Comprehensive Physiology Wiley Online Library

Pulmonary Circulation in Obesity, Diabetes, and Metabolic Syndrome

Full Article on Wiley Online Library



Abstract

Obesity, diabetes mellitus, and the metabolic syndrome are important risk factors for the development of cardiovascular disease, with significant impact on human morbidity and mortality. Several decades of research have accumulated considerable knowledge about the mechanisms by which metabolic conditions precipitate systemic cardiovascular diseases. In short, these mechanisms are thought to involve changes in the external environment of vascular cells, which are mediated by the pro‐inflammatory effects of adipokines, free fatty acids, and hyperglycemia. Thus, it has been hypothesized that the pulmonary circulation, witnessing similar insults as the systemic circulation, may be equally vulnerable to the development of vascular disease. Accordingly, recent attention has focused on exploring the mechanistic and epidemiological relationships among obesity, type 2 diabetes mellitus, metabolic syndrome, and pulmonary vascular diseases. In this article, we discuss in detail the preclinical evidence showing a modest but perceivable impact of metabolic disorders on the pulmonary circulation. In addition, we review the existing epidemiological studies examining the relationship among cardiovascular risk factors and pulmonary vascular diseases, using the acute respiratory distress syndrome and pulmonary arterial hypertension as examples. We conclude by discussing areas of limitations in the field and by suggesting future directions for investigation, including the notion that the pulmonary circulation may, in fact, be a resilient entity in the setting of some metabolic perturbations. © 2020 American Physiological Society. Compr Physiol 10:297‐316, 2020.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Mechanisms by which obesity causes systemic cardiovascular disease. In the obese state, adipose tissue adopts a dysfunctional phenotype. In this state, increased levels of pro‐inflammatory adipokines (such as leptin) and free fatty acids (FFAs) are released into the circulation. These mediators induce inflammatory and oxidative pathways, which significantly alter important intracellular and extracellular processes. Ultimately, these processes result in tissue damage and contribute to the development of disease.
Figure 2. Figure 2. Mechanisms by which diabetes mellitus causes systemic cardiovascular disease. Insulin resistance, which often occurs concurrently with obesity in the case of type 2 diabetes mellitus, leads to elevated blood glucose levels (i.e., hyperglycemia). Although most cell types reduce glucose uptake when chronically exposed to hyperglycemia, some cells, including endothelial cells, display increased glucose uptake. As a result, high levels of intracellular glucose injure cells in various ways. One such mechanism involves increased flux through the polyol pathway, leading to increased sorbitol production, which depletes intracellular NADPH levels and decreases reduced glutathione (GSH) levels. A second mechanism involves increased formation of advanced glycation end products (AGEs), which alters the function of intracellular and extracellular proteins. Additionally, elevated intracellular glucose levels can induce increased protein kinase C (PKC) activity, which leads to activation of pro‐inflammatory genes, thrombotic cascades, and release of growth factors.
Figure 3. Figure 3. Mechanisms of epithelial and endothelial injury in acute respiratory distress syndrome (ARDS). Aberrant inflammation along the alveolar‐capillary space results in loss of epithelial and endothelial barrier function. As a result, immune cells, particularly neutrophils, enter the distal alveolar spaces of the lung. These activated immune cells, then, release inflammatory and oxidative mediators, which cause tissue damage and leads to an accumulation of a protein‐rich, hypercellular fluid within the alveolar space. Both direct (airway) and indirect (vascular) insults can trigger the initiation of biological events that lead to ARDS.
Figure 4. Figure 4. Comparison of histological features of pulmonary blood vessels in normal and PAH lung. The progressive and irreversible vascular remodeling in PAH is associated with increased perivascular presence of inflammatory cells and mediators, which leads to endothelial dysfunction, in which injured endothelial cells adopt a hyperproliferative and antiapoptotic phenotype. In this state, there is increased production of vasoconstrictors (such as endothelin‐1) and decreased availability of vasodilators (such as nitric oxide), the effects of which include an overall increase in vascular tone and promotion of cellular proliferation within the layers of the blood vessel. Thus, PAH is also characterized by adventitial and medial thickening due to fibroblast and smooth muscle cell (SMC) proliferation and increased collagen deposition.


Figure 1. Mechanisms by which obesity causes systemic cardiovascular disease. In the obese state, adipose tissue adopts a dysfunctional phenotype. In this state, increased levels of pro‐inflammatory adipokines (such as leptin) and free fatty acids (FFAs) are released into the circulation. These mediators induce inflammatory and oxidative pathways, which significantly alter important intracellular and extracellular processes. Ultimately, these processes result in tissue damage and contribute to the development of disease.


Figure 2. Mechanisms by which diabetes mellitus causes systemic cardiovascular disease. Insulin resistance, which often occurs concurrently with obesity in the case of type 2 diabetes mellitus, leads to elevated blood glucose levels (i.e., hyperglycemia). Although most cell types reduce glucose uptake when chronically exposed to hyperglycemia, some cells, including endothelial cells, display increased glucose uptake. As a result, high levels of intracellular glucose injure cells in various ways. One such mechanism involves increased flux through the polyol pathway, leading to increased sorbitol production, which depletes intracellular NADPH levels and decreases reduced glutathione (GSH) levels. A second mechanism involves increased formation of advanced glycation end products (AGEs), which alters the function of intracellular and extracellular proteins. Additionally, elevated intracellular glucose levels can induce increased protein kinase C (PKC) activity, which leads to activation of pro‐inflammatory genes, thrombotic cascades, and release of growth factors.


Figure 3. Mechanisms of epithelial and endothelial injury in acute respiratory distress syndrome (ARDS). Aberrant inflammation along the alveolar‐capillary space results in loss of epithelial and endothelial barrier function. As a result, immune cells, particularly neutrophils, enter the distal alveolar spaces of the lung. These activated immune cells, then, release inflammatory and oxidative mediators, which cause tissue damage and leads to an accumulation of a protein‐rich, hypercellular fluid within the alveolar space. Both direct (airway) and indirect (vascular) insults can trigger the initiation of biological events that lead to ARDS.


