Comprehensive Physiology Wiley Online Library

Impact of Gut and Metabolic Hormones on Feeding Reward

Full Article on Wiley Online Library



Abstract

Ingestion of food activates a cascade of endocrine responses (thereby reflecting a contemporaneous feeding status) that include the release of hormones from the gastrointestinal (GI) tract, such as cholecystokinin (CCK), glucagonlike peptide YY (PYY), peptide PP, and oleoylethanolamide, as well as suppression of ghrelin secretion. The pancreas and adipose tissue, on the other hand, release hormones that serve as a measure of the current metabolic state or the long‐term energy stores, that is, insulin, leptin, and adiponectin. It is well known and intuitively understandable that these hormones target either directly (by crossing the blood‐brain barrier) or indirectly (e.g., via vagal input) the “homeostatic” brainstem‐hypothalamic pathways involved in the regulation of appetite. The current article focuses on yet another target of the metabolic and GI hormones that is critical in inducing changes in food intake, namely, the reward system. We discuss the physiological basis of this functional interaction, its importance in the control of appetite, and the impact that disruption of this crosstalk has on energy intake in select physiological and pathophysiological states. We conclude that metabolic and GI hormones have a capacity to strengthen or weaken a response of the reward system to a given food, and thus, they are fundamental in ensuring that feeding reward is plastic and dependent on the energy status of the organism. © 2021 American Physiological Society. Compr Physiol 11:1425‐1447, 2021.

Figure 1. Figure 1. Summary representation of key gastrointestinal, pancreatic, and adipose hormones that affect activity of the ventral tegmental area (VTA)‐nucleus accumbens (NAcc) pathway, a key circuit in reward processing. Hormones depicted on the green background can cross the blood‐brain barrier, and therefore, they can act directly at the reward sites, whereas the remaining ones affect the brain via the vagal input or central nervous system (CNS) areas where the blood‐brain barrier is weak. CCK, cholecystokinin; GLP‐1, glucagonlike peptide‐1; OEA, oleoylethanolamide.


Figure 1. Summary representation of key gastrointestinal, pancreatic, and adipose hormones that affect activity of the ventral tegmental area (VTA)‐nucleus accumbens (NAcc) pathway, a key circuit in reward processing. Hormones depicted on the green background can cross the blood‐brain barrier, and therefore, they can act directly at the reward sites, whereas the remaining ones affect the brain via the vagal input or central nervous system (CNS) areas where the blood‐brain barrier is weak. CCK, cholecystokinin; GLP‐1, glucagonlike peptide‐1; OEA, oleoylethanolamide.
References
 1.Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos‐Flier E, Flier JS. Role of leptin in the neuroendocrine response to fasting. Nature 382: 250‐252, 1996.
 2.Akkisi Kumsar N, Dilbaz N. Relationship between craving and ghrelin, adiponectin, and resistin levels in patients with alcoholism. Alcohol Clin Exp Res 39: 702‐709, 2015.
 3.Al Massadi O, Pardo M, Roca‐Rivada A, Castelao C, Casanueva FF, Seoane LM. Macronutrients act directly on the stomach to regulate gastric ghrelin release. J Endocrinol Investig 33: 599‐602, 2010.
 4.Alsio J, Olszewski PK, Levine AS, Schioth HB. Feed‐forward mechanisms: Addiction‐like behavioral and molecular adaptations in overeating. Front Neuroendocrinol 33: 127‐139, 2012.
 5.Al‐Zubaidi A, Heldmann M, Mertins A, Brabant G, Nolde JM, Jauch‐Chara K, Munte TF. Impact of hunger, satiety, and oral glucose on the association between insulin and resting‐state human brain activity. Front Hum Neurosci 13: 162, 2019.
 6.Andiran N, Celik N, Andiran F. Homozygosity for two missense mutations in the leptin receptor gene (P316:W646C) in a Turkmenian girl with severe early‐onset obesity. J Pediatr Endocrinol Metab 24: 1043‐1045, 2011.
 7.Aotani D, Ebihara K, Sawamoto N, Kusakabe T, Aizawa‐Abe M, Kataoka S, Sakai T, Iogawa H, Ebihara C, Fujikura J, Hosoda K, Fukuyama H, Nakao K. Functional magnetic resonance imaging analysis of food‐related brain activity in patients with lipodystrophy undergoing leptin replacement therapy. J Clin Endocrinol Metab 97: 3663‐3671, 2012.
 8.Asakawa A, Inui A, Yuzuriha H, Ueno N, Katsuura G, Fujimiya M, Fujino MA, Niijima A, Meguid MM, Kasuga M. Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology 124: 1325‐1336, 2003.
 9.Aslam M, Madhu SV. Development of metabolic syndrome in high‐sucrose diet fed rats is not associated with decrease in adiponectin levels. Endocrine 58: 59‐65, 2017.
 10.Babcock AM, Livosky M, Avery DD. Cholecystokinin and bombesin suppress operant responding for food reward. Pharmacol Biochem Behav 22: 893‐895, 1985.
 11.Baggio LL, Huang Q, Brown TJ, Drucker DJ. Oxyntomodulin and glucagon‐like peptide‐1 differentially regulate murine food intake and energy expenditure. Gastroenterology 127: 546‐558, 2004.
 12.Bagnasco M, Dube MG, Kalra PS, Kalra SP. Evidence for the existence of distinct central appetite, energy expenditure, and ghrelin stimulation pathways as revealed by hypothalamic site‐specific leptin gene therapy. Endocrinology 143: 4409‐4421, 2002.
 13.Baicy K, London ED, Monterosso J, Wong M‐L, Delibasi T, Sharma A, Licinio J. Leptin replacement alters brain response to food cues in genetically leptin‐deficient adults. Proc Natl Acad Sci 104: 18276‐18279, 2007.
 14.Bailey AR, Giles M, Brown CH, Bull PM, Macdonald LP, Smith LC, Smith RG, Leng G, Dickson SL. Chronic central infusion of growth hormone secretagogues: Effects on fos expression and peptide gene expression in the rat arcuate nucleus. Neuroendocrinology 70: 83‐92, 1999.
 15.Baimel C, Lau BK, Qiao M, Borgland SL. Projection‐target‐defined effects of orexin and dynorphin on VTA dopamine neurons. Cell Rep 18: 1346‐1355, 2017.
 16.Balasubramaniam A, Mullins DE, Lin S, Zhai W, Tao Z, Dhawan VC, Guzzi M, Knittel JJ, Slack K, Herzog H, Parker EM. Neuropeptide Y (NPY) Y4 receptor selective agonists based on NPY(32‐36): Development of an anorectic Y4 receptor selective agonist with picomolar affinity. J Med Chem 49: 2661‐2665, 2006.
 17.Banks WA, Kastin AJ, Jaspan JB. Regional variation in transport of pancreatic polypeptide across the blood‐brain barrier of mice. Pharmacol Biochem Behav 51: 139‐147, 1995.
 18.Banks WA, Tschop M, Robinson SM, Heiman ML. Extent and direction of ghrelin transport across the blood‐brain barrier is determined by its unique primary structure. J Pharmacol Exp Ther 302: 822‐827, 2002.
 19.Baraboi ED, Michel C, Smith P, Thibaudeau K, Ferguson AV, Richard D. Effects of albumin‐conjugated PYY on food intake: The respective roles of the circumventricular organs and vagus nerve. Eur J Neurosci 32: 826‐839, 2010.
 20.Bassareo V, Di Chiara G. Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum. J Neurosci 17: 851‐861, 1997.
 21.Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, Ghatei MA, Bloom SR. Inhibition of food intake in obese subjects by peptide YY3‐36. N Engl J Med 349: 941‐948, 2003.
 22.Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE, Low MJ, Ghatei MA, Cone RD, Bloom SR. Gut hormone PYY(3‐36) physiologically inhibits food intake. Nature 418: 650‐654, 2002.
 23.Batterham RL, ffytche DH, Rosenthal JM, Zelaya FO, Barker GJ, Withers DJ, Williams SC. PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans. Nature 450: 106‐109, 2007.
 24.Baxter MG, Murray EA. The amygdala and reward. Nat Rev Neurosci 3: 563‐573, 2002.
 25.Belfort‐DeAguiar R, Seo D, Lacadie C, Naik S, Schmidt C, Lam W, Hwang J, Constable T, Sinha R, Sherwin RS. Humans with obesity have disordered brain responses to food images during physiological hyperglycemia. Am J Physiol Endocrinol Metab 314: E522‐E529, 2018.
 26.Bell GA, Fadool DA. Awake, long‐term intranasal insulin treatment does not affect object memory, odor discrimination, or reversal learning in mice. Physiol Behav 174: 104‐113, 2017.
 27.Benedict C, Brooks SJ, O'Daly OG, Almen MS, Morell A, Aberg K, Gingnell M, Schultes B, Hallschmid M, Broman JE, Larsson EM, Schioth HB. Acute sleep deprivation enhances the brain's response to hedonic food stimuli: An fMRI study. J Clin Endocrinol Metab 97: E443‐E447, 2012.
 28.Benoit SC, Air EL, Coolen LM, Strauss R, Jackman A, Clegg DJ, Seeley RJ, Woods SC. The catabolic action of insulin in the brain is mediated by melanocortins. J Neurosci 22: 9048‐9052, 2002.
 29.Berner LA, Brown TA, Lavender JM, Lopez E, Wierenga CE, Kaye WH. Neuroendocrinology of reward in anorexia nervosa and bulimia nervosa: Beyond leptin and ghrelin. Mol Cell Endocrinol 497: 110320, 2019.
