorptive transporters NHE3 and ENaC. One reason for this may be the high intracellular pH (pHi) in the Slc26a3−/− colonic surface cells (pHi∼7.5), resulting in lack of NHE3 activation. See text for further details. Image based on observations from Xiao et al. (363) with permission.
Figure 7. Figure 7. Strong increase in the number of colonic lymphoid aggregates and reduced survival in Slc26a3 −/− mice after low concentration of dextrane sodium sulfate (DSS) exposure. (A) Slc26a3−/− mice displayed strongly reduced survival during the DSS drinking period, even though the DSS concentration was low and elicited very mild inflammatory changes in the mucosa of wt mice. (B) H&E stain of the colon of Slc26a3 −/− and wt littermates after exposure to 2% DSS in the drinking water. A strong increase in the number of large lymphoid aggregates was observed both in the mucosa and submucosa in the colon of the Slc26a3−/− mice (C). The cartoons describe the aforementioned findings in (D) wt mice and (E) Slc26a3−/− mice. Image based on observations from Xiao et al. (363) with permission.
Figure 8. Figure 8. Significant decrease of DRA expression in the inflamed colonic mucosa. (A) Hematoxylin and eosin staining of the mid colon of TNF‐α overexpressing mice. Although the maximal inflammation occurs in the distal ileum, the mid‐colonic mucosa shows elevated proinflammatory cytokine expression levels (B). (C) mRNA expression for DRA, CFTR, and NHE3 in the mid‐colon of TNF+/ΔARE (□) compared to TNF+/+ (▪) mid‐colon. (D) Immunofluorescence of DRA (green) in TNF+/ΔARE and TNF+/+ mice mid‐colon. DRA fluorescence is decreased in the apical membrane of colonic enterocytes of TNF+/ΔARE compared to TNF+/+ (scale bars = 10 μm). A representative of three different experiments is shown. Modified from Xiao et al., 2012, with permission of the publisher (361).
Figure 9. Figure 9. Expression of Slc26a9 in the murine gastric mucosa. The cellular expression pattern and physiological function of Slc26a9 in the gastric mucosa is not fully understood. (A) Immunostaining demonstrated strong expression of Slc26a9 in the gastric surface cells, with very faint expression in the H+/K+‐positive parietal cells, and only weak overlap of Slc26a9 and H+/K+‐ATPase (B, white arrows). Reprinted from Chang et al., 2009, with permission of the publisher (39). (C) Because the antibody was not tested in Slc26a9 −/− tissue and because Slc26a9 was discussed as the parietal cell Cl conductance activated during acid secretion, laser capture dissection of the total gastric glands, the upper third, and the lower third of the gland area was performed. Slc26a9 mRNA expression was quantified in these three areas, and compared with the mRNA expression of H+/K+‐ATPase (parietal cell expression), Muc5a (mucus neck and surface cell expression), and NHE2 (surface cell expression > gland expression). The mRNA expression of the total gland area was set to 1. The results are also not compatible with a predominantly parietal cell expression. See text for further details. Courtesy of Riederer, B., 2018, with permission.
Figure 10. Figure 10. Schematic diagram of cellular composition and acid/base transporter expression along the jejunal crypt‐villus axis and its effect on cellular HCO3 and fluid output. Renewal of the intestinal epithelia is driven by intestinal stem cells (ISCs). ISCs are located at the base of the crypt, either at the +4 position counting from the bottom of the crypt (yellow, Bmi‐1 stem cells) directly above the Paneth cells (blue), or as crypt base columnar (CBC) cells (red, Lgr5 + stem cells) located between the Paneth cells, whereas progenitor cells (rose) arise from the self‐renewing CBCs. As intestinal epithelial cells differentiate and move toward the villus tip, the expression profile of acid/base, electrolyte and nutrient (not shown) transporters changes dramatically. The diagram shows how this will affect CFTR‐dependent and ‐independent luminal HCO3 output. The transporter names are abbreviated as commonly used. In the crypt and “CFTR high expresser” enterocytes, high CFTR expression and no SLC26A3/6 expression is observed in the apical membrane, and high NKCC1, but no NBC expression in the basolateral membrane. These cells are capable of high Cl secretory rates, and in conjunction with cation and water permeable claudin‐2, of high NaCl and water flux into the lumen, but the HCO3 concentration in this secretion will be low. Villus enterocytes display low CFTR, but high SLC26A3/6 expression in the apical, and high NBC, but low NKCC1 expression in the basolateral membrane. In the basal state, these cells absorb Na+, Cl, and HCO3 via NHE3 and SLC26A3/6, but if secretagogues raise intracellular cyclic nucleotide and possibly Ca2+ concentrations, proton export via NHE3 is inhibited, while SLC26‐mediated HCO3 export is ongoing. The Cl is recycled into the lumen via CFTR. This type of HCO3 output into the lumen need not be accompanied by fluid secretion. If stimulation of secretion results in a strong decrease of intracellular Cl concentrations, the WNK pathway may be activated that will increase the HCO3 permeability of CFTR. See text for further details.
Figure 11. Figure 11. Schematic diagram of cellular composition and acid/base transporter expression along the colonic crypt‐villus axis and its effect on cellular HCO3 and fluid output. The ISC zone and partially differentiated enterocytes and goblet cells are located in the lower part of the colonic crypt. ISCs are presented by Bmi‐1 cells (yellow) and crypt base columnar (CBC) cells (red, Lgr5 + stem cells). Colonic cryptal cells express high levels of CFTR in the apical and NKCC1 in the basolateral membrane and therefore secrete a Cl‐rich HCO3 poor fluid. When CFTR is absent or defective, cryptal enterocyte pH is significantly increased, because the high [Cl‐]I inhibits basolateral HCO3 i/Cl o exchange via AE2 (346). CFTR expression dramatically decreases toward the cryptal mouth and surface cells region, while SLC26A3 expression is upregulated. Deletion of SLC26A3 results in extremely low colonic HCO3 alkalization rates, while that of CFTR has a minor effect, suggesting that SLC26A3 is the major colonic HCO3 output pathway and its action is largely independent of CFTR expression.


Figure 1. In 1970, Turnberg and co‐workers described their view on ileal salt and water absorption in a cartoon that best explained their findings obtained in double balloon intestinal perfusion studies in normal subjects. Na+ is absorbed from the lumen in exchange for protons, Cl is absorbed in exchange for HCO3 , luminal H+, and HCO3 form CO2 and water, CO2 permeates back into the enterocyte, water follows the absorbed electrolytes following the osmotic gradient. Based on Turnberg et al., 1970 (334) with permission.


Figure 2. (A) In 1985, Knickelbein, Aronson and co‐workers described their model of the coupling of the ileal brush border membrane Na+/H+ and the Cl/HCO3 exchanger during intestinal salt absorption. They isolated brush border membrane vesicles from rabbit ileum, loaded the vesicles with buffers of defined ionic conditions, and utilized isotope flux studies and a rapid filtration technique to determine pH‐gradient driven, carbonic anhydrase (CA)‐dependent vesicular Cl uptake. They were able to localize CA activity to the apical membrane. The cartoon is reproduced from the original report by Knickelbein et al., with permission of the publisher (158). (B) We now know that cytoplasmic CAII is tethered close to the intracellular transport site of many acid/base transporters, and membrane‐bound CAs are found at the luminal membranes of enterocytes, with their catalytic domain in the extracellular space. The rapid generation of H+ or HCO3 destined for transport, as well as the rapid removal of protons or base from the ion‐binding site, will allow a rapid movement of protons or base through an acid/base transport system and has been shown to increase the transport rate several fold.


Figure 3. Dendrogram of the SLC26A family of multifunctional anion transporters. The first members of the family were cloned by different strategies, either by expression cloning like SLC26A1 (SAT‐1), by fine‐structure linkage disequilibrium mapping and positional cloning like SLC26A2 (DSDTS), 4 (Pendrin) and 5 (Prestin), by subtraction analysis of DNA libraries like SLC26A3 (DRA), etc. and therefore have alternative names, which are still preferentially used. CFEX, chloride‐formate exchange; CLD, chloride‐losing diarrhea; DRA, downregulated in adenoma; DTDST, diastrophic dysplasia sulfate transporter; KBAT, kidney brain anion transporter; PAT1, putative anion transporter 1; PDS, Pendred syndrome; SAT1, sulfate anion transporter 1. Other members were cloned by computer‐assisted search of EST sequences and have only the SLC26A names. The green text indicates human diseases linked to mutations or polymorphisms in the respective SLC26A gene, the magenta text described phenotypes observed in Slc26a knockout or mutant mice.


Figure 4. Schematic diagram of the intestinal/renal sulfate absorption and oxalate secretion. The electrogenic Na+‐sulfate cotransporter Slc13a1 (NaS1) is highly expressed in the brush border membrane of small intestinal and proximal tubule epithelial cells, while Slc26a1 (Sat1) is expressed in the basolateral membrane. Mice that are defective for either transporter are hyposulfatemic, indicating that NaS1 is responsible for uptake of sulfate from the lumen and Sat1 for export into the circulation. Interestingly, Sat1 knockout mice are also hyperoxalemic and develop oxalate kidney stones, irrespective of the oxalate in the diet. The apically located Slc26a6 (PAT1, CFEX) also transports oxalate, and Slc26a6−/− mice also develop oxalate kidney stones, but only on a high oxalate diet. One explanation for these findings may be that Slc26a1 imports oxalate from the circulation into the intestinal/proximal tubule cells and Slc26a6 exports it into the lumen. The counter ions are most likely Cl or HCO3 , depending on the pH in the lumen. The cartoon is from Markovich 2012, with permission from the author and the publisher (208).


Figure 5. Involvement of PDZ‐domain proteins in the membrane trafficking of SLC26A3. SLC26A3 is endocytosed in a PDZ‐independent manner and sorted in Rab5‐positive early endosomes (EE) where it interacts with Sorting Nexin 27 (SNX27). The initially presumed recycling pathway of SLC26A3 via Rab11‐positive recycling endosomes (RE) requires additional PDZ adapter proteins. Additionally, SNX27 is involved in an alternative, direct recycling pathway and the association of SLC26A3 with lipid rafts. SLC26A3 can also be sorted into Rab7‐positive late endosomes (LE) followed by lysosomal degradation (courtesy of Karen Bannert, University of Rostock).


Figure 6. Loss of firmly adherent mucus layer, altered HCO3 and fluid transport, and high intracellular pH in the enterocytes of the Slc26a3−/− mid‐distal murine colon. (A) Muc2A immunostaining of mucus granules within the goblet cells and at the mucosal surface of wt and Slc26a3−/− mid‐distal murine colon. (B) Time course of JHCO3 in the mid‐distal colon of anaesthetized wt and Slc26a3−/− mice before and after treatment with 100 µmol/L FSK. (C) Colonic fluid absorption measured in vivo was robust in wt colon and strongly inhibited by FSK. In contrast, no fluid absorption was observed in Slc26a3−/− colon. (D) Distribution of enterocytes and goblet cells at the cryptal surface of wt mid‐distal murine colon. Goblet cells (yellow cells) produce and release mucus granules (blue circles) accumulated further in continuous stratified mucus layer that adheres to the epithelium of the wt colon and an outer mucus layer. Fluid absorption is directed by NHE3, while HCO3 secretion is conducted via Slc26a3 (DRA). (E) In Slc26a3−/− mid‐distal murine colon the adherent mucus layer is absent and the outer mucus flows into the lumen of the colon. Due to absence of the Slc26a3 (DRA) the HCO3 secretion is diminished. No fluid absorption was observed in Slc26a3−/− colon, despite a strong upregulation of the expression of the sodium absorptive transporters NHE3 and ENaC. One reason for this may be the high intracellular pH (pHi) in the Slc26a3−/− colonic surface cells (pHi∼7.5), resulting in lack of NHE3 activation. See text for further details. Image based on observations from Xiao et al. (363) with permission.


Figure 7. Strong increase in the number of colonic lymphoid aggregates and reduced survival in Slc26a3 −/− mice after low concentration of dextrane sodium sulfate (DSS) exposure. (A) Slc26a3−/− mice displayed strongly reduced survival during the DSS drinking period, even though the DSS concentration was low and elicited very mild inflammatory changes in the mucosa of wt mice. (B) H&E stain of the colon of Slc26a3 −/− and wt littermates after exposure to 2% DSS in the drinking water. A strong increase in the number of large lymphoid aggregates was observed both in the mucosa and submucosa in the colon of the Slc26a3−/− mice (C). The cartoons describe the aforementioned findings in (D) wt mice and (E) Slc26a3−/− mice. Image based on observations from Xiao et al. (363) with permission.


Figure 8. Significant decrease of DRA expression in the inflamed colonic mucosa. (A) Hematoxylin and eosin staining of the mid colon of TNF‐α overexpressing mice. Although the maximal inflammation occurs in the distal ileum, the mid‐colonic mucosa shows elevated proinflammatory cytokine expression levels (B). (C) mRNA expression for DRA, CFTR, and NHE3 in the mid‐colon of TNF+/ΔARE (□) compared to TNF+/+ (▪) mid‐colon. (D) Immunofluorescence of DRA (green) in TNF+/ΔARE and TNF+/+ mice mid‐colon. DRA fluorescence is decreased in the apical membrane of colonic enterocytes of TNF+/ΔARE compared to TNF+/+ (scale bars = 10 μm). A representative of three different experiments is shown. Modified from Xiao et al., 2012, with permission of the publisher (361).


Figure 9. Expression of Slc26a9 in the murine gastric mucosa. The cellular expression pattern and physiological function of Slc26a9 in the gastric mucosa is not fully understood. (A) Immunostaining demonstrated strong expression of Slc26a9 in the gastric surface cells, with very faint expression in the H+/K+‐positive parietal cells, and only weak overlap of Slc26a9 and H+/K+‐ATPase (B, white arrows). Reprinted from Chang et al., 2009, with permission of the publisher (39). (C) Because the antibody was not tested in Slc26a9 −/− tissue and because Slc26a9 was discussed as the parietal cell Cl conductance activated during acid secretion, laser capture dissection of the total gastric glands, the upper third, and the lower third of the gland area was performed. Slc26a9 mRNA expression was quantified in these three areas, and compared with the mRNA expression of H+/K+‐ATPase (parietal cell expression), Muc5a (mucus neck and surface cell expression), and NHE2 (surface cell expression > gland expression). The mRNA expression of the total gland area was set to 1. The results are also not compatible with a predominantly parietal cell expression. See text for further details. Courtesy of Riederer, B., 2018, with permission.


Figure 10. Schematic diagram of cellular composition and acid/base transporter expression along the jejunal crypt‐villus axis and its effect on cellular HCO3 and fluid output. Renewal of the intestinal epithelia is driven by intestinal stem cells (ISCs). ISCs are located at the base of the crypt, either at the +4 position counting from the bottom of the crypt (yellow, Bmi‐1 stem cells) directly above the Paneth cells (blue), or as crypt base columnar (CBC) cells (red, Lgr5 + stem cells) located between the Paneth cells, whereas progenitor cells (rose) arise from the self‐renewing CBCs. As intestinal epithelial cells differentiate and move toward the villus tip, the expression profile of acid/base, electrolyte and nutrient (not shown) transporters changes dramatically. The diagram shows how this will affect CFTR‐dependent and ‐independent luminal HCO3 output. The transporter names are abbreviated as commonly used. In the crypt and “CFTR high expresser” enterocytes, high CFTR expression and no SLC26A3/6 expression is observed in the apical membrane, and high NKCC1, but no NBC expression in the basolateral membrane. These cells are capable of high Cl secretory rates, and in conjunction with cation and water permeable claudin‐2, of high NaCl and water flux into the lumen, but the HCO3 concentration in this secretion will be low. Villus enterocytes display low CFTR, but high SLC26A3/6 expression in the apical, and high NBC, but low NKCC1 expression in the basolateral membrane. In the basal state, these cells absorb Na+, Cl, and HCO3 via NHE3 and SLC26A3/6, but if secretagogues raise intracellular cyclic nucleotide and possibly Ca2+ concentrations, proton export via NHE3 is inhibited, while SLC26‐mediated HCO3 export is ongoing. The Cl is recycled into the lumen via CFTR. This type of HCO3 output into the lumen need not be accompanied by fluid secretion. If stimulation of secretion results in a strong decrease of intracellular Cl concentrations, the WNK pathway may be activated that will increase the HCO3 permeability of CFTR. See text for further details.


