Comprehensive Physiology Wiley Online Library

Intestinal Absorption of Bile Acids in Health and Disease

Full Article on Wiley Online Library



Abstract

The intestinal reclamation of bile acids is crucial for the maintenance of their enterohepatic circulation. The majority of bile acids are actively absorbed via specific transport proteins that are highly expressed in the distal ileum. The uptake of bile acids by intestinal epithelial cells modulates the activation of cytosolic and membrane receptors such as the farnesoid X receptor (FXR) and G protein‐coupled bile acid receptor 1 (GPBAR1), which has a profound effect on hepatic synthesis of bile acids as well as glucose and lipid metabolism. Extensive research has focused on delineating the processes of bile acid absorption and determining the contribution of dysregulated ileal signaling in the development of intestinal and hepatic disorders. For example, a decrease in the levels of the bile acid‐induced ileal hormone FGF15/19 is implicated in bile acid‐induced diarrhea (BAD). Conversely, the increase in bile acid absorption with subsequent overload of bile acids could be involved in the pathophysiology of liver and metabolic disorders such as fatty liver diseases and type 2 diabetes mellitus. This review article will attempt to provide a comprehensive overview of the mechanisms involved in the intestinal handling of bile acids, the pathological implications of disrupted intestinal bile acid homeostasis, and the potential therapeutic targets for the treatment of bile acid‐related disorders. Published 2020. Compr Physiol 10:21‐56, 2020.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Structure of common mammalian bile acids. (A) The structure of bile acids can be visualized by orienting the plane of the molecule perpendicular to the page, such that α‐hydroxyl moieties are on the right side of the steroid nucleus and β‐hydroxyl moieties are on the left side. This can be represented by a block diagram, where the rectangles represent the steroid nucleus with selected carbon atoms labeled by number and the red circles represent the hydroxyl group. (B) Structures of primary (gray) and secondary (green) bile acids. Bacterial production of secondary bile acids occurs via the reactions depicted by black arrows. Muricholic acids and their derivatives, which are predominantly found in rodents, are shown in the yellow box.
Figure 2. Figure 2. Enterohepatic circulation of bile acids. Bile acids (BAs) are synthesized from cholesterol in the liver via the rate‐limiting enzyme CYP7A1 and secreted into the bile duct by the bile salt export pump (BSEP). These BAs are then deposited into the small intestine, where they emulsify lipids and serve as signaling molecules. Luminal BAs are taken up into ileal enterocytes by the apical sodium‐dependent bile acid transporter (ASBT) and exported into the portal blood by the organic solute transporter α/β heterodimer (OSTα/β). These BAs return to the liver, where they are taken into hepatocytes (mainly in the periportal region of the hepatic acinus) by the Na+‐taurocholate cotransporting polypeptide (NTCP) and resecreted by BSEP. Within the enterocyte, BAs activate the farnesoid X receptor (FXR), which induces fibroblast growth factor 15/19 (FGF15/19) expression and secretion into the portal blood. FGF15/19 travels to the liver, where it binds to the FGF receptor 4 (FGFR4)/β‐klotho (β‐kl) complex. Activation of this complex reduces CYP7A1 expression, thus decreasing bile acid synthesis.
Figure 3. Figure 3. Bile acid transport and signaling in the ileum. Luminal BAs are taken up into ileal enterocytes by the apical sodium‐dependent bile acid transporter (ASBT), where they are bound by the ileal bile acid‐binding protein (IBABP) and transported to the basolateral membrane. BAs are exported basolaterally by the organic solute transporter α/β heterodimer (OSTα/β) and returned to the liver. Intracellular BAs activate the farnesoid X receptor (FXR), which heterodimerizes with the retinoid X receptor (RXR) and translocates to the nucleus. There, FXR transactivates fibroblast growth factor 15/19 (FGF15/19), OSTα/β, and the small heterodimeric partner (SHP). ASBT expression is negatively regulated by SHP within the cell and by an autocrine/paracrine function of FGF15/19, which binds to the FGF receptor 4 (FGFR4)/β‐klotho (β‐kl) complex and activates signaling processes that repress ASBT. Bile acid diarrhea can be caused by disruptions in these processes. Notably, reduced FGF19 disrupts the negative feedback of bile acid synthesis resulting in bile acid overproduction, while reduced ASBT impairs bile acid absorption.
Figure 4. Figure 4. Topology of ASBT. A cartoon of the 7‐transmembrane ASBT topology with transmembrane (TM), extracellular loop (EL), and intracellular loop (IL) domains. Sites of posttranslational modifications (glycosylation and phosphorylation), clinically relevant missense mutations, and GxxxG motifs are shown.
Figure 5. Figure 5. Acute, posttranslational regulation of ASBT. Functional ASBT, which transports two Na+ ions along with one bile acid, is present in lipid rafts. Movement of ASBT out of rafts, either by the green tea catechin (−)‐epigallocatechin‐3‐gallate (EGCG) or methyl‐β‐cyclodextrin (MβCD), decreases ASBT function. Activation of protein kinase C ζ (PKCζ) by phorbol 12‐myristate 13‐acetate (PMA) results in endocytosis and reduced function of ASBT. Similarly, activation of protein tyrosine phosphatases (PTP) by enteropathogenic Escherichia coli (EPEC) causes endocytosis of ASBT.


Figure 1. Structure of common mammalian bile acids. (A) The structure of bile acids can be visualized by orienting the plane of the molecule perpendicular to the page, such that α‐hydroxyl moieties are on the right side of the steroid nucleus and β‐hydroxyl moieties are on the left side. This can be represented by a block diagram, where the rectangles represent the steroid nucleus with selected carbon atoms labeled by number and the red circles represent the hydroxyl group. (B) Structures of primary (gray) and secondary (green) bile acids. Bacterial production of secondary bile acids occurs via the reactions depicted by black arrows. Muricholic acids and their derivatives, which are predominantly found in rodents, are shown in the yellow box.


Figure 2. Enterohepatic circulation of bile acids. Bile acids (BAs) are synthesized from cholesterol in the liver via the rate‐limiting enzyme CYP7A1 and secreted into the bile duct by the bile salt export pump (BSEP). These BAs are then deposited into the small intestine, where they emulsify lipids and serve as signaling molecules. Luminal BAs are taken up into ileal enterocytes by the apical sodium‐dependent bile acid transporter (ASBT) and exported into the portal blood by the organic solute transporter α/β heterodimer (OSTα/β). These BAs return to the liver, where they are taken into hepatocytes (mainly in the periportal region of the hepatic acinus) by the Na+‐taurocholate cotransporting polypeptide (NTCP) and resecreted by BSEP. Within the enterocyte, BAs activate the farnesoid X receptor (FXR), which induces fibroblast growth factor 15/19 (FGF15/19) expression and secretion into the portal blood. FGF15/19 travels to the liver, where it binds to the FGF receptor 4 (FGFR4)/β‐klotho (β‐kl) complex. Activation of this complex reduces CYP7A1 expression, thus decreasing bile acid synthesis.


Figure 3. Bile acid transport and signaling in the ileum. Luminal BAs are taken up into ileal enterocytes by the apical sodium‐dependent bile acid transporter (ASBT), where they are bound by the ileal bile acid‐binding protein (IBABP) and transported to the basolateral membrane. BAs are exported basolaterally by the organic solute transporter α/β heterodimer (OSTα/β) and returned to the liver. Intracellular BAs activate the farnesoid X receptor (FXR), which heterodimerizes with the retinoid X receptor (RXR) and translocates to the nucleus. There, FXR transactivates fibroblast growth factor 15/19 (FGF15/19), OSTα/β, and the small heterodimeric partner (SHP). ASBT expression is negatively regulated by SHP within the cell and by an autocrine/paracrine function of FGF15/19, which binds to the FGF receptor 4 (FGFR4)/β‐klotho (β‐kl) complex and activates signaling processes that repress ASBT. Bile acid diarrhea can be caused by disruptions in these processes. Notably, reduced FGF19 disrupts the negative feedback of bile acid synthesis resulting in bile acid overproduction, while reduced ASBT impairs bile acid absorption.


Figure 4. Topology of ASBT. A cartoon of the 7‐transmembrane ASBT topology with transmembrane (TM), extracellular loop (EL), and intracellular loop (IL) domains. Sites of posttranslational modifications (glycosylation and phosphorylation), clinically relevant missense mutations, and GxxxG motifs are shown.