 30.Berntson GG, Zipf WB, O'Dorisio TM, Hoffman JA, Chance RE. Pancreatic polypeptide infusions reduce food intake in Prader‐Willi syndrome. Peptides 14: 497‐503, 1993.
 31.Berridge KC, Ho CY, Richard JM, DiFeliceantonio AG. The tempted brain eats: Pleasure and desire circuits in obesity and eating disorders. Brain Res 1350: 43‐64, 2010.
 32.Berridge KC, Kringelbach ML. Pleasure systems in the brain. Neuron 86: 646‐664, 2015.
 33.Berridge KC, Robinson TE. What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28: 309‐369, 1998.
 34.Bhavsar S, Watkins J, Young A. Synergy between amylin and cholecystokinin for inhibition of food intake in mice. Physiol Behav 64: 557‐561, 1998.
 35.Bilbao A, Serrano A, Cippitelli A, Pavon FJ, Giuffrida A, Suarez J, Garcia‐Marchena N, Baixeras E, Gomez de Heras R, Orio L, Alen F, Ciccocioppo R, Cravatt BF, Parsons LH, Piomelli D, Rodriguez de Fonseca F. Role of the satiety factor oleoylethanolamide in alcoholism. Addict Biol 21: 859‐872, 2016.
 36.Bjursell M, Ahnmark A, Bohlooly YM, William‐Olsson L, Rhedin M, Peng XR, Ploj K, Gerdin AK, Arnerup G, Elmgren A, Berg AL, Oscarsson J, Linden D. Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes 56: 583‐593, 2007.
 37.Blevins JE, Thompson BW, Anekonda VT, Ho JM, Graham JL, Roberts ZS, Hwang BH, Ogimoto K, Wolden‐Hanson TH, Nelson J, Kaiyala KJ, Havel PJ, Bales KL, Morton GJ, Schwartz MW, Baskin DG. Chronic CNS oxytocin signaling preferentially induces fat loss in high fat diet‐fed rats by enhancing satiety responses and increasing lipid utilization. Am J Phys Regul Integr Comp Phys 310: R640‐R658, 2016.
 38.Boehm I, Flohr L, Steding J, Holzapfel L, Seitz J, Roessner V, Ehrlich S. The trajectory of anhedonic and depressive symptoms in anorexia nervosa: A longitudinal and cross‐sectional approach. Eur Eat Disord Rev 26: 69‐74, 2018.
 39.Boggiano MM, Chandler PC, Oswald KD, Rodgers RJ, Blundell JE, Ishii Y, Beattie AH, Holch P, Allison DB, Schindler M, Arndt K, Rudolf K, Mark M, Schoelch C, Joost HG, Klaus S, Thone‐Reineke C, Benoit SC, Seeley RJ, Beck‐Sickinger AG, Koglin N, Raun K, Madsen K, Wulff BS, Stidsen CE, Birringer M, Kreuzer OJ, Deng XY, Whitcomb DC, Halem H, Taylor J, Dong J, Datta R, Culler M, Ortmann S, Castaneda TR, Tschop M. PYY3‐36 as an anti‐obesity drug target. Obes Rev 6: 307‐322, 2005.
 40.Bojanowska E, Stempniak B. Effects of centrally or systemically injected glucagon‐like peptide‐1 (7‐36) amide on release of neurohypophysial hormones and blood pressure in the rat. Regul Pept 91: 75‐81, 2000.
 41.Bomberg EM, Grace MK, Wirth MM, Levine AS, Olszewski PK. Central ghrelin induces feeding driven by energy needs not by reward. Neuroreport 18: 591‐595, 2007.
 42.Bornebusch AB, Fink‐Jensen A, Wortwein G, Seeley RJ, Thomsen M. Glucagon‐like peptide‐1 receptor agonist treatment does not reduce abuse‐related effects of opioid drugs. eNeuro 6 1‐12, 2019.
 43.Bouhlal S, Ellefsen KN, Sheskier MB, Singley E, Pirard S, Gorelick DA, Huestis MA, Leggio L. Acute effects of intravenous cocaine administration on serum concentrations of ghrelin, amylin, glucagon‐like peptide‐1, insulin, leptin and peptide YY and relationships with cardiorespiratory and subjective responses. Drug Alcohol Depend 180: 68‐75, 2017.
 44.Bower RL, Hay DL. Amylin structure‐function relationships and receptor pharmacology: Implications for amylin mimetic drug development. Br J Pharmacol 173: 1883‐1898, 2016.
 45.Boyle CN, Lutz TA, Le Foll C. Amylin—Its role in the homeostatic and hedonic control of eating and recent developments of amylin analogs to treat obesity. Mol Metab 8: 203‐210, 2018.
 46.Brenner L, Ritter RC. Peptide cholecystokinin receptor antagonist increases food intake in rats. Appetite 24: 1‐9, 1995.
 47.Brown HD, McCutcheon JE, Cone JJ, Ragozzino ME, Roitman MF. Primary food reward and reward‐predictive stimuli evoke different patterns of phasic dopamine signaling throughout the striatum. Eur J Neurosci 34: 1997‐2006, 2011.
 48.Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Muller‐Wieland D, Kahn CR. Role of brain insulin receptor in control of body weight and reproduction. Science 289: 2122‐2125, 2000.
 49.Brunner YF, Benedict C, Freiherr J. Intranasal insulin reduces olfactory sensitivity in normosmic humans. J Clin Endocrinol Metab 98: E1626‐E1630, 2013.
 50.Buffa R, Solcia E, Go VL. Immunohistochemical identification of the cholecystokinin cell in the intestinal mucosa. Gastroenterology 70: 528‐532, 1976.
 51.Burton‐Freeman B, Davis PA, Schneeman BO. Plasma cholecystokinin is associated with subjective measures of satiety in women. Am J Clin Nutr 76: 659‐667, 2002.
 52.Burton‐Freeman B, Davis PA, Schneeman BO. Interaction of fat availability and sex on postprandial satiety and cholecystokinin after mixed‐food meals. Am J Clin Nutr 80: 1207‐1214, 2004.
 53.Cameron JD, Chaput JP, Sjodin AM, Goldfield GS. Brain on fire: Incentive salience, hedonic hot spots, dopamine, obesity, and other hunger games. Annu Rev Nutr 37: 183‐205, 2017.
 54.Campbell RE, Smith MS, Allen SE, Grayson BE, Ffrench‐Mullen JM, Grove KL. Orexin neurons express a functional pancreatic polypeptide Y4 receptor. J Neurosci 23: 1487‐1497, 2003.
 55.Carr KD. Feeding, drug abuse, and the sensitization of reward by metabolic need. Neurochem Res 21: 1455‐1467, 1996.
 56.Carr KD. Augmentation of drug reward by chronic food restriction: Behavioral evidence and underlying mechanisms. Physiol Behav 76: 353‐364, 2002.
 57.Carr KD, Kim G, Cabeza de Vaca S. Hypoinsulinemia may mediate the lowering of self‐stimulation thresholds by food restriction and streptozotocin‐induced diabetes. Brain Res 863: 160‐168, 2000.
 58.Carroll ME, Meisch RA. Increased drug‐reinforced behavior due to food deprivation. In: Thompson T, Dews PB, Barrett JE editors. Advances in Behavioral Pharmacology. Elsevier: New York, 1984, p. 47‐88.
 59.Carson DS, Hunt GE, Guastella AJ, Barber L, Cornish JL, Arnold JC, Boucher AA, McGregor IS. Systemically administered oxytocin decreases methamphetamine activation of the subthalamic nucleus and accumbens core and stimulates oxytocinergic neurons in the hypothalamus. Addict Biol 15: 448‐463, 2010.
 60.Castillo EJ, Delgado‐Aros S, Camilleri M, Burton D, Stephens D, O'Connor‐Semmes R, Walker A, Shachoy‐Clark A, Zinsmeister AR. Effect of oral CCK‐1 agonist GI181771X on fasting and postprandial gastric functions in healthy volunteers. Am J Physiol Gastrointest Liver Physiol 287: G363‐G369, 2004.
 61.Castro DC, Berridge KC. Opioid and orexin hedonic hotspots in rat orbitofrontal cortex and insula. Proc Natl Acad Sci U S A 114: E9125‐E9134, 2017.
 62.Coester B, Pence SW, Arrigoni S, Boyle CN, Le Foll C, Lutz TA. RAMP1 and RAMP3 differentially control Amylin's effects on food intake, glucose and energy balance in male and female mice. Neuroscience, (19): 30826‐7, 2019.
 63.Cohen MA, Ellis SM, Le Roux CW, Batterham RL, Park A, Patterson M, Frost GS, Ghatei MA, Bloom SR. Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab 88: 4696‐4701, 2003.
 64.Covasa M, Ritter RC. Attenuated satiation response to intestinal nutrients in rats that do not express CCK‐A receptors. Peptides 22: 1339‐1348, 2001.
 65.Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL, Cone RD, Low MJ. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411: 480‐484, 2001.
 66.Cummings DE, Overduin J. Gastrointestinal regulation of food intake. J Clin Invest 117: 13‐23, 2007.
 67.Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50: 1714‐1719, 2001.
 68.Dakin CL, Gunn I, Small CJ, Edwards CM, Hay DL, Smith DM, Ghatei MA, Bloom SR. Oxyntomodulin inhibits food intake in the rat. Endocrinology 142: 4244‐4250, 2001.