Figure 4. Comparison of histological features of pulmonary blood vessels in normal and PAH lung. The progressive and irreversible vascular remodeling in PAH is associated with increased perivascular presence of inflammatory cells and mediators, which leads to endothelial dysfunction, in which injured endothelial cells adopt a hyperproliferative and antiapoptotic phenotype. In this state, there is increased production of vasoconstrictors (such as endothelin‐1) and decreased availability of vasodilators (such as nitric oxide), the effects of which include an overall increase in vascular tone and promotion of cellular proliferation within the layers of the blood vessel. Thus, PAH is also characterized by adventitial and medial thickening due to fibroblast and smooth muscle cell (SMC) proliferation and increased collagen deposition.
References
 1.Abernethy AD, Stackhouse K, Hart S, Devendra G, Bashore TM, Dweik R, Krasuski RA. Impact of diabetes in patients with pulmonary hypertension. Pulm Circ 5: 117‐123, 2015.
 2.Agard C, Rolli‐Derkinderen M, Dumas‐de‐La‐Roque E, Rio M, Sagan C, Savineau J, Loirand G, Pacaud P. Protective role of the antidiabetic drug metformin against chronic experimental pulmonary hypertension. Br J Pharmacol 158: 1285‐1294, 2009.
 3.Agarwal M, Agrawal S, Garg L, Lavie CJ. Relation between obesity and survival in patients hospitalized for pulmonary arterial hypertension (from a nationwide inpatient sample database 2003 to 2011). Am J Cardiol 120: 489‐493, 2017.
 4.Aguilar M, Bhuket T, Torres S, Liu B, Wong RJ. Prevalence of the metabolic syndrome in the United States, 2003‐2012. JAMA 313: 1973, 2015.
 5.Aird WC. Phenotypic heterogeneity of the endothelium. Circ Res 100: 158‐173, 2007.
 6.Aird WC. Phenotypic heterogeneity of the endothelium. Circ Res 100: 174‐190, 2007.
 7.Akash MS, Rehman K, Chen S. Goto‐Kakizaki rats: Its suitability as non‐obese diabetic animal model for spontaneous type 2 diabetes mellitus. Curr Diabetes Rev 9: 387‐396, 2013. http://www.ncbi.nlm.nih.gov/pubmed/23855509 (29 May 2019).
 8.Alba‐Loureiro TC, Munhoz CD, Martins JO, Cerchiaro GA, Scavone C, Curi R, Sannomiya P. Neutrophil function and metabolism in individuals with diabetes mellitus. Braz J Med Biol Res 40: 1037‐1044, 2007. http://www.ncbi.nlm.nih.gov/pubmed/17665039 (29 May 2019).
 9.Anzueto A, Frutos‐Vivar F, Esteban A, Bensalami N, Marks D, Raymondos K, Apezteguia C, Arabi Y, Hurtado J, Gonzalez M, Tomicic V, Abroug F, Elizalde J, Cakar N, Pelosi P, Ferguson ND. Influence of body mass index on outcome of the mechanically ventilated patients. Thorax 66: 66‐73, 2011.
 10.Aytekin M, Tonelli AR, Farver CF, Feldstein AE, Dweik RA. Leptin deficiency recapitulates the histological features of pulmonary arterial hypertension in mice. Int J Clin Exp Pathol 7: 1935‐1946, 2014. http://www.ncbi.nlm.nih.gov/pubmed/24966903 (29 May 2019).
 11.Barazzone‐Argiroffo C, Muzzin P, Donati YR, Kan CD, Aubert ML, Piguet PF. Hyperoxia increases leptin production: A mechanism mediated through endogenous elevation of corticosterone. Am J Physiol Lung Cell Mol Physiol 281: L1150‐L1156, 2001.
 12.Behringer A, Trappiel M, Berghausen EM, Ten Freyhaus H, Wellnhofer E, Odenthal M, Blaschke F, Er F, Gassanov N, Rosenkranz S, Baldus S, Kappert K, Caglayan E. Pioglitazone alleviates cardiac and vascular remodelling and improves survival in monocrotaline induced pulmonary arterial hypertension. Naunyn Schmiedebergs Arch Pharmacol 389: 369‐379, 2016.
 13.Bellmeyer A, Martino JM, Chandel NS, Scott Budinger GR, Dean DA, Mutlu GM. Leptin resistance protects mice from hyperoxia‐induced acute lung injury. Am J Respir Crit Care Med 175: 587‐594, 2007.
 14.Belly MJ, Tiede H, Morty RE, Schulz R, Voswinckel R, Tanislav C, Olschewski H, Ghofrani HA, Seeger W, Reichenberger F. HbA1c in pulmonary arterial hypertension: A marker of prognostic relevance? J Heart Lung Transplant 31: 1109‐1114, 2012.
 15.Benson L, Brittain EL, Pugh ME, Austin ED, Fox K, Wheeler L, Robbins IM, Hemnes AR. Impact of diabetes on survival and right ventricular compensation in pulmonary arterial hypertension. Pulm Circ 4: 311‐318, 2014.
 16.Benza RL, Gomberg‐Maitland M, Naeije R, Arneson CP, Lang IM. Prognostic factors associated with increased survival in patients with pulmonary arterial hypertension treated with subcutaneous treprostinil in randomized, placebo‐controlled trials. J Heart Lung Transplant 30: 982‐989, 2011.
 17.Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, LeGall JR, Morris A, Spragg R. Report of the American‐European consensus conference on ARDS: Definitions, mechanisms, relevant outcomes and clinical trial coordination. Am J Respir Crit Care Med 20: 225‐232, 1994.
 18.Boden G. Obesity and free fatty acids. Endocrinol Metab Clin North Am 37: 635‐646, 2008.
 19.Bonmarin I, Belchior E, Bergounioux J, Brun‐Buisson C, Mégarbane B, Chappert JL, Hubert B, Le Strat Y, Lévy‐Bruhl D. Intensive care unit surveillance of influenza infection in France: The 2009/10 pandemic and the three subsequent seasons. Eurosurveillance 20: 30066, 2015.
 20.Boyle AJ, Madotto F, Laffey JG, Bellani G, Pham T, Pesenti A, Thompson BT, O'Kane CM, Deane AM, McAuley DF, LUNG SAFE Investigators on behalf of the LS, ESICM Trials Group the ET. Identifying associations between diabetes and acute respiratory distress syndrome in patients with acute hypoxemic respiratory failure: An analysis of the LUNG SAFE database. Crit Care 22: 268, 2018.
 21.Bramley AM, Dasgupta S, Skarbinski J, Kamimoto L, Fry AM, Finelli L, Jain S, 2009 Pandemic Influenza A (H1N1) Virus Hospitalizations Investigation Team. Intensive care unit patients with 2009 pandemic influenza A (H1N1pdm09) virus infection – United States, 2009. Influenza Other Respi Viruses 6: e134‐e142, 2012.
 22.Brittain EL, Talati M, Fortune N, Agrawal V, Meoli DF, West J, Hemnes AR. Adverse physiologic effects of Western diet on right ventricular structure and function: Role of lipid accumulation and metabolic therapy. Pulm Circ 9: 2045894018817741, 2019.
 23.Broermann A, Winderlich M, Block H, Frye M, Rossaint J, Zarbock A, Cagna G, Linnepe R, Schulte D, Nottebaum AF, Vestweber D. Dissociation of VE‐PTP from VE‐cadherin is required for leukocyte extravasation and for VEGF‐induced vascular permeability in vivo. J Exp Med 208: 2393‐2401, 2011.
 24.Brunner NW, Skhiri M, Fortenko O, Hsi A, Haddad F, Khazeni N, Zamanian RT. Impact of insulin resistance on ventricular function in pulmonary arterial hypertension. J Heart Lung Transplant 33: 721‐726, 2014.
 25.Burger CD, Foreman AJ, Miller DP, Safford RE, McGoon MD, Badesch DB. Comparison of body habitus in patients with pulmonary arterial hypertension enrolled in the Registry to Evaluate Early and Long‐term PAH Disease Management with normative values from the National Health and Nutrition Examination Survey. Mayo Clin Proc 86: 105‐112, 2011.
 26.Caglayan E, Trappiel M, Behringer A, Berghausen EM, Odenthal M, Wellnhofer E, Kappert K. Pulmonary arterial remodelling by deficiency of peroxisome proliferator‐activated receptor‐γ in murine vascular smooth muscle cells occurs independently of obesity‐related pulmonary hypertension. Respir Res 20: 42, 2019.
 27.Carratù P, Ventura VA, Maniscalco M, Dragonieri S, Berardi S, Ria R, Quaranta VN, Vacca A, Devito F, Ciccone MM, Phillips BA, Resta O. Echocardiographic findings and plasma endothelin‐1 levels in obese patients with and without obstructive sleep apnea. Sleep Breath 20: 613‐619, 2016.
 28.Chai S, Wang W, Liu J, Guo H, Zhang Z, Wang C, Wang J. Leptin knockout attenuates hypoxia‐induced pulmonary arterial hypertension by inhibiting proliferation of pulmonary arterial smooth muscle cells. Transl Res 166: 772‐782, 2015.
 29.Clemmer JS, Xiang L, Lu S, Mittwede PN, Hester RL. Hyperglycemia‐mediated oxidative stress increases pulmonary vascular permeability. Microcirculation 23: 221‐229, 2016.