Figure 5. Acute, posttranslational regulation of ASBT. Functional ASBT, which transports two Na+ ions along with one bile acid, is present in lipid rafts. Movement of ASBT out of rafts, either by the green tea catechin (−)‐epigallocatechin‐3‐gallate (EGCG) or methyl‐β‐cyclodextrin (MβCD), decreases ASBT function. Activation of protein kinase C ζ (PKCζ) by phorbol 12‐myristate 13‐acetate (PMA) results in endocytosis and reduced function of ASBT. Similarly, activation of protein tyrosine phosphatases (PTP) by enteropathogenic Escherichia coli (EPEC) causes endocytosis of ASBT.
References
 1.Abrahamsson A, Gustafsson U, Ellis E, Nilsson L‐M, Sahlin S, Björkhem I, Einarsson C. Feedback regulation of bile acid synthesis in human liver: Importance of HNF‐4alpha for regulation of CYP7A1. Biochem Biophys Res Commun 330: 395‐399, 2005.
 2.Abrams JJ, Ginsberg H, Grundy SM. Metabolism of cholesterol and plasma triglycerides in nonketotic diabetes mellitus. Diabetes 31: 903‐910, 1982.
 3.Albaugh VL, Banan B, Ajouz H, Abumrad NN, Flynn CR. Bile acids and bariatric surgery. Mol Aspects Med 56: 75‐89, 2017.
 4.Al‐Dury S, Marschall H‐U. Ileal bile acid transporter inhibition for the treatment of chronic constipation, cholestatic pruritus, and NASH. Front Pharmacol 9: 931, 2018.
 5.Al‐Dury S, Wahlström A, Wahlin S, Langedijk J, Elferink RO, Ståhlman M, Marschall H‐U. Pilot study with IBAT inhibitor A4250 for the treatment of cholestatic pruritus in primary biliary cholangitis. Sci Rep 8: 6658, 2018.
 6.Al‐Hilal TA, Chung SW, Alam F, Park J, Lee KE, Jeon H, Kim K, Kwon IC, Kim I‐S, Kim SY, Byun Y. Functional transformations of bile acid transporters induced by high‐affinity macromolecules. Sci Rep 4: 4163, 2014.
 7.Al‐Hilal TA, Park J, Alam F, Chung SW, Park JW, Kim K, Kwon IC, Kim I‐S, Kim SY, Byun Y. Oligomeric bile acid‐mediated oral delivery of low molecular weight heparin. J Control Release 175: 17‐24, 2014.
 8.Ali AH, Carey EJ, Lindor KD. Recent advances in the development of farnesoid X receptor agonists. Ann Transl Med 3: 5, 2015.
 9.Alpini G, Glaser SS, Rodgers R, Phinizy JL, Robertson WE, Lasater J, Caligiuri A, Tretjak Z, LeSage GD. Functional expression of the apical Na+‐dependent bile acid transporter in large but not small rat cholangiocytes. Gastroenterology 113: 1734‐1740, 1997.
 10.Alrefai WA, Sarwar Z, Tyagi S, Saksena S, Dudeja PK, Gill RK. Cholesterol modulates human intestinal sodium‐dependent bile acid transporter. Am J Physiol Gastrointest Liver Physiol 288: G978‐G985, 2005.
 11.Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem 276: 28857‐28865, 2001.
 12.Anderle P, Sengstag T, Mutch DM, Rumbo M, Praz V, Mansourian R, Delorenzi M, Williamson G, Roberts M‐A. Changes in the transcriptional profile of transporters in the intestine along the anterior‐posterior and crypt‐villus axes. BMC Genomics 6: 69, 2005.
 13.Andersson S, Davis DL, Dahlbäck H, Jörnvall H, Russell DW. Cloning, structure, and expression of the mitochondrial cytochrome P‐450 sterol 26‐hydroxylase, a bile acid biosynthetic enzyme. J Biol Chem 264: 8222‐8229, 1989.
 14.Annaba F, Kumar P, Dudeja AK, Saksena S, Gill RK, Alrefai WA. Green tea catechin EGCG inhibits ileal apical sodium bile acid transporter ASBT. Am J Physiol Gastrointest Liver Physiol 298: G467‐G473, 2010.
 15.Annaba F, Ma K, Kumar P, Dudeja AK, Kineman RD, Shneider BL, Saksena S, Gill RK, Alrefai WA. Ileal apical Na+‐dependent bile acid transporter ASBT is upregulated in rats with diabetes mellitus induced by low doses of streptozotocin. Am J Physiol Gastrointest Liver Physiol 299: G898‐G906, 2010.
 16.Annaba F, Sarwar Z, Gill RK, Ghosh A, Saksena S, Borthakur A, Hecht GA, Dudeja PK, Alrefai WA. Enteropathogenic Escherichia coli inhibits ileal sodium‐dependent bile acid transporter ASBT. Am J Physiol Gastrointest Liver Physiol 302: G1216‐G1222, 2012.
 17.Annaba F, Sarwar Z, Kumar P, Saksena S, Turner JR, Dudeja PK, Gill RK, Alrefai WA. Modulation of ileal bile acid transporter (ASBT) activity by depletion of plasma membrane cholesterol: Association with lipid rafts. Am J Physiol Gastrointest Liver Physiol 294: G489‐G497, 2008.
 18.Ao M, Sarathy J, Domingue J, Alrefai WA, Rao MC. Chenodeoxycholic acid stimulates Cl(‐) secretion via cAMP signaling and increases cystic fibrosis transmembrane conductance regulator phosphorylation in T84 cells. Am J Physiol Cell Physiol 305: C447‐C456, 2013.
 19.Appleby RN, Bajor A, Gillberg P‐G, Graffner H, Simrén M, Ung KA, Walters J. Effects of conventional and a novel colonic‐release bile acid sequestrant, A3384, on fibroblast growth factor 19 and bile acid metabolism in healthy volunteers and patients with bile acid diarrhoea. United European Gastroenterol J 5: 380‐388, 2017.
 20.Arab JP, Karpen SJ, Dawson PA, Arrese M, Trauner M. Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives. Hepatology 65: 350‐362, 2017.
 21.Araki Y, Fujiyama Y, Andoh A, Nakamura F, Shimada M, Takaya H, Bamba T. Hydrophilic and hydrophobic bile acids exhibit different cytotoxicities through cytolysis, interleukin‐8 synthesis and apoptosis in the intestinal epithelial cell lines. IEC‐6 and Caco‐2 cells. Scand J Gastroenterol 36: 533‐539, 2001.
 22.Aziz I, Mumtaz S, Bholah H, Chowdhury FU, Sanders DS, Ford AC. High prevalence of idiopathic bile acid diarrhea among patients with diarrhea‐predominant irritable Bowel syndrome based on Rome III criteria. Clin Gastroenterol Hepatol 13: 1650.e2‐1655.e2, 2015.
 23.Badiee M, Tochtrop GP. Bile acid recognition by mouse ileal bile acid binding protein. ACS Chem Biol 12: 3049‐3056, 2017.
 24.Baghdasaryan A, Fuchs CD, Österreicher CH, Lemberger UJ, Halilbasic E, Påhlman I, Graffner H, Krones E, Fickert P, Wahlström A, Ståhlman M, Paumgartner G, Marschall H‐U, Trauner M. Inhibition of intestinal bile acid absorption improves cholestatic liver and bile duct injury in a mouse model of sclerosing cholangitis. J Hepatol 64: 674‐681, 2016.
 25.Balakrishnan A, Polli JE. Apical sodium dependent bile acid transporter (ASBT, SLC10A2): A potential prodrug target. Mol Pharm 3: 223‐230, 2006.
 26.Balistreri WF, Heubi JE, Suchy FJ. Immaturity of the enterohepatic circulation in early life: Factors predisposing to “physiologic” maldigestion and cholestasis. J Pediatr Gastroenterol Nutr 2: 346‐354, 1983.
 27.Ballatori N, Christian WV, Lee JY, Dawson PA, Soroka CJ, Boyer JL, Madejczyk MS, Li N. OSTalpha‐OSTbeta: A major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology 42: 1270‐1279, 2005.
 28.Ballatori N, Christian WV, Wheeler SG, Hammond CL. The heteromeric organic solute transporter, OSTα‐OSTβ/SLC51: A transporter for steroid‐derived molecules. Mol Aspects Med 34: 683‐692, 2013.
 29.Ballatori N, Fang F, Christian WV, Li N, Hammond CL. Ostalpha‐Ostbeta is required for bile acid and conjugated steroid disposition in the intestine, kidney, and liver. Am J Physiol Gastrointest Liver Physiol 295: G179‐G186, 2008.
 30.Bampton PA, Dinning PG, Kennedy ML, Lubowski DZ, Cook IJ. The proximal colonic motor response to rectal mechanical and chemical stimulation. Am J Physiol Gastrointest Liver Physiol 282: G443‐G449, 2002.
 31.Banerjee A, Hussainzada N, Khandelwal A, Swaan PW. Electrostatic and potential cation‐pi forces may guide the interaction of extracellular loop III with Na+ and bile acids for human apical Na+‐dependent bile acid transporter. Biochem J 410: 391‐400, 2008.
 32.Banerjee A, Ray A, Chang C, Swaan PW. Site‐directed mutagenesis and use of bile acid‐MTS conjugates to probe the role of cysteines in the human apical sodium‐dependent bile acid transporter (SLC10A2). Biochemistry 44: 8908‐8917, 2005.
 33.Banerjee A, Swaan PW. Membrane topology of human ASBT (SLC10A2) determined by dual label epitope insertion scanning mutagenesis. New evidence for seven transmembrane domains. Biochemistry 45: 943‐953, 2006.
 34.Baringhaus KH, Matter H, Stengelin S, Kramer W. Substrate specificity of the ileal and the hepatic Na(+)/bile acid cotransporters of the rabbit. II. A reliable 3D QSAR pharmacophore model for the ileal Na(+)/bile acid cotransporter. J Lipid Res 40: 2158‐2168, 1999.
 35.Barley NF, Taylor V, Shaw‐Smith CJ, Chakravarty P, Howard A, Legon S, Walters JRF. Human ileal bile acid‐binding protein promoter and the effects of CDX2. Biochim Biophys Acta 1630: 138‐143, 2003.
 36.Bauer TM, Steinbrückner B, Brinkmann FE, Ditzen AK, Schwacha H, Aponte JJ, Pelz K, Kist M, Blum HE. Small intestinal bacterial overgrowth in patients with cirrhosis: Prevalence and relation with spontaneous bacterial peritonitis. Am J Gastroenterol 96: 2962‐2967, 2001.
 37.Beigel F, Teich N, Howaldt S, Lammert F, Maul J, Breiteneicher S, Rust C, Göke B, Brand S, Ochsenkühn T. Colesevelam for the treatment of bile acid malabsorption‐associated diarrhea in patients with Crohn's disease: A randomized, double‐blind, placebo‐controlled study. J Crohns Colitis 8: 1471‐1479, 2014.
 38.Benedict M, Zhang X. Non‐alcoholic fatty liver disease: An expanded review. World J Hepatol 9: 715‐732, 2017.
 39.Bennion LJ, Grundy SM. Effects of diabetes mellitus on cholesterol metabolism in man. N Engl J Med 296: 1365‐1371, 1977.
 40.Bergheim I. Apical sodium bile acid transporter and ileal lipid binding protein in gallstone carriers. J Lipid Res 47: 42‐50, 2005.
 41.Beuling E, Kerkhof IM, Nicksa GA, Giuffrida MJ, Haywood J, aan de Kerk DJ, Piaseckyj CM, Pu WT, Buchmiller TL, Dawson PA, Krasinski SD. Conditional Gata4 deletion in mice induces bile acid absorption in the proximal small intestine. Gut 59: 888‐895, 2010.
 42.Bhat BG, Rapp SR, Beaudry JA, Napawan N, Butteiger DN, Hall KA, Null CL, Luo Y, Keller BT. Inhibition of ileal bile acid transport and reduced atherosclerosis in apoE−/− mice by SC‐435. J Lipid Res 44: 1614‐1621, 2003.
 43.Biagioli M, Carino A, Cipriani S, Francisci D, Marchianò S, Scarpelli P, Sorcini D, Zampella A, Fiorucci S. The bile acid receptor GPBAR1 regulates the M1/M2 phenotype of intestinal macrophages and activation of GPBAR1 rescues mice from murine colitis. J Immunol 199: 718‐733, 2017.
 44.Binder HJ, Filburn B, Floch M. Bile acid inhibition of intestinal anaerobic organisms. Am J Clin Nutr 28: 119‐125, 1975.
 45.Birkenmeier EH, Rowe LB, Crossman MW, Gordon JI. Ileal lipid‐binding protein (Illbp) gene maps to mouse chromosome 11. Mamm Genome 5: 805‐806, 1994.
 46.Björkhem I, Araya Z, Rudling M, Angelin B, Einarsson C, Wikvall K. Differences in the regulation of the classical and the alternative pathway for bile acid synthesis in human liver. No coordinate regulation of CYP7A1 and CYP27A1. J Biol Chem 277: 26804‐26807, 2002.
 47.Bjursell M, Wedin M, Admyre T, Hermansson M, Böttcher G, Göransson M, Lindén D, Bamberg K, Oscarsson J, Bohlooly‐Y M. Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH. PLoS One 8: e64721, 2013.
 48.Borup C, Wildt S, Rumessen JJ, Bouchelouche PN, Graff J, Damgaard M, McQuitty C, Rainteau D, Munck LK. Chenodeoxycholic acid stimulated fibroblast growth factor 19 response – a potential biochemical test for bile acid diarrhoea. Aliment Pharmacol Ther 45: 1433‐1442, 2017.
 49.Boyer JL, Trauner M, Mennone A, Soroka CJ, Cai S‐Y, Moustafa T, Zollner G, Lee JY, Ballatori N. Upregulation of a basolateral FXR‐dependent bile acid efflux transporter OSTalpha‐OSTbeta in cholestasis in humans and rodents. Am J Physiol Gastrointest Liver Physiol 290: G1124‐G1130, 2006.
 50.Broeders EPM, Nascimento EBM, Havekes B, Brans B, Roumans KHM, Tailleux A, Schaart G, Kouach M, Charton J, Deprez B, Bouvy ND, Mottaghy F, Staels B, van Marken Lichtenbelt WD, Schrauwen P. The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cell Metab 22: 418‐426, 2015.
 51.Brufau G, Bahr MJ, Staels B, Claudel T, Ockenga J, Böker KH, Murphy EJ, Prado K, Stellaard F, Manns MP, Kuipers F, Tietge UJ. Plasma bile acids are not associated with energy metabolism in humans. Nutr Metab (Lond) 7: 73, 2010.
 52.Brufau G, Stellaard F, Prado K, Bloks VW, Jonkers E, Boverhof R, Kuipers F, Murphy EJ. Improved glycemic control with colesevelam treatment in patients with type 2 diabetes is not directly associated with changes in bile acid metabolism. Hepatology 52: 1455‐1464, 2010.
 53.Brydon WG, Walters JRF, Ghosh S, Culbert P. Letter: Hydroxypropyl cellulose as therapy for chronic diarrhoea in patients with bile acid malabsorption – possible mechanisms. Aliment Pharmacol Ther 44: 306‐307, 2016.
 54.Calmus Y, Guechot J, Podevin P, Bonnefis MT, Giboudeau J, Poupon R. Differential effects of chenodeoxycholic and ursodeoxycholic acids on interleukin 1, interleukin 6 and tumor necrosis factor‐alpha production by monocytes. Hepatology 16: 719‐723, 1992.
 55.Camilleri M. Bile acid diarrhea: Prevalence, pathogenesis, and therapy. Gut Liver 9: 332‐339, 2015.
 56.Camilleri M, Acosta A, Busciglio I, Boldingh A, Dyer RB, Zinsmeister AR, Lueke A, Gray A, Donato LJ. Effect of colesevelam on faecal bile acids and bowel functions in diarrhoea‐predominant irritable bowel syndrome. Aliment Pharmacol Ther 41: 438‐448, 2015.
 57.Camilleri M, Klee EW, Shin A, Carlson P, Li Y, Grover M, Zinsmeister AR. Irritable bowel syndrome‐diarrhea: Characterization of genotype by exome sequencing, and phenotypes of bile acid synthesis and colonic transit. Am J Physiol Gastrointest Liver Physiol 306: G13‐G26, 2014.
 58.Camilleri M, Nadeau A, Tremaine WJ, Lamsam J, Burton D, Odunsi S, Sweetser S, Singh R. Measurement of serum 7alpha‐hydroxy‐4‐cholesten‐3‐one (or 7alphaC4), a surrogate test for bile acid malabsorption in health, ileal disease and irritable bowel syndrome using liquid chromatography‐tandem mass spectrometry. Neurogastroenterol Motil 21: 734‐e43, 2009.
 59.Camilleri M, Shin A, Busciglio I, Carlson P, Acosta A, Bharucha AE, Burton D, Lamsam J, Lueke A, Donato LJ, Zinsmeister AR. Genetic variation in GPBAR1 predisposes to quantitative changes in colonic transit and bile acid excretion. Am J Physiol Gastrointest Liver Physiol 307: G508‐G516, 2014.
 60.Camilleri M, Vazquez‐Roque MI, Carlson P, Burton D, Wong BS, Zinsmeister AR. Association of bile acid receptor TGR5 variation and transit in health and lower functional gastrointestinal disorders. Neurogastroenterol Motil 23: 995‐999, e458, 2011.
 61.Campana G, Pasini P, Roda A, Spampinato S. Regulation of ileal bile acid‐binding protein expression in Caco‐2 cells by ursodeoxycholic acid: Role of the farnesoid X receptor. Biochem Pharmacol 69: 1755‐1763, 2005.
 62.Cariou B, van Harmelen K, Duran‐Sandoval D, van Dijk TH, Grefhorst A, Abdelkarim M, Caron S, Torpier G, Fruchart J‐C, Gonzalez FJ, Kuipers F, Staels B. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem 281: 11039‐11049, 2006.
 63.Carr RM, Reid AE. FXR agonists as therapeutic agents for non‐alcoholic fatty liver disease. Curr Atheroscler Rep 17: 500, 2015.
 64.Centers for Disease Control and Prevention. National diabetes statistics report. Atlanta, GA: Centers for Disease Control and Prevention, 2017.
 65.Chedid V, Vijayvargiya P, Camilleri M. Elobixibat for the treatment of constipation. Expert Rev Gastroenterol Hepatol 12: 951‐960, 2018.
 66.Chen F, Ananthanarayanan M, Emre S, Neimark E, Bull LN, Knisely AS, Strautnieks SS, Thompson RJ, Magid MS, Gordon R, Balasubramanian N, Suchy FJ, Shneider BL. Progressive familial intrahepatic cholestasis, type 1, is associated with decreased farnesoid X receptor activity. Gastroenterology 126: 756‐764, 2004.
 67.Chen F, Ma L, Al‐Ansari N, Shneider B. The role of AP‐1 in the transcriptional regulation of the rat apical sodium‐dependent bile acid transporter. J Biol Chem 276: 38703‐38714, 2001.
 68.Chen F, Ma L, Dawson PA, Sinal CJ, Sehayek E, Gonzalez FJ, Breslow J, Ananthanarayanan M, Shneider BL. Liver receptor homologue‐1 mediates species‐ and cell line‐specific bile acid‐dependent negative feedback regulation of the apical sodium‐dependent bile acid transporter. J Biol Chem 278: 19909‐19916, 2003.
 69.Chen F, Ma L, Sartor RB, Li F, Xiong H, Sun A‐Q, Shneider B. Inflammatory‐mediated repression of the rat ileal sodium‐dependent bile acid transporter by c‐fos nuclear translocation. Gastroenterology 123: 2005‐2016, 2002.
 70.Chen F, Shyu A‐B, Shneider BL. Hu antigen R and tristetraprolin: Counter‐regulators of rat apical sodium‐dependent bile acid transporter by way of effects on messenger RNA stability. Hepatology 54: 1371‐1378, 2011.