 69.Dakin CL, Small CJ, Batterham RL, Neary NM, Cohen MA, Patterson M, Ghatei MA, Bloom SR. Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology 145: 2687‐2695, 2004.
 70.Davis C, Fox J. Sensitivity to reward and body mass index (BMI): Evidence for a non‐linear relationship. Appetite 50: 43‐49, 2008.
 71.Davis JD, Smith GP. Analysis of the microstructure of the rhythmic tongue movements of rats ingesting maltose and sucrose solutions. Behav Neurosci 106: 217, 1992.
 72.Davis JF, Choi DL, Schurdak JD, Fitzgerald MF, Clegg DJ, Lipton JW, Figlewicz DP, Benoit SC. Leptin regulates energy balance and motivation through action at distinct neural circuits. Biol Psychiatry 69: 668‐674, 2011.
 73.De Giorgio R, Stanghellini V, Ricci Maccarini M, Morselli‐Labate AM, Barbara G, Franzoso L, Rovati LC, Corinaldesi R, Barbara L, Go VL. Effects of dietary fat on postprandial gastrointestinal motility are inhibited by a cholecystokinin type A receptor antagonist. Ann N Y Acad Sci 713: 226‐231, 1994.
 74.De Jonghe BC, Hajnal A, Covasa M. Increased oral and decreased intestinal sensitivity to sucrose in obese, prediabetic CCK‐A receptor‐deficient OLETF rats. Am J Phys Regul Integr Comp Phys 288: R292‐R300, 2005.
 75.de Krom M, Hendriks J, Hillebrand J, van Elburg A, Adan R. A polymorphism in the 3′ untranslated region of the CCK gene is associated with anorexia nervosa in Dutch patients. Psychiatr Genet 16: 239, 2006.
 76.De Silva A, Salem V, Long CJ, Makwana A, Newbould RD, Rabiner EA, Ghatei MA, Bloom SR, Matthews PM, Beaver JD, Dhillo WS. The gut hormones PYY 3‐36 and GLP‐1 7‐36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab 14: 700‐706, 2011.
 77.Decarie‐Spain L, Fisette A, Zhu Z, Yang B, DiMarchi RD, Tschop MH, Finan B, Fulton S, Clemmensen C. GLP‐1/dexamethasone inhibits food reward without inducing mood and memory deficits in mice. Neuropharmacology 151: 55‐63, 2019.
 78.Del Campo AM, Dowson J, Herbert J, Paykel E. Effects of naloxone on diurnal rhythms in mood and endocrine function: A dose‐response study in man. Psychopharmacology 114: 583‐590, 1994.
 79.Dickson SL, Shirazi RH, Hansson C, Bergquist F, Nissbrandt H, Skibicka KP. The glucagon‐like peptide 1 (GLP‐1) analogue, exendin‐4, decreases the rewarding value of food: A new role for mesolimbic GLP‐1 receptors. J Neurosci 32: 4812‐4820, 2012.
 80.Diep TA, Madsen AN, Krogh‐Hansen S, Al‐Shahwani M, Al‐Sabagh L, Holst B, Hansen HS. Dietary non‐esterified oleic acid decreases the jejunal levels of anorectic N‐acylethanolamines. PLoS One 9: e100365, 2014.
 81.Disse E, Bussier AL, Veyrat‐Durebex C, Deblon N, Pfluger PT, Tschop MH, Laville M, Rohner‐Jeanrenaud F. Peripheral ghrelin enhances sweet taste food consumption and preference, regardless of its caloric content. Physiol Behav 101: 277‐281, 2010.
 82.Dockray GJ. Cholecystokinin. Curr Opin Endocrinol Diabetes Obes 19: 8‐12, 2012.
 83.Domingos AI, Vaynshteyn J, Voss HU, Ren X, Gradinaru V, Zang F, Deisseroth K, de Araujo IE, Friedman J. Leptin regulates the reward value of nutrient. Nat Neurosci 14: 1562‐1568, 2011.
 84.Dorton HM, Luo S, Monterosso JR, Page KA. Influences of dietary added sugar consumption on striatal food‐cue reactivity and postprandial GLP‐1 response. Front Psychiatry 8: 297, 2017.
 85.Drummen M, Dorenbos E, Vreugdenhil ACE, Raben A, Westerterp‐Plantenga MS, Adam TC. Insulin resistance, weight, and behavioral variables as determinants of brain reactivity to food cues: A prevention of diabetes through lifestyle intervention and population studies in Europe and around the World ‐ a PREVIEW study. Am J Clin Nutr 109: 315‐321, 2019.
 86.Dufresne M, Seva C, Fourmy D. Cholecystokinin and gastrin receptors. Physiol Rev 86: 805‐847, 2006.
 87.Egecioglu E, Engel JA, Jerlhag E. The glucagon‐like peptide 1 analogue Exendin‐4 attenuates the nicotine‐induced locomotor stimulation, accumbal dopamine release, conditioned place preference as well as the expression of locomotor sensitization in mice. PLoS One 8: e77284, 2013.
 88.Egecioglu E, Engel JA, Jerlhag E. The glucagon‐like peptide 1 analogue, exendin‐4, attenuates the rewarding properties of psychostimulant drugs in mice. PLoS One 8: e69010, 2013.
 89.Egecioglu E, Steensland P, Fredriksson I, Feltmann K, Engel JA, Jerlhag E. The glucagon‐like peptide 1 analogue Exendin‐4 attenuates alcohol mediated behaviors in rodents. Psychoneuroendocrinology 38: 1259‐1270, 2013.
 90.Eldeghaidy S, Marciani L, Hort J, Hollowood T, Singh G, Bush D, Foster T, Taylor AJ, Busch J, Spiller RC, Gowland PA, Francis ST. Prior consumption of a fat meal in healthy adults modulates the brain's response to fat. J Nutr 146: 2187‐2198, 2016.
 91.Elmquist JK, Bjørbæk C, Ahima RS, Flier JS, Saper CB. Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol 395: 535‐547, 1998.
 92.Engel JA, Nylander I, Jerlhag E. A ghrelin receptor (GHS‐R1A) antagonist attenuates the rewarding properties of morphine and increases opioid peptide levels in reward areas in mice. Eur Neuropsychopharmacol 25: 2364‐2371, 2015.
 93.Farokhnia M, Grodin EN, Lee MR, Oot EN, Blackburn AN, Stangl BL, Schwandt ML, Farinelli LA, Momenan R, Ramchandani VA, Leggio L. Exogenous ghrelin administration increases alcohol self‐administration and modulates brain functional activity in heavy‐drinking alcohol‐dependent individuals. Mol Psychiatry 23: 2029‐2038, 2018.
 94.Farooqi IS, Bullmore E, Keogh J, Gillard J, O'Rahilly S, Fletcher PC. Leptin regulates striatal regions and human eating behavior. Science 317: 1355, 2007.
 95.Farooqi IS, Wangensteen T, Collins S, Kimber W, Matarese G, Keogh JM, Lank E, Bottomley B, Lopez‐Fernandez J, Ferraz‐Amaro I, Dattani MT, Ercan O, Myhre AG, Retterstol L, Stanhope R, Edge JA, McKenzie S, Lessan N, Ghodsi M, De Rosa V, Perna F, Fontana S, Barroso I, Undlien DE, O'Rahilly S. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med 356: 237‐247, 2007.
 96.Farr OM, Fiorenza C, Papageorgiou P, Brinkoetter M, Ziemke F, Koo BB, Rojas R, Mantzoros CS. Leptin therapy alters appetite and neural responses to food stimuli in brain areas of leptin‐sensitive subjects without altering brain structure. J Clin Endocrinol Metab 99: E2529‐E2538, 2014.
 97.Farr OM, Sofopoulos M, Tsoukas MA, Dincer F, Thakkar B, Sahin‐Efe A, Filippaios A, Bowers J, Srnka A, Gavrieli A, Ko BJ, Liakou C, Kanyuch N, Tseleni‐Balafouta S, Mantzoros CS. GLP‐1 receptors exist in the parietal cortex, hypothalamus and medulla of human brains and the GLP‐1 analogue liraglutide alters brain activity related to highly desirable food cues in individuals with diabetes: A crossover, randomised, placebo‐controlled trial. Diabetologia 59: 954‐965, 2016.
 98.Feinle‐Bisset C, Patterson M, Ghatei MA, Bloom SR, Horowitz M. Fat digestion is required for suppression of ghrelin and stimulation of peptide YY and pancreatic polypeptide secretion by intraduodenal lipid. Am J Physiol Endocrinol Metab 289: E948‐E953, 2005.
 99.Figlewicz D, Evans S, Murphy J, Hoen M, Baskin D. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res 964: 107‐115, 2003.
 100.Figlewicz DP, Bennett J, Evans SB, Kaiyala K, Sipols AJ, Benoit SC. Intraventricular insulin and leptin reverse place preference conditioned with high‐fat diet in rats. Behav Neurosci 118: 479‐487, 2004.
 101.Figlewicz DP, Bennett JL, Aliakbari S, Zavosh A, Sipols AJ. Insulin acts at different CNS sites to decrease acute sucrose intake and sucrose self‐administration in rats. Am J Phys Regul Integr Comp Phys 295: R388‐R394, 2008.
 102.Figlewicz DP, Bennett JL, Naleid AM, Davis C, Grimm JW. Intraventricular insulin and leptin decrease sucrose self‐administration in rats. Physiol Behav 89: 611‐616, 2006.
