Comprehensive Physiology Wiley Online Library

Systemic and Central Amylin, Amylin Receptor Signaling, and Their Physiological and Pathophysiological Roles in Metabolism

Full Article on Wiley Online Library



Abstract

This article in the Neural and Endocrine Section of Comprehensive Physiology discusses the physiology and pathophysiology of the pancreatic hormone amylin. Shortly after its discovery in 1986, amylin has been shown to reduce food intake as a satiation signal to limit meal size. Amylin also affects food reward, sensitizes the brain to the catabolic actions of leptin, and may also play a prominent role in the development of certain brain areas that are involved in metabolic control. Amylin may act at different sites in the brain in addition to the area postrema (AP) in the caudal hindbrain. In particular, the sensitizing effect of amylin on leptin action may depend on a direct interaction in the hypothalamus. The concept of central pathways mediating amylin action became more complex after the discovery that amylin is also synthesized in certain hypothalamic areas but the interaction between central and peripheral amylin signaling remains currently unexplored. Amylin may also play a dominant pathophysiological role that is associated with the aggregation of monomeric amylin into larger, cytotoxic molecular entities. This aggregation in certain species may contribute to the development of type 2 diabetes mellitus but also cardiovascular disease. Amylin receptor pharmacology is complex because several distinct amylin receptor subtypes have been described, because other neuropeptides [e.g., calcitonin gene‐related peptide (CGRP)] can also bind to amylin receptors, and because some components of the functional amylin receptor are also used for other G‐protein coupled receptor (GPCR) systems. © 2020 American Physiological Society. Compr Physiol 10:811‐837, 2020.

Figure 1. Figure 1. (A) Pancreatic islet of a Wistar rat with immunohistochemical staining for amylin‐positive beta cells (red) and glucagon positive alpha cells (blue); other islet cell types are not specified. The islet is surrounded by exocrine pancreatic tissue (brown‐green). (B) Amylin has the propensity to aggregate into oligomers and mature amyloid fibrils in primates and in cats. The amyloidogenecity is determined by the amino acids 20 to 29 within the amylin molecule. The example shows moderate deposition of mature extracellular amyloid in the pancreatic islet of a 12‐year‐old diabetic cat. Homogenous material stained in light red: mature extracellular amyloid fibrils; islet cells stained in dark red: amylin producing pancreatic beta cells; islet cells stained in light blue: non‐beta cells; pancreatic islet surrounded by exocrine pancreas tissue (in light blue).
Figure 2. Figure 2. (A) Schematic overview of the rat brain with sites of amylin synthesis. Immunohistological stainings indicated amylin synthesis in the subpostremal region (ventral to the area postrema; sub‐AP) in male rats (unpublished data‐ see B). Further, in situ hybridization studies indicated amylin synthesis in the medial preoptic area (MPA) and the medial preoptic nucleus (MPO) of female rats 74. Within the hypothalamus, immunohistochemical stainings indicated amylin synthesis in the hypothalamic paraventricular (PVN) and arcuate nuclei (ARC), in the dorsomedial hypothalamus (DMH) and in the lateral hypothalamus (LH) in mice 145. (B) 3,3′‐Diaminobenzidine (DAB) immunohistochemical staining (mouse anti‐amylin antibody 145, Amylin Pharmaceuticals Inc.) of amylin positive cells (indicated with white arrows) in area subpostrema (ASP) region of 8 weeks old male Sprague‐Dawley rat fed ad libitum. Rats were anesthetized with pentobarbital and perfused with 4% PFA, brain was postfixed in 4% PFA for 24 h, followed by 24 h in 20% sucrose solution.
Figure 3. Figure 3. Three subtypes of the amylin receptor (AMY) have been characterized. These consist of the calcitonin core receptor [CTR (the splice variant CT(a) is the best characterized)] plus one of three receptor activity modifying proteins (RAMP 1‐3). AMY1‐3 is activated by amylin and sCT, AMY1 is also considered the second receptor for calcitonin‐gene related peptide (CGRP). The CTR without RAMPs is the calcitonin receptor which binds calcitonin and salmon calcitonin (sCT) with a much higher affinity than amylin. Font size of the ligands indicates the relative binding affinity at the respective receptor subtypes. Cells carrying the CTR plus more than one RAMP (which are not depicted in the Figure) may express more complex receptor aggregates with so far unknown pharmacology. For details, see text.
Figure 4. Figure 4. Schematic overview of the rat brain with sites of direct and indirect amylin action. The most extensively studied brain areas that are involved in amylin action are the caudal hindbrain with the area postrema (AP) as a primary target, the nucleus of the solitary tract (NTS) and the lateral parabrachial nucleus (LPBN) as AP projection sites. Other brain areas that have been implicated in amylin action are the ventral tegmental area (VTA) which projects to the nucleus accumbens (NAc), and the lateral dorsal tegmental nucleus (LDTg). Various nuclei of the hypothalamus (HT) are also direct or indirect targets for amylin action. For details, see text.
Figure 5. Figure 5. Schematic overview of rat brain sites which may be involved in the functional interaction between amylin and leptin for their combined effects on energy homeostasis. Amylin and leptin coactivate neurons in the area postrema (AP) and amylin increases leptin receptor expression in the AP. Within the hypothalamus, amylin and leptin interact mainly within the ventromedial hypothalamus, including the ventromedial hypothalamic nucleus (VMN), the hypothalamic arcuate (ARC) nucleus, and its projections to the paraventricular (PVN) nuclei. Further, direct interaction has also been suggested in the ventral tegmental area (VTA). For details, see text.


Figure 1. (A) Pancreatic islet of a Wistar rat with immunohistochemical staining for amylin‐positive beta cells (red) and glucagon positive alpha cells (blue); other islet cell types are not specified. The islet is surrounded by exocrine pancreatic tissue (brown‐green). (B) Amylin has the propensity to aggregate into oligomers and mature amyloid fibrils in primates and in cats. The amyloidogenecity is determined by the amino acids 20 to 29 within the amylin molecule. The example shows moderate deposition of mature extracellular amyloid in the pancreatic islet of a 12‐year‐old diabetic cat. Homogenous material stained in light red: mature extracellular amyloid fibrils; islet cells stained in dark red: amylin producing pancreatic beta cells; islet cells stained in light blue: non‐beta cells; pancreatic islet surrounded by exocrine pancreas tissue (in light blue).


Figure 2. (A) Schematic overview of the rat brain with sites of amylin synthesis. Immunohistological stainings indicated amylin synthesis in the subpostremal region (ventral to the area postrema; sub‐AP) in male rats (unpublished data‐ see B). Further, in situ hybridization studies indicated amylin synthesis in the medial preoptic area (MPA) and the medial preoptic nucleus (MPO) of female rats 74. Within the hypothalamus, immunohistochemical stainings indicated amylin synthesis in the hypothalamic paraventricular (PVN) and arcuate nuclei (ARC), in the dorsomedial hypothalamus (DMH) and in the lateral hypothalamus (LH) in mice 145. (B) 3,3′‐Diaminobenzidine (DAB) immunohistochemical staining (mouse anti‐amylin antibody 145, Amylin Pharmaceuticals Inc.) of amylin positive cells (indicated with white arrows) in area subpostrema (ASP) region of 8 weeks old male Sprague‐Dawley rat fed ad libitum. Rats were anesthetized with pentobarbital and perfused with 4% PFA, brain was postfixed in 4% PFA for 24 h, followed by 24 h in 20% sucrose solution.


Figure 3. Three subtypes of the amylin receptor (AMY) have been characterized. These consist of the calcitonin core receptor [CTR (the splice variant CT(a) is the best characterized)] plus one of three receptor activity modifying proteins (RAMP 1‐3). AMY1‐3 is activated by amylin and sCT, AMY1 is also considered the second receptor for calcitonin‐gene related peptide (CGRP). The CTR without RAMPs is the calcitonin receptor which binds calcitonin and salmon calcitonin (sCT) with a much higher affinity than amylin. Font size of the ligands indicates the relative binding affinity at the respective receptor subtypes. Cells carrying the CTR plus more than one RAMP (which are not depicted in the Figure) may express more complex receptor aggregates with so far unknown pharmacology. For details, see text.


Figure 4. Schematic overview of the rat brain with sites of direct and indirect amylin action. The most extensively studied brain areas that are involved in amylin action are the caudal hindbrain with the area postrema (AP) as a primary target, the nucleus of the solitary tract (NTS) and the lateral parabrachial nucleus (LPBN) as AP projection sites. Other brain areas that have been implicated in amylin action are the ventral tegmental area (VTA) which projects to the nucleus accumbens (NAc), and the lateral dorsal tegmental nucleus (LDTg). Various nuclei of the hypothalamus (HT) are also direct or indirect targets for amylin action. For details, see text.


Figure 5. Schematic overview of rat brain sites which may be involved in the functional interaction between amylin and leptin for their combined effects on energy homeostasis. Amylin and leptin coactivate neurons in the area postrema (AP) and amylin increases leptin receptor expression in the AP. Within the hypothalamus, amylin and leptin interact mainly within the ventromedial hypothalamus, including the ventromedial hypothalamic nucleus (VMN), the hypothalamic arcuate (ARC) nucleus, and its projections to the paraventricular (PVN) nuclei. Further, direct interaction has also been suggested in the ventral tegmental area (VTA). For details, see text.
References
 1.Abegg K, Hermann A, Boyle CN, Bouret SG, Lutz TA, Riediger T. Involvement of amylin and leptin in the development of projections from the area postrema to the nucleus of the solitary tract. Front Endocrinol 8: 324, 2017.
 2.Adams SH, Lei C, Jodka CM, Nikoulina SE, Hoyt JA, Gedulin B, Mack CM, Kendall ES. PYY[3‐36] administration decreases the respiratory quotient and reduces adiposity in diet‐induced obese mice. J Nutr 136: 195‐201, 2006.
 3.Adler BL, Yarchoan M, Hwang HM, Louneva N, Blair JA, Palm R, Smith MA, Lee HG, Arnold SE, Casadesus G. Neuroprotective effects of the amylin analogue pramlintide on Alzheimer's disease pathogenesis and cognition. Neurobiol Aging 35: 793‐801, 2014.