 30.Courboulin A, Tremblay VL, Barrier M, Meloche J, Jacob MH, Chapolard M, Bisserier M, Paulin R, Lambert C, Provencher S, Bonnet S. Krüppel‐like factor 5 contributes to pulmonary artery smooth muscle proliferation and resistance to apoptosis in human pulmonary arterial hypertension. Respir Res 12: 128, 2011.
 31.Davie N, Haleen SJ, Upton PD, Polak JM, Yacoub MH, Morrell NW, Wharton J. ET(A) and ET(B) receptors modulate the proliferation of human pulmonary artery smooth muscle cells. Am J Respir Crit Care Med 165: 398‐405, 2002.
 32.De Jong A, Chanques G, Jaber S. Mechanical ventilation in obese ICU patients: From intubation to extubation. Crit Care 21: 63, 2017.
 33.De Jong A, Molinari N, Sebbane M, Prades A, Futier E, Jung B, Chanques G, Jaber S. Feasibility and effectiveness of prone position in morbidly obese patients with ARDS. Chest 143: 1554‐1561, 2013.
 34.Dossett LA, Heffernan D, Lightfoot M, Collier B, Diaz JJ, Sawyer RG, May AK. Obesity and pulmonary complications in critically injured adults. Chest 134: 974‐980, 2008.
 35.Duchesne JC, Schmieg RE, Simmons JD, Islam T, McGinness CL, McSwain NE. Impact of obesity in damage control laparotomy patients. J Trauma Inj Infect Crit Care 67: 108‐114, 2009.
 36.Eichner JE, Dunn ST, Perveen G, Thompson DM, Stewart KE, Stroehla BC. Apolipoprotein E polymorphism and cardiovascular disease: A HuGE review. Am J Epidemiol 155: 487‐495, 2002.
 37.Elmer J, Hou P, Wilcox SR, Chang Y, Schreiber H, Okechukwu I, Pontes‐Neto O, Bajwa E, Hess DR, Avery L, Duran‐Mendicuti MA, Camargo CA, Greenberg SM, Rosand J, Pallin DJ, Goldstein JN. Acute respiratory distress syndrome after spontaneous intracerebral hemorrhage*. Crit Care Med 41: 1992‐2001, 2013.
 38.Eppihimer MJ, Wolitzky B, Anderson DC, Labow MA, Granger DN. Heterogeneity of expression of E‐ and P‐selectins in vivo. Circ Res 79: 560‐569, 1996. http://www.ncbi.nlm.nih.gov/pubmed/8781489 (29 May 2019).
 39.Esper AM, Moss M, Martin GS. The effect of diabetes mellitus on organ dysfunction with sepsis: An epidemiological study. Crit Care 13: R18, 2009.
 40.Fanelli V, Ranieri VM. Mechanisms and clinical consequences of acute lung injury. Ann Am Thorac Soc 12 (Suppl 1): S3‐S8, 2015.
 41.Fedorowicz A, Buczek E, Mateuszuk Ł, Czarnowska E, Sitek B, Jasztal A, Chmura‐Skirlińska A, Dib M, Steven S, Daiber A, Chlopicki S. Comparison of pulmonary and systemic NO‐ and PGI2‐dependent endothelial function in diabetic mice. Oxid Med Cell Longev 2018: 4036709, 2018.
 42.Frump AL, Lahm T. The basic science of metabolism in pulmonary arterial hypertension. Adv Pulm Hypertens 17: 95, 2018.
 43.Fuster JJ, Ouchi N, Gokce N, Walsh K. Obesity‐induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ Res 118: 1786‐1807, 2016.
 44.Gajic O, Dabbagh O, Park PK, Adesanya A, Chang SY, Hou P, Anderson H, Hoth JJ, Mikkelsen ME, Gentile NT, Gong MN, Talmor D, Bajwa E, Watkins TR, Festic E, Yilmaz M, Iscimen R, Kaufman DA, Esper AM, Sadikot R, Douglas I, Sevransky J, Malinchoc M, U.S. Critical Illness and Injury Trials Group: Lung Injury Prevention Study Investigators (USCIITG‐LIPS). Early identification of patients at risk of acute lung injury. Am J Respir Crit Care Med 183: 462‐470, 2011.
 45.Gebb S, Stevens T. On lung endothelial cell heterogeneity. Microvasc Res 68: 1‐12, 2004.
 46.Ghosh A, Gao L, Thakur A, Siu PM, Lai CWK. Role of free fatty acids in endothelial dysfunction. J Biomed Sci 24: 50, 2017.
 47.Gong MN, Bajwa EK, Thompson BT, Christiani DC. Body mass index is associated with the development of acute respiratory distress syndrome. Thorax 65: 44‐50, 2010.
 48.Gong MN, Thompson BT, Williams P, Pothier L, Boyce PD, Christiani DC. Clinical predictors of and mortality in acute respiratory distress syndrome: Potential role of red cell transfusion. Crit Care Med 33: 1191‐1198, 2005.
 49.Gopal DM, Santhanakrishnan R, Wang Y‐C, Ayalon N, Donohue C, Rahban Y, Perez AJ, Downing J, Liang C, Gokce N, Colucci WS, Ho JE. Impaired right ventricular hemodynamics indicate preclinical pulmonary hypertension in patients with metabolic syndrome. J Am Heart Assoc 4: e001597, 2015.
 50.Götz AA, Rozman J, Rödel HG, Fuchs H, Gailus‐Durner V, Hrabě de Angelis M, Klingenspor M, Stoeger T. Comparison of particle‐exposure triggered pulmonary and systemic inflammation in mice fed with three different diets. Part Fibre Toxicol 8: 30, 2011.
 51.Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC, Spertus JA, Costa F. Diagnosis and management of the metabolic syndrome. Circulation 112, 2005.
 52.Hales CM, Fryar CD, Carroll MD, Freedman DS, Aoki Y, Ogden CL. Differences in obesity prevalence by demographic characteristics and urbanization level among adults in the United States, 2013‐2016. JAMA 319: 2419, 2018.
 53.Hansmann G, Wagner RA, Schellong S, Perez VA, Urashima T, Wang L, Sheikh AY, Suen RS, Stewart DJ, Rabinovitch M. Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator‐activated receptor‐gamma activation. Circulation 115: 1275‐1284, 2007.
 54.Hansmann G, Zamanian RT. PPARgamma activation: A potential treatment for pulmonary hypertension. Sci Transl Med 1: 12ps14, 2009.
 55.Heresi GA, Malin SK, Barnes JW, Tian L, Kirwan JP, Dweik RA. Abnormal glucose metabolism and high‐energy expenditure in idiopathic pulmonary arterial hypertension. Ann Am Thorac Soc 14: 190‐199, 2017.
 56.Heron M. Deaths: Leading Causes for 2016. Natl Vital Stat Rep 67: 1‐77, 2018. http://www.ncbi.nlm.nih.gov/pubmed/30248017 (28 May 2019).
 57.Honda J, Kimura T, Sakai S, Maruyama H, Tajiri K, Murakoshi N, Homma S, Miyauchi T, Aonuma K. The glucagon‐like peptide‐1 receptor agonist liraglutide improves hypoxia‐induced pulmonary hypertension in mice partly via normalization of reduced ET(B) receptor expression. Physiol Res 67: S175‐S184, 2018. http://www.ncbi.nlm.nih.gov/pubmed/29947538 (29 May 2019).
 58.Huertas A, Tu L, Thuillet R, Le Hiress M, Phan C, Ricard N, Nadaud S, Fadel E, Humbert M, Guignabert C. Leptin signalling system as a target for pulmonary arterial hypertension therapy. Eur Respir J 45: 1066‐1080, 2015.
 59.Irwin DC, Garat CV, Crossno JT, MacLean PS, Sullivan TM, Erickson PF, Jackman MR, Harral JW, Reusch JEB, Klemm DJ. Obesity‐related pulmonary arterial hypertension in rats correlates with increased circulating inflammatory cytokines and lipids and with oxidant damage in the arterial wall but not with hypoxia. Pulm Circ 4: 638‐653, 2014.
 60.Iscimen R, Cartin‐Ceba R, Yilmaz M, Khan H, Hubmayr RD, Afessa B, Gajic O. Risk factors for the development of acute lung injury in patients with septic shock: An observational cohort study. Crit Care Med 36: 1518‐1522, 2008.
 61.Isomaa B, Almgren P, Tuomi T, Forsén B, Lahti K, Nissén M, Taskinen MR, Groop L. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24: 683‐689, 2001.
 62.Jain M, Budinger GRS, Lo A, Urich D, Rivera SE, Ghosh AK, Gonzalez A, Chiarella SE, Marks K, Donnelly HK, Soberanes S, Varga J, Radigan KA, Chandel NS, Mutlu GM. Leptin promotes fibroproliferative acute respiratory distress syndrome by inhibiting peroxisome proliferator‐activated receptor‐γ. Am J Respir Crit Care Med 183: 1490‐1498, 2011.
 63.Jay MA, Ren J. Peroxisome proliferator‐activated receptor (PPAR) in metabolic syndrome and type 2 diabetes mellitus. Curr Diabetes Rev 3: 33‐39, 2007. http://www.ncbi.nlm.nih.gov/pubmed/18220654 (2 June 2019).
 64.Ji M, Chen M, Hong X, Chen T, Zhang N. The effect of diabetes on the risk and mortality of acute lung injury/acute respiratory distress syndrome: A meta‐analysis. Medicine (Baltimore) 98: e15095, 2019.
 65.Johnston RA, Theman TA, Lu FL, Terry RD, Williams ES, Shore SA. Diet‐induced obesity causes innate airway hyperresponsiveness to methacholine and enhances ozone‐induced pulmonary inflammation. J Appl Physiol 104: 1727‐1735, 2008.
 66.Jonas K, Magoń W, Podolec P, Kopeć G. Triglyceride‐to‐high‐density lipoprotein cholesterol ratio and systemic inflammation in patients with idiopathic pulmonary arterial hypertension. Med Sci Monit 25: 746‐753, 2019.