 103.Figlewicz DP, Higgins MS, Ng‐Evans SB, Havel PJ. Leptin reverses sucrose‐conditioned place preference in food‐restricted rats. Physiol Behav 73: 229‐234, 2001.
 104.Figlewicz DP, Naleid AM, Sipols AJ. Modulation of food reward by adiposity signals. Physiol Behav 91: 473‐478, 2007.
 105.Figlewicz DP, Patterson TA, Johnson LB, Zavosh A, Israel PA, Szot P. Dopamine transporter mRNA is increased in the CNS of Zucker fatty (fa/fa) rats. Brain Res Bull 46: 199‐202, 1998.
 106.Figlewicz DP, Szot P, Chavez M, Woods SC, Veith RC. Intraventricular insulin increases dopamine transporter mRNA in rat VTA/substantia nigra. Brain Res 644: 331‐334, 1994.
 107.Ford HE, Peters V, Martin NM, Sleeth ML, Ghatei MA, Frost GS, Bloom SR. Effects of oral ingestion of sucralose on gut hormone response and appetite in healthy normal‐weight subjects. Eur J Clin Nutr 65: 508‐513, 2011.
 108.Ford SM Jr, Simon L, Vande Stouwe C, Allerton T, Mercante DE, Byerley LO, Dufour JP, Bagby GJ, Nelson S, Molina PE. Chronic binge alcohol administration impairs glucose‐insulin dynamics and decreases adiponectin in asymptomatic simian immunodeficiency virus‐infected macaques. Am J Phys Regul Integr Comp Phys 311: R888‐R897, 2016.
 109.Fraser R, Fone D, Horowitz M, Dent J. Cholecystokinin octapeptide stimulates phasic and tonic pyloric motility in healthy humans. Gut 34: 33‐37, 1993.
 110.Frederich RC, Lollmann B, Hamann A, Napolitano‐Rosen A, Kahn BB, Lowell BB, Flier JS. Expression of ob mRNA and its encoded protein in rodents. Impact of nutrition and obesity. J Clin Invest 96: 1658‐1663, 1995.
 111.Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 395: 763‐770, 1998.
 112.Fu J, Astarita G, Gaetani S, Kim J, Cravatt BF, Mackie K, Piomelli D. Food intake regulates oleoylethanolamide formation and degradation in the proximal small intestine. J Biol Chem 282: 1518‐1528, 2007.
 113.Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodriguez De Fonseca F, Rosengarth A, Luecke H, Di Giacomo B, Tarzia G, Piomelli D. Oleoylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR‐alpha. Nature 425: 90‐93, 2003.
 114.Fu J, Kim J, Oveisi F, Astarita G, Piomelli D. Targeted enhancement of oleoylethanolamide production in proximal small intestine induces across‐meal satiety in rats. Am J Phys Regul Integr Comp Phys 295: R45‐R50, 2008.
 115.Fu J, Oveisi F, Gaetani S, Lin E, Piomelli D. Oleoylethanolamide, an endogenous PPAR‐alpha agonist, lowers body weight and hyperlipidemia in obese rats. Neuropharmacology 48: 1147‐1153, 2005.
 116.Gaetani S, Oveisi F, Piomelli D. Modulation of meal pattern in the rat by the anorexic lipid mediator oleoylethanolamide. Neuropsychopharmacology 28: 1311‐1316, 2003.
 117.Garcia B, Wei Y, Moron J, Lin R, Javitch J, Galli A. Akt is essential for insulin modulation of amphetamine‐induced human dopamine transporter cell‐surface redistribution. Mol Pharmacol 68: 102‐109, 2005.
 118.Geisler S, Wise RA. Functional implications of glutamatergic projections to the ventral tegmental area. Rev Neurosci 19: 227‐244, 2008.
 119.Ghamari‐Langroudi M, Colmers WF, Cone RD. PYY3‐36 inhibits the action potential firing activity of POMC neurons of arcuate nucleus through postsynaptic Y2 receptors. Cell Metab 2: 191‐199, 2005.
 120.Gibbs J, Young RC, Smith GP. Cholecystokinin elicits satiety in rats with open gastric fistulas. Nature 245: 323‐325, 1973.
 121.Giezenaar C, Hutchison AT, Luscombe‐Marsh ND, Chapman I, Horowitz M, Soenen S. Effect of age on blood glucose and plasma insulin, glucagon, ghrelin, CCK, GIP, and GLP‐1 responses to whey protein ingestion. Nutrients 10, 1‐8, 2017.
 122.Grandt D, Schimiczek M, Beglinger C, Layer P, Goebell H, Eysselein VE, Reeve JR Jr. Two molecular forms of peptide YY (PYY) are abundant in human blood: Characterization of a radioimmunoassay recognizing PYY 1‐36 and PYY 3‐36. Regul Pept 51: 151‐159, 1994.
 123.Guan XM, Yu H, Palyha OC, McKee KK, Feighner SD, Sirinathsinghji DJ, Smith RG, Van der Ploeg LH, Howard AD. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res Mol Brain Res 48: 23‐29, 1997.
 124.Guzman M, Lo Verme J, Fu J, Oveisi F, Blazquez C, Piomelli D. Oleoylethanolamide stimulates lipolysis by activating the nuclear receptor peroxisome proliferator‐activated receptor alpha (PPAR‐alpha). J Biol Chem 279: 27849‐27854, 2004.
 125.Hajnal A, Acharya NK, Grigson PS, Covasa M, Twining RC. Obese OLETF rats exhibit increased operant performance for palatable sucrose solutions and differential sensitivity to D2 receptor antagonism. Am J Phys Regul Integr Comp Phys 293: R1846‐R1854, 2007.
 126.Halatchev IG, Cone RD. Peripheral administration of PYY(3‐36) produces conditioned taste aversion in mice. Cell Metab 1: 159‐168, 2005.
 127.Halatchev IG, Ellacott KL, Fan W, Cone RD. Peptide YY3‐36 inhibits food intake in mice through a melanocortin‐4 receptor‐independent mechanism. Endocrinology 145: 2585‐2590, 2004.
 128.Harris GC, Aston‐Jones G. Arousal and reward: A dichotomy in orexin function. Trends Neurosci 29: 571‐577, 2006.
 129.Harris GC, Wimmer M, Aston‐Jones G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437: 556‐559, 2005.
 130.Hass N, Haub H, Stevens R, Breer H, Schwarzenbacher K. Expression of adiponectin receptor 1 in olfactory mucosa of mice. Cell Tissue Res 334: 187‐197, 2008.
 131.Hay DL, Chen S, Lutz TA, Parkes DG, Roth JD. Amylin: Pharmacology, physiology, and clinical potential. Pharmacol Rev 67: 564‐600, 2015.
 132.Hayes MR, Mietlicki‐Baase EG, Kanoski SE, De Jonghe BC. Incretins and amylin: Neuroendocrine communication between the gut, pancreas, and brain in control of food intake and blood glucose. Annu Rev Nutr 34: 237‐260, 2014.
 133.Heni M, Kullmann S, Ketterer C, Guthoff M, Linder K, Wagner R, Stingl KT, Veit R, Staiger H, Häring H‐U, Preissl H, Fritsche A. Nasal insulin changes peripheral insulin sensitivity simultaneously with altered activity in homeostatic and reward‐related human brain regions. Diabetologia 55: 1773‐1782, 2012.
 134.Herisson FM, Brooks LL, Waas JR, Levine AS, Olszewski PK. Functional relationship between oxytocin and appetite for carbohydrates versus saccharin. NeuroReport 25: 909‐914, 2014.
 135.Herisson FM, Waas JR, Fredriksson R, Schioth HB, Levine AS, Olszewski PK. Oxytocin acting in the nucleus accumbens core decreases food intake. J Neuroendocrinol 28, 1‐12, 2016.
 136.Hewson AK, Dickson SL. Systemic administration of ghrelin induces Fos and Egr‐1 proteins in the hypothalamic arcuate nucleus of fasted and fed rats. J Neuroendocrinol 12: 1047‐1049, 2000.
 137.Hillemacher T, Weinland C, Heberlein A, Groschl M, Schanze A, Frieling H, Wilhelm J, Kornhuber J, Bleich S. Increased levels of adiponectin and resistin in alcohol dependence–possible link to craving. Drug Alcohol Depend 99: 333‐337, 2009.
 138.Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G. Free fatty acids regulate gut incretin glucagon‐like peptide‐1 secretion through GPR120. Nat Med 11: 90‐94, 2005.
 139.Holsen LM, Savage CR, Martin LE, Bruce AS, Lepping RJ, Ko E, Brooks WM, Butler MG, Zarcone JR, Goldstein JM. Importance of reward and prefrontal circuitry in hunger and satiety: Prader‐Willi syndrome vs simple obesity. Int J Obes 36: 638‐647, 2012.
 140.Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB, Thurmon JJ, Marinelli M, DiLeone RJ. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51: 801‐810, 2006.
 141.Hopkins M, Gibbons C, Caudwell P, Webb DL, Hellstrom PM, Naslund E, Blundell JE, Finlayson G. Fasting leptin is a metabolic determinant of food reward in overweight and obese individuals during chronic aerobic exercise training. Int J Endocrinol 2014: 323728, 2014.
 142.Hsiao S, Deupree D. Cholecystokinin and bombesin effects on rewarded and nonrewarded operants. Peptides 4: 1‐3, 1983.