 71.Chen L, Yao X, Young A, McNulty J, Anderson D, Liu Y, Nystrom C, Croom D, Ross S, Collins J, Rajpal D, Hamlet K, Smith C, Gedulin B. Inhibition of apical sodium‐dependent bile acid transporter as a novel treatment for diabetes. Am J Physiol Endocrinol Metab 302: E68‐E76, 2012.
 72.Chen T, Huang Z, Liu R, Yang J, Hylemon PB, Zhou H. Sphingosine‐1 phosphate promotes intestinal epithelial cell proliferation via S1PR2. Front Biosci (Landmark Ed) 22: 596‐608, 2017.
 73.Chen T, Xue H, Lin R, Huang Z. MiR‐126 impairs the intestinal barrier function via inhibiting S1PR2 mediated activation of PI3K/AKT signaling pathway. Biochem Biophys Res Commun, 2017. DOI: 10.1016/j.bbrc.2017.03.043.
 74.Chen W, Owsley E, Yang Y, Stroup D, Chiang JY. Nuclear receptor‐mediated repression of human cholesterol 7alpha‐hydroxylase gene transcription by bile acids. J Lipid Res 42: 1402‐1412, 2001.
 75.Chen X, Chen F, Liu S, Glaeser H, Dawson PA, Hofmann AF, Kim RB, Shneider BL, Pang KS. Transactivation of rat apical sodium‐dependent bile acid transporter and increased bile acid transport by 1alpha,25‐dihydroxyvitamin D3 via the vitamin D receptor. Mol Pharmacol 69: 1913‐1923, 2006.
 76.Cheng K, Metry M, Felton J, Shang AC, Drachenberg CB, Xu S, Zhan M, Schumacher J, Guo GL, Polli JE, Raufman J‐P. Diminished gallbladder filling, increased fecal bile acids, and promotion of colon epithelial cell proliferation and neoplasia in fibroblast growth factor 15‐deficient mice. Oncotarget 9: 25572‐25585, 2018.
 77.Cheng S, Zou M, Liu Q, Kuang J, Shen J, Pu S, Chen L, Li H, Wu T, Li R, Li Y, Jiang W, Zhang Z, He J. Activation of constitutive androstane receptor prevents cholesterol gallstone formation. Am J Pathol 187: 808‐818, 2017.
 78.Chey WD, Camilleri M, Chang L, Rikner L, Graffner H. A randomized placebo‐controlled phase IIb trial of a3309, a bile acid transporter inhibitor, for chronic idiopathic constipation. Am J Gastroenterol 106: 1803‐1812, 2011.
 79.Chiang JYL. Bile acids: Regulation of synthesis. J Lipid Res 50: 1955‐1966, 2009.
 80.Chiang JYL, Pathak P, Liu H, Donepudi A, Ferrell J, Boehme S. Intestinal farnesoid X receptor and Takeda G protein couple receptor 5 signaling in metabolic regulation. Dig Dis 35: 241‐245, 2017.
 81.Chignard N, Mergey M, Veissière D, Parc R, Capeau J, Poupon R, Paul A, Housset C. Bile acid transport and regulating functions in the human biliary epithelium. Hepatology 33: 496‐503, 2001.
 82.Chothe PP, Czuba LC, Moore RH, Swaan PW. Human bile acid transporter ASBT (SLC10A2) forms functional non‐covalent homodimers and higher order oligomers. Biochim Biophys Acta 1860: 645‐653, 2018.
 83.Chothe PP, Swaan PW. Resveratrol promotes degradation of the human bile acid transporter ASBT (SLC10A2). Biochem J 459: 301‐312, 2014.
 84.Chow ECY, Maeng H‐J, Liu S, Khan AA, Groothuis GMM, Pang KS. 1alpha,25‐Dihydroxyvitamin D(3) triggered vitamin D receptor and farnesoid X receptor‐like effects in rat intestine and liver in vivo. Biopharm Drug Dispos 30: 457‐475, 2009.
 85.Chow ECY, Sondervan M, Jin C, Groothuis GMM, Pang KS. Comparative effects of doxercalciferol (1α‐hydroxyvitamin D2) versus calcitriol (1α,25‐dihydroxyvitamin D3) on the expression of transporters and enzymes in the rat in vivo. J Pharm Sci 100: 1594‐1604, 2011.
 86.Christian WV, Li N, Hinkle PM, Ballatori N. β‐Subunit of the Ostα‐Ostβ organic solute transporter is required not only for heterodimerization and trafficking but also for function. J Biol Chem 287: 21233‐21243, 2012.
 87.Christie DM, Dawson PA, Thevananther S, Shneider BL. Comparative analysis of the ontogeny of a sodium‐dependent bile acid transporter in rat kidney and ileum. Am J Physiol 271: G377‐G385, 1996.
 88.Cipriani S, Mencarelli A, Chini MG, Distrutti E, Renga B, Bifulco G, Baldelli F, Donini A, Fiorucci S. The bile acid receptor GPBAR‐1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis. PLoS ONE 6: e25637, 2011.
 89.Conley DR, Coyne MJ, Bonorris GG, Chung A, Schoenfield LJ. Bile acid stimulation of colonic adenylate cyclase and secretion in the rabbit. Am J Dig Dis 21: 453‐458, 1976.
 90.Coon S, Kekuda R, Saha P, Sundaram U. Glucocorticoids differentially regulate Na‐bile acid cotransport in normal and chronically inflamed rabbit ileal villus cells. Am J Physiol Gastrointest Liver Physiol 298: G675‐G682, 2010.
 91.Correia JC, Massart J, de Boer JF, Porsmyr‐Palmertz M, Martínez‐Redondo V, Agudelo LZ, Sinha I, Meierhofer D, Ribeiro V, Björnholm M, Sauer S, Dahlman‐Wright K, Zierath JR, Groen AK, Ruas JL. Bioenergetic cues shift FXR splicing towards FXRα2 to modulate hepatic lipolysis and fatty acid metabolism. Mol Metab 4: 891‐902, 2015.
 92.Craddock AL, Love MW, Daniel RW, Kirby LC, Walters HC, Wong MH, Dawson PA. Expression and transport properties of the human ileal and renal sodium‐dependent bile acid transporter. Am J Physiol 274: G157‐G169, 1998.
 93.da Silva TC, Hussainzada N, Khantwal CM, Polli JE, Swaan PW. Transmembrane helix 1 contributes to substrate translocation and protein stability of bile acid transporter SLC10A2. J Biol Chem 286: 27322‐27332, 2011.
 94.Dawson PA. Impact of inhibiting ileal apical versus basolateral bile acid transport on cholesterol metabolism and atherosclerosis in mice. Dig Dis 33: 382‐387, 2015.
 95.Dawson PA, Haywood J, Craddock AL, Wilson M, Tietjen M, Kluckman K, Maeda N, Parks JS. Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice. J Biol Chem 278: 33920‐33927, 2003.
 96.Dawson PA, Hubbert M, Haywood J, Craddock AL, Zerangue N, Christian WV, Ballatori N. The heteromeric organic solute transporter alpha‐beta, Ostalpha‐Ostbeta, is an ileal basolateral bile acid transporter. J Biol Chem 280: 6960‐6968, 2005.
 97.Dawson PA, Lan T, Rao A. Bile acid transporters. J Lipid Res 50: 2340‐2357, 2009.
 98.Defize J, Wider MD, Walz D, Hunt RH. Isolation and partial characterization of gastrotropin from canine ileum: Further studies of the parietal and chief cell response. Endocrinology 123: 2578‐2584, 1988.
 99.Dekaney CM, von Allmen DC, Garrison AP, Rigby RJ, Lund PK, Henning SJ, Helmrath MA. Bacterial‐dependent up‐regulation of intestinal bile acid binding protein and transport is FXR‐mediated following ileo‐cecal resection. Surgery 144: 174‐181, 2008.
 100.Denson LA, Sturm E, Echevarria W, Zimmerman TL, Makishima M, Mangelsdorf DJ, Karpen SJ. The orphan nuclear receptor, shp, mediates bile acid‐induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology 121: 140‐147, 2001.
 101.Dietschy JM. Mechanisms for the intestinal absorption of bile acids. J Lipid Res 9: 297‐309, 1968.
 102.Donepudi AC, Boehme S, Li F, Chiang JYL. G‐protein‐coupled bile acid receptor plays a key role in bile acid metabolism and fasting‐induced hepatic steatosis in mice. Hepatology 65: 813‐827, 2017.
 103.D'Onofrio M, Zanzoni S, Munari F, Monaco HL, Assfalg M, Capaldi S. The long variant of human ileal bile acid‐binding protein associated with colorectal cancer exhibits sub‐cellular localization and lipid binding behaviour distinct from those of the common isoform. Biochim Biophys Acta Gen Subj 1861: 2315‐2324, 2017.
 104.Duane WC, Xiong W, Lofgren J. Transactivation of the human apical sodium‐dependent bile acid transporter gene by human serum. J Steroid Biochem Mol Biol 108: 137‐148, 2008.
 105.Duane WC, Xiong W, Wolvers J. Effects of bile acids on expression of the human apical sodium dependent bile acid transporter gene. Biochim Biophys Acta 1771: 1380‐1388, 2007.
 106.Düfer M, Hörth K, Wagner R, Schittenhelm B, Prowald S, Wagner TFJ, Oberwinkler J, Lukowski R, Gonzalez FJ, Krippeit‐Drews P, Drews G. Bile acids acutely stimulate insulin secretion of mouse β‐cells via farnesoid X receptor activation and K(ATP) channel inhibition. Diabetes 61: 1479‐1489, 2012.
 107.Eggert T, Bakonyi D, Hummel W. Enzymatic routes for the synthesis of ursodeoxycholic acid. J Biotechnol 191: 11‐21, 2014.
 108.Einarsson K, Ericsson S, Ewerth S, Reihnér E, Rudling M, Ståhlberg D, Angelin B. Bile acid sequestrants: Mechanisms of action on bile acid and cholesterol metabolism. Eur J Clin Pharmacol 40 (Suppl 1): S53‐S58, 1991.
 109.Erickson SK, Lear SR, Deane S, Dubrac S, Huling SL, Nguyen L, Bollineni JS, Shefer S, Hyogo H, Cohen DE, Shneider B, Sehayek E, Ananthanarayanan M, Balasubramaniyan N, Suchy FJ, Batta AK, Salen G. Hypercholesterolemia and changes in lipid and bile acid metabolism in male and female cyp7A1‐deficient mice. J Lipid Res 44: 1001‐1009, 2003.
 110.Fallingborg J, Pedersen P, Jacobsen BA. Small intestinal transit time and intraluminal pH in ileocecal resected patients with Crohn's disease. Dig Dis Sci 43: 702‐705, 1998.
 111.Fang C, Dean J, Smith JW. A novel variant of ileal bile acid binding protein is up‐regulated through nuclear factor‐kappaB activation in colorectal adenocarcinoma. Cancer Res 67: 9039‐9046, 2007.
 112.Fang C, Filipp FV, Smith JW. Unusual binding of ursodeoxycholic acid to ileal bile acid binding protein: Role in activation of FXR. J Lipid Res 53: 664‐673, 2012.
 113.Fang S, Suh JM, Reilly SM, Yu E, Osborn O, Lackey D, Yoshihara E, Perino A, Jacinto S, Lukasheva Y, Atkins AR, Khvat A, Schnabl B, Yu RT, Brenner DA, Coulter S, Liddle C, Schoonjans K, Olefsky JM, Saltiel AR, Downes M, Evans RM. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med 21: 159‐165, 2015.
 114.Favretto F, Ceccon A, Zanzoni S, D'Onofrio M, Ragona L, Molinari H, Assfalg M. The unique ligand binding features of subfamily‐II iLBPs with respect to bile salts and related drugs. Prostaglandins Leukot Essent Fatty Acids 95: 1‐10, 2015.
 115.Felton J, Cheng K, Said A, Shang AC, Xu S, Vivian D, Metry M, Polli JE, Raufman J‐P. Using multi‐fluorinated bile acids and in vivo magnetic resonance imaging to measure bile acid transport. J Vis Exp, 2016. DOI: 10.3791/54597.
 116.Fernández‐Bañares F, Rosinach M, Piqueras M, Ruiz‐Cerulla A, Modolell I, Zabana Y, Guardiola J, Esteve M. Randomised clinical trial: Colestyramine vs. hydroxypropyl cellulose in patients with functional chronic watery diarrhoea. Aliment Pharmacol Ther 41: 1132‐1140, 2015.
 117.Ferrebee CB, Li J, Haywood J, Pachura K, Robinson BS, Hinrichs BH, Jones RM, Rao A, Dawson PA. Organic solute transporter α‐β protects ileal enterocytes from bile acid‐induced injury. Cell Mol Gastroenterol Hepatol 5: 499‐522, 2018.
 118.Ferrell JM, Boehme S, Li F, Chiang JYL. Cholesterol 7α‐hydroxylase‐deficient mice are protected from high‐fat/high‐cholesterol diet‐induced metabolic disorders. J Lipid Res 57: 1144‐1154, 2016.
 119.Fiorucci S, Clerici C, Antonelli E, Orlandi S, Goodwin B, Sadeghpour BM, Sabatino G, Russo G, Castellani D, Willson TM, Pruzanski M, Pellicciari R, Morelli A. Protective effects of 6‐ethyl chenodeoxycholic acid, a farnesoid X receptor ligand, in estrogen‐induced cholestasis. J Pharmacol Exp Ther 313: 604‐612, 2005.
 120.Fischer M, Siva S, Wo JM, Fadda HM. Assessment of small intestinal transit times in ulcerative colitis and Crohn's disease patients with different disease activity using video capsule endoscopy. AAPS PharmSciTech 18: 404‐409, 2017.
 121.Fisher E, Grallert H, Klapper M, Pfäfflin A, Schrezenmeir J, Illig T, Boeing H, Döring F. Evidence for the Thr79Met polymorphism of the ileal fatty acid binding protein (FABP6) to be associated with type 2 diabetes in obese individuals. Mol Genet Metab 98: 400‐405, 2009.
 122.Fisher E, Nitz I, Lindner I, Rubin D, Boeing H, Möhlig M, Hampe J, Schreiber S, Schrezenmeir J, Döring F. Candidate gene association study of type 2 diabetes in a nested case‐control study of the EPIC‐Potsdam cohort – role of fat assimilation. Mol Nutr Food Res 51: 185‐191, 2007.
 123.Flynn CR, Albaugh VL, Cai S, Cheung‐Flynn J, Williams PE, Brucker RM, Bordenstein SR, Guo Y, Wasserman DH, Abumrad NN. Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery. Nat Commun 6: 7715, 2015.
 124.Ford GA, Preece JD, Davies IH, Wilkinson SP. Use of the SeHCAT test in the investigation of diarrhoea. Postgrad Med J 68: 272‐276, 1992.
 125.Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, Noonan DJ, Burka LT, McMorris T, Lamph WW, Evans RM, Weinberger C. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 81: 687‐693, 1995.
 126.Frankenberg T, Miloh T, Chen FY, Ananthanarayanan M, Sun A‐Q, Balasubramaniyan N, Arias I, Setchell KDR, Suchy FJ, Shneider BL. The membrane protein ATPase class I type 8B member 1 signals through protein kinase C zeta to activate the farnesoid X receptor. Hepatology 48: 1896‐1905, 2008.
 127.Frankenberg T, Rao A, Chen F, Haywood J, Shneider BL, Dawson PA. Regulation of the mouse organic solute transporter alpha‐beta, Ostalpha‐Ostbeta, by bile acids. Am J Physiol Gastrointest Liver Physiol 290: G912‐G922, 2006.
 128.Friedman SL, Neuschwander‐Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med 24: 908‐922, 2018.
 129.Frommherz L, Bub A, Hummel E, Rist MJ, Roth A, Watzl B, Kulling SE. Age‐related changes of plasma bile acid concentrations in healthy adults—results from the cross‐sectional KarMeN study. PLoS ONE 11: e0153959, 2016.
 130.Fujino T, Une M, Imanaka T, Inoue K, Nishimaki‐Mogami T. Structure‐activity relationship of bile acids and bile acid analogs in regard to FXR activation. J Lipid Res 45: 132‐138, 2004.
 131.Fujita M, Fujii H, Kanda T, Sato E, Hatakeyama K, Ono T. Molecular cloning, expression, and characterization of a human intestinal 15‐kDa protein. Eur J Biochem 233: 406‐413, 1995.
 132.Gadaleta RM, van Erpecum KJ, Oldenburg B, Willemsen ECL, Renooij W, Murzilli S, Klomp LWJ, Siersema PD, Schipper MEI, Danese S, Penna G, Laverny G, Adorini L, Moschetta A, van Mil SWC. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60: 463‐472, 2011.
 133.Gao T, Feridooni HA, Howlett SE, Pelis RM. Influence of age on intestinal bile acid transport in C57BL/6 mice. Pharmacol Res Perspect 5: e00287, 2017.
 134.Garbutt JT, Kenney TJ. Effect of cholestyramine on bile acid metabolism in normal man. J Clin Invest 51: 2781‐2789, 1972.
 135.Ghosh A, Chen F, Banerjee S, Xu M, Shneider BL. c‐Fos mediates repression of the apical sodium‐dependent bile acid transporter by fibroblast growth factor‐19 in mice. Am J Physiol Gastrointest Liver Physiol 306: G163‐G171, 2014.
 136.Gong YZ, Everett ET, Schwartz DA, Norris JS, Wilson FA. Molecular cloning, tissue distribution, and expression of a 14‐kDa bile acid‐binding protein from rat ileal cytosol. Proc Natl Acad Sci U S A 91: 4741‐4745, 1994.
 137.Gong YZ, Kato T, Schwartz DA, Norris JS, Wilson FA. Ontogenic and glucocorticoid‐accelerated expression of rat 14 kDa bile acid‐binding protein. Anat Rec 245: 532‐538, 1996.
 138.Gonzalez FJ, Jiang C, Xie C, Patterson AD. Intestinal farnesoid X receptor signaling modulates metabolic disease. Dig Dis 35: 178‐184, 2017.
 139.González PM, Hussainzada N, Swaan PW, MacKerell AD, Polli JE. Putative irreversible inhibitors of the human sodium‐dependent bile acid transporter (hASBT; SLC10A2) support the role of transmembrane domain 7 in substrate binding/translocation. Pharm Res 29: 1821‐1831, 2012.
 140.Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, Galardi C, Wilson JG, Lewis MC, Roth ME, Maloney PR, Willson TM, Kliewer SA. A regulatory cascade of the nuclear receptors FXR, SHP‐1, and LRH‐1 represses bile acid biosynthesis. Mol Cell 6: 517‐526, 2000.
 141.Gothe F, Beigel F, Rust C, Hajji M, Koletzko S, Freudenberg F. Bile acid malabsorption assessed by 7 alpha‐hydroxy‐4‐cholesten‐3‐one in pediatric inflammatory bowel disease: Correlation to clinical and laboratory findings. J Crohns Colitis 8: 1072‐1078, 2014.
 142.Grober J, Zaghini I, Fujii H, Jones SA, Kliewer SA, Willson TM, Ono T, Besnard P. Identification of a bile acid‐responsive element in the human ileal bile acid‐binding protein gene: Involvement of the farnesoid X receptor/9‐cis‐retinoic acid receptor heterodimer. J Biol Chem 274: 29749‐29754, 1999.
 143.Guariento M, Assfalg M, Zanzoni S, Fessas D, Longhi R, Molinari H. Chicken ileal bile‐acid‐binding protein: A promising target of investigation to understand binding co‐operativity across the protein family. Biochem J 425: 413‐424, 2009.
 144.Guo C, Chen W‐D, Wang Y‐D. TGR5, not only a metabolic regulator. Front Physiol 7: 646, 2016.
 145.Hagey LR, Crombie DL, Espinosa E, Carey MC, Igimi H, Hofmann AF. Ursodeoxycholic acid in the Ursidae: Biliary bile acids of bears, pandas, and related carnivores. J Lipid Res 34: 1911‐1917, 1993.