 67.Karnatovskaia LV, Lee AS, Bender SP, Talmor D, Festic E, US Critical Illness and Injury Trials Group: Lung Injury Prevention Study Investigators (USCIITG–LIPS). Obstructive sleep apnea, obesity, and the development of acute respiratory distress syndrome. J Clin Sleep Med 10: 657‐662, 2014.
 68.Kazama K, Okada M, Yamawaki H. A novel adipocytokine, omentin, inhibits monocrotaline‐induced pulmonary arterial hypertension in rats. Biochem Biophys Res Commun 452: 142‐146, 2014.
 69.Kelley EE, Baust J, Bonacci G, Golin‐Bisello F, Devlin JE, St Croix CM, Watkins SC, Gor S, Cantu‐Medellin N, Weidert ER, Frisbee JC, Gladwin MT, Champion HC, Freeman BA, Khoo NKH. Fatty acid nitroalkenes ameliorate glucose intolerance and pulmonary hypertension in high‐fat diet‐induced obesity. Cardiovasc Res 101: 352‐363, 2014.
 70.Kennedy AJ, Ellacott KLJ, King VL, Hasty AH. Mouse models of the metabolic syndrome. Dis Model Mech 3: 156, 2010.
 71.King AJF. The use of animal models in diabetes research. Br J Pharmacol 166: 877‐894, 2012.
 72.Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, Huypens P, Beckers J, de Angelis MH, Schürmann A, Bakhti M, Klingenspor M, Heiman M, Cherrington AD, Ristow M, Lickert H, Wolf E, Havel PJ, Müller TD, Tschöp MH. Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 14: 140‐162, 2018.
 73.Koh GCKW, Vlaar APJ, Hofstra JJ, de Jong HK, van Nierop S, Peacock SJ, Wiersinga WJ, Schultz MJ, Juffermans NP. In the critically ill patient, diabetes predicts mortality independent of statin therapy but is not associated with acute lung injury: A cohort study. Crit Care Med 40: 1835‐1843, 2012.
 74.Konter JM, Parker JL, Baez E, Li SZ, Ranscht B, Denzel M, Little FF, Nakamura K, Ouchi N, Fine A, Walsh K, Summer RS. Adiponectin attenuates lipopolysaccharide‐induced acute lung injury through suppression of endothelial cell activation. J Immunol 188: 854‐863, 2012.
 75.Kor DJ, Warner DO, Alsara A, Fernández‐Pérez ER, Malinchoc M, Kashyap R, Li G, Gajic O. Derivation and diagnostic accuracy of the surgical lung injury prediction model. Anesthesiology 115: 117‐128, 2011.
 76.Kordonowy LL, Burg E, Lenox CC, Gauthier LM, Petty JM, Antkowiak M, Palvinskaya T, Ubags N, Rincón M, Dixon AE, Vernooy JHJ, Fessler MB, Poynter ME, Suratt BT. Obesity is associated with neutrophil dysfunction and attenuation of murine acute lung injury. Am J Respir Cell Mol Biol 47: 120‐127, 2012.
 77.Kumar MA, Chanderraj R, Gant R, Butler C, Frangos S, Maloney‐Wilensky E, Faerber J, Andrew Kofke W, Levine JM, LeRoux P. Obesity is associated with reduced brain tissue oxygen tension after severe brain injury. Neurocrit Care 16: 286‐293, 2012.
 78.Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, Salonen JT. The metabolic syndrome and total and cardiovascular disease mortality in middle‐aged men. JAMA 288: 2709‐2716, 2002.
 79.Langleben D. Atherosclerosis and the lung. CMAJ 142: 139, 1990. http://www.ncbi.nlm.nih.gov/pubmed/2295032 (29 May 2019).
 80.Lee M‐Y, Tsai K‐B, Hsu J‐H, Shin S‐J, Wu J‐R, Yeh J‐L. Liraglutide prevents and reverses monocrotaline‐induced pulmonary arterial hypertension by suppressing ET‐1 and enhancing eNOS/sGC/PKG pathways. Sci Rep 6: 31788, 2016.
 81.Lei H, Minghao W, Xiaonan Y, Ping X, Ziqi L, Qing X. Acute lung injury in patients with severe acute pancreatitis. Turk J Gastroenterol 24: 502‐507, 2013. http://www.ncbi.nlm.nih.gov/pubmed/24623289 (5 June 2019).
 82.Levitzky MG. Blood flow to the lung. In: Pulmonary Physiology (9th ed). McGraw‐Hill Education, p. 94‐120. http://accessmedicine.mhmedical.com/content.aspx?aid=1160936239.
 83.Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical update: Cardiovascular disease in diabetes mellitus: Atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus – Mechanisms, management, and clinical considerations. Circulation 133: 2459‐2502, 2016.
 84.Lu FL, Johnston RA, Flynt L, Theman TA, Terry RD, Schwartzman IN, Lee A, Shore SA. Increased pulmonary responses to acute ozone exposure in obese db/db mice. Am J Physiol Cell Mol Physiol 290: L856‐L865, 2006.
 85.Luo J, Yu H, Hu Y‐H, Liu D, Wang Y‐W, Wang M‐Y, Liang B‐M, Liang Z‐A. Early identification of patients at risk for acute respiratory distress syndrome among severe pneumonia: A retrospective cohort study. J Thorac Dis 9: 3979‐3995, 2017.
 86.Luo L, Shaver CM, Zhao Z, Koyama T, Calfee CS, Bastarache JA, Ware LB. Clinical predictors of hospital mortality differ between direct and indirect ARDS. Chest 151: 755‐763, 2017.
 87.Madonna R, De Caterina R. Cellular and molecular mechanisms of vascular injury in diabetes—Part I: Pathways of vascular disease in diabetes. Vascul Pharmacol 54: 68‐74, 2011.
 88.Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham Heart Study and the epidemiology of cardiovascular disease: A historical perspective. Lancet (London, England) 383: 999‐1008, 2014.
 89.Malik S, Wong ND, Franklin SS, Kamath TV, L'Italien GJ, Pio JR, Williams GR. Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation 110: 1245‐1250, 2004.
 90.Mazimba S, Holland E, Nagarajan V, Mihalek AD, Kennedy JLW, Bilchick KC. Obesity paradox in group 1 pulmonary hypertension: Analysis of the NIH‐Pulmonary Hypertension Registry. Int J Obes (Lond) 41: 1164‐1168, 2017.
 91.McNeill AM, Rosamond WD, Girman CJ, Golden SH, Schmidt MI, East HE, Ballantyne CM, Heiss G. The metabolic syndrome and 11‐year risk of incident cardiovascular disease in the atherosclerosis risk in communities study. Diabetes Care 28: 385‐390, 2005.
 92.Medoff BD, Okamoto Y, Leyton P, Weng M, Sandall BP, Raher MJ, Kihara S, Bloch KD, Libby P, Luster AD. Adiponectin deficiency increases allergic airway inflammation and pulmonary vascular remodeling. Am J Respir Cell Mol Biol 41: 397‐406, 2009.
 93.Memtsoudis SG, Bombardieri AM, Ma Y, Walz JM, Chiu YL, Mazumdar M. Mortality of patients with respiratory insufficiency and adult respiratory distress syndrome after surgery: The obesity paradox. J Intensive Care Med 27: 306‐311, 2012.
 94.Meng Q, Lai Y‐C, Kelly NJ, Bueno M, Baust JJ, Bachman TN, Goncharov D, Vanderpool RR, Radder JE, Hu J, Goncharova E, Morris AM, Mora AL, Shapiro SD, Gladwin MT. Development of a mouse model of metabolic syndrome, pulmonary hypertension, and heart failure with preserved ejection fraction. Am J Respir Cell Mol Biol 56: 497‐505, 2017.
 95.Morales‐Cano D, Callejo M, Barreira B, Mondejar‐Parreño G, Esquivel‐Ruiz S, Ramos S, Martín MÁ, Cogolludo A, Moreno L, Perez‐Vizcaino F. Elevated pulmonary arterial pressure in Zucker diabetic fatty rats. PLoS One 14: e0211281, 2019.
 96.Moral‐Sanz J, Menendez C, Moreno L, Moreno E, Cogolludo A, Perez‐Vizcaino F. Pulmonary arterial dysfunction in insulin resistant obese Zucker rats. Respir Res 12: 51, 2011.
 97.Morris AE, Stapleton RD, Rubenfeld GD, Hudson LD, Caldwell E, Steinberg KP. The association between body mass index and clinical outcomes in acute lung injury. Chest 131: 342‐348, 2007.
 98.Moss M, Guidot DM, Steinberg KP, Duhon GF, Treece P, Wolken R, Hudson LD, Parsons PE. Diabetic patients have a decreased incidence of acute respiratory distress syndrome. Crit Care Med 28: 2187‐2192, 2000. http://www.ncbi.nlm.nih.gov/pubmed/10921539 (29 May 2019).
 99.Movahed M‐R, Hashemzadeh M, Jamal MM. The prevalence of pulmonary embolism and pulmonary hypertension in patients with type II diabetes mellitus. Chest 128: 3568‐3571, 2005. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN=16304314.
 100.Naderi N, Boobejame P, Bakhshandeh H, Amin A, Taghavi S, Maleki M. Insulin resistance in pulmonary arterial hypertension, is it a novel disease modifier? Res Cardiovasc Med 3: e19710, 2014.
 101.Nakagawa Y, Kishida K, Kihara S, Funahashi T, Shimomura I. Adiponectin ameliorates hypoxia‐induced pulmonary arterial remodeling. Biochem Biophys Res Commun 382: 183‐188, 2009.