 4.Andreassen KV, Feigh M, Hjuler ST, Gydesen S, Henriksen JE, Beck‐Nielsen H, Christiansen C, Karsdal MA, Henriksen K. A novel oral dual amylin and calcitonin receptor agonist (KBP‐042) exerts antiobesity and antidiabetic effects in rats. Am J Physiol Endocrinol Metab 307: E24‐E33, 2014.
 5.Arnelo U, Permert J, Adrian TE, Larsson J, Westermark P, Reidelberger RD. Chronic infusion of islet amyloid polypeptide causes anorexia in rats. Am J Phys 271: R1654‐R1659, 1996.
 6.Asarian L, Boyle CN, Lutz TA. Estradiol (E2) increases the acute eating‐inhibitory effect of amylin in ovariectomized (OVX) rats. Appetite 57S: S2, 2011.
 7.Asarian L, Eckel LA, Geary N. Behaviorally specific inhibition of sham feeding by amylin. Peptides 19: 1711‐1718, 1998.
 8.Asmar M, Hojberg PV, Deacon CF, Hare K, Holst JJ, Madsbad S. Pancreatic beta‐cell responses to GLP‐1 after near‐normalization of blood glucose in patients with type 2 diabetes. Regul Pept 160: 175‐180, 2010.
 9.Auernhammer CJ, Kopp FB, Vlotides G, Dorn F, Isele NB, Spottl G, Cengic N, Weber MM, Senaldi G, Engelhardt D. Comparative study of gp130 cytokine effects on corticotroph AtT‐20 cells‐‐redundancy or specificity of neuroimmunoendocrine modulators? Neuroimmunomodulation 11: 224‐232, 2004.
 10.Bailey RJ, Walker CS, Ferner AH, Loomes KM, Prijic G, Halim A, Whiting L, Phillips AR, Hay DL. Pharmacological characterization of rat amylin receptors: Implications for the identification of amylin receptor subtypes. Br J Pharmacol 166: 151‐167, 2012.
 11.Baisley SK, Baldo BA. Amylin receptor signaling in the nucleus accumbens negatively modulates mu‐opioid‐driven feeding. Neuropsychopharmacology 39: 3009‐3017, 2014.
 12.Balasubramaniam A, Renugopalakrishnan V, Stein M, Fischer JE, Chance WT. Syntheses, structures and anorectic effects of human and rat amylin. Peptides 12: 919‐924, 1991.
 13.Balland E, Dam J, Langlet F, Caron E, Steculorum S, Messina A, Rasika S, Falluel‐Morel A, Anouar Y, Dehouck B, Trinquet E, Jockers R, Bouret SG, Prevot V. Hypothalamic tanycytes are an ERK‐gated conduit for leptin into the brain. Cell Metab 19: 293‐301, 2014.
 14.Banks WA, Clever CM, Farrell CL. Partial saturation and regional variation in the blood‐to‐brain transport of leptin in normal weight mice. Am J Physiol 278: E1158‐E1171, 2000.
 15.Banks WA, Jaspan JB, Huang W, Kastin AJ. Transport of insulin across the blood‐brain barrier: Saturability at euglycemic doses of insulin. Peptides 18: 1423‐1429, 1997.
 16.Banks WA, Kastin AJ. Differential permeability of the blood‐brain barrier to two pancreatic peptides: Insulin and amylin. Peptides 19: 883‐889, 1998.
 17.Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM. Leptin enters the brain by a saturable system independent of insulin. Peptides 17: 305‐311, 1996.
 18.Banks WA, Kastin AJ, Maness LM, Huang W, Jaspan JB. Permeability of the blood‐brain barrier to amylin. Life Sci 57: 1993‐2001, 1995.
 19.Baraboi ED, St‐Pierre DH, Shooner J, Timofeeva E, Richard D. Brain activation following peripheral administration of the GLP‐1 receptor agonist exendin‐4. Am J Physiol Regul Integr Comp Physiol 301: R1011‐R1024, 2011.
 20.Barbash S, Lorenzen E, Persson T, Huber T, Sakmar TP. GPCRs globally coevolved with receptor activity‐modifying proteins, RAMPs. Proc Natl Acad Sci U S A 114: 12015‐12020, 2017.
 21.Barbash S, Persson T, Lorenzen E, Kazmi MA, Huber T, Sakmar TP. Detection of concordance between transcriptional levels of GPCRs and receptor‐activity‐modifying proteins. iScience 11: 366‐374, 2019.
 22.Barth SW, Riediger T, Lutz TA, Rechkemmer G. Differential effects of amylin and salmon calcitonin on neuropeptide gene expression in the lateral hypothalamic area and the arcuate nucleus of the rat. Neurosci Lett 341: 131‐134, 2003.
 23.Baskin DG, Seeley RJ, Kuijper JL, Lok S, Weigle DS, Erickson JC, Palmiter RD, Schwartz MW. Increased expression of mRNA for the long form of the leptin receptor in the hypothalamus is associated with leptin hypersensitivity and fasting. Diabetes 47: 538‐543, 1998.
 24.Batterham RL, Rosenthal JM, Zelaya FO, Barker GJ, Withers DJ, Williams SC. PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans. Nature 450: 106‐109, 2007.
 25.Becskei C, Grabler V, Edwards GL, Riediger T, Lutz TA. Lesion of the lateral parabrachial nucleus attenuates the anorectic effect of peripheral amylin and CCK. Brain Res 1162: 76‐84, 2007.
 26.Becskei C, Riediger T, Zund D, Wookey P, Lutz TA. Immunohistochemical mapping of calcitonin receptors in the adult rat brain. Brain Res 1030: 221‐233, 2004.
 27.Begg DP, Woods SC. Interactions between the central nervous system and pancreatic islet secretions: A historical perspective. Adv Physiol Educ 37: 53‐60, 2013.
 28.Bell D, McDermott BJ. Activity of amylin at CGRP1‐preferring receptors coupled to positive contractile response in rat ventricular cardiomyocytes. Regul Pept 60: 125‐133, 1995.
 29.Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mellitus after gestational diabetes: A systematic review and meta‐analysis. Lancet 373: 1773‐1779, 2009.
 30.Bello NT, Kemm MH, Ofeldt EM, Moran TH. Dose combinations of exendin‐4 and salmon calcitonin produce additive and synergistic reductions in food intake in nonhuman primates. Am J Physiol Regul Integr Comp Physiol 299: R945‐R952, 2010.
 31.Bennett L, Yang M, Enikolopov G, Iacovitti L. Circumventricular organs: A novel site of neural stem cells in the adult brain. Mol Cell Neurosci 41: 337‐347, 2009.
 32.Berthoud HR, Sutton GM, Townsend RL, Patterson LM, Zheng H. Brainstem mechanisms integrating gut‐derived satiety signals and descending forebrain information in the control of meal size. Physiol Behav 89: 517‐524, 2006.
 33.Betsholtz C, Johnson KH, Westermark P. Amylin' hormone. Nature 338: 211, 1989.
 34.Bhavsar S, Watkins J, Young A. Synergy between amylin and cholecystokinin for inhibition of food intake in mice. Physiol Behav 64: 557‐561, 1998.
 35.Bjorbaek C, Kahn BB. Leptin signaling in the central nervous system and the periphery. Recent Prog Horm Res 59: 305‐331, 2004.
 36.Bouret SG. Organizational actions of metabolic hormones. Front Neuroendocrinol 34: 18‐26, 2013.
 37.Bouret SG. Development of hypothalamic circuits that control food intake and energy balance. In: Harris RBS, editor. Appetite and Food Intake: Central Control. Boca Raton, FL: CRC Press/Taylor & Francis, 2017, p. 135‐154.
 38.Bouret SG, Draper SJ, Simerly RB. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304: 108‐110, 2004.
 39.Bouret SG, Gorski JN, Patterson CM, Chen S, Levin BE, Simerly RB. Hypothalamic neural projections are permanently disrupted in diet‐induced obese rats. Cell Metab 7: 179‐185, 2008.
 40.Bouret SG, Simerly RB. Developmental programming of hypothalamic feeding circuits. Clin Genet 70: 295‐301, 2006.
 41.Bower RL, Hay DL. Amylin structure‐function relationships and receptor pharmacology: Implications for amylin mimetic drug development. Br J Pharmacol 173: 1883‐1898, 2016.
 42.Boyle CN, Rossier MM, Lutz TA. Influence of high‐fat feeding, diet‐induced obesity, and hyperamylinemia on the sensitivity to acute amylin. Physiol Behav 104: 20‐28, 2011.
 43.Boyle CN, Stöcker D, Lutz TA. Involvement of the histaminergic system in amylin and leptin action. Appetite 57S: S7, 2011.
 44.Braegger FE, Asarian L, Dahl K, Lutz TA, Boyle CN. The role of the area postrema in the anorectic effects of amylin and salmon calcitonin: Behavioral and neuronal phenotyping. Eur J Neurosci 40 (7): 3055‐3066, 2014.
 45.Brings A, Borghardt JM, Skarbaliene J, Baader‐Pagler T, Deryabina MA, Rist W, Scheuerer S. Modeling energy intake and body weight effects of a long‐acting amylin analogue. J Pharmacokinet Pharmacodyn 45: 215‐233, 2018.
 46.Caminos JE, Bravo SB, Garces MF, Gonzalez CR, Cepeda LA, Gonzalez AC, Nogueiras R, Gallego R, Garcia‐Caballero T, Cordido F, Lopez M, Dieguez C. Vaspin and amylin are expressed in human and rat placenta and regulated by nutritional status. Histol Histopathol 24: 979‐990, 2009.
 47.Campos CA, Bowen AJ, Han S, Wisse BE, Palmiter RD, Schwartz MW. Cancer‐induced anorexia and malaise are mediated by CGRP neurons in the parabrachial nucleus. Nat Neurosci 20: 934‐942, 2017.
 48.Campos CA, Bowen AJ, Schwartz MW, Palmiter RD. Parabrachial CGRP neurons control meal termination. Cell Metab 23: 811‐820, 2016.
 49.Carter ME, Han S, Palmiter RD. Parabrachial calcitonin gene‐related peptide neurons mediate conditioned taste aversion. J Neurosci 35: 4582‐4586, 2015.
 50.Carter ME, Soden ME, Zweifel LS, Palmiter RD. Genetic identification of a neural circuit that suppresses appetite. Nature 503: 111‐114, 2013.