Figure 11. Schematic diagram of cellular composition and acid/base transporter expression along the colonic crypt‐villus axis and its effect on cellular HCO3 and fluid output. The ISC zone and partially differentiated enterocytes and goblet cells are located in the lower part of the colonic crypt. ISCs are presented by Bmi‐1 cells (yellow) and crypt base columnar (CBC) cells (red, Lgr5 + stem cells). Colonic cryptal cells express high levels of CFTR in the apical and NKCC1 in the basolateral membrane and therefore secrete a Cl‐rich HCO3 poor fluid. When CFTR is absent or defective, cryptal enterocyte pH is significantly increased, because the high [Cl‐]I inhibits basolateral HCO3 i/Cl o exchange via AE2 (346). CFTR expression dramatically decreases toward the cryptal mouth and surface cells region, while SLC26A3 expression is upregulated. Deletion of SLC26A3 results in extremely low colonic HCO3 alkalization rates, while that of CFTR has a minor effect, suggesting that SLC26A3 is the major colonic HCO3 output pathway and its action is largely independent of CFTR expression.
References
 1. Abdulnour‐Nakhoul S , Nakhoul HN , Kalliny MI , Gyftopoulos A , Rabon E , Doetjes R , Brown K , Nakhoul NL . Ion transport mechanisms linked to bicarbonate secretion in the esophageal submucosal glands. Am J Physiol Regul Integr Comp Physiol 301: R83‐R96, 2011.
 2. Allen A , Flemstrom G . Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol 288: C1‐C19, 2005.
 3. Alper SL , Rossmann H , Wilhelm S , Stuart‐Tilley AK , Shmukler BE , Seidler U . Expression of AE2 anion exchanger in mouse intestine. Am J Physiol 277: G321‐G332, 1999.
 4. Alper SL , Sharma AK . The SLC26 gene family of anion transporters and channels. Mol Aspects Med 34: 494‐515, 2013.
 5. Alper SL , Stewart AK , Vandorpe DH , Clark JS , Horack RZ , Simpson JE , Walker NM , Clarke LL . Native and recombinant Slc26a3 (downregulated in adenoma, Dra) do not exhibit properties of 2Cl‐/1HCO3‐ exchange. Am J Physiol 300: C276‐C286, 2011.
 6. Alrefai WA , Wen X , Jiang W , Katz JP , Steinbrecher KA , Cohen MB , Williams IR , Dudeja PK , Wu GD . Molecular cloning and promoter analysis of downregulated in adenoma (DRA). Am J Physiol Gastrointest Liver Physiol 293: G923‐G934, 2007.
 7. Alvarez BV , Kieller DM , Quon AL , Markovich D , Casey JR . Slc26a6: a cardiac chloride‐hydroxyl exchanger and predominant chloride‐bicarbonate exchanger of the mouse heart. J Physiol 561: 721‐734, 2004.
 8. Ameen NA , Ardito T , Kashgarian M , Marino CR . A unique subset of rat and human intestinal villus cells express the cystic fibrosis transmembrane conductance regulator. Gastroenterology 108: 1016‐1023, 1995.
 9. Amlal H , Xu J , Barone S , Zahedi K , Soleimani M . The chloride channel/transporter Slc26a9 regulates the systemic arterial pressure and renal chloride excretion. J Mol Med (Berl) 91: 561‐572, 2013.
 10. Anagnostopoulou P , Riederer B , Duerr J , Michel S , Binia A , Agrawal R , Liu X , Kalitzki K , Xiao F , Chen M , Schatterny J , Hartmann D , Thum T , Kabesch M , Soleimani M , Seidler U , Mall MA . SLC26A9‐mediated chloride secretion prevents mucus obstruction in airway inflammation. J Clin Invest 122: 3629‐3634, 2012.
 11. Anbazhagan AN , Priyamvada S , Alakkam A , Kumar A , Borthakur A , Saksena S , Gill RK , Alrefai WA , Dudeja PK . Transcriptional modulation of SLC26A3 (DRA) by sphingosine‐1‐phosphate. Am J Physiol Gastrointest Liver Physiol 310: G1028‐G1035, 2016.
 12. Arakawa T , Kobayashi‐Yurugi T , Alguel Y , Iwanari H , Hatae H , Iwata M , Abe Y , Hino T , Ikeda‐Suno C , Kuma H , Kang D , Murata T , Hamakubo T , Cameron AD , Kobayashi T , Hamasaki N , Iwata S . Crystal structure of the anion exchanger domain of human erythrocyte band 3. Science (New York, NY) 350: 680‐684, 2015.
 13. Ardura JA , Friedman PA . Regulation of G protein‐coupled receptor function by Na+/H+ exchange regulatory factors. Pharmacol Rev 63: 882‐900, 2011.
 14. Asano K , Matsushita T , Umeno J , Hosono N , Takahashi A , Kawaguchi T , Matsumoto T , Matsui T , Kakuta Y , Kinouchi Y , Shimosegawa T , Hosokawa M , Arimura Y , Shinomura Y , Kiyohara Y , Tsunoda T , Kamatani N , Iida M , Nakamura Y , Kubo M . A genome‐wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population. Nat Genet 41: 1325‐1329, 2009.
 15. Assis DN , Freedman SD . Gastrointestinal disorders in cystic fibrosis. Clin Chest Med 37: 109‐118, 2016.
 16. Bachmann O , Wuchner K , Rossmann H , Leipziger J , Osikowska B , Colledge WH , Ratcliff R , Evans MJ , Gregor M , Seidler U . Expression and regulation of the Na+‐K+‐2Cl‐ cotransporter NKCC1 in the normal and CFTR‐deficient murine colon. J Physiol 549: 525‐536, 2003.
 17. Bai A , Lu N , Zeng H , Li Z , Zhou X , Chen J , Liu P , Peng Z , Guo Y . All‐trans retinoic acid ameliorates trinitrobenzene sulfonic acid‐induced colitis by shifting Th1 to Th2 profile. J Interferon Cytokine Res 30: 399‐406, 2010.
 18. Bai X , Moraes TF , Reithmeier RA . Effect of SLC26 anion transporter disease‐causing mutations on the stability of the homologous STAS domain of E. coli DauA (YchM). Biochem J 473: 615‐626, 2016.
 19. Bannert K , Koch S , Berlin P , Bartsch M , Lamprecht G . Sorting Nexin 27 (SNX27) affects the activity of the intestinal anion exchanger DRA (SLC26A3). Gastroenterology 152: S911‐S912, 2017.
 20. Berschneider HM , Knowles MR , Azizkhan RG , Boucher RC , Tobey NA , Orlando RC , Powell DW . Altered intestinal chloride transport in cystic fibrosis. FASEB J 2: 2625‐2629, 1988.
 21. Bertrand CA , Zhang R , Pilewski JM , Frizzell RA . SLC26A9 is a constitutively active, CFTR‐regulated anion conductance in human bronchial epithelia. J Gen Physiol 133: 421‐438, 2009.
 22. Bhardwaj S , Pandit D , Sinha A , Hari P , Cheong HI , Bagga A . Congenital chloride diarrhea ‐ novel mutation in SLC26A3 gene. Indian J Pediatr 83: 859‐861, 2016.
 23. Bieberdorf FA , Gorden P , Fordtran JS . Pathogenesis of congenital alkalosis with diarrhea. Implications for the physiology of normal ileal electrolyte absorption and secretion. J Clin Invest 51: 1958‐1968, 1972.
 24. Bijvelds MJ , Bronsveld I , Havinga R , Sinaasappel M , de Jonge HR , Verkade HJ . Fat absorption in cystic fibrosis mice is impeded by defective lipolysis and post‐lipolytic events. Am J Physiol Gastrointest Liver Physiol 288: G646‐G653, 2005.
 25. Binder HJ , Rajendran V , Sadasivan V , Geibel JP . Bicarbonate secretion: a neglected aspect of colonic ion transport. J Clin Gastroenterol 39: S53‐S58, 2005.
 26. Bissig M , Hagenbuch B , Stieger B , Koller T , Meier PJ . Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes. J Biol Chem 269: 3017‐3021, 1994.
 27. Bizhanova A , Kopp P . Controversies concerning the role of pendrin as an apical iodide transporter in thyroid follicular cells. Cell Physiol Biochem 28: 485‐490, 2011.
 28. Blackman SM , Commander CW , Watson C , Arcara KM , Strug LJ , Stonebraker JR , Wright FA , Rommens JM , Sun L , Pace RG , Norris SA , Durie PR , Drumm ML , Knowles MR , Cutting GR . Genetic modifiers of cystic fibrosis‐related diabetes. Diabetes 62: 3627‐3635, 2013.
 29. Borowitz D . CFTR, bicarbonate, and the pathophysiology of cystic fibrosis. Pediatr Pulmonol 50(Suppl 40): S24‐S30, 2015.
 30. Bucher GR , Flynn JC , Robinson C S . The action of the human small intestine in altering the composition of physiological saline. J Biol Chem 155: 305‐313, 1944.
 31. Buchwald H . The evolution of metabolic/bariatric surgery. Obes Surg 24: 1126‐1135, 2014.
 32. Cai T , Yang L , Cai W , Guo S , Yu P , Li J , Hu X , Yan M , Shao Q , Jin Y , Sun ZS , Luo ZJ . Dysplastic spondylolysis is caused by mutations in the diastrophic dysplasia sulfate transporter gene. Proc Natl Acad Sci U S A 112: 8064‐8069, 2015.
 33. Carbone A , Al Salhi Y , Tasca A , Palleschi G , Fuschi A , De Nunzio C , Bozzini G , Mazzaferro S , Pastore AL . Obesity and kidney stone disease: a systematic review. Minerva Urol Nefrol 70: 393‐400, 2018.
 34. Cassano G , Stieger B , Murer H . Na/H‐ and Cl/OH‐exchange in rat jejunal and rat proximal tubular brush border membrane vesicles. Studies with acridine orange. Pflugers Arch 400: 309‐317, 1984.
 35. Catalan M , Niemeyer MI , Cid LP , Sepulveda FV . Basolateral ClC‐2 chloride channels in surface colon epithelium: regulation by a direct effect of intracellular chloride. Gastroenterology 126: 1104‐1114, 2004.
 36. Catalan MA , Flores CA , Gonzalez‐Begne M , Zhang Y , Sepulveda FV , Melvin JE . Severe defects in absorptive ion transport in distal colons of mice that lack ClC‐2 channels. Gastroenterology 142: 346‐354, 2012.
 37. Cesar‐Razquin A , Snijder B , Frappier‐Brinton T , Isserlin R , Gyimesi G , Bai X , Reithmeier RA , Hepworth D , Hediger MA , Edwards AM , Superti‐Furga G . A call for systematic research on solute carriers. Cell 162: 478‐487, 2015.
 38. Chan HC , Sun X . SLC26 anion exchangers in uterine epithelial cells and spermatozoa: Clues from the past and hints to the future. Cell Biol Int 38: 1‐7, 2014.
 39. Chang MH , Plata C , Zandi‐Nejad K , Sindic A , Sussman CR , Mercado A , Broumand V , Raghuram V , Mount DB , Romero MF . Slc26a9–anion exchanger, channel and Na+ transporter. J Membr Biol 228: 125‐140, 2009.
 40. Chang YN , Geertsma ER . The novel class of seven transmembrane segment inverted repeat carriers. Biol Chem 398: 165‐174, 2017.
 41. Chapman JM , Karniski LP . Protein localization of SLC26A2 (DTDST) in rat kidney. Histochem Cell Biol 133: 541‐547, 2010.
 42. Chatterjee I , Kumar A , Castilla‐Madrigal RM , Pellon‐Cardenas O , Gill RK , Alrefai WA , Borthakur A , Verzi M , Dudeja PK . CDX2 upregulates SLC26A3 gene expression in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 313: G256‐G264, 2017.
 43. Chaun H . Colonic disorders in adult cystic fibrosis. Can J Gastroenterol 15: 586‐590, 2001.
 44. Chen M , Praetorius J , Zheng W , Xiao F , Riederer B , Singh AK , Stieger N , Wang J , Shull GE , Aalkjaer C , Seidler U . The electroneutral Na(+):HCO(3)(−) cotransporter NBCn1 is a major pHi regulator in murine duodenum. J Physiol 590: 3317‐3333, 2012.
 45. Chernova MN , Jiang L , Friedman DJ , Darman RB , Lohi H , Kere J , Vandorpe DH , Alper SL . Functional comparison of mouse slc26a6 anion exchanger with human SLC26A6 polypeptide variants: Differences in anion selectivity, regulation, and electrogenicity. J Biol Chem 280: 8564‐8580, 2005.
 46. Chernova MN , Jiang L , Shmukler BE , Schweinfest CW , Blanco P , Freedman SD , Stewart AK , Alper SL . Acute regulation of the SLC26A3 congenital chloride diarrhoea anion exchanger (DRA) expressed in Xenopus oocytes. J Physiol 549: 3‐19, 2003.
 47. Chow A , Dobbins JW , Aronson PS , Igarashi P . cDNA cloning and localization of a band 3‐related protein from ileum. Am J Physiol 263: G345‐G352, 1992.
 48. Clarke LL , Stien X , Walker NM . Intestinal bicarbonate secretion in cystic fibrosis mice. JOP 2: 263‐267, 2001.
 49. Comelli EM , Lariani S , Zwahlen MC , Fotopoulos G , Holzwarth JA , Cherbut C , Dorta G , Corthesy‐Theulaz I , Grigorov M . Biomarkers of human gastrointestinal tract regions. Mamm Genome 20: 516‐527, 2009.
 50. Coon S , Sundaram U . Mechanism of glucocorticoid‐mediated reversal of inhibition of Cl(−)/HCO(−)(3) exchange during chronic ileitis. Am J Physiol Gastrointest Liver Physiol 278: G570‐G577, 2000.
 51. Coucke P , Van Camp G , Demirhan O , Kabakkaya Y , Balemans W , Van Hauwe P , Van Agtmael T , Smith RJ , Parving A , Bolder CH , Cremers CW , Willems PJ . The gene for Pendred syndrome is located between D7S501 and D7S692 in a 1.7‐cM region on chromosome 7q. Genomics 40: 48‐54, 1997.
 52. Coyle B , Coffey R , Armour JA , Gausden E , Hochberg Z , Grossman A , Britton K , Pembrey M , Reardon W , Trembath R . Pendred syndrome (goitre and sensorineural hearing loss) maps to chromosome 7 in the region containing the nonsyndromic deafness gene DFNB4. Nat Genet 12: 421‐423, 1996.
 53. Cremer J , Arnoldini M , Hwa T . Effect of water flow and chemical environment on microbiota growth and composition in the human colon. Proc Natl Acad Sci U S A 114: 6438‐6443, 2017.
 54. Curran PF . Na, Cl, and water transport by rat ileum in vitro. J Gen Physiol 43: 1137‐1148, 1960.
 55. Curran PF , Schwartz GF . Na, Cl, and water transport by rat colon. J Gen Physiol 43: 555‐571, 1960.
 56. Dalzell AM , Heaf DP . Oro‐caecal transit time and intra‐luminal pH in cystic fibrosis patients with distal intestinal obstruction syndrome. Acta Univ Carol Med (Praha) 36: 159‐160, 1990.
 57. Darrow DC . Congenital alkalosis with diarrhea. J Pediatr 26: 519‐532, 1945.
 58. Dawson PA , Huxley S , Gardiner B , Tran T , McAuley JL , Grimmond S , McGuckin MA , Markovich D . Reduced mucin sulfonation and impaired intestinal barrier function in the hyposulfataemic NaS1 null mouse. Gut 58: 910‐919, 2009.
 59. Dawson PA , Rakoczy J , Simmons DG . Placental, renal, and ileal sulfate transporter gene expression in mouse gestation. Biol Reprod 87: 43, 2012.
 60. Dawson PA , Russell CS , Lee S , McLeay SC , van Dongen JM , Cowley DM , Clarke LA , Markovich D . Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice. J Clin Invest 120: 706‐712, 2010.
 61. De Lisle RC . Decreased expression of enterocyte nutrient assimilation genes and proteins in the small intestine of cystic fibrosis mouse. J Pediatr Gastroenterol Nutr 62: 627‐634, 2016.
 62. De Lisle RC , Borowitz D . The cystic fibrosis intestine. Cold Spring Harb Perspect Med 3: a009753, 2013.
 63. DePierre JW , Karnovsky ML . Plasma membranes of mammalian cells: A review of methods for their characterization and isolation. J Cell Biol 56: 275‐303, 1973.
 64. Ding M , Kinoshita Y , Kishi K , Nakata H , Hassan S , Kawanami C , Sugimoto Y , Katsuyama M , Negishi M , Narumiya S , Ichikawa A , Chiba T . Distribution of prostaglandin E receptors in the rat gastrointestinal tract. Prostaglandins 53: 199‐216, 1997.
