Comprehensive Physiology Wiley Online Library

Baroreceptor Modulation of the Cardiovascular System, Pain, Consciousness, and Cognition

Full Article on Wiley Online Library



Abstract

Baroreceptors are mechanosensitive elements of the peripheral nervous system that maintain cardiovascular homeostasis by coordinating the responses to external and internal environmental stressors. While it is well known that carotid and cardiopulmonary baroreceptors modulate sympathetic vasomotor and parasympathetic cardiac neural autonomic drive, to avoid excessive fluctuations in vascular tone and maintain intravascular volume, there is increasing recognition that baroreceptors also modulate a wide range of non‐cardiovascular physiological responses via projections from the nucleus of the solitary tract to regions of the central nervous system, including the spinal cord. These projections regulate pain perception, sleep, consciousness, and cognition. In this article, we summarize the physiology of baroreceptor pathways and responses to baroreceptor activation with an emphasis on the mechanisms influencing cardiovascular function, pain perception, consciousness, and cognition. Understanding baroreceptor‐mediated effects on cardiac and extra‐cardiac autonomic activities will further our understanding of the pathophysiology of multiple common clinical conditions, such as chronic pain, disorders of consciousness (e.g., abnormalities in sleep‐wake), and cognitive impairment, which may result in the identification and implementation of novel treatment modalities. © 2021 American Physiological Society. Compr Physiol 11:1373‐1423, 2021.

Figure 1. Figure 1. Schematic representation of key nuclei and pathways involved in the interactions between cardiovascular and pain modulatory systems. Panel A: The nucleus of the solitary tract (NTS), afferent input, and descending projections. NTS in the medulla oblongata received inputs from the glossopharyngeal (IX) nerve originating from carotid high‐pressure baroreceptors and the vagus (X) nerve originating from the aortic high‐pressure baroreceptors, cardiopulmonary low‐pressure baroreceptors, concha, lung's stretch‐mechanoreceptors, lung's chemoreceptors, and inflamed tissues. Afferents from the NTS excite the CVLM, which in turn inhibits neurons in the rostral ventrolateral medulla (RVLM). Thus, there is a reduction in the RVLM tonic excitation of spinal intermediolateral neurons and a reduction in the sympathetic output to the heart and blood vessels. Afferents from the NTS also excite neurons in the dorsal vagal motor nucleus (DVN) and nucleus ambiguous (NA), which enhances parasympathetic output. The resulting autonomic efferent balance diminishes heart rate and AP by a mechanism commonly referred to as the baroreflex. This change in autonomic balance can modulate inflammation, as a result, inflammatory pain. The baroreflex response is associated with increases in the release of acetylcholine (Ach) from vagal efferents, which reduces inflammation by inhibiting the secretion of pro‐inflammatory cytokines from macrophages. Also, there is the sympathetic release of norepinephrine (NE) and adrenal epinephrine, which have both pro‐inflammatory and anti‐inflammatory effects depending on the stage of the inflammation. Panel B: NTS ascending afferent projections to rostral CNS sites. NTS afferents project directly to the parabrachial nucleus (PB), periaqueductal gray (PAG), amygdala (Amy), hypothalamus (Hyp), and thalamus (Thal), involved in autonomic and emotional responses to pain. PB provides a parallel ascending pathway to NTS afferents (continuous orange line). Also, the NTS indirectly projects to the: (i) insula (Ins), somatosensory cortex (SM), prefrontal cortex (PFC), anterior cingulate cortex (ACC) via the thalamus, (ii) CA1 region of the dorsal hippocampus (Hip) and amygdala, through the nucleus paragigantocellularis (NGi) and locus coeruleus (LC) (broken black line). The ascending activation of these higher CNS structures by NTS afferents initiates a pattern of autonomic, sensory, and behavioral responses. Conversely, several CNS areas (e.g., Hyp and PAG) exert a descending modulation on NTS and RVLM‐mediated autonomic activity (not depicted). Similarly, respiratory centers, as well as from peripheral visceral and somatosensory afferents, exert an overall inhibitory influence on the baroreflex nuclei at the brainstem (not depicted).
Figure 2. Figure 2. The relationship between variations in AP pressure and muscle sympathetic activity from recordings made from the right peroneal nerve. Record showing more bursts occurring during decreasing than during increasing AP. Dotted areas indicate corresponding sequences of bursts and heartbeats. There is compensation made for a reflex delay of 1.3 s between blood pressure and neural events. Reproduced, with permission, from Sundlof G and Wallin BG, 1997 519.
Figure 3. Figure 3. Hypothetical model for arterial baroreceptor influence on muscle sympathetic activity at two CNS synapses proposed by Kienbaum et al. Baroreceptors modulates the strength and occurrence of sympathetic outflow at two CNS locations depending on the strength of the respective input. Arterial baroreceptor input and other CNS influences have graded effects on the amplitude of the sympathetic impulses on one site, whereas they exert a gate control on the occurrence of a sympathetic discharge on the other site. Reproduced, with permission, from Kienbaum P, et al., 2001 264.
Figure 4. Figure 4. Intensity‐dependent resetting of the carotid baroreflex that controls heart rate and AP during steady‐state dynamic exercise. The operating point (OP) is the ongoing, either resting or exercising, prevailing AP before carotid sinus stimulation. The centering point (CP) is the carotid sinus pressure that, when applied to the baroreceptor, can equally evoke either increases or decreases in heart rate or mean AP, and at which, the maximal gain of the baroreflex is estimated. The threshold is the point in the stimulus‐response curve, where no further increase in mean AP or heart rate occurs despite reductions in the estimated carotid sinus pressure. The stimulus‐response curve for heart rate (panel A) and MAP (panel B) gradually resets upward and rightward with increasing levels of exercise intensity without changes in the slope of the curve, that is, the gain of the baroreflex (BRS) remains constant during steady‐state dynamic exercise. Reproduced, with permission, from Fadel PJ, et al., 2012 167.
Figure 5. Figure 5. Shifts in the baroreflex curve for renal sympathetic nerve activity (RSNA) obtained during pre‐exercise (resting), treadmill exercise, and the post‐exercise periods. Curves reflect data averaged from 11 animals, whereas symbols and bars indicate means ± s.e.m., respectively, estimated over each 2.5 mmHg bin of arterial pressure (Pa). Unlike the baroreflex controlling heart rate and mean blood, notice a decrease in the slope of the curve before and after the exercise, which indicates a lower gain of the baroreflex before and after the exercise. Reproduced, with permission, from Ikeda Y, et al., 1996 356.
Figure 6. Figure 6. (A) Representative muscle sympathetic nerve activity (MSNA; integrated signals) data during control (top), slow (middle), and very slow (bottom) head‐up tilt (HUT) tests in a human subject. I (top), a period of inclination of the tilt bed from 0° supine to 30° HUT posture at an inclining speed of 1°/s. Inclining (middle and bottom), a period of inclination of the tilt bed at speeds of 0.1 and 0.0167°/s, respectively. au, Arbitrary units. (B) Heart rate, the amplitude of low frequency (LF) and high frequency (HF) component of R‐R interval (RRI) variability, and respiratory rate during control (○), slow (▴), and very slow (•) HUT tests. The x‐axis to the left of the vertical dotted line indicates that data are averaged over every 10° tilt angle during inclination from 0° supine to 30° HUT, and the x‐axis to the right of the dotted line indicates that data are averaged over every 1 min after reaching 30° HUT. #P < 0.05 versus control and slow tests; *P < 0.05 versus 0° supine posture. (C) Systolic and diastolic arterial pressure (AP) measured at the height of brachial level and predicted at the height of carotid sinus (CS) level, and thoracic impedance (percentage of baseline value at 0° supine) during control (○), slow (▴), and very slow (•) HUT tests. The x‐axis to the left of the vertical dotted line indicates that data are averaged over every 10° tilt angle during inclination from 0° supine to 30° HUT, and the x‐axis to the right of the dotted line indicates that data are averaged over every 1 min after reaching 30° HUT. *P < 0.05 versus 0° supine posture. Error bars denote SE. Modified and Reproduced, with permission, from Kamiya A, et al., 2009 255.
Figure 7. Figure 7. Simulation of a closed‐loop step‐change in response to exogenous perturbation with (A) or without (B) neural acceleration while the gain of baroreflex is changed from one to three. The magnitude of exogenous step perturbation is 1 mmHg. Attenuation of pressure changes in response to exogenous perturbation becomes larger with an increased gain of baroreflex, whereas response becomes increasingly oscillatory at a higher gain, indicating instability of the system. Step response at gain 2.0 with the neural acceleration revealed quick and stable response (bold line in A). In contrast, step response without acceleration showed a slow and undershooting response in arterial pressure (bold line in B), indicating instability of the system. Reproduced, with permission, from Ikeda Y, et al., 1996 236.
Figure 8. Figure 8. Interaction between the Bezold‐Jarisch reflex (evoked by intracoronary veratrine) and the carotid sinus baroreflex. Mean curves representing the mean arterial blood pressure (MABP)—heart rate relationship (top) and MABP—baroreflex sensitivity relationship (bottom) during control and intracoronary veratrine infusion (Ver.‐L.C.) in 10 dogs. Note that the Bezold‐Jarisch reflex resets mean AP optimal level for maximal BRS to lower levels and diminishes BRS. Control mean baseline values: MABP = 93 mmHg and heart rate = 91 beat/min. Reproduced, with permission, from Zucker IH, 1986 613.
Figure 9. Figure 9. Baroreceptor activation and inhibition by external mechanical manipulations of the neck have an opposite influence on pain‐evoked potentials in the three groups of normotensive subjects with relatively low, normal, and high resting AP levels. Compared with the inhibitory condition, baroreceptor activation decreases and increases the amplitude of pain‐evoked potentials in normotensive subjects with relatively high and low AP, respectively 59.
Figure 10. Figure 10. Interactions between baroreceptors and pain pathways. Panel A: Rostral ventromedial medulla (RVMM) receives two major modulatory inputs from (1) the periaqueductal grey (PAG) that inhibits ON‐cells (pro‐nociceptive) and excites OFF‐cells (anti‐nociceptive), underlying stress‐ and placebo‐induced analgesia, and (2) the lateral parabrachial nucleus (lateral PBN) that excites ON‐cells (pronociceptive) and inhibits OFF‐cells (anti‐nociceptive) in the RVMM, facilitating pain reflexes. (3) The superficial lamina of the spinal cord projects to the lateral PBN, which facilitates pain by acting on the RVMM. (4) The mediocaudal nucleus of the solitary tract (mcNTS) projects to the lateral PBN, which inhibits a subset of neurons in the lateral PBN following inputs from vagal baroreceptor afferents. (5) Inhibition of lateral PBN neurons reduces and increases OFF‐cell and ON‐cell activities in the RVMM, respectively, facilitates C‐fiber‐driven second‐order spinal neurons. (6) The rostral ventrolateral medulla (RVLM) neurons receive a dual input: inhibitory from the mcNTS via caudal ventrolateral medulla (CVLM) that leads to baroreflex‐mediated bradycardia and excitatory input from the Lateral PBN that leads to pain‐induced tachycardia. Panel B: Ascending and descending pain pathways in the CNS. Noxious stimuli applied to somatic structures and inflamed viscera activate primary afferents, which stimulate second‐order spinal neurons of lamina I and V, which give rise to the ascending spinothalamic (continuous red line) and spinoreticular/spinobrachial (broken red line) pathways that reach PAG, parabrachial nucleus (PB), locus coeruleus (LC), cerebellum, and thalamus in humans. The dorsal horn also sends direct nociceptive information to the NTS. PB and PAG afferents project to amygdala (Amy) and nucleus accumbens in the basal ganglia (BG), whereas thalamic afferents project to the primary SM cortex S1, secondary somatosensory (SM) cortex S2, anterior cingulate cortex (ACC), prefrontal cortex (PFC), and insula (Ins). Multiple descending pathways from brain structures to PAG and rostroventral medulla (RVM) modulate different components of pain perception, such as the ACC‐PFC‐PAG circuitry related to placebo analgesia and unpleasantness (broken green line) and the superior parietal cortex (SPC)‐insula‐amygdala‐PAG pathway related to modulation of pain by attention (continuous green line). BG, basal ganglia; Hip, hippocampus; Hyp, hypothalamus; Thal, thalamus; PB, parabrachial nucleus.
Figure 11. Figure 11. The reciprocal influence between cardiovascular function and sleep. Arrows represent excitatory (red) and inhibitory (blue) functional influences that occur through monosynaptic or polysynaptic anatomical connections and relay nuclei (e.g., thalamus). Panel A: Oversimplified view of major neural structures involved in baroreceptor modulation of arousal. NTS projections to the ascending arousal system, posterior hypothalamus, and CVLM/RVLM reduce arousal and prompt sleep, whereas NTS projections to the PBN pathways promote arousal. Panel B: Sleep influences cardiovascular function. Non‐REM sleep disinhibits the NTS, and as a result, decreases sympathetic output at the spinal lateral column, which enhances baroreflexes and reduces arterial pressure. In contrast, REM sleep reduces the parasympathetic output by inhibiting the nucleus ambiguus, which dampens baroreflexes and leads to a transient increase in AP and heart rate. ACC, anterior cingulate cortex; LC/subLC, locus coeruleus/locus subcoeruleus; Lateral PBN, lateral parabrachial nucleus; RVLM, rostral ventrolateral medulla; CVLM, caudal ventrolateral medulla; NTS, nucleus tractus solitarious. Lateral PBN and LC are part of the ascending reticular activating system.


Figure 1. Schematic representation of key nuclei and pathways involved in the interactions between cardiovascular and pain modulatory systems. Panel A: The nucleus of the solitary tract (NTS), afferent input, and descending projections. NTS in the medulla oblongata received inputs from the glossopharyngeal (IX) nerve originating from carotid high‐pressure baroreceptors and the vagus (X) nerve originating from the aortic high‐pressure baroreceptors, cardiopulmonary low‐pressure baroreceptors, concha, lung's stretch‐mechanoreceptors, lung's chemoreceptors, and inflamed tissues. Afferents from the NTS excite the CVLM, which in turn inhibits neurons in the rostral ventrolateral medulla (RVLM). Thus, there is a reduction in the RVLM tonic excitation of spinal intermediolateral neurons and a reduction in the sympathetic output to the heart and blood vessels. Afferents from the NTS also excite neurons in the dorsal vagal motor nucleus (DVN) and nucleus ambiguous (NA), which enhances parasympathetic output. The resulting autonomic efferent balance diminishes heart rate and AP by a mechanism commonly referred to as the baroreflex. This change in autonomic balance can modulate inflammation, as a result, inflammatory pain. The baroreflex response is associated with increases in the release of acetylcholine (Ach) from vagal efferents, which reduces inflammation by inhibiting the secretion of pro‐inflammatory cytokines from macrophages. Also, there is the sympathetic release of norepinephrine (NE) and adrenal epinephrine, which have both pro‐inflammatory and anti‐inflammatory effects depending on the stage of the inflammation. Panel B: NTS ascending afferent projections to rostral CNS sites. NTS afferents project directly to the parabrachial nucleus (PB), periaqueductal gray (PAG), amygdala (Amy), hypothalamus (Hyp), and thalamus (Thal), involved in autonomic and emotional responses to pain. PB provides a parallel ascending pathway to NTS afferents (continuous orange line). Also, the NTS indirectly projects to the: (i) insula (Ins), somatosensory cortex (SM), prefrontal cortex (PFC), anterior cingulate cortex (ACC) via the thalamus, (ii) CA1 region of the dorsal hippocampus (Hip) and amygdala, through the nucleus paragigantocellularis (NGi) and locus coeruleus (LC) (broken black line). The ascending activation of these higher CNS structures by NTS afferents initiates a pattern of autonomic, sensory, and behavioral responses. Conversely, several CNS areas (e.g., Hyp and PAG) exert a descending modulation on NTS and RVLM‐mediated autonomic activity (not depicted). Similarly, respiratory centers, as well as from peripheral visceral and somatosensory afferents, exert an overall inhibitory influence on the baroreflex nuclei at the brainstem (not depicted).


Figure 2. The relationship between variations in AP pressure and muscle sympathetic activity from recordings made from the right peroneal nerve. Record showing more bursts occurring during decreasing than during increasing AP. Dotted areas indicate corresponding sequences of bursts and heartbeats. There is compensation made for a reflex delay of 1.3 s between blood pressure and neural events. Reproduced, with permission, from Sundlof G and Wallin BG, 1997 519.


Figure 3. Hypothetical model for arterial baroreceptor influence on muscle sympathetic activity at two CNS synapses proposed by Kienbaum et al. Baroreceptors modulates the strength and occurrence of sympathetic outflow at two CNS locations depending on the strength of the respective input. Arterial baroreceptor input and other CNS influences have graded effects on the amplitude of the sympathetic impulses on one site, whereas they exert a gate control on the occurrence of a sympathetic discharge on the other site. Reproduced, with permission, from Kienbaum P, et al., 2001 264.


Figure 4. Intensity‐dependent resetting of the carotid baroreflex that controls heart rate and AP during steady‐state dynamic exercise. The operating point (OP) is the ongoing, either resting or exercising, prevailing AP before carotid sinus stimulation. The centering point (CP) is the carotid sinus pressure that, when applied to the baroreceptor, can equally evoke either increases or decreases in heart rate or mean AP, and at which, the maximal gain of the baroreflex is estimated. The threshold is the point in the stimulus‐response curve, where no further increase in mean AP or heart rate occurs despite reductions in the estimated carotid sinus pressure. The stimulus‐response curve for heart rate (panel A) and MAP (panel B) gradually resets upward and rightward with increasing levels of exercise intensity without changes in the slope of the curve, that is, the gain of the baroreflex (BRS) remains constant during steady‐state dynamic exercise. Reproduced, with permission, from Fadel PJ, et al., 2012 167.


Figure 5. Shifts in the baroreflex curve for renal sympathetic nerve activity (RSNA) obtained during pre‐exercise (resting), treadmill exercise, and the post‐exercise periods. Curves reflect data averaged from 11 animals, whereas symbols and bars indicate means ± s.e.m., respectively, estimated over each 2.5 mmHg bin of arterial pressure (Pa). Unlike the baroreflex controlling heart rate and mean blood, notice a decrease in the slope of the curve before and after the exercise, which indicates a lower gain of the baroreflex before and after the exercise. Reproduced, with permission, from Ikeda Y, et al., 1996 356.


Figure 6. (A) Representative muscle sympathetic nerve activity (MSNA; integrated signals) data during control (top), slow (middle), and very slow (bottom) head‐up tilt (HUT) tests in a human subject. I (top), a period of inclination of the tilt bed from 0° supine to 30° HUT posture at an inclining speed of 1°/s. Inclining (middle and bottom), a period of inclination of the tilt bed at speeds of 0.1 and 0.0167°/s, respectively. au, Arbitrary units. (B) Heart rate, the amplitude of low frequency (LF) and high frequency (HF) component of R‐R interval (RRI) variability, and respiratory rate during control (○), slow (▴), and very slow (•) HUT tests. The x‐axis to the left of the vertical dotted line indicates that data are averaged over every 10° tilt angle during inclination from 0° supine to 30° HUT, and the x‐axis to the right of the dotted line indicates that data are averaged over every 1 min after reaching 30° HUT. #P < 0.05 versus control and slow tests; *P < 0.05 versus 0° supine posture. (C) Systolic and diastolic arterial pressure (AP) measured at the height of brachial level and predicted at the height of carotid sinus (CS) level, and thoracic impedance (percentage of baseline value at 0° supine) during control (○), slow (▴), and very slow (•) HUT tests. The x‐axis to the left of the vertical dotted line indicates that data are averaged over every 10° tilt angle during inclination from 0° supine to 30° HUT, and the x‐axis to the right of the dotted line indicates that data are averaged over every 1 min after reaching 30° HUT. *P < 0.05 versus 0° supine posture. Error bars denote SE. Modified and Reproduced, with permission, from Kamiya A, et al., 2009 255.