 143.Ilyas A, Hubel C, Stahl D, Stadler M, Ismail K, Breen G, Treasure J, Kan C. The metabolic underpinning of eating disorders: A systematic review and meta‐analysis of insulin sensitivity. Mol Cell Endocrinol 497: 110307, 2019.
 144.Inder W, Hellemans J, Ellis M, Evans M, Livesey J, Donald R. Elevated basal adrenocorticotropin and evidence for increased central opioid tone in highly trained male athletes. J Clin Endocrinol Metab 80: 244‐248, 1995.
 145.Jaber M, Jones S, Giros B, Caron MG. The dopamine transporter: A crucial component regulating dopamine transmission. Mov Disord 12: 629‐633, 1997.
 146.Jastreboff AM, Lacadie C, Seo D, Kubat J, Van Name MA, Giannini C, Savoye M, Constable RT, Sherwin RS, Caprio S, Sinha R. Leptin is associated with exaggerated brain reward and emotion responses to food images in adolescent obesity. Diabetes Care 37: 3061‐3068, 2014.
 147.Jerabek P, Havlickova T, Puskina N, Charalambous C, Lapka M, Kacer P, Sustkova‐Fiserova M. Ghrelin receptor antagonism of morphine‐induced conditioned place preference and behavioral and accumbens dopaminergic sensitization in rats. Neurochem Int 110: 101‐113, 2017.
 148.Jerlhag E. Systemic administration of ghrelin induces conditioned place preference and stimulates accumbal dopamine. Addict Biol 13: 358‐363, 2008.
 149.Jerlhag E, Egecioglu E, Dickson SL, Engel JA. Ghrelin receptor antagonism attenuates cocaine‐ and amphetamine‐induced locomotor stimulation, accumbal dopamine release, and conditioned place preference. Psychopharmacology 211: 415‐422, 2010.
 150.Jerlhag E, Engel JA. Ghrelin receptor antagonism attenuates nicotine‐induced locomotor stimulation, accumbal dopamine release and conditioned place preference in mice. Drug Alcohol Depend 117: 126‐131, 2011.
 151.Johnson MD, Bouret SG, Dunn‐Meynell AA, Boyle CN, Lutz TA, Levin BE. Early postnatal amylin treatment enhances hypothalamic leptin signaling and neural development in the selectively bred diet‐induced obese rat. Am J Phys Regul Integr Comp Phys 311: R1032‐R1044, 2016.
 152.Jordan J, Greenway FL, Leiter LA, Li Z, Jacobson P, Murphy K, Hill J, Kler L, Aftring RP. Stimulation of cholecystokinin‐A receptors with GI181771X does not cause weight loss in overweight or obese patients. Clin Pharmacol Ther 83: 281‐287, 2008.
 153.Kalafateli AL, Vallof D, Colombo G, Lorrai I, Maccioni P, Jerlhag E. An amylin analogue attenuates alcohol‐related behaviours in various animal models of alcohol use disorder. Neuropsychopharmacology 44: 1093‐1102, 2019.
 154.Kalafateli AL, Vallof D, Jerlhag E. Activation of amylin receptors attenuates alcohol‐mediated behaviours in rodents. Addict Biol 24: 388‐402, 2019.
 155.Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti‐related protein mRNA levels and body weight in rats. Diabetes 50: 2438‐2443, 2001.
 156.Kanoski SE, Alhadeff AL, Fortin SM, Gilbert JR, Grill HJ. Leptin signaling in the medial nucleus tractus solitarius reduces food seeking and willingness to work for food. Neuropsychopharmacology 39: 605‐613, 2014.
 157.Kanoski SE, Hayes MR, Skibicka KP. GLP‐1 and weight loss: Unraveling the diverse neural circuitry. Am J Phys Regul Integr Comp Phys 310: R885‐R895, 2016.
 158.Katsurada K, Maejima Y, Nakata M, Kodaira M, Suyama S, Iwasaki Y, Kario K, Yada T. Endogenous GLP‐1 acts on paraventricular nucleus to suppress feeding: Projection from nucleus tractus solitarius and activation of corticotropin‐releasing hormone, nesfatin‐1 and oxytocin neurons. Biochem Biophys Res Commun 451: 276‐281, 2014.
 159.Kavaliers M, Hirst M. The influence of opiate agonists on day‐night feeding rhythms in young and old mice. Brain Res 326: 160‐167, 1985.
 160.Kim DJ, Yoon SJ, Choi B, Kim TS, Woo YS, Kim W, Myrick H, Peterson BS, Choi YB, Kim YK, Jeong J. Increased fasting plasma ghrelin levels during alcohol abstinence. Alcohol Alcohol 40: 76‐79, 2005.
 161.King CP, Militello L, Hart A, St Pierre CL, Leung E, Versaggi CL, Roberson N, Catlin J, Palmer AA, Richards JB, Meyer PJ. Cdh13 and AdipoQ gene knockout alter instrumental and Pavlovian drug conditioning. Genes Brain Behav 16: 686‐698, 2017.
 162.Kissileff HR, Pi‐Sunyer FX, Thornton J, Smith GP. C‐terminal octapeptide of cholecystokinin decreases food intake in man. Am J Clin Nutr 34: 154‐160, 1981.
 163.Kjaergaard M, Salinas CBG, Rehfeld JF, Secher A, Raun K, Wulff BS. PYY(3‐36) and exendin‐4 reduce food intake and activate neuronal circuits in a synergistic manner in mice. Neuropeptides 73: 89‐95, 2019.
 164.Klockars A, Levine AS, Olszewski PK. Hypothalamic integration of the endocrine signaling related to food intake. Curr Top Behav Neurosci 43: 239‐269, 2019.
 165.Kobelt P, Paulitsch S, Goebel M, Stengel A, Schmidtmann M, van der Voort IR, Tebbe JJ, Veh RW, Klapp BF, Wiedenmann B, Tache Y, Monnikes H. Peripheral injection of CCK‐8S induces Fos expression in the dorsomedial hypothalamic nucleus in rats. Brain Res 1117: 109‐117, 2006.
 166.Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth‐hormone‐releasing acylated peptide from stomach. Nature 402: 656‐660, 1999.
 167.Konner AC, Hess S, Tovar S, Mesaros A, Sanchez‐Lasheras C, Evers N, Verhagen LA, Bronneke HS, Kleinridders A, Hampel B, Kloppenburg P, Bruning JC. Role for insulin signaling in catecholaminergic neurons in control of energy homeostasis. Cell Metab 13: 720‐728, 2011.
 168.Kosinski JR, Hubert J, Carrington PE, Chicchi GG, Mu J, Miller C, Cao J, Bianchi E, Pessi A, Sinharoy R, Marsh DJ, Pocai A. The glucagon receptor is involved in mediating the body weight‐lowering effects of oxyntomodulin. Obesity (Silver Spring) 20: 1566‐1571, 2012.
 169.Kroemer NB, Krebs L, Kobiella A, Grimm O, Pilhatsch M, Bidlingmaier M, Zimmermann US, Smolka MN. Fasting levels of ghrelin covary with the brain response to food pictures. Addict Biol 18: 855‐862, 2013.
 170.Krugel U, Schraft T, Kittner H, Kiess W, Illes P. Basal and feeding‐evoked dopamine release in the rat nucleus accumbens is depressed by leptin. Eur J Pharmacol 482: 185‐187, 2003.
 171.Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H, Kozono H, Takamoto I, Okamoto S, Shiuchi T, Suzuki R, Satoh H, Tsuchida A, Moroi M, Sugi K, Noda T, Ebinuma H, Ueta Y, Kondo T, Araki E, Ezaki O, Nagai R, Tobe K, Terauchi Y, Ueki K, Minokoshi Y, Kadowaki T. Adiponectin stimulates AMP‐activated protein kinase in the hypothalamus and increases food intake. Cell Metab 6: 55‐68, 2007.
 172.Kullmann S, Heni M, Veit R, Ketterer C, Schick F, Häring H‐U, Fritsche A, Preissl H. The obese brain: Association of body mass index and insulin sensitivity with resting state network functional connectivity. Hum Brain Mapp 33: 1052‐1061, 2012.
 173.Kullmann S, Heni M, Veit R, Scheffler K, Machann J, Haring HU, Fritsche A, Preissl H. Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults. Diabetes Care 38: 1044‐1050, 2015.
 174.Lacroix MC, Caillol M, Durieux D, Monnerie R, Grebert D, Pellerin L, Repond C, Tolle V, Zizzari P, Baly C. Long‐lasting metabolic imbalance related to obesity alters olfactory tissue homeostasis and impairs olfactory‐driven behaviors. Chem Senses 40: 537‐556, 2015.
 175.Lanca AJ, De Cabo C, Arifuzzaman AI, Vaccarino FJ. Cholecystokinergic innervation of nucleus accumbens subregions. Peptides 19: 859‐868, 1998.
 176.Landgren S, Simms JA, Thelle DS, Strandhagen E, Bartlett SE, Engel JA, Jerlhag E. The ghrelin signalling system is involved in the consumption of sweets. PLoS One 6: e18170, 2011.
 177.Larsen AT, Sonne N, Andreassen KV, Karsdal MA, Henriksen K. Dose frequency optimization of the dual amylin and calcitonin receptor agonist KBP‐088 – long‐lasting improvement of food preference and body weight loss. J Pharmacol Exp Ther 373: 269‐278, 2020.
 178.Lassman DJ, McKie S, Gregory LJ, Lal S, D'Amato M, Steele I, Varro A, Dockray GJ, Williams SC, Thompson DG. Defining the role of cholecystokinin in the lipid‐induced human brain activation matrix. Gastroenterology 138: 1514‐1524, 2010.