 65. Ding X , Li D , Li M , Tian D , Yu H , Yu Q . Tumor necrosis factor‐alpha acts reciprocally with solute carrier family 26, member 3, (downregulated‐in‐adenoma) and reduces its expression, leading to intestinal inflammation. Int J Mol Med 41: 1224‐1232, 2018.
 66. Ding X , Li D , Li M , Wang H , He Q , Wang Y , Yu H , Tian D , Yu Q . SLC26A3 (DRA) prevents TNF‐alpha‐induced barrier dysfunction and dextran sulfate sodium‐induced acute colitis. Lab Invest 98: 462‐476, 2018.
 67. Dirami T , Rode B , Jollivet M , Da Silva N , Escalier D , Gaitch N , Norez C , Tuffery P , Wolf JP , Becq F , Ray PF , Dulioust E , Gacon G , Bienvenu T , Toure A . Missense mutations in SLC26A8, encoding a sperm‐specific activator of CFTR, are associated with human asthenozoospermia. Am J Hum Genet 92: 760‐766, 2013.
 68. Donowitz M , Cha B , Zachos NC , Brett CL , Sharma A , Tse CM , Li X . NHERF family and NHE3 regulation. J Physiol 567: 3‐11, 2005.
 69. Donowitz M , Welsh MJ . Ca2+ and cyclic AMP in regulation of intestinal Na, K, and Cl transport. Annu Rev Physiol 48: 135‐150, 1986.
 70. Dorwart MR , Shcheynikov N , Wang Y , Stippec S , Muallem S . SLC26A9 is a Cl(−) channel regulated by the WNK kinases. J Physiol 584: 333‐345, 2007.
 71. Dwyer E , Hyland J , Modaff P , Pauli RM . Genotype‐phenotype correlation in DTDST dysplasias: Atelosteogenesis type II and diastrophic dysplasia variant in one family. Am J Med Genet A 152a: 3043‐3050, 2010.
 72. Eggermont E . Gastrointestinal manifestations in cystic fibrosis. Eur J Gastroenterol Hepatol 8: 731‐738, 1996.
 73. El Khouri E , Toure A . Functional interaction of the cystic fibrosis transmembrane conductance regulator with members of the SLC26 family of anion transporters (SLC26A8 and SLC26A9): physiological and pathophysiological relevance. Int J Biochem Cell Biol 52: 58‐67, 2014.
 74. El Khouri E , Whitfield M , Stouvenel L , Kini A , Riederer B , Lores P , Roemermann D , di Stefano G , Drevet JR , Saez F , Seidler U , Toure A . Slc26a3 deficiency is associated with epididymis dysplasia and impaired sperm fertilization potential in the mouse. Mol Reprod Dev 85: 682‐695, 2018.
 75. Elitsur N , Lorenz JN , Hawkins JA , Rudolph JA , Witte D , Yang LE , McDonough AA , Cohen MB . The proximal convoluted tubule is a target for the uroguanylin‐regulated natriuretic response. J Pediatr Gastroenterol Nutr 43(Suppl 1): S74‐S81, 2006.
 76. Elrefae F , Elhassanien AF , Alghiaty HA . Congenital chloride diarrhea: A review of twelve Arabian children. Clin Exp Gastroenterol 6: 71‐75, 2013.
 77. Engevik MA , Hickerson A , Shull GE , Worrell RT . Acidic conditions in the NHE2(−/−) mouse intestine result in an altered mucosa‐associated bacterial population with changes in mucus oligosaccharides. Cell Physiol Biochem 32: 111‐128, 2013.
 78. Ermer T , Eckardt KU , Aronson PS , Knauf F . Oxalate, inflammasome, and progression of kidney disease. Curr Opin Nephrol Hypertens 25: 363‐371, 2016.
 79. Evanson JM , Stanbury SW . Congenital chloridorrhoea or so‐called congenital alkalosis with diarrhoea. Gut 6: 29‐38, 1965.
 80. Everett LA , Glaser B , Beck JC , Idol JR , Buchs A , Heyman M , Adawi F , Hazani E , Nassir E , Baxevanis AD , Sheffield VC , Green ED . Pendred syndrome is caused by mutations in a putative sulfate transporter gene (PDS). Nat Genet 17: 411‐422, 1997.
 81. Farkas K , Yeruva S , Rakonczay Z, Jr. , Ludolph L , Molnar T , Nagy F , Szepes Z , Schnur A , Wittmann T , Hubricht J , Riederer B , Venglovecz V , Lazar G , Kiraly M , Zsembery A , Varga G , Seidler U , Hegyi P . New therapeutic targets in ulcerative colitis: The importance of ion transporters in the human colon. Inflamm Bowel Dis 17: 884‐898, 2011.
 82. Field M , Plotkin GR , Silen W . Effects of vasopressin, theophylline and cyclic adenosine monophosphate on short‐circuit current across isolated rabbit ileal mucosa. Nature 217: 469‐471, 1968.
 83. Flemmer AW , Gimenez I , Dowd BF , Darman RB , Forbush B . Activation of the Na‐K‐Cl cotransporter NKCC1 detected with a phospho‐specific antibody. J Biol Chem 277: 37551‐37558, 2002.
 84. Fordtran JS , Rector FC, Jr. , Carter NW . The mechanisms of sodium absorption in the human small intestine. J Clin Invest 47: 884‐900, 1968.
 85. Forlino A , Piazza R , Tiveron C , Della Torre S , Tatangelo L , Bonafe L , Gualeni B , Romano A , Pecora F , Superti‐Furga A , Cetta G , Rossi A . A diastrophic dysplasia sulfate transporter (SLC26A2) mutant mouse: Morphological and biochemical characterization of the resulting chondrodysplasia phenotype. Hum Mol Genet 14: 859‐871, 2005.
 86. Forstner GG , Sabesin SM , Isselbacher KJ . Rat intestinal microvillus membranes. Purification and biochemical characterization. Biochem J 106: 381‐390, 1968.
 87. Forstner J , Wesley A , Mantle M , Kopelman H , Man D , Forstner G . Abnormal mucus: Nominated but not yet elected. J Pediatr Gastroenterol Nutr 3(Suppl 1): S67‐S73, 1984.
 88. Forte LR , Fan X , Hamra FK . Salt and water homeostasis: Uroguanylin is a circulating peptide hormone with natriuretic activity. Am J Kidney Dis 28: 296‐304, 1996.
 89. Freel RW , Hatch M , Green M , Soleimani M . Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6 null mice. Am J Physiol Gastrointest Liver Physiol 290: G719‐G728, 2006.
 90. Freel RW , Whittamore JM , Hatch M . Transcellular oxalate and Cl‐ absorption in mouse intestine is mediated by the DRA anion exchanger Slc26a3, and DRA deletion decreases urinary oxalate. Am J Physiol Gastrointest Liver Physiol 305: G520‐G527, 2013.
 91. Fuwa K , Hosono S , Nagano N , Munakata S , Fukamachi R , Okada T , Takahashi S , Takahashi S , Sato N , Nakayama T . Japanese neonate with congenital chloride diarrhea caused by SLC26A3 mutation. Pediatr Int 57: e11‐e13, 2015.
 92. Gamble JL , Fahey KR , Appleton J , MacLachlan E . Congenital alkalosis with diarrhea. J Pediatr 26: 509‐518, 1945.
 93. Garg M , Ooi CY . The enigmatic gut in cystic fibrosis: Linking inflammation, dysbiosis, and the increased risk of malignancy. Curr Gastroenterol Rep 19: 6, 2017.
 94. Gausden E , Coyle B , Armour JA , Coffey R , Grossman A , Fraser GR , Winter RM , Pembrey ME , Kendall‐Taylor P , Stephens D , Luxon LM , Phelps PD , Reardon W , Trembath R . Pendred syndrome: Evidence for genetic homogeneity and further refinement of linkage. J Med Genet 34: 126‐129, 1997.
 95. Gawenis LR , Franklin CL , Simpson JE , Palmer BA , Walker NM , Wiggins TM , Clarke LL . cAMP inhibition of murine intestinal Na/H exchange requires CFTR‐mediated cell shrinkage of villus epithelium. Gastroenterology 125: 1148‐1163, 2003.
 96. Geertsma ER , Chang YN , Shaik FR , Neldner Y , Pardon E , Steyaert J , Dutzler R . Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat Struct Mol Biol 22: 803‐808, 2015.
 97. Gelfond D , Heltshe S , Ma C , Rowe SM , Frederick C , Uluer A , Sicilian L , Konstan M , Tullis E , Roach RN , Griffin K , Joseloff E , Borowitz D . Impact of CFTR modulation on intestinal pH, motility, and clinical outcomes in patients with cystic fibrosis and the G551D mutation. Clin Transl Gastroenterol 8: e81, 2017.
 98. Gibney EM , Goldfarb DS . The association of nephrolithiasis with cystic fibrosis. Am J Kidney Dis 42: 1‐11, 2003.
 99. Gorbunov D , Sturlese M , Nies F , Kluge M , Bellanda M , Battistutta R , Oliver D . Molecular architecture and the structural basis for anion interaction in prestin and SLC26 transporters. Nat Commun 5: 3622, 2014.
 100. Gregory PC . Gastrointestinal pH, motility/transit and permeability in cystic fibrosis. J Pediatr Gastroenterol Nutr 23: 513‐523, 1996.
 101. Guba M , Kuhn M , Forssmann WG , Classen M , Gregor M , Seidler U . Guanylin strongly stimulates rat duodenal HCO3‐ secretion: Proposed mechanism and comparison with other secretagogues. Gastroenterology 111: 1558‐1568, 1996.
 102. Gustafsson JK , Navabi N , Rodriguez‐Pineiro AM , Alomran AH , Premaratne P , Fernandez HR , Banerjee D , Sjovall H , Hansson GC , Linden SK . Dynamic changes in mucus thickness and ion secretion during Citrobacter rodentium infection and clearance. PloS one 8: e84430, 2013.
 103. Haila S , Hastbacka J , Bohling T , Karjalainen‐Lindsberg ML , Kere J , Saarialho‐Kere U . SLC26A2 (diastrophic dysplasia sulfate transporter) is expressed in developing and mature cartilage but also in other tissues and cell types. J Histochem Cytochem 49: 973‐982, 2001.
 104. Haila S , Saarialho‐Kere U , Karjalainen‐Lindsberg ML , Lohi H , Airola K , Holmberg C , Hastbacka J , Kere J , Hoglund P . The congenital chloride diarrhea gene is expressed in seminal vesicle, sweat gland, inflammatory colon epithelium, and in some dysplastic colon cells. Histochem Cell Biol 113: 279‐286, 2000.
 105. Haq IJ , Gray MA , Garnett JP , Ward C , Brodlie M . Airway surface liquid homeostasis in cystic fibrosis: Pathophysiology and therapeutic targets. Thorax 71: 284‐287, 2016.
 106. Hastbacka J , de la Chapelle A , Kaitila I , Sistonen P , Weaver A , Lander E . Linkage disequilibrium mapping in isolated founder populations: Diastrophic dysplasia in Finland. Nat Genet 2: 204‐211, 1992.
 107. Hastbacka J , de la Chapelle A , Mahtani MM , Clines G , Reeve‐Daly MP , Daly M , Hamilton BA , Kusumi K , Trivedi B , Weaver A , et al. The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine‐structure linkage disequilibrium mapping. Cell 78: 1073‐1087, 1994.
 108. Hastbacka J , Kaitila I , Sistonen P , de la Chapelle A . Diastrophic dysplasia gene maps to the distal long arm of chromosome 5. Proc Natl Acad Sci U S A 87: 8056‐8059, 1990.
 109. Hastbacka J , Sistonen P , Kaitila I , Weiffenbach B , Kidd KK , de la Chapelle A . A linkage map spanning the locus for diastrophic dysplasia (DTD). Genomics 11: 968‐973, 1991.
 110. Hayashi D , Tamura A , Tanaka H , Yamazaki Y , Watanabe S , Suzuki K , Suzuki K , Sentani K , Yasui W , Rakugi H , Isaka Y , Tsukita S . Deficiency of claudin‐18 causes paracellular H+ leakage, up‐regulation of interleukin‐1beta, and atrophic gastritis in mice. Gastroenterology 142: 292‐304, 2012.
 111. Hendriks HJ , van Kreel B , Forget PP . Effects of therapy with lansoprazole on intestinal permeability and inflammation in young cystic fibrosis patients. J Pediatr Gastroenterol Nutr 33: 260‐265, 2001.
 112. Heneghan JF , Akhavein A , Salas MJ , Shmukler BE , Karniski LP , Vandorpe DH , Alper SL . Regulated transport of sulfate and oxalate by SLC26A2/DTDST. Am J Physiol 298: C1363‐C1375, 2010.
 113. Hihnala S , Kujala M , Toppari J , Kere J , Holmberg C , Hoglund P . Expression of SLC26A3, CFTR and NHE3 in the human male reproductive tract: Role in male subfertility caused by congenital chloride diarrhoea. Mol Hum Reprod 12: 107‐111, 2006.
 114. Hirokawa M , Takeuchi T , Chu S , Akiba Y , Wu V , Guth PH , Engel E , Montrose MH , Kaunitz JD . Cystic fibrosis gene mutation reduces epithelial cell acidification and injury in acid‐perfused mouse duodenum. Gastroenterology 127: 1162‐1173, 2004.
 115. Hofmann AF , Laker MF , Dharmsathaphorn K , Sherr HP , Lorenzo D . Complex pathogenesis of hyperoxaluria after jejunoileal bypass surgery. Oxalogenic substances in diet contribute to urinary oxalate. Gastroenterology 84: 293‐300, 1983.
 116. Hogan DL , Crombie DL , Isenberg JI , Svendsen P , Schaffalitzky de Muckadell OB , Ainsworth MA . Acid‐stimulated duodenal bicarbonate secretion involves a CFTR‐mediated transport pathway in mice. Gastroenterology 113: 533‐541, 1997.
 117. Hoglund P , Auranen M , Socha J , Popinska K , Nazer H , Rajaram U , Al Sanie A , Al‐Ghanim M , Holmberg C , de la Chapelle A , Kere J . Genetic background of congenital chloride diarrhea in high‐incidence populations: Finland, Poland, and Saudi Arabia and Kuwait. Am J Hum Genet 63: 760‐768, 1998.
 118. Hoglund P , Haila S , Gustavson KH , Taipale M , Hannula K , Popinska K , Holmberg C , Socha J , de la Chapelle A , Kere J . Clustering of private mutations in the congenital chloride diarrhea/down‐regulated in adenoma gene. Hum Mutat 11: 321‐327, 1998.
 119. Hoglund P , Haila S , Scherer SW , Tsui LC , Green ED , Weissenbach J , Holmberg C , de la Chapelle A , Kere J . Positional candidate genes for congenital chloride diarrhea suggested by high‐resolution physical mapping in chromosome region 7q31. Genome Res 6: 202‐210, 1996.
 120. Hoglund P , Haila S , Socha J , Tomaszewski L , Saarialho‐Kere U , Karjalainen‐Lindsberg ML , Airola K , Holmberg C , de la Chapelle A , Kere J . Mutations of the Down‐regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nat Genet 14: 316‐319, 1996.
 121. Hoglund P , Hihnala S , Kujala M , Tiitinen A , Dunkel L , Holmberg C . Disruption of the SLC26A3‐mediated anion transport is associated with male subfertility. Fertil Steril 85: 232‐235, 2006.
 122. Hoglund P , Sistonen P , Norio R , Holmberg C , Dimberg A , Gustavson KH , de la Chapelle A , Kere J . Fine mapping of the congenital chloride diarrhea gene by linkage disequilibrium. Am J Hum Genet 57: 95‐102, 1995.
 123. Hohenester S , Maillette de Buy Wenniger L , Jefferson DM , Oude Elferink RP , Beuers U . Biliary bicarbonate secretion constitutes a protective mechanism against bile acid‐induced injury in man. Dig Dis 29: 62‐65, 2011.
 124. Holmberg C , Perheentupa J , Launiala K . Colonic electrolyte transport in health and in congenital chloride diarrhea. J Clin Invest 56: 302‐310, 1975.
 125. Holmberg C , Perheentupa J , Launiala K , Hallman N . Congenital chloride diarrhoea. Clinical analysis of 21 Finnish patients. Arch Dis Child 52: 255‐267, 1977.
 126. Hong J , Seo JK , Ko JS , Cheong HI , Choi JH , Lee JH , Seo JW . Congenital chloride diarrhea in Korean children: Novel mutations and genetic characteristics. Eur J Pediatr 172: 545‐550, 2013.