 146.Håkansson P, Andersson I, Nyström S, Löfgren L, Amrot LF, Li H. Ontogenetic development and spatial distribution of the ileal apical sodium‐dependent bile acid transporter and the ileal lipid‐binding protein in apoE knockout and C57BL/6 mice. Scand J Gastroenterol 37: 1089‐1096, 2002.
 147.Hallén S, Brändén M, Dawson PA, Sachs G. Membrane insertion scanning of the human ileal sodium/bile acid co‐transporter. Biochemistry 38: 11379‐11388, 1999.
 148.Halpern MD, Holubec H, Dominguez JA, Meza YG, Williams CS, Ruth MC, McCuskey RS, Dvorak B. Hepatic inflammatory mediators contribute to intestinal damage in necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 284: G695‐G702, 2003.
 149.Halpern MD, Holubec H, Saunders TA, Dvorak K, Clark JA, Doelle SM, Ballatori N, Dvorak B. Bile acids induce ileal damage during experimental necrotizing enterocolitis. Gastroenterology 130: 359‐372, 2006.
 150.Halpern MD, Weitkamp J‐H, Mount Patrick SK, Dobrenen HJ, Khailova L, Correa H, Dvorak B. Apical sodium‐dependent bile acid transporter upregulation is associated with necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 299: G623‐G631, 2010.
 151.Han X, Sun J, Wang Y, He Z. PepT1, ASBT‐linked prodrug strategy to improve oral bioavailability and tissue targeting distribution. Curr Drug Metab 16: 71‐83, 2015.
 152.Handelsman Y. Role of bile acid sequestrants in the treatment of type 2 diabetes. Diabetes Care 34 (Suppl 2): S244‐S250, 2011.
 153.Hegade VS, Kendrick SFW, Dobbins RL, Miller SR, Richards D, Storey J, Dukes G, Gilchrist K, Vallow S, Alexander GJ, Corrigan M, Hirschfield GM, Jones DEJ. BAT117213: Ileal bile acid transporter (IBAT) inhibition as a treatment for pruritus in primary biliary cirrhosis: Study protocol for a randomised controlled trial. BMC Gastroenterol 16: 71, 2016.
 154.Hegade VS, Kendrick SFW, Dobbins RL, Miller SR, Thompson D, Richards D, Storey J, Dukes GE, Corrigan M, Oude Elferink RPJ, Beuers U, Hirschfield GM, Jones DE. Effect of ileal bile acid transporter inhibitor GSK2330672 on pruritus in primary biliary cholangitis: A double‐blind, randomised, placebo‐controlled, crossover, phase 2a study. Lancet 389: 1114‐1123, 2017.
 155.Heubi JE, Balistreri WF, Fondacaro JD, Partin JC, Schubert WK. Primary bile acid malabsorption: Defective in vitro ileal active bile acid transport. Gastroenterology 83: 804‐811, 1982.
 156.Heubi JE, Balistreri WF, Partin JC, Schubert WK, McGraw CA. Refractory infantile diarrhea due to primary bile acid malabsorption. J Pediatr 94: 546‐551, 1979.
 157.Heubi JE, Balistreri WF, Suchy FJ. Bile salt metabolism in the first year of life. J Lab Clin Med 100: 127‐136, 1982.
 158.Ho RH, Leake BF, Urquhart BL, Gregor JC, Dawson PA, Kim RB. Functional characterization of genetic variants in the apical sodium‐dependent bile acid transporter (ASBT; SLC10A2). J Gastroenterol Hepatol 26: 1740‐1748, 2011.
 159.Hofmann AF. Regulation of ileal bile acid transport: Desirability of measuring transport function as well as transporter activity. Hepatology 29: 1335‐1337, 1999.
 160.Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med 159: 2647‐2658, 1999.
 161.Hofmann AF, Eckmann L. How bile acids confer gut mucosal protection against bacteria. Proc Natl Acad Sci U S A 103: 4333‐4334, 2006.
 162.Hofmann AF, Hagey LR, Krasowski MD. Bile salts of vertebrates: Structural variation and possible evolutionary significance. J Lipid Res 51: 226‐246, 2010.
 163.Hofmann AF, Mangelsdorf DJ, Kliewer SA. Chronic diarrhea due to excessive bile acid synthesis and not defective ileal transport: A new syndrome of defective fibroblast growth factor 19 release. Clin Gastroenterol Hepatol 7: 1151‐1154, 2009.
 164.Hofmann AF, Mysels KJ. Bile salts as biological surfactants. Colloids Surf 30: 145‐173, 1987.
 165.Hofmann AF, Poley JR. Cholestyramine treatment of diarrhea associated with ileal resection. N Engl J Med 281: 397‐402, 1969.
 166.Holzer A, Harsch S, Renner O, Strohmeyer A, Schimmel S, Wehkamp J, Fritz P, Stange EF. Diminished expression of apical sodium‐dependent bile acid transporter in gallstone disease is independent of ileal inflammation. Digestion 78: 52‐59, 2008.
 167.Horváth G, Bencsura Á, Simon Á, Tochtrop GP, DeKoster GT, Covey DF, Cistola DP, Toke O. Structural determinants of ligand binding in the ternary complex of human ileal bile acid binding protein with glycocholate and glycochenodeoxycholate obtained from solution NMR. FEBS J 283: 541‐555, 2016.
 168.Hruz P, Zimmermann C, Gutmann H, Degen L, Beuers U, Terracciano L, Drewe J, Beglinger C. Adaptive regulation of the ileal apical sodium dependent bile acid transporter (ASBT) in patients with obstructive cholestasis. Gut 55: 395‐402, 2006.
 169.Hu N‐J, Iwata S, Cameron AD, Drew D. Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. Nature 478: 408‐411, 2011.
 170.Hu X, Bonde Y, Eggertsen G, Rudling M. Muricholic bile acids are potent regulators of bile acid synthesis via a positive feedback mechanism. J Intern Med 275: 27‐38, 2014.
 171.Huff MW, Telford DE, Edwards JY, Burnett JR, Barrett PHR, Rapp SR, Napawan N, Keller BT. Inhibition of the apical sodium‐dependent bile acid transporter reduces LDL cholesterol and apoB by enhanced plasma clearance of LDL apoB. Arterioscler Thromb Vasc Biol 22: 1884‐1891, 2002.
 172.Hulzebos CV, van Zoonen AGJF, Hulscher JBF, Schat TE, Kooi EMW, Koehorst M, Boverhof R, Krabbe PFM, Groen AK, Verkade HJ. Fecal bile salts and the development of necrotizing enterocolitis in preterm infants. PLoS ONE 12: e0168633, 2017.
 173.Hussainzada N, Banerjee A, Swaan PW. Transmembrane domain VII of the human apical sodium‐dependent bile acid transporter ASBT (SLC10A2) lines the substrate translocation pathway. Mol Pharmacol 70: 1565‐1574, 2006.
 174.Hussainzada N, Claro Da Silva T, Swaan PW. The cytosolic half of helix III forms the substrate exit route during permeation events of the sodium/bile acid cotransporter ASBT. Biochemistry 48: 8528‐8539, 2009.
 175.Hussainzada N, da Silva TC, Zhang EY, Swaan PW. Conserved aspartic acid residues lining the extracellular loop 1 of sodium‐coupled bile acid transporter ASBT Interact with Na+ and 7alpha‐OH moieties on the ligand cholestane skeleton. J Biol Chem 283: 20653‐20663, 2008.
 176.Hussainzada N, Khandewal A, Swaan PW. Conformational flexibility of helix VI is essential for substrate permeation of the human apical sodium‐dependent bile acid transporter. Mol Pharmacol 73: 305‐313, 2008.
 177.Hwang ST, Henning SJ. Ontogenic regulation of components of ileal bile acid absorption. Exp Biol Med (Maywood) 226: 674‐680, 2001.
 178.Hwang ST, Urizar NL, Moore DD, Henning SJ. Bile acids regulate the ontogenic expression of ileal bile acid binding protein in the rat via the farnesoid X receptor. Gastroenterology 122: 1483‐1492, 2002.
 179.Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2: 217‐225, 2005.
 180.Inagaki T, Moschetta A, Lee Y‐K, Peng L, Zhao G, Downes M, Yu RT, Shelton JM, Richardson JA, Repa JJ, Mangelsdorf DJ, Kliewer SA. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A 103: 3920‐3925, 2006.
 181.Ishibashi S, Schwarz M, Frykman PK, Herz J, Russell DW. Disruption of cholesterol 7alpha‐hydroxylase gene in mice. I. Postnatal lethality reversed by bile acid and vitamin supplementation. J Biol Chem 271: 18017‐18023, 1996.
 182.Jahnel J, Fickert P, Hauer AC, Högenauer C, Avian A, Trauner M. Inflammatory bowel disease alters intestinal bile acid transporter expression. Drug Metab Dispos 42: 1423‐1431, 2014.
 183.Jiang C, Xie C, Lv Y, Li J, Krausz KW, Shi J, Brocker CN, Desai D, Amin SG, Bisson WH, Liu Y, Gavrilova O, Patterson AD, Gonzalez FJ. Intestine‐selective farnesoid X receptor inhibition improves obesity‐related metabolic dysfunction. Nat Commun 6: 10166, 2015.
 184.Johnston IM, Nolan JD, Pattni SS, Appleby RN, Zhang JH, Kennie SL, Madhan GK, Jameie‐Oskooei S, Pathmasrirengam S, Lin J, Hong A, Dixon PH, Williamson C, Walters JRF. Characterizing factors associated with differences in FGF19 blood levels and synthesis in patients with primary bile acid diarrhea. Am J Gastroenterol 111: 423‐432, 2016.
 185.Josephson B, Rydin A. The resorption of the bile acids from the intestines. Biochem J 30: 2224‐2228, 1936.
 186.Jung D, Fantin AC, Scheurer U, Fried M, Kullak‐Ublick GA. Human ileal bile acid transporter gene ASBT (SLC10A2) is transactivated by the glucocorticoid receptor. Gut 53: 78‐84, 2004.
 187.Jung D, Fried M, Kullak‐Ublick GA. Human apical sodium‐dependent bile salt transporter gene (SLC10A2) is regulated by the peroxisome proliferator‐activated receptor alpha. J Biol Chem 277: 30559‐30566, 2002.
 188.Kaikaus RM, Bass NM, Ockner RK. Functions of fatty acid binding proteins. Experientia 46: 617‐630, 1990.
 189.Kanda T, Foucand L, Nakamura Y, Niot I, Besnard P, Fujita M, Sakai Y, Hatakeyama K, Ono T, Fujii H. Regulation of expression of human intestinal bile acid‐binding protein in Caco‐2 cells. Biochem J 330 (Pt 1): 261‐265, 1998.
 190.Kanda T, Niot I, Foucaud L, Fujii H, Bernard A, Ono T, Besnard P. Effect of bile on the intestinal bile‐acid binding protein (I‐BABP) expression. In vitro and in vivo studies. FEBS Lett 384: 131‐134, 1996.
 191.Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon‐like peptide‐1 secretion through TGR5 in a murine enteroendocrine cell line STC‐1. Biochem Biophys Res Commun 329: 386‐390, 2005.
 192.Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, Fukusumi S, Habata Y, Itoh T, Shintani Y, Hinuma S, Fujisawa Y, Fujino M. A G protein‐coupled receptor responsive to bile acids. J Biol Chem 278: 9435‐9440, 2003.
 193.Kazgan N, Metukuri MR, Purushotham A, Lu J, Rao A, Lee S, Pratt‐Hyatt M, Lickteig A, Csanaky IL, Zhao Y, Dawson PA, Li X. Intestine‐specific deletion of SIRT1 in mice impairs DCoH2‐HNF‐1α‐FXR signaling and alters systemic bile acid homeostasis. Gastroenterology 146: 1006‐1016, 2014.
 194.Keely SJ, Scharl MM, Bertelsen LS, Hagey LR, Barrett KE, Hofmann AF. Bile acid‐induced secretion in polarized monolayers of T84 colonic epithelial cells: Structure‐activity relationships. Am J Physiol Gastrointest Liver Physiol 292: G290‐G297, 2007.
 195.Kerr TA, Saeki S, Schneider M, Schaefer K, Berdy S, Redder T, Shan B, Russell DW, Schwarz M. Loss of nuclear receptor SHP impairs but does not eliminate negative feedback regulation of bile acid synthesis. Dev Cell 2: 713‐720, 2002.
 196.Khan AA, Chow ECY, Porte RJ, Pang KS, Groothuis GMM. Expression and regulation of the bile acid transporter, OSTalpha‐OSTbeta in rat and human intestine and liver. Biopharm Drug Dispos 30: 241‐258, 2009.
 197.Khantwal CM, Swaan PW. Cytosolic half of transmembrane domain IV of the human bile acid transporter hASBT (SLC10A2) forms part of the substrate translocation pathway. Biochemistry 47: 3606‐3614, 2008.
 198.Kim I, Ahn S‐H, Inagaki T, Choi M, Ito S, Guo GL, Kliewer SA, Gonzalez FJ. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res 48: 2664‐2672, 2007.
 199.Kim Y‐C, Byun S, Zhang Y, Seok S, Kemper B, Ma J, Kemper JK. Liver ChIP‐seq analysis in FGF19‐treated mice reveals SHP as a global transcriptional partner of SREBP‐2. Genome Biol 16: 268, 2015.
 200.Kir S, Zhang Y, Gerard RD, Kliewer SA, Mangelsdorf DJ. Nuclear receptors HNF4α and LRH‐1 cooperate in regulating Cyp7a1 in vivo. J Biol Chem 287: 41334‐41341, 2012.
 201.Kitayama K, Nakai D, Kono K, van der Hoop AG, Kurata H, de Wit EC, Cohen LH, Inaba T, Kohama T. Novel non‐systemic inhibitor of ileal apical Na+‐dependent bile acid transporter reduces serum cholesterol levels in hamsters and monkeys. Eur J Pharmacol 539: 89‐98, 2006.
 202.Kliewer SA, Moore JT, Wade L, Staudinger JL, Watson MA, Jones SA, McKee DD, Oliver BB, Willson TM, Zetterström RH, Perlmann T, Lehmann JM. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92: 73‐82, 1998.
 203.Klomp LWJ, Vargas JC, van Mil SWC, Pawlikowska L, Strautnieks SS, van Eijk MJT, Juijn JA, Pabón‐Peña C, Smith LB, DeYoung JA, Byrne JA, Gombert J, van der Brugge G, Berger R, Jankowska I, Pawlowska J, Villa E, Knisely AS, Thompson RJ, Freimer NB, Houwen RHJ, Bull LN. Characterization of mutations in ATP8B1 associated with hereditary cholestasis. Hepatology 40: 27‐38, 2004.
 204.Kok T, Hulzebos CV, Wolters H, Havinga R, Agellon LB, Stellaard F, Shan B, Schwarz M, Kuipers F. Enterohepatic circulation of bile salts in farnesoid X receptor‐deficient mice: Efficient intestinal bile salt absorption in the absence of ileal bile acid‐binding protein. J Biol Chem 278: 41930‐41937, 2003.
 205.Kolhatkar V, Polli JE. Structural requirements of bile acid transporters: C‐3 and C‐7 modifications of steroidal hydroxyl groups. Eur J Pharm Sci 46: 86‐99, 2012.
 206.Kong B, Wang L, Chiang JYL, Zhang Y, Klaassen CD, Guo GL. Mechanism of tissue‐specific farnesoid X receptor in suppressing the expression of genes in bile‐acid synthesis in mice. Hepatology 56: 1034‐1043, 2012.
 207.Kovár J, Lenícek M, Zimolová M, Vítek L, Jirsa M, Pitha J. Regulation of diurnal variation of cholesterol 7alpha‐hydroxylase (CYP7A1) activity in healthy subjects. Physiol Res 59: 233‐238, 2010.
 208.Kowdley KV, Luketic V, Chapman R, Hirschfield GM, Poupon R, Schramm C, Vincent C, Rust C, Parés A, Mason A, Marschall H‐U, Shapiro D, Adorini L, Sciacca C, Beecher‐Jones T, Böhm O, Pencek R, Jones D, Obeticholic Acid PBC Monotherapy Study Group. A randomized trial of obeticholic acid monotherapy in patients with primary biliary cholangitis. Hepatology 67: 1890‐1902, 2018.
 209.Krag E, Phillips SF. Active and passive bile acid absorption in man. Perfusion studies of the ileum and jejunum. J Clin Invest 53: 1686‐1694, 1974.
 210.Kramer W, Burckhardt G, Wilson FA, Kurz G. Bile salt‐binding polypeptides in brush‐border membrane vesicles from rat small intestine revealed by photoaffinity labeling. J Biol Chem 258: 3623‐3627, 1983.
 211.Kramer W, Corsiero D, Friedrich M, Girbig F, Stengelin S, Weyland C. Intestinal absorption of bile acids: Paradoxical behaviour of the 14 kDa ileal lipid‐binding protein in differential photoaffinity labelling. Biochem J 333 (Pt 2): 335‐341, 1998.
 212.Kramer W, Girbig F, Glombik H, Corsiero D, Stengelin S, Weyland C. Identification of a ligand‐binding site in the Na+/bile acid cotransporting protein from rabbit ileum. J Biol Chem 276: 36020‐36027, 2001.
 213.Kramer W, Girbig F, Gutjahr U, Kowalewski S. Radiation‐inactivation analysis of the Na+/bile acid co‐transport system from rabbit ileum. Biochem J 306 (Pt 1): 241‐246, 1995.
 214.Kramer W, Girbig F, Gutjahr U, Kowalewski S, Jouvenal K, Müller G, Tripier D, Wess G. Intestinal bile acid absorption. Na(+)‐dependent bile acid transport activity in rabbit small intestine correlates with the coexpression of an integral 93‐kDa and a peripheral 14‐kDa bile acid‐binding membrane protein along the duodenum‐ileum axis. J Biol Chem 268: 18035‐18046, 1993.
 215.Kramer W, Nicol SB, Girbig F, Gutjahr U, Kowalewski S, Fasold H. Characterization and chemical modification of the Na(+)‐dependent bile‐acid transport system in brush‐border membrane vesicles from rabbit ileum. Biochim Biophys Acta 1111: 93‐102, 1992.
 216.Kubitz R, Dröge C, Kluge S, Stindt J, Häussinger D. Genetic variations of bile salt transporters. Drug Discov Today Technol 12: e55‐e67, 2014.
 217.Kumar DP, Rajagopal S, Mahavadi S, Mirshahi F, Grider JR, Murthy KS, Sanyal AJ. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells. Biochem Biophys Res Commun 427: 600‐605, 2012.
 218.Kwong E, Li Y, Hylemon PB, Zhou H. Bile acids and sphingosine‐1‐phosphate receptor 2 in hepatic lipid metabolism. Acta Pharm Sin B 5: 151‐157, 2015.
 219.Lammert F, Paigen B, Carey MC. Localization of the ileal sodium‐bile salt cotransporter gene (Slc10a2) to mouse chromosome 8. Mamm Genome 9: 173‐174, 1998.
 220.Lan T, Haywood J, Dawson PA. Inhibition of ileal apical but not basolateral bile acid transport reduces atherosclerosis in apoE−/− mice. Atherosclerosis 229: 374‐380, 2013.
 221.Lan T, Haywood J, Rao A, Dawson PA. Molecular mechanisms of altered bile acid homeostasis in organic solute transporter‐alpha knockout mice. Dig Dis 29: 18‐22, 2011.
 222.Lan T, Rao A, Haywood J, Kock ND, Dawson PA. Mouse organic solute transporter alpha deficiency alters FGF15 expression and bile acid metabolism. J Hepatol 57: 359‐365, 2012.