 179.Lau BK, Cota D, Cristino L, Borgland SL. Endocannabinoid modulation of homeostatic and non‐homeostatic feeding circuits. Neuropharmacology 124: 38‐51, 2017.
 180.le Roux CW, Batterham RL, Aylwin SJ, Patterson M, Borg CM, Wynne KJ, Kent A, Vincent RP, Gardiner J, Ghatei MA, Bloom SR. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology 147: 3‐8, 2006.
 181.Lee JW, Kim WY, Cho BR, Vezina P, Kim JH. Leptin in the nucleus accumbens core disrupts acute cocaine effects: Implications for GSK3beta connections. Behav Brain Res 337: 46‐52, 2018.
 182.Levine AS, Kotz CM, Gosnell BA. Sugars: Hedonic aspects, neuroregulation, and energy balance. Am J Clin Nutr 78: 834S‐842S, 2003.
 183.Li X, Fan K, Li Q, Pan D, Hai R, Du C. Melanocortin 4 receptor‐mediated effects of amylin on thermogenesis and regulation of food intake. Diabetes Metab Res Rev 35: e3149, 2019.
 184.Liddle RA, Goldfine ID, Rosen MS, Taplitz RA, Williams JA. Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J Clin Invest 75: 1144‐1152, 1985.
 185.Lieverse RJ, Jansen JB, Masclee AA, Lamers CB. Satiety effects of a physiological dose of cholecystokinin in humans. Gut 36: 176‐179, 1995.
 186.Lin S, Shi YC, Yulyaningsih E, Aljanova A, Zhang L, Macia L, Nguyen AD, Lin EJ, During MJ, Herzog H, Sainsbury A. Critical role of arcuate Y4 receptors and the melanocortin system in pancreatic polypeptide‐induced reduction in food intake in mice. PLoS One 4: e8488, 2009.
 187.Liu J, Guo M, Zhang D, Cheng SY, Liu M, Ding J, Scherer PE, Liu F, Lu XY. Adiponectin is critical in determining susceptibility to depressive behaviors and has antidepressant‐like activity. Proc Natl Acad Sci U S A 109: 12248‐12253, 2012.
 188.Luquet S, Phillips CT, Palmiter RD. NPY/AgRP neurons are not essential for feeding responses to glucoprivation. Peptides 28: 214‐225, 2007.
 189.Lutz TA, Coester B, Whiting L, Dunn‐Meynell AA, Boyle CN, Bouret SG, Levin BE, Le Foll C. Amylin selectively signals onto POMC neurons in the arcuate nucleus of the hypothalamus. Diabetes 67: 805‐817, 2018.
 190.MacFadyen K, Loveless R, DeLucca B, Wardley K, Deogan S, Thomas C, Peris J. Peripheral oxytocin administration reduces ethanol consumption in rats. Pharmacol Biochem Behav 140: 27‐32, 2016.
 191.MacIntosh CG, Morley JE, Wishart J, Morris H, Jansen JB, Horowitz M, Chapman IM. Effect of exogenous cholecystokinin (CCK)‐8 on food intake and plasma CCK, leptin, and insulin concentrations in older and young adults: Evidence for increased CCK activity as a cause of the anorexia of aging. J Clin Endocrinol Metab 86: 5830‐5837, 2001.
 192.MacIntosh CG, Sheehan J, Davani N, Morley JE, Horowitz M, Chapman IM. Effects of aging on the opioid modulation of feeding in humans. J Am Geriatr Soc 49: 1518‐1524, 2001.
 193.Mack CM, Moore CX, Jodka CM, Bhavsar S, Wilson JK, Hoyt JA, Roan JL, Vu C, Laugero KD, Parkes DG, Young AA. Antiobesity action of peripheral exenatide (exendin‐4) in rodents: Effects on food intake, body weight, metabolic status and side‐effect measures. Int J Obes 30: 1332‐1340, 2006.
 194.Mack CM, Soares CJ, Wilson JK, Athanacio JR, Turek VF, Trevaskis JL, Roth JD, Smith PA, Gedulin B, Jodka CM, Roland BL, Adams SH, Lwin A, Herich J, Laugero KD, Vu C, Pittner R, Paterniti JR Jr, Hanley M, Ghosh S, Parkes DG. Davalintide (AC2307), a novel amylin‐mimetic peptide: Enhanced pharmacological properties over native amylin to reduce food intake and body weight. Int J Obes 34: 385‐395, 2010.
 195.Maddison S. Intraperitoneal and intracranial cholecystokinin depress operant responding for food. Physiol Behav 19: 819‐824, 1977.
 196.Mahler SV, Smith KS, Berridge KC. Endocannabinoid hedonic hotspot for sensory pleasure: Anandamide in nucleus accumbens shell enhances ‘liking’ of a sweet reward. Neuropsychopharmacology 32: 2267‐2278, 2007.
 197.Maida A, Lovshin JA, Baggio LL, Drucker DJ. The glucagon‐like peptide‐1 receptor agonist oxyntomodulin enhances beta‐cell function but does not inhibit gastric emptying in mice. Endocrinology 149: 5670‐5678, 2008.
 198.Malaisse‐Lagae F, Carpentier JL, Patel YC, Malaisse WJ, Orci L. Pancreatic polypeptide: A possible role in the regulation of food intake in the mouse. Hypothesis. Experientia 33: 915‐917, 1977.
 199.Malik S, McGlone F, Bedrossian D, Dagher A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab 7: 400‐409, 2008.
 200.Manbeck KE, Shelley D, Schmidt CE, Harris AC. Effects of oxytocin on nicotine withdrawal in rats. Pharmacol Biochem Behav 116: 84‐89, 2014.
 201.Marks JL, Porte D Jr, Stahl WL, Baskin DG. Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinology 127: 3234‐3236, 1990.
 202.Marshall FH, Barnes S, Hughes J, Woodruff GN, Hunter JC. Cholecystokinin modulates the release of dopamine from the anterior and posterior nucleus accumbens by two different mechanisms. J Neurochem 56: 917‐922, 1991.
 203.Martin LE, Holsen LM, Chambers RJ, Bruce AS, Brooks WM, Zarcone JR, Butler MG, Savage CR. Neural mechanisms associated with food motivation in obese and healthy weight adults. Obesity (Silver Spring) 18: 254‐260, 2010.
 204.Maske CB, Loney GC, Lilly N, Terrill SJ, Williams DL. Intragastric nutrient infusion reduces motivation for food in male and female rats. Am J Physiol Endocrinol Metab 315: E81‐E90, 2018.
 205.Mason BL, Li Q, Minhajuddin A, Czysz AH, Coughlin LA, Hussain SK, Koh AY, Trivedi MH. Reduced anti‐inflammatory gut microbiota are associated with depression and anhedonia. J Affect Disord 266: 394‐401, 2020.
 206.Matson CA, Reid DF, Ritter RC. Daily CCK injection enhances reduction of body weight by chronic intracerebroventricular leptin infusion. Am J Phys Regul Integr Comp Phys 282: R1368‐R1373, 2002.
 207.Mazen I, El‐Gammal M, Abdel‐Hamid M, Farooqi IS, Amr K. Homozygosity for a novel missense mutation in the leptin receptor gene (P316T) in two Egyptian cousins with severe early onset obesity. Mol Genet Metab 102: 461‐464, 2011.
 208.McGowan MK, Andrews KM, Grossman SP. Chronic intrahypothalamic infusions of insulin or insulin antibodies alter body weight and food intake in the rat. Physiol Behav 51: 753‐766, 1992.
 209.McGowan MK, Andrews KM, Grossman SP. Role of intrahypothalamic insulin in circadian patterns of food intake, activity, and body temperature. Behav Neurosci 106: 380‐385, 1992.
 210.Melchior JC, Rigaud D, Chayvialle JA, Colas‐Linhart N, Laforest MD, Petiet A, Comoy E, Apfelbaum M. Palatability of a meal influences release of beta‐endorphin, and of potential regulators of food intake in healthy human subjects. Appetite 22: 233‐244, 1994.
 211.Melis M, Pillolla G, Luchicchi A, Muntoni AL, Yasar S, Goldberg SR, Pistis M. Endogenous fatty acid ethanolamides suppress nicotine‐induced activation of mesolimbic dopamine neurons through nuclear receptors. J Neurosci 28: 13985‐13994, 2008.
 212.Mennella I, Ferracane R, Zucco F, Fogliano V, Vitaglione P. Food liking enhances the plasma response of 2‐arachidonoylglycerol and of pancreatic polypeptide upon modified sham feeding in humans. J Nutr 145: 2169‐2175, 2015.
 213.Mietlicki‐Baase EG, McGrath LE, Koch‐Laskowski K, Krawczyk J, Reiner DJ, Pham T, Nguyen CTN, Turner CA, Olivos DR, Wimmer ME, Schmidt HD, Hayes MR. Amylin receptor activation in the ventral tegmental area reduces motivated ingestive behavior. Neuropharmacology 123: 67‐79, 2017.
 214.Mietlicki‐Baase EG, Rupprecht LE, Olivos DR, Zimmer DJ, Alter MD, Pierce RC, Schmidt HD, Hayes MR. Amylin receptor signaling in the ventral tegmental area is physiologically relevant for the control of food intake. Neuropsychopharmacology 38: 1685‐1697, 2013.
 215.Misra M, Klibanski A. Neuroendocrine consequences of anorexia nervosa in adolescents. Endocr Dev 17: 197‐214, 2010.