Figure 7. Simulation of a closed‐loop step‐change in response to exogenous perturbation with (A) or without (B) neural acceleration while the gain of baroreflex is changed from one to three. The magnitude of exogenous step perturbation is 1 mmHg. Attenuation of pressure changes in response to exogenous perturbation becomes larger with an increased gain of baroreflex, whereas response becomes increasingly oscillatory at a higher gain, indicating instability of the system. Step response at gain 2.0 with the neural acceleration revealed quick and stable response (bold line in A). In contrast, step response without acceleration showed a slow and undershooting response in arterial pressure (bold line in B), indicating instability of the system. Reproduced, with permission, from Ikeda Y, et al., 1996 236.


Figure 8. Interaction between the Bezold‐Jarisch reflex (evoked by intracoronary veratrine) and the carotid sinus baroreflex. Mean curves representing the mean arterial blood pressure (MABP)—heart rate relationship (top) and MABP—baroreflex sensitivity relationship (bottom) during control and intracoronary veratrine infusion (Ver.‐L.C.) in 10 dogs. Note that the Bezold‐Jarisch reflex resets mean AP optimal level for maximal BRS to lower levels and diminishes BRS. Control mean baseline values: MABP = 93 mmHg and heart rate = 91 beat/min. Reproduced, with permission, from Zucker IH, 1986 613.


Figure 9. Baroreceptor activation and inhibition by external mechanical manipulations of the neck have an opposite influence on pain‐evoked potentials in the three groups of normotensive subjects with relatively low, normal, and high resting AP levels. Compared with the inhibitory condition, baroreceptor activation decreases and increases the amplitude of pain‐evoked potentials in normotensive subjects with relatively high and low AP, respectively 59.


Figure 10. Interactions between baroreceptors and pain pathways. Panel A: Rostral ventromedial medulla (RVMM) receives two major modulatory inputs from (1) the periaqueductal grey (PAG) that inhibits ON‐cells (pro‐nociceptive) and excites OFF‐cells (anti‐nociceptive), underlying stress‐ and placebo‐induced analgesia, and (2) the lateral parabrachial nucleus (lateral PBN) that excites ON‐cells (pronociceptive) and inhibits OFF‐cells (anti‐nociceptive) in the RVMM, facilitating pain reflexes. (3) The superficial lamina of the spinal cord projects to the lateral PBN, which facilitates pain by acting on the RVMM. (4) The mediocaudal nucleus of the solitary tract (mcNTS) projects to the lateral PBN, which inhibits a subset of neurons in the lateral PBN following inputs from vagal baroreceptor afferents. (5) Inhibition of lateral PBN neurons reduces and increases OFF‐cell and ON‐cell activities in the RVMM, respectively, facilitates C‐fiber‐driven second‐order spinal neurons. (6) The rostral ventrolateral medulla (RVLM) neurons receive a dual input: inhibitory from the mcNTS via caudal ventrolateral medulla (CVLM) that leads to baroreflex‐mediated bradycardia and excitatory input from the Lateral PBN that leads to pain‐induced tachycardia. Panel B: Ascending and descending pain pathways in the CNS. Noxious stimuli applied to somatic structures and inflamed viscera activate primary afferents, which stimulate second‐order spinal neurons of lamina I and V, which give rise to the ascending spinothalamic (continuous red line) and spinoreticular/spinobrachial (broken red line) pathways that reach PAG, parabrachial nucleus (PB), locus coeruleus (LC), cerebellum, and thalamus in humans. The dorsal horn also sends direct nociceptive information to the NTS. PB and PAG afferents project to amygdala (Amy) and nucleus accumbens in the basal ganglia (BG), whereas thalamic afferents project to the primary SM cortex S1, secondary somatosensory (SM) cortex S2, anterior cingulate cortex (ACC), prefrontal cortex (PFC), and insula (Ins). Multiple descending pathways from brain structures to PAG and rostroventral medulla (RVM) modulate different components of pain perception, such as the ACC‐PFC‐PAG circuitry related to placebo analgesia and unpleasantness (broken green line) and the superior parietal cortex (SPC)‐insula‐amygdala‐PAG pathway related to modulation of pain by attention (continuous green line). BG, basal ganglia; Hip, hippocampus; Hyp, hypothalamus; Thal, thalamus; PB, parabrachial nucleus.