 223.Landrier J‐F, Eloranta JJ, Vavricka SR, Kullak‐Ublick GA. The nuclear receptor for bile acids, FXR, transactivates human organic solute transporter‐alpha and ‐beta genes. Am J Physiol Gastrointest Liver Physiol 290: G476‐G485, 2006.
 224.Landrier J‐F, Grober J, Demydchuk J, Besnard P. FXRE can function as an LXRE in the promoter of human ileal bile acid‐binding protein (I‐BABP) gene. FEBS Lett 553: 299‐303, 2003.
 225.Landrier JF, Thomas C, Grober J, Zaghini I, Petit V, Poirier H, Niot I, Besnard P. The gene encoding the human ileal bile acid‐binding protein (I‐BABP) is regulated by peroxisome proliferator‐activated receptors. Biochim Biophys Acta 1735: 41‐49, 2005.
 226.Lazaridis KN, Pham L, Tietz P, Marinelli RA, deGroen PC, Levine S, Dawson PA, LaRusso NF. Rat cholangiocytes absorb bile acids at their apical domain via the ileal sodium‐dependent bile acid transporter. J Clin Invest 100: 2714‐2721, 1997.
 227.Lazaridis KN, Tietz P, Wu T, Kip S, Dawson PA, LaRusso NF. Alternative splicing of the rat sodium/bile acid transporter changes its cellular localization and transport properties. Proc Natl Acad Sci U S A 97: 11092‐11097, 2000.
 228.Le T‐A, Chen J, Changchien C, Peterson MR, Kono Y, Patton H, Cohen BL, Brenner D, Sirlin C, Loomba R, San Diego Integrated NAFLD Research Consortium (SINC). Effect of colesevelam on liver fat quantified by magnetic resonance in nonalcoholic steatohepatitis: A randomized controlled trial. Hepatology 56: 922‐932, 2012.
 229.Lee H, Zhang Y, Lee FY, Nelson SF, Gonzalez FJ, Edwards PA. FXR regulates organic solute transporters alpha and beta in the adrenal gland, kidney, and intestine. J Lipid Res 47: 201‐214, 2006.
 230.Lee Y‐K, Schmidt DR, Cummins CL, Choi M, Peng L, Zhang Y, Goodwin B, Hammer RE, Mangelsdorf DJ, Kliewer SA. Liver receptor homolog‐1 regulates bile acid homeostasis but is not essential for feedback regulation of bile acid synthesis. Mol Endocrinol 22: 1345‐1356, 2008.
 231.Lehmann JM, McKee DD, Watson MA, Willson TM, Moore JT, Kliewer SA. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 102: 1016‐1023, 1998.
 232.Lenicek M, Duricova D, Komarek V, Gabrysova B, Lukas M, Smerhovsky Z, Vítek L. Bile acid malabsorption in inflammatory bowel disease: Assessment by serum markers. Inflamm Bowel Dis 17: 1322‐1327, 2011.
 233.Li H, Chen F, Shang Q, Pan L, Shneider BL, Chiang JYL, Forman BM, Ananthanarayanan M, Tint GS, Salen G, Xu G. FXR‐activating ligands inhibit rabbit ASBT expression via FXR‐SHP‐FTF cascade. Am J Physiol Gastrointest Liver Physiol 288: G60‐G66, 2005.
 234.Li H, Liu Y, Zhang X, Xu Q, Zhang Y, Xue C, Guo C. Medium‐chain fatty acids decrease serum cholesterol via reduction of intestinal bile acid reabsorption in C57BL/6J mice. Nutr Metab (Lond) 15: 37, 2018.
 235.Li H, Xu G, Shang Q, Pan L, Shefer S, Batta AK, Bollineni J, Tint GS, Keller BT, Salen G. Inhibition of ileal bile acid transport lowers plasma cholesterol levels by inactivating hepatic farnesoid X receptor and stimulating cholesterol 7 alpha‐hydroxylase. Metab Clin Exp 53: 927‐932, 2004.
 236.Li T, Apte U. Bile acid metabolism and signaling in cholestasis, inflammation, and cancer. Adv Pharmacol 74: 263‐302, 2015.
 237.Li T, Chen W, Chiang JYL. PXR induces CYP27A1 and regulates cholesterol metabolism in the intestine. J Lipid Res 48: 373‐384, 2007.
 238.Li T, Chiang JYL. Mechanism of rifampicin and pregnane X receptor inhibition of human cholesterol 7 alpha‐hydroxylase gene transcription. Am J Physiol Gastrointest Liver Physiol 288: G74‐G84, 2005.
 239.Li T, Francl JM, Boehme S, Ochoa A, Zhang Y, Klaassen CD, Erickson SK, Chiang JYL. Glucose and insulin induction of bile acid synthesis: Mechanisms and implication in diabetes and obesity. J Biol Chem 287: 1861‐1873, 2012.
 240.Li‐Hawkins J, Gåfvels M, Olin M, Lund EG, Andersson U, Schuster G, Björkhem I, Russell DW, Eggertsen G. Cholic acid mediates negative feedback regulation of bile acid synthesis in mice. J Clin Invest 110: 1191‐1200, 2002.
 241.Lin MC, Gong YZ, Geoghegan KF, Wilson FA. Characterization of a novel 14 kDa bile acid‐binding protein from rat ileal cytosol. Biochim Biophys Acta 1078: 329‐335, 1991.
 242.Lin MC, Kramer W, Wilson FA. Identification of cytosolic and microsomal bile acid‐binding proteins in rat ileal enterocytes. J Biol Chem 265: 14986‐14995, 1990.
 243.Lin MC, Mullady E, Wilson FA. Timed photoaffinity labeling and characterization of bile acid binding and transport proteins in rat ileum. Am J Physiol 265: G56‐G62, 1993.
 244.Lionarons DA, Boyer JL, Cai S‐Y. Evolution of substrate specificity for the bile salt transporter ASBT (SLC10A2). J Lipid Res 53: 1535‐1542, 2012.
 245.Lorenzo‐Zúñiga V, Bartolí R, Planas R, Hofmann AF, Viñado B, Hagey LR, Hernández JM, Mañé J, Alvarez MA, Ausina V, Gassull MA. Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology 37: 551‐557, 2003.
 246.Lozano E, Monte MJ, Briz O, Hernández‐Hernández A, Banales JM, Marin JJG, Macias RIR. Enhanced antitumour drug delivery to cholangiocarcinoma through the apical sodium‐dependent bile acid transporter (ASBT). J Control Release 216: 93‐102, 2015.
 247.Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, Mangelsdorf DJ. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 6: 507‐515, 2000.
 248.Lücke C, Zhang F, Rüterjans H, Hamilton JA, Sacchettini JC. Flexibility is a likely determinant of binding specificity in the case of ileal lipid binding protein. Structure 4: 785‐800, 1996.
 249.Lundåsen T, Andersson E‐M, Snaith M, Lindmark H, Lundberg J, Östlund‐Lindqvist A‐M, Angelin B, Rudling M. Inhibition of intestinal bile acid transporter Slc10a2 improves triglyceride metabolism and normalizes elevated plasma glucose levels in mice. PLoS One 7: e37787, 2012.
 250.Lundåsen T, Gälman C, Angelin B, Rudling M. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J Intern Med 260: 530‐536, 2006.
 251.Ma K, Saha PK, Chan L, Moore DD. Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest 116: 1102‐1109, 2006.
 252.Ma L, Jüttner M, Kullak‐Ublick GA, Eloranta JJ. Regulation of the gene encoding the intestinal bile acid transporter ASBT by the caudal‐type homeobox proteins CDX1 and CDX2. Am J Physiol Gastrointest Liver Physiol 302: G123‐G133, 2012.
 253.Ma Y, Huang Y, Yan L, Gao M, Liu D. Synthetic FXR agonist GW4064 prevents diet‐induced hepatic steatosis and insulin resistance. Pharm Res 30: 1447‐1457, 2013.
 254.Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ. Vitamin D receptor as an intestinal bile acid sensor. Science 296: 1313‐1316, 2002.
 255.Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B. Identification of a nuclear receptor for bile acids. Science 284: 1362‐1365, 1999.
 256.Martins RM, Silva CAD, Becker CM, Samios D, Christoff M, Bica CID. Anionic surfactant aggregation with (Hydroxypropyl)cellulose in the presence of added salt. J Braz Chem Soc 17: 944‐953, 2006.
 257.Martoni CJ, Labbé A, Ganopolsky JG, Prakash S, Jones ML. Changes in bile acids, FGF‐19 and sterol absorption in response to bile salt hydrolase active L. reuteri NCIMB 30242. Gut Microbes 6: 57‐65, 2015.
 258.Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, Nakamura T, Itadani H, Tanaka K. Identification of membrane‐type receptor for bile acids (M‐BAR). Biochem Biophys Res Commun 298: 714‐719, 2002.
 259.Maruyama T, Tanaka K, Suzuki J, Miyoshi H, Harada N, Nakamura T, Miyamoto Y, Kanatani A, Tamai Y. Targeted disruption of G protein‐coupled bile acid receptor 1 (Gpbar1/M‐Bar) in mice. J Endocrinol 191: 197‐205, 2006.
 260.McGettigan BM, McMahan RH, Luo Y, Wang XX, Orlicky DJ, Porsche C, Levi M, Rosen HR. Sevelamer improves steatohepatitis, inhibits liver and intestinal farnesoid X receptor (FXR), and reverses innate immune dysregulation in a mouse model of non‐alcoholic fatty liver disease. J Biol Chem 291: 23058‐23067, 2016.
 261.Meihoff WE, Kern F. Bile salt malabsorption in regional ileitis, ileal resection, and mannitol‐induced diarrhea. J Clin Invest 47: 261‐267, 1968.
 262.Mekjian HS, Phillips SF, Hofmann AF. Colonic secretion of water and electrolytes induced by bile acids: Perfusion studies in man. J Clin Invest 50: 1569‐1577, 1971.
 263.Metry M, Felton J, Cheng K, Xu S, Ai Y, Xue F, Raufman J‐P, Polli JE. Attenuated accumulation of novel fluorine (19F)‐labeled bile acid analogues in gallbladders of fibroblast growth factor‐15 (FGF15)‐deficient mice. Mol Pharm 15: 4827‐4834, 2018.
 264.Miethke AG, Zhang W, Simmons J, Taylor AE, Shi T, Shanmukhappa SK, Karns R, White S, Jegga AG, Lages CS, Nkinin S, Keller BT, Setchell KDR. Pharmacological inhibition of apical sodium‐dependent bile acid transporter changes bile composition and blocks progression of sclerosing cholangitis in multidrug resistance 2 knockout mice. Hepatology 63: 512‐523, 2016.
 265.Miyata M, Matsuda Y, Nomoto M, Takamatsu Y, Sato N, Hamatsu M, Dawson PA, Gonzalez FJ, Yamazoe Y. Cholesterol feeding prevents hepatic accumulation of bile acids in cholic acid‐fed farnesoid X receptor (FXR)‐null mice: FXR‐independent suppression of intestinal bile acid absorption. Drug Metab Dispos 37: 338‐344, 2009.
 266.Miyata M, Yamakawa H, Hamatsu M, Kuribayashi H, Takamatsu Y, Yamazoe Y. Enterobacteria modulate intestinal bile acid transport and homeostasis through apical sodium‐dependent bile acid transporter (SLC10A2) expression. J Pharmacol Exp Ther 336: 188‐196, 2011.
 267.Miyata M, Yamakawa H, Hayashi K, Kuribayashi H, Yamazoe Y, Yoshinari K. Ileal apical sodium‐dependent bile acid transporter protein levels are down‐regulated through ubiquitin‐dependent protein degradation induced by bile acids. Eur J Pharmacol 714: 507‐514, 2013.
 268.Montagnani M, Tsivian M, Neri F, Zvi IB, Mantovani I, Nanni P, Benevento M, Simoni P, Marangoni A, Pariali M, Fato R, Bergamini C, Leoni S, Azzaroli F, Mazzella G, Nardo B, Roda E, Aldini R. A new model for portal protein profile analysis in course of ileal intraluminal bile acid infusion using an in situ perfused rat intestine. Med Chem 7: 257‐264, 2011.
 269.Monteiro I, David ES, Ferraris RP. Ontogenetic development of rat intestinal bile acid transport requires thyroxine but not corticosterone. Pediatr Res 55: 611‐621, 2004.
 270.Moore RH, Chothe P, Swaan PW. Transmembrane domain V plays a stabilizing role in the function of human bile acid transporter SLC10A2. Biochemistry 52: 5117‐5124, 2013.
 271.Mottino AD, Hoffman T, Dawson PA, Luquita MG, Monti JA, Sánchez Pozzi EJ, Catania VA, Cao J, Vore M. Increased expression of ileal apical sodium‐dependent bile acid transporter in postpartum rats. Am J Physiol Gastrointest Liver Physiol 282: G41‐G50, 2002.
 272.Mueller M, Thorell A, Claudel T, Jha P, Koefeler H, Lackner C, Hoesel B, Fauler G, Stojakovic T, Einarsson C, Marschall H‐U, Trauner M. Ursodeoxycholic acid exerts farnesoid X receptor‐antagonistic effects on bile acid and lipid metabolism in morbid obesity. J Hepatol 62: 1398‐1404, 2015.
 273.Mullins JG, Beechey RB, Gould GW, Campbell FC, Shirazi‐Beechey SP. Characterization of the ileal Na+/bile salt co‐transporter in brush border membrane vesicles and functional expression in Xenopus laevis oocytes. Biochem J 285 (Pt 3): 785‐790, 1992.
 274.Muthusamy S, Malhotra P, Hosameddin M, Dudeja AK, Borthakur S, Saksena S, Gill RK, Dudeja PK, Alrefai WA. N‐glycosylation is essential for ileal ASBT function and protection against proteases. Am J Physiol Cell Physiol 308: C964‐C971, 2015.
 275.Nakahara M, Furuya N, Takagaki K, Sugaya T, Hirota K, Fukamizu A, Kanda T, Fujii H, Sato R. Ileal bile acid‐binding protein, functionally associated with the farnesoid X receptor or the ileal bile acid transporter, regulates bile acid activity in the small intestine. J Biol Chem 280: 42283‐42289, 2005.
 276.Nakajima A, Seki M, Taniguchi S, Ohta A, Gillberg P‐G, Mattsson JP, Camilleri M. Safety and efficacy of elobixibat for chronic constipation: Results from a randomised, double‐blind, placebo‐controlled, phase 3 trial and an open‐label, single‐arm, phase 3 trial. Lancet Gastroenterol Hepatol 3: 537‐547, 2018.
 277.Nakao N, Kaneda H, Tsushima N, Ohta Y, Tanaka M. Characterization of primary structure and tissue expression profile of the chicken apical sodium‐dependent bile acid transporter mRNA. Poult Sci 94: 722‐727, 2015.
 278.Neimark E, Chen F, Li X, Magid MS, Alasio TM, Frankenberg T, Sinha J, Dawson PA, Shneider BL. c‐Fos is a critical mediator of inflammatory‐mediated repression of the apical sodium‐dependent bile acid transporter. Gastroenterology 131: 554‐567, 2006.
 279.Neimark E, Chen F, Li X, Shneider BL. Bile acid‐induced negative feedback regulation of the human ileal bile acid transporter. Hepatology 40: 149‐156, 2004.
 280.Nevens F, Andreone P, Mazzella G, Strasser SI, Bowlus C, Invernizzi P, Drenth JPH, Pockros PJ, Regula J, Beuers U, Trauner M, Jones DE, Floreani A, Hohenester S, Luketic V, Shiffman M, van Erpecum KJ, Vargas V, Vincent C, Hirschfield GM, Shah H, Hansen B, Lindor KD, Marschall H‐U, Kowdley KV, Hooshmand‐Rad R, Marmon T, Sheeron S, Pencek R, MacConell L, Pruzanski M, Shapiro D, POISE Study Group. A placebo‐controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med 375: 631‐643, 2016.
 281.Nizamutdinov D, DeMorrow S, McMillin M, Kain J, Mukherjee S, Zeitouni S, Frampton G, Bricker PCS, Hurst J, Shapiro LA. Hepatic alterations are accompanied by changes to bile acid transporter‐expressing neurons in the hypothalamus after traumatic brain injury. Sci Rep 7: 40112, 2017.
 282.Noble CL, Abbas AR, Lees CW, Cornelius J, Toy K, Modrusan Z, Clark HF, Arnott ID, Penman ID, Satsangi J, Diehl L. Characterization of intestinal gene expression profiles in Crohn's disease by genome‐wide microarray analysis. Inflamm Bowel Dis 16: 1717‐1728, 2010.
 283.Nowicki MJ, Shneider BL, Paul JM, Heubi JE. Glucocorticoids upregulate taurocholate transport by ileal brush‐border membrane. Am J Physiol 273: G197‐G203, 1997.
 284.Oelkers P, Dawson PA. Cloning and chromosomal localization of the human ileal lipid‐binding protein. Biochim Biophys Acta 1257: 199‐202, 1995.
 285.Oelkers P, Kirby LC, Heubi JE, Dawson PA. Primary bile acid malabsorption caused by mutations in the ileal sodium‐dependent bile acid transporter gene (SLC10A2). J Clin Invest 99: 1880‐1887, 1997.
 286.Okuwaki M, Takada T, Iwayanagi Y, Koh S, Kariya Y, Fujii H, Suzuki H. LXR alpha transactivates mouse organic solute transporter alpha and beta via IR‐1 elements shared with FXR. Pharm Res 24: 390‐398, 2007.
 287.Out C, Dikkers A, Laskewitz A, Boverhof R, van der Ley C, Kema IP, Wolters H, Havinga R, Verkade HJ, Kuipers F, Tietge UJF, Groen AK. Prednisolone increases enterohepatic cycling of bile acids by induction of Asbt and promotes reverse cholesterol transport. J Hepatol 61: 351‐357, 2014.
 288.Out C, Patankar JV, Doktorova M, Boesjes M, Bos T, de Boer S, Havinga R, Wolters H, Boverhof R, van Dijk TH, Smoczek A, Bleich A, Sachdev V, Kratky D, Kuipers F, Verkade HJ, Groen AK. Gut microbiota inhibit Asbt‐dependent intestinal bile acid reabsorption via Gata4. J Hepatol 63: 697‐704, 2015.
 289.Palmer M, Jennings L, Silberg DG, Bliss C, Martin P. A randomised, double‐blind, placebo‐controlled phase 1 study of the safety, tolerability and pharmacodynamics of volixibat in overweight and obese but otherwise healthy adults: Implications for treatment of non‐alcoholic steatohepatitis. BMC Pharmacol Toxicol 19: 10, 2018.
 290.Pan DH, Chen F, Neimark E, Li X, Shneider BL. FTF and LRH‐1, two related but different transcription factors in human Caco‐2 cells: Their different roles in the regulation of bile acid transport. Biochim Biophys Acta 1732: 31‐37, 2005.
 291.Pan W, Song I‐S, Shin H‐J, Kim M‐H, Choi Y‐L, Lim S‐J, Kim W‐Y, Lee S‐S, Shin J‐G. Genetic polymorphisms in Na+‐taurocholate co‐transporting polypeptide (NTCP) and ileal apical sodium‐dependent bile acid transporter (ASBT) and ethnic comparisons of functional variants of NTCP among Asian populations. Xenobiotica 41: 501‐510, 2011.
 292.Pandak WM, Ren S, Marques D, Hall E, Redford K, Mallonee D, Bohdan P, Heuman D, Gil G, Hylemon P. Transport of cholesterol into mitochondria is rate‐limiting for bile acid synthesis via the alternative pathway in primary rat hepatocytes. J Biol Chem 277: 48158‐48164, 2002.