 102.Nakamura K, Fuster JJ, Walsh K. Adipokines: A link between obesity and cardiovascular disease. J Cardiol 63: 250‐259, 2014.
 103.Newell MA, Bard MR, Goettler CE, Toschlog EA, Schenarts PJ, Sagraves SG, Holbert D, Pories WJ, Rotondo MF. Body mass index and outcomes in critically injured blunt trauma patients: Weighing the impact. J Am Coll Surg 204: 1056‐1061, 2007.
 104.Ninomiya JK, L'Italien G, Criqui MH, Whyte JL, Gamst A, Chen RS. Association of the metabolic syndrome with history of myocardial infarction and stroke in the Third National Health and Nutrition Examination Survey. Circulation 109: 42‐46, 2004.
 105.O'Brien JM, Philips GS, Ali NA, Aberegg SK, Marsh CB, Lemeshow S. The association between body mass index, processes of care, and outcomes from mechanical ventilation. Crit Care Med 40: 1456‐1463, 2012.
 106.O'Brien JM, Phillips GS, Ali NA, Lucarelli M, Marsh CB, Lemeshow S. Body mass index is independently associated with hospital mortality in mechanically ventilated adults with acute lung injury. Crit Care Med 34: 738‐744, 2006. http://www.ncbi.nlm.nih.gov/pubmed/16521268 (29 May 2019).
 107.O'Brien JM, Welsh CH, Fish RH, Ancukiewicz M, Kramer AM, National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network. Excess body weight is not independently associated with outcome in mechanically ventilated patients with acute lung injury. Ann Intern Med 140: 338‐345, 2004. http://www.ncbi.nlm.nih.gov/pubmed/14996675 (29 May 2019).
 108.Oda E. Metabolic syndrome: Its history, mechanisms, and limitations. Acta Diabetol 49: 89‐95, 2012.
 109.Olijhoek JK, Van Der Graaf Y, Banga JD, Algra A, Rabelink TJ, Visseren FLJ. The Metabolic Syndrome is associated with advanced vascular damage in patients with coronary heart disease, stroke, peripheral arterial disease or abdominal aortic aneurysm. Eur Heart J 25: 342‐348, 2004.
 110.Ortega FB, Lavie CJ, Blair SN. Obesity and cardiovascular disease. Circ Res 118: 1752‐1770, 2016.
 111.Pan M, Han Y, Si R, Guo R, Desai A, Makino A. Hypoxia‐induced pulmonary hypertension in type 2 diabetic mice. Pulm Circ 7: 175‐185, 2017.
 112.Poms AD, Turner M, Farber HW, Meltzer LA, McGoon MD. Comorbid conditions and outcomes in patients with pulmonary arterial hypertension: A REVEAL registry analysis. Chest 144: 169‐176, 2013.
 113.Prescott HC, Chang VW, O'Brien JM, Langa KM, Iwashyna TJ. Obesity and 1‐year outcomes in older americans with severe sepsis*. Crit Care Med 42: 1766‐1774, 2014.
 114.Pugh ME, Robbins IM, Rice TW, West J, Newman JH, Hemnes AR. Unrecognized glucose intolerance is common in pulmonary arterial hypertension. J Heart Lung Transplant 30: 904‐911, 2011.
 115.Qi D, Tang X, He J, Wang D, Zhao Y, Deng W, Deng X, Zhou G, Xia J, Zhong X, Pu S. Omentin protects against LPS‐induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/eNOS‐dependent mechanism. Cell Death Dis 7: ‐e2360, 2016.
 116.Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res 115: 165‐175, 2014.
 117.Ranchoux B, Nadeau V, Bourgeois A, Provencher S, Tremblay E, Omura J, Côté N, Abu‐Alhayja'a R, Dumais V, Nachbar RT, Tastet L, Dahou A, Breuils‐Bonnet S, Marette A, Pibarot P, Dupuis J, Boucherat O, Paulin R, Archer SL, Bonnet S, Potus F. Metabolic syndrome exacerbates pulmonary hypertension due to left heart disease. Circ Res (June 3), 2019. DOI: 10.1161/CIRCRESAHA.118.314555.
 118.Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: The Berlin definition. JAMA 307: 2526‐2533, 2012.
 119.Reaven GM. Role of insulin resistance in human disease. Diabetes 37: 1595‐1607, 1988.
 120. Roth GA, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, Abbastabar H, Abd‐Allah F, Abdela J, Abdelalim A, Abdollahpour I, Abdulkader RS, Abebe HT, Abebe M, Abebe Z, Abejie AN, Abera SF, Abil OZ, Abraha HN, Abrham AR, Abu‐Raddad LJ, Accrombessi MMK, Acharya D, Adamu AA, Adebayo OM, Adedoyin RA, Adekanmbi V, Adetokunboh OO, Adhena BM, Adib MG, Admasie A, Afshin A, Agarwal G, Agesa KM, Agrawal A, Agrawal S, Ahmadi A, Ahmadi M, Ahmed MB, Ahmed S, Aichour AN, Aichour I, Aichour MTE, Akbari ME, Akinyemi RO, Akseer N, Al‐Aly Z, Al‐Eyadhy A, Al‐Raddadi RM, Alahdab F, Alam K, Alam T, Alebel A, Alene KA, Alijanzadeh M, Alizadeh‐Navaei R, Aljunid SM, Alkerwi A, Alla F, Allebeck P, Alonso J, Altirkawi K, Alvis‐Guzman N, Amare AT, Aminde LN, Amini E, Ammar W, Amoako YA, Anber NH, Andrei CL, Androudi S, Animut MD, Anjomshoa M, Ansari H, Ansha MG, Antonio CAT, Anwari P, Aremu O, Ärnlöv J, Arora A, Arora M, Artaman A, Aryal KK, Asayesh H, Asfaw ET, Ataro Z, Atique S, Atre SR, Ausloos M, Avokpaho EFGA, Awasthi A, Quintanilla BPA, Ayele Y, Ayer R, Azzopardi PS, Babazadeh A, Bacha U, Badali H, Badawi A, Bali AG, Ballesteros KE, Banach M, Banerjee K, Bannick MS, Banoub JAM, Barboza MA, Barker‐Collo SL, Bärnighausen TW, Barquera S, Barrero LH, Bassat Q, Basu S, Baune BT, Baynes HW, Bazargan‐Hejazi S, Bedi N, Beghi E, Behzadifar M, Behzadifar M, Béjot Y, Bekele BB, Belachew AB, Belay E, Belay YA, Bell ML, Bello AK, Bennett DA, Bensenor IM, Berman AE, Bernabe E, Bernstein RS, Bertolacci GJ, Beuran M, Beyranvand T, Bhalla A, Bhattarai S, Bhaumik S, Bhutta ZA, Biadgo B, Biehl MH, Bijani A, Bikbov B, Bilano V, Bililign N, Bin Sayeed MS, Bisanzio D, Biswas T, Blacker BF, Basara BB, Borschmann R, Bosetti C, Bozorgmehr K, Brady OJ, Brant LC, Brayne C, Brazinova A, Breitborde NJK, Brenner H, Briant PS, Britton G, Brugha T, Busse R, Butt ZA, Callender CSKH, Campos‐Nonato IR, Campuzano Rincon JC, Cano J, Car M, Cárdenas R, Carreras G, Carrero JJ, Carter A, Carvalho F, Castañeda‐Orjuela CA, Castillo Rivas J, Castle CD, Castro C, Castro F, Catalá‐López F, Cerin E, Chaiah Y, Chang J‐C, Charlson FJ, Chaturvedi P, Chiang PP‐C, Chimed‐Ochir O, Chisumpa VH, Chitheer A, Chowdhury R, Christensen H, Christopher DJ, Chung S‐C, Cicuttini FM, Ciobanu LG, Cirillo M, Cohen AJ, Cooper LT, Cortesi PA, Cortinovis M, Cousin E, Cowie BC, Criqui MH, Cromwell EA, Crowe CS, Crump JA, Cunningham M, Daba AK, Dadi AF, Dandona L, Dandona R, Dang AK, Dargan PI, Daryani A, Das SK, Gupta RD, Neves JD, Dasa TT, Dash AP, Davis AC, Davis Weaver N, Davitoiu DV, Davletov K, De La Hoz FP, De Neve J‐W, Degefa MG, Degenhardt L, Degfie TT, Deiparine S, Demoz GT, Demtsu BB, Denova‐Gutiérrez E, Deribe K, Dervenis N, Des Jarlais DC, Dessie GA, Dey S, Dharmaratne SD, Dicker D, Dinberu MT, Ding EL, Dirac MA, Djalalinia S, Dokova K, Doku DT, Donnelly CA, Dorsey ER, Doshi PP, Douwes‐Schultz D, Doyle KE, Driscoll TR, Dubey M, Dubljanin E, Duken EE, Duncan BB, Duraes AR, Ebrahimi H, Ebrahimpour S, Edessa D, Edvardsson D, Eggen AE, El Bcheraoui C, El Sayed Zaki M, El‐Khatib Z, Elkout H, Ellingsen CL, Endres M, Endries AY, Er B, Erskine HE, Eshrati B, Eskandarieh S, Esmaeili R, Esteghamati A, Fakhar M, Fakhim H, Faramarzi M, Fareed M, Farhadi F, Farinha CSES, Faro A, Farvid MS, Farzadfar F, Farzaei MH, Feigin VL, Feigl AB, Fentahun N, Fereshtehnejad S‐M, Fernandes E, Fernandes JC, Ferrari AJ, Feyissa GT, Filip I, Finegold S, Fischer F, Fitzmaurice C, Foigt NA, Foreman KJ, Fornari C, Frank TD, Fukumoto T, Fuller JE, Fullman N, Fürst T, Furtado JM, Futran ND, Gallus S, Garcia‐Basteiro AL, Garcia‐Gordillo MA, Gardner WM, Gebre AK, Gebrehiwot TT, Gebremedhin AT, Gebremichael B, Gebremichael TG, Gelano TF, Geleijnse JM, Genova‐Maleras R, Geramo YCD, Gething PW, Gezae KE, Ghadami MR, Ghadimi R, Ghasemi Falavarjani K, Ghasemi‐Kasman M, Ghimire M, Gibney KB, Gill PS, Gill TK, Gillum RF, Ginawi IA, Giroud M, Giussani G, Goenka S, Goldberg EM, Goli S, Gómez‐Dantés H, Gona PN, Gopalani SV, Gorman TM, Goto A, Goulart AC, Gnedovskaya EV, Grada A, Grosso G, Gugnani HC, Guimaraes ALS, Guo Y, Gupta PC, Gupta R, Gupta R, Gupta T, Gutiérrez RA, Gyawali B, Haagsma JA, Hafezi‐Nejad N, Hagos TB, Hailegiyorgis TT, Hailu GB, Haj‐Mirzaian A, Haj‐Mirzaian A, Hamadeh RR, Hamidi S, Handal AJ, Hankey GJ, Harb HL, Harikrishnan S, Haro JM, Hasan M, Hassankhani H, Hassen HY, Havmoeller R, Hay RJ, Hay