 127. Hong JH , Park S , Shcheynikov N , Muallem S . Mechanism and synergism in epithelial fluid and electrolyte secretion. Pflugers Arch 466: 1487‐1499, 2014.
 128. Hoogeveen AT , Keulemans J , Willemsen R , Scholte BJ , Bijman J , Edixhoven MJ , De Jonge HR , Galjaard H . Immunological localization of cystic fibrosis candidate gene products. Exp Cell Res 193: 435‐437, 1991.
 129. Hoppe B , von Unruh GE , Blank G , Rietschel E , Sidhu H , Laube N , Hesse A . Absorptive hyperoxaluria leads to an increased risk for urolithiasis or nephrocalcinosis in cystic fibrosis. Am J Kidney Dis 46: 440‐445, 2005.
 130. Hou Y , Guan X , Yang Z , Li C . Emerging role of cystic fibrosis transmembrane conductance regulator – an epithelial chloride channel in gastrointestinal cancers. World J Gastrointest Oncol 8: 282‐288, 2016.
 131. Hubel KA . Bicarbonate secretion in rat ileum and its dependence on intraluminal chloride. Am J Physiol 213: 1409‐1413, 1967.
 132. Hueppelshaeuser R , von Unruh GE , Habbig S , Beck BB , Buderus S , Hesse A , Hoppe B . Enteric hyperoxaluria, recurrent urolithiasis, and systemic oxalosis in patients with Crohn's disease. Pediatr Nephrol 27: 1103‐1109, 2012.
 133. Ikari A , Sakai H , Tanaka A , Ikeda A , Inoue K , Takeguchi N . Prostaglandin E(2)‐activated housekeeping Cl(−) channels in the basolateral membrane of rat gastric parietal cells. Jpn J Physiol 49: 365‐372, 1999.
 134. Ishiguro H. HCO3(−) secretion by SLC26A3 and mucosal defence in the colon. Acta Physiol (Oxf) 211: 17‐19, 2014.
 135. Ishiguro H , Yamamoto A , Nakakuki M , Yi L , Ishiguro M , Yamaguchi M , Kondo S , Mochimaru Y . Physiology and pathophysiology of bicarbonate secretion by pancreatic duct epithelium. Nagoya J Med Sci 74: 1‐18, 2012.
 136. Jacob P , Rossmann H , Lamprecht G , Kretz A , Neff C , Lin‐Wu E , Gregor M , Groneberg DA , Kere J , Seidler U . Down‐regulated in adenoma mediates apical Cl‐/HCO3‐ exchange in rabbit, rat, and human duodenum. Gastroenterology 122: 709‐724, 2002.
 137. Jakab RL , Collaco AM , Ameen NA . Physiological relevance of cell‐specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt‐villus axis in the intestine. Am J Physiol Gastrointest Liver Physiol 300: G82‐G98, 2011.
 138. Jalali R , Zandieh‐Doulabi B , DenBesten PK , Seidler U , Riederer B , Wedenoja S , Micha D , Bronckers AL . Slc26a3/Dra and Slc26a6 in murine ameloblasts. J Dent Res 94: 1732‐1739, 2015.
 139. Jiang Z , Asplin JR , Evan AP , Rajendran VM , Velazquez H , Nottoli TP , Binder HJ , Aronson PS . Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet 38: 474‐478, 2006.
 140. Jin H , Wen G , Deng S , Wan S , Xu J , Liu X , Xie R , Dong H , Tuo B . Oestrogen upregulates the expression levels and functional activities of duodenal mucosal CFTR and SLC26A6. Exp Physiol 101: 1371‐1382, 2016.
 141. Judd LM , Andringa A , Rubio CA , Spicer Z , Shull GE , Miller ML . Gastric achlorhydria in H/K‐ATPase‐deficient (Atp4a(−/−)) mice causes severe hyperplasia, mucocystic metaplasia and upregulation of growth factors. J Gastroenterol Hepatol 20: 1266‐1278, 2005.
 142. Juric M , Xiao F , Amasheh S , May O , Wahl K , Bantel H , Manns MP , Seidler U , Bachmann O . Increased epithelial permeability is the primary cause for bicarbonate loss in inflamed murine colon. Inflamm Bowel Dis 19: 904‐911, 2013.
 143. Kahle KT , Rinehart J , Lifton RP . Phosphoregulation of the Na‐K‐2Cl and K‐Cl cotransporters by the WNK kinases. Biochim Biophys Acta 1802: 1150‐1158, 2010.
 144. Karniski LP , Lotscher M , Fucentese M , Hilfiker H , Biber J , Murer H . Immunolocalization of sat‐1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney. Am J Physiol 275: F79‐F87, 1998.
 145. Kato A , Romero MF . Regulation of electroneutral NaCl absorption by the small intestine. Annu Rev Physiol 73: 261‐281, 2011.
 146. Kaunitz JD , Akiba Y . Duodenal intracellular bicarbonate and the ‘CF paradox’. JOP 2: 268‐273, 2001.
 147. Keely S , Kelly CJ , Weissmueller T , Burgess A , Wagner BD , Robertson CE , Harris JK , Colgan SP . Activated fluid transport regulates bacterial‐epithelial interactions and significantly shifts the murine colonic microbiome. Gut microbes 3: 250‐260, 2012.
 148. Kelly T , Buxbaum J . Gastrointestinal manifestations of cystic fibrosis. Dig Dis Sci 60: 1903‐1913, 2015.
 149. Kere J , Sistonen P , Holmberg C , de la Chapelle A . The gene for congenital chloride diarrhea maps close to but is distinct from the gene for cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A 90: 10686‐10689, 1993.
 150. Kim HM , Wangemann P . Failure of fluid absorption in the endolymphatic sac initiates cochlear enlargement that leads to deafness in mice lacking pendrin expression. PloS one 5: e14041, 2010.
 151. Kim KH , Shcheynikov N , Wang Y , Muallem S . SLC26A7 is a Cl‐ channel regulated by intracellular pH. J Biol Chem 280: 6463‐6470, 2005.
 152. Kim KX , Sanneman JD , Kim HM , Harbidge DG , Xu J , Soleimani M , Wangemann P , Marcus DC . Slc26a7 chloride channel activity localization in mouse Reissner's membrane epithelium. PloS one 9: e97191, 2014.
 153. Kini A , Basic M , Singh AK , Riederer B , Römermann D , Suerbaum S , Bleich A , Strowig T , Seidler U . Slc26a3 (DRA) deficient mice display an acidic colonic pH-microclimate, develop a strongly altered microbiome and colonic inflammation. FASEB 32: 747.1, 2018.
 154. Knauf F , Ko N , Jiang Z , Robertson WG , Van Itallie CM , Anderson JM , Aronson PS . Net intestinal transport of oxalate reflects passive absorption and SLC26A6‐mediated secretion. J Am Soc Nephrol 22: 2247‐2255, 2011.
 155. Knauf F , Thomson RB , Heneghan JF , Jiang Z , Adebamiro A , Thomson CL , Barone C , Asplin JR , Egan ME , Alper SL , Aronson PS . Loss of cystic fibrosis transmembrane regulator impairs intestinal oxalate secretion. J Am Soc Nephrol 28: 242‐249, 2017.
 156. Knauf F , Yang CL , Thomson RB , Mentone SA , Giebisch G , Aronson PS . Identification of a chloride‐formate exchanger expressed on the brush border membrane of renal proximal tubule cells. Proc Natl Acad Sci U S A 98: 9425‐9430, 2001.
 157. Knickelbein R , Aronson PS , Atherton W , Dobbins JW . Sodium and chloride transport across rabbit ileal brush border. I. Evidence for Na‐H exchange. Am J Physiol 245: G504‐G510, 1983.
 158. Knickelbein R , Aronson PS , Schron CM , Seifter J , Dobbins JW . Sodium and chloride transport across rabbit ileal brush border. II. Evidence for Cl‐HCO3 exchange and mechanism of coupling. Am J Physiol 249: G236‐G245, 1985.
 159. Knickelbein RG , Aronson PS , Dobbins JW . Oxalate transport by anion exchange across rabbit ileal brush border. J Clin Invest 77: 170‐175, 1986.
 160. Knickelbein RG , Dobbins JW . Sulfate and oxalate exchange for bicarbonate across the basolateral membrane of rabbit ileum. Am J Physiol 259: G807‐G813, 1990.
 161. Ko SB , Shcheynikov N , Choi JY , Luo X , Ishibashi K , Thomas PJ , Kim JY , Kim KH , Lee MG , Naruse S , Muallem S . A molecular mechanism for aberrant CFTR‐dependent HCO(3)(−) transport in cystic fibrosis. EMBO J 21: 5662‐5672, 2002.
 162. Ko SB , Zeng W , Dorwart MR , Luo X , Kim KH , Millen L , Goto H , Naruse S , Soyombo A , Thomas PJ , Muallem S . Gating of CFTR by the STAS domain of SLC26 transporters. Nat Cell Biol 6: 343‐350, 2004.
 163. Kobayashi T , Sugimoto T , Saijoh K , Fukase M , Chihara K . Cloning of mouse diastrophic dysplasia sulfate transporter gene induced during osteoblast differentiation by bone morphogenetic protein‐2. Gene 198: 341‐349, 1997.
 164. Koivula FNM , McClenaghan NH , Harper AGS , Kelly C . Islet‐intrinsic effects of CFTR mutation. Diabetologia 59: 1350‐1355, 2016.
 165. Kontoyiannis D , Pasparakis M , Pizarro TT , Cominelli F , Kollias G . Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU‐rich elements: Implications for joint and gut‐associated immunopathologies. Immunity 10: 387‐398, 1999.
 166. Kosiek O , Busque SM , Foller M , Shcheynikov N , Kirchhoff P , Bleich M , Muallem S , Geibel JP . SLC26A7 can function as a chloride‐loading mechanism in parietal cells. Pflugers Arch 454: 989‐998, 2007.
 167. Krick W , Schnedler N , Burckhardt G , Burckhardt BC . Ability of sat‐1 to transport sulfate, bicarbonate, or oxalate under physiological conditions. Am J Physiol Renal Physiol 297: F145‐F154, 2009.
 168. Krishnan D , Liu L , Wiebe SA , Casey JR , Cordat E , Alexander RT . Carbonic anhydrase II binds to and increases the activity of the epithelial sodium‐proton exchanger, NHE3. Am J Physiol Renal Physiol 309: F383‐F392, 2015.
 169. Kujala M , Hihnala S , Tienari J , Kaunisto K , Hastbacka J , Holmberg C , Kere J , Hoglund P . Expression of ion transport‐associated proteins in human efferent and epididymal ducts. Reproduction 133: 775‐784, 2007.
 170. Kujala M , Tienari J , Lohi H , Elomaa O , Sariola H , Lehtonen E , Kere J . SLC26A6 and SLC26A7 anion exchangers have a distinct distribution in human kidney. Nephron Exp Nephrol 101: e50‐e58, 2005.
 171. Kumar A , Anbazhagan AN , Coffing H , Chatterjee I , Priyamvada S , Gujral T , Saksena S , Gill RK , Alrefai WA , Borthakur A , Dudeja PK . Lactobacillus acidophilus counteracts inhibition of NHE3 and DRA expression and alleviates diarrheal phenotype in mice infected with Citrobacter rodentium. Am J Physiol Gastrointest Liver Physiol 311: G817‐g826, 2016.
 172. Kumar A , Chatterjee I , Gujral T , Alakkam A , Coffing H , Anbazhagan AN , Borthakur A , Saksena S , Gill RK , Alrefai WA , Dudeja PK . Activation of nuclear factor‐kappaB by tumor necrosis factor in intestinal epithelial cells and mouse intestinal epithelia reduces expression of the chloride transporter SLC26A3. Gastroenterology 153: 1338‐1350.e1333, 2017.
 173. Kumar A , Hecht C , Priyamvada S , Anbazhagan AN , Alakkam A , Borthakur A , Alrefai WA , Gill RK , Dudeja PK . Probiotic Bifidobacterium species stimulate human SLC26A3 gene function and expression in intestinal epithelial cells. Am J Physiol 307: C1084‐C1092, 2014.
 174. Kumar R , Ghoshal UC , Singh G , Mittal RD . Infrequency of colonization with Oxalobacter formigenes in inflammatory bowel disease: Possible role in renal stone formation. J Gastroenterol Hepatol 19: 1403‐1409, 2004.
 175. Kunzelmann K , Mall M . Electrolyte transport in the mammalian colon: Mechanisms and implications for disease. Physiol Rev 82: 245‐289, 2002.
 176. Kunzelmann K , Schreiber R , Hadorn HB . Bicarbonate in cystic fibrosis. J Cyst Fibros 16: 653‐662, 2017.
 177. Lamprecht G , Baisch S , Schoenleber E , Gregor M . Transport properties of the human intestinal anion exchanger DRA (down‐regulated in adenoma) in transfected HEK293 cells. Pflugers Arch 449: 479‐490, 2005.
 178. Lamprecht G , Heil A , Baisch S , Lin‐Wu E , Yun CC , Kalbacher H , Gregor M , Seidler U . The down regulated in adenoma (dra) gene product binds to the second PDZ domain of the NHE3 kinase A regulatory protein (E3KARP), potentially linking intestinal Cl‐/HCO3‐ exchange to Na+/H+ exchange. Biochemistry 41: 12336‐12342, 2002.
 179. Lamprecht G , Hsieh CJ , Lissner S , Nold L , Heil A , Gaco V , Schafer J , Turner JR , Gregor M . Intestinal anion exchanger down‐regulated in adenoma (DRA) is inhibited by intracellular calcium. J Biol Chem 284: 19744‐19753, 2009.
 180. Lamprecht G , Seidler U . The emerging role of PDZ adapter proteins for regulation of intestinal ion transport. Am J Physiol Gastrointest Liver Physiol 291: G766‐G777, 2006.
 181. LaRusch J , Jung J , General IJ , Lewis MD , Park HW , Brand RE , Gelrud A , Anderson MA , Banks PA , Conwell D , Lawrence C , Romagnuolo J , Baillie J , Alkaade S , Cote G , Gardner TB , Amann ST , Slivka A , Sandhu B , Aloe A , Kienholz ML , Yadav D , Barmada MM , Bahar I , Lee MG , Whitcomb DC . Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis. PLoS genet 10: e1004376, 2014.
 182. Launiala K , Perheentupa J , Pasternack A , Hallman N . Familial chloride diarrhea‐chloride malabsorption. Bibl Paediatr 87: 137‐149, 1968.
 183. Lechner S , Ruemmele FM , Zankl A , Lausch E , Huber WD , Mihatsch W , Phillips AD , Lewindon P , Querfeld U , Heinz‐Erian P , Muller T , Janecke AR . Significance of molecular testing for congenital chloride diarrhea. J Pediatr Gastroenterol Nutr 53: 48‐54, 2011.
 184. Lee A , Beck L , Markovich D . The mouse sulfate anion transporter gene Sat1 (Slc26a1): Cloning, tissue distribution, gene structure, functional characterization, and transcriptional regulation thyroid hormone. DNA Cell Biol 22: 19‐31, 2003.
 185. Lee A , Dawson PA , Markovich D . NaSi‐1 and Sat‐1: structure, function and transcriptional regulation of two genes encoding renal proximal tubular sulfate transporters. Int J Biochem Cell Biol 37: 1350‐1356, 2005.
 186. Lee HC , Forte JG . A study of H+ transport in gastric microsomal vesicles using fluorescent probes. Biochim Biophys Acta 508: 339‐356, 1978.
 187. Lee JH , Nam JH , Park J , Kang DW , Kim JY , Lee MG , Yoon JS . Regulation of SLC26A3 activity by NHERF4 PDZ‐mediated interaction. Cell Signal 24: 1821‐1830, 2012.
 188. Lee MG , Ohana E , Park HW , Yang D , Muallem S . Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev 92: 39‐74, 2012.
 189. Lee MP , Ravenel JD , Hu RJ , Lustig LR , Tomaselli G , Berger RD , Brandenburg SA , Litzi TJ , Bunton TE , Limb C , Francis H , Gorelikow M , Gu H , Washington K , Argani P , Goldenring JR , Coffey RJ , Feinberg AP . Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest 106: 1447‐1455, 2000.
 190. Lee S , Dawson PA , Hewavitharana AK , Shaw PN , Markovich D . Disruption of NaS1 sulfate transport function in mice leads to enhanced acetaminophen‐induced hepatotoxicity. Hepatology 43: 1241‐1247, 2006.
 191. Li J , Xia F , Reithmeier RA . N‐glycosylation and topology of the human SLC26 family of anion transport membrane proteins. Am J Physiol 306: C943‐C960, 2014.