 293.Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Willson TM, Zavacki AM, Moore DD, Lehmann JM. Bile acids: Natural ligands for an orphan nuclear receptor. Science 284: 1365‐1368, 1999.
 294.Patti M‐E, Houten SM, Bianco AC, Bernier R, Larsen PR, Holst JJ, Badman MK, Maratos‐Flier E, Mun EC, Pihlajamaki J, Auwerx J, Goldfine AB. Serum bile acids are higher in humans with prior gastric bypass: Potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring) 17: 1671‐1677, 2009.
 295.Pattni SS, Brydon WG, Dew T, Johnston IM, Nolan JD, Srinivas M, Basumani P, Bardhan KD, Walters JRF. Fibroblast growth factor 19 in patients with bile acid diarrhoea: A prospective comparison of FGF19 serum assay and SeHCAT retention. Aliment Pharmacol Ther 38: 967‐976, 2013.
 296.Pattni SS, Brydon WG, Dew T, Walters JRF. Fibroblast growth factor 19 and 7α‐hydroxy‐4‐cholesten‐3‐one in the diagnosis of patients with possible bile acid diarrhea. Clin Transl Gastroenterol 3: e18, 2012.
 297.Pavek P, Pregnane X. Receptor (PXR)‐mediated gene repression and cross‐talk of PXR with other nuclear receptors via coactivator interactions. Front Pharmacol 7: 456, 2016.
 298.Pawlikowska L, Groen A, Eppens EF, Kunne C, Ottenhoff R, Looije N, Knisely AS, Killeen NP, Bull LN, Elferink RPJO, Freimer NB. A mouse genetic model for familial cholestasis caused by ATP8B1 mutations reveals perturbed bile salt homeostasis but no impairment in bile secretion. Hum Mol Genet 13: 881‐892, 2004.
 299.Pellicciari R, Fiorucci S, Camaioni E, Clerici C, Costantino G, Maloney PR, Morelli A, Parks DJ, Willson TM. 6alpha‐Ethyl‐chenodeoxycholic acid (6‐ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J Med Chem 45: 3569‐3572, 2002.
 300.Perumpail BJ, Khan MA, Yoo ER, Cholankeril G, Kim D, Ahmed A. Clinical epidemiology and disease burden of nonalcoholic fatty liver disease. World J Gastroenterol 23: 8263‐8276, 2017.
 301.Pineda Torra I, Claudel T, Duval C, Kosykh V, Fruchart J‐C, Staels B. Bile acids induce the expression of the human peroxisome proliferator‐activated receptor alpha gene via activation of the farnesoid X receptor. Mol Endocrinol 17: 259‐272, 2003.
 302.Pizones Ruiz‐Henestrosa VCM, Bellesi FA, Camino NA, Pilosof AMR. The impact of HPMC structure in the modulation of in vitro lipolysis: The role of bile salts. Food Hydrocoll 62: 251‐261, 2017.
 303.Popescu IR, Helleboid‐Chapman A, Lucas A, Vandewalle B, Dumont J, Bouchaert E, Derudas B, Kerr‐Conte J, Caron S, Pattou F, Staels B. The nuclear receptor FXR is expressed in pancreatic beta‐cells and protects human islets from lipotoxicity. FEBS Lett 584: 2845‐2851, 2010.
 304.Potter GD, Sellin JH, Burlingame SM. Bile acid stimulation of cyclic AMP and ion transport in developing rabbit colon. J Pediatr Gastroenterol Nutr 13: 335‐341, 1991.
 305.Praslickova D, Torchia EC, Sugiyama MG, Magrane EJ, Zwicker BL, Kolodzieyski L, Agellon LB. The ileal lipid binding protein is required for efficient absorption and transport of bile acids in the distal portion of the murine small intestine. PLoS One 7: e50810, 2012.
 306.Prawitt J, Abdelkarim M, Stroeve JHM, Popescu I, Duez H, Velagapudi VR, Dumont J, Bouchaert E, van Dijk TH, Lucas A, Dorchies E, Daoudi M, Lestavel S, Gonzalez FJ, Oresic M, Cariou B, Kuipers F, Caron S, Staels B. Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 60: 1861‐1871, 2011.
 307.Puleston J, Morgan H, Andreyev J. New treatment for bile salt malabsorption. Gut 54: 441‐442, 2005.
 308.Quinn CM, Jessup W, Wong J, Kritharides L, Brown AJ. Expression and regulation of sterol 27‐hydroxylase (CYP27A1) in human macrophages: A role for RXR and PPARgamma ligands. Biochem J 385: 823‐830, 2005.
 309.Rao A, Haywood J, Craddock AL, Belinsky MG, Kruh GD, Dawson PA. The organic solute transporter alpha‐beta, Ostalpha‐Ostbeta, is essential for intestinal bile acid transport and homeostasis. Proc Natl Acad Sci U S A 105: 3891‐3896, 2008.
 310.Rao A, Kosters A, Mells JE, Zhang W, Setchell KDR, Amanso AM, Wynn GM, Xu T, Keller BT, Yin H, Banton S, Jones DP, Wu H, Dawson PA, Karpen SJ. Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high‐fat diet‐fed mice. Sci Transl Med 8: 357ra122, 2016.
 311.Raufman J‐P, Metry M, Felton J, Cheng K, Xu S, Polli J. A 19F magnetic resonance imaging‐based diagnostic test for bile acid diarrhea. MAGMA 92: 163‐171, 2018.
 312.Reiss AB, Martin KO, Rojer DE, Iyer S, Grossi EA, Galloway AC, Javitt NB. Sterol 27‐hydroxylase: Expression in human arterial endothelium. J Lipid Res 38: 1254‐1260, 1997.
 313.Renga B, Mencarelli A, Vavassori P, Brancaleone V, Fiorucci S. The bile acid sensor FXR regulates insulin transcription and secretion. Biochim Biophys Acta 1802: 363‐372, 2010.
 314.Renner O, Harsch S, Schaeffeler E, Schwab M, Klass DM, Kratzer W, Stange EF. Mutation screening of apical sodium‐dependent bile acid transporter (SLC10A2): Novel haplotype block including six newly identified variants linked to reduced expression. Hum Genet 125: 381‐391, 2009.
 315.Repa JJ, Lund EG, Horton JD, Leitersdorf E, Russell DW, Dietschy JM, Turley SD. Disruption of the sterol 27‐hydroxylase gene in mice results in hepatomegaly and hypertriglyceridemia. Reversal by cholic acid feeding. J Biol Chem 275: 39685‐39692, 2000.
 316.Reuben A. The biliary cycle of Moritz Schiff. Hepatology 42: 500‐505, 2005.
 317.Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol 30: 332‐338, 2014.
 318.Root C, Smith CD, Sundseth SS, Pink HM, Wilson JG, Lewis MC. Ileal bile acid transporter inhibition, CYP7A1 induction, and antilipemic action of 264W94. J Lipid Res 43: 1320‐1330, 2002.
 319.Rosen H, Gonzalez‐Cabrera PJ, Sanna MG, Brown S. Sphingosine 1‐phosphate receptor signaling. Annu Rev Biochem 78: 743‐768, 2009.
 320.Rössel P, Sortsøe Jensen H, Qvist P, Arveschoug A. Prognosis of adult‐onset idiopathic bile acid malabsorption. Scand J Gastroenterol 34: 587‐590, 1999.
 321.Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 72: 137‐174, 2003.
 322.Sabit H, Mallajosyula SS, MacKerell AD, Swaan PW. Transmembrane domain II of the human bile acid transporter SLC10A2 coordinates sodium translocation. J Biol Chem 288: 32394‐32404, 2013.
 323.Sadik R, Abrahamsson H, Ung K‐A, Stotzer P‐O. Accelerated regional bowel transit and overweight shown in idiopathic bile acid malabsorption. Am J Gastroenterol 99: 711‐718, 2004.
 324.Saeki T, Kuroda T, Matsumoto M, Kanamoto R, Iwami K. Effects of Cys mutation on taurocholic acid transport by mouse ileal and hepatic sodium‐dependent bile acid transporters. Biosci Biotechnol Biochem 66: 467‐470, 2002.
 325.Saeki T, Matoba K, Furukawa H, Kirifuji K, Kanamoto R, Iwami K. Characterization, cDNA cloning, and functional expression of mouse ileal sodium‐dependent bile acid transporter. J Biochem 125: 846‐851, 1999.
 326.Saeki T, Mizushima S, Ueda K, Iwami K, Kanamoto R. Mutational analysis of uncharged polar residues and proline in the distal one‐third (Thr130‐Pro142) of the highly conserved region of mouse Slc10a2. Biosci Biotechnol Biochem 73: 1535‐1540, 2009.
 327.Saeki T, Munetaka Y, Ueda K, Iwami K, Kanamoto R. Effects of Ala substitution for conserved Cys residues in mouse ileal and hepatic Na+‐dependent bile acid transporters. Biosci Biotechnol Biochem 71: 1865‐1872, 2007.
 328.Saeki T, Sato K, Ito S, Ikeda K, Kanamoto R. Importance of uncharged polar residues and proline in the proximal two‐thirds (Pro107‐Ser128) of the highly conserved region of mouse ileal Na+‐dependent bile acid transporter, Slc10a2, in transport activity and cellular expression. BMC Physiol 13: 4, 2013.
 329.Sarwar Z, Annaba F, Dwivedi A, Saksena S, Gill RK, Alrefai WA. Modulation of ileal apical Na+‐dependent bile acid transporter ASBT by protein kinase C. Am J Physiol Gastrointest Liver Physiol 297: G532‐G538, 2009.
 330.Sauter G. Serum concentrations of 7alpha‐hydroxy‐4‐cholesten‐3‐one reflect bile acid synthesis in humans. Hepatology 24: 123‐126, 1996.
 331.Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall H‐U, Bamberg K, Angelin B, Hyötyläinen T, Oresic M, Bäckhed F. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro‐beta‐muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17: 225‐235, 2013.
 332.Schaffner CA, Mwinyi J, Gai Z, Thasler WE, Eloranta JJ, Kullak‐Ublick GA. The organic solute transporters alpha and beta are induced by hypoxia in human hepatocytes. Liver Int 35: 1152‐1161, 2015.
 333.Schiff ER, Small NC, Dietschy JM. Characterization of the kinetics of the passive and active transport mechanisms for bile acid absorption in the small intestine and colon of the rat. J Clin Invest 51: 1351‐1362, 1972.
 334.Schmidt DR, Holmstrom SR, Fon Tacer K, Bookout AL, Kliewer SA, Mangelsdorf DJ. Regulation of bile acid synthesis by fat‐soluble vitamins A and D. J Biol Chem 285: 14486‐14494, 2010.
 335.Schölmerich J, Becher MS, Schmidt K, Schubert R, Kremer B, Feldhaus S, Gerok W. Influence of hydroxylation and conjugation of bile salts on their membrane‐damaging properties—studies on isolated hepatocytes and lipid membrane vesicles. Hepatology 4: 661‐666, 1984.
 336.Schote AB, Turner JD, Schiltz J, Muller CP. Nuclear receptors in human immune cells: Expression and correlations. Mol Immunol 44: 1436‐1445, 2007.
 337.Schwarz M, Lund EG, Setchell KD, Kayden HJ, Zerwekh JE, Bjorkhem I, Herz J, Russell DW. Disruption of cholesterol 7alpha‐hydroxylase gene in mice. II. Bile acid deficiency is overcome by induction of oxysterol 7alpha‐hydroxylase. J Biol Chem 271: 18024‐18031, 1996.
 338.Schwarz M, Russell DW, Dietschy JM, Turley SD. Marked reduction in bile acid synthesis in cholesterol 7alpha‐hydroxylase‐deficient mice does not lead to diminished tissue cholesterol turnover or to hypercholesterolemia. J Lipid Res 39: 1833‐1843, 1998.
 339.Seward DJ, Koh AS, Boyer JL, Ballatori N. Functional complementation between a novel mammalian polygenic transport complex and an evolutionarily ancient organic solute transporter, OSTalpha‐OSTbeta. J Biol Chem 278: 27473‐27482, 2003.
 340.Shah S, Sanford UR, Vargas JC, Xu H, Groen A, Paulusma CC, Grenert JP, Pawlikowska L, Sen S, Elferink RPJO, Bull LN. Strain background modifies phenotypes in the ATP8B1‐deficient mouse. PLoS ONE 5: e8984, 2010.
 341.Sharma V, Hiller M. Loss of enzymes in the bile acid synthesis pathway explains differences in bile composition among mammals. Genome Biol Evol 10: 3211‐3217, 2018.
 342.Shih DQ, Bussen M, Sehayek E, Ananthanarayanan M, Shneider BL, Suchy FJ, Shefer S, Bollileni JS, Gonzalez FJ, Breslow JL, Stoffel M. Hepatocyte nuclear factor‐1alpha is an essential regulator of bile acid and plasma cholesterol metabolism. Nat Genet 27: 375‐382, 2001.
 343.Shneider BL, Dawson PA, Christie DM, Hardikar W, Wong MH, Suchy FJ. Cloning and molecular characterization of the ontogeny of a rat ileal sodium‐dependent bile acid transporter. J Clin Invest 95: 745‐754, 1995.
 344.Shneider BL, Setchell KD, Crossman MW. Fetal and neonatal expression of the apical sodium‐dependent bile acid transporter in the rat ileum and kidney. Pediatr Res 42: 189‐194, 1997.
 345.Shneider BL, Spino C, Kamath BM, Magee JC, Bass LM, Setchell KD, Miethke A, Molleston JP, Mack CL, Squires RH, Murray KF, Loomes KM, Rosenthal P, Karpen SJ, Leung DH, Guthery SL, Thomas D, Sherker AH, Sokol RJ, Childhood Liver Disease Research Network. Placebo‐controlled randomized trial of an intestinal bile salt transport inhibitor for pruritus in Alagille syndrome. Hepatol Commun 2: 1184‐1198, 2018.
 346.Sievänen E. Exploitation of bile acid transport systems in prodrug design. Molecules 12: 1859‐1889, 2007.
 347.Simon FR, Sutherland J, Sutherland E. Identification of taurocholate binding sites in ileal plasma membrane. Am J Physiol 259: G394‐G401, 1990.
 348.Simrén M, Bajor A, Gillberg P‐G, Rudling M, Abrahamsson H. Randomised clinical trial: The ileal bile acid transporter inhibitor A3309 vs. placebo in patients with chronic idiopathic constipation—a double‐blind study. Aliment Pharmacol Ther 34: 41‐50, 2011.
 349.Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102: 731‐744, 2000.
 350.Sinha J, Chen F, Miloh T, Burns RC, Yu Z, Shneider BL. beta‐Klotho and FGF‐15/19 inhibit the apical sodium‐dependent bile acid transporter in enterocytes and cholangiocytes. Am J Physiol Gastrointest Liver Physiol 295: G996‐G1003, 2008.
 351.Slattery SA, Niaz O, Aziz Q, Ford AC, Farmer AD. Systematic review with meta‐analysis: The prevalence of bile acid malabsorption in the irritable bowel syndrome with diarrhoea. Aliment Pharmacol Ther 42: 3‐11, 2015.
 352.Soler DM, Ghosh A, Chen F, Shneider BL. A single element in the 3'UTR of the apical sodium‐dependent bile acid transporter controls both stabilization and destabilization of mRNA. Biochem J 462: 547‐553, 2014.
 353.Srivastava A. Progressive familial intrahepatic cholestasis. J Clin Exp Hepatol 4: 25‐36, 2014.
 354.Staels B. A review of bile acid sequestrants: Potential mechanism(s) for glucose‐lowering effects in type 2 diabetes mellitus. Postgrad Med 121: 25‐30, 2009.
 355.Staley C, Weingarden AR, Khoruts A, Sadowsky MJ. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol 101: 47‐64, 2017.
 356.Staudinger JL, Goodwin B, Jones SA, Hawkins‐Brown D, MacKenzie KI, LaTour A, Liu Y, Klaassen CD, Brown KK, Reinhard J, Willson TM, Koller BH, Kliewer SA. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci U S A 98: 3369‐3374, 2001.
 357.Stelzner M, Hoagland V, Somasundaram S. Distribution of bile acid absorption and bile acid transporter gene message in the hamster ileum. Pflugers Arch 440: 157‐162, 2000.
 358.Stengelin S, Apel S, Becker W, Maier M, Rosenberger J, Bewersdorf U, Girbig F, Weyland C, Wess G, Kramer W. The rabbit ileal lipid‐binding protein. Gene cloning and functional expression of the recombinant protein. Eur J Biochem 239: 887‐896, 1996.
 359.Stravitz RT, Sanyal AJ, Pandak WM, Vlahcevic ZR, Beets JW, Dawson PA. Induction of sodium‐dependent bile acid transporter messenger RNA, protein, and activity in rat ileum by cholic acid. Gastroenterology 113: 1599‐1608, 1997.
 360.Stroeve JHM, Brufau G, Stellaard F, Gonzalez FJ, Staels B, Kuipers F. Intestinal FXR‐mediated FGF15 production contributes to diurnal control of hepatic bile acid synthesis in mice. Lab Invest 90: 1457‐1467, 2010.
 361.Studer E, Zhou X, Zhao R, Wang Y, Takabe K, Nagahashi M, Pandak WM, Dent P, Spiegel S, Shi R, Xu W, Liu X, Bohdan P, Zhang L, Zhou H, Hylemon PB. Conjugated bile acids activate the sphingosine‐1‐phosphate receptor 2 in primary rodent hepatocytes. Hepatology 55: 267‐276, 2012.
 362.Styles NA, Falany JL, Barnes S, Falany CN. Quantification and regulation of the subcellular distribution of bile acid coenzyme A: Amino acid N‐acyltransferase activity in rat liver. J Lipid Res 48: 1305‐1315, 2007.
 363.Suchy FJ, Balistreri WF. Uptake of taurocholate by hepatocytes isolated from developing rats. Pediatr Res 16: 282‐285, 1982.
 364.Suchy FJ, Balistreri WF, Heubi JE, Searcy JE, Levin RS. Physiologic cholestasis: Elevation of the primary serum bile acid concentrations in normal infants. Gastroenterology 80: 1037‐1041, 1981.
 365.Suchy FJ, Courchene SM, Balistreri WF. Ontogeny of hepatic bile acid conjugation in the rat. Pediatr Res 19: 97‐101, 1985.
 366.Sultan M, Rao A, Elpeleg O, Vaz FM, Abu‐Libdeh B, Karpen SJ, Dawson PA. Organic solute transporter‐β (SLC51B) deficiency in two brothers with congenital diarrhea and features of cholestasis. Hepatology 68: 590‐598, 2018.
 367.Sun AQ, Ananthanarayanan M, Soroka CJ, Thevananther S, Shneider BL, Suchy FJ. Sorting of rat liver and ileal sodium‐dependent bile acid transporters in polarized epithelial cells. Am J Physiol 275: G1045‐G1055, 1998.
 368.Sun A‐Q, Balasubramaniyan N, Chen H, Shahid M, Suchy FJ. Identification of functionally relevant residues of the rat ileal apical sodium‐dependent bile acid cotransporter. J Biol Chem 281: 16410‐16418, 2006.
 369.Sun A‐Q, Balasubramaniyan N, Xu K, Liu CJ, Ponamgi VM, Liu H, Suchy FJ. Protein‐protein interactions and membrane localization of the human organic solute transporter. Am J Physiol Gastrointest Liver Physiol 292: G1586‐G1593, 2007.
 370.Sun A‐Q, Salkar R, Sachchidanand, Xu S, Zeng L, Zhou M‐M, Suchy FJ. A 14‐amino acid sequence with a beta‐turn structure is required for apical membrane sorting of the rat ileal bile acid transporter. J Biol Chem 278: 4000‐4009, 2003.