 51.Cegla J, Jones BJ, Gardiner JV, Hodson DJ, Marjot T, McGlone ER, Tan TM, Bloom SR. RAMP2 influences glucagon receptor pharmacology via trafficking and signaling. Endocrinology 158: 2680‐2693, 2017.
 52.Chan JL, Roth JD, Weyer C. It takes two to tango: Combined amylin/leptin agonism as a potential approach to obesity drug development. J Investig Med 57: 777‐783, 2009.
 53.Chance WT, Balasubramaniam A, Chen X, Fischer JE. Tests of adipsia and conditioned taste aversion following the intrahypothalamic injection of amylin. Peptides 13: 961‐964, 1992.
 54.Chance WT, Balasubramaniam A, Stallion A, Fischer JE. Anorexia following the systemic injection of amylin. Brain Res 607: 185‐188, 1993.
 55.Chance WT, Balasubramaniam A, Zhang FS, Wimalawansa SJ, Fischer JE. Anorexia following the intrahypothalamic administration of amylin. Brain Res 539: 352‐354, 1991.
 56.Chen JY, Campos CA, Jarvie BC, Palmiter RD. Parabrachial CGRP neurons establish and sustain aversive taste memories. Neuron 100: 891‐899.e895, 2018.
 57.Christopoulos A, Christopoulos G, Morfis M, Udawela M, Laburthe M, Couvineau A, Kuwasako K, Tilakaratne N, Sexton PM. Novel receptor partners and function of receptor activity‐modifying proteins. J Biol Chem 278: 3293‐3297, 2003.
 58.Christopoulos G, Paxinos G, Huang XF, Beaumont K, Toga AW, Sexton PM. Comparative distribution of receptors for amylin and the related peptides calcitonin gene related peptide and calcitonin in rat and monkey brain. Can J Physiol Pharmacol 73: 1037‐1041, 1995.
 59.Christopoulos G, Perry KJ, Morfis M, Tilakaratne N, Gao Y, Fraser NJ, Main MJ, Foord SM, Sexton PM. Multiple amylin receptors arise from receptor activity‐modifying protein interaction with the calcitonin receptor gene product. Mol Pharmacol 56: 235‐242, 1999.
 60.Clark A, Cooper GJ, Lewis CE, Morris JF, Willis AC, Reid KB, Turner RC. Islet amyloid formed from diabetes‐associated peptide may be pathogenic in type‐2 diabetes. Lancet 2: 231‐234, 1987.
 61.Cooper GJ. Amylin compared with calcitonin gene‐related peptide: Sstructure, biology, and elevance to metabolic disease. Endocr Rev 15: 163‐201, 1994.
 62.Cooper GJ, Willis AC, Clark A, Turner RC, Sim RB, Reid KB. Purification and characterization of a peptide from amyloid‐rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci U S A 84: 8628‐8632, 1987.
 63.Cornish J, Callon KE, Cooper GJ, Reid IR. Amylin stimulates osteoblast proliferation and increases mineralized bone volume in adult mice. Biochem Biophys Res Commun 207: 133‐139, 1995.
 64.da Silva BA, Bjorbaek C, Uotani S, Flier JS. Functional properties of leptin receptor isoforms containing the gln‐‐>pro extracellular domain mutation of the fatty rat. Endocrinology 139: 3681‐3690, 1998.
 65.Dacquin R, Davey RA, Laplace C, Levasseur R, Morris HA, Goldring SR, Gebre‐Medhin S, Galson DL, Zajac JD, Karsenty G. Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. J Cell Biol 164: 509‐514, 2004.
 66.Davern PJ. A role for the lateral parabrachial nucleus in cardiovascular function and fluid homeostasis. Front Physiol 5: 436, 2014.
 67.Davey RA, Moore AJ, Chiu MW, Notini AJ, Morris HA, Zajac JD. Effects of amylin deficiency on trabecular bone in young mice are sex‐dependent. Calcif Tissue Int 78: 398‐403, 2006.
 68.Davidowa H. Histamine H1‐receptors differentially mediate the action of amylin on hypothalamic neurons in control and in overweight rats. Behav Brain Res 182: 28‐35, 2007.
 69.Dekkers MP, Nikoletopoulou V, Barde YA. Cell biology in neuroscience: Death of developing neurons: New insights and implications for connectivity. J Cell Biol 203: 385‐393, 2013.
 70.Despa S, Margulies KB, Chen L, Knowlton AA, Havel PJ, Taegtmeyer H, Bers DM, Despa F. Hyperamylinemia contributes to cardiac dysfunction in obesity and diabetes: A study in humans and rats. Circ Res 110: 598‐608, 2012.
 71.Despa S, Sharma S, Harris TR, Dong H, Li N, Chiamvimonvat N, Taegtmeyer H, Margulies KB, Hammock BD, Despa F. Cardioprotection by controlling hyperamylinemia in a "humanized" diabetic rat model. J Am Heart Assoc 3: e001015, 2014.
 72.D'Este L, Wimalawansa SJ, Renda TG. Distribution of amylin‐immunoreactive neurons in the monkey hypothalamus and their relationships with the histaminergic system. Arch Histol Cytol 64: 295‐303, 2001.
 73.Dickson SL, Shirazi RH, Hansson C, Bergquist F, Nissbrandt H, Skibicka KP. The glucagon‐like peptide 1 (GLP‐1) analogue, exendin‐4, decreases the rewarding value of food: A new role for mesolimbic GLP‐1 receptors. J Neurosci 32: 4812‐4820, 2012.
 74.Dobolyi A. Central amylin expression and its induction in rat dams. J Neurochem 111: 1490‐1500, 2009.
 75.Donath MY, Dalmas E, Sauter NS, Boni‐Schnetzler M. Inflammation in obesity and diabetes: Islet dysfunction and therapeutic opportunity. Cell Metab 17: 860‐872, 2013.
 76.Duffy S, Lutz TA, Boyle CN. Rodent models of leptin receptor deficiency are less sensitive to amylin. Am J Physiol Regul Integr Comp Physiol 315: R856‐r865, 2018.
 77.Dunn‐Meynell AA, Le Foll C, Johnson MD, Lutz TA, Hayes MR, Levin BE. Endogenous VMH amylin signaling is required for full leptin signaling and protection from diet‐induced obesity. Am J Physiol Regul Integr Comp Physiol 310: R355‐R365, 2016.
 78.Edwards GL, Gedulin BR, Jodka C, Dilts RP, Miller CC, Young A. Area postrem (AP)‐lesions block the regulation of gastric emptying by amylin. Neurogastroenterol Motil 10 (4): 26, 1998. https://doi.org/10.1016/S0016‐5085(98)83064‐3.
 79.Eiden S, Daniel C, Steinbrueck A, Schmidt I, Simon E. Salmon calcitonin – A potent inhibitor of food intake in states of impaired leptin signalling in laboratory rodents. J Physiol 541: 1041‐1048, 2002.
 80.Enoki S, Mitsukawa T, Takemura J, Nakazato M, Aburaya J, Toshimori H, Matsukara S. Plasma islet amyloid polypeptide levels in obesity, impaired glucose tolerance and non‐insulin‐dependent diabetes mellitus. Diabetes Res Clin Pract 15: 97‐102, 1992.
 81.Eriksson PS, Perfilieva E, Björk‐Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nat Med 4: 1313‐1317, 1998.
 82.Ervin GN, Mosher JT, Birkemo LS, Johnson MF. Multiple, small doses of cholecystokinin octapeptide are more efficacious at inducing taste aversion conditioning than single, large doses. Peptides 16: 539‐545, 1995.
 83.Feigh M, Andreassen KV, Hjuler ST, Nielsen RH, Christiansen C, Henriksen K, Karsdal MA. Oral salmon calcitonin protects against impaired fasting glycemia, glucose intolerance, and obesity induced by high‐fat diet and ovariectomy in rats. Menopause 20 (7): 785‐794, 2013.
 84.Feigh M, Nielsen RH, Hansen C, Henriksen K, Christiansen C, Karsdal MA. Oral salmon calcitonin improves fasting and postprandial glycemic control in lean healthy rats. Horm Metab Res 44: 130‐134, 2012.
 85.Fernandes‐Santos C, Zhang Z, Morgan DA, Guo DF, Russo AF, Rahmouni K. Amylin acts in the central nervous system to increase sympathetic nerve activity. Endocrinology 154 (7): 2481‐2488, 2013.
 86.Figlewicz DP, Evans SB, Murphy J, Hoen M, Baskin DG. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res 964: 107‐115, 2003.
 87.Fischer AW, Hoefig CS, Abreu‐Vieira G, de Jong JMA, Petrovic N, Mittag J, Cannon B, Nedergaard J. Leptin raises defended body temperature without activating thermogenesis. Cell Rep 14: 1621‐1631, 2016.
 88.Fischer JA, Muff R, Born W. Functional relevance of G‐protein‐coupled‐receptor‐associated proteins, exemplified by receptor‐activity‐modifying proteins (RAMPs). Biochem Soc Trans 30: 455‐460, 2002.
 89.Fischer JA, Tobler PH, Henke H, Tschopp FA. Salmon and human calcitonin‐like peptides coexist in the human thyroid and brain. J Clin Endocrinol Metab 57: 1314‐1316, 1983.
 90.Fry M, Hoyda TD, Ferguson AV. Making sense of it: Roles of the sensory circumventricular organs in feeding and regulation of energy homeostasis. Exp Biol Med (Maywood) 232: 14‐26, 2007.
 91.Fukuda T, Hirai Y, Maezawa H, Kitagawa Y, Funahashi M. Electrophysiologically identified presynaptic mechanisms underlying amylinergic modulation of area postrema neuronal excitability in rat brain slices. Brain Res 1494: 9‐16, 2013.
 92.Geary N. Effects of glucagon, insulin, amylin and CGRP on feeding. Neuropeptides 33: 400‐405, 1999.
 93.Geary N. A new way of looking at eating. Am J Physiol Regul Integr Comp Physiol 288: R1444‐R1446, 2005.
 94.Geisler JG, Zawalich W, Zawalich K, Lakey JR, Stukenbrok H, Milici AJ, Soeller WC. Estrogen can prevent or reverse obesity and diabetes in mice expressing human islet amyloid polypeptide. Diabetes 51: 2158‐2169, 2002.