SI, He Y, Hedayatizadeh‐Omran A, Hegazy MI, Heibati B, Heidari M, Hendrie D, Henok A, Henry NJ, Herteliu C, Heydarpour F, Heydarpour P, Heydarpour S, Hibstu DT, Hoek HW, Hole MK, Homaie Rad E, Hoogar P, Hosgood HD, Hosseini SM, Hosseinzadeh M, Hostiuc M, Hostiuc S, Hotez PJ, Hoy DG, Hsiao T, Hu G, Huang JJ, Husseini A, Hussen MM, Hutfless S, Idrisov B, Ilesanmi OS, Iqbal U, Irvani SSN, Irvine CMS, Islam N, Islam SMS, Islami F, Jacobsen KH, Jahangiry L, Jahanmehr N, Jain SK, Jakovljevic M, Jalu MT, James SL, Javanbakht M, Jayatilleke AU, Jeemon P, Jenkins KJ, Jha RP, Jha V, Johnson CO, Johnson SC, Jonas JB, Joshi A, Jozwiak JJ, Jungari SB, Jürisson M, Kabir Z, Kadel R, Kahsay A, Kalani R, Karami M, Karami Matin B, Karch A, Karema C, Karimi‐Sari H, Kasaeian A, Kassa DH, Kassa GM, Kassa TD, Kassebaum NJ, Katikireddi SV, Kaul A, Kazemi Z, Karyani AK, Kazi DS, Kefale AT, Keiyoro PN, Kemp GR, Kengne AP, Keren A, Kesavachandran CN, Khader YS, Khafaei B, Khafaie MA, Khajavi A, Khalid N, Khalil IA, Khan EA, Khan MS, Khan MA, Khang Y‐H, Khater MM, Khoja AT, Khosravi A, Khosravi MH, Khubchandani J, Kiadaliri AA, Kibret GD, Kidanemariam ZT, Kiirithio DN, Kim D, Kim Y‐E, Kim YJ, Kimokoti RW, Kinfu Y, Kisa A, Kissimova‐Skarbek K, Kivimäki M, Knudsen AKS, Kocarnik JM, Kochhar S, Kokubo Y, Kolola T, Kopec JA, Koul PA, Koyanagi A, Kravchenko MA, Krishan K, Kuate Defo B, Kucuk Bicer B, Kumar GA, Kumar M, Kumar P, Kutz MJ, Kuzin I, Kyu HH, Lad DP, Lad SD, Lafranconi A, Lal DK, Lalloo R, Lallukka T, Lam JO, Lami FH, Lansingh VC, Lansky S, Larson HJ, Latifi A, Lau KM‐M, Lazarus JV, Lebedev G, Lee PH, Leigh J, Leili M, Leshargie CT, Li S, Li Y, Liang J, Lim L‐L, Lim SS, Limenih MA, Linn S, Liu S, Liu Y, Lodha R, Lonsdale C, Lopez AD, Lorkowski S, Lotufo PA, Lozano R, Lunevicius R, Ma S, Macarayan ERK, Mackay MT, MacLachlan JH, Maddison ER, Madotto F, Magdy Abd El Razek H, Magdy Abd El Razek M, Maghavani DP, Majdan M, Majdzadeh R, Majeed A, Malekzadeh R, Malta DC, Manda A‐L, Mandarano‐Filho LG, Manguerra H, Mansournia MA, Mapoma CC, Marami D, Maravilla JC, Marcenes W, Marczak L, Marks A, Marks GB, Martinez G, Martins‐Melo FR, Martopullo I, März W, Marzan MB, Masci JR, Massenburg BB, Mathur MR, Mathur P, Matzopoulos R, Maulik PK, Mazidi M, McAlinden C, McGrath JJ, McKee M, McMahon BJ, Mehata S, Mehndiratta MM, Mehrotra R, Mehta KM, Mehta V, Mekonnen TC, Melese A, Melku M, Memiah PTN, Memish ZA, Mendoza W, Mengistu DT, Mengistu G, Mensah GA, Mereta ST, Meretoja A, Meretoja TJ, Mestrovic T, Mezgebe HB, Miazgowski B, Miazgowski T, Millear AI, Miller TR, Miller‐Petrie MK, Mini GK, Mirabi P, Mirarefin M, Mirica A, Mirrakhimov EM, Misganaw AT, Mitiku H, Moazen B, Mohammad KA, Mohammadi M, Mohammadifard N, Mohammed MA, Mohammed S, Mohan V, Mokdad AH, Molokhia M, Monasta L, Moradi G, Moradi‐Lakeh M, Moradinazar M, Moraga P, Morawska L, Moreno Velásquez I, Morgado‐Da‐Costa J, Morrison SD, Moschos MM, Mouodi S, Mousavi SM, Muchie KF, Mueller UO, Mukhopadhyay S, Muller K, Mumford JE, Musa J, Musa KI, Mustafa G, Muthupandian S, Nachega JB, Nagel G, Naheed A, Nahvijou A, Naik G, Nair S, Najafi F, Naldi L, Nam HS, Nangia V, Nansseu JR, Nascimento BR, Natarajan G, Neamati N, Negoi I, Negoi RI, Neupane S, Newton CRJ, Ngalesoni FN, Ngunjiri JW, Nguyen AQ, Nguyen G, Nguyen HT, Nguyen HT, Nguyen LH, Nguyen M, Nguyen TH, Nichols E, Ningrum DNA, Nirayo YL, Nixon MR, Nolutshungu N, Nomura S, Norheim OF, Noroozi M, Norrving B, Noubiap JJ, Nouri HR, Nourollahpour Shiadeh M, Nowroozi MR, Nyasulu PS, Odell CM, Ofori‐Asenso R, Ogbo FA, Oh I‐H, Oladimeji O, Olagunju AT, Olivares PR, Olsen HE, Olusanya BO, Olusanya JO, Ong KL, Ong SKS, Oren E, Orpana HM, Ortiz A, Ortiz JR, Otstavnov SS, Øverland S, Owolabi MO, Özdemir RPAM, Pacella R, Pakhale S, Pakhare AP, Pakpour AH, Pana A, Panda‐Jonas S, Pandian JD, Parisi A, Park E‐K, Parry CDH, Parsian H, Patel S, Pati S, Patton GC, Paturi VR, Paulson KR, Pereira A, Pereira DM, Perico N, Pesudovs K, Petzold M, Phillips MR, Piel FB, Pigott DM, Pillay JD, Pirsaheb M, Pishgar F, Polinder S, Postma MJ, Pourshams A, Poustchi H, Pujar A, Prakash S, Prasad N, Purcell CA, Qorbani M, Quintana H, Quistberg DA, Rade KW, Radfar A, Rafay A, Rafiei A, Rahim F, Rahimi K, Rahimi‐Movaghar A, Rahman M, Rahman MHU, Rahman MA, Rai RK, Rajsic S, Ram U, Ranabhat CL, Ranjan P, Rao PC, Rawaf DL, Rawaf S, Razo‐García C, Reddy KS, Reiner RC, Reitsma MB, Remuzzi G, Renzaho AMN, Resnikoff S, Rezaei S, Rezaeian S, Rezai MS, Riahi SM, Ribeiro ALP, Rios‐Blancas MJ, Roba KT, Roberts NLS, Robinson SR, Roever L, Ronfani L, Roshandel G, Rostami A, Rothenbacher D, Roy A, Rubagotti E, Sachdev PS, Saddik B, Sadeghi E, Safari H, Safdarian M, Safi S, Safiri S, Sagar R, Sahebkar A, Sahraian MA, Salam N, Salama JS, Salamati P, Saldanha RDF, Saleem Z, Salimi Y, Salvi SS, Salz I, Sambala EZ, Samy AM, Sanabria J, Sanchez‐Niño MD, Santomauro DF, Santos IS, Santos JV, Milicevic MMS, Sao Jose BP, Sarker AR, Sarmiento‐Suárez R, Sarrafzadegan N, Sartorius B, Sarvi S, Sathian B, Satpathy M, Sawant AR, Sawhney M, Saxena S, Sayyah M, Schaeffner E, Schmidt MI, Schneider IJC, Schöttker B, Schutte AE, Schwebel DC, Schwendicke F, Scott JG, Sekerija M, Sepanlou SG, Serván‐Mori E, Seyedmousavi S, Shabaninejad H, Shackelford KA, Shafieesabet A, Shahbazi M, Shaheen AA, Shaikh MA, Shams‐Beyranvand M, Shamsi M, Shamsizadeh M, Sharafi K, Sharif M, Sharif‐Alhoseini M, Sharma R, She J, Sheikh A, Shi P, Shiferaw MS, Shigematsu M, Shiri R, Shirkoohi R, Shiue I, Shokraneh F, Shrime MG, Si S, Siabani S, Siddiqi TJ, Sigfusdottir ID, Sigurvinsdottir R, Silberberg DH, Silva DAS, Silva JP, Silva NTD, Silveira DGA, Singh JA, Singh NP, Singh PK, Singh V, Sinha DN, Sliwa K, Smith M, Sobaih BH, Sobhani S, Sobngwi E, Soneji SS, Soofi M, Sorensen RJD, Soriano JB, Soyiri IN, Sposato LA, Sreeramareddy CT, Srinivasan V, Stanaway JD, Starodubov VI, Stathopoulou V, Stein DJ, Steiner C, Stewart LG, Stokes MA, Subart ML, Sudaryanto A, Sufiyan MB, Sur PJ, Sutradhar I, Sykes BL, Sylaja PN, Sylte DO, Szoeke CEI, Tabarés‐Seisdedos R, Tabuchi T, Tadakamadla SK, Takahashi K, Tandon N, Tassew SG, Taveira N, Tehrani‐Banihashemi A, Tekalign TG, Tekle MG, Temsah M‐H, Temsah O, Terkawi AS, Teshale MY, Tessema B, Tessema GA, Thankappan KR, Thirunavukkarasu S, Thomas N, Thrift AG, Thurston GD, Tilahun B, To QG, Tobe‐Gai R, Tonelli M, Topor‐Madry R, Torre AE, Tortajada‐Girbés M, Touvier M, Tovani‐Palone MR, Tran BX, Tran KB, Tripathi S, Troeger CE, Truelsen TC, Truong NT, Tsadik AG, Tsoi D, Tudor Car L, Tuzcu EM, Tyrovolas S, Ukwaja KN, Ullah I, Undurraga EA, Updike RL, Usman MS, Uthman OA, Uzun SB, Vaduganathan M, Vaezi A, Vaidya G, Valdez PR, Varavikova E, Vasankari TJ, Venketasubramanian N, Villafaina S, Violante FS, Vladimirov SK, Vlassov V, Vollset SE, Vos T, Wagner GR, Wagnew FS, Waheed Y, Wallin MT, Walson JL, Wang Y, Wang Y‐P, Wassie MM, Weiderpass E, Weintraub RG, Weldegebreal F, Weldegwergs KG, Werdecker A, Werkneh AA, West TE, Westerman R, Whiteford HA, Widecka J, Wilner LB, Wilson S, Winkler AS, Wiysonge CS, Wolfe CDA, Wu S, Wu Y‐C, Wyper GMA, Xavier D, Xu G, Yadgir S, Yadollahpour A, Yahyazadeh Jabbari SH, Yakob B, Yan LL, Yano Y, Yaseri M, Yasin YJ, Yentür GK, Yeshaneh A, Yimer EM, Yip P, Yirsaw BD, Yisma E, Yonemoto N, Yonga G, Yoon S‐J, Yotebieng M, Younis MZ, Yousefifard M, Yu C, Zadnik V, Zaidi Z, Zaman SB, Zamani M, Zare Z, Zeleke AJ, Zenebe ZM, Zhang AL, Zhang K, Zhou M, Zodpey S, Zuhlke LJ, Naghavi M, Murray CJL. Global, regional, and national age‐sex‐specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 392: 1736‐1788, 2018.
 121.Sakao S, Taraseviciene‐Stewart L, Lee JD, Wood K, Cool CD, Voelkel NF. Initial apoptosis is followed by increased proliferation of apoptosis‐resistant endothelial cells. FASEB J 19: 1178‐1180, 2005.
 122.Salome CM, King GG, Berend N. Physiology of obesity and effects on lung function. J Appl Physiol 108: 206‐211, 2010.