 371.Sun A‐Q, Zhu L, Luo Y, Xu S, Lin J, Suchy FJ. Human Organic Solute Transporter (hOST): Protein interaction and membrane sorting process. Int J Biochem Mol Biol 3: 290‐301, 2012.
 372.Suzuki T, Oba K, Igari Y, Matsumura N, Watanabe K, Futami‐Suda S, Yasuoka H, Ouchi M, Suzuki K, Kigawa Y, Nakano H. Colestimide lowers plasma glucose levels and increases plasma glucagon‐like PEPTIDE‐1 (7‐36) levels in patients with type 2 diabetes mellitus complicated by hypercholesterolemia. J Nippon Med Sch 74: 338‐343, 2007.
 373.Takahashi S, Fukami T, Masuo Y, Brocker CN, Xie C, Krausz KW, Wolf CR, Henderson CJ, Gonzalez FJ. Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans. J Lipid Res 57: 2130‐2137, 2016.
 374.Tarling EJ, Clifford BL, Cheng J, Morand P, Cheng A, Lester E, Sallam T, Turner M, de Aguiar Vallim TQ. RNA‐binding protein ZFP36L1 maintains posttranscriptional regulation of bile acid metabolism. J Clin Invest 127: 3741‐3754, 2017.
 375.Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, Pellicciari R, Auwerx J, Schoonjans K. TGR5‐mediated bile acid sensing controls glucose homeostasis. Cell Metab 10: 167‐177, 2009.
 376.Thomas C, Landrier JF, Gaillard D, Grober J, Monnot M‐C, Athias A, Besnard P. Cholesterol dependent downregulation of mouse and human apical sodium dependent bile acid transporter (ASBT) gene expression: Molecular mechanism and physiological consequences. Gut 55: 1321‐1331, 2006.
 377.Ticho AL, Lee H, Gill RK, Dudeja PK, Saksena S, Lee D, Alrefai WA. A novel bioluminescence‐based method to investigate uptake of bile acids in living cells. Am J Physiol Gastrointest Liver Physiol 315: G529‐G537, 2018.
 378.Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Bile acid receptors and gastrointestinal functions. Liver Res, 2019. DOI: 10.1016/j.livres.2019.01.001.
 379.Tiessen RG, Kennedy CA, Keller BT, Levin N, Acevedo L, Gedulin B, van Vliet AA, Dorenbaum A, Palmer M. Safety, tolerability and pharmacodynamics of apical sodium‐dependent bile acid transporter inhibition with volixibat in healthy adults and patients with type 2 diabetes mellitus: A randomised placebo‐controlled trial. BMC Gastroenterol 18: 3, 2018.
 380.Tochtrop GP, Bruns JL, Tang C, Covey DF, Cistola DP. Steroid ring hydroxylation patterns govern cooperativity in human bile acid binding protein. Biochemistry 42: 11561‐11567, 2003.
 381.Tochtrop GP, DeKoster GT, Covey DF, Cistola DP. A single hydroxyl group governs ligand site selectivity in human ileal bile acid binding protein. J Am Chem Soc 126: 11024‐11029, 2004.
 382.Tochtrop GP, Richter K, Tang C, Toner JJ, Covey DF, Cistola DP. Energetics by NMR: Site‐specific binding in a positively cooperative system. Proc Natl Acad Sci U S A 99: 1847‐1852, 2002.
 383.Toke O, Monsey JD, Cistola DP. Kinetic mechanism of ligand binding in human ileal bile acid binding protein as determined by stopped‐flow fluorescence analysis. Biochemistry 46: 5427‐5436, 2007.
 384.Toke O, Monsey JD, DeKoster GT, Tochtrop GP, Tang C, Cistola DP. Determinants of cooperativity and site selectivity in human ileal bile acid binding protein. Biochemistry 45: 727‐737, 2006.
 385.Tolle‐Sander S, Lentz KA, Maeda DY, Coop A, Polli JE. Increased acyclovir oral bioavailability via a bile acid conjugate. Mol Pharm 1: 40‐48, 2004.
 386.Torcello‐Gómez A, Fernández Fraguas C, Ridout MJ, Woodward NC, Wilde PJ, Foster TJ. Effect of substituent pattern and molecular weight of cellulose ethers on interactions with different bile salts. Food Funct 6: 730‐739, 2015.
 387.Turpin ER, Fang H‐J, Thomas NR, Hirst JD. Cooperativity and site selectivity in the ileal lipid binding protein. Biochemistry 52: 4723‐4733, 2013.
 388.Vagne M, Mutt V. Entero‐oxyntin: A stimulant of gastric acid secretion extracted from porcine intestine. Scand J Gastroenterol 15: 17‐22, 1980.
 389.Van de Wiel S, Merkx M, Van de Graaf S. Real time monitoring of intracellular bile acid dynamics using a genetically encoded FRET‐based bile acid sensor. J Vis Exp: e53659, 2016.
 390.van de Wiel SMW, de Waart DR, Oude Elferink RPJ, van de Graaf SFJ. Intestinal farnesoid X receptor activation by pharmacologic inhibition of the organic solute transporter α‐β. Cell Mol Gastroenterol Hepatol 5: 223‐237, 2018.
 391.van der Mark VA, de Waart DR, Ho‐Mok KS, Tabbers MM, Voogt HW, Oude Elferink RPJ, Knisely AS, Paulusma CC. The lipid flippase heterodimer ATP8B1‐CDC50A is essential for surface expression of the apical sodium‐dependent bile acid transporter (SLC10A2/ASBT) in intestinal Caco‐2 cells. Biochim Biophys Acta 1842: 2378‐2386, 2014.
 392.van der Velden LM, Golynskiy MV, Bijsmans ITGW, van Mil SWC, Klomp LWJ, Merkx M, van de Graaf SFJ. Monitoring bile acid transport in single living cells using a genetically encoded Förster resonance energy transfer sensor. Hepatology 57: 740‐752, 2013.
 393.van Tilburg AJ, de Rooij FW, van den Berg JW, van Blankenstein M. Primary bile acid diarrhoea without an ileal carrier defect: Quantification of active bile acid transport across the ileal brush border membrane. Gut 32: 500‐503, 1991.
 394.Vavassori P, Mencarelli A, Renga B, Distrutti E, Fiorucci S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J Immunol 183: 6251‐6261, 2009.
 395.Vijayvargiya P, Camilleri M, Carlson P, Lueke A, O'Neill J, Burton D, Busciglio I, Donato L. Performance characteristics of serum C4 and FGF19 measurements to exclude the diagnosis of bile acid diarrhoea in IBS‐diarrhoea and functional diarrhoea. Aliment Pharmacol Ther 46: 581‐588, 2017.
 396.Vijayvargiya P, Camilleri M, Shin A, Saenger A. Methods for diagnosis of bile acid malabsorption in clinical practice. Clin Gastroenterol Hepatol 11: 1232‐1239, 2013.
 397.Vivian D, Cheng K, Khurana S, Xu S, Dawson PA, Raufman J‐P, Polli JE. Design and evaluation of a novel trifluorinated imaging agent for assessment of bile acid transport using fluorine magnetic resonance imaging. J Pharm Sci 103: 3782‐3792, 2014.
 398.Vivian D, Cheng K, Khurana S, Xu S, Kriel EH, Dawson PA, Raufman J‐P, Polli JE. In vivo performance of a novel fluorinated magnetic resonance imaging agent for functional analysis of bile acid transport. Mol Pharm 11: 1575‐1582, 2014.
 399.Vivian D, Cheng K, Khurana S, Xu S, Whiterock V, Witter D, Lentz KA, Santone KS, Raufman J‐P, Polli JE. Design and characterization of a novel fluorinated magnetic resonance imaging agent for functional analysis of bile acid transporter activity. Pharm Res 30: 1240‐1251, 2013.
 400.Vodenlich AD, Gong YZ, Geoghegan KF, Lin MC, Lanzetti AJ, Wilson FA. Identification of the 14 kDa bile acid transport protein of rat ileal cytosol as gastrotropin. Biochem Biophys Res Commun 177: 1147‐1154, 1991.
 401.Wagner M, Halilbasic E, Marschall H‐U, Zollner G, Fickert P, Langner C, Zatloukal K, Denk H, Trauner M. CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology 42: 420‐430, 2005.
 402.Wahlström A, Sayin SI, Marschall H‐U, Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24: 41‐50, 2016.
 403.Walters JRF, Johnston IM, Nolan JD, Vassie C, Pruzanski ME, Shapiro DA. The response of patients with bile acid diarrhoea to the farnesoid X receptor agonist obeticholic acid. Aliment Pharmacol Ther 41: 54‐64, 2015.
 404.Walters JRF, Tasleem AM, Omer OS, Brydon WG, Dew T, le Roux CW. A new mechanism for bile acid diarrhea: Defective feedback inhibition of bile acid biosynthesis. Clin Gastroenterol Hepatol 7: 1189‐1194, 2009.
 405.Walz DA, Wider MD, Snow JW, Dass C, Desiderio DM. The complete amino acid sequence of porcine gastrotropin, an ileal protein which stimulates gastric acid and pepsinogen secretion. J Biol Chem 263: 14189‐14195, 1988.
 406.Wang DQ‐H, Tazuma S, Cohen DE, Carey MC. Feeding natural hydrophilic bile acids inhibits intestinal cholesterol absorption: Studies in the gallstone‐susceptible mouse. Am J Physiol Gastrointest Liver Physiol 285: G494‐G502, 2003.
 407.Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 3: 543‐553, 1999.
 408.Wang L, Lee Y‐K, Bundman D, Han Y, Thevananther S, Kim CS, Chua SS, Wei P, Heyman RA, Karin M, Moore DD. Redundant pathways for negative feedback regulation of bile acid production. Dev Cell 2: 721‐731, 2002.
 409.Wang W, Seward DJ, Li L, Boyer JL, Ballatori N. Expression cloning of two genes that together mediate organic solute and steroid transport in the liver of a marine vertebrate. Proc Natl Acad Sci U S A 98: 9431‐9436, 2001.
 410.Wang Y, Aoki H, Yang J, Peng K, Liu R, Li X, Qiang X, Sun L, Gurley EC, Lai G, Zhang L, Liang G, Nagahashi M, Takabe K, Pandak WM, Hylemon PB, Zhou H. The role of sphingosine 1‐phosphate receptor 2 in bile‐acid‐induced cholangiocyte proliferation and cholestasis‐induced liver injury in mice. Hepatology 65: 2005‐2018, 2017.
 411.Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439: 484‐489, 2006.
 412.Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, Moore DD, Auwerx J. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP‐1c. J Clin Invest 113: 1408‐1418, 2004.
 413.Wedlake L, A'Hern R, Russell D, Thomas K, Walters JRF, Andreyev HJN. Systematic review: The prevalence of idiopathic bile acid malabsorption as diagnosed by SeHCAT scanning in patients with diarrhoea‐predominant irritable bowel syndrome. Aliment Pharmacol Ther 30: 707‐717, 2009.
 414.Weerachayaphorn J, Mennone A, Soroka CJ, Harry K, Hagey LR, Kensler TW, Boyer JL. Nuclear factor‐E2‐related factor 2 is a major determinant of bile acid homeostasis in the liver and intestine. Am J Physiol Gastrointest Liver Physiol 302: G925‐G936, 2012.
 415.Weihrauch D, Kanchanapoo J, Ao M, Prasad R, Piyachaturawat P, Rao MC. Weanling, but not adult, rabbit colon absorbs bile acids: Flux is linked to expression of putative bile acid transporters. Am J Physiol Gastrointest Liver Physiol 290: G439‐G450, 2006.
 416.Weinman SA. Electrogenicity of Na(+)‐coupled bile acid transporters. Yale J Biol Med 70: 331‐340, 1997.
 417.Weinman SA, Carruth MW, Dawson PA. Bile acid uptake via the human apical sodium‐bile acid cotransporter is electrogenic. J Biol Chem 273: 34691‐34695, 1998.
 418.West KL, Zern TL, Butteiger DN, Keller BT, Fernandez ML. SC‐435, an ileal apical sodium co‐dependent bile acid transporter (ASBT) inhibitor lowers plasma cholesterol and reduces atherosclerosis in guinea pigs. Atherosclerosis 171: 201‐210, 2003.
 419.Wheeler SG, Hammond CL, Jornayvaz FR, Samuel VT, Shulman GI, Soroka CJ, Boyer JL, Hinkle PM, Ballatori N. Ostα−/− mice exhibit altered expression of intestinal lipid absorption genes, resistance to age‐related weight gain, and modestly improved insulin sensitivity. Am J Physiol Gastrointest Liver Physiol 306: G425‐G438, 2014.
 420.Wojtal KA, Eloranta JJ, Hruz P, Gutmann H, Drewe J, Staumann A, Beglinger C, Fried M, Kullak‐Ublick GA, Vavricka SR. Changes in mRNA expression levels of solute carrier transporters in inflammatory bowel disease patients. Drug Metab Dispos 37: 1871‐1877, 2009.
 421.Wong BS, Camilleri M, Carlson P, McKinzie S, Busciglio I, Bondar O, Dyer RB, Lamsam J, Zinsmeister AR. Increased bile acid biosynthesis is associated with irritable bowel syndrome with diarrhea. Clin Gastroenterol Hepatol 10: 1009‐15.e3, 2012.
 422.Wong MH, Oelkers P, Craddock AL, Dawson PA. Expression cloning and characterization of the hamster ileal sodium‐dependent bile acid transporter. J Biol Chem 269: 1340‐1347, 1994.
 423.Wong MH, Oelkers P, Dawson PA. Identification of a mutation in the ileal sodium‐dependent bile acid transporter gene that abolishes transport activity. J Biol Chem 270: 27228‐27234, 1995.
 424.Wong MH, Rao PN, Pettenati MJ, Dawson PA. Localization of the ileal sodium‐bile acid cotransporter gene (SLC10A2) to human chromosome 13q33. Genomics 33: 538‐540, 1996.
 425.Wu T, Bound MJ, Standfield SD, Gedulin B, Jones KL, Horowitz M, Rayner CK. Effects of rectal administration of taurocholic acid on glucagon‐like peptide‐1 and peptide YY secretion in healthy humans. Diabetes Obes Metab 15: 474‐477, 2013.
 426.Wu Y, Aquino CJ, Cowan DJ, Anderson DL, Ambroso JL, Bishop MJ, Boros EE, Chen L, Cunningham A, Dobbins RL, Feldman PL, Harston LT, Kaldor IW, Klein R, Liang X, McIntyre MS, Merrill CL, Patterson KM, Prescott JS, Ray JS, Roller SG, Yao X, Young A, Yuen J, Collins JL. Discovery of a highly potent, nonabsorbable apical sodium‐dependent bile acid transporter inhibitor (GSK2330672) for treatment of type 2 diabetes. J Med Chem 56: 5094‐5114, 2013.
 427.Xia X, Roundtree M, Merikhi A, Lu X, Shentu S, LeSage G. Degradation of the apical sodium‐dependent bile acid transporter by the ubiquitin‐proteasome pathway in cholangiocytes. J Biol Chem 279: 44931‐44937, 2004.
 428.Xiao Y, Yan W, Zhou K, Cao Y, Cai W. Glucocorticoid treatment alters systemic bile acid homeostasis by regulating the biosynthesis and transport of bile salts. Dig Liver Dis 48: 771‐779, 2016.
 429.Xie C, Jiang C, Shi J, Gao X, Sun D, Sun L, Wang T, Takahashi S, Anitha M, Krausz KW, Patterson AD, Gonzalez FJ. An intestinal farnesoid X receptor‐ceramide signaling axis modulates hepatic gluconeogenesis in mice. Diabetes 66: 613‐626, 2017.
 430.Xie W, Radominska‐Pandya A, Shi Y, Simon CM, Nelson MC, Ong ES, Waxman DJ, Evans RM. An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc Natl Acad Sci U S A 98: 3375‐3380, 2001.
 431.Xu S, Soroka CJ, Sun A‐Q, Backos DS, Mennone A, Suchy FJ, Boyer JL. A novel Di‐Leucine motif at the N‐terminus of human organic solute transporter beta is essential for protein association and membrane localization. PLoS One 11: e0158269, 2016.
 432.Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 15: 11‐20, 2018.
 433.Zaghini I, Landrier J‐F, Grober J, Krief S, Jones SA, Monnot M‐C, Lefrere I, Watson MA, Collins JL, Fujii H, Besnard P. Sterol regulatory element‐binding protein‐1c is responsible for cholesterol regulation of ileal bile acid‐binding protein gene in vivo. Possible involvement of liver‐X‐receptor. J Biol Chem 277: 1324‐1331, 2002.
 434.Zanzoni S, Assfalg M, Giorgetti A, D'Onofrio M, Molinari H. Structural requirements for cooperativity in ileal bile acid‐binding proteins. J Biol Chem 286: 39307‐39317, 2011.
 435.Zelcer N, van de Wetering K, de Waart R, Scheffer GL, Marschall H‐U, Wielinga PR, Kuil A, Kunne C, Smith A, van der Valk M, Wijnholds J, Elferink RO, Borst P. Mice lacking Mrp3 (Abcc3) have normal bile salt transport, but altered hepatic transport of endogenous glucuronides. J Hepatol 44: 768‐775, 2006.
 436.Zhang EY, Phelps MA, Banerjee A, Khantwal CM, Chang C, Helsper F, Swaan PW. Topology scanning and putative three‐dimensional structure of the extracellular binding domains of the apical sodium‐dependent bile acid transporter (SLC10A2). Biochemistry 43: 11380‐11392, 2004.
 437.Zhang JH, Nolan JD, Kennie SL, Johnston IM, Dew T, Dixon PH, Williamson C, Walters JRF. Potent stimulation of fibroblast growth factor 19 expression in the human ileum by bile acids. Am J Physiol Gastrointest Liver Physiol 304: G940‐G948, 2013.
 438.Zhang Y, Ge X, Heemstra LA, Chen W‐D, Xu J, Smith JL, Ma H, Kasim N, Edwards PA, Novak CM. Loss of FXR protects against diet‐induced obesity and accelerates liver carcinogenesis in ob/ob mice. Mol Endocrinol 26: 272‐280, 2012.
 439.Zhang Y, Lee FY, Barrera G, Lee H, Vales C, Gonzalez FJ, Willson TM, Edwards PA. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A 103: 1006‐1011, 2006.
 440.Zheng X, Pan Y, Acharya C, Swaan PW, Polli JE. Structural requirements of the ASBT by 3D‐QSAR analysis using aminopyridine conjugates of chenodeoxycholic acid. Bioconjug Chem 21: 2038‐2048, 2010.
 441.Zhou X, Levin EJ, Pan Y, McCoy JG, Sharma R, Kloss B, Bruni R, Quick M, Zhou M. Structural basis of the alternating‐access mechanism in a bile acid transporter. Nature 505: 569‐573, 2014.
 442.Zimmerman AW, van Moerkerk HT, Veerkamp JH. Ligand specificity and conformational stability of human fatty acid‐binding proteins. Int J Biochem Cell Biol 33: 865‐876, 2001.
 443.Zollner G, Wagner M, Moustafa T, Fickert P, Silbert D, Gumhold J, Fuchsbichler A, Halilbasic E, Denk H, Marschall H‐U, Trauner M. Coordinated induction of bile acid detoxification and alternative elimination in mice: Role of FXR‐regulated organic solute transporter‐alpha/beta in the adaptive response to bile acids. Am J Physiol Gastrointest Liver Physiol 290: G923‐G932, 2006.