Figure 11. The reciprocal influence between cardiovascular function and sleep. Arrows represent excitatory (red) and inhibitory (blue) functional influences that occur through monosynaptic or polysynaptic anatomical connections and relay nuclei (e.g., thalamus). Panel A: Oversimplified view of major neural structures involved in baroreceptor modulation of arousal. NTS projections to the ascending arousal system, posterior hypothalamus, and CVLM/RVLM reduce arousal and prompt sleep, whereas NTS projections to the PBN pathways promote arousal. Panel B: Sleep influences cardiovascular function. Non‐REM sleep disinhibits the NTS, and as a result, decreases sympathetic output at the spinal lateral column, which enhances baroreflexes and reduces arterial pressure. In contrast, REM sleep reduces the parasympathetic output by inhibiting the nucleus ambiguus, which dampens baroreflexes and leads to a transient increase in AP and heart rate. ACC, anterior cingulate cortex; LC/subLC, locus coeruleus/locus subcoeruleus; Lateral PBN, lateral parabrachial nucleus; RVLM, rostral ventrolateral medulla; CVLM, caudal ventrolateral medulla; NTS, nucleus tractus solitarious. Lateral PBN and LC are part of the ascending reticular activating system.
References
 1.Aars H. Effects of noradrenaline on activity in single aortic baroreceptor fibres. Acta Physiol (Oxf) 83: 335‐343, 1971.
 2.Abbott SB, Coates MB, Stornetta RL, Guyenet PG. Optogenetic stimulation of c1 and retrotrapezoid nucleus neurons causes sleep state‐dependent cardiorespiratory stimulation and arousal in rats. Hypertension 61: 835‐841, 2013.
 3.Abboud FM, Eckberg DL, Johannsen UJ, Mark AL. Carotid and cardiopulmonary baroreceptor control of splanchnic and forearm vascular resistance during venous pooling in man. J Physiol 286: 173‐184, 1979.
 4.Abboud FM, Thames MD. Interaction of cardiovascular reflexes in circulatory control. In: Shepherd JT, Abboud FM, editors. Handbook of Physiology – The Cardiovascular System. Bethesda, MD: American Physiological Society, 1984, p. 675‐753.
 5.Adlan AM, Paton JF, Lip GY, Kitas GD, Fisher JP. Increased sympathetic nerve activity and reduced cardiac baroreflex sensitivity in rheumatoid arthritis. J Physiol 595: 967‐981, 2017.
 6.Aflyatumova GN, Nigmatullina RR, Sadykova DI, Chibireva MD, Fugetto F, Serra R. Endothelin‐1, nitric oxide, serotonin and high blood pressure in male adolescents. Vasc Health Risk Manag 14: 213‐223, 2018.
 7.Akella A, Deshpande SB. Reflex hypertensive response induced by capsaicin involves endothelin‐dependent mechanisms. Indian J Physiol Pharmacol 59: 23‐29, 2015.
 8.al'Absi M, Buchanan T, Lovallo WR. Pain perception and cardiovascular responses in men with positive parental history for hypertension. Psychophysiology 33: 655‐661, 1996.
 9.al'Absi M, Petersen KL, Wittmers LE. Adrenocortical and hemodynamic predictors of pain perception in men and women. Pain 96: 197‐204, 2002.
 10.Alam M, Smirk FH. Observations in man upon a blood pressure raising reflex arising from the voluntary muscles. J Physiol 89: 372‐383, 1937.
 11.Aletti F, Gambarotta N, Penn AH, Ferrario M, Schmid‐Schonbein GW. Heart period and blood pressure characteristics in splanchnic arterial occlusion shock‐induced collapse. J Clin Monit Comput 31: 167‐175, 2017.
 12.Anand A, Paintal AS. Reflex effects following selective stimulation of J receptors in the cat. J Physiol 299: 553‐572, 1980.
 13.Andresen MC, Kunze DL. Ionic sensitivity of baroreceptors. Circ Res 61: I66‐I71, 1987.
 14.Andrezik JA, Chan‐Palay V, Palay SL. The nucleus paragigantocellularis lateralis in the rat. Demonstration of afferents by the retrograde transport of horseradish peroxidase. Anat Embryol (Berl) 161: 373‐390, 1981.
 15.Angrilli A, Mini A, Mucha RF, Rau H. The influence of low blood pressure and baroreceptor activity on pain responses. Physiol Behav 62: 391‐397, 1997.
 16.Angst MS, Phillips NG, Drover DR, Tingle M, Ray A, Swan GE, Lazzeroni LC, Clark JD. Pain sensitivity and opioid analgesia: A pharmacogenomic twin study. Pain 153: 1397‐1409, 2012.
 17.Antunes‐Rodrigues J, de Castro M, Elias LL, Valenca MM, McCann SM. Neuroendocrine control of body fluid metabolism. Physiol Rev 84: 169‐208, 2004.
 18.Aoyagi T, Koshimizu TA, Tanoue A. Vasopressin regulation of blood pressure and volume: Findings from V1a receptor‐deficient mice. Kidney Int 76: 1035‐1039, 2009.
 19.Babstock DM, Harley CW. Paragigantocellularis stimulation induces beta‐adrenergic hippocampal potentiation. Brain Res Bull 28: 709‐714, 1992.
 20.Baertschi AJ, Munzner RF, Ward DG, Johnson RN, Gann DS. Right and left atrial B‐fiber input to the medulla of the cat. Brain Res 98: 189‐193, 1975.
 21.Baguet JP, Barone‐Rochette G, Tamisier R, Levy P, Pepin JL. Mechanisms of cardiac dysfunction in obstructive sleep apnea. Nat Rev Cardiol 9: 679‐688, 2012.
 22.Bainbridge FA. The influence of venous filling upon the rate of the heart. J Physiol 50: 65‐84, 1915.
 23.Bandler R, Carrive P, Zhang SP. Integration of somatic and autonomic reactions within the midbrain periaqueductal grey: Viscerotopic, somatotopic and functional organization. Prog Brain Res 87: 269‐305, 1991.
 24.Barbieri R, Triedman JK, Saul JP. Heart rate control and mechanical cardiopulmonary coupling to assess central volume: A systems analysis. Am J Physiol Regul Integr Comp Physiol 283: R1210‐R1220, 2002.
 25.Bard P. A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Am J Physiol 84: 490‐515, 1928.
 26.Barrett CJ, Guild S‐J, Ramchandra R, Malpas SC. Baroreceptor denervation prevents sympathoinhibition during angiotensin II‐induced hypertension. Hypertension (Dallas, Tex: 1979) 46: 168‐172, 2005.
 27.Barrett CJ, Ramchandra R, Guild S‐J, Lala A, Budgett DM, Malpas SC. What sets the long‐term level of renal sympathetic nerve activity: A role for angiotensin II and baroreflexes? Circ Res 92: 1330‐1336, 2003.
 28.Basile B, Bassi A, Calcagnini G, Strano S, Caltagirone C, Macaluso E, Cortelli P, Bozzali M. Direct stimulation of the autonomic nervous system modulates activity of the brain at rest and when engaged in a cognitive task. Hum Brain Mapp 34: 1605‐1614, 2013.
 29.Bates CE. Mixed salivary tumor in the right tonsil fossa with narcolepsy and cataplexy. Ann Otol Rhinol Laryngol 54: 812‐817, 1945.
 30.Baust W, Heinemann H. The role of the baroreceptors and of blood pressure in the regulation of sleep and wakefulness. Exp Brain Res 3: 12‐24, 1967.
 31.Baust W, Niemczyk H, Vieth J. The action of blood pressure on the ascending reticular activating system with special reference to adrenaline‐induced EEG arousal. Electroencephalogr Clin Neurophysiol 15: 63‐72, 1963.
 32.Beaumont E, Campbell RP, Andresen MC, Scofield S, Singh K, Libbus I, KenKnight BH, Snyder L, Cantrell N. Cervical vagus nerve stimulation augments spontaneous discharge in second‐ and higher‐order sensory neurons in the rat nucleus of the solitary tract. Am J Physiol Heart Circ Physiol 313: H354‐H367, 2017.
 33.Beckstead RM, Morse JR, Norgren R. The nucleus of the solitary tract in the monkey: Projections to the thalamus and brain stem nuclei. J Comp Neurol 190: 259‐282, 1980.
 34.Belvisi MG, Hele DJ. Cough sensors. III. Opioid and cannabinoid receptors on vagal sensory nerves. Handb Exp Pharmacol 187: 63‐76, 2009.
 35.Benarroch EE. The arterial baroreflex: Functional organization and involvement in neurologic disease. Neurology 71: 1733‐1738, 2008.
 36.Benarroch EE. Brainstem integration of arousal, sleep, cardiovascular, and respiratory control. Neurology 91: 958‐966, 2018.
 37.Bergren DR. Sensory receptor activation by mediators of defense reflexes in guinea‐pig lungs. Respir Physiol 108: 195‐204, 1997.
 38.Bernard C. Sur les effects de la section de la portion encéphalique du grand sympatique. Mem Soc de Biol (CR) IV: 168, 1852.
 39.Bernard GR, Wheeler AP, Russell JA, Schein R, Summer WR, Steinberg KP, Fulkerson WJ, Wright PE, Christman BW, Dupont WD, Higgins SB, Swindell BB. The effects of ibuprofen on the physiology and survival of patients with sepsis. The Ibuprofen in Sepsis Study Group. N Engl J Med 336: 912‐918, 1997.
 40.Bernard JF, Dallel R, Raboisson P, Villanueva L, Le Bars D. Organization of the efferent projections from the spinal cervical enlargement to the parabrachial area and periaqueductal gray: A PHA‐L study in the rat. J Comp Neurol 353: 480‐505, 1995.
 41.Bernik TR, Friedman SG, Ochani M, DiRaimo R, Ulloa L, Yang H, Sudan S, Czura CJ, Ivanova SM, Tracey KJ. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med 195: 781‐788, 2002.
 42.Bernstein IM, Damron D, Schonberg AL, Sallam RM, Shapiro R. The relationship of plasma volume, sympathetic tone, and proinflammatory cytokines in young healthy nonpregnant women. Reprod Sci 16: 980‐985, 2009.
 43.Berteotti C, Silvani A. The link between narcolepsy and autonomic cardiovascular dysfunction: A translational perspective. Clin Auton Res 28: 545‐555, 2018.
 44.Bertinieri G, di Rienzo M, Cavallazzi A, Ferrari AU, Pedotti A, Mancia G. A new approach to analysis of the arterial baroreflex. J Hypertens Suppl 3: S79‐S81, 1985.
 45.Birbaumer N, Elbert T, Canavan AG, Rockstroh B. Slow potentials of the cerebral cortex and behavior. Physiol Rev 70: 1‐41, 1990.
 46.Birren JE, Cardon PV Jr, Phillips SL. Reaction time as a function of the cardiac cycle in young adults. Science 140: 195‐196, 1963.
 47.Boisse L, Chisholm SP, Lukewich MK, Lomax AE. Clinical and experimental evidence of sympathetic neural dysfunction during inflammatory bowel disease. Clin Exp Pharmacol Physiol 36: 1026‐1033, 2009.
 48.Bonvallet M, Allen MB Jr. Prolonged spontaneous and evoked reticular activation following discrete bulbar lesions. Electroencephalogr Clin Neurophysiol 15: 969‐988, 1963.
 49.Bonvallet M, Dell P, Hiebel G. Tonus sympathique et activite electrique corticale. Electroencephalogr Clin Neurophysiol 6: 119‐144, 1954.
 50.Borgers AJ, van den Born BJ, Alkemade A, Eeftinck Schattenkerk DW, van Lieshout JJ, Wesseling KH, Bisschop PH, Westerhof BE. Determinants of vascular and cardiac baroreflex sensitivity values in a random population sample. Med Biol Eng Comput 52: 65‐73, 2014.
 51.Borghi C, Dormi A, Veronesi M, Immordino V, Ambrosioni E. Use of lipid‐lowering drugs and blood pressure control in patients with arterial hypertension. J Clin Hypertens (Greenwich) 4: 277‐285, 2002.
 52.Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405: 458‐462, 2000.
 53.Boscan P, Pickering AE, Paton JF. The nucleus of the solitary tract: An integrating station for nociceptive and cardiorespiratory afferents. Exp Physiol 87: 259‐266, 2002.
 54.Bossink AW, Groeneveld J, Hack CE, Thijs LG. Prediction of mortality in febrile medical patients: How useful are systemic inflammatory response syndrome and sepsis criteria? Chest 113: 1533‐1541, 1998.
 55.Bossut DF, Maixner W. Effects of cardiac vagal afferent electrostimulation on the responses of trigeminal and trigeminothalamic neurons to noxious orofacial stimulation. Pain 65: 101‐109, 1996.
 56.Bossut DF, Whitsel EA, Maixner W. A parametric analysis of the effects of cardiopulmonary vagal electrostimulation on the digastric reflex in cats. Brain Res 579: 253‐260, 1992.
 57.Braunwald E, Epstein SE, Glick G, Wechsler AS, Braunwald NS. Relief of angina pectoris by electrical stimulation of the carotid‐sinus nerves. N Engl J Med 277: 1278‐1283, 1967.
 58.Bridgers SL, Spencer SS, Spencer DD, Sasaki CT. A cerebral effect of carotid sinus stimulation. Observation during intraoperative electroencephalographic monitoring. Arch Neurol 42: 574‐577, 1985.
 59.Brody S, Angrilli A, Weiss U, Birbaumer N, Mini A, Veit R, Rau H. Somatotosensory evoked potentials during baroreceptor stimulation in chronic low back pain patients and normal controls. Int J Psychophysiol 25: 201‐210, 1997.
 60.Brognara F, Castania JA, Dias DPM, Lopes AH, Fazan R Jr, Kanashiro A, Ulloa L, Salgado HC. Baroreflex stimulation attenuates central but not peripheral inflammation in conscious endotoxemic rats. Brain Res 1682: 54‐60, 2018.
 61.Broncel A, Bocian R, Kłos‐Wojtczak P, Kulbat‐Warycha K, Konopacki J. Vagal nerve stimulation as a promising tool in the improvement of cognitive disorders. Brain Res Bull 155: 37‐47, 2020.
 62.Bruchfeld A, Goldstein RS, Chavan S, Patel NB, Rosas‐Ballina M, Kohn N, Qureshi AR, Tracey KJ. Whole blood cytokine attenuation by cholinergic agonists ex vivo and relationship to vagus nerve activity in rheumatoid arthritis. J Intern Med 268: 94‐101, 2010.
 63.Bruehl S, Carlson CR, McCubbin JA. The relationship between pain sensitivity and blood pressure in normotensives. Pain 48: 463‐467, 1992.
 64.Bruehl S, Chung OY. Interactions between the cardiovascular and pain regulatory systems: An updated review of mechanisms and possible alterations in chronic pain. Neurosci Biobehav Rev 28: 395‐414, 2004.
 65.Bruehl S, Chung OY, Ward P, Johnson B, McCubbin JA. The relationship between resting blood pressure and acute pain sensitivity in healthy normotensives and chronic back pain sufferers: The effects of opioid blockade. Pain 100: 191‐201, 2002.
 66.Bruehl S, Olsen RB, Tronstad C, Sevre K, Burns JW, Schirmer H, Nielsen CS, Stubhaug A, Rosseland LA. Chronic pain‐related changes in cardiovascular regulation and impact on comorbid hypertension in a general population: The Tromso study. Pain 159: 119‐127, 2018.
 67.Brum PC, Da Silva GJ, Moreira ED, Ida F, Negrão CE, Krieger EM. Exercise training increases baroreceptor gain sensitivity in normal and hypertensive rats. Hypertension (Dallas, Tex: 1979) 36: 1018‐1022, 2000.
 68.Bu DX, Griffin G, Lichtman AH. Mechanisms for the anti‐inflammatory effects of statins. Curr Opin Lipidol 22: 165‐170, 2011.
 69.Bushnell MC, Ceko M, Low LA. Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci 14: 502‐511, 2013.
 70.Cahill L, Alkire MT. Epinephrine enhancement of human memory consolidation: Interaction with arousal at encoding. Neurobiol Learn Mem 79: 194‐198, 2003.
 71.Cahill L, Prins B, Weber M, McGaugh JL. Beta‐adrenergic activation and memory for emotional events. Nature 371: 702‐704, 1994.
 72.Cannon WB. The Wisdom: Of the Body. New York, NY, USA: W W Norton & Co, 1932, p. 312‐312.
 73.Cannon WB. The James‐Lange theory of emotions: A critical examination and an alternative theory. Am J Physiol 100: 567‐586, 1987.
 74.Card JP, Sved AF. Central autonomic pathways. In: Llewellyn‐Smith IJ, Verberne AJM, editors. Central Regulation of Autonomic Functions. New York, USA: Oxford University Press, 2011, p. 3‐22.
 75.Carlson JT, Hedner JA, Sellgren J, Elam M, Wallin BG. Depressed baroreflex sensitivity in patients with obstructive sleep apnea. Am J Respir Crit Care Med 154: 1490‐1496, 1996.
 76.Carreno FR, Frazer A. Vagal nerve stimulation for treatment‐resistant depression. Neurotherapeutics 14: 716‐727, 2017.
 77.Carter JR, Durocher JJ, Larson RA, DellaValla JP, Yang H. Sympathetic neural responses to 24‐hour sleep deprivation in humans: Sex differences. Am J Physiol Heart Circ Physiol 302: H1991‐H1997, 2012.
 78.Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, Deisseroth K, de Lecea L. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 13: 1526‐1533, 2010.
 79.Carthy ER. Autonomic dysfunction in essential hypertension: A systematic review. Ann Med Surg 3: 2‐7, 2014.
 80.Cechetto DF. Cortical control of the autonomic nervous system. Exp Physiol 99: 326‐331, 2014.
 81.Celander O, Folkow B. A comparison of the sympathetic vasomotor fibre control of the vessels within the skin and the muscles. Acta Physiol Scand 29: 241‐250, 1953.
 82.Chakrabarty A, Liao Z, Smith PG. Angiotensin II receptor type 2 activation is required for cutaneous sensory hyperinnervation and hypersensitivity in a rat hind paw model of inflammatory pain. J Pain 14: 1053‐1065, 2013.
 83.Chase MH, Nakamura Y, Clemente CD, Sterman MB. Afferent vagal stimulation: Neurographic correlates of induced EEG synchronization and desynchronization. Brain Res 5: 236‐249, 1967.
 84.Chase MH, Sterman MB, Clemente CD. Cortical and subcortical patterns of response to afferent vagal stimulation. Exp Neurol 16: 36‐49, 1966.
 85.Chen H‐H, Cheng P‐W, Ho W‐Y, Lu P‐J, Lai C‐C, Tseng Y‐M, Fang H‐C, Sun G‐C, Hsiao M, Liu C‐P, Tseng C‐J. Renal denervation improves the baroreflex and GABA system in chronic kidney disease‐induced hypertension. Sci Rep 6: 38447‐38447, 2016.
 86.Chen HI. Mechanism of alteration in baroreflex cardiovascular responses due to volume loading. Jpn J Physiol 28: 749‐756, 1978.
 87.Chen HI. Interaction between the baroreceptor and Bezold‐Jarisch reflexes. Am J Physiol 237: H655‐H661, 1979.
 88.Chen HI, Chapleau MW, McDowell TS, Abboud FM. Prostaglandins contribute to activation of baroreceptors in rabbits. Possible paracrine influence of endothelium. Circ Res 67: 1394‐1404, 1990.
 89.Chen L, Yang G. Recent advances in circadian rhythms in cardiovascular system. Front Pharmacol 6: 71, 2015. DOI: 10.3389/fphar.2015.00071 (eCollection 2015. electronic publication, 16 pages).
 90.Chen MF, Tsai JT, Chen LJ, Wu TP, Yang JJ, Yin LT, Yang YL, Chiang TA, Lu HL, Wu MC. Characterization of imidazoline receptors in blood vessels for the development of antihypertensive agents. Biomed Res Int 2014: 182846, 2014.
 91.Chen Q, Roeder Z, Li MH, Zhang Y, Ingram SL, Heinricher MM. Optogenetic evidence for a direct circuit linking nociceptive transmission through the parabrachial complex with pain‐modulating neurons of the rostral ventromedial medulla (RVM). eNeuro 4(3): ENEURO.0202-17.2017, 2017. DOI: 10.1523/ENEURO.0202-17.2017 (eCollection May–Jun 2017. electronic publication, 16 pages).
 92.Chen S, Fan ZZ, He RR. Adenosine facilitates carotid baroreceptor activity in rats. Sheng Li Xue Bao 50: 525‐531, 1998.
 93.Chibireva MD, Aflyatumova GN, Matveeva VL, Bilalova DF, Kuz'mina OI, Sadykova DI, Nigmatullina RR. Nitrogen oxide, endothelin‐1, and serotonin in the blood of immature spontaneously hypertensive rats. Bull Exp Biol Med 162: 310‐312, 2017.
 94.Chou YL, Scarupa MD, Mori N, Canning BJ. Differential effects of airway afferent nerve subtypes on cough and respiration in anesthetized guinea pigs. Am J Physiol Regul Integr Comp Physiol 295: R1572‐R1584, 2008.
 95.Clancy JA, Mary DA, Witte KK, Greenwood JP, Deuchars SA, Deuchars J. Non‐invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul 7: 871‐877, 2014.
 96.Clark KB, Naritoku DK, Smith DC, Browning RA, Jensen RA. Enhanced recognition memory following vagus nerve stimulation in human subjects. Nat Neurosci 2: 94‐98, 1999.
 97.Cohen LS, Wechsler AS, Mitchell JH, Glick G. Depression of cardiac function by streptomycin and other antimicrobial agents. Am J Cardiol 26: 505‐511, 1970.
 98.Cole RJ. Postural baroreflex stimuli may affect EEG arousal and sleep in humans. J Appl Physiol (Bethesda, Md: 1985) 67: 2369‐2375, 1989.
 99.Coleman AJ, Leary WP, Asmal AC. The cardiovascular effects of etilefrine. Eur J Clin Pharmacol 8: 41‐45, 1975.
 100.Coleridge HM, Coleridge JC, Rosenthal F. Prolonged inactivation of cortical pyramidal tract neurones in cats by distension of the carotid sinus. J Physiol 256: 635‐649, 1976.