 192. Li L , Somerset S . Digestive system dysfunction in cystic fibrosis: Challenges for nutrition therapy. Dig Liver Dis 46: 865‐874, 2014.
 193. Li T , Riederer B , Liu X , Pallagi P , Singh AK , Soleimani M , Seidler U . Tu1491 loss of Slc26a9 anion transporter results in reduced pancreatic fluid secretion in young female mice. Gastroenterology 150: S915, 2016.
 194. Li X , Liu Y , Alvarez BV , Casey JR , Fliegel L . A novel carbonic anhydrase II binding site regulates NHE1 activity. Biochemistry 45: 2414‐2424, 2006.
 195. Lissner S , Hsieh CJ , Nold L , Bannert K , Bodammer P , Sultan A , Seidler U , Graeve L , Lamprecht G . The PDZ‐interaction of the intestinal anion exchanger downregulated in adenoma (DRA; SLC26A3) facilitates its movement into Rab11a‐positive recycling endosomes. Am J Physiol Gastrointest Liver Physiol 304: G980‐G990, 2013.
 196. Lissner S , Nold L , Hsieh CJ , Turner JR , Gregor M , Graeve L , Lamprecht G . Activity and PI3‐kinase dependent trafficking of the intestinal anion exchanger downregulated in adenoma depend on its PDZ interaction and on lipid rafts. Am J Physiol Gastrointest Liver Physiol 299: G907‐G920, 2010.
 197. Liu J , Walker NM , Ootani A , Strubberg AM , Clarke LL . Defective goblet cell exocytosis contributes to murine cystic fibrosis‐associated intestinal disease. J Clin Invest 125: 1056‐1068, 2015.
 198. Liu X , Li T , Riederer B , Lenzen H , Ludolph L , Yeruva S , Tuo B , Soleimani M , Seidler U . Loss of Slc26a9 anion transporter alters intestinal electrolyte and HCO3(−) transport and reduces survival in CFTR‐deficient mice. Pflugers Arch 467: 1261‐1275, 2015.
 199. Lohi H , Kujala M , Kerkela E , Saarialho‐Kere U , Kestila M , Kere J . Mapping of five new putative anion transporter genes in human and characterization of SLC26A6, a candidate gene for pancreatic anion exchanger. Genomics 70: 102‐112, 2000.
 200. Lohi H , Kujala M , Makela S , Lehtonen E , Kestila M , Saarialho‐Kere U , Markovich D , Kere J . Functional characterization of three novel tissue‐specific anion exchangers SLC26A7, ‐A8, and ‐A9. J Biol Chem 277: 14246‐14254, 2002.
 201. Lohi H , Makela S , Pulkkinen K , Hoglund P , Karjalainen‐Lindsberg ML , Puolakkainen P , Kere J . Upregulation of CFTR expression but not SLC26A3 and SLC9A3 in ulcerative colitis. Am J Physiol Gastrointest Liver Physiol 283: G567‐G575, 2002.
 202. Lolli G , Pasqualetto E , Costanzi E , Bonetto G , Battistutta R . The STAS domain of mammalian SLC26A5 prestin harbours an anion‐binding site. Biochem J 473: 365‐370, 2016.
 203. Loriol C , Dulong S , Avella M , Gabillat N , Boulukos K , Borgese F , Ehrenfeld J . Characterization of SLC26A9, facilitation of Cl(−) transport by bicarbonate. Cell Physiol Biochem 22: 15‐30, 2008.
 204. Lubani MM , Doudin KI , Sharda DC , Shaltout AA , al‐Shab TS , Abdul Al YK , Said MA , Salhi MM , Ahmed SA . Congenital chloride diarrhoea in Kuwaiti children. Eur J Pediatr 148: 333‐336, 1989.
 205. Makela S , Kere J , Holmberg C , Hoglund P . SLC26A3 mutations in congenital chloride diarrhea. Hum Mutat 20: 425‐438, 2002.
 206. Malakooti J , Saksena S , Gill RK , Dudeja PK . Transcriptional regulation of the intestinal luminal Na(+) and Cl(−) transporters. Biochem J 435: 313‐325, 2011.
 207. Manoharan P , Coon S , Baseler W , Sundaram S , Kekuda R , Sundaram U . Prostaglandins, not the leukotrienes, regulate Cl(−)/HCO(3)(−) exchange (DRA, SLC26A3) in villus cells in the chronically inflamed rabbit ileum. Biochim Biophys Acta 1828: 179‐186, 2013.
 208. Markovich D . Slc13a1 and Slc26a1 KO models reveal physiological roles of anion transporters. Physiology (Bethesda, Md) 27: 7‐14, 2012.
 209. Markovich D . Na+‐sulfate cotransporter SLC13A1. Pflugers Arch 466: 131‐137, 2014.
 210. Markovich D , Aronson PS . Specificity and regulation of renal sulfate transporters. Annu Rev Physiol 69: 361‐375, 2007.
 211. Markovich D , Ku MC , Muslim D . Increased lifespan in hyposulfatemic NaS1 null mice. Exp Gerontol 46: 833‐835, 2011.
 212. Matthews LA , Doershuk CF , Stern RC , Resnick MI . Urolithiasis and cystic fibrosis. J Urol 155: 1563‐1564, 1996.
 213. Mehta M , Goldfarb DS , Nazzal L . The role of the microbiome in kidney stone formation. Int J Surg 36: 607‐612, 2016.
 214. Melvin JE , Park K , Richardson L , Schultheis PJ , Shull GE . Mouse down‐regulated in adenoma (DRA) is an intestinal Cl(−)/HCO(3)(−) exchanger and is up‐regulated in colon of mice lacking the NHE3 Na(+)/H(+) exchanger. J Biol Chem 274: 22855‐22861, 1999.
 215. Miller D , Crane RK . A procedure for the isolation of the epithelial brush border membrane of hamster small intestine. Anal Biochem 2: 284‐286, 1961.
 216. Murer H , Hopfer U , Kinne R . Sodium/proton antiport in brush‐border‐membrane vesicles isolated from rat small intestine and kidney. Biochem J 154: 597‐604, 1976.
 217. Murer H , Kinne R . The use of isolated membrane vesicles to study epithelial transport processes. J Membr Biol 55: 81‐95, 1980.
 218. Musch MW , Arvans DL , Wu GD , Chang EB . Functional coupling of the downregulated in adenoma Cl‐/base exchanger DRA and the apical Na+/H+ exchangers NHE2 and NHE3. Am J Physiol Gastrointest Liver Physiol 296: G202‐G210, 2009.
 219. Nader M , Lamprecht G , Classen M , Seidler U . Different regulation by pHi and osmolarity of the rabbit ileum brush‐border and parietal cell basolateral anion exchanger. J Physiol 481(Pt 3): 605‐615, 1994.
 220. Nakagami Y , Favoreto S, Jr. , Zhen G , Park SW , Nguyenvu LT , Kuperman DA , Dolganov GM , Huang X , Boushey HA , Avila PC , Erle DJ . The epithelial anion transporter pendrin is induced by allergy and rhinovirus infection, regulates airway surface liquid, and increases airway reactivity and inflammation in an asthma model. J Immunol 181: 2203‐2210, 2008.
 221. Nofziger C , Vezzoli V , Dossena S , Schonherr T , Studnicka J , Nofziger J , Vanoni S , Stephan S , Silva ME , Meyer G , Paulmichl M . STAT6 links IL‐4/IL‐13 stimulation with pendrin expression in asthma and chronic obstructive pulmonary disease. Clin Pharmacol Ther 90: 399‐405, 2011.
 222. Noor SI , Dietz S , Heidtmann H , Boone CD , McKenna R , Deitmer JW , Becker HM . Analysis of the binding moiety mediating the interaction between monocarboxylate transporters and carbonic anhydrase II. J Biol Chem 290: 4476‐4486, 2015.
 223. Novak I , Greger R . Properties of the luminal membrane of isolated perfused rat pancreatic ducts. Effect of cyclic AMP and blockers of chloride transport. Pflugers Arch 411: 546‐553, 1988.
 224. Ntimbane T , Mailhot G , Spahis S , Rabasa‐Lhoret R , Kleme ML , Melloul D , Brochiero E , Berthiaume Y , Levy E . CFTR silencing in pancreatic beta‐cells reveals a functional impact on glucose‐stimulated insulin secretion and oxidative stress response. Am J Physiol Endocrinol Metab 310: E200‐E212, 2016.
 225. Nugent SG , Kumar D , Rampton DS , Evans DF . Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut 48: 571‐577, 2001.
 226. Odes HS , Smirnoff P , Guberman R , Pollak‐Charcon S , Sperber AD , Fich A , Fraser GM , Schwartz B . Cystic fibrosis transmembrane conductance regulator and Na+ channel subunits mRNA transcripts, and Cl− efflux, show a different distribution in rat duodenum and colon. Acta Physiol Scand 178: 231‐240, 2003.
 227. Ohana E , Shcheynikov N , Park M , Muallem S . Solute carrier family 26 member a2 (Slc26a2) protein functions as an electroneutral SO(4)(2−)/OH(−)/Cl(−) exchanger regulated by extracellular Cl(−). J Biol Chem 287: 5122‐5132, 2012.
 228. Ohana E , Yang D , Shcheynikov N , Muallem S . Diverse transport modes by the solute carrier 26 family of anion transporters. J Physiol 587: 2179‐2185, 2009.
 229. Okada Y , Ueda S . Electrical membrane responses to secretagogues in parietal cells of the rat gastric mucosa in culture. J Physiol 354: 109‐119, 1984.
 230. Ooi CY , Durie PR . Cystic fibrosis from the gastroenterologist's perspective. Nat Rev Gastroenterol Hepatol 13: 175‐185, 2016.
 231. Ousingsawat J , Schreiber R , Kunzelmann K . Differential contribution of SLC26A9 to Cl(−) conductance in polarized and non‐polarized epithelial cells. J Cell Physiol 227: 2323‐2329, 2012.
 232. Pallagi P , Hegyi P , Rakonczay Z, Jr. The physiology and pathophysiology of pancreatic ductal secretion: The background for clinicians. Pancreas 44: 1211‐1233, 2015.
 233. Park HW , Nam JH , Kim JY , Namkung W , Yoon JS , Lee JS , Kim KS , Venglovecz V , Gray MA , Kim KH , Lee MG . Dynamic regulation of CFTR bicarbonate permeability by [Cl‐]i and its role in pancreatic bicarbonate secretion. Gastroenterology 139: 620‐631, 2010.
 234. Park M , Ohana E , Choi SY , Lee MS , Park JH , Muallem S . Multiple roles of the SO4(2‐)/Cl‐/OH‐ exchanger protein Slc26a2 in chondrocyte functions. J Biol Chem 289: 1993‐2001, 2014.
 235. Pasqualetto E , Aiello R , Gesiot L , Bonetto G , Bellanda M , Battistutta R . Structure of the cytosolic portion of the motor protein prestin and functional role of the STAS domain in SLC26/SulP anion transporters. J Mol Biol 400: 448‐462, 2010.
 236. Pedemonte N , Caci E , Sondo E , Caputo A , Rhoden K , Pfeffer U , Di Candia M , Bandettini R , Ravazzolo R , Zegarra‐Moran O , Galietta LJ . Thiocyanate transport in resting and IL‐4‐stimulated human bronchial epithelial cells: Role of pendrin and anion channels. J Immunol 178: 5144‐5153, 2007.
 237. Petrovic S , Ma L , Wang Z , Soleimani M . Identification of an apical Cl‐/HCO‐3 exchanger in rat kidney proximal tubule. Am J Physiol 285: C608‐C617, 2003.
 238. Petrovic S , Wang Z , Ma L , Seidler U , Forte JG , Shull GE , Soleimani M . Colocalization of the apical Cl‐/HCO3‐ exchanger PAT1 and gastric H‐K‐ATPase in stomach parietal cells. Am J Physiol Gastrointest Liver Physiol 283: G1207‐G1216, 2002.
 239. Pezzulo AA , Tang XX , Hoegger MJ , Abou Alaiwa MH , Ramachandran S , Moninger TO , Karp PH , Wohlford‐Lenane CL , Haagsman HP , van Eijk M , Banfi B , Horswill AR , Stoltz DA , McCray PB, Jr. , Welsh MJ , Zabner J . Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 487: 109‐113, 2012.
 240. Pierucci‐Alves F , Akoyev V , Schultz BD . Bicarbonate exchangers SLC26A3 and SLC26A6 are localized at the apical membrane of porcine vas deferens epithelium. Physiological Reports 3: e12380, 2015.
 241. Pierucci‐Alves F , Akoyev V , Stewart JC, III , Wang LH , Janardhan KS , Schultz BD . Swine models of cystic fibrosis reveal male reproductive tract phenotype at birth. Biol Reprod 85: 442‐451, 2011.
 242. Pihl L , Sjoblom M , Seidler U , Sedin J , Nylander O . Motility‐induced but not vasoactive intestinal peptide‐induced increase in luminal alkalinization in rat duodenum is dependent on luminal Cl(−). Acta Physiol (Oxf) 200: 181‐191, 2010.
 243. Pletz MW , Sauer‐Heilborn A , Kohnlein T , Seidler U , Lamprecht G . [Cystic fibrosis in adults]. Internist (Berl) 51(Suppl 1): 277‐288, 2010.
 244. Poulsen JH , Fischer H , Illek B , Machen TE . Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A 91: 5340‐5344, 1994.
 245. Praetorius J , Hager H , Nielsen S , Aalkjaer C , Friis UG , Ainsworth MA , Johansen T . Molecular and functional evidence for electrogenic and electroneutral Na(+)‐HCO(3)(−) cotransporters in murine duodenum. Am J Physiol Gastrointest Liver Physiol 280: G332‐G343, 2001.
 246. Pratha VS , Hogan DL , Martensson BA , Bernard J , Zhou R , Isenberg JI . Identification of transport abnormalities in duodenal mucosa and duodenal enterocytes from patients with cystic fibrosis. Gastroenterology 118: 1051‐1060, 2000.
 247. Priyamvada S , Anbazhagan AN , Gujral T , Borthakur A , Saksena S , Gill RK , Alrefai WA , Dudeja PK . All‐trans‐retinoic acid increases SLC26A3 DRA (down‐regulated in adenoma) expression in intestinal epithelial cells via HNF‐1beta. J Biol Chem 290: 15066‐15077, 2015.
 248. Quinton PM . Role of epithelial HCO3(−) transport in mucin secretion: Lessons from cystic fibrosis. Am J Physiol 299: C1222‐C1233, 2010.
 249. Quondamatteo F , Krick W , Hagos Y , Kruger MH , Neubauer‐Saile K , Herken R , Ramadori G , Burckhardt G , Burckhardt BC . Localization of the sulfate/anion exchanger in the rat liver. Am J Physiol Gastrointest Liver Physiol 290: G1075‐G1081, 2006.
 250. Raheja G , Singh V , Ma K , Boumendjel R , Borthakur A , Gill RK , Saksena S , Alrefai WA , Ramaswamy K , Dudeja PK . Lactobacillus acidophilus stimulates the expression of SLC26A3 via a transcriptional mechanism. Am J Physiol Gastrointest Liver Physiol 298: G395‐G401, 2010.
 251. Rahmati N , Kunzelmann K , Xu J , Barone S , Sirianant L , De Zeeuw CI , Soleimani M . Slc26a11 is prominently expressed in the brain and functions as a chloride channel: Expression in Purkinje cells and stimulation of V H(+)‐ATPase. Pflugers Arch 465: 1583‐1597, 2013.
 252. Rajendran VM , Schulzke J‐D , Seidler UE . Chapter 58 - Ion channels of the gastrointestinal epithelial cells. In: Said HM, editor. Physiology of the Gastrointestinal Tract (Sixth Edition). Academic Press, 2018, pp. 1363‐1404.
 253. Rapp C , Bai X , Reithmeier RAF . Molecular analysis of human solute carrier SLC26 anion transporter disease‐causing mutations using 3‐dimensional homology modeling. Biochim Biophys Acta Biomembr 1859: 2420‐2434, 2017.
 254. Regeer RR , Lee A , Markovich D . Characterization of the human sulfate anion transporter (hsat‐1) protein and gene (SAT1; SLC26A1). DNA Cell Biol 22: 107‐117, 2003.
 255. Reiner J , Hsieh CJ , Straarup C , Bodammer P , Schaffler H , Graepler F , Stuker D , Kratt T , Linnebacher M , Nadalin S , Witte M , Konigsrainer A , Lamprecht G . After intestinal transplantation kidney function is impaired by downregulation of epithelial ion transporters in the ileum. Transplant Proc 48: 499‐506, 2016.
 256. Reynolds A , Parris A , Evans LA , Lindqvist S , Sharp P , Lewis M , Tighe R , Williams MR . Dynamic and differential regulation of NKCC1 by calcium and cAMP in the native human colonic epithelium. J Physiol 582: 507‐524, 2007.