 95.Gingell JJ, Burns ER, Hay DL. Activity of pramlintide, rat and human amylin but not Abeta1‐42 at human amylin receptors. Endocrinology 155: 21‐26, 2014.
 96.Gorski JN, Dunn‐Meynell AA, Levin BE. Maternal obesity increases hypothalamic leptin receptor expression and sensitivity in juvenile obesity‐prone rats. Am J Physiol Regul Integr Comp Physiol 292: R1782‐R1791, 2007.
 97.Grill HJ, Carmody JS, Amanda Sadacca L, Williams DL, Kaplan JM. Attenuation of lipopolysaccharide anorexia by antagonism of caudal brain stem but not forebrain GLP‐1‐R. Am J Physiol Regul Integr Comp Physiol 287: R1190‐R1193, 2004.
 98.Grill HJ, Hayes MR. The nucleus tractus solitarius: A portal for visceral afferent signal processing, energy status assessment and integration of their combined effects on food intake. Int J Obes 33 (Suppl 1): S11‐S15, 2009.
 99.Guerreiro LH, Guterres MF, Melo‐Ferreira B, Erthal LC, Rosa Mda S, Lourenco D, Tinoco P, Lima LM. Preparation and characterization of PEGylated amylin. AAPS PharmSciTech 14: 1083‐1097, 2013.
 100.Gurlo T, Kim S, Butler AE, Liu C, Pei L, Rosenberger M, Butler PC. Pregnancy in human IAPP transgenic mice recapitulates beta cell stress in type 2 diabetes. Diabetologia 62: 1000‐1010, 2019.
 101.Hay DL, Chen S, Lutz TA, Parkes DG, Roth JD. Amylin: Pharmacology, Physiology, and Clinical Potential. Pharmacol Rev 67: 564‐600, 2015.
 102.Hay DL, Garelja ML, Poyner DR, Walker CS. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. Br J Pharmacol 175: 3‐17, 2018.
 103.Hay DL, Poyner DR, Quirion R. International Union of Pharmacology. LXIX. Status of the calcitonin gene‐related peptide subtype 2 receptor. Pharmacol Rev 60: 143‐145, 2008.
 104.Hay DL, Walker CS, Gingell JJ, Ladds G, Reynolds CA, Poyner DR. Receptor activity‐modifying proteins; multifunctional G protein‐coupled receptor accessory proteins. Biochem Soc Trans 44: 568‐573, 2016.
 105.Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB, Thurmon JJ, Marinelli M, DiLeone RJ. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51: 801‐810, 2006.
 106.Hoppener JW, Verbeek JS, de Koning EJ, Oosterwijk C, van Hulst KL, Visser‐Vernooy HJ, Hofhuis FM, van Gaalen S, Berends MJ, Hackeng WH, et al. Chronic overproduction of islet amyloid polypeptide/amylin in transgenic mice: Lysosomal localization of human islet amyloid polypeptide and lack of marked hyperglycaemia or hyperinsulinaemia. Diabetologia 36: 1258‐1265, 1993.
 107.Horcajada‐Molteni MN, Davicco MJ, Lebecque P, Coxam V, Young AA, Barlet JP. Amylin inhibits ovariectomy‐induced bone loss in rats. J Endocrinol 165: 663‐668, 2000.
 108.Hull RL, Andrikopoulos S, Verchere CB, Vidal J, Wang F, Cnop M, Prigeon RL, Kahn SE. Increased dietary fat promotes islet amyloid formation and beta‐cell secretory dysfunction in a transgenic mouse model of islet amyloid. Diabetes 52: 372‐379, 2003.
 109.Hunter K, Holscher C. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci 13: 33, 2012.
 110.Hwang JJ, Chan JL, Ntali G, Malkova D, Mantzoros CS. Leptin does not directly regulate the pancreatic hormones amylin and pancreatic polypeptide: Interventional studies in humans. Diabetes Care 31: 945‐951, 2008.
 111.Inoue K, Hisatomi A, Umeda F, Nawata H. Effects of glucagon‐like peptide 1 (7‐36) amide and glucagon on amylin release from perfused rat pancreas. Horm Metab Res 23: 407‐409, 1991.
 112.Irani BG, Dunn‐Meynell AA, Levin BE. Altered hypothalamic leptin, insulin and melanocortin binding associated with moderate fat diet and predisposition to obesity. Endocrinology 148: 310‐316, 2007.
 113.Irani BG, Le Foll C, Dunn‐Meynell AA, Levin BE. Ventromedial nucleus neurons are less sensitive to leptin excitation in rats bred to develop diet‐induced obesity. Am J Physiol Regul Integr Comp Physiol 296: R521‐R527, 2009.
 114.Isaksson B, Wang F, Permert J, Olsson M, Fruin B, Herrington MK, Enochsson L, Erlanson‐Albertsson C, Arnelo U. Chronically administered islet amyloid polypeptide in rats serves as an adiposity inhibitor and regulates energy homeostasis. Pancreatology 5: 29‐36, 2005.
 115.Ishii Y, Bouret SG. Embryonic birthdate of hypothalamic leptin‐activated neurons in mice. Endocrinology 153: 3657‐3667, 2012.
 116.Johnson KH, Hayden DW, O'Brien TD, Westermark P. Spontaneous diabetes mellitus‐islet amyloid complex in adult cats. Am J Pathol 125: 416‐419, 1986.
 117.Johnson MD, Bouret SG, Dunn‐Meynell AA, Boyle CN, Lutz TA, Levin BE. Early postnatal amylin treatment enhances hypothalamic leptin signaling and neural development in the selectively bred diet‐induced obese rat. Am J Physiol Regul Integr Comp Physiol 311: R1032‐R1044, 2016.
 118.Jorsal T, Rungby J, Knop FK, Vilsboll T. GLP‐1 and amylin in the treatment of obesity. Curr Diab Rep 16: 1, 2016.
 119.Jurgens CA, Toukatly MN, Fligner CL, Udayasankar J, Subramanian SL, Zraika S, Aston‐Mourney K, Carr DB, Westermark P, Westermark GT, Kahn SE, Hull RL. Beta‐cell loss and beta‐cell apoptosis in human type 2 diabetes are related to islet amyloid deposition. Am J Pathol 178: 2632‐2640, 2011.
 120.Kadmiel M, Matson BC, Espenschied ST, Lenhart PM, Caron KM. Loss of receptor activity‐modifying protein 2 in mice causes placental dysfunction and alters PTH1R regulation. PLoS One 12: e0181597, 2017.
 121.Kaiyala KJ, Ogimoto K, Nelson JT, Muta K, Morton GJ. Physiological role for leptin in the control of thermal conductance. Mol Metab 5: 892‐902, 2016.
 122.Kaiyala KJ, Ogimoto K, Nelson JT, Schwartz MW, Morton GJ. Leptin signaling is required for adaptive changes in food intake, but not energy expenditure, in response to different thermal conditions. PLoS One 10: e0119391, 2015.
 123.Kalafateli AL, Vallof D, Colombo G, Lorrai I, Maccioni P, Jerlhag E. An amylin analogue attenuates alcohol‐related behaviours in various animal models of alcohol use disorder. Neuropsychopharmacology 44: 1093‐1102, 2019.
 124.Kalafateli AL, Vallof D, Jerlhag E. Activation of amylin receptors attenuates alcohol‐mediated behaviours in rodents. Addict Biol 24: 388‐402, 2019.
 125.Kanoski SE, Fortin SM, Arnold M, Grill HJ, Hayes MR. Peripheral and central GLP‐1 receptor populations mediate the anorectic effects of peripherally administered GLP‐1 receptor agonists, liraglutide and exendin‐4. Endocrinology 152: 3103‐3112, 2011.
 126.Kastin AJ, Pan W. Involvement of the Blood‐Brain Barrier in Metabolic Regulation. CNS Neurol Disord Drug Targets 15: 1118‐1128, 2016.
 127.Katri A, Dabrowska A, Lofvall H, Ding M, Karsdal MA, Andreassen KV, Thudium CS, Henriksen K. Combining naproxen and a dual amylin and calcitonin receptor agonist improves pain and structural outcomes in the collagen‐induced arthritis rat model. Arthritis Res Ther 21: 68, 2019.
 128.Katri A, Dabrowska A, Lofvall H, Karsdal MA, Andreassen KV, Thudium CS, Henriksen K. A dual amylin and calcitonin receptor agonist inhibits pain behavior and reduces cartilage pathology in an osteoarthritis rat model. Osteoarthr Cartil 27: 1339‐1346, 2019.
 129.Kautzky‐Willer A, Thomaseth K, Ludvik B, Nowotny P, Rabensteiner D, Waldhausl W, Pacini G, Prager R. Elevated islet amyloid pancreatic polypeptide and proinsulin in lean gestational diabetes. Diabetes 46: 607‐614, 1997.
 130.Kinzig KP, D'Alessio DA, Seeley RJ. The diverse roles of specific GLP‐1 receptors in the control of food intake and the response to visceral illness. J Neurosci 22: 10470‐10476, 2002.
 131.Kowalczyk R, Brimble MA, Tomabechi Y, Fairbanks AJ, Fletcher M, Hay DL. Convergent chemoenzymatic synthesis of a library of glycosylated analogues of pramlintide: Structure‐activity relationships for amylin receptor agonism. Org Biomol Chem 12: 8142‐8151, 2014.
 132.Kraly FS. Histamine plays a part in induction of drinking by food intake. Nature 302: 65‐66, 1983.
 133.Kraly FS, Carty WJ, Resnick S, Smith GP. Effect of cholecystokinin on meal size and intermeal interval in the sham‐feeding rat. J Comp Physiol Psychol 92: 697‐707, 1978.
 134.Kraly FS, Keefe ME, Tribuzio RA, Kim YM, Finkell J, Braun CJ. H1, H2, and H3 receptors contribute to drinking elicited by exogenous histamine and eating in rats. Pharmacol Biochem Behav 53: 347‐354, 1996.
 135.Kusakabe T, Ebihara K, Sakai T, Miyamoto L, Aotani D, Yamamoto Y, Yamamoto‐Kataoka S, Aizawa‐Abe M, Fujikura J, Hosoda K, Nakao K. Amylin improves the effect of leptin on insulin sensitivity in leptin‐resistant diet‐induced obese mice. Am J Physiol Endocrinol Metab 302: E924‐E931, 2012.