 101.Coleridge JC, Coleridge HM. Afferent vagal C fibre innervation of the lungs and airways and its functional significance. Rev Physiol Biochem Pharmacol 99: 1‐110, 1984.
 102.Coleridge JC, Coleridge HM, Schelegle ES, Green JF. Acute inhalation of ozone stimulates bronchial C‐fibers and rapidly adapting receptors in dogs. J Appl Physiol (Bethesda, Md: 1985) 74: 2345‐2352, 1993.
 103.Colivicchi F, Bassi A, Santini M, Caltagirone C. Cardiac autonomic derangement and arrhythmias in right‐sided stroke with insular involvement. Stroke 35: 2094‐2098, 2004.
 104.Collins HL, DiCarlo SE. Cardiac afferents attenuate the muscle metaboreflex in the rat. J Appl Physiol (Bethesda, Md: 1985) 75: 114‐120, 1993.
 105.Conway CR, Kumar A, Xiong W, Bunker M, Aaronson ST, Rush AJ. Chronic vagus nerve stimulation significantly improves quality of life in treatment‐resistant major depression. J Clin Psychiatry 79(5): 18m12178, 2018. PMID: 30152645, DOI: 10.4088/JCP.18m12178 (electronic publication, 7 pages).
 106.Conway J, Boon N, Davies C, Jones JV, Sleight P. Neural and humoral mechanisms involved in blood pressure variability. J Hypertens 2: 203‐208, 1984.
 107.Conway J, Boon N, Jones JV, Sleight P. Involvement of the baroreceptor reflexes in the changes in blood pressure with sleep and mental arousal. Hypertension 5: 746‐748, 1983.
 108.Coote JH, Hilton SM, Zbrozyna AW. The ponto‐medullary area integrating the defence reaction in the cat and its influence on muscle blood flow. J Physiol 229: 257‐274, 1973.
 109.Coruzzi P, Gualerzi M, Bernkopf E, Brambilla L, Brambilla V, Broia V, Lombardi C, Parati G. Autonomic cardiac modulation in obstructive sleep apnea: Effect of an oral jaw‐positioning appliance. Chest 130: 1362‐1368, 2006.
 110.Costa M, Stegagno L, Schandry R, Bitti PE. Contingent negative variation and cognitive performance in hypotension. Psychophysiology 35: 737‐744, 1998.
 111.Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science (New York, NY) 330: 55‐60, 2010.
 112.Cowley AW, DeClue JW. Quantification of baroreceptor influence on arterial pressure changes seen in primary angiotension‐induced hypertension in dogs. Circ Res 39: 779‐787, 1976.
 113.Cowley AW Jr. Long‐term control of arterial blood pressure. Physiol Rev 72: 231‐300, 1992.
 114.Craig AD. Distribution of brainstem projections from spinal lamina I neurons in the cat and the monkey. J Comp Neurol 361: 225‐248, 1995.
 115.Craig AD. Interoception: The sense of the physiological condition of the body. Curr Opin Neurobiol 13: 500‐505, 2003.
 116.Craig AD. How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci 10: 59‐70, 2009.
 117.Crystal GJ, Salem MR. The Bainbridge and the “reverse” Bainbridge reflexes: History, physiology, and clinical relevance. Anesth Analg 114: 520‐532, 2012.
 118.Cui J, Wilson TE, Shibasaki M, Hodges NA, Crandall CG. Baroreflex modulation of muscle sympathetic nerve activity during posthandgrip muscle ischemia in humans. J Appl Physiol (Bethesda, Md: 1985) 91: 1679‐1686, 2001.
 119.Dalli J, Colas RA, Arnardottir H, Serhan CN. Vagal regulation of group 3 innate lymphoid cells and the immunoresolvent PCTR1 controls infection resolution. Immunity 46: 92‐105, 2017.
 120.Dampney RA, Michelini LC, Li DP, Pan HL. Regulation of sympathetic vasomotor activity by the hypothalamic paraventricular nucleus in normotensive and hypertensive states. Am J Physiol Heart Circ Physiol 315: H1200‐H1214, 2018.
 121.Dampney RA, Polson JW, Potts PD, Hirooka Y, Horiuchi J. Functional organization of brain pathways subserving the baroreceptor reflex: Studies in conscious animals using immediate early gene expression. Cell Mol Neurobiol 23: 597‐616, 2003.
 122.Darrow C, Gellhorn E. The effects of adrenalin on the reflex excitability of the autonomic nervous system. Am J Physiol 127: 243‐251, 1939.
 123.Del Pozo R, Hernandez Gonzalez I, Escribano‐Subias P. The prostacyclin pathway in pulmonary arterial hypertension: A clinical review. Expert Rev Respir Med 11: 491‐503, 2017.
 124.Delius W, Hagbarth KE, Hongell A, Wallin BG. General characteristics of sympathetic activity in human muscle nerves. Acta Physiol Scand 84: 65‐81, 1972.
 125.Delius W, Hagbarth KE, Hongell A, Wallin BG. Manoeuvres affecting sympathetic outflow in human muscle nerves. Acta Physiol Scand 84: 82‐94, 1972.
 126.Dergacheva O, Wang X, Lovett‐Barr MR, Jameson H, Mendelowitz D. The lateral paragigantocellular nucleus modulates parasympathetic cardiac neurons: A mechanism for rapid eye movement sleep‐dependent changes in heart rate. J Neurophysiol 104: 685‐694, 2010.
 127.Di Rienzo M, Parati G, Castiglioni P, Tordi R, Mancia G, Pedotti A. Baroreflex effectiveness index: An additional measure of baroreflex control of heart rate in daily life. Am J Physiol Regul Integr Comp Physiol 280: R744‐R751, 2001.
 128.Diatchenko L, Slade GD, Nackley AG, Bhalang K, Sigurdsson A, Belfer I, Goldman D, Xu K, Shabalina SA, Shagin D, Max MB, Makarov SS, Maixner W. Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum Mol Genet 14: 135‐143, 2005.
 129.DiBona GF, Jones SY. Reflex effects on components of synchronized renal sympathetic nerve activity. Am J Physiol 275: F441‐F446, 1998.
 130.DiBona GF, Jones SY, Sawin LL. Reflex effects on renal nerve activity characteristics in spontaneously hypertensive rats. Hypertension 30: 1089‐1096, 1997.
 131.DiCarlo SE, Bishop VS. Onset of exercise shifts operating point of arterial baroreflex to higher pressures. Am J Physiol 262: H303‐H307, 1992.
 132.DiCarlo SE, Bishop VS. Central baroreflex resetting as a means of increasing and decreasing sympathetic outflow and arterial pressure. Ann NY Acad Sci 940: 324‐337, 2001.
 133.Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci 11: 114‐126, 2010.
 134.Dietrich A, Althaus M, Hartman CA, Buitelaar JK, Mindera RB, van den Hoofdakker BJ, Hoekstra PJ. Baroreflex sensitivity during rest and executive functioning in attention‐deficit/hyperactivity disorder. The TRAILS study. Biol Psychol 90: 249‐257, 2012.
 135.Ditto B, France J, France CR. Risk for hypertension and pain sensitivity in women. Int J Behav Med 4: 117‐130, 1997.
 136.Ditto B, Seguin JR, Boulerice B, Pihl RO, Tremblay RE. Risk for hypertension and pain sensitivity in adolescent boys. Health Psychol 17: 249‐254, 1998.
 137.Dorward PK, Andresen MC, Burke SL, Oliver JR, Korner PI. Rapid resetting of the aortic baroreceptors in the rabbit and its implications for short‐term and longer term reflex control. Circ Res 50: 428‐439, 1982.
 138.Droste C, Kardos A, Brody S, Greenlee MW, Roskamm H, Rau H. Baroreceptor stimulation: Pain perception and sensory thresholds. Biol Psychol 37: 101‐113, 1994.
 139.Drummond HA. betaENaC is a molecular component of a VSMC mechanotransducer that contributes to renal blood flow regulation, protection from renal injury, and hypertension. Front Physiol 3: 341, 2012.
 140.Drummond HA, Price MP, Welsh MJ, Abboud FM. A molecular component of the arterial baroreceptor mechanotransducer. Neuron 21: 1435‐1441, 1998.
 141.Dubreuil A‐S, Boukhaddaoui H, Desmadryl G, Martinez‐Salgado C, Moshourab R, Lewin GR, Carroll P, Valmier J, Scamps F. Role of T‐type calcium current in identified D‐hair mechanoreceptor neurons studied in vitro. J Neurosci 24: 8480‐8484, 2004.
 142.Duschek S, Dietel A, Schandry R, del Paso GA. Increased sensitivity to heat pain in chronic low blood pressure. Eur J Pain 13: 28‐34, 2009.
 143.Duschek S, Hadjamu M, Schandry R. Dissociation between cortical activation and cognitive performance under pharmacological blood pressure elevation in chronic hypotension. Biol Psychol 75: 277‐285, 2007.
 144.Duschek S, Hoffmann A, Reyes Del Paso GA, Ettinger U. Autonomic cardiovascular control and executive function in chronic hypotension. Ann Behav Med 51: 442‐453, 2017.
 145.Duschek S, Matthias E, Schandry R. Essential hypotension is accompanied by deficits in attention and working memory. Behav Med 30: 149‐158, 2005.
 146.Duschek S, Mück I, Del Paso GR. Relationship between baroreceptor cardiac reflex sensitivity and pain experience in normotensive individuals. Int J Psychophysiol 65: 193‐200, 2007.
 147.Duschek S, Muckenthaler M, Werner N, del Paso GAR. Relationships between features of autonomic cardiovascular control and cognitive performance. Biol Psychol 81: 110‐117, 2009.
 148.Duschek S, Reyes del Paso GA. Quantification of cardiac baroreflex function at rest and during autonomic stimulation. J Physiol Sci 57: 259‐268, 2007.
 149.Duschek S, Schandry R. Cognitive performance and cerebral blood flow in essential hypotension. Psychophysiology 41: 905‐913, 2004.
 150.Duschek S, Weisz N, Schandry R. Reduced cognitive performance and prolonged reaction time accompany moderate hypotension. Clin Auton Res 13: 427‐432, 2003.
 151.Duschek S, Werner N, Kapan N, Reyes Del Paso GA. Patterns of cerebral blood flow and systemic hemodynamics during arithmetic processing. J Psychophysiol 22: 81‐90, 2008.
 152.Dworkin B. Hypertension as a learned response: The baroreceptor reinforcement hypothesis. In: Elbert T, Langosch W, Steptoe A, Vaiti D, editors. Behavioral Medicine in Cardiovascular Disorders. New York: Jonh Wiley and Sons Ltd., 1988, p. 17‐49.
 153.Dworkin BR, Elbert T, Rau H, Birbaumer N, Pauli P, Droste C, Brunia CH. Central effects of baroreceptor activation in humans: Attenuation of skeletal reflexes and pain perception. Proc Natl Acad Sci USA 91: 6329‐6333, 1994.
 154.Dworkin BR, Filewich RJ, Miller NE, Craigmyle N, Pickering TG. Baroreceptor activation reduces reactivity to noxious stimulation: Implications for hypertension. Science 205: 1299‐1301, 1979.
 155.Eckberg DL. Parasympathetic cardiovascular control in human disease: A critical review of methods and results. Am J Physiol 239: H581‐H593, 1980.
 156.Edwards L, McIntyre D, Carroll D, Ring C, France CR, Martin U. Effects of artificial and natural baroreceptor stimulation on nociceptive responding and pain. Psychophysiology 40: 762‐769, 2003.
 157.Edwards L, Ring C, McIntyre D, Carroll D. Modulation of the human nociceptive flexion reflex. Psychophysiology 38: S38‐S38, 2001.
 158.Edwards L, Ring C, McIntyre D, Carroll D, Martin U. Psychomotor speed in hypertension: Effects of reaction time components, stimulus modality, and phase of the cardiac cycle. Psychophysiology 44: 459‐468, 2007.
 159.Edwards L, Ring C, McIntyre D, Winer JB, Martin U. Sensory detection thresholds are modulated across the cardiac cycle: Evidence that cutaneous sensibility is greatest for systolic stimulation. Psychophysiology 46: 252‐256, 2009.
 160.Eguchi K, Satoh T. Convergence of sleep‐wakefulness subsystems onto single neurons in the region of cat's solitary tract nucleus. Arch Ital Biol 118: 331‐345, 1980.
 161.Elbert T, Roberts LE, Lutzenberger W, Birbaumer N. Modulation of slow cortical potentials by instrumentally learned blood pressure responses. Psychophysiology 29: 154‐164, 1992.
 162.Elbert T, Rockstroh B, Canavan A, Birbaumer N, Lutzenberger W, von Bülow I, Linden A. Self‐regulation of slow cortical potentials and its role in epileptogenesis. In: Carlson JG, Seifert AR, editors. International Perspectives on Self‐Regulation and Health. Boston, MA: Springer US, 1991, p. 65‐94.
 163.Elbert T, Rockstroh B, Lutzenberger W, Kessler M, Pietrowsky R. Baroreceptor stimulation alters pain sensation depending on tonic blood pressure. Psychophysiology 25: 25‐29, 1988.
 164.Ennis M, Aston‐Jones G. Activation of locus coeruleus from nucleus paragigantocellularis: A new excitatory amino acid pathway in brain. J Neurosci 8: 3644‐3657, 1988.
 165.Fadel PJ. Arterial baroreflex control of the peripheral vasculature in humans: Rest and exercise. Med Sci Sports Exerc 40: 2055‐2062, 2008.
 166.Fadel PJ, Ogoh S, Watenpaugh DE, Wasmund W, Olivencia‐Yurvati A, Smith ML, Raven PB. Carotid baroreflex regulation of sympathetic nerve activity during dynamic exercise in humans. Am J Physiol Heart Circ Physiol 280: H1383‐H1390, 2001.
 167.Fadel PJ, Raven PB. Human investigations into the arterial and cardiopulmonary baroreflexes during exercise. Exp Physiol 97: 39‐50, 2012.
 168.Fazeli S, Buchel C. Pain‐related expectation and prediction error signals in the anterior insula are not related to aversiveness. J Neurosci 38: 6461‐6474, 2018.
 169.Ferrero S, Haas S, Remorgida V, Camerini G, Fulcheri E, Ragni N, Straub RH, Capellino S. Loss of sympathetic nerve fibers in intestinal endometriosis. Fertil Steril 94: 2817‐2819, 2010.
 170.Fillingim RB, Maixner W, Bunting S, Silva S. Resting blood pressure and thermal pain responses among females: Effects on pain unpleasantness but not pain intensity. Int J Psychophysiol 30: 313‐318, 1998.
 171.Fillingim RB, Maixner W, Kincaid S, Sigurdsson A, Harris MB. Pain sensitivity in patients with temporomandibular disorders: Relationship to clinical and psychosocial factors. Clin J Pain 12: 260‐269, 1996.
 172.Fisher JP, Kim A, Young CN, Fadel PJ. Carotid baroreflex control of arterial blood pressure at rest and during dynamic exercise in aging humans. Am J Physiol Regul Integr Comp Physiol 299: R1241‐R1247, 2010.
 173.Fisher JP, Ogoh S, Young CN, Keller DM, Fadel PJ. Exercise intensity influences cardiac baroreflex function at the onset of isometric exercise in humans. J Appl Physiol (Bethesda, Md: 1985) 103: 941‐947, 2007.
 174.France CR, Stewart KM. Parental history of hypertension and enhanced cardiovascular reactivity are associated with decreased pain ratings. Psychophysiology 32: 571‐578, 1995.
 175.France CR, Suchowiecki S. Assessing supraspinal modulation of pain perception in individuals at risk for hypertension. Psychophysiology 38: 107‐113, 2001.
 176.Frank JG, Mendelowitz D. Synaptic and intrinsic activation of GABAergic neurons in the cardiorespiratory brainstem network. PLoS One 7: ‐e36459, 2012.
 177.Freitas IMG, de Almeida LB, Pereira NP, Mira PAC, de Paula RB, Martinez DG, Toschi‐Dias E, Laterza MC. Baroreflex gain and vasomotor sympathetic modulation in resistant hypertension. Clin Auton Res 27: 175‐184, 2017.
 178.Frenzel H, Bohlender J, Pinsker K, Wohlleben B, Tank J, Lechner SG, Schiska D, Jaijo T, Ruschendorf F, Saar K, Jordan J, Millan JM, Gross M, Lewin GR. A genetic basis for mechanosensory traits in humans. PLoS Biol 10: e1001318, 2012.
 179.Freye EAJ. Perfusion of the fourth cerebral ventricle with fentanyl induces naloxone‐reversible bradycardia, hypotension, and EEG synchronisation in conscious dogs. Naunyn Schmiedebergs Arch Pharmacol 307: 123‐128, 1979.
 180.Fuller PM, Sherman D, Pedersen NP, Saper CB, Lu J. Reassessment of the structural basis of the ascending arousal system. J Comp Neurol 519: 933‐956, 2011.
 181.Furlan R, Colombo S, Perego F, Atzeni F, Diana A, Barbic F, Porta A, Pace F, Malliani A, Sarzi‐Puttini P. Abnormalities of cardiovascular neural control and reduced orthostatic tolerance in patients with primary fibromyalgia. J Rheumatol 32: 1787‐1793, 2005.
 182.Furlong TM, McDowall LM, Horiuchi J, Polson JW, Dampney RA. The effect of air puff stress on c‐Fos expression in rat hypothalamus and brainstem: Central circuitry mediating sympathoexcitation and baroreflex resetting. Eur J Neurosci 39: 1429‐1438, 2014.
 183.Gahery Y, Vigier D. Inhibitory effects in the cuneate nucleus produced by vago‐aortic afferent fibers. Brain Res 75: 241‐259, 1974.
 184.Gamboa‐Esteves FO, Tavares I, Almeida A, Batten TF, McWilliam PN, Lima D. Projection sites of superficial and deep spinal dorsal horn cells in the nucleus tractus solitarii of the rat. Brain Res 921: 195‐205, 2001.
 185.Gaskell WH. On the tonicity of the heart and blood vessels. J Physiol 3: [48]‐75, 92‐1‐92‐16, 1880.
 186.Gellhorn E, Nakao H, Redgate ES. The influence of lesions in the anterior and posterior hypothalamus on tonic and phasic autonomic reactions. J Physiol 131: 402‐423, 1956.
 187.Gellhorn E, Yesinick L, Kessler M, Hailman H. Carotid sinus reflexes and convulsions. Am J Physiol 137: 396‐403, 1942.
 188.Gemes G, Rigaud M, Dean C, Hopp FA, Hogan QH, Seagard J. Baroreceptor reflex is suppressed in rats that develop hyperalgesia behavior after nerve injury. Pain 146: 293‐300, 2009.
 189.Ghione S, Rosa C, Mezzasalma L, Panattoni E. Arterial hypertension is associated with hypalgesia in humans. Hypertension 12: 491‐497, 1988.
 190.Ghione S, Rosa C, Panattoni E, Nuti M, Mezzasalma L, Giuliano G. Comparison of sensory and pain threshold in tooth pulp stimulation in normotensive man and essential hypertension. J Hypertens Suppl 3: S113‐S115, 1985.
 191.Gianaros PJ, Derbyshire SW, May JC, Siegle GJ, Gamalo MA, Jennings JR. Anterior cingulate activity correlates with blood pressure during stress. Psychophysiology 42: 627‐635, 2005.
 192.Gianaros PJ, Onyewuenyi IC, Sheu LK, Christie IC, Critchley HD. Brain systems for baroreflex suppression during stress in humans. Hum Brain Mapp 33: 1700‐1716, 2012.
 193.Gianaros PJ, Sheu LK. A review of neuroimaging studies of stressor‐evoked blood pressure reactivity: Emerging evidence for a brain‐body pathway to coronary heart disease risk. Neuroimage 47: 922‐936, 2009.
 194.Goehler LE, Relton JK, Dripps D, Kiechle R, Tartaglia N, Maier SF, Watkins LR. Vagal paraganglia bind biotinylated interleukin‐1 receptor antagonist: A possible mechanism for immune‐to‐brain communication. Brain Res Bull 43: 357‐364, 1997.
 195.Golanov EV, Reis DJ. Neurons of nucleus of the solitary tract synchronize the EEG and elevate cerebral blood flow via a novel medullary area. Brain Res 892: 1‐12, 2001.
 196.Gomes ME, Tack CJ, Verheugt FW, Smits P, Lenders JW. Sympathoinhibition by atorvastatin in hypertensive patients. Circ J 74: 2622‐2626, 2010.
 197.Gompf HS, Mathai C, Fuller PM, Wood DA, Pedersen NP, Saper CB, Lu J. Locus ceruleus and anterior cingulate cortex sustain wakefulness in a novel environment. J Neurosci 30: 14543‐14551, 2010.
 198.Gorman AJ, Chen JS, Foster S, Snyder RG, Iams SG. Intracoronary PGE2 and veratrine inhibits renin release in conscious dogs via chemosensitive ventricular afferents. Clin Exp Pharmacol Physiol 19: 645‐655, 1992.
 199.Gosselin N, Michaud M, Carrier J, Lavigne G, Montplaisir J. Age difference in heart rate changes associated with micro‐arousals in humans. Clin Neurophysiol 113: 1517‐1521, 2002.
 200.Gray MA, Minati L, Paoletti G, Critchley HD. Baroreceptor activation attenuates attentional effects on pain‐evoked potentials. Pain 151: 853‐861, 2010.
 201.Green JF, Schmidt ND, Schultz HD, Roberts AM, Coleridge HM, Coleridge JC. Pulmonary C‐fibers evoke both apnea and tachypnea of pulmonary chemoreflex. J Appl Physiol Respir Environ Exerc Physiol 57: 562‐567, 1984.
 202.Grindstaff RJ, Grindstaff RR, Sullivan MJ, Cunningham JT. Role of the locus ceruleus in baroreceptor regulation of supraoptic vasopressin neurons in the rat. Am J Physiol Regul Integr Comp Physiol 279: R306‐R319, 2000.
 203.Grossman P, Taylor EW. Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions. Biol Psychol 74: 263‐285, 2007.