 123.Santos M, Reis A, Goncalves F, Ferreira‐Pinto MJ, Cabral S, Torres S, Leite‐Moreira AF, Henriques‐Coelho T. Adiponectin levels are elevated in patients with pulmonary arterial hypertension. Clin Cardiol 37: 21‐25, 2014.
 124.Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F. Mechanisms of disease: Pulmonary arterial hypertension. Nat Rev Cardiol 8: 443‐455, 2011.
 125.Shah D, Romero F, Duong M, Wang N, Paudyal B, Suratt BT, Kallen CB, Sun J, Zhu Y, Walsh K, Summer R. Obesity‐induced adipokine imbalance impairs mouse pulmonary vascular endothelial function and primes the lung for injury. Sci Rep 5: 11362, 2015.
 126.Shah D, Romero F, Guo Z, Sun J, Li J, Kallen CB, Naik UP, Summer R. Obesity‐induced endoplasmic reticulum stress causes lung endothelial dysfunction and promotes acute lung injury. Am J Respir Cell Mol Biol 57: 204‐215, 2017.
 127.Simmons RK, Alberti KGMM, Gale EAM, Colagiuri S, Tuomilehto J, Qiao Q, Ramachandran A, Tajima N, Brajkovich Mirchov I, Ben‐Nakhi A, Reaven G, Hama Sambo B, Mendis S, Roglic G. The metabolic syndrome: Useful concept or clinical tool? Report of a WHO Expert Consultation. Diabetologia 53: 600‐605, 2010.
 128.Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, Williams PG, Souza R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 53, 2019. DOI: 10.1183/13993003.01913‐2018.
 129.Singla A, Turner P, Pendurthi MK, Agrawal V, Modrykamien A. Effect of type II diabetes mellitus on outcomes in patients with acute respiratory distress syndrome. J Crit Care 29: 66‐69, 2014.
 130.Skovsø S. Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J Diabetes Investig 5: 349‐358, 2014.
 131.Soto GJ, Frank AJ, Christiani DC, Gong MN. Body mass index and acute kidney injury in the acute respiratory distress syndrome. Crit Care Med 40: 2601‐2608, 2012.
 132.Soubani AO, Chen W, Jang H. The outcome of acute respiratory distress syndrome in relation to body mass index and diabetes mellitus. Heart Lung 44: 441‐447, 2015.
 133.Stapleton RD, Dixon AE, Parsons PE, Ware LB, Suratt BT, NHLBI Acute Respiratory Distress Syndrome Network. The association between BMI and plasma cytokine levels in patients with acute lung injury. Chest 138: 568‐577, 2010.
 134.Sui D‐X, Zhou H‐M, Wang F, Zhong M, Zhang W, Ti Y. Cell death‐inducing DFF45‐like effector C gene silencing alleviates pulmonary vascular remodeling in a type 2 diabetic rat model. J Diabetes Investig 9: 741‐752, 2018.
 135.Summer R, Fiack CA, Ikeda Y, Sato K, Dwyer D, Ouchi N, Fine A, Farber HW, Walsh K. Adiponectin deficiency: A model of pulmonary hypertension associated with pulmonary vascular disease. Am J Physiol Lung Cell Mol Physiol 297: L432‐L438, 2009.
 136.Suratt BT. Mouse modeling of obese lung disease. Insights and caveats. Am J Respir Cell Mol Biol 55: 153‐158, 2016.
 137.Tielemans B, Delcroix M, Belge C, Quarck R. TGFβ and BMPRII signalling pathways in the pathogenesis of pulmonary arterial hypertension. Drug Discov Today 24: 703‐716, 2019.
 138.Tignanelli CJ, Hemmila MR, Rogers MAM, Raghavendran K. Nationwide cohort study of independent risk factors for acute respiratory distress syndrome after trauma. Trauma Surg Acute Care Open 4: e000249, 2019.
 139.Towfigh S, Peralta MV, Martin MJ, Salim A, Kelso R, Sohn H, Berne TV, Mason RJ. Acute respiratory distress syndrome in nontrauma surgical patients: A 6‐year study. J Trauma 67: 1239‐1243, 2009.
 140.Trammell AW, Talati M, Blackwell TR, Fortune NL, Niswender KD, Fessel JP, Newman JH, West JD, Hemnes AR. Pulmonary vascular effect of insulin in a rodent model of pulmonary arterial hypertension. Pulm Circ 7: 624‐634, 2017.
 141.Trillo‐Alvarez C, Cartin‐Ceba R, Kor DJ, Kojicic M, Kashyap R, Thakur S, Thakur L, Herasevich V, Malinchoc M, Gajic O. Acute lung injury prediction score: Derivation and validation in a population‐based sample. Eur Respir J 37: 604‐609, 2011.
 142.Ubags ND, Burg E, Antkowiak M, Wallace AM, Dilli E, Bement J, Wargo MJ, Poynter ME, Wouters EFM, Suratt BT. A comparative study of lung host defense in murine obesity models. Insights into neutrophil function. Am J Respir Cell Mol Biol 55: 188‐200, 2016.
 143.Ubags ND, Stapleton RD, Vernooy JHJ, Burg E, Bement J, Hayes CM, Ventrone S, Zabeau L, Tavernier J, Poynter ME, Parsons PE, Dixon AE, Wargo MJ, Littenberg B, Wouters EFM, Suratt BT. Hyperleptinemia is associated with impaired pulmonary host defense. JCI Insight 1: e82101, 2016.
 144.Ussavarungsi K, Thomas CS, Burger CD. Prevalence of metabolic syndrome in patients with pulmonary hypertension. Clin Respir J 11: 721‐726, 2017.
 145.Walkey AJ, Demissie S, Shah D, Romero F, Puklin L, Summer RS. Plasma adiponectin, clinical factors, and patient outcomes during the acute respiratory distress syndrome. PLoS One 9: e108561, 2014.
 146.Wang B, Chandrasekera PC, Pippin JJ. Leptin‐ and leptin receptor‐deficient rodent models: Relevance for human type 2 diabetes. Curr Diabetes Rev 10: 131‐145, 2014. http://www.ncbi.nlm.nih.gov/pubmed/24809394 (29 May 2019).
 147.Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med 342: 1334‐1349, 2000.
 148.Weatherald J, Huertas A, Boucly A, Guignabert C, Taniguchi Y, Adir Y, Jevnikar M, Savale L, Jaïs X, Peng M, Simonneau G, Montani D, Humbert M, Sitbon O. Association between BMI and obesity with survival in pulmonary arterial hypertension. Chest 154: 872‐881, 2018.
 149.Weinlein JC, Deaderick S, Murphy RF. Morbid obesity increases the risk for systemic complications in patients with femoral shaft fractures. J Orthop Trauma 29: e91‐e95, 2015.
 150.Wende AR, Symons JD, Abel ED. Mechanisms of lipotoxicity in the cardiovascular system. Curr Hypertens Rep 14: 517‐531, 2012.
 151.Wilson MR, Petrie JE, Shaw MW, Hu C, Oakley CM, Woods SJ, Patel BV, O'Dea KP, Takata M. High‐fat feeding protects mice from ventilator‐induced lung injury, via neutrophil‐independent mechanisms. Crit Care Med 45: e831‐e839, 2017.
 152.Wright JK, Nwariaku FN, Clark J, Falck JC, Rogers T, Turnage RH. Effect of diabetes mellitus on endotoxin‐induced lung injury. Arch Surg 134: 1354‐1358; discussion 1358–1359, 1999. http://www.ncbi.nlm.nih.gov/pubmed/10593334 (29 May 2019).
 153.Xu G, Liu B, Sun Y, Du Y, Snetselaar LG, Hu FB, Bao W. Prevalence of diagnosed type 1 and type 2 diabetes among US adults in 2016 and 2017: Population based study. BMJ 362: k1497, 2018.
 154.Xu L, Bao H‐G, Si Y‐N, Han L, Zhang R, Cai M‐M, Shen Y. Effects of adiponectin on acute lung injury in cecal ligation and puncture‐induced sepsis rats. J Surg Res 183: 752‐759, 2013.
 155.Yang P, Formanek P, Scaglione S, Afshar M. Risk factors and outcomes of acute respiratory distress syndrome in critically ill patients with cirrhosis. Hepatol Res 49: 335‐343, 2019.
 156.Yu S, Christiani DC, Thompson BT, Bajwa EK, Gong MN. Role of diabetes in the development of acute respiratory distress syndrome*. Crit Care Med 41: 2720‐2732, 2013.
 157.Zafrir B, Adir Y, Shehadeh W, Shteinberg M, Salman N, Amir O. The association between obesity, mortality and filling pressures in pulmonary hypertension patients; the “obesity paradox.” Respir Med 107: 139‐146, 2013.
 158.Zamanian RT, Hansmann G, Snook S, Lilienfeld D, Rappaport KM, Reaven GM, Rabinovitch M, Doyle RL. Insulin resistance in pulmonary arterial hypertension. Eur Respir J 33: 318‐324, 2009.
 159.Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14: 88‐98, 2018.
 160.Zhi G, Xin W, Ying W, Guohong X, Shuying L. “Obesity paradox” in acute respiratory distress syndrome: Asystematic review and meta‐analysis. PLoS One 11: e0163677, 2016.
 161.Zhou C, Francis CM, Xu N, Stevens T. The role of endothelial leak in pulmonary hypertension (2017 Grover Conference Series). Pulm Circ 8: 204589401879856, 2018.
 162.Zimmerman GA, Albertine KH, Carveth HJ, Gill EA, Grissom CK, Hoidal JR, Imaizumi T, Maloney CG, McIntyre TM, Michael JR, Orme JF, Prescott SM, Topham MS. Endothelial activation in ARDS. Chest 116: 18S‐24S, 1999.