 136.Larsen L, Le Foll C, Dunn‐Meynell AA, Levin BE. IL‐6 ameliorates defective leptin sensitivity in DIO ventromedial hypothalamic nucleus neurons. Am J Physiol Regul Integr Comp Physiol 311 (4): R764‐R770, 2016.
 137.Le Foll C, Johnson MD, Dunn‐Meynell AA, Boyle CN, Lutz TA, Levin BE. Amylin‐induced central IL‐6 production enhances ventromedial hypothalamic leptin signaling. Diabetes 64: 1621‐1631, 2015.
 138.Leinung MC, Grasso P. [D‐Leu‐4]‐OB3, a synthetic peptide amide with leptin‐like activity, augments the effects of orally delivered exenatide and pramlintide acetate on energy balance and glycemic control in insulin‐resistant male C57BLK/6‐m db/db mice. Regul Pept 179: 33‐38, 2012.
 139.Levin BE, Dunn‐Meynell AA, Balkan B, Keesey RE. Selective breeding for diet‐induced obesity and resistance in Sprague‐Dawley rats. Am J Physiol 273: R725‐R730, 1997.
 140.Levin BE, Dunn‐Meynell AA, Banks WA. Obesity‐prone rats have normal blood‐brain barrier transport but defective central leptin signaling before obesity onset. Am J Physiol Regul Integr Comp Physiol 286: R143‐R150, 2004.
 141.Levin BE, Dunn‐Meynell AA, Banks WA. Obesity‐prone rats have normal blood‐brain barrier transport but defective central leptin signaling prior to obesity onset. Am J Physiol 286: R143‐R150, 2004.
 142.Levin BE, Dunn‐Meynell AA, Ricci MR, Cummings DE. Abnormalities of leptin and ghrelin regulation in obesity‐prone juvenile rats. Am J Physiol 285: E949‐E957, 2003.
 143.Li X, Fan K, Li Q, Pan D, Hai R, Du C. Melanocortin 4 receptor‐mediated effects of amylin on thermogenesis and regulation of food intake. Diabetes Metab Res Rev 35: e3149, 2019.
 144.Li Z, Kelly L, Heiman M, Greengard P, Friedman JM. Hypothalamic amylin acts in concert with leptin to regulate food intake. Cell Metab 22: 1059‐1067, 2015.
 145.Li Z, Kelly L, Heiman M, Greengard P, Friedman JM. Hypothalamic amylin acts in concert with leptin to regulate food intake. Cell Metab 23: 945, 2016.
 146.Liberini CG, Borner T, Boyle CN, Lutz TA. The satiating hormone amylin enhances neurogenesis in the area postrema of adult rats. Mol Metab 5: 834‐843, 2016.
 147.Liberini CG, Boyle CN, Cifani C, Venniro M, Hope BT, Lutz TA. Amylin receptor components and the leptin receptor are co‐expressed in single rat area postrema neurons. Eur J Neurosci 43: 653‐661, 2016.
 148.Liu T, Kamiyoshi A, Tanaka M, Iida S, Sakurai T, Ichikawa‐Shindo Y, Kawate H, Hirabayashi K, Dai K, Cui N, Tanaka M, Wei Y, Nakamura K, Matsui S, Yamauchi A, Shindo T. RAMP3 deficiency enhances postmenopausal obesity and metabolic disorders. Peptides 110: 10‐18, 2018.
 149.Lorenzen E, Dodig‐Crnković T, Kotliar IB, Pin E, Ceraudo E, Vaughan RD, Uhlèn M, Huber T, Schwenk JM, Sakmar TP. Multiplexed analysis of the secretin‐like GPCR‐RAMP interactome. bioRxiv 597690, 2019.
 150.Lorenzo A, Razzaboni B, Weir GC, Yankner BA. Pancreatic islet cell toxicity of amylin associated with type‐2 diabetes mellitus. Nature 368: 756‐760, 1994.
 151.Lutz TA. Amylinergic control of food intake. Physiol Behav 89: 465‐471, 2006.
 152.Lutz TA. The role of amylin in the control of energy homeostasis. Am J Physiol Regul Integr Comp Physiol 298: R1475‐R1484, 2010.
 153.Lutz TA. Roles of amylin in satiation, adiposity and brain development. Forum Nutr 63: 64‐74, 2010.
 154.Lutz TA. Amylin may offer (more) help to treat postmenopausal obesity. Endocrinology 152: 1‐3, 2011.
 155.Lutz TA. Control of energy homeostasis by amylin. Cell Mol Life Sci 69 (12): 1947‐1965, 2011.
 156.Lutz TA. The interaction of amylin with other hormones in the control of eating. Diabetes Obes Metab 15: 99‐111, 2013.
 157.Lutz TA, Althaus J, Rossi R, Scharrer E. Anorectic effect of amylin is not transmitted by capsaicin‐sensitive nerve fibers. Am J Phys 274: R1777‐R1782, 1998.
 158.Lutz TA, Coester B, Whiting L, Dunn‐Meynell AA, Boyle CN, Bouret SG, Levin BE, Le Foll C. Amylin selectively signals onto POMC neurons in the arcuate nucleus of the hypothalamus. Diabetes 67: 805‐817, 2018.
 159.Lutz TA, Del Prete E, Scharrer E. Reduction of food intake in rats by intraperitoneal injection of low doses of amylin. Physiol Behav 55: 891‐895, 1994.
 160.Lutz TA, Del Prete E, Scharrer E. Subdiaphragmatic vagotomy does not influence the anorectic effect of amylin. Peptides 16: 457‐462, 1995.
 161.Lutz TA, Del Prete E, Walzer B, Scharrer E. The histaminergic, but not the serotoninergic, system mediates amylin's anorectic effect. Peptides 17: 1317‐1322, 1996.
 162.Lutz TA, Geary N. Gastrointestinal factors – animal research (Chapter 5). In: Harris R B S, et al. editors. Appetite and Food Intake: Behavioral and Physiological Considerations. Boca Raton, FL: CRC Press/Taylor & Francis, 2008, p. 163‐186.
 163.Lutz TA, Geary N, Szabady MM, Del PE, Scharrer E. Amylin decreases meal size in rats. Physiol Behav 58: 1197‐1202, 1995.
 164.Lutz TA, Le Foll C. Endogenous amylin contributes to birth of microglial cells in arcuate nucleus of hypothalamus and area postrema during fetal development. Am J Physiol Regul Integr Comp Physiol 316: R791‐r801, 2019.
 165.Lutz TA, Meyer U. Amylin at the interface between metabolic and neurodegenerative disorders. Front Neurosci 9: 216, 2015.
 166.Lutz TA, Mollet A, Rushing PA, Riediger T, Scharrer E. The anorectic effect of a chronic peripheral infusion of amylin is abolished in area postrema/nucleus of the solitary tract (AP/NTS) lesioned rats. Int J Obes Relat Metab Disord 25: 1005‐1011, 2001.
 167.Lutz TA, Osto E. Glucagon‐like peptide‐1, glucagon‐like peptide‐2, and lipid metabolism. Curr Opin Lipidol 27: 257‐263, 2016.
 168.Lutz TA, Rand JS. A review of new developments in type 2 diabetes in human beings and cats. Br Vet J 149: 527‐536, 1993.
 169.Lutz TA, Rand JS. Pathogenesis of feline diabetes mellitus. Vet Clin North Am Small Anim Pract 25: 527‐552, 1995.
 170.Lutz TA, Rand JS. Detection of amyloid deposition in various regions of the feline pancreas by different staining techniques. J Comp Pathol 116: 157‐170, 1997.
 171.Lutz TA, Senn M, Althaus J, Del Prete E, Ehrensperger F, Scharrer E. Lesion of the area postrema/nucleus of the solitary tract (AP/NTS) attenuates the anorectic effects of amylin and calcitonin gene‐related peptide (CGRP) in rats. Peptides 19: 309‐317, 1998.
 172.Lutz TA, Tschudy S, Rushing PA, Scharrer E. Amylin receptors mediate the anorectic action of salmon calcitonin (sCT). Peptides 21: 233‐238, 2000.
 173.MacIntosh CG, Morley JE, Wishart J, Morris H, Jansen JB, Horowitz M, Chapman IM. Effect of exogenous cholecystokinin (CCK)‐8 on food intake and plasma CCK, leptin, and insulin concentrations in older and young adults: Evidence for increased CCK activity as a cause of the anorexia of aging. J Clin Endocrinol Metab 86: 5830‐5837, 2001.
 174.Mack C, Wilson J, Athanacio J, Reynolds J, Laugero K, Guss S, Vu C, Roth J, Parkes D. Pharmacological actions of the peptide hormone amylin in the long‐term regulation of food intake, food preference, and body weight. Am J Physiol Regul Integr Comp Physiol 293: R1855‐R1863, 2007.
 175.Mack CM, Soares CJ, Wilson JK, Athanacio JR, Turek VF, Trevaskis JL, Roth JD, Smith PA, Gedulin B, Jodka CM, Roland BL, Adams SH, Lwin A, Herich J, Laugero KD, Vu C, Pittner R, Paterniti JR Jr, Hanley M, Ghosh S, Parkes DG. Davalintide (AC2307), a novel amylin‐mimetic peptide: Enhanced pharmacological properties over native amylin to reduce food intake and body weight. Int J Obes 34: 385‐395, 2010.
 176.Marchi J, Berg M, Dencker A, Olander EK, Begley C. Risks associated with obesity in pregnancy, for the mother and baby: A systematic review of reviews. Obes Rev 16: 621‐638, 2015.
 177.Matveyenko AV, Butler PC. Islet amyloid polypeptide (IAPP) transgenic rodents as models for type 2 diabetes. ILAR J 47: 225‐233, 2006.
 178.McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG, Foord SM. RAMPs regulate the transport and ligand specificity of the calcitonin‐receptor‐like receptor. Nature 393: 333‐339, 1998.
 179.Mercer JG, Hoggard N, Williams LM, Lawrence CB, Hannah LT, Trayhurn P. Localization of leptin receptor mRNA and the long form splice variant (Ob‐Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization. FEBS Lett 387: 113‐116, 1996.