 257. Romanenko VG , Nakamoto T , Catalan MA , Gonzalez‐Begne M , Schwartz GJ , Jaramillo Y , Sepulveda FV , Figueroa CD , Melvin JE . Clcn2 encodes the hyperpolarization‐activated chloride channel in the ducts of mouse salivary glands. Am J Physiol Gastrointest Liver Physiol 295: G1058‐G1067, 2008.
 258. Rossmann H , Jacob P , Baisch S , Hassoun R , Meier J , Natour D , Yahya K , Yun C , Biber J , Lackner KJ , Fiehn W , Gregor M , Seidler U , Lamprecht G . The CFTR associated protein CAP70 interacts with the apical Cl‐/HCO3‐ exchanger DRA in rabbit small intestinal mucosa. Biochemistry 44: 4477‐4487, 2005.
 259. Rowe SM , Heltshe SL , Gonska T , Donaldson SH , Borowitz D , Gelfond D , Sagel SD , Khan U , Mayer‐Hamblett N , Van Dalfsen JM , Joseloff E , Ramsey BW . Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D‐mediated cystic fibrosis. Am J Respir Crit Care Med 190: 175‐184, 2014.
 260. Rungta RL , Choi HB , Tyson JR , Malik A , Dissing‐Olesen L , Lin PJC , Cain SM , Cullis PR , Snutch TP , MacVicar BA . The cellular mechanisms of neuronal swelling underlying cytotoxic edema. Cell 161: 610‐621, 2015.
 261. Sagawa K , Darling IM , Murer H , Morris ME . Glucocorticoid‐induced alterations of renal sulfate transport. J Pharmacol Exp Ther 294: 658‐663, 2000.
 262. Saint‐Criq V , Gray MA . Role of CFTR in epithelial physiology. Cell Mol Life Sci 74: 93‐115, 2017.
 263. Saitou M , Furuse M , Sasaki H , Schulzke J‐D , Fromm M , Takano H , Noda T , Tsukita S . Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11: 4131‐4142, 2000.
 264. Sakai H , Kumano E , Ikari S , Takeguchi N . A gastric housekeeping Cl− channel activated via prostaglandin EP3 receptor‐mediated Ca2+/nitric oxide/cGMP pathway. J Biol Chem 270: 18781‐18785, 1995.
 265. Saksena S , Dwivedi A , Singla A , Gill RK , Tyagi S , Borthakur A , Alrefai WA , Ramaswamy K , Dudeja PK . Characterization of the 5′‐flanking region and regulation of expression of human anion exchanger SLC26A6. J Cell Biochem 105: 454‐466, 2008.
 266. Saksena S , Gill RK , Syed IA , Tyagi S , Alrefai WA , Ramaswamy K , Dudeja PK . Modulation of Cl‐/OH‐ exchange activity in Caco‐2 cells by nitric oxide. Am J Physiol Gastrointest Liver Physiol 283: G626‐G633, 2002.
 267. Saksena S , Singla A , Goyal S , Katyal S , Bansal N , Gill RK , Alrefai WA , Ramaswamy K , Dudeja PK . Mechanisms of transcriptional modulation of the human anion exchanger SLC26A3 gene expression by IFN‐{gamma}. Am J Physiol Gastrointest Liver Physiol 298: G159‐G166, 2010.
 268. Sala‐Rabanal M , Yurtsever Z , Berry KN , Brett TJ . Novel roles for chloride channels, exchangers, and regulators in chronic inflammatory airway diseases. Mediators Inflamm 2015: 497387, 2015.
 269. Satoh H , Susaki M , Shukunami C , Iyama K , Negoro T , Hiraki Y . Functional analysis of diastrophic dysplasia sulfate transporter. Its involvement in growth regulation of chondrocytes mediated by sulfated proteoglycans. J Biol Chem 273: 12307‐12315, 1998.
 270. Sauvanet C , Wayt J , Pelaseyed T , Bretscher A . Structure, regulation, and functional diversity of microvilli on the apical domain of epithelial cells. Annu Rev Cell Dev Biol 31: 593‐621, 2015.
 271. Schron CM , Knickelbein RG , Aronson PS , Della Puca J , Dobbins JW . pH gradient‐stimulated sulfate transport by rabbit ileal brush‐border membrane vesicles: evidence for SO4‐OH exchange. Am J Physiol 249: G607‐G613, 1985.
 272. Schron CM , Knickelbein RG , Aronson PS , Dobbins JW . Evidence for carrier‐mediated Cl‐SO4 exchange in rabbit ileal basolateral membrane vesicles. Am J Physiol 253: G404‐G410, 1987.
 273. Schultheis PJ , Clarke LL , Meneton P , Miller ML , Soleimani M , Gawenis LR , Riddle TM , Duffy JJ , Doetschman T , Wang T , Giebisch G , Aronson PS , Lorenz JN , Shull GE . Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet 19: 282‐285, 1998.
 274. Schulzke JD , Gitter AH , Mankertz J , Spiegel S , Seidler U , Amasheh S , Saitou M , Tsukita S , Fromm M . Epithelial transport and barrier function in occludin‐deficient mice. Biochim Biophys Acta 1669: 34‐42, 2005.
 275. Schweinfest CW , Henderson KW , Suster S , Kondoh N , Papas TS . Identification of a colon mucosa gene that is down‐regulated in colon adenomas and adenocarcinomas. Proc Natl Acad Sci U S A 90: 4166‐4170, 1993.
 276. Schweinfest CW , Spyropoulos DD , Henderson KW , Kim JH , Chapman JM , Barone S , Worrell RT , Wang Z , Soleimani M . slc26a3 (dra)‐deficient mice display chloride‐losing diarrhea, enhanced colonic proliferation, and distinct up‐regulation of ion transporters in the colon. J Biol Chem 281: 37962‐37971, 2006.
 277. Seidler U , Blumenstein I , Kretz A , Viellard‐Baron D , Rossmann H , Colledge WH , Evans M , Ratcliff R , Gregor M . A functional CFTR protein is required for mouse intestinal cAMP‐, cGMP‐ and Ca(2+)‐dependent HCO3‐ secretion. J Physiol 505(Pt 2): 411‐423, 1997.
 278. Seidler U , Rottinghaus I , Hillesheim J , Chen M , Riederer B , Krabbenhoft A , Engelhardt R , Wiemann M , Wang Z , Barone S , Manns MP , Soleimani M . Sodium and chloride absorptive defects in the small intestine in Slc26a6 null mice. Pflugers Arch 455: 757‐766, 2008.
 279. Seidler U , Singh AK , Cinar A , Chen M , Hillesheim J , Hogema B , Riederer B . The role of the NHERF family of PDZ scaffolding proteins in the regulation of salt and water transport. Ann N Y Acad Sci 1165: 249‐260, 2009.
 280. Seidler UE . Gastrointestinal HCO3‐ transport and epithelial protection in the gut: new techniques, transport pathways and regulatory pathways. Curr Opin Pharmacol 13: 900‐908, 2013.
 281. Shao X , Min X , Xia X , Lin X , Jiang L , Ding R , Jiang Y . [Association of solute‐linked carrier family 26 member A3 gene polymorphisms with ulcerative colitis among Chinese patients]. Zhonghua yi xue yi chuan xue za zhi 34: 255‐260, 2017.
 282. Sharma AK , Rigby AC , Alper SL . STAS domain structure and function. Cell Physiol Biochem 28: 407‐422, 2011.
 283. Sharma AK , Ye L , Baer CE , Shanmugasundaram K , Alber T , Alper SL , Rigby AC . Solution structure of the guanine nucleotide‐binding STAS domain of SLC26‐related SulP protein Rv1739c from Mycobacterium tuberculosis. J Biol Chem 286: 8534‐8544, 2011.
 284. Sharma AK , Zelikovic I , Alper SL . Molecular dynamics simulations of the STAS domains of rat prestin and human pendrin reveal conformational motions in conserved flexible regions. Cell Physiol Biochem 33: 605‐620, 2014.
 285. Shcheynikov N , Ko SB , Zeng W , Choi JY , Dorwart MR , Thomas PJ , Muallem S . Regulatory interaction between CFTR and the SLC26 transporters. Novartis Found Symp 273: 177‐186; discussion 186‐192, 261‐174, 2006.
 286. Shcheynikov N , Wang Y , Park M , Ko SB , Dorwart M , Naruse S , Thomas PJ , Muallem S . Coupling modes and stoichiometry of Cl‐/HCO3‐ exchange by slc26a3 and slc26a6. J Gen Physiol 127: 511‐524, 2006.
 287. Shcheynikov N , Yang D , Wang Y , Zeng W , Karniski LP , So I , Wall SM , Muallem S . The Slc26a4 transporter functions as an electroneutral Cl‐/I‐/HCO3‐ exchanger: Role of Slc26a4 and Slc26a6 in I‐ and HCO3‐ secretion and in regulation of CFTR in the parotid duct. J Physiol 586: 3813‐3824, 2008.
 288. Sheffield VC , Kraiem Z , Beck JC , Nishimura D , Stone EM , Salameh M , Sadeh O , Glaser B . Pendred syndrome maps to chromosome 7q21‐34 and is caused by an intrinsic defect in thyroid iodine organification. Nat Genet 12: 424‐426, 1996.
 289. Shelden MC , Howitt SM , Price GD . Membrane topology of the cyanobacterial bicarbonate transporter, BicA, a member of the SulP (SLC26A) family. Mol Membr Biol 27: 12‐22, 2010.
 290. Shull GE , Miller ML , Schultheis PJ . Lessons from genetically engineered animal models VIII. Absorption and secretion of ions in the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 278: G185‐G190, 2000.
 291. Shwachman H . Gastrointestinal manifestations of cystic fibrosis. Pediatr Clin North Am 22: 787‐805, 1975.
 292. Sidhu H , Hoppe B , Hesse A , Tenbrock K , Bromme S , Rietschel E , Peck AB . Absence of Oxalobacter formigenes in cystic fibrosis patients: A risk factor for hyperoxaluria. Lancet 352: 1026‐1029, 1998.
 293. Silberg DG , Wang W , Moseley RH , Traber PG . The Down regulated in Adenoma (dra) gene encodes an intestine‐specific membrane sulfate transport protein. J Biol Chem 270: 11897‐11902, 1995.
 294. Simmons DG , Rakoczy J , Jefferis J , Lourie R , McIntyre HD , Dawson PA . Human placental sulfate transporter mRNA profiling from term pregnancies identifies abundant SLC13A4 in syncytiotrophoblasts and SLC26A2 in cytotrophoblasts. Placenta 34: 381‐384, 2013.
 295. Simpson JE , Gawenis LR , Walker NM , Boyle KT , Clarke LL . Chloride conductance of CFTR facilitates basal Cl‐/HCO3‐ exchange in the villous epithelium of intact murine duodenum. Am J Physiol Gastrointest Liver Physiol 288: G1241‐G1251, 2005.
 296. Simpson JE , Schweinfest CW , Shull GE , Gawenis LR , Walker NM , Boyle KT , Soleimani M , Clarke LL . PAT‐1 (Slc26a6) is the predominant apical membrane Cl‐/HCO3‐ exchanger in the upper villous epithelium of the murine duodenum. Am J Physiol Gastrointest Liver Physiol 292: G1079‐G1088, 2007.
 297. Simpson JE , Walker NM , Supuran CT , Soleimani M , Clarke LL . Putative anion transporter‐1 (Pat‐1, Slc26a6) contributes to intracellular pH regulation during H+‐dipeptide transport in duodenal villous epithelium. Am J Physiol Gastrointest Liver Physiol 298: G683‐G691, 2010.
 298. Sindic A , Chang MH , Mount DB , Romero MF . Renal physiology of SLC26 anion exchangers. Curr Opin Nephrol Hypertens 16: 484‐490, 2007.
 299. Singh AK , Amlal H , Haas PJ , Dringenberg U , Fussell S , Barone SL , Engelhardt R , Zuo J , Seidler U , Soleimani M . Fructose‐induced hypertension: Essential role of chloride and fructose absorbing transporters PAT1 and Glut5. Kidney Int 74: 438‐447, 2008.
 300. Singh AK , Liu Y , Riederer B , Engelhardt R , Thakur BK , Soleimani M , Seidler U . Molecular transport machinery involved in orchestrating luminal acid‐induced duodenal bicarbonate secretion in vivo. J Physiol 591: 5377‐5391, 2013.
 301. Singh AK , Riederer B , Chen M , Xiao F , Krabbenhoft A , Engelhardt R , Nylander O , Soleimani M , Seidler U . The switch of intestinal Slc26 exchangers from anion absorptive to HCOFormula secretory mode is dependent on CFTR anion channel function. Am J Physiol 298: C1057‐C1065, 2010.
 302. Singh AK , Sjoblom M , Zheng W , Krabbenhoft A , Riederer B , Rausch B , Manns MP , Soleimani M , Seidler U . CFTR and its key role in in vivo resting and luminal acid‐induced duodenal HCO3‐ secretion. Acta Physiol (Oxf) 193: 357‐365, 2008.
 303. Singla A , Dwivedi A , Saksena S , Gill RK , Alrefai WA , Ramaswamy K , Dudeja PK . Mechanisms of lysophosphatidic acid (LPA) mediated stimulation of intestinal apical Cl‐/OH‐ exchange. Am J Physiol Gastrointest Liver Physiol 298: G182‐G189, 2010.
 304. Singla A , Kumar A , Priyamvada S , Tahniyath M , Saksena S , Gill RK , Alrefai WA , Dudeja PK . LPA stimulates intestinal DRA gene transcription via LPA2 receptor, PI3K/AKT, and c‐Fos‐dependent pathway. Am J Physiol Gastrointest Liver Physiol 302: G618‐G627, 2012.
 305. Soave D , Miller MR , Keenan K , Li W , Gong J , Ip W , Accurso F , Sun L , Rommens JM , Sontag M , Durie PR , Strug LJ . Evidence for a causal relationship between early exocrine pancreatic disease and cystic fibrosis‐related diabetes: A Mendelian randomization study. Diabetes 63: 2114‐2119, 2014.
 306. Soleimani M . Expression, regulation and the role of SLC26 Cl‐/HCO3‐ exchangers in kidney and gastrointestinal tract. Novartis Found Symp 273: 91‐102; discussion 103‐106, 261‐104, 2006.
 307. Soleimani M . SLC26 Cl‐/HCO3‐ exchangers in the kidney: roles in health and disease. Kidney Int 84: 657‐666, 2013.
 308. Soleimani M . The multiple roles of pendrin in the kidney. Nephrol Dial Transplant 30: 1257‐1266, 2015.
 309. Sommansson A , Wan Saudi WS , Nylander O , Sjöblom M . The ethanol‐induced stimulation of rat duodenal mucosal bicarbonate Secretion in vivo is critically dependent on luminal Cl–. PloS one 9: e102654, 2014.
 310. Song P , Groos S , Riederer B , Feng Z , Krabbenhoft A , Smolka A , Seidler U . KCNQ1 is the luminal K+ recycling channel during stimulation of gastric acid secretion. J Physiol 587: 3955‐3965, 2009.
 311. Speck K , Charles A . Distal intestinal obstructive syndrome in adults with cystic fibrosis: A surgical perspective. Arch Surg 143: 601‐603, 2008.
 312. Spiegel S , Phillipper M , Rossmann H , Riederer B , Gregor M , Seidler U . Independence of apical Cl‐/HCO3‐ exchange and anion conductance in duodenal HCO3‐ secretion. Am J Physiol Gastrointest Liver Physiol 285: G887‐G897, 2003.
 313. Stauffer JQ . Hyperoxaluria and calcium oxalate nephrolithiasis after jejunoileal bypass. Am J Clin Nutr 30: 64‐71, 1977.
 314. Sterling D , Reithmeier RA , Casey JR . A transport metabolon. Functional interaction of carbonic anhydrase II and chloride/bicarbonate exchangers. J Biol Chem 276: 47886‐47894, 2001.
 315. Stewart AK , Shmukler BE , Vandorpe DH , Reimold F , Heneghan JF , Nakakuki M , Akhavein A , Ko S , Ishiguro H , Alper SL . SLC26 anion exchangers of guinea pig pancreatic duct: Molecular cloning and functional characterization. Am J Physiol 301: C289‐C303, 2011.
 316. Stewart AK , Yamamoto A , Nakakuki M , Kondo T , Alper SL , Ishiguro H . Functional coupling of apical Cl‐/HCO3‐ exchange with CFTR in stimulated HCO3‐ secretion by guinea pig interlobular pancreatic duct. Am J Physiol Gastrointest Liver Physiol 296: G1307‐G1317, 2009.
 317. Strong TV , Boehm K , Collins FS . Localization of cystic fibrosis transmembrane conductance regulator mRNA in the human gastrointestinal tract by in situ hybridization. J Clin Invest 93: 347‐354, 1994.