 204.Grote L, Kraiczi H, Hedner J. Reduced alpha‐ and beta(2)‐adrenergic vascular response in patients with obstructive sleep apnea. Am J Respir Crit Care Med 162: 1480‐1487, 2000.
 205.Guasti L, Gaudio G, Zanotta D, Grimoldi P, Petrozzino MR, Tanzi F, Bertolini A, Grandi AM, Venco A. Relationship between a genetic predisposition to hypertension, blood pressure levels and pain sensitivity. Pain 82: 311‐317, 1999.
 206.Guasti L, Grimoldi P, Diolisi A, Petrozzino MR, Gaudio G, Grandi AM, Rossi MG, Venco A. Treatment with enalapril modifies the pain perception pattern in hypertensive patients. Hypertension 31: 1146‐1150, 1998.
 207.Guasti L, Zanotta D, Petrozzino MR, Grimoldi P, Diolisi A, Garganico D, Gaudio G, Grandi AM, Bertolini A, Venco A. Relationship between dental pain perception and 24 hour ambulatory blood pressure: A study on 181 subjects. J Hypertens 17: 1799‐1804, 1999.
 208.Gursoy S, Erdal E, Herken H, Madenci E, Alasehirli B, Erdal N. Significance of catechol‐O‐methyltransferase gene polymorphism in fibromyalgia syndrome. Rheumatol Int 23: 104‐107, 2003.
 209.Hagen K, Pettersen E, Stovner LJ, Skorpen F, Holmen J, Zwart JA. High systolic blood pressure is associated with Val/Val genotype in the catechol‐o‐methyltransferase gene. The Nord‐Trondelag Health Study (HUNT). Am J Hypertens 20: 21‐26, 2007.
 210.Hagen K, Pettersen E, Stovner LJ, Skorpen F, Zwart JA. The association between headache and Val158Met polymorphism in the catechol‐O‐methyltransferase gene: The HUNT Study. J Headache Pain 7: 70‐74, 2006.
 211.Hajduczok G, Chapleau MW, Ferlic RJ, Mao HZ, Abboud FM. Gadolinium inhibits mechanoelectrical transduction in rabbit carotid baroreceptors. Implication of stretch‐activated channels. J Clin Invest 94: 2392‐2396, 1994.
 212.Hansen MK, O'Connor KA, Goehler LE, Watkins LR, Maier SF. The contribution of the vagus nerve in interleukin‐1beta‐induced fever is dependent on dose. Am J Physiol Regul Integr Comp Physiol 280: R929‐R934, 2001.
 213.Harle P, Mobius D, Carr DJ, Scholmerich J, Straub RH. An opposing time‐dependent immune‐modulating effect of the sympathetic nervous system conferred by altering the cytokine profile in the local lymph nodes and spleen of mice with type II collagen‐induced arthritis. Arthritis Rheum 52: 1305‐1313, 2005.
 214.Hart CM, Block ER. Lung serotonin metabolism. Clin Chest Med 10: 59‐70, 1989.
 215.Haulica I, Bild W, Iliescu R, Georgescu R, Frunza F. Preliminary research on possible relationship of NO with agmatine at the vascular level. Rom J Physiol 36: 67‐79, 1999.
 216.He W, Wang X, Shi H, Shang H, Li L, Jing X, Zhu B. Auricular acupuncture and vagal regulation. Evid Based Complement Alternat Med 2012: 786839, 2012.
 217.Heesch CM, Miller BM, Thames MD, Abboud FM. Effects of calcium channel blockers on isolated carotid baroreceptors and baroreflex. Am J Physiol 245: H653‐H661, 1983.
 218.Hering HE. Die Karotissinusreflexe auf Herz und Gefässe vom normalphysiologischen, pathologisch‐physiologischen und klinischen Standpunkt. Steinkopff: Dresden, 1927.
 219.Hess WR, Brügger M. Das subkortikale Zentrum der affektiven Abwehr [The subcortical center of affective defense]. Helv Physiol Pharmacol Acta 1: 33‐52, 1943.
 220.Higuchi S, Watanuki S, Yasukouchi A. Effects of reduction in arousal level caused by long‐lasting task on CNV. Appl Human Sci 16: 29‐34, 1997.
 221.Hjemdahl P, Fagius J, Freyschuss U, Wallin BG, Daleskog M, Bohlin G, Perski A. Muscle sympathetic activity and norepinephrine release during mental challenge in humans. Am J Physiol 257: E654‐E664, 1989.
 222.Ho MF, Rose'Meyer RB. Vascular adenosine receptors; potential clinical applications. Curr Vasc Pharmacol 11: 327‐337, 2013.
 223.Holloway BB, Stornetta RL, Bochorishvili G, Erisir A, Viar KE, Guyenet PG. Monosynaptic glutamatergic activation of locus coeruleus and other lower brainstem noradrenergic neurons by the C1 cells in mice. J Neurosci 33: 18792‐18805, 2013.
 224.Holmberg MJ, Gorman AJ, Cornish KG, Zucker IH. Attenuation of arterial baroreflex control of heart rate by left ventricular receptor stimulation in the conscious dog. Circ Res 52: 597‐607, 1983.
 225.Horne RS, Berger PJ, Bowes G, Walker AM. Effect of sinoaortic denervation on arousal responses to hypotension in newborn lambs. Am J Physiol 256: H434‐H440, 1989.
 226.Horne RS, De Preu ND, Berger PJ, Walker AM. Arousal responses to hypertension in lambs: Effect of sinoaortic denervation. Am J Physiol 260: H1283‐H1289, 1991.
 227.Hossmann V, Fitzgerald GA, Dollery CT. Circadian rhythm of baroreflex reactivity and adrenergic vascular response. Cardiovasc Res 14: 125‐129, 1980.
 228.Howarth D, Burstal R, Hayes C, Lan L, Lantry G. Autonomic regulation of lymphatic flow in the lower extremity demonstrated on lymphoscintigraphy in patients with reflex sympathetic dystrophy. Clin Nucl Med 24: 383‐387, 1999.
 229.Huang M, Chalfie M. Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367: 467‐470, 1994.
 230.Hummel T, Sengupta JN, Meller ST, Gebhart GF. Responses of T2‐4 spinal cord neurons to irritation of the lower airways in the rat. Am J Physiol 273: R1147‐R1157, 1997.
 231.Hunt BE, Fahy L, Farquhar WB, Taylor JA. Quantification of mechanical and neural components of vagal baroreflex in humans. Hypertension 37: 1362‐1368, 2001.
 232.Huston JM, Ochani M, Rosas‐Ballina M, Liao H, Ochani K, Pavlov VA, Gallowitsch‐Puerta M, Ashok M, Czura CJ, Foxwell B, Tracey KJ, Ulloa L. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med 203: 1623‐1628, 2006.
 233.Ichinose M, Saito M, Fujii N, Ogawa T, Hayashi K, Kondo N, Nishiyasu T. Modulation of the control of muscle sympathetic nerve activity during incremental leg cycling. J Physiol 586: 2753‐2766, 2008.
 234.Ichinose M, Saito M, Kondo N, Nishiyasu T. Time‐dependent modulation of arterial baroreflex control of muscle sympathetic nerve activity during isometric exercise in humans. Am J Physiol Heart Circ Physiol 290: H1419‐H1426, 2006.
 235.Iellamo F, Manzi V, Caminiti G, Sposato B, Massaro M, Cerrito A, Rosano G, Volterrani M. Dose‐response relationship of baroreflex sensitivity and heart rate variability to individually‐tailored exercise training in patients with heart failure. Int J Cardiol 166: 334‐339, 2013.
 236.Ikeda Y, Kawada T, Sugimachi M, Kawaguchi O, Shishido T, Sato T, Miyano H, Matsuura W, Alexander J Jr, Sunagawa K. Neural arc of baroreflex optimizes dynamic pressure regulation in achieving both stability and quickness. Am J Physiol 271: H882‐H890, 1996.
 237.Illi A, Sundberg S, Ojala‐Karlsson P, Scheinin M, Gordin A. Simultaneous inhibition of catechol‐O‐methyltransferase and monoamine oxidase A: Effects on hemodynamics and catecholamine metabolism in healthy volunteers. Clin Pharmacol Ther 59: 450‐457, 1996.
 238.Ingram JR, Rhodes J, Evans BK, Thomas GA. Nicotine enemas for active Crohn's colitis: An open pilot study. Gastroenterol Res Pract 2008: 237185, 2008.
 239.Inui K, Murase S, Nosaka S. Facilitation of the arterial baroreflex by the ventrolateral part of the midbrain periaqueductal grey matter in rats. J Physiol 477: 89‐101, 1994.
 240.Irvine RJ, White JM, Head RJ. The renin angiotensin system and nociception in spontaneously hypertensive rats. Life Sci 56: 1073‐1078, 1995.
 241.Ito S, Craig AD. Vagal‐evoked activity in the parafascicular nucleus of the primate thalamus. J Neurophysiol 94: 2976‐2982, 2005.
 242.Ito S, Craig AD. Striatal projections of the vagal‐responsive region of the thalamic parafascicular nucleus in macaque monkeys. J Comp Neurol 506: 301‐327, 2008.
 243.Jacob G, Ertl AC, Shannon JR, Furlan R, Robertson RM, Robertson D. Effect of standing on neurohumoral responses and plasma volume in healthy subjects. J Appl Physiol (Bethesda, Md: 1985) 84: 914‐921, 1998.
 244.Jacobs HI, Riphagen JM, Razat CM, Wiese S, Sack AT. Transcutaneous vagus nerve stimulation boosts associative memory in older individuals. Neurobiol Aging 36: 1860‐1867, 2015.
 245.Jarisch A, Richter H. Die afferenten bahnen des veratrineeffektes in den herznerven. Arch Exp Pathol Pharmacol 193: 355‐371, 1939.
 246.Jarisch A, Richter H. Die kreislauf des veratrins. Arch Exp Pathol Pharmacol 193: 347‐354, 1939.
 247.Jhamandas JH, Harris KH. Influence of nucleus tractus solitarius stimulation and baroreceptor activation on rat parabrachial neurons. Brain Res Bull 28: 565‐571, 1992.
 248.Jhamandas JH, Renaud LP. A gamma‐aminobutyric‐acid‐mediated baroreceptor input to supraoptic vasopressin neurones in the rat. J Physiol 381: 595‐606, 1986.
 249.Ji RR, Nackley A, Huh Y, Terrando N, Maixner W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology 129: 343‐366, 2018.
 250.Johns EJ, Kopp UC, DiBona GF. Neural control of renal function. Compr Physiol 1: 731‐767, 2011.
 251.Johnson PL, Molosh A, Fitz SD, Truitt WA, Shekhar A. Orexin, stress, and anxiety/panic states. Prog Brain Res 198: 133‐161, 2012.
 252.Jordan J, Lipp A, Tank J, Schroder C, Stoffels M, Franke G, Diedrich A, Arnold G, Goldstein DS, Sharma AM, Luft FC. Catechol‐o‐methyltransferase and blood pressure in humans. Circulation 106: 460‐465, 2002.
 253.Just A, Wittmann U, Nafz B, Wagner CD, Ehmke H, Kirchheim HR, Persson PB. The blood pressure buffering capacity of nitric oxide by comparison to the baroreceptor reflex. Am J Physiol 267: H521‐H527, 1994.
 254.Kalkman HO, Engel G, Hoyer D. Three distinct subtypes of serotonergic receptors mediate the triphasic blood pressure response to serotonin in rats. J Hypertens Suppl 2: S143‐S145, 1984.
 255.Kamiya A, Kawada T, Shimizu S, Iwase S, Sugimachi M, Mano T. Slow head‐up tilt causes lower activation of muscle sympathetic nerve activity: Loading speed dependence of orthostatic sympathetic activation in humans. Am J Physiol Heart Circ Physiol 297: H53‐H58, 2009.
 256.Kamiya A, Kawada T, Sugimachi M. Systems physiology of the baroreflex during orthostatic stress: From animals to humans. Front Physiol 5: 256, 2014.
 257.Kardos A, Rau H, Greenlee MW, Droste C, Brody S, Roskamm H. Reduced pain during baroreceptor stimulation in patients with symptomatic and silent myocardial ischaemia. Cardiovasc Res 28: 515‐518, 1994.
 258.Kaufmann H, Norcliffe‐Kaufmann L, Palma J‐A. Baroreflex dysfunction. NEngl J Med 382: 163‐178, 2020.
 259.Kaur S, Pedersen NP, Yokota S, Hur EE, Fuller PM, Lazarus M, Chamberlin NL, Saper CB. Glutamatergic signaling from the parabrachial nucleus plays a critical role in hypercapnic arousal. J Neurosci 33: 7627‐7640, 2013.
 260.Kawai Y. Differential ascending projections from the male rat caudal nucleus of the tractus solitarius: An interface between local microcircuits and global macrocircuits. Front Neuroanat 12: 63, 2018.
 261.Keller DM, Fadel PJ, Ogoh S, Brothers RM, Hawkins M, Olivencia‐Yurvati A, Raven PB. Carotid baroreflex control of leg vasculature in exercising and non‐exercising skeletal muscle in humans. J Physiol 561: 283‐293, 2004.
 262.Kesler B, Anand A, Launois SH, Weiss JW. Drug‐induced arterial pressure elevation is associated with arousal from NREM sleep in normal volunteers. J Appl Physiol (Bethesda, Md: 1985) 87: 897‐901, 1999.
 263.Ketch T, Biaggioni I, Robertson R, Robertson D. Four faces of baroreflex failure: Hypertensive crisis, volatile hypertension, orthostatic tachycardia, and malignant vagotonia. Circulation 105: 2518‐2523, 2002.
 264.Kienbaum P, Karlssonn T, Sverrisdottir YB, Elam M, Wallin BG. Two sites for modulation of human sympathetic activity by arterial baroreceptors? J Physiol 531: 861‐869, 2001.
 265.Kilpatrick GJ, Butler A, Burridge J, Oxford AW. 1‐(m‐chlorophenyl)‐biguanide, a potent high affinity 5‐HT3 receptor agonist. Eur J Pharmacol 182: 193‐197, 1990.
 266.Kimmerly DS. A review of human neuroimaging investigations involved with central autonomic regulation of baroreflex‐mediated cardiovascular control. Auton Neurosci 207: 10‐21, 2017.
 267.Kimmerly DS, O'Leary DD, Menon RS, Gati JS, Shoemaker JK. Cortical regions associated with autonomic cardiovascular regulation during lower body negative pressure in humans. J Physiol 569: 331‐345, 2005.
 268.Kirouac GJ, Ganguly PK. Up‐regulation of cholecystokinin receptors in the nucleus accumbens of the young prehypertensive spontaneously hypertensive rat. Neurosci Lett 191: 197‐199, 1995.
 269.Kleitman N. Narcolepsy, cataplexy, and sleep paralysis. In: Sleep and Wakefulness. Chicago: The University of Chicago Press, 1963, p. 233‐242.
 270.Koch E. Die Irradiation der pressoreceptorischen Kreislaufreflexe. J Mol Med 11: 225‐227, 1932.
 271.Koch E, Mies H. Chronischer arterieller Hochdruck durch experimentelle Dauerasschaltung der Blutdruckzugler. Krankheitsforschung 7: 241‐256, 1929.
 272.Koella WP, Smythies JR, Levy CK, Czicman JS. Modulatory influence on cerebral cortical optic response form the carotid sinus area. Am J Physiol 199: 381‐386, 1960.
 273.Koike H, Mark AL, Heistad DD, Schmid PG. Influence of cardiopulmonary vagal afferent activity on carotid chemoreceptor and baroreceptor reflexes in the dog. Circ Res 37: 422‐429, 1975.
 274.Koike MK, Moreira ED, da Silva GJ, Consolim‐Colombo FM, Ida F, Irigoyen MC, Krieger EM. Resetting of aortic baroreceptors in response to hypotension does not alter gain sensitivity. Clin Exp Pharmacol Physiol 33: 679‐684, 2006.
 275.Komine H, Matsukawa K, Tsuchimochi H, Murata J. Central command blunts the baroreflex bradycardia to aortic nerve stimulation at the onset of voluntary static exercise in cats. Am J Physiol Heart Circ Physiol 285: H516‐H526, 2003.
 276.Koopman FA, Chavan SS, Miljko S, Grazio S, Sokolovic S, Schuurman PR, Mehta AD, Levine YA, Faltys M, Zitnik R, Tracey KJ, Tak PP. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci USA 113(29): 8284‐8289, 2016.
 277.Koopman FA, Tang MW, Vermeij J, de Hair MJ, Choi IY, Vervoordeldonk MJ, Gerlag DM, Karemaker JM, Tak PP. Autonomic dysfunction precedes development of rheumatoid arthritis: A prospective cohort study. EBioMedicine 6: 231‐237, 2016.
 278.Koopman FA, van Maanen MA, Vervoordeldonk MJ, Tak PP. Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. J Intern Med 282: 64‐75, 2017.
 279.Kou YR, Lee LY. Stimulation of rapidly adapting receptors in canine lungs by a single breath of cigarette smoke. J Appl Physiol (Bethesda, Md: 1985) 68: 1203‐1210, 1990.
 280.Krieger EM. Mechanisms of complete baroreceptor resetting in hypertension. Drugs 35 (Suppl 6): 98‐103, 1988.
 281.Krout KE, Loewy AD. Parabrachial nucleus projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 428: 475‐494, 2000.
 282.Kubota T, Alexander J Jr, Itaya R, Todaka K, Sugimachi M, Sunagawa K, Nose Y, Takeshita A. Dynamic effects of carotid sinus baroreflex on ventriculoarterial coupling studied in anesthetized dogs. Circ Res 70: 1044‐1053, 1992.
 283.Kullmann R, Schonung W, Simon E. Antagonistic changes of blood flow and sympathetic activity in different vascular beds following central thermal stimulation. I. Blood flow in skin, muscle and intestine during spinal cord heating and cooling in anesthetized dogs. Pflugers Arch 319: 146‐161, 1970.
 284.Kumada M, Terui N, Kuwaki T. Arterial baroreceptor reflex: Its central and peripheral neural mechanisms. Prog Neurobiol 35: 331‐361, 1990.
 285.Kunath J, Delaroque N, Szardenings M, Neundorf I, Straub RH. Sympathetic nerve repulsion inhibited by designer molecules in vitro and role in experimental arthritis. Life Sci 168: 47‐53, 2017.
 286.Kunos G, Mosqueda‐Garcia R, Mastrianni JA, Abbott FV. Endorphinergic mechanism in the central cardiovascular and analgesic effects of clonidine. Can J Physiol Pharmacol 65: 1624‐1632, 1987.
 287.Kunze DL, Andresen MC, Torres LA. Do calcium antagonists act directly on calcium channels to alter baroreceptor function? J Pharmacol Exp Ther 239: 303‐310, 1986.
 288.Lacey BC, Lacey JI. Two‐way communication between the heart and the brain. Significance of time within the cardiac cycle. Am Psychol 33: 99‐113, 1978.
 289.Lacey BC, Lacey JI. Cognitive modulation of time‐dependent primary bradycardia. Psychophysiology 17: 209‐221, 1980.
 290.Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM. Human catechol‐O‐methyltransferase pharmacogenetics: Description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6: 243‐250, 1996.
 291.Laguzzi R, Reis DJ, Talman WT. Modulation of cardiovascular and electrocortical activity through serotonergic mechanisms in the nucleus tractus solitarius of the rat. Brain Res 304: 321‐328, 1984.
 292.Lai CJ, Ruan T, Kou YR. The involvement of hydroxyl radical and cyclooxygenase metabolites in the activation of lung vagal sensory receptors by circulatory endotoxin in rats. J Appl Physiol (Bethesda, Md: 1985) 98: 620‐628, 2005.
 293.Laine Green A, Weaver DF. Vagal stimulation by manual carotid sinus massage to acutely suppress seizures. J Clin Neurosci 21: 179‐180, 2014.
 294.Lange G, Janal MN, Maniker A, Fitzgibbons J, Fobler M, Cook D, Natelson BH. Safety and efficacy of vagus nerve stimulation in fibromyalgia: A phase I/II proof of concept trial. Pain Med 12: 1406‐1413, 2011.
 295.Langley JN. Sketch of the progress of discovery in the eighteenth century as regards the autonomic nervous system. J Physiol 50: 225‐258, 1916.
 296.Lara JP, Parkes MJ, Silva‐Carvhalo L, Izzo P, Dawid‐Milner MS, Spyer KM. Cardiovascular and respiratory effects of stimulation of cell bodies of the parabrachial nuclei in the anaesthetized rat. J Physiol 477: 321‐329, 1994.
 297.Lee LY, Yu J. Sensory nerves in lung and airways. Compr Physiol 4: 287‐324, 2014.
 298.Legg Ditterline BE, Aslan SC, Randall DC, Harkema SJ, Castillo C, Ovechkin AV. Effects of respiratory training on heart rate variability and baroreflex sensitivity in individuals with chronic spinal cord injury. Arch Phys Med Rehabil 99: 423‐432, 2018.
 299.Len W, Chan SH, Chan JY. Parabrachial nucleus induces suppression of baroreflex bradycardia by the release of glutamate in the rostral ventrolateral medulla of the rat. J Biomed Sci 7: 401‐411, 2000.
 300.Len WB, Chan JY. Glutamatergic projection to RVLM mediates suppression of reflex bradycardia by parabrachial nucleus. Am J Physiol 276: H1482‐H1492, 1999.
 301.Li DP, Fan ZZ, He RR. Modulatory effects of endothelin on carotid baroreflex in anesthetized rats. Sheng Li Xue Bao 50: 169‐175, 1998.
 302.Li G, Regunathan S, Barrow CJ, Eshraghi J, Cooper R, Reis DJ. Agmatine: An endogenous clonidine‐displacing substance in the brain. Science 263: 966‐969, 1994.
 303.Li S, Sun C, Rong P, Zhai X, Zhang J, Baker M, Wang S. Auricular vagus nerve stimulation enhances central serotonergic function and inhibits diabetic neuropathy development in Zucker fatty rats. Mol Pain 14: 1744806918787368, 2018.
 304.Li YW, Dampney RA. Expression of Fos‐like protein in brain following sustained hypertension and hypotension in conscious rabbits. Neuroscience 61: 613‐634, 1994.
 305.Li Z, Lee HC, Bielefeldt K, Chapleau MW, Abboud FM. The prostacyclin analogue carbacyclin inhibits Ca(2+)‐activated K+ current in aortic baroreceptor neurones of rats. J Physiol 501 (Pt 2): 275‐287, 1997.