 180.Michel S, Becskei C, Erguven E, Lutz TA, Riediger T. Diet‐derived nutrients modulate the effects of amylin on c‐Fos expression in the area postrema and on food intake. Neuroendocrinology 86: 124‐135, 2007.
 181.Mietlicki‐Baase EG, Hayes MR. Amylin activates distributed CNS nuclei to control energy balance. Physiol Behav 136: 39‐46, 2014.
 182.Mietlicki‐Baase EG, McGrath LE, Koch‐Laskowski K, Krawczyk J, Reiner DJ, Pham T, Nguyen CTN, Turner CA, Olivos DR, Wimmer ME, Schmidt HD, Hayes MR. Amylin receptor activation in the ventral tegmental area reduces motivated ingestive behavior. Neuropharmacology 123: 67‐79, 2017.
 183.Mietlicki‐Baase EG, Olivos DR, Jeffrey BA, Hayes MR. Cooperative interaction between leptin and amylin signaling in the ventral tegmental area for the control of food intake. Am J Physiol Endocrinol Metab 308: E1116‐E1122, 2015.
 184.Mietlicki‐Baase EG, Ortinski PI, Rupprecht LE, Olivos DR, Alhadeff AL, Pierce RC, Hayes MR. The food intake‐suppressive effects of glucagon‐like peptide‐1 receptor signaling in the ventral tegmental area are mediated by AMPA/kainate receptors. Am J Physiol Endocrinol Metab 305: E1367‐E1374, 2013.
 185.Mietlicki‐Baase EG, Reiner DJ, Cone JJ, Olivos DR, McGrath LE, Zimmer DJ, Roitman MF, Hayes MR. Amylin modulates the mesolimbic dopamine system to control energy balance. Neuropsychopharmacology 40: 372‐385, 2015.
 186.Mietlicki‐Baase EG, Rupprecht LE, Olivos DR, Zimmer DJ, Alter MD, Pierce RC, Schmidt HD, Hayes MR. Amylin receptor signaling in the ventral tegmental area is physiologically relevant for the control of food intake. Neuropsychopharmacology 38: 1685‐1697, 2013.
 187.Mollet A, Gilg S, Riediger T, Lutz TA. Infusion of the amylin antagonist AC 187 into the area postrema increases food intake in rats. Physiol Behav 81: 149‐155, 2004.
 188.Mollet A, Lutz TA, Meier S, Riediger T, Rushing PA, Scharrer E. Histamine H1 receptors mediate the anorectic action of the pancreatic hormone amylin. Am J Physiol Regul Integr Comp Physiol 281: R1442‐R1448, 2001.
 189.Mollet A, Meier S, Grabler V, Gilg S, Scharrer E, Lutz TA. Endogenous amylin contributes to the anorectic effects of cholecystokinin and bombesin. Peptides 24: 91‐98, 2003.
 190.Mollet A, Meier S, Riediger T, Lutz TA. Histamine H1 receptors in the ventromedial hypothalamus mediate the anorectic action of the pancreatic hormone amylin. Peptides 24: 155‐158, 2003.
 191.Moon HS, Chamberland JP, Diakopoulos KN, Fiorenza CG, Ziemke F, Schneider B, Mantzoros CS. Leptin and amylin act in an additive manner to activate overlapping signaling pathways in peripheral tissues; in vitro and ex vivo studies in humans. Diabetes Care 34: 132‐138, 2011.
 192.Moon HS, Dincer F, Mantzoros CS. Amylin‐induced downregulation of hippocampal neurogenesis is attenuated by leptin in a STAT3/AMPK/ERK‐dependent manner in mice. Diabetologia 56: 627‐634, 2013.
 193.Morfis M, Tilakaratne N, Furness SG, Christopoulos G, Werry TD, Christopoulos A, Sexton PM. Receptor activity‐modifying proteins differentially modulate the G protein‐coupling efficiency of amylin receptors. Endocrinology 149: 5423‐5431, 2008.
 194.Morley JE, Flood JF, Horowitz M, Morley PM, Walter MJ. Modulation of food intake by peripherally administered amylin. Am J Phys 267: R178‐R184, 1994.
 195.Morley JE, Suarez MD, Mattamal M, Flood JF. Amylin and food intake in mice: Effects on motivation to eat and mechanism of action. Pharmacol Biochem Behav 56: 123‐129, 1997.
 196.Muff R, Buhlmann N, Fischer JA, Born W. An amylin receptor is revealed following co‐transfection of a calcitonin receptor with receptor activity modifying proteins‐1 or ‐3. Endocrinology 140: 2924‐2927, 1999.
 197.Mulder H, Leckstrom A, Uddman R, Ekblad E, Westermark P, Sundler F. Islet amyloid polypeptide (amylin) is expressed in sensory neurons. J Neurosci 15: 7625‐7632, 1995.
 198.Mulder H, Myrsen‐Axcrona U, Gebre‐Medhin S, Ekblad E, Sundler F. Expression of non‐classical islet hormone‐like peptides during the embryonic development of the pancreas. Microsc Res Tech 43: 313‐321, 1998.
 199.Mumphrey MB, Hao Z, Townsend RL, Patterson LM, Munzberg H, Morrison CD, Ye J, Berthoud HR. Eating in mice with gastric bypass surgery causes exaggerated activation of brainstem anorexia circuit. Int J Obes 40: 921‐928, 2016.
 200.Myers MG Jr, Munzberg H, Leinninger GM, Leshan RL. The geometry of leptin action in the brain: More complicated than a simple ARC. Cell Metab 9: 117‐123, 2009.
 201.Naot D, Cornish J. The role of peptides and receptors of the calcitonin family in the regulation of bone metabolism. Bone 43: 813‐818, 2008.
 202.Naot D, Musson DS, Cornish J. The Activity of peptides of the calcitonin family in bone. Physiol Rev 99: 781‐805, 2019.
 203.Nicholl CG, Bhatavdekar JM, Mak J, Girgis SI, Legon S. Extra‐pancreatic expression of the rat islet amyloid polypeptide (amylin) gene. J Mol Endocrinol 9: 157‐163, 1992.
 204.O'Brien TD, Butler PC, Westermark P, Johnson KH. Islet amyloid polypeptide: A review of its biology and potential roles in the pathogenesis of diabetes mellitus. Vet Pathol 30: 317‐332, 1993.
 205.O'Brien TD, Hayden DW, Johnson KH, Fletcher TF. Immunohistochemical morphometry of pancreatic endocrine cells in diabetic, normoglycaemic glucose‐intolerant and normal cats. J Comp Pathol 96: 357‐369, 1986.
 206.Ogawa A, Harris V, McCorkle SK, Unger RH, Luskey KL. Amylin secretion from the rat pancreas and its selective loss after streptozotocin treatment. J Clin Invest 85: 973‐976, 1990.
 207.Olsson M, Herrington MK, Reidelberger RD, Permert J, Arnelo U. Comparison of the effects of chronic central administration and chronic peripheral administration of islet amyloid polypeptide on food intake and meal pattern in the rat. Peptides 28: 1416‐1423, 2007.
 208.Osaka T, Tsukamoto A, Koyama Y, Inoue S. Central and peripheral administration of amylin induces energy expenditure in anesthetized rats. Peptides 29: 1028‐1035, 2008.
 209.Oskarsson ME, Paulsson JF, Schultz SW, Ingelsson M, Westermark P, Westermark GT. In vivo seeding and cross‐seeding of localized amyloidosis: A molecular link between type 2 diabetes and Alzheimer disease. Am J Pathol 185: 834‐846, 2015.
 210.Osto M, Wielinga PY, Alder B, Walser N, Lutz TA. Modulation of the satiating effect of amylin by central ghrelin, leptin and insulin. Physiol Behav 91: 566‐572, 2007.
 211.Padilla S, Carmody J, Zeltser L. Pomc‐expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits. Nat Med 16: 403‐405, 2010.
 212.Pan W, Adams JM, Allison MB, Patterson C, Flak JN, Jones J, Strohbehn G, Trevaskis J, Rhodes CJ, Olson DP, Myers MG Jr. Essential role for hypothalamic calcitonin receptorexpressing neurons in the control of food intake by leptin. Endocrinology 159: 1860‐1872, 2018.
 213.Pieber TR, Roitelman J, Lee Y, Luskey KL, Stein DT. Direct plasma radioimmunoassay for rat amylin‐(1‐37): Concentrations with acquired and genetic obesity. Am J Phys 267: E156‐E164, 1994.
 214.Potes CS, Lutz TA. Brainstem mechanisms of amylin‐induced anorexia. Physiol Behav 100: 511‐518, 2010.
 215.Potes CS, Lutz TA, Riediger T. Identification of central projections from amylin‐activated neurons to the lateral hypothalamus. Brain Res 1334: 31‐44, 2010.
 216.Potes CS, Riediger T, Lutz TA. Amylin induced ERK1/2 phosphorylation may contribute to its eating inhibitory effect. Appetite 57: S34, 2011.
 217.Potes CS, Turek VF, Cole RL, Vu C, Roland BL, Roth JD, Riediger T, Lutz TA. Noradrenergic neurons of the area postrema mediate amylin's hypophagic action. Am J Physiol Regul Integr Comp Physiol 299: R623‐R631, 2010.
 218.Poyner DR, Sexton PM, Marshall I, Smith DM, Quirion R, Born W, Muff R, Fischer JA, Foord SM. International Union of Pharmacology. XXXII. The mammalian calcitonin gene‐related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev 54: 233‐246, 2002.
 219.Preston AM, Gurisik E, Bartley C, Laybutt DR, Biden TJ. Reduced endoplasmic reticulum (ER)‐to‐Golgi protein trafficking contributes to ER stress in lipotoxic mouse beta cells by promoting protein overload. Diabetologia 52: 2369‐2373, 2009.
 220.Rahmouni K, Fath MA, Seo S, Thedens DR, Berry CJ, Weiss R, Nishimura DY, Sheffield VC. Leptin resistance contributes to obesity and hypertension in mouse models of Bardet‐Biedl syndrome. J Clin Invest 118: 1458‐1467, 2008.
 221.Reid IR. Relationships among body mass, its components, and bone. Bone 31: 547‐555, 2002.