 216.Monnikes H, Lauer G, Arnold R. Peripheral administration of cholecystokinin activates c‐fos expression in the locus coeruleus/subcoeruleus nucleus, dorsal vagal complex and paraventricular nucleus via capsaicin‐sensitive vagal afferents and CCK‐A receptors in the rat. Brain Res 770: 277‐288, 1997.
 217.Mooradian AD, Chehade JM. Serum leptin response to endogenous hyperinsulinemia in aging rats. Mech Ageing Dev 115: 101‐106, 2000.
 218.Moran TH, Bi S. Hyperphagia and obesity in OLETF rats lacking CCK‐1 receptors. Philos Trans R Soc Lond Ser B Biol Sci 361: 1211‐1218, 2006.
 219.Moran TH, Katz LF, Plata‐Salaman CR, Schwartz GJ. Disordered food intake and obesity in rats lacking cholecystokinin A receptors. Am J Phys 274: R618‐R625, 1998.
 220.Mori H, Hanada R, Hanada T, Aki D, Mashima R, Nishinakamura H, Torisu T, Chien KR, Yasukawa H, Yoshimura A. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet‐induced obesity. Nat Med 10: 739‐743, 2004.
 221.Morino P, Herrera‐Marschitz M, Castel MN, Ungerstedt U, Varro A, Dockray G, Hokfelt T. Cholecystokinin in cortico‐striatal neurons in the rat: Immunohistochemical studies at the light and electron microscopical level. Eur J Neurosci 6: 681‐692, 1994.
 222.Morris MJ, Chen H, Watts R, Shulkes A, Cameron‐Smith D. Brain neuropeptide Y and CCK and peripheral adipokine receptors: Temporal response in obesity induced by palatable diet. Int J Obes 32: 249‐258, 2008.
 223.Morton GJ, Meek TH, Schwartz MW. Neurobiology of food intake in health and disease. Nat Rev Neurosci 15: 367‐378, 2014.
 224.Morton GJ, Thatcher BS, Reidelberger RD, Ogimoto K, Wolden‐Hanson T, Baskin DG, Schwartz MW, Blevins JE. Peripheral oxytocin suppresses food intake and causes weight loss in diet‐induced obese rats. Am J Physiol Endocrinol Metab 302: E134‐E144, 2012.
 225.Murphy KG, Bloom SR. Gut hormones in the control of appetite. Exp Physiol 89: 507‐516, 2004.
 226.Naef L, Seabrook L, Hsiao J, Li C, Borgland SL. Insulin in the ventral tegmental area reduces cocaine‐evoked dopamine in the nucleus accumbens in vivo. Eur J Neurosci 50: 2146‐2155, 2019.
 227.Nakabeppu Y. Origins of brain insulin and its function. Adv Exp Med Biol 1128: 1‐11, 2019.
 228.Nascimento C, Sinezia C, Sisnande T, Lima L, Lacativa PGS. BZ043, a novel long‐acting amylin analog, reduces gastric emptying, food intake, glycemia and insulin requirement in streptozotocin‐induced diabetic rats. Peptides 114: 44‐49, 2019.
 229.Neto S, Varatharajan R, Joseph K, Moser A. Nasal administration of leptin dose‐dependently increases dopamine and serotonin outflow in the rat nucleus accumbens. J Neural Transm (Vienna) 123: 1247‐1254, 2016.
 230.Nieh EH, Vander Weele CM, Matthews GA, Presbrey KN, Wichmann R, Leppla CA, Izadmehr EM, Tye KM. Inhibitory input from the lateral hypothalamus to the ventral tegmental area disinhibits dopamine neurons and promotes behavioral activation. Neuron 90: 1286‐1298, 2016.
 231.Noetzel S, Stengel A, Inhoff T, Goebel M, Wisser AS, Bannert N, Wiedenmann B, Klapp BF, Tache Y, Monnikes H, Kobelt P. CCK‐8S activates c‐Fos in a dose‐dependent manner in nesfatin‐1 immunoreactive neurons in the paraventricular nucleus of the hypothalamus and in the nucleus of the solitary tract of the brainstem. Regul Pept 157: 84‐91, 2009.
 232.Nummenmaa L, Hirvonen J, Hannukainen JC, Immonen H, Lindroos MM, Salminen P, Nuutila P. Dorsal striatum and its limbic connectivity mediate abnormal anticipatory reward processing in obesity. PLoS One 7: e31089, 2012.
 233.Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 5: 566‐572, 2002.
 234.Ohtsu Y, Nakagawa Y, Nagasawa M, Takeda S, Arakawa H, Kojima I. Diverse signaling systems activated by the sweet taste receptor in human GLP‐1‐secreting cells. Mol Cell Endocrinol 394: 70‐79, 2014.
 235.Okano‐Matsumoto S, McRoberts JA, Tache Y, Adelson DW. Electrophysiological evidence for distinct vagal pathways mediating CCK‐evoked motor effects in the proximal versus distal stomach. J Physiol 589: 371‐393, 2011.
 236.Olszewski PK, Alsiö J, Schiöth HB, Levine AS. Opioids as facilitators of feeding: Can any food be rewarding? Physiol Behav 104: 105‐110, 2011.
 237.Olszewski PK, Cedernaes J, Olsson F, Levine AS, Schioth HB. Analysis of the network of feeding neuroregulators using the Allen Brain Atlas. Neurosci Biobehav Rev 32: 945‐956, 2008.
 238.Olszewski PK, Grace MK, Billington CJ, Levine AS. Hypothalamic paraventricular injections of ghrelin: Effect on feeding and c‐Fos immunoreactivity. Peptides 24: 919‐923, 2003.
 239.Olszewski PK, Klockars A, Olszewska AM, Fredriksson R, Schioth HB, Levine AS. Molecular, immunohistochemical, and pharmacological evidence of oxytocin's role as inhibitor of carbohydrate but not fat intake. Endocrinology 151: 4736‐4744, 2010.
 240.Olszewski PK, Levine AS. Central opioids and consumption of sweet tastants: When reward outweighs homeostasis. Physiol Behav 91: 506‐512, 2007.
 241.Olszewski PK, Li D, Grace MK, Billington CJ, Kotz CM, Levine AS. Neural basis of orexigenic effects of ghrelin acting within lateral hypothalamus. Peptides 24: 597‐602, 2003.
 242.Olszewski PK, McColl LK, Herisson FM, Klockars A, Levine AS. Blunted hyperphagic and c‐Fos immunoreactivity responsiveness to an orexigen, butorphanol tartrate, in aged rats. Neurosci Lett 711: 134409, 2019.
 243.Olszewski PK, Schioth HB, Levine AS. Ghrelin in the CNS: From hunger to a rewarding and memorable meal? Brain Res Rev 58: 160‐170, 2008.
 244.Olszewski PK, Shaw TJ, Grace MK, Hoglund CE, Fredriksson R, Schioth HB, Levine AS. Complexity of neural mechanisms underlying overconsumption of sugar in scheduled feeding: Involvement of opioids, orexin, oxytocin and NPY. Peptides 30: 226‐233, 2009.
 245.Olszewski PK, Wood EL, Klockars A, Levine AS. Excessive consumption of sugar: An insatiable drive for reward. Curr Nutr Rep, 8 (2): 120‐128, 2019.
 246.Parise EM, Lilly N, Kay K, Dossat AM, Seth R, Overton JM, Williams DL. Evidence for the role of hindbrain orexin‐1 receptors in the control of meal size. Am J Phys Regul Integr Comp Phys 301: R1692‐R1699, 2011.
 247.Park MJ, Yoo SW, Choe BS, Dantzer R, Freund GG. Acute hypoglycemia causes depressive‐like behaviors in mice. Metabolism 61: 229‐236, 2012.
 248.Patterson TA, Brot MD, Zavosh A, Schenk JO, Szot P, Figlewicz DP. Food deprivation decreases mRNA and activity of the rat dopamine transporter. Neuroendocrinology 68: 11‐20, 1998.
 249.Pecina S, Cagniard B, Berridge KC, Aldridge JW, Zhuang X. Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. J Neurosci 23: 9395‐9402, 2003.
 250.Pelchat ML, Johnson A, Chan R, Valdez J, Ragland JD. Images of desire: Food‐craving activation during fMRI. NeuroImage 23: 1486‐1493, 2004.
 251.Petrovich GD. Forebrain circuits and control of feeding by learned cues. Neurobiol Learn Mem 95: 152‐158, 2011.
 252.Pilichiewicz AN, Papadopoulos P, Brennan IM, Little TJ, Meyer JH, Wishart JM, Horowitz M, Feinle‐Bisset C. Load‐dependent effects of duodenal lipid on antropyloroduodenal motility, plasma CCK and PYY, and energy intake in healthy men. Am J Phys Regul Integr Comp Phys 293: R2170‐R2178, 2007.
 253.Prince AC, Brooks SJ, Stahl D, Treasure J. Systematic review and meta‐analysis of the baseline concentrations and physiologic responses of gut hormones to food in eating disorders. Am J Clin Nutr 89: 755‐765, 2009.
 254.Qian H, Azain MJ, Hartzell DL, Baile CA. Increased leptin resistance as rats grow to maturity. Proc Soc Exp Biol Med 219: 160‐165, 1998.
 255.Quarta D, Di Francesco C, Melotto S, Mangiarini L, Heidbreder C, Hedou G. Systemic administration of ghrelin increases extracellular dopamine in the shell but not the core subdivision of the nucleus accumbens. Neurochem Int 54: 89‐94, 2009.