 318. Strubberg AM , Liu J , Walker NM , Stefanski CD , MacLeod RJ , Magness ST , Clarke LL . Cftr modulates Wnt/β‐catenin signaling and stem cell proliferation in murine intestine. Cell Mol Gastroenterol Hepatol 5: 253‐271, 2018.
 319. Sun L , Rommens JM , Corvol H , Li W , Li X , Chiang TA , Lin F , Dorfman R , Busson PF , Parekh RV , Zelenika D , Blackman SM , Corey M , Doshi VK , Henderson L , Naughton KM , O'Neal WK , Pace RG , Stonebraker JR , Wood SD , Wright FA , Zielenski J , Clement A , Drumm ML , Boelle PY , Cutting GR , Knowles MR , Durie PR , Strug LJ . Multiple apical plasma membrane constituents are associated with susceptibility to meconium ileus in individuals with cystic fibrosis. Nat Genet 44: 562‐569, 2012.
 320. Sun X , Yi Y , Xie W , Liang B , Winter MC , He N , Liu X , Luo M , Yang Y , Ode KL , Uc A , Norris AW , Engelhardt JF . CFTR influences beta cell function and insulin secretion through non‐cell autonomous exocrine‐derived factors. Endocrinology 158: 3325‐3338, 2017.
 321. Sundaram U , West AB . Effect of chronic inflammation on electrolyte transport in rabbit ileal villus and crypt cells. Am J Physiol 272: G732‐G741, 1997.
 322. Takeuchi K . Prostaglandin EP receptors and their roles in mucosal protection and ulcer healing in the gastrointestinal tract. Adv Clin Chem 51: 121‐144, 2010.
 323. Talbot C , Lytle C . Segregation of Na/H exchanger‐3 and Cl/HCO3 exchanger SLC26A3 (DRA) in rodent cecum and colon. Am J Physiol Gastrointest Liver Physiol 299: G358‐G367, 2010.
 324. Tandon M , Perez P , Burbelo PD , Calkins C , Alevizos I . Laser microdissection coupled with RNA‐seq reveal cell‐type and disease‐specific markers in the salivary gland of Sjogren's syndrome patients. Clin Exp Rheumatol 35: 777‐785, 2017.
 325. Taylor CJ , Baxter PS , Hardcastle J , Hardcastle PT . Failure to induce secretion in jejunal biopsies from children with cystic fibrosis. Gut 29: 957‐962, 1988.
 326. Teune TM , Timmers‐Reker AJ , Bouquet J , Bijman J , De Jonge HR , Sinaasappel M . In vivo measurement of chloride and water secretion in the jejunum of cystic fibrosis patients. Pediatr Res 40: 522‐527, 1996.
 327. Thiagarajah JR , Verkman AS . CFTR pharmacology and its role in intestinal fluid secretion. Curr Opin Pharmacol 3: 594‐599, 2003.
 328. Thomas HA , Machen TE . Regulation of Cl/HCO3 exchange in gastric parietal cells. Cell regul 2: 727‐737, 1991.
 329. Thomson RB , Thomson CL , Aronson PS . N‐glycosylation critically regulates function of oxalate transporter SLC26A6. Am J Physiol 311: C866‐C873, 2016.
 330. Toure A , Morin L , Pineau C , Becq F , Dorseuil O , Gacon G . Tat1, a novel sulfate transporter specifically expressed in human male germ cells and potentially linked to rhogtpase signaling. J Biol Chem 276: 20309‐20315, 2001.
 331. Tuo B , Riederer B , Wang Z , Colledge WH , Soleimani M , Seidler U . Involvement of the anion exchanger SLC26A6 in prostaglandin E2‐ but not forskolin‐stimulated duodenal HCO3‐ secretion. Gastroenterology 130: 349‐358, 2006.
 332. Tuo BG , Wen GR , Seidler U . Phosphatidylinositol 3‐kinase is involved in prostaglandin E2‐mediated murine duodenal bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol 293: G279‐G287, 2007.
 333. Turnberg LA . Abnormalities in intestinal electrolyte transport in congenital chloridorrhoea. Gut 12: 544‐551, 1971.
 334. Turnberg LA , Bieberdorf FA , Morawski SG , Fordtran JS . Interrelationships of chloride, bicarbonate, sodium, and hydrogen transport in the human ileum. J Clin Invest 49: 557‐567, 1970.
 335. Turnberg LA , Fordtran JS , Carter NW , Rector FC, Jr. Mechanism of bicarbonate absorption and its relationship to sodium transport in the human jejunum. J Clin Invest 49: 548‐556, 1970.
 336. Ullrich KJ , Fromter E , Murer H . [Principles of epithelial transport in the kidney and intestines]. Klin Wochenschr 57: 977‐991, 1979.
 337. Vaandrager AB , De Jonge HR . A sensitive technique for the determination of anion exchange activities in brush‐border membrane vesicles. Evidence for two exchangers with different affinities for HCO3‐ and SITS in rat intestinal epithelium. Biochim Biophys Acta 939: 305‐314, 1988.
 338. Van Biervliet S , de Clercq C , Declercq D , Van Braeckel E , Van Daele S , De Baets F , De Looze D . Gastro‐intestinal manifestations in cystic fibrosis patients. Acta Gastroenterol Belg 79: 481‐486, 2016.
 339. Van der Goten J , Vanhove W , Lemaire K , Van Lommel L , Machiels K , Wollants WJ , De Preter V , De Hertogh G , Ferrante M , Van Assche G , Rutgeerts P , Schuit F , Vermeire S , Arijs I . Integrated miRNA and mRNA expression profiling in inflamed colon of patients with ulcerative colitis. PloS one 9: e116117, 2014.
 340. van Niekerk J , Kersten R , Beuers U . Role of bile acids and the biliary HCO3(−) umbrella in the pathogenesis of primary biliary cholangitis. Clin Liver Dis 22: 457‐479, 2018.
 341. Vidyasagar S , Rajendran VM , Binder HJ . Three distinct mechanisms of HCO3‐ secretion in rat distal colon. Am J Physiol 287: C612‐C621, 2004.
 342. Vincourt JB , Jullien D , Amalric F , Girard JP . Molecular and functional characterization of SLC26A11, a sodium‐independent sulfate transporter from high endothelial venules. FASEB J 17: 890‐892, 2003.
 343. Vincourt JB , Jullien D , Kossida S , Amalric F , Girard JP . Molecular cloning of SLC26A7, a novel member of the SLC26 sulfate/anion transporter family, from high endothelial venules and kidney. Genomics 79: 249‐256, 2002.
 344. von Stein P , Lofberg R , Kuznetsov NV , Gielen AW , Persson JO , Sundberg R , Hellstrom K , Eriksson A , Befrits R , Ost A , von Stein OD . Multigene analysis can discriminate between ulcerative colitis, Crohn's disease, and irritable bowel syndrome. Gastroenterology 134: 1869‐1881; quiz 2153‐1864, 2008.
 345. Waldegger S , Moschen I , Ramirez A , Smith RJ , Ayadi H , Lang F , Kubisch C . Cloning and characterization of SLC26A6, a novel member of the solute carrier 26 gene family. Genomics 72: 43‐50, 2001.
 346. Walker NM , Liu J , Stein SR , Stefanski CD , Strubberg AM , Clarke LL . Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium. Am J Physiol Gastrointest Liver Physiol 310: G70‐G80, 2016.
 347. Walker NM , Simpson JE , Brazill JM , Gill RK , Dudeja PK , Schweinfest CW , Clarke LL . Role of down‐regulated in adenoma anion exchanger in HCO3‐ secretion across murine duodenum. Gastroenterology 136: 893‐901, 2009.
 348. Walker NM , Simpson JE , Levitt RC , Boyle KT , Clarke LL . Talniflumate increases survival in a cystic fibrosis mouse model of distal intestinal obstructive syndrome. J Pharmacol Exp Ther 317: 275‐283, 2006.
 349. Walker NM , Simpson JE , Yen PF , Gill RK , Rigsby EV , Brazill JM , Dudeja PK , Schweinfest CW , Clarke LL . Down‐regulated in adenoma Cl/HCO3 exchanger couples with Na/H exchanger 3 for NaCl absorption in murine small intestine. Gastroenterology 135: 1645‐1653.e1643, 2008.
 350. Wall SM . The renal physiology of pendrin (SLC26A4) and its role in hypertension. Novartis Found Symp 273: 231‐239; discussion 239‐243, 261‐234, 2006.
 351. Wang Z , Petrovic S , Mann E , Soleimani M . Identification of an apical Cl(−)/HCO3(−) exchanger in the small intestine. Am J Physiol Gastrointest Liver Physiol 282: G573‐G579, 2002.
 352. Wang Z , Wang T , Petrovic S , Tuo B , Riederer B , Barone S , Lorenz JN , Seidler U , Aronson PS , Soleimani M . Renal and intestinal transport defects in Slc26a6‐null mice. Am J Physiol 288: C957‐C965, 2005.
 353. Wedenoja S , Hoglund P , Holmberg C . Review article: the clinical management of congenital chloride diarrhoea. Aliment Pharmacol Ther 31: 477‐485, 2010.
 354. Wedenoja S , Pekansaari E , Hoglund P , Makela S , Holmberg C , Kere J . Update on SLC26A3 mutations in congenital chloride diarrhea. Hum Mutat 32: 715‐722, 2011.
 355. Whittamore JM , Freel RW , Hatch M . Sulfate secretion and chloride absorption are mediated by the anion exchanger DRA (Slc26a3) in the mouse cecum. Am J Physiol Gastrointest Liver Physiol 305: G172‐G184, 2013.
 356. Whittamore JM , Hatch M . Loss of the anion exchanger DRA (Slc26a3), or PAT1 (Slc26a6), alters sulfate transport by the distal ileum and overall sulfate homeostasis. Am J Physiol Gastrointest Liver Physiol 313: G166‐G179, 2017.
 357. Whittamore JM , Hatch M . The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man. Urolithiasis 45: 89‐108, 2017.
 358. Whittamore JM , Stephens CE , Hatch M . Absence of the sulfate transporter SAT‐1 (Slc26a1) has no impact on oxalate handling by mouse intestine and does not cause hyperoxaluria or hyperoxalemia. Am J Physiol Gastrointest Liver Physiol [Epub ahead of print], 2018.
 359. Wu M , Heneghan JF , Vandorpe DH , Escobar LI , Wu BL , Alper SL . Extracellular Cl(−) regulates human SO4 (2‐)/anion exchanger SLC26A1 by altering pH sensitivity of anion transport. Pflugers Arch 468: 1311‐1332, 2016.
 360. Xia W , Yu Q , Riederer B , Singh AK , Engelhardt R , Yeruva S , Song P , Tian DA , Soleiman M , Seidler U . The distinct roles of anion transporters Slc26a3 (DRA) and Slc26a6 (PAT‐1) in fluid and electrolyte absorption in the murine small intestine. Pflugers Arch 466: 1541‐1556, 2014.
 361. Xiao F , Juric M , Li J , Riederer B , Yeruva S , Singh AK , Zheng L , Glage S , Kollias G , Dudeja P , Tian DA , Xu G , Zhu J , Bachmann O , Seidler U . Loss of downregulated in adenoma (DRA) impairs mucosal HCO3(−) secretion in murine ileocolonic inflammation. Inflamm Bowel Dis 18: 101‐111, 2012.
 362. Xiao F , Li J , Singh AK , Riederer B , Wang J , Sultan A , Park H , Lee MG , Lamprecht G , Scholte BJ , De Jonge HR , Seidler U . Rescue of epithelial HCO3‐ secretion in murine intestine by apical membrane expression of the cystic fibrosis transmembrane conductance regulator mutant F508del. J Physiol 590: 5317‐5334, 2012.
 363. Xiao F , Yu Q , Li J , Johansson ME , Singh AK , Xia W , Riederer B , Engelhardt R , Montrose M , Soleimani M , Tian DA , Xu G , Hansson GC , Seidler U . Slc26a3 deficiency is associated with loss of colonic HCO3 (−) secretion, absence of a firm mucus layer and barrier impairment in mice. Acta Physiol (Oxf) 211: 161‐175, 2014.
 364. Xu J , Barone S , Li H , Holiday S , Zahedi K , Soleimani M . Slc26a11, a chloride transporter, localizes with the vacuolar H(+)‐ATPase of A‐intercalated cells of the kidney. Kidney Int 80: 926‐937, 2011.
 365. Xu J , Henriksnas J , Barone S , Witte D , Shull GE , Forte JG , Holm L , Soleimani M . SLC26A9 is expressed in gastric surface epithelial cells, mediates Cl‐/HCO3‐ exchange, and is inhibited by NH4+. Am J Physiol 289: C493‐C505, 2005.
 366. Xu J , Song P , Miller ML , Borgese F , Barone S , Riederer B , Wang Z , Alper SL , Forte JG , Shull GE , Ehrenfeld J , Seidler U , Soleimani M . Deletion of the chloride transporter Slc26a9 causes loss of tubulovesicles in parietal cells and impairs acid secretion in the stomach. Proc Natl Acad Sci U S A 105: 17955‐17960, 2008.
 367. Xu J , Song P , Nakamura S , Miller M , Barone S , Alper SL , Riederer B , Bonhagen J , Arend LJ , Amlal H , Seidler U , Soleimani M . Deletion of the chloride transporter slc26a7 causes distal renal tubular acidosis and impairs gastric acid secretion. J Biol Chem 284: 29470‐29479, 2009.
 368. Xu J , Worrell RT , Li HC , Barone SL , Petrovic S , Amlal H , Soleimani M . Chloride/bicarbonate exchanger SLC26A7 is localized in endosomes in medullary collecting duct cells and is targeted to the basolateral membrane in hypertonicity and potassium depletion. J Am Soc Nephrol 17: 956‐967, 2006.
 369. Xu L , Xiao F , He J , Lan X , Ding Q , Li J , Seidler U , Zheng Y , Tian D . Lysophosphatidic acid increases SLC26A3 expression in inflamed intestine and reduces diarrheal severity in C57BL/6 mice with dextran‐sodium‐sulfate‐induced colitis. Chin Med J (Engl) 127: 1737‐1743, 2014.
 370. Yamaguchi M , Steward MC , Smallbone K , Sohma Y , Yamamoto A , Ko SB , Kondo T , Ishiguro H . Bicarbonate‐rich fluid secretion predicted by a computational model of guinea‐pig pancreatic duct epithelium. J Physiol 595: 1947‐1972, 2017.
 371. Yang H , Jiang W , Furth EE , Wen X , Katz JP , Sellon RK , Silberg DG , Antalis TM , Schweinfest CW , Wu GD . Intestinal inflammation reduces expression of DRA, a transporter responsible for congenital chloride diarrhea. Am J Physiol 275: G1445‐G1453, 1998.
 372. Yang SK , Jung Y , Kim H , Hong M , Ye BD , and Song K . Association of FCGR2A, JAK2 or HNF4A variants with ulcerative colitis in Koreans. Dig Liver Dis 43: 856‐861, 2011.
 373. Yeruva S , Chodisetti G , Luo M , Chen M , Cinar A , Ludolph L , Lunnemann M , Goldstein J , Singh AK , Riederer B , Bachmann O , Bleich A , Gereke M , Bruder D , Hagen S , He P , Yun C , Seidler U . Evidence for a causal link between adaptor protein PDZK1 downregulation and Na(+)/H(+) exchanger NHE3 dysfunction in human and murine colitis. Pflugers Arch 467: 1795‐1807, 2015.
 374. Yin K , Lei Y , Wen X , Lacruz RS , Soleimani M , Kurtz I , Snead ML , White SN , Paine ML . SLC26A gene family participate in pH regulation during enamel maturation. PloS one 10: e0144703, 2015.
 375. Yu X , Yang G , Yan C , Baylon JL , Jiang J , Fan H , Lu G , Hasegawa K , Okumura H , Wang T , Tajkhorshid E , Li S , Yan N . Dimeric structure of the uracil:proton symporter UraA provides mechanistic insights into the SLC4/23/26 transporters. Cell res 27: 1020‐1033, 2017.
 376. Yusa A , Miyazaki K , Kimura N , Izawa M , Kannagi R . Epigenetic silencing of the sulfate transporter gene DTDST induces sialyl Lewisx expression and accelerates proliferation of colon cancer cells. Cancer Res 70: 4064‐4073, 2010.
 377. Zheng J , Shen W , He DZ , Long KB , Madison LD , Dallos P . Prestin is the motor protein of cochlear outer hair cells. Nature 405: 149‐155, 2000.