Teaching Material

Alexander L. Ticho, Pooja Malhotra, Pradeep K. Dudeja, Ravinder K. Gill, Waddah A. Alrefai. Intestinal absorption of bile acids in health and disease. Compr Physiol 10 : 2020, 21-56.

Didactic Synopsis

Major Teaching Points:

-The enterohepatic circulation of bile acids entails: synthesis and secretion from the liver, re-absorption from the intestine, re-circulation back to liver via the portal blood, and re-secretion from the liver.

-Bile acids are efficiently reabsorbed in the intestine with only 5% lost in the feces.

-Bile acid absorption is critical for the negative feedback inhibition of their synthesis in the liver via the secretion of ileal fibroblast Growth Factor FGF19/15 hormone.

-Bile acids are crucial for lipid digestion and absorption due to their roles as fat solubilizers. Bile acids also activate specific receptors and signaling pathways to modulate a number of hepatic and intestinal functions and exert systemic effects such as increasing energy expenditure and improving insulin sensitivity.

-Disturbances in the enterohepatic circulation of bile acids contribute the pathophysiology of hepatic and intestinal disorders such as cholestatic liver diseases and inflammatory bowel disorders.

Didactic Legends

The following legends to the figures that appear throughout the article are written to be useful for teaching.

Figure 1. Teaching points: The structure of different types of bile acids can be depicted by a schematic representation of these molecules demonstrating the location and orientation of the hyrodxyl groups relevant to the plain of the steroid ring. The primary bile acids in mice and humans are directly synthesized in the liver. Secondary bile acids are the products of de-hydroxylation and/or OH-epimerization of primary bile acids mediated by bacterial enzymes from gut microbiota.

Figure 2. Teaching points: Bile acids are conserved in the enterohepatic circulation and only 5% of total bile acids is lost in feces. The efficiency of bile acid absorption influences the hepatic synthesis of those molecules via inducing the secretion of the ileal hormone FGF19 (FGF15 in rodents) that circulates to the liver to inhibit CYP7A1-mediated bile acid synthesis. Blocking bile acid absorption decreases FGF19-mediated negative feedback and, hence, promotes bile acid synthesis from cholesterol. Therefore, blockers of bile acid absorption could be used for the treatment of hypercholesterolemia.

Figure 3. Teaching points: The increase in the amounts of bile acids in the colonic lumen stimulates the secretion of electrolytes and water leading to diarrhea. Bile acid diarrhea may occur due to bile acid malabsorption as a result of a decrease in the expression and/or function of the ileal Apical Sodium-Dependent Bile acid Transporter (ASBT). A decrease in FGF19 expression also leads to an increase in the hepatic production of bile acids and subsequent overload in the intestine causing diarrhea.

Figure 4. Teaching points: The ileal bile acid transporter ASBT is subject to post-translational modifications including N-glycosylation on the first extracellular loop and serine-threonine phosphorylation on the intracellular c-terminal of the protein. These post-translational modifications modulate the function of ASBT. Also, certain mutations have been identified that cause impaired ASBT function.

Figure 5. Teaching points: ASBT function is crucial for the intestinal reclamation of bile acids. ASBT is rapidly regulated by different mechanisms. The disruption of lipid rafts of plasma membrane by dietary compounds such as the green tea catechin EGCG decreases ASBT function. ASBT membrane expression is decreased by endocytosis in response to activation of protein kinase c-zeta. The activation of protein tyrosine phosphatases in response to infection with enteric microbes such as EPEC decreases ASBT function and expression on the plasma membrane.

 


Related Articles:

Intestinal Transport of Bile Acids
Bile Proteome in Health and Disease
Bile Formation and Secretion
Bile Acid Metabolism and Signaling
Teaching Material

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Alexander L. Ticho, Pooja Malhotra, Pradeep K. Dudeja, Ravinder K. Gill, Waddah A. Alrefai. Intestinal Absorption of Bile Acids in Health and Disease. Compr Physiol 2019, 10: 21-56. doi: 10.1002/cphy.c190007