 306.Lin RL, Gu Q, Khosravi M, Lee LY. Sustained sensitizing effects of tumor necrosis factor alpha on sensory nerves in lung and airways. Pulm Pharmacol Ther 47: 29‐37, 2017.
 307.Lin Y‐Y, Lee S‐D. Cardiovascular benefits of exercise training in postmenopausal hypertension. Int J Mol Sci 19: 2523, 2018.
 308.Liu YX, Zhang H, Ma HJ, He RR. Cholecystokinin octapeptide inhibits carotid sinus baroreflex in anesthetized rats. Sheng Li Xue Bao 56: 25‐30, 2004.
 309.Liu Z, Duan YL, Ge SL, Zhang CX, Gong WH, Xu JJ. Effect of estrogen on right ventricular remodeling of monocrotaline‐induced pulmonary arterial hypertension in rats and its mechanism. Eur Rev Med Pharmacol Sci 23: 1742‐1750, 2019.
 310.Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412: 150‐157, 2001.
 311.Lohmeier TE, Iliescu R. Chronic lowering of blood pressure by carotid baroreflex activation: Mechanisms and potential for hypertension therapy. Hypertension (Dallas, Tex: 1979) 57: 880‐886, 2011.
 312.Lohmeier TE, Iliescu R. The baroreflex as a long‐term controller of arterial pressure. Physiology (Bethesda) 30: 148‐158, 2015.
 313.Lohmeier TE, Iliescu R, Dwyer TM, Irwin ED, Cates AW, Rossing MA. Sustained suppression of sympathetic activity and arterial pressure during chronic activation of the carotid baroreflex. Am J Physiol Heart Circ Physiol 299: H402‐H409, 2010.
 314.Lohmeier TE, Lohmeier JR, Warren S, May PJ, Cunningham JT. Sustained activation of the central baroreceptor pathway in angiotensin hypertension. Hypertension (Dallas, Tex: 1979) 39: 550‐556, 2002.
 315.Lovick TA. Projections from brainstem nuclei to the nucleus paragigantocellularis lateralis in the cat. J Auton Nerv Syst 16: 1‐11, 1986.
 316.Lundvall J, Edfeldt H. Very large range of baroreflex sympathetic control of vascular resistance in human skeletal muscle and skin. J Appl Physiol (Bethesda, Md: 1985) 76: 204‐211, 1994.
 317.Maixner W. Autonomic and somatosensory interactions: Physiological and pathophysiological implications. Proc Fin Dental Soc 85: 395‐407, 1989.
 318.Maixner W. Interaction between cardiovascular and pain modulatory systems: Physiological and pathophysiological implications. J Cardiovasc Electrophysiol 2: S3‐S12, 1991.
 319.Maixner W, Bossut DF, Whitsel EA. Evaluation of vagal afferent modulation of the digastric reflex in cats. Brain Res 560: 55‐62, 1991.
 320.Maixner W, Fillingim R, Kincaid S, Sigurdsson A, Harris MB. Relationship between pain sensitivity and resting arterial blood pressure in patients with painful temporomandibular disorders. Psychosom Med 59: 503‐511, 1997.
 321.Maixner W, Fillingim R, Kincaid S, Sigurdsson A, Harris MB. Relationship between pain sensitivity and resting arterial blood pressure in patients with painful temporomandibular disorders. Psychosom Med 59: 503‐511, 1997.
 322.Maixner W, Greenspan JD, Dubner R, Bair E, Mulkey F, Miller V, Knott C, Slade GD, Ohrbach R, Diatchenko L. Potential autonomic risk factors for chronic TMD: Descriptive data and empirically identified domains from the OPPERA case‐control study. J Pain 12: T75‐T91, 2011.
 323.Maixner W, Long JP, Gebhart GF. Factors influencing the altered pain perception in the spontaneously hypertensive rat. Brain Res 237(1): 137‐145, 1982.
 324.Maixner W, Randich A. Role of the right vagal nerve trunk in antinociception. Brain Res 298: 374‐377, 1984.
 325.Maixner W, Sigurdsson A, Fillingim R, Lundeen T, Booker D. Regulation of acute and chronic orofacial pain. In: Fricton JR, Dubner RB, editors. Orofacial Pain and Temporomandibular Disorders. New York: Raven Press, Ltd, 1995, p. 85‐102.
 326.Maixner W, Touw KB, Brody MJ, Gebhart GF, Long JP. Factors influencing the altered pain perception in the spontaneously hypertensive rat. Brain Res 237: 137‐145, 1982.
 327.Makino M, Hayashi H, Takezawa H, Hirai M, Saito H, Ebihara S. Circadian rhythms of cardiovascular functions are modulated by the baroreflex and the autonomic nervous system in the rat. Circulation 96: 1667‐1674, 1997.
 328.Mancia G, Donald DE, Shepherd JT. Inhibition of adrenergic outflow to peripheral blood vessels by vagal afferents from the cardiopulmonary region in the dog. Circ Res 33: 713‐721, 1973.
 329.Mancia G, Ferrari A, Leonetti G, Pomidossi G, Zanchetti A. Carotid sinus baroreceptor control of arterial pressure in renovascular hypertensive subjects. Hypertension 4: 47‐50, 1982.
 330.Marchi A, Bari V, De Maria B, Esler M, Lambert E, Baumert M, Porta A. Simultaneous characterization of sympathetic and cardiac arms of the baroreflex through sequence techniques during incremental head‐up tilt. Front Physiol 7: 438, 2016.
 331.Mark AL. The Bezold‐Jarisch reflex revisited: Clinical implications of inhibitory reflexes originating in the heart. J Am Coll Cardiol 1: 90‐102, 1983.
 332.Mark AL, Kerber RE. Augmentation of cardiopulmonary baroreflex control of forearm vascular resistance in borderline hypertension. Hypertension 4: 39‐46, 1982.
 333.Mark AL, Mancia G. Cardiopulmonary baroreflexes in humans. Compr Physiol (Suppl 8): 2011. https://doi.org/10.1002/cphy.cp020321.
 334.Martelli D, Yao ST, McKinley MJ, McAllen RM. Reflex control of inflammation by sympathetic nerves, not the vagus. J Physiol 592: 1677‐1686, 2014.
 335.Masuki S, Todo T, Nakano Y, Okamura H, Nose H. Reduced alpha‐adrenoceptor responsiveness and enhanced baroreflex sensitivity in Cry‐deficient mice lacking a biological clock. J Physiol 566: 213‐224, 2005.
 336.Matsukawa K, Komine H, Nakamoto T, Murata J. Central command blunts sensitivity of arterial baroreceptor‐heart rate reflex at onset of voluntary static exercise. Am J Physiol Heart Circ Physiol 290: H200‐H208, 2006.
 337.Matsukawa K, Mitchell JH, Wall PT, Wilson LB. The effect of static exercise on renal sympathetic nerve activity in conscious cats. J Physiol 434: 453‐467, 1991.
 338.Matsukawa K, Wall PT, Wilson LB, Mitchell JH. Reflex responses of renal nerve activity during isometric muscle contraction in cats. Am J Physiol 259: H1380‐H1388, 1990.
 339.Matsumoto S, Ikeda M, Nishikawa T, Yoshida S, Tanimoto T, Ito M, Saiki C, Takeda M. Excitatory mechanism of deflationary slowly adapting pulmonary stretch receptors in the rat lung. J Pharmacol Exp Ther 300: 597‐604, 2002.
 340.Mazzone SB, Undem BJ. Vagal Afferent Innervation of the Airways in Health and Disease. Physiol Rev 96: 975‐1024, 2016.
 341.McCabe PM, Yongue BG, Ackles PK, Porges SW. Changes in heart period, heart‐period variability, and a spectral analysis estimate of respiratory sinus arrhythmia in response to pharmacological manipulations of the baroreceptor reflex in cats. Psychophysiology 22: 195‐203, 1985.
 342.McCloskey DI, Mitchell JH. Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol 224: 173‐186, 1972.
 343.McCubbin JA, Bruehl S. Do endogenous opioids mediate the relationship between blood pressure and pain sensitivity in normotensives? Pain 57: 63‐67, 1994.
 344.McCubbin JW, Page IH, Bumpus FM. Effect of synthetic angiotonin on the carotid sinus. Circ Res 5: 458‐460, 1957.
 345.McDowell TS, Axtelle TS, Chapleau MW, Abboud FM. Prostaglandins in carotid sinus enhance baroreflex in rabbits. Am J Physiol 257: R445‐R450, 1989.
 346.McIlveen SA, Hayes SG, Kaufman MP. Both central command and exercise pressor reflex reset carotid sinus baroreflex. Am J Physiol Heart Circ Physiol 280: H1454‐H1463, 2001.
 347.McIntyre D, Ring C, Hamer M, Carroll D. Effects of arterial and cardiopulmonary baroreceptor activation on simple and choice reaction times. Psychophysiology 44: 874‐879, 2007.
 348.McQueen DS, Belmonte C. The effects of prostaglandins E2, A2 and F2 alpha on carotid baroreceptors and chemoreceptors. Q J Exp Physiol Cogn Med Sci 59: 63‐71, 1974.
 349.McWilliam PN, Yang T, Chen LX. Changes in the baroreceptor reflex at the start of muscle contraction in the decerebrate cat. J Physiol 436: 549‐558, 1991.
 350.Meller ST, Lewis SJ, Brody MJ, Gebhart GF. Nociceptive afferent vagal input is enhanced after transection of the aortic depressor nerve. Hypertension 15: 797‐802, 1990.
 351.Mello‐Carpes PB, da Silva de Vargas L, Gayer MC, Roehrs R, Izquierdo I. Hippocampal noradrenergic activation is necessary for object recognition memory consolidation and can promote BDNF increase and memory persistence. Neurobiol Learn Mem 127: 84‐92, 2016.
 352.Mello‐Carpes PB, Izquierdo I. The nucleus of the solitary tract →nucleus paragigantocellularis → locus coeruleus → CA1 region of dorsal hippocampus pathway is important for consolidation of object recognition memory. Neurobiol Learn Mem 100: 56‐63, 2013.
 353.Merhi M, Helme RD, Khalil Z. Age‐related changes in sympathetic modulation of sensory nerve activity in rat skin. Inflamm Res 47: 239‐244, 1998.
 354.Merrill CA, Jonsson MA, Minthon L, Ejnell H, son Silander HC, Blennow K, Karlsson M, Nordlund A, Rolstad S, Warkentin S, Ben‐Menachem E, Sjogren MJ. Vagus nerve stimulation in patients with Alzheimer's disease: Additional follow‐up results of a pilot study through 1 year. J Clin Psychiatry 67: 1171‐1178, 2006.
 355.Michelini LC, O'Leary DS, Raven PB, Nobrega AC. Neural control of circulation and exercise: A translational approach disclosing interactions between central command, arterial baroreflex, and muscle metaboreflex. Am J Physiol Heart Circ Physiol 309: H381‐H392, 2015.
 356.Miki K, Yoshimoto M, Tanimizu M. Acute shifts of baroreflex control of renal sympathetic nerve activity induced by treadmill exercise in rats. J Physiol 548: 313‐322, 2003.
 357.Miller RE, Shapiro AP, King HE, Ginchereau EH, Hosutt JA. Effect of antihypertensive treatment on the behavioral consequences of elevated blood pressure. Hypertension 6: 202‐208, 1984.
 358.Mirakaj V, Dalli J, Granja T, Rosenberger P, Serhan CN. Vagus nerve controls resolution and pro‐resolving mediators of inflammation. J Exp Med 211: 1037‐1048, 2014.
 359.Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cogn Psychol 41: 49‐100, 2000.
 360.Molderings GJ, Haenisch B. Agmatine (decarboxylated l‐arginine): Physiological role and therapeutic potential. Pharmacol Ther 133: 351‐365, 2012.
 361.Moller E, Ostenfeld I. Studies on the cerebral carotid sinus syndrome and the physiological basis of consciousness. Acta Psychiatr Scand 24: 59‐80, 1949.
 362.Moreira ED, Mostarda CT, Moraes‐Silva IC, Ferreira JB, Dos Santos F, Lacchini S, De Angelis K, Rodrigues B, Irigoyen MC. Effect of simvastatin in the autonomic system is dependent on the increased gain/sensitivity of the baroreceptors. Physiol Rep 1: e00045, 2013.
 363.Morgan MM, Fields HL. Activity of nociceptive modulatory neurons in the rostral ventromedial medulla associated with volume expansion‐induced antinociception. Pain 52: 1‐9, 1993.
 364.Mortha A, Chudnovskiy A, Hashimoto D, Bogunovic M, Spencer SP, Belkaid Y, Merad M. Microbiota‐dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343: 1249288, 2014.
 365.Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1: 455‐473, 1949.
 366.Mueller PJ, Clifford PS, Crandall CG, Smith SA, Fadel PJ. Integration of central and peripheral regulation of the circulation during exercise: Acute and chronic adaptations. Compr Physiol 8: 103‐151, 2017.
 367.Muller JE, Ludmer PL, Willich SN, Tofler GH, Aylmer G, Klangos I, Stone PH. Circadian variation in the frequency of sudden cardiac death. Circulation 75: 131‐138, 1987.
 368.Muller JE, Stone PH, Turi ZG, Rutherford JD, Czeisler CA, Parker C, Poole WK, Passamani E, Roberts R, Robertson T, Sobel BE, Willerson JT, Braunwald E, the MILIS Study Group. Circadian variation in the frequency of onset of acute myocardial infarction. N Engl J Med 313: 1315‐1322, 1985.
 369.Muller‐Ribeiro FC, Zaretsky DV, Zaretskaia MV, Santos RA, DiMicco JA, Fontes MA. Contribution of infralimbic cortex in the cardiovascular response to acute stress. Am J Physiol Regul Integr Comp Physiol 303: R639‐R650, 2012.
 370.Multon S, Schoenen J. Pain control by vagus nerve stimulation: From animal to man…and back. Acta Neurol Belg 105: 62‐67, 2005.
 371.Munch PA. Discharge characteristics and rapid resetting of autoactive aortic baroreceptors in rats. J Physiol 458: 501‐517, 1992.
 372.Munch PA. Endothelium‐mediated and direct actions of acetylcholine on rabbit aortic baroreceptors. Circ Res 74: 422‐433, 1994.
 373.Munch PA, Andresen MC, Brown AM. Rapid resetting of aortic baroreceptors in vitro. Am J Physiol 244: H672‐H680, 1983.
 374.Munch PA, Longhurst JC. Contrasting effects of vasopressin and angiotensin II on rabbit aortic baroreceptors. Am J Physiol 260: H811‐H820, 1991.
 375.Muralidharan A, Wyse BD, Smith MT. Analgesic efficacy and mode of action of a selective small molecule angiotensin II type 2 receptor antagonist in a rat model of prostate cancer‐induced bone pain. Pain Med 15: 93‐110, 2014.
 376.Murata J, Matsukawa K, Komine H, Tsuchimochi H, Nakamoto T. Central inhibition of the aortic baroreceptors‐heart rate reflex at the onset of spontaneous muscle contraction. J Appl Physiol (Bethesda, Md: 1985) 97: 1371‐1378, 2004.
 377.Myers CD, Robinson ME, Riley JL III, Sheffield D. Sex, gender, and blood pressure: Contributions to experimental pain report. Psychosom Med 63: 545‐550, 2001.
 378.Nackley AG, Tan KS, Fecho K, Flood P, Diatchenko L, Maixner W. Catechol‐O‐methyltransferase inhibition increases pain sensitivity through activation of both beta2‐ and beta3‐adrenergic receptors. Pain 128: 199‐208, 2007.
 379.Nagi SS, Dunn JS, Birznieks I, Vickery RM, Mahns DA. The effects of preferential A‐ and C‐fibre blocks and T‐type calcium channel antagonist on detection of low‐force monofilaments in healthy human participants. BMC Neurosci 16: 52‐52, 2015.
 380.Nakao H, Ballim HM, Gellhorn E. The role of the sino‐aortic receptors in the action of adrenaline, nor‐adrenaline and acetylcholine on the cerebral cortex. Electroencephalogr Clin Neurophysiol 8: 413‐420, 1956.
 381.Nance DM, Sanders VM. Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav Immun 21: 736‐745, 2007.
 382.Napadow V, Edwards RR, Cahalan CM, Mensing G, Greenbaum S, Valovska A, Li A, Kim J, Maeda Y, Park K, Wasan AD. Evoked pain analgesia in chronic pelvic pain patients using respiratory‐gated auricular vagal afferent nerve stimulation. Pain Med 13: 777‐789, 2012.
 383.Naranjo JR, Fuentes JA. Association between hypoalgesia and hypertension in rats after short‐term isolation. Neuropharmacology 24: 167‐171, 1985.
 384.Narkiewicz K, Montano N, Cogliati C, van de Borne PJ, Dyken ME, Somers VK. Altered cardiovascular variability in obstructive sleep apnea. Circulation 98: 1071‐1077, 1998.
 385.Narkiewicz K, van de Borne PJ, Cooley RL, Dyken ME, Somers VK. Sympathetic activity in obese subjects with and without obstructive sleep apnea. Circulation 98: 772‐776, 1998.
 386.Nasri‐Heir C, Khan J, Benoliel R, Feng C, Yarnitsky D, Kuo F, Hirschberg C, Hartwell G, Huang CY, Heir G, Korczeniewska O, Diehl SR, Eliav E. Altered pain modulation in patients with persistent postendodontic pain. Pain 156: 2032‐2041, 2015.
 387.Ness TJ, Fillingim RB, Randich A, Backensto EM, Faught E. Low intensity vagal nerve stimulation lowers human thermal pain thresholds. Pain 86: 81‐85, 2000.
 388.Nielsen CS, Knudsen GP, Steingrimsdottir OA. Twin studies of pain. Clin Genet 82: 331‐340, 2012.
 389.Nielsen R, Nikolajsen L, Kroner K, Molgaard H, Vase L, Jensen TS, Terkelsen AJ. Pre‐operative baroreflex sensitivity and efferent cardiac parasympathetic activity are correlated with post‐operative pain. Acta Anaesthesiol Scand 59: 475‐485, 2015.
 390.Numao Y, Saito M, Terui N, Kumada M. Physiological and pharmacological properties of the three subsystems constituting the aortic nerve‐renal sympathetic reflex in rabbits. J Auton Nerv Syst 9: 361‐380, 1983.
 391.Numao Y, Siato M, Terui N, Kumada M. The aortic nerve‐sympathetic reflex in the rat. J Auton Nerv Syst 13: 65‐79, 1985.
 392.Nyklicek I, Wijnen V, Rau H. Effects of baroreceptor stimulation and opioids on the auditory startle reflex. Psychophysiology 42: 213‐222, 2005.
 393.Oberg B, White S. Circulatory effects of interruption and stimulation of cardiac vagal afferents. Acta Physiol Scand 80: 383‐394, 1970.
 394.Ogawa Y, Kanbayashi T, Saito Y, Takahashi Y, Kitajima T, Takahashi K, Hishikawa Y, Shimizu T. Total sleep deprivation elevates blood pressure through arterial baroreflex resetting: A study with microneurographic technique. Sleep 26: 986‐989, 2003.
 395.Ogoh S, Fadel PJ, Nissen P, Jans O, Selmer C, Secher NH, Raven PB. Baroreflex‐mediated changes in cardiac output and vascular conductance in response to alterations in carotid sinus pressure during exercise in humans. J Physiol 550: 317‐324, 2003.
 396.Ogoh S, Fisher JP, Fadel PJ, Raven PB. Increases in central blood volume modulate carotid baroreflex resetting during dynamic exercise in humans. J Physiol 581: 405‐418, 2007.
 397.O'Hagan KP, Bell LB, Mittelstadt SW, Clifford PS. Cardiac receptors modulate the renal sympathetic response to dynamic exercise in rabbits. J Appl Physiol (Bethesda, Md: 1985) 76: 507‐515, 1994.
 398.Oppenheimer S, Cechetto D. The insular cortex and the regulation of cardiac function. Compr Physiol 6: 1081‐1133, 2016.
 399.Osanai S, Takahashi T, Nakano H, Kikuchi K. Doxapram inhibits carotid sinus baroreceptors in rabbits. Auton Autacoid Pharmacol 25: 79‐84, 2005.
 400.Owens NC, Sartor DM, Verberne AJ. Medial prefrontal cortex depressor response: Role of the solitary tract nucleus in the rat. Neuroscience 89: 1331‐1346, 1999.
 401.Padel Y, Dell P. Bulbar and reticular effects of soporific stimulation of the vago‐aortic trunk. J Physiol Paris 57: 269‐270, 1965.
 402.Paintal A. A study of right and left atrial receptors. J Physiol 120: 596, 1953.
 403.Paintal AS. Mechanism of stimulation of type J pulmonary receptors. J Physiol 203: 511‐532, 1969.
 404.Panksepp J. Aggression elicited by electrical stimulation of the hypothalamus in albino rats. Physiol Behav 6: 321‐329, 1971.
 405.Panzenbeck MJ, Tan W, Hajdu MA, Zucker IH. Intracoronary infusion of prostaglandin I2 attenuates arterial baroreflex control of heart rate in conscious dogs. Circ Res 63: 860‐868, 1988.
 406.Papelier Y, Escourrou P, Gauthier JP, Rowell LB. Carotid baroreflex control of blood pressure and heart rate in men during dynamic exercise. J Appl Physiol (Bethesda, Md: 1985) 77: 502‐506, 1994.
 407.Parati G, Di Rienzo M, Bertinieri G, Pomidossi G, Casadei R, Groppelli A, Pedotti A, Zanchetti A, Mancia G. Evaluation of the baroreceptor‐heart rate reflex by 24‐hour intra‐arterial blood pressure monitoring in humans. Hypertension 12: 214‐222, 1988.
 408.Parati G, Di Rienzo M, Mancia G. How to measure baroreflex sensitivity: From the cardiovascular laboratory to daily life. J Hypertens 18: 7‐19, 2000.
 409.Perez‐Borja C, Meyer JS. Electroencephalographic monitoring during reconstructive surgery of the neck vessels. Electroencephalogr Clin Neurophysiol 18: 162‐169, 1965.
 410.Persson P, Ehmke H, Kirchheim H, Seller H. Effect of sino‐aortic denervation in comparison to cardiopulmonary deafferentiation on long‐term blood pressure in conscious dogs. Pflugers Arch 411: 160‐166, 1988.