 222.Reidelberger RD, Arnelo U, Granqvist L, Permert J. Comparative effects of amylin and cholecystokinin on food intake and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol 280: R605‐R611, 2001.
 223.Reidelberger RD, Haver AC, Arnelo U, Smith DD, Schaffert CS, Permert J. Amylin receptor blockade stimulates food intake in rats. Am J Physiol Regul Integr Comp Physiol 287: R568‐R574, 2004.
 224.Reidelberger RD, Kelsey L, Heimann D. Effects of amylin‐related peptides on food intake, meal patterns, and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol 282: R1395‐R1404, 2002.
 225.Reiner DJ, Mietlicki‐Baase EG, Olivos DR, McGrath LE, Zimmer DJ, Koch‐Laskowski K, Krawczyk J, Turner CA, Noble EE, Hahn JD, Schmidt HD, Kanoski SE, Hayes MR. Amylin acts in the lateral dorsal tegmental nucleus to regulate energy balance through gamma‐aminobutyric acid signaling. Biol Psychiatry 82, 11: 828‐838, 2017.
 226.Riediger T, Rauch M, Schmid HA. Actions of amylin on subfornical organ neurons and on drinking behavior in rats. Am J Phys 276: R514‐R521, 1999.
 227.Riediger T, Schmid HA, Lutz T, Simon E. Amylin potently activates AP neurons possibly via formation of the excitatory second messenger cGMP. Am J Physiol Regul Integr Comp Physiol 281: R1833‐R1843, 2001.
 228.Riediger T, Schmid HA, Young AA, Simon E. Pharmacological characterisation of amylin‐related peptides activating subfornical organ neurones. Brain Res 837: 161‐168, 1999.
 229.Riediger T, Zuend D, Becskei C, Lutz TA. The anorectic hormone amylin contributes to feeding‐related changes of neuronal activity in key structures of the gut‐brain axis. Am J Physiol Regul Integr Comp Physiol 286: R114‐R122, 2004.
 230.Rindi G, Terenghi G, Westermark G, Westermark P, Moscoso G, Polak JM. Islet amyloid polypeptide in proliferating pancreatic B cells during development, hyperplasia, and neoplasia in humans and mice. Am J Pathol 138: 1321‐1334, 1991.
 231.Rosenbaum M, Hirsch J, Gallagher DA, Leibel RL. Long‐term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am J Clin Nutr 88: 906‐912, 2008.
 232.Rosenbaum M, Kissileff HR, Mayer LE, Hirsch J, Leibel RL. Energy intake in weight‐reduced humans. Brain Res 1350: 95‐102, 2010.
 233.Roth JD, D'Souza L, Griffin PS, Athanacio J, Trevaskis JL, Nazarbaghi R, Jodka C, Hoyt J, Forood B, Parkes DG. Interactions of amylinergic and melanocortinergic systems in the control of food intake and body weight in rodents. Diabetes Obes Metab 14 (7): 608‐615, 2012.
 234.Roth JD, Erickson MR, Chen S, Parkes DG. GLP‐1R and amylin agonism in metabolic disease: Complementary mechanisms and future opportunities. Br J Pharmacol 166: 121‐136, 2012.
 235.Roth JD, Hughes H, Coffey T, Maier H, Trevaskis JL, Anderson CM. Effects of prior or concurrent food restriction on amylin‐induced changes in body weight and body composition in high‐fat‐fed female rats. Am J Physiol Endocrinol Metab 293: E1112‐E1117, 2007.
 236.Roth JD, Hughes H, Kendall E, Baron AD, Anderson CM. Antiobesity effects of the beta‐cell hormone amylin in diet‐induced obese rats: Effects on food intake, body weight, composition, energy expenditure, and gene expression. Endocrinology 147: 5855‐5864, 2006.
 237.Roth JD, Roland BL, Cole RL, Trevaskis JL, Weyer C, Koda JE, Anderson CM, Parkes DG, Baron AD. Leptin responsiveness restored by amylin agonism in diet‐induced obesity: Evidence from nonclinical and clinical studies. Proc Natl Acad Sci U S A 105: 7257‐7262, 2008.
 238.Roth JD, Trevaskis JL, Turek VF, Parkes DG. “Weighing in” on synergy: Preclinical research on neurohormonal anti‐obesity combinations. Brain Res 1350: 86‐94, 2010.
 239.Roth JD, Trevaskis JL, Wilson J, Lei C, Athanacio J, Mack C, Kesty NC, Coffey T, Weyer C, Parkes DG. Antiobesity effects of the beta‐cell hormone amylin in combination with phentermine or sibutramine in diet‐induced obese rats. Int J Obes 32: 1201‐1210, 2008.
 240.Rowland NE, Crews EC, Gentry RM. Comparison of Fos induced in rat brain by GLP‐1 and amylin. Regul Pept 71: 171‐174, 1997.
 241.Rowland NE, Richmond RM. Area postrema and the anorectic actions of dexfenfluramine and amylin. Brain Res 820: 86‐91, 1999.
 242.Rushing PA, Hagan MM, Seeley RJ, Lutz TA, D'Alessio DA, Air EL, Woods SC. Inhibition of central amylin signaling increases food intake and body adiposity in rats. Endocrinology 142: 5035, 2001.
 243.Rushing PA, Seeley RJ, Air EL, Lutz TA, Woods SC. Acute 3rd‐ventricular amylin infusion potently reduces food intake but does not produce aversive consequences. Peptides 23: 985‐988, 2002.
 244.Ruttimann EB, Arnold M, Hillebrand JJ, Geary N, Langhans W. Intrameal hepatic portal and intraperitoneal infusions of glucagon‐like peptide‐1 reduce spontaneous meal size in the rat via different mechanisms. Endocrinology 150: 1174‐1181, 2009.
 245.Salinas CBG, Lu TT, Gabery S, Marstal K, Alanentalo T, Mercer AJ, Cornea A, Conradsen K, Hecksher‐Sorensen J, Dahl AB, Knudsen LB, Secher A. Integrated brain atlas for unbiased mapping of nervous system effects following liraglutide treatment. Sci Rep 8: 10310, 2018.
 246.Sanford D, Luong L, Gabalski A, Oh S, Vu JP, Pisegna JR, Germano P. An intraperitoneal treatment with calcitonin gene‐related peptide (CGRP) regulates appetite, energy intake/expenditure, and metabolism. J Mol Neurosci 67: 28‐37, 2019.
 247.Schwaber JS, Sternini C, Brecha NC, Rogers WT, Card JP. Neurons containing calcitonin gene‐related peptide in the parabrachial nucleus project to the central nucleus of the amygdala. J Comp Neurol 270: 416‐426, 398‐419, 1988.
 248.Scott MM, Lachey JL, Sternson SM, Lee CE, Elias CF, Friedman JM, Elmquist JK. Leptin targets in the mouse brain. J Comp Neurol 514: 518‐532, 2009.
 249.Secher A, Jelsing J, Baquero AF, Hecksher‐Sorensen J, Cowley MA, Dalboge LS, Hansen G, Grove KL, Pyke C, Raun K, Schaffer L, Tang‐Christensen M, Verma S, Witgen BM, Vrang N, Bjerre Knudsen L. The arcuate nucleus mediates GLP‐1 receptor agonist liraglutide‐dependent weight loss. J Clin Invest 124: 4473‐4488, 2014.
 250.Seeley RJ, Blake K, Rushing PA, Benoit S, Eng J, Woods SC, D'Alessio D. The role of CNS glucagon‐like peptide‐1 (7‐36) amide receptors in mediating the visceral illness effects of lithium chloride. J Neurosci 20: 1616‐1621, 2000.
 251.Senn SS, Le Foll C, Whiting L, Tarasco E, Duffy S, Lutz TA, Boyle CN. Unsilencing of native leptin receptors (LepR) in hypothalamic SF1 neurons does not rescue obese phenotype in LepR‐deficient mice. Am J Physiol Regul Integr Comp Physiol 317 (3): R451‐R460, 2019.
 252.Seo S, Guo DF, Bugge K, Morgan DA, Rahmouni K, Sheffield VC. Requirement of Bardet‐Biedl syndrome proteins for leptin receptor signaling. Hum Mol Genet 18: 1323‐1331, 2009.
 253.Seth R, Knight WD, Overton JM. Combined amylin‐leptin treatment lowers blood pressure and adiposity in lean and obese rats. Int J Obes 35: 1183‐1192, 2011.
 254.Seth R, Terry DE, Parrish B, Bhatt R, Overton JM. Amylin‐leptin coadministration stimulates central histaminergic signaling in rats. Brain Res 1442: 15‐24, 2012.
 255.Sexton PM, Hilton JM. Biologically active salmon calcitonin‐like peptide is present in rat brain. Brain Res 596: 279‐284, 1992.
 256.Sexton PM, Paxinos G, Kenney MA, Wookey PJ, Beaumont K. In vitro autoradiographic localization of amylin binding sites in rat brain. Neuroscience 62: 553‐567, 1994.
 257.Skibicka KP. The central GLP‐1: Implications for food and drug reward. Front Neurosci 7: 181, 2013.
 258.Skofitsch G, Wimalawansa SJ, Jacobowitz DM, Gubisch W. Comparative immunohistochemical distribution of amylin‐like and calcitonin gene related peptide like immunoreactivity in the rat central nervous system. Can J Physiol Pharmacol 73: 945‐956, 1995.
 259.Smith PM, Brzezinska P, Hubert F, Mimee A, Maurice DH, Ferguson AV. Leptin influences the excitability of area postrema neurons. Am J Physiol Regul Integr Comp Physiol 310: R440‐R448, 2016.
 260.Smith SR, Aronne LJ, Burns CM, Kesty NC, Halseth AE, Weyer C. Sustained weight loss following 12‐month pramlintide treatment as an adjunct to lifestyle intervention in obesity. Diabetes Care 31: 1816‐1823, 2008.
 261.Smith SR, Blundell JE, Burns C, Ellero C, Schroeder BE, Kesty NC, Chen KS, Halseth AE, Lush CW, Weyer C. Pramlintide treatment reduces 24‐h caloric intake and meal sizes and improves control of eating in obese subjects: A 6‐wk translational research study. Am J Physiol Endocrinol Metab 293: E620‐E627, 2007.
 262.Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev 20: 327‐348, 2010.