 

Teaching Material

U. Seidler, K. Nikolovska. Slc26 Family of Anion Transporters in the Gastrointestinal Tract: Expression, Function, Regulation, and Role in Disease. Compr Physiol 9: 2019, 839-872.

Didactic Synopsis

Major Teaching Points:

  • The SLC26A family of multifunctional anion transporters, represented in humans by 11 isoforms, encompasses exchangers and/or channel-like transporters of numerous monovalent/divalent anions.
  • SLC26A1,2,3,6,7,9,11 are expressed in the apical (3, 4, 8, 11) or basolateral (1, 9) membranes of the gastrointestinal epithelium. Important intestinal functions like salt/water/sulfate/bicarbonate absorption or oxalate/chloride/bicarbonate secretion involve different SLC26A isoforms. By participating in the ion transport, they contribute to intestinal surface pH-microclimate regulation, mucus hydration and microbiome composition and affect the function of distant organs like the kidney and the cartilage.
  • Mutations and polymorphisms of SLC26A isoforms expressed in the intestine are associated with inherited diseases, such as diastrophic dysplasia (SLC26A2), chloride diarrhea (SLC26A3), or cystic fibrosis-associated meconium ileus and diabetes (SLC26A9). Disrupted interaction of CFTR and SLC26A3/6/9 may contribute to other gastrointestinal manifestations in cystic fibrosis as well.
  • Disturbed SLC26A expression in inflammatory bowel disease contributes to inflammatory diarrhea and oxalate nephrolithiasis.

Didactic Legends

The figures—in a freely downloadable PowerPoint format—can be found on the Images tab along with the formal legends published in the article. The following legends to the same figures are written to be useful for teaching.

Figure 1 Teaching points: Electrolyte transport in ileum. The ileal villous enterocytes express both Na+/H+ and Cl/HCO3 exchangers. The import of Na+ from the lumen into the cytoplasm of the enterocyte results in export of H+ into the intestinal lumen by the Na+/H+ exchanger. Simultaneously, extracellular Cl is absorbed in exchange of HCO3 secretion in the intestinal lumen. The secreted H+ and HCO3 ions react in the lumen to form H2O and CO2, which further can perfuse in the enterocyte following the osmotic gradient.

Figure 2 Teaching points: In the brush border membrane of the ileum, the absorption rates of Cl and Na+ ions are probably synchronized via the intracellular pHi. This coupled NaCl transport involves Na+/H+ and Cl/HCO3 coupled exchangers, as well as carbonic anhydrases located on the brush boarder membrane, which assist the NaCl transport by providing HCO3 or removing H+ ions close to the internal and external transport site.

Figure 3 Teaching points: Dendrogram showing the relations between the different members of the SLC26A family and the ionic species they transport. Mutations in three human SLC26 genes are associated with congenital diseases: chondrodysplasias for SLC26A2, chloride diarrhea for SLC26A3 and deafness for SLC26A4. Additional phenotypes are observed in mouse knockout models such as oxalate urolithiasis, hypochlorhydria or male infertility.

Figure 4 Teaching points: Slc26a1 (Sat1) is an important sulfate and oxalate transporter in kidney, liver and intestinal cells, expressed in the basolateral membrane. The intestinal oxalate secretion and sulfate absorption rates are reduced in Sat1−/-mice. Slc26a6 (PAT1, CFEX) is an apically located oxalate transporter, which deficiency in mice fed on high oxalate diet results in development of oxalate kidney stones. Oxalate secretion by intestinal epithelial cells involves oxalate entry from blood via Slc26a1, and then its efflux from the cell into the lumen by Slc26a6.

Figure 5 Teaching points: The endocytosis of SLC26A3 can be conducted through different pathways that involve interaction with Nexin 27 in a PDZ dependent or independent manner. SLC26A3 is trafficked to Rab5-positive early endosomes (EE) in PDZ-independent manner where it interacts with Nexin 27. SLC26A3 recycling and its later association with lipid rafts is managed via the Rab11-positive recycling endosomes (RE) (in PDZ dependent manner) or via direct interaction with Nexin 27. SLC26A3 can be subjected to lysosomal degradation when sorted into Rab7-positive late endosomes (LE).

Figure 6 Teaching points: Slc26a3−/−mice have significantly decreased colonic HCO3 secretory (JHCO3-) and fluid absorptive rates associated with high intracellular pH (pHi) in the Slc26a3−/− colonic surface cells and absence of firmly adherent mucus layer compared to wt littermates.

Figure 7 Teaching points: Slc26a3 deficient mice have markedly lower survival rate when given 2 % DSS in their drinking water compared to wt, in a period of just 5 days. The Slc26a3−/− mice treated with 2 % DSS for only 2–3 days histologically display moderate infiltration of mononuclear cells into the lamina propria, but a remarkably increased size and number of lymphoid aggregates unlike the wt, possibly indicative of high rates of pathogen invasion.

Figure 8 Teaching points: The decreased colonic bicarbonate secretion rates in the inflamed ileocolon of tumor necrosis factor alpha (TNF-α) overexpressing (TNF+/ΔARE) mice (A), which display (B) high proinflammatory cytokine levels in both ileum and colon, was predominantly due to inflammation-induced decrease in DRA expression at the (C) mRNA and (D) protein level.

Figure 9 Teaching points: To determine Slc26a9 cellular localization in the stomach, immunofluorescence co-staining with Slc26a9 antibody and H+/K+-ATPase antibody (as parietal cells marker). Slc26a9 is immunolocalized at the apical membrane of gastric surface epithelia and moderately in cells expressing the H+/K+-ATPase. When mRNA expression of Slc26a9 was analyzed by laser capture dissection in the total gastric glands, the upper third, and the lower third of the gland, the localization of Slc26a9 expression did not overlap with that for H+/K+ expression.

Figure 10 Teaching points: In the jejunum, the expression profile of different transporters is varying with the differentiation state of the cells, as they move from the crypt toward the surface of the villi. Enterocytes in the lower part of the crypt express high levels of CFTR and NKCC1, and are capable of high Cl, but low HCO3 secretory rates. Villus enterocytes absorb Na+, Cl and HCO3 via NHE3 and SLC26A3/6. When proton export via NHE3 is inhibited by cAMP/cGMP, but SLC26-mediated HCO3 export is ongoing, the Cl can be recycled into the lumen via activated CFTR and HCO3 secretion ensues. In addition, a strong decrease of intracellular Cl concentration during CFTR activation may activate the WNK pathway that will increase the HCO3 permeability of CFTR, because the basolateral membrane of villous enterocytes expresses NBCs instead of NKCC1.

Figure 11 Teaching points: The expression profile of different ion transporters varies along the colonic crypt axis, as the cells exit the proliferation zone (base of the crypt) and differentiate (surface of the crypt). Colonocytes at the base of the crypt express high levels of CFTR in the apical and NKCC1 in the basolateral membrane and secrete fluid with high Cl, but low HCO3 content. As the cells differentiate and move towards the cryptal surface, CFTR expression decreases dramatically, whereas SLC26A3 increases strongly. Colonic HCO3 output into the lumen occurs predominantly mainly via SLC26A3.

 


Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Ursula Seidler, Katerina Nikolovska. Slc26 Family of Anion Transporters in the Gastrointestinal Tract: Expression, Function, Regulation, and Role in Disease. Compr Physiol 2019, 9: 839-872. doi: 10.1002/cphy.c180027