 411.Pfleeger M, Straneva PA, Fillingim RB, Maixner W, Girdler SS. Menstrual cycle, blood pressure and ischemic pain sensitivity in women: A preliminary investigation. Int J Psychophysiol 27: 161‐166, 1997.
 412.Pickering TG, Gribbin B, Petersen ES, Cunningham DJ, Sleight P. Effects of autonomic blockade on the baroreflex in man at rest and during exercise. Circ Res 30: 177‐185, 1972.
 413.Pierce GL, Harris SA, Seals DR, Casey DP, Barlow PB, Stauss HM. Estimated aortic stiffness is independently associated with cardiac baroreflex sensitivity in humans: Role of ageing and habitual endurance exercise. J Hum Hypertens 30: 513‐520, 2016.
 414.Pilowsky PM, Goodchild AK. Baroreceptor reflex pathways and neurotransmitters: 10 years on. J Hypertens 20: 1675‐1688, 2002.
 415.Pongratz G, Straub RH. The sympathetic nervous response in inflammation. Arthritis Res Ther 16: 504, 2014.
 416.Porges SW. Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychophysiology 32: 301‐318, 1995.
 417.Porges SW. The polyvagal perspective. Biol Psychol 74: 116‐143, 2007.
 418.Portaluppi F, Tiseo R, Smolensky MH, Hermida RC, Ayala DE, Fabbian F. Circadian rhythms and cardiovascular health. Sleep Med Rev 16: 151‐166, 2012.
 419.Potts PD, Polson JW, Hirooka Y, Dampney RA. Effects of sinoaortic denervation on Fos expression in the brain evoked by hypertension and hypotension in conscious rabbits. Neuroscience 77: 503‐520, 1997.
 420.Powell ND, Sloan EK, Bailey MT, Arevalo JM, Miller GE, Chen E, Kobor MS, Reader BF, Sheridan JF, Cole SW. Social stress up‐regulates inflammatory gene expression in the leukocyte transcriptome via beta‐adrenergic induction of myelopoiesis. Proc Natl Acad Sci USA 110: 16574‐16579, 2013.
 421.Poyhonen‐Alho MK, Manhem K, Katzman P, Kibarskis A, Antikainen RL, Erkkola RU, Tuomilehto JO, Ebeling PE, Kaaja RJ. Central sympatholytic therapy has anti‐inflammatory properties in hypertensive postmenopausal women. J Hypertens 26: 2445‐2449, 2008.
 422.Pritchard TC, Hamilton RB, Norgren R. Projections of the parabrachial nucleus in the old world monkey. Exp Neurol 165: 101‐117, 2000.
 423.Pullan RD, Rhodes J, Ganesh S, Mani V, Morris JS, Williams GT, Newcombe RG, Russell MA, Feyerabend C, Thomas GA, Sawe U. Transdermal nicotine for active ulcerative colitis. N Engl J Med 330: 811‐815, 1994.
 424.Qi XY, Zhang ZX, Cui QQ, Shi WB, Xu YQ. The effect of ginkgolide B on action potential, L‐type calcium current and delayed rectifier potassium current in ischemic guinea pig ventricular myocytes. Chin J Appl Physiol 20: 24‐28, 2004.
 425.Qin XM, Fan ZZ, He RR. Agmatine inhibits the afferent activity of carotid baroreceptor in rats. Sheng Li Xue Bao 53: 137‐141, 2001.
 426.Qin XM, He RR. Role of calcium in the mechanism underlying the inhibitory effect of streptomycin on carotid sinus baroreflex in rats. Sheng Li Xue Bao 52: 463‐467, 2000.
 427.Qiu C, Winblad B, Fratiglioni L. The age‐dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol 4: 487‐499, 2005.
 428.Querry RG, Smith SA, Strømstad M, Ide K, Raven PB, Secher NH. Neural blockade during exercise augments central command's contribution to carotid baroreflex resetting. Am J Physiol Heart Circ Physiol 280: H1635‐H1644, 2001.
 429.Randich A, Gebhart GF. Vagal afferent modulation of nociception. Brain Res Brain Res Rev 17: 77‐99, 1992.
 430.Randich A, Maixner W. [D‐Ala2]‐methionine enkephalinamide reflexively induces antinociception by activating vagal afferents. Pharmacol Biochem Behav 21: 441‐448, 1984.
 431.Randich A, Maixner W. Interactions between cardiovascular and pain regulatory systems. Neurosci Biobehav Rev 8: 343‐367, 1984.
 432.Randich A, Maixner W. The role of sinoaortic and cardiopulmonary baroreceptor reflex arcs in nociception and stress‐induced analgesia. Ann NY Acad Sci 467: 385‐401, 1986.
 433.Randich A, Robertson JD. Spinal nociceptive transmission in the spontaneously hypertensive and Wistar‐Kyoto normotensive rat. Pain 58: 169‐183, 1994.
 434.Rau H, Brody S, Larbig W, Pauli P, Vohringer M, Harsch B, Kroling P, Birbaumer N. Effects of PRES baroreceptor stimulation on thermal and mechanical pain threshold in borderline hypertensives and normotensives. Psychophysiology 31: 480‐485, 1994.
 435.Rau H, Elbert T. Psychophysiology of arterial baroreceptors and the etiology of hypertension. Biol Psychol 57: 179‐201, 2001.
 436.Ray CA, Rea RF, Clary MP, Mark AL. Muscle sympathetic nerve responses to dynamic one‐legged exercise: Effect of body posture. Am J Physiol 264: H1‐H7, 1993.
 437.Raymond J, Davis GM, van Der Plas MN, Groeller H, Simcox S. Carotid baroreflex control of heart rate and blood pressure during ES leg cycling in paraplegics. J Appl Physiol (Bethesda, Md: 1985) 88: 957‐965, 2000.
 438.Ren K, Randich A, Gebhart GF. Modulation of spinal nociceptive transmission from nuclei tractus solitarii: A relay for effects of vagal afferent stimulation. J Neurophysiol 63: 971‐986, 1990.
 439.Renaud LP. CNS pathways mediating cardiovascular regulation of vasopressin. Clin Exp Pharmacol Physiol 23: 157‐160, 1996.
 440.Resstel LB, Fernandes KB, Correa FM. Medial prefrontal cortex modulation of the baroreflex parasympathetic component in the rat. Brain Res 1015: 136‐144, 2004.
 441.Reyes Del Paso GA, de la Coba P, Martin‐Vazquez M, Thayer JF. Time domain measurement of the vascular and myocardial branches of the baroreflex: A study in physically active versus sedentary individuals. Psychophysiology 54: 1528‐1540, 2017.
 442.Reyes del Paso GA, Garrido S, Pulgar A, Duschek S. Autonomic cardiovascular control and responses to experimental pain stimulation in fibromyalgia syndrome. J Psychosom Res 70: 125‐134, 2011.
 443.Reyes del Paso GA, González I, Hernández JA. Baroreceptor sensitivity and effectiveness varies differentially as a function of cognitive‐attentional demands. Biol Psychol 67: 385‐395, 2004.
 444.Reyes del Paso GA, Gonzalez MI. Modification of baroreceptor cardiac reflex function by biofeedback. Appl Psychophysiol Biofeedback 29: 197‐211, 2004.
 445.Reyes Del Paso GA, Gonzalez MI, Hernandez JA, Duschek S, Gutierrez N. Tonic blood pressure modulates the relationship between baroreceptor cardiac reflex sensitivity and cognitive performance. Psychophysiology 46: 932‐938, 2009.
 446.Reyes Del Paso GA, Langewitz W, Robles H, Perez N. A between‐subjects comparison of respiratory sinus arrhythmia and baroreceptor cardiac reflex sensitivity as non‐invasive measures of tonic parasympathetic cardiac control. J Psychophysiol 22: 163‐171, 1996.
 447.Reyes Del Paso GA, Mata JL, Martin‐Vazquez M. Relationships between baroreceptor cardiac reflex sensitivity and cognitive performance: Modulations by gender and blood pressure. Psychophysiology 49: 138‐144, 2012.
 448.Rice ASC, Dworkin RH, McCarthy TD, Anand P, Bountra C, McCloud PI, Hill J, Cutter G, Kitson G, Desem N, Raff M, group EMAs. EMA401, an orally administered highly selective angiotensin II type 2 receptor antagonist, as a novel treatment for postherpetic neuralgia: A randomised, double‐blind, placebo‐controlled phase 2 clinical trial. Lancet (London, England) 383: 1637‐1647, 2014.
 449.Robbe HW, Mulder LJ, Ruddel H, Langewitz WA, Veldman JB, Mulder G. Assessment of baroreceptor reflex sensitivity by means of spectral analysis. Hypertension 10: 538‐543, 1987.
 450.Roberts AM, Bhattacharya J, Schultz HD, Coleridge HM, Coleridge JC. Stimulation of pulmonary vagal afferent C‐fibers by lung edema in dogs. Circ Res 58: 512‐522, 1986.
 451.Roddie IC, Shepherd JT, Whelan RF. Reflex changes in vasoconstrictor tone in human skeletal muscle in response to stimulation of receptors in a low‐pressure area of the intrathoracic vascular bed. J Physiol 139: 369‐376, 1957.
 452.Romero‐Osorio O, Gil‐Tamayo S, Narino D, Rosselli D. Changes in sleep patterns after vagus nerve stimulation, deep brain stimulation or epilepsy surgery: Systematic review of the literature. Seizure 56: 4‐8, 2018.
 453.Rosa C, Ghione S, Mezzasalma L, Pellegrini M, Basile Fasolo C, Giaconi S, Gazzetti P, Ferdeghini M. Relationship between pain sensitivity, cardiovascular reactivity to cold pressor test and indexes of activity of the adrenergic and opioid system. Clin Exp Hypertens A 10 (Suppl 1): 383‐390, 1988.
 454.Rosas‐Ballina M, Goldstein RS, Gallowitsch‐Puerta M, Yang L, Valdes‐Ferrer SI, Patel NB, Chavan S, Al‐Abed Y, Yang H, Tracey KJ. The selective alpha7 agonist GTS‐21 attenuates cytokine production in human whole blood and human monocytes activated by ligands for TLR2, TLR3, TLR4, TLR9, and RAGE. Mol Med 15: 195‐202, 2009.
 455.Rosenbaum M, Race D. Frequency‐response characteristics of vascular resistance vessels. Am J Physiol 215: 1397‐1402, 1968.
 456.Roth RA, Wallace KB. Disposition of biogenic amines and angiotensin I by lungs of spontaneously hypertensive rats. Am J Physiol 239: H736‐H741, 1980.
 457.Rother M, Witte H, Zwiener U, Eiselt M, Fischer P. Cardiac aliasing—A possible cause for the misinterpretation of cardiorespirographic data in neonates. Early Hum Dev 20: 1‐12, 1989.
 458.Rowell LB, O'Leary DS. Reflex control of the circulation during exercise: Chemoreflexes and mechanoreflexes. J Appl Physiol (Bethesda, Md: 1985) 69: 407‐418, 1990.
 459.Royall DR, Gao JH, Kellogg DL Jr. Insular Alzheimer's disease pathology as a cause of “age‐related” autonomic dysfunction and mortality in the non‐demented elderly. Med Hypotheses 67: 747‐758, 2006.
 460.Rushworth MF. Intention, choice, and the medial frontal cortex. Ann NY Acad Sci 1124: 181‐207, 2008.
 461.Saad MA, Huerta F, Trancard J, Elghozi JL. Effects of middle cerebral artery occlusion on baroreceptor reflex control of heart rate in the rat. J Auton Nerv Syst 27: 165‐172, 1989.
 462.Saavedra JM. Naloxone reversible decrease in pain sensitivity in young and adult spontaneously hypertensive rats. Brain Res 209: 245‐249, 1981.
 463.Saavedra JM. Spontaneously (genetic) hypertensive rats: Naloxone‐reversible and propranolol‐reversible decrease in pain sensitivity. Experientia 37: 1002‐1003, 1981.
 464.Saint Martin M, Sforza E, Thomas‐Anterion C, Barthelemy JC, Roche F, Group PS. Baroreflex sensitivity, vascular risk factors, and cognitive function in a healthy elderly population: The PROOF cohort. J Am Geriatr Soc 61: 2096‐2102, 2013.
 465.Saito H, Sakai K, Jouvet M. Discharge patterns of the nucleus parabrachialis lateralis neurons of the cat during sleep and waking. Brain Res 134: 59‐72, 1977.
 466.Saito M, Tsukanaka A, Yanagihara D, Mano T. Muscle sympathetic nerve responses to graded leg cycling. J Appl Physiol (Bethesda, Md: 1985) 75: 663‐667, 1993.
 467.Saleh TM, Connell BJ. Role of the insular cortex in the modulation of baroreflex sensitivity. Am J Physiol 274: R1417‐R1424, 1998.
 468.Sampson SR, Mills E. Effects of sympathetic stimulation on discharges of carotid sinus baroreceptors. Am J Physiol 218: 1650‐1653, 1970.
 469.Sanders JS, Ferguson DW. Cardiopulmonary baroreflexes fail to modulate sympathetic responses during isometric exercise in humans: Direct evidence from microneurographic studies. J Am Coll Cardiol 12: 1241‐1251, 1988.
 470.Santos‐Almeida FM, Domingos‐Souza G, Meschiari CA, Favaro LC, Becari C, Castania JA, Lopes A, Cunha TM, Moraes DJA, Cunha FQ, Ulloa L, Kanashiro A, Tezini G, Salgado HC. Carotid sinus nerve electrical stimulation in conscious rats attenuates systemic inflammation via chemoreceptor activation. Sci Rep 7: 6265, 2017.
 471.Saper CB. The central autonomic nervous system: Conscious visceral perception and autonomic pattern generation. Annu Rev Neurosci 25: 433‐469, 2002.
 472.Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature 437: 1257‐1263, 2005.
 473.Satoh H, Nishida S. Electropharmacological actions of Ginkgo biloba extract on vascular smooth and heart muscles. Clin Chim Acta 342: 13‐22, 2004.
 474.Saxon SA. Detection of near threshold signals during four phases of cardiac cycle. Ala J Med Sci 7: 427‐430, 1970.
 475.Scher AM, Young AC. Reflex control of heart rate in the unanesthetized dog. Am J Physiol 218: 780‐789, 1970.
 476.Scherrer U, Pryor SL, Bertocci LA, Victor RG. Arterial baroreflex buffering of sympathetic activation during exercise‐induced elevations in arterial pressure. J Clin Invest 86: 1855‐1861, 1990.
 477.Schiller AM, Pellegrino PR, Zucker IH. The renal nerves in chronic heart failure: Efferent and afferent mechanisms. Front Physiol 6: 224‐224, 2015.
 478.Schlager E, Meier T. A strange Balinese method of inducing sleep with some notes about balyans. Acta Trop 4: 127‐134, 1947.
 479.Schobel HP, Handwerker HO, Schmieder RE, Heusser K, Dominiak P, Luft FC. Effects of naloxone on hemodynamic and sympathetic nerve responses to pain in normotensive vs. borderline hypertensive men. J Auton Nerv Syst 69: 49‐55, 1998.
 480.Seagard JL, Gallenberg LA, Hopp FA, Dean C. Acute resetting in two functionally different types of carotid baroreceptors. Circ Res 70: 559‐565, 1992.
 481.Seagard JL, Hopp FA, Drummond HA, Van Wynsberghe DM. Selective contribution of two types of carotid sinus baroreceptors to the control of blood pressure. Circ Res 72: 1011‐1022, 1993.
 482.Seals DR. Cardiopulmonary baroreflexes do not modulate exercise‐induced sympathoexcitation. J Appl Physiol (Bethesda, Md: 1985) 64: 2197‐2203, 1988.
 483.Seals DR. Sympathetic neural discharge and vascular resistance during exercise in humans. J Appl Physiol (Bethesda, Md: 1985) 66: 2472‐2478, 1989.
 484.Serhan CN, de la Rosa X, Jouvene C. Novel mediators and mechanisms in the resolution of infectious inflammation: Evidence for vagus regulation. J Intern Med 286(3): 240‐258, 2019.
 485.Serhan CN, de la Rosa X, Jouvene CC. Cutting edge: Human vagus produces specialized proresolving mediators of inflammation with electrical stimulation reducing proinflammatory eicosanoids. J Immunol 201: 3161‐3165, 2018.
 486.Sevoz‐Couche C, Comet MA, Bernard JF, Hamon M, Laguzzi R. Cardiac baroreflex facilitation evoked by hypothalamus and prefrontal cortex stimulation: Role of the nucleus tractus solitarius 5‐HT2A receptors. Am J Physiol Regul Integr Comp Physiol 291: R1007‐R1015, 2006.
 487.Sforza E, Jouny C, Ibanez V. Cardiac activation during arousal in humans: Further evidence for hierarchy in the arousal response. Clin Neurophysiol 111: 1611‐1619, 2000.
 488.Shah AJ, Su S, Veledar E, Bremner JD, Goldstein FC, Lampert R, Goldberg J, Vaccarino V. Is heart rate variability related to memory performance in middle‐aged men? Psychosom Med 73: 475‐482, 2011.
 489.Shapiro AP, Miller RE, King HE, Ginchereau EH, Fitzgibbon K. Behavioral consequences of mild hypertension. Hypertension 4: 355‐360, 1982.
 490.Sheffield D, Biles PL, Orom H, Maixner W, Sheps DS. Race and sex differences in cutaneous pain perception. Psychosom Med 62: 517‐523, 2000.
 491.Sheng J, Liu S, Wang Y, Cui R, Zhang X. The link between depression and chronic pain: Neural mechanisms in the brain. Neural Plast 2017: ‐9724371, 2017.
 492.Shepherd AJ, Mickle AD, Golden JP, Mack MR, Halabi CM, de Kloet AD, Samineni VK, Kim BS, Krause EG, Gereau RW, Mohapatra DP. Macrophage angiotensin II type 2 receptor triggers neuropathic pain. Proc Natl Acad Sci USA 115: E8057‐E8066, 2018.
 493.Shepherd AJ, Mohapatra DP. Attenuation of unevoked mechanical and cold pain hypersensitivities associated with experimental neuropathy in mice by angiotensin II type‐2 receptor antagonism. Anesth Analg 128: e84‐e87, 2019.
 494.Sheps DS, Bragdon EE, Gray TF III, Ballenger M, Usedom JE, Maixner W. Relation between systemic hypertension and pain perception. Am J Cardiol 70: 3F‐5F, 1992.
 495.Shih CD, Chuang YC. Nitric oxide and GABA mediate bi‐directional cardiovascular effects of orexin in the nucleus tractus solitarii of rats. Neuroscience 149: 625‐635, 2007.
 496.Shimoda O, Ikuta Y. The current perception thresholds vary between horizontal and 70 degrees tilt‐up positions. Anesth Analg 91: 398‐402, 2000.
 497.Silberstein SD, Calhoun AH, Lipton RB, Grosberg BM, Cady RK, Dorlas S, Simmons KA, Mullin C, Liebler EJ, Goadsby PJ, Saper JR. Chronic migraine headache prevention with noninvasive vagus nerve stimulation: The EVENT study. Neurology 87: 529‐538, 2016.
 498.Silva GJ, Brum PC, Negrão CE, Krieger EM. Acute and chronic effects of exercise on baroreflexes in spontaneously hypertensive rats. Hypertension (Dallas, Tex: 1979) 30: 714‐719, 1997.
 499.Silvani A. Physiological sleep‐dependent changes in arterial blood pressure: Central autonomic commands and baroreflex control. Clin Exp Pharmacol Physiol 35: 987‐994, 2008.
 500.Silvani A, Calandra‐Buonaura G, Benarroch EE, Dampney RA, Cortelli P. Bidirectional interactions between the baroreceptor reflex and arousal: An update. Sleep Med 16: 210‐216, 2015.
 501.Sitsen JM, de Jong W. Hypoalgesia in genetically hypertensive rats (SHR) is absent in rats with experimental hypertension. Hypertension 5: 185‐190, 1983.
 502.Sjogren MJ, Hellstrom PT, Jonsson MA, Runnerstam M, Silander HC, Ben‐Menachem E. Cognition‐enhancing effect of vagus nerve stimulation in patients with Alzheimer's disease: A pilot study. J Clin Psychiatry 63: 972‐980, 2002.
 503.Sleight P, Robinson JL, Brooks DE, Rees PM. Characteristics of single carotid sinus baroreceptor fibers and whole nerve activity in the normotensive and the renal hypertensive dog. Circ Res 41: 750‐758, 1977.
 504.Smith SA, Querry RG, Fadel PJ, Gallagher KM, Strømstad M, Ide K, Raven PB, Secher NH. Partial blockade of skeletal muscle somatosensory afferents attenuates baroreflex resetting during exercise in humans. J Physiol 551: 1013‐1021, 2003.
 505.Spaziani R, Bayati A, Redmond K, Bajaj H, Mazzadi S, Bienenstock J, Collins SM, Kamath MV. Vagal dysfunction in irritable bowel syndrome assessed by rectal distension and baroreceptor sensitivity. Neurogastroenterol Motil 20: 336‐342, 2008.
 506.Spengler RN, Allen RM, Remick DG, Strieter RM, Kunkel SL. Stimulation of alpha‐adrenergic receptor augments the production of macrophage‐derived tumor necrosis factor. J Immunol 145: 1430‐1434, 1990.
 507.Sposito AC, Mansur AP, Coelho OR, Nicolau JC, Ramires JA. Additional reduction in blood pressure after cholesterol‐lowering treatment by statins (lovastatin or pravastatin) in hypercholesterolemic patients using angiotensin‐converting enzyme inhibitors (enalapril or lisinopril). Am J Cardiol 83: 1497‐1499, a1498, 1999.
 508.Staszewska‐Barczak J. Prostanoids and cardiac reflexes of sympathetic and vagal origin. Am J Cardiol 52: 36a‐45a, 1983.
 509.Stelling C. Experimentelle Untersuchungen über den Einfluss des Nervus depressor auf die Herztätigkeit und den Blutdruck. In: Dissertation Dorpat 1867, p. 38‐41.
 510.Steptoe A, Sawada Y. Assessment of baroreceptor reflex function during mental stress and relaxation. Psychophysiology 26: 140‐147, 1989.
 511.Sterman MB, Clemente CD. Forebrain inhibitory mechanisms: Cortical synchronization induced by basal forebrain stimulation. Exp Neurol 6: 91‐102, 1962.