 263.Su Z, Alhadeff AL, Betley JN. Nutritive, post‐ingestive signals are the primary regulators of AgRP neuron activity. Cell Rep 21: 2724‐2736, 2017.
 264.Szabo ER, Cservenak M, Dobolyi A. Amylin is a novel neuropeptide with potential maternal functions in the rat. FASEB J 26: 272‐281, 2012.
 265.Thiele TE, Van DG, Campfield LA, Smith FJ, Burn P, Woods SC, Bernstein IL, Seeley RJ. Central infusion of GLP‐1, but not leptin, produces conditioned taste aversions in rats. Am J Physiol 272: R726‐R730, 1997.
 266.Tilakaratne N, Christopoulos G, Zumpe ET, Foord SM, Sexton PM. Amylin receptor phenotypes derived from human calcitonin receptor/RAMP coexpression exhibit pharmacological differences dependent on receptor isoform and host cell environment. J Pharmacol Exp Ther 294: 61‐72, 2000.
 267.Tolcos M, Tikellis C, Rees S, Cooper M, Wookey P. Ontogeny of calcitonin receptor mRNA and protein in the developing central nervous system of the rat. J Comp Neurol 456: 29‐38, 2003.
 268.Trevaskis JL, Coffey T, Cole R, Lei C, Wittmer C, Walsh B, Weyer C, Koda J, Baron AD, Parkes DG, Roth JD. Amylin‐mediated restoration of leptin responsiveness in diet‐induced obesity: Magnitude and mechanisms. Endocrinology 149: 5679‐5687, 2008.
 269.Trevaskis JL, Lei C, Koda JE, Weyer C, Parkes DG, Roth JD. Interaction of leptin and amylin in the long‐term maintenance of weight loss in diet‐induced obese rats. Obesity (Silver Spring) 18: 21‐26, 2010.
 270.Trevaskis JL, Parkes DG, Roth JD. Insights into amylin‐leptin synergy. Trends Endocrinol Metab 21: 473‐479, 2010.
 271.Trevaskis JL, Turek VF, Griffin PS, Wittmer C, Parkes DG, Roth JD. Multi‐hormonal weight loss combinations in diet‐induced obese rats: Therapeutic potential of cholecystokinin? Physiol Behav 100: 187‐195, 2010.
 272.Trevaskis JL, Turek VF, Wittmer C, Griffin PS, Wilson JK, Reynolds JM, Zhao Y, Mack CM, Parkes DG, Roth JD. Enhanced amylin‐mediated body weight loss in estradiol‐deficient diet‐induced obese rats. Endocrinology 151: 5657‐5668, 2010.
 273.Trevaskis JL, Wittmer C, Athanacio JR, Griffin PS, Parkes DG, Roth JD. Amylin/leptin synergy is absent in extreme obesity and not restored by calorie restriction‐induced weight loss in rats. Obes Sci Pract 2 (4): 385‐391, 2016.
 274.Turek VF, Trevaskis JL, Levin BE, Dunn‐Meynell AA, Irani B, Gu G, Wittmer C, Griffin PS, Vu C, Parkes DG, Roth JD. Mechanisms of amylin/leptin synergy in rodent models. Endocrinology 151: 143‐152, 2010.
 275.Ueda T, Ugawa S, Saishin Y, Shimada S. Expression of receptor‐activity modifying protein (RAMP) mRNAs in the mouse brain. Brain Res Mol Brain Res 93: 36‐45, 2001.
 276.van der Kooy D, Koda LY. Organization of the projections of a circumventricular organ: The area postrema in the rat. J Comp Neurol 219: 328‐338, 1983.
 277.Vine W, Blase E, Koda J, Young A. Plasma amylin concentrations in fasted and fed rats quantified by a monoclonal immunoenzymometric assay. Horm Metab Res 30: 581‐585, 1998.
 278.Walker CS, Li X, Whiting L, Glyn‐Jones S, Zhang S, Hickey AJ, Sewell MA, Ruggiero K, Phillips AR, Kraegen EW, Hay DL, Cooper GJ, Loomes KM. Mice lacking the neuropeptide alpha‐calcitonin gene‐related peptide are protected against diet‐induced obesity. Endocrinology 151: 4257‐4269, 2010.
 279.Watanabe H, Takahashi E, Kobayashi M, Goto M, Krust A, Chambon P, Iguchi T. The estrogen‐responsive adrenomedullin and receptor‐modifying protein 3 gene identified by DNA microarray analysis are directly regulated by estrogen receptor. J Mol Endocrinol 36: 81‐89, 2006.
 280.Weigle DS, Bukowski TR, Foster DC, Holderman S, Kramer JM, Lasser G, Lofton‐Day CE, Prunkard DE, Raymond C, Kuijper JL. Recombinant ob protein reduces feeding and body weight in the ob/ob mouse. J Clin Invest 96: 2065‐2070, 1995.
 281.West DB, Greenwood MR, Marshall KA, Woods SC. Lithium chloride, cholecystokinin and meal patterns: Evidence that cholecystokinin suppresses meal size in rats without causing malaise. Appetite 8: 221‐227, 1987.
 282.Westermark P, Andersson A, Westermark GT. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 91: 795‐826, 2011.
 283.Westermark P, Wernstedt C, Wilander E, Sletten K. A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas. Biochem Biophys Res Commun 140: 827‐831, 1986.
 284.Westfall TC, Curfman‐Falvey M. Amylin‐induced relaxation of the perfused mesenteric arterial bed: Meditation by calcitonin gene‐related peptide receptors. J Cardiovasc Pharmacol 26: 932‐936, 1995.
 285.Weston C, Lu J, Li N, Barkan K, Richards GO, Roberts DJ, Skerry TM, Poyner D, Pardamwar M, Reynolds CA, Dowell SJ, Willars GB, Ladds G. Modulation of glucagon receptor pharmacology by receptor activity‐modifying protein‐2 (RAMP2). J Biol Chem 290: 23009‐23022, 2015.
 286.Weyer C, Maggs DG, Young AA, Kolterman OG. Amylin replacement with pramlintide as an adjunct to insulin therapy in type 1 and type 2 diabetes mellitus: A physiological approach toward improved metabolic control. Curr Pharm Des 7: 1353‐1373, 2001.
 287.Whiting L, McCutcheon JE, Boyle CN, Roitman MF, Lutz TA. The area postrema (AP) and the parabrachial nucleus (PBN) are important sites for salmon calcitonin (sCT) to decrease evoked phasic dopamine release in the nucleus accumbens (NAc). Physiol Behav 176: 9‐16, 2017.
 288.Wickbom J, Herrington MK, Permert J, Jansson A, Arnelo U. Gastric emptying in response to IAPP and CCK in rats with subdiaphragmatic afferent vagotomy. Regul Pept 148: 21‐25, 2008.
 289.Wielinga PY, Alder B, Lutz TA. The acute effect of amylin and salmon calcitonin on energy expenditure. Physiol Behav 91: 212‐217, 2007.
 290.Wielinga PY, Löwenstein C, Alder B, Lutz TA. Effect of peripheral and central amylin on energy expenditure and body temperature. Appetite 91: 409, 2008.
 291.Wielinga PY, Lowenstein C, Muff S, Munz M, Woods SC, Lutz TA. Central amylin acts as an adiposity signal to control body weight and energy expenditure. Physiol Behav 101: 45‐52, 2010.
 292.Williams DL, Baskin DG, Schwartz MW. Evidence that intestinal glucagon‐like peptide‐1 plays a physiological role in satiety. Endocrinology 150: 1680‐1687, 2009.
 293.Wimalawansa SJ. Amylin, calcitonin gene‐related peptide, calcitonin, and adrenomedullin: A peptide superfamily. Crit Rev Neurobiol 11: 167‐239, 1997.
 294.Woods SC, Lutz TA, Geary N, Langhans W. Pancreatic signals controlling food intake; insulin, glucagon and amylin. Philos Trans R Soc Lond Ser B Biol Sci 361: 1219‐1235, 2006.
 295.Yamashita T, Murakami T, Iida M, Kuwajima M, Shima K. Leptin receptor of Zucker fatty rat performs reduced signal transduction. Diabetes 46: 1077‐1080, 1997.
 296.Yano BL, Hayden DW, Johnson KH. Feline insular amyloid: Association with diabetes mellitus. Vet Pathol 18: 621‐627, 1981.
 297.Young A. Amylin and the integrated control of nutrient influx. Adv Pharmacol 52: 67‐77, 2005.
 298.Young A. Cardiovascular effects. Adv Pharmacol 52: 239‐250, 2005.
 299.Young A. Clinical studies. Adv Pharmacol 52: 289‐320, 2005.
 300.Young A. Effects on bone. Adv Pharmacol 52: 269‐280, 2005.
 301.Young A. Tissue expression and secretion of amylin. Adv Pharmacol 52: 19‐45, 2005.
 302.Zhang Z, Liu X, Morgan DA, Kuburas A, Thedens DR, Russo AF, Rahmouni K. Neuronal receptor activity modifying protein‐1 promotes energy expenditure in mice. Diabetes 60 (4): 1063‐1071, 2011.
 303.Zhu H, Wang X, Wallack M, Li H, Carreras I, Dedeoglu A, Hur JY, Zheng H, Fine R, Mwamburi M, Sun X, Kowall N, Stern RA, Qiu WQ. Intraperitoneal injection of the pancreatic peptide amylin potently reduces behavioral impairment and brain amyloid pathology in murine models of Alzheimer's disease. Mol Psychiatry 20: 252‐262, 2015.
 304.Zini E, Lunardi F, Zanetti R, Heller RS, Coppola LM, Ferro S, Guscetti F, Osto M, Lutz TA, Reusch CE, Cavicchioli L. Endocrine pancreas in cats with diabetes mellitus. Vet Pathol 53: 136‐144, 2016.
 305.Zuger D, Forster K, Lutz TA, Riediger T. Amylin and GLP‐1 target different populations of area postrema neurons that are both modulated by nutrient stimuli. Physiol Behav 112‐113: 61‐69, 2013.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Christelle Le Foll, Thomas A. Lutz. Systemic and Central Amylin, Amylin Receptor Signaling, and Their Physiological and Pathophysiological Roles in Metabolism. Compr Physiol 2020, 10: 811-837. doi: 10.1002/cphy.c190034