Teaching Material

Phue Khaing, Pooja Pandit, Bharat Awsare, Ross Summer. Pulmonary Circulation in Obesity, Diabetes, and Metabolic Syndrome. Compr Physiol 10: 2020, 297-316.

Didactic Synopsis

Major teaching points:

  1. Obesity and type 2 diabetes mellitus (T2DM) are major risk factors for the development and progression of systemic cardiovascular diseases.
  2. The pulmonary circulation receives comparable exposures as the systemic circulation, yet the pulmonary circulation is mostly immune from developing atherosclerotic diseases.
  3. The effects of obesity and T2DM on the pulmonary circulation vary depending on the type of experimental models employed.
  4. An accepted gold-standard preclinical model for obesity or T2DM does not exist.
  5. Human studies suggest that obesity increases susceptibility for ARDS but reduces its overall mortality.
  6. WHO groups 2 and 3 are the most common causes of pulmonary hypertension in individuals with obesity and T2DM.
  7. Obesity, T2DM, and the metabolic syndrome have a modest but observable impact on the pulmonary circulation, but overall findings suggest that the pulmonary vasculature may be a resilient entity to metabolic exposures.

Didactic Legends

The following legends to the figures that appear throughout the article are written to be useful for teaching.

Figure 1. Teaching points: Adipose tissue adopts a dysfunctional phenotype in the obese state, releasing higher concentrations of pro-inflammatory adipokines and free fatty acids into the circulation, which then impart deleterious effects on systemic blood vessels by inducing inflammation and oxidative stress.

Figure 2. Teaching points: Insulin resistance in type 2 diabetes mellitus is associated with elevated blood glucose levels (i.e. hyperglycemia). As a result, high levels of intracellular glucose lead to cellular injury of endothelial cells via several mechanisms, including increased production of sorbitol, formation of advanced glycation end products (AGEs), and activation of protein kinase C (PKC).

Figure 3. Teaching points: The Acute Respiratory Distress Syndrome (ARDS) is a life-threatening lung disease that can develop as a result of direct pulmonary injury (e.g. pneumonia) or in association with extrapulmonary illnesses (e.g. sepsis, pancreatitis, major trauma). An aberrant inflammatory response that disrupts epithelial and endothelial barrier protection in the lung is thought to be a key mechanism in ARDS pathophysiology.

 

Figure 4. Teaching points: Pulmonary arterial hypertension (PAH) is caused by progressive histological changes which lead to irreversible remodeling of pulmonary blood vessels. These changes are associated with perivascular infiltration of immune cells, chronic development of vascular leakage, and production of inflammatory mediators. These mechanisms cause endothelial dysfunction and contribute to the hyperproliferative and anti-apoptotic phenotype characteristic of endothelial cells in PAH. 


Related Articles:

Teaching Material

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Phue Khaing, Pooja Pandit, Bharat Awsare, Ross Summer. Pulmonary Circulation in Obesity, Diabetes, and Metabolic Syndrome. Compr Physiol 2019, 10: 297-316. doi: 10.1002/cphy.c190018