 512.Straub RH, Grum F, Strauch U, Capellino S, Bataille F, Bleich A, Falk W, Scholmerich J, Obermeier F. Anti‐inflammatory role of sympathetic nerves in chronic intestinal inflammation. Gut 57: 911‐921, 2008.
 513.Strigo IA, Craig AD. Interoception, homeostatic emotions and sympathovagal balance. Philos Trans R Soc Lond B Biol Sci 371(1708): 20160010, 2016 (electronic publication, 9 pages).
 514.Strong EB, Green JF. Multireceptor activation of the pulmonary chemoreflex. J Appl Physiol (Bethesda, Md: 1985) 70: 368‐370, 1991.
 515.Suarez‐Roca H, Klinger RY, Podgoreanu MV, Ji RR, Sigurdsson MI, Waldron N, Mathew JP, Maixner W. Contribution of baroreceptor function to pain perception and perioperative outcomes. Anesthesiology 130: 634‐650, 2019.
 516.Subha M, Pal P, Pal GK, Habeebullah S, Adithan C, Sridhar MG. Decreased baroreflex sensitivity is linked to sympathovagal imbalance, low‐grade inflammation, and oxidative stress in pregnancy‐induced hypertension. Clin Exp Hypertens 38: 666‐672, 2016.
 517.Sugimachi M, Imaizumi T, Sunagawa K, Hirooka Y, Todaka K, Takeshita A, Nakamura M. A new method to identify dynamic transduction properties of aortic baroreceptors. Am J Physiol 258: H887‐H895, 1990.
 518.Sun MK. Medullospinal vasomotor neurones mediate hypotension from stimulation of prefrontal cortex. J Auton Nerv Syst 38: 209‐217, 1992.
 519.Sundlof G, Wallin BG. Human muscle nerve sympathetic activity at rest. Relationship to blood pressure and age. J Physiol 274: 621‐637, 1978.
 520.Sved AF, Schreihofer AM, Kost CK Jr. Blood pressure regulation in baroreceptor‐denervated rats. Clin Exp Pharmacol Physiol 24: 77‐82, 1997.
 521.Sved AF, Tsukamoto K, Schreihofer AM. Stimulation of alpha 2‐adrenergic receptors in nucleus tractus solitarius is required for the baroreceptor reflex. Brain Res 576: 297‐303, 1992.
 522.Sverrisdottir YB, Green AL, Aziz TZ, Bahuri NF, Hyam J, Basnayake SD, Paterson DJ. Differentiated baroreflex modulation of sympathetic nerve activity during deep brain stimulation in humans. Hypertension 63: 1000‐1010, 2014.
 523.Sverrisdottir YB, Rundqvist B, Johannsson G, Elam M. Sympathetic neural burst amplitude distribution: A more specific indicator of sympathoexcitation in human heart failure. Circulation 102: 2076‐2081, 2000.
 524.Syamsunder AN, Pal P, Pal GK, Kamalanathan CS, Parija SC, Nanda N, Sirisha A. Decreased baroreflex sensitivity is linked to the atherogenic index, retrograde inflammation, and oxidative stress in subclinical hypothyroidism. Endocr Res 42: 49‐58, 2017.
 525.Szelenyi J, Kiss JP, Vizi ES. Differential involvement of sympathetic nervous system and immune system in the modulation of TNF‐alpha production by alpha2‐ and beta‐adrenoceptors in mice. J Neuroimmunol 103: 34‐40, 2000.
 526.Tafil‐Klawe M, Raschke F, Hildebrandt G. Functional asymmetry in carotid sinus cardiac reflexes in humans. Eur J Appl Physiol Occup Physiol 60: 402‐405, 1990.
 527.Takeshita A, Mark AL, Eckberg DL, Abboud FM. Effect of central venous pressure on arterial baroreflex control of heart rate. Am J Physiol 236: H42‐H47, 1979.
 528.Takigawa M, Mogenson GJ. A study of inputs to antidromically identified neurons of the locus coeruleus. Brain Res 135: 217‐230, 1977.
 529.Tan KS, Nackley AG, Satterfield K, Maixner W, Diatchenko L, Flood PM. Beta2 adrenergic receptor activation stimulates pro‐inflammatory cytokine production in macrophages via PKA‐ and NF‐kappaB‐independent mechanisms. Cell Signal 19: 251‐260, 2007.
 530.Tang GJ, Kou YR, Lin YS. Peripheral neural modulation of endotoxin‐induced hyperventilation. Crit Care Med 26: 1558‐1563, 1998.
 531.Tank J, Jordan J, Diedrich A, Stoffels M, Franke G, Faulhaber HD, Luft FC, Busjahn A. Genetic influences on baroreflex function in normal twins. Hypertension 37: 907‐910, 2001.
 532.Tatar M, Webber SE, Widdicombe JG. Lung C‐fibre receptor activation and defensive reflexes in anaesthetized cats. J Physiol 402: 411‐420, 1988.
 533.Taylor CE, Atkinson G, Willie CK, Jones H, Ainslie PN, Tzeng YC. Diurnal variation in the mechanical and neural components of the baroreflex. Hypertension (Dallas, Tex: 1979) 58: 51‐56, 2011.
 534.Taylor RF, Lee LY, Jewell LA, Frazier DT. Effect of nicotine aerosol on slowly adapting receptors in the airways of the dog. J Neurosci Res 15: 583‐593, 1986.
 535.Tchivileva IE, Tan KS, Gambarian M, Nackley AG, Medvedev AV, Romanov S, Flood PM, Maixner W, Makarov SS, Diatchenko L. Signaling pathways mediating beta3‐adrenergic receptor‐induced production of interleukin‐6 in adipocytes. Mol Immunol 46: 2256‐2266, 2009.
 536.Tecce JJ. Contingent negative variation (CNV) and psychological processes in man. Psychol Bull 77: 73‐108, 1972.
 537.Terreberry RR, Neafsey EJ. Rat medial frontal cortex: A visceral motor region with a direct projection to the solitary nucleus. Brain Res 278: 245‐249, 1983.
 538.Thieme K, Meller T, Evermann U, Malinowski R, Mathys M, Gracely RH, Maixner W, Turk DC. Efficacy of systolic extinction training (SET) in fibromyalgia patients with elevated blood pressure response to stress—A tailored RCT study. Arthritis Care Res (Hoboken), 2018. DOI: 10.1002/acr.23615.
 539.Thies R, Foreman RD. Descending inhibition of spinal neurons in the cardiopulmonary region by electrical stimulation of vagal afferent nerves. Brain Res 207: 178‐183, 1981.
 540.Thies R, Foreman RD. Inhibition and excitation of thoracic spinoreticular neurons by electrical stimulation of vagal afferent nerves. Exp Neurol 82: 1‐16, 1983.
 541.Thoren P, Andresen MC, Brown AM. Effects of changes in extracellular ionic concentrations on aortic baroreceptors with nonmyelinated afferent fibers. Circ Res 50: 413‐418, 1982.
 542.Thoren PN. Characteristics of left ventricular receptors with nonmedullated vagal afferents in cats. Circ Res 40: 415‐421, 1977.
 543.Thoren PN, Donald DE, Shepherd JT. Role of heart and lung receptors with nonmedullated vagal afferents in circulatory control. Circ Res 38: 2‐9, 1976.
 544.Thrasher TN. Baroreceptors, baroreceptor unloading, and the long‐term control of blood pressure. Am J Physiol Regul Integr Comp Physiol 288: R819‐R827, 2005.
 545.Thurston CL, Randich A. Acute increases in arterial blood pressure produced by occlusion of the abdominal aorta induces antinociception: Peripheral and central substrates. Brain Res 519: 12‐22, 1990.
 546.Thurston CL, Randich A. Effects of vagal afferent stimulation on ON and OFF cells in the rostroventral medulla: Relationships to nociception and arterial blood pressure. J Neurophysiol 67: 180‐196, 1992.
 547.Thurston CL, Randich A. Responses of on and off cells in the rostral ventral medulla to stimulation of vagal afferents and changes in mean arterial blood pressure in intact and cardiopulmonary deafferented rats. Pain 62: 19‐38, 1995.
 548.Tochikubo O, Kawano Y, Miyajima E, Toshihiro N, Ishii M. Circadian variation of hemodynamics and baroreflex functions in patients with essential hypertension. Hypertens Res 20: 157‐166, 1997.
 549.Tracey KJ. The inflammatory reflex. Nature 420: 853‐859, 2002.
 550.Tracey KJ. Reflex control of immunity. Nat Rev Immunol 9: 418‐428, 2009.
 551.Tracy LM, Ioannou L, Baker KS, Gibson SJ, Georgiou‐Karistianis N, Giummarra MJ. Meta‐analytic evidence for decreased heart rate variability in chronic pain implicating parasympathetic nervous system dysregulation. Pain 157: 7‐29, 2016.
 552.Trimboli M, Al‐Kaisy A, Andreou AP, Murphy M, Lambru G. Non‐invasive vagus nerve stimulation for the management of refractory primary chronic headaches: A real‐world experience. Cephalalgia, 2017. DOI: 10.1177/0333102417731349.
 553.Ulleryd MA, Prahl U, Borsbo J, Schmidt C, Nilsson S, Bergstrom G, Johansson ME. The association between autonomic dysfunction, inflammation and atherosclerosis in men under investigation for carotid plaques. PLoS One 12: e0174974, 2017.
 554.van Maanen MA, Stoof SP, Larosa GJ, Vervoordeldonk MJ, Tak PP. Role of the cholinergic nervous system in rheumatoid arthritis: Aggravation of arthritis in nicotinic acetylcholine receptor alpha7 subunit gene knockout mice. Ann Rheum Dis 69: 1717‐1723, 2010.
 555.Van Zomeren AH, Brouwer WH. Clinical Neuropsychology of Attention. New York: Oxford University Press, 1994.
 556.Vasudev A, Saxby BK, O'Brien JT, Colloby SJ, Firbank MJ, Brooker H, Wesnes K, Thomas AJ. Relationship between cognition, magnetic resonance white matter hyperintensities, and cardiovascular autonomic changes in late‐life depression. Am J Geriatr Psychiatry 20: 691‐699, 2012.
 557.Vatner SF, Boettcher DH, Heyndrickx GR, McRitchie RJ. Reduced baroreflex sensitivity with volume loading in conscious dogs. Circ Res 37: 236‐242, 1975.
 558.Vatner SF, Franklin D, Van Citters RL, Braunwald E. Effects of carotid sinus nerve stimulation on blood‐flow distribution in conscious dogs at rest and during exercise. Circ Res 27: 495‐503, 1970.
 559.Veelken R, Hilgers KF, Ditting T, Fierlbeck W, Geiger H, Schmieder RE. Subthreshold stimulation of a serotonin 5‐HT3 reflex attenuates cardiovascular reflexes. Am J Physiol 271: R1500‐R1506, 1996.
 560.Veelken R, Leonard M, Stetter A, Hilgers KF, Mann JF, Reeh PW, Geiger H, Luft FC. Pulmonary serotonin 5‐HT3‐sensitive afferent fibers modulate renal sympathetic nerve activity in rats. Am J Physiol 272: H979‐H986, 1997.
 561.Verberne AJ. Medullary sympathoexcitatory neurons are inhibited by activation of the medial prefrontal cortex in the rat. Am J Physiol 270: R713‐R719, 1996.
 562.Verberne AJ, Lewis SJ, Worland PJ, Beart PM, Jarrott B, Christie MJ, Louis WJ. Medial prefrontal cortical lesions modulate baroreflex sensitivity in the rat. Brain Res 426: 243‐249, 1987.
 563.von Bezold A, Hirt L. Uber die physiologischen wirkungen des essigsauren veratrins. Untersuchungen aus dem physiologischen laboratorium Wurzburg 1: 75‐156, 1867.
 564.von Cyon E, Ludwig C. Die Reflexe eines der sensiblen Nerven des Herzens auf die motorischen der Blutgefässe. Arbeiten aus der Physiologischen Anstalt zu Leipzig 1: 128‐149, 1866.
 565.Waldstein SR, Brown JR, Maier KJ, Katzel LI. Diagnosis of hypertension and high blood pressure levels negatively affect cognitive function in older adults. Ann Behav Med 29: 174‐180, 2005.
 566.Waldstein SR, Giggey PP, Thayer JF, Zonderman AB. Nonlinear relations of blood pressure to cognitive function: The Baltimore Longitudinal Study of Aging. Hypertension 45: 374‐379, 2005.
 567.Waldstein SR, Ryan CM, Manuck SB, Parkinson DK, Bromet EJ. Learning and memory function in men with untreated blood pressure elevation. J Consult Clin Psychol 59: 513‐517, 1991.
 568.Walgenbach SC, Donald DE. Inhibition by carotid baroreflex of exercise‐induced increases in arterial pressure. Circ Res 52: 253‐262, 1983.
 569.Walker BB, Sandman CA. Visual evoked potentials change as heart rate and carotid pressure change. Psychophysiology 19: 520‐527, 1982.
 570.Wallin BG, Esler M, Dorward P, Eisenhofer G, Ferrier C, Westerman R, Jennings G. Simultaneous measurements of cardiac noradrenaline spillover and sympathetic outflow to skeletal muscle in humans. J Physiol 453: 45‐58, 1992.
 571.Walter WG, Cooper R, Aldridge VJ, McCallum WC, Winter AL. Contingent negative variation: An electric sign of sensorimotor association and expectancy in the human brain. Nature 203: 380‐384, 1964.
 572.Wang CY, Wu YM, Xiao L, Xue HM, Wang R, Wang FW, He RR. Ginkgolide B inhibits carotid sinus baroreflex in anesthetized male rats. Sheng Li Xue Bao 60: 17‐22, 2008.
 573.Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al‐Abed Y, Czura CJ, Tracey KJ. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421: 384‐388, 2003.
 574.Wang S, Fan ZZ, He RR. 17beta‐estradiol inhibits carotid sinus baroreflex in male rats. Sheng Li Xue Bao 52: 445‐449, 2000.
 575.Watkins L, Sherwood A, Goldstein DS, Maixner W. Mechanisms underlying cardiovascular defense reaction evoked by dorsal periaqueductal gray stimulation. Am J Physiol 265: R1155‐R1161, 1993.
 576.Weber F, Dan Y. Circuit‐based interrogation of sleep control. Nature 538: 51‐59, 2016.
 577.Weidler C, Holzer C, Harbuz M, Hofbauer R, Angele P, Scholmerich J, Straub RH. Low density of sympathetic nerve fibres and increased density of brain derived neurotrophic factor positive cells in RA synovium. Ann Rheum Dis 64: 13‐20, 2005.
 578.Weinstock M, Schorer‐Apelbaum D, Rosin AJ. Endogenous opiates mediate cardiac sympathetic inhibition in response to a pressor stimulus in rabbits. J Hypertens 2: 639‐646, 1984.
 579.Weisz J, Ádám G. The influence of cardiac phase on reaction time depending on heart period length and on stimulus and response laterality. Psychobiology 24: 169‐175, 1996.
 580.Weisz N, Schandry R, Jacobs AM, Mialet JP, Duschek S. Early contingent negative variation of the EEG and attentional flexibility are reduced in hypotension. Int J Psychophysiol 45: 253‐260, 2002.
 581.Widdicombe J. Lung afferent activity: Implications for respiratory sensation. Respir Physiol Neurobiol 167: 2‐8, 2009.
 582.Willemze RA, Welting O, van Hamersveld HP, Meijer SL, Folgering JHA, Darwinkel H, Witherington J, Sridhar A, Vervoordeldonk MJ, Seppen J, de Jonge WJ. Neuronal control of experimental colitis occurs via sympathetic intestinal innervation. Neurogastroenterol Motil 30(3), 2018. DOI: 10.1111/nmo.13163 (Epub 2017 Jul 26. electronic publication, 13 pages).
 583.Willemze RA, Welting O, van Hamersveld P, Verseijden C, Nijhuis LE, Hilbers FW, Meijer SL, Heesters BA, Folgering JHA, Darwinkel H, Blancou P, Vervoordeldonk MJ, Seppen J, Heinsbroek SEM, de Jonge WJ. Loss of intestinal sympathetic innervation elicits an innate immune driven colitis. Mol Med 25: 1, 2019.
 584.Williams CL, McGaugh JL. Reversible lesions of the nucleus of the solitary tract attenuate the memory‐modulating effects of posttraining epinephrine. Behav Neurosci 107: 955‐962, 1993.
 585.Williams FMK, Scollen S, Cao D, Memari Y, Hyde CL, Zhang B, Sidders B, Ziemek D, Shi Y, Harris J, Harrow I, Dougherty B, Malarstig A, McEwen R, Stephens JC, Patel K, Menni C, Shin S‐Y, Hodgkiss D, Surdulescu G, He W, Jin X, McMahon SB, Soranzo N, John S, Wang J, Spector TD. Genes contributing to pain sensitivity in the normal population: An exome sequencing study. PLoS Genet 8: e1003095, 2012.
 586.Wilson DC, Watson RF. Narcolepsy: With special reference to the carotid sinus reflex. South Med J 27: 754‐759, 1934.
 587.Winning AJ, Hamilton RD, Shea SA, Guz A. Respiratory and cardiovascular effects of central and peripheral intravenous injections of capsaicin in man: Evidence for pulmonary chemosensitivity. Clin Sci (Lond) 71: 519‐526, 1986.
 588.Wu YM, He RR. Bradykinin inhibits carotid sinus baroreflex in anesthetized rats. Sheng Li Xue Bao 51: 303‐309, 1999.
 589.Xiong J, Wang H, Bao Y, Guo Y, Sun Y. Electric vagal nerve stimulation inhibits inflammation and improves early postoperation cognitive dysfunction in aged rats. BMC Anesthesiol 19: 217‐217, 2019.
 590.Xiong XJ, Liu W, Yang XC, Feng B, Zhang YQ, Li SJ, Li XK, Wang J. Ginkgo biloba extract for essential hypertension: A systemic review. Phytomedicine 21: 1131‐1136, 2014.
 591.Xu YF, He RR. Effect of moxonidine on carotid sinus baroreflex in anesthetized rats. Zhongguo Yao Li Xue Bao 20: 604‐608, 1999.
 592.Yagi Y, Coburn KL, Estes KM, Arruda JE. Effects of aerobic exercise and gender on visual and auditory P300, reaction time, and accuracy. Eur J Appl Physiol Occup Physiol 80: 402‐408, 1999.
 593.Yang G, Paschos G, Curtis AM, Musiek ES, McLoughlin SC, FitzGerald GA. Knitting up the raveled sleave of care. Sci Transl Med 5: 212rv213, 2013.
 594.Yang J, Wang WZ, Shen FM, Su DF. Cardiovascular effects of agmatine within the rostral ventrolateral medulla are similar to those of clonidine in anesthetized rats. Exp Brain Res 160: 467‐472, 2005.
 595.Yantis S. The neural basis of selective attention: Cortical sources and targets of attentional modulation. Curr Dir Psychol Sci 17: 86‐90, 2008.
 596.Yarnitsky D. Conditioned pain modulation (the diffuse noxious inhibitory control‐like effect): Its relevance for acute and chronic pain states. Curr Opin Anaesthesiol 23: 611‐615, 2010.
 597.Yasumasu T, Reyes Del Paso GA, Takahara K, Nakashima Y. Reduced baroreflex cardiac sensitivity predicts increased cognitive performance. Psychophysiology 43: 41‐45, 2006.
 598.Yoshida T, Harasawa Y, Kubota T, Chishaki H, Kubo T, Sunagawa K, Takeshita A. Role of carotid sinus baroreflex in attenuating systemic arterial pressure variability studied in anesthetized dogs. Am J Physiol 266: H720‐H729, 1994.
 599.Yoshiga C, Dawson EA, Volianitis S, Warberg J, Secher NH. Cardiac output during exercise is related to plasma atrial natriuretic peptide but not to central venous pressure in humans. Exp Physiol 104: 379‐384, 2019.
 600.Yoshioka M. Effect of a novel 5‐hydroxytryptamine3‐antagonist, GR38032F, on the 5‐hydroxytryptamine‐induced increase in carotid sinus nerve activity in rats. J Pharmacol Exp Ther 250: 637‐641, 1989.
 601.Yuan H, Silberstein SD. Vagus nerve and vagus nerve stimulation, a comprehensive review: Part I. Headache 56: 71‐78, 2016.
 602.Yuan H, Silberstein SD. Vagus nerve and vagus nerve stimulation, a comprehensive review: Part III. Headache 56: 479‐490, 2016.
 603.Zamir N, Maixner W. The relationship between cardiovascular and pain regulatory systems. Ann NY Acad Sci 467: 371‐384, 1986.
 604.Zamir N, Segal M. Hypertension‐induced analgesia: Changes in pain sensitivity in experimental hypertensive rats. Brain Res 160: 170‐173, 1979.
 605.Zamir N, Segal M, Simantov R. Opiate receptor binding in the brain of the hypertensive rat. Brain Res 213: 217‐222, 1981.
 606.Zamir N, Shuber E. Altered pain perception in hypertensive humans. Brain Res 201: 471‐474, 1980.
 607.Zamir N, Simantov R, Segal M. Pain sensitivity and opioid activity in genetically and experimentally hypertensive rats. Brain Res 184: 299‐310, 1980.
 608.Zanchetti A. Reflex and brain stem inhibition of sham rage behaviour. Prog Brain Res 22: 195‐205, 1968.
 609.Zanchetti A, Wang SC, Moruzzi G. The effect of vagal afferent stimulation on the EEG pattern of the cat. Electroencephalogr Clin Neurophysiol 4: 357‐361, 1952.
 610.Zeng W‐Z, Marshall KL, Min S, Daou I, Chapleau MW, Abboud FM, Liberles SD, Patapoutian A. PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Sci (New York, NY) 362: 464‐467, 2018.
 611.Zhang H, Liu YX, Wu YM, Wang ZM, He RR. Capsaicin facilitates carotid sinus baroreceptor activity in anesthetized rats. Acta Pharmacol Sin 25: 1439‐1443, 2004.
 612.Zubieta JK, Heitzeg MM, Smith YR, Bueller JA, Xu K, Xu Y, Koeppe RA, Stohler CS, Goldman D. COMT val158met genotype affects mu‐opioid neurotransmitter responses to a pain stressor. Science 299: 1240‐1243, 2003.
 613.Zucker IH. Left ventricular receptors: Physiological controllers or pathological curiosities? Basic Res Cardiol 81: 539‐557, 1986.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Heberto Suarez‐Roca, Negmeldeen Mamoun, Martin I. Sigurdson, William Maixner. Baroreceptor Modulation of the Cardiovascular System, Pain, Consciousness, and Cognition. Compr Physiol 2021, 11: 1373-1423. doi: 10.1002/cphy.c190038