 256.Rask‐Andersen M, Olszewski PK, Levine AS, Schioth HB. Molecular mechanisms underlying anorexia nervosa: Focus on human gene association studies and systems controlling food intake. Brain Res Rev 62: 147‐164, 2010.
 257.Raynaud E, Brun JF, Perez‐Martin A, Sagnes C, Boularan AM, Fedou C, Mercier J. Serum leptin is associated with the perception of palatability during a standardized high‐carbohydrate breakfast test. Clin Sci (Lond) 96: 343‐348, 1999.
 258.Reidelberger RD, Arnelo U, Granqvist L, Permert J. Comparative effects of amylin and cholecystokinin on food intake and gastric emptying in rats. Am J Phys Regul Integr Comp Phys 280: R605‐R611, 2001.
 259.Reidelberger RD, Heimann D, Kelsey L, Hulce M. Effects of peripheral CCK receptor blockade on feeding responses to duodenal nutrient infusions in rats. Am J Phys Regul Integr Comp Phys 284: R389‐R398, 2003.
 260.Reidelberger RD, Kelsey L, Heimann D. Effects of amylin‐related peptides on food intake, meal patterns, and gastric emptying in rats. Am J Phys Regul Integr Comp Phys 282: R1395‐R1404, 2002.
 261.Reidelberger RD, Varga G, Liehr RM, Castellanos DA, Rosenquist GL, Wong HC, Walsh JH. Cholecystokinin suppresses food intake by a nonendocrine mechanism in rats. Am J Phys 267: R901‐R908, 1994.
 262.Richards P, Pais R, Habib AM, Brighton CA, Yeo GS, Reimann F, Gribble FM. High fat diet impairs the function of glucagon‐like peptide‐1 producing L‐cells. Peptides 77: 21‐27, 2016.
 263.Riediger T, Eisele N, Scheel C, Lutz TA. Effects of glucagon‐like peptide 1 and oxyntomodulin on neuronal activity of ghrelin‐sensitive neurons in the hypothalamic arcuate nucleus. Am J Phys Regul Integr Comp Phys 298: R1061‐R1067, 2010.
 264.Rigamonti AE, Bini S, Piscitelli F, Lauritano A, Di Marzo V, Vanetti C, Agosti F, De Col A, Lucchetti E, Grugni G, Sartorio A. Hedonic eating in Prader‐Willi syndrome is associated with blunted PYY secretion. Food Nutr Res 61: 1297553, 2017.
 265.Rocha PM, Barata JT, Minderico CS, Silva AM, Teixeira PJ, Sardinha LB. Visceral abdominal and subfascial femoral adipose tissue have opposite associations with liver fat in overweight and obese premenopausal caucasian women. J Lipids 2011: 154672, 2011.
 266.Rodin J. Insulin levels, hunger, and food intake: An example of feedback loops in body weight regulation. Health Psychol 4: 1‐24, 1985.
 267.Rodin J, Wack J, Ferrannini E, DeFronzo RA. Effect of insulin and glucose on feeding behavior. Metabolism 34: 826‐831, 1985.
 268.Rodriguez de Fonseca F, Navarro M, Gomez R, Escuredo L, Nava F, Fu J, Murillo‐Rodriguez E, Giuffrida A, LoVerme J, Gaetani S, Kathuria S, Gall C, Piomelli D. An anorexic lipid mediator regulated by feeding. Nature 414: 209‐212, 2001.
 269.Rodriguez‐Pacheco F, Martinez‐Fuentes AJ, Tovar S, Pinilla L, Tena‐Sempere M, Dieguez C, Castano JP, Malagon MM. Regulation of pituitary cell function by adiponectin. Endocrinology 148: 401‐410, 2007.
 270.Roitman MF, Stuber GD, Phillips PE, Wightman RM, Carelli RM. Dopamine operates as a subsecond modulator of food seeking. J Neurosci 24: 1265‐1271, 2004.
 271.Romano A, Cassano T, Tempesta B, Cianci S, Dipasquale P, Coccurello R, Cuomo V, Gaetani S. The satiety signal oleoylethanolamide stimulates oxytocin neurosecretion from rat hypothalamic neurons. Peptides 49: 21‐26, 2013.
 272.Romano A, Gallelli CA, Koczwara JB, Braegger FE, Vitalone A, Falchi M, Micioni Di Bonaventura MV, Cifani C, Cassano T, Lutz TA, Gaetani S. Role of the area postrema in the hypophagic effects of oleoylethanolamide. Pharmacol Res 122: 20‐34, 2017.
 273.Romano A, Potes CS, Tempesta B, Cassano T, Cuomo V, Lutz T, Gaetani S. Hindbrain noradrenergic input to the hypothalamic PVN mediates the activation of oxytocinergic neurons induced by the satiety factor oleoylethanolamide. Am J Physiol Endocrinol Metab 305: E1266‐E1273, 2013.
 274.Rossi MA, Stuber GD. Overlapping brain circuits for homeostatic and hedonic feeding. Cell Metab 27: 42‐56, 2018.
 275.Roth CL, Doyle RP. Just a gut feeling: Central nervous effects of peripheral gastrointestinal hormones. Endocr Dev 32: 100‐123, 2017.
 276.Rushing PA, Hagan MM, Seeley RJ, Lutz TA, Woods SC. Amylin: A novel action in the brain to reduce body weight. Endocrinology 141: 850‐853, 2000.
 277.Rushing PA, Seeley RJ, Air EL, Lutz TA, Woods SC. Acute 3rd‐ventricular amylin infusion potently reduces food intake but does not produce aversive consequences. Peptides 23: 985‐988, 2002.
 278.Ruter J, Kobelt P, Tebbe JJ, Avsar Y, Veh R, Wang L, Klapp BF, Wiedenmann B, Tache Y, Monnikes H. Intraperitoneal injection of ghrelin induces Fos expression in the paraventricular nucleus of the hypothalamus in rats. Brain Res 991: 26‐33, 2003.
 279.Sainsbury A, Shi YC, Zhang L, Aljanova A, Lin Z, Nguyen AD, Herzog H, Lin S. Y4 receptors and pancreatic polypeptide regulate food intake via hypothalamic orexin and brain‐derived neurotropic factor dependent pathways. Neuropeptides 44: 261‐268, 2010.
 280.Sarvari M, Kocsis P, Deli L, Gajari D, David S, Pozsgay Z, Hegedus N, Tihanyi K, Liposits Z. Ghrelin modulates the fMRI BOLD response of homeostatic and hedonic brain centers regulating energy balance in the rat. PLoS One 9: e97651, 2014.
 281.Schafer U, Harhammer R, Boomgaarden M, Sohr R, Ott T, Henklein P, Repke H. Binding of cholecystokinin‐8 (CCK‐8) peptide derivatives to CCKA and CCKB receptors. J Neurochem 62: 1426‐1431, 1994.
 282.Schopf V, Kollndorfer K, Pollak M, Mueller CA, Freiherr J. Intranasal insulin influences the olfactory performance of patients with smell loss, dependent on the body mass index: A pilot study. Rhinology 53: 371‐378, 2015.
 283.Schwartz GJ. Roles for gut vagal sensory signals in determining energy availability and energy expenditure. Brain Res 1693: 151‐153, 2018.
 284.Schwartz GJ, Whitney A, Skoglund C, Castonguay TW, Moran TH. Decreased responsiveness to dietary fat in Otsuka Long‐Evans Tokushima fatty rats lacking CCK‐A receptors. Am J Phys 277: R1144‐R1151, 1999.
 285.Schwartz MW, Figlewicz DP, Baskin DG, Woods SC, Porte D Jr. Insulin in the brain: A hormonal regulator of energy balance. Endocr Rev 13: 387‐414, 1992.
 286.Seeley RJ, Yagaloff KA, Fisher SL, Burn P, Thiele TE, van Dijk G, Baskin DG, Schwartz MW. Melanocortin receptors in leptin effects. Nature 390: 349, 1997.
 287.Seroogy KB, Fallon JH. Forebrain projections from cholecystokininlike‐immunoreactive neurons in the rat midbrain. J Comp Neurol 279: 415‐435, 1989.
 288.Shahouzehi B, Shokoohi M, Najafipour H. The effect of opium addiction on serum adiponectin and leptin levels in male subjects: A case control study from Kerman Coronary Artery Disease Risk Factors Study (KERCADRS). EXCLI J 12: 916‐923, 2013.
 289.Shalev U, Yap J, Shaham Y. Leptin attenuates acute food deprivation‐induced relapse to heroin seeking. J Neurosci 21: RC129, 2001.
 290.Shi YC, Lin Z, Lau J, Zhang H, Yagi M, Kanzler I, Sainsbury A, Herzog H, Lin S. PYY3‐36 and pancreatic polypeptide reduce food intake in an additive manner via distinct hypothalamic dependent pathways in mice. Obesity (Silver Spring) 21: E669‐E678, 2013.
 291.Sipols AJ, Stuber GD, Klein SN, Higgins MS, Figlewicz DP. Insulin and raclopride combine to decrease short‐term intake of sucrose solutions. Peptides 21: 1361‐1367, 2000.
 292.Small DM. Taste representation in the human insula. Brain Struct Funct 214: 551‐561, 2010.
 293.Stuber GD, Sparta DR, Stamatakis AM, van Leeuwen WA, Hardjoprajitno JE, Cho S, Tye KM, Kempadoo KA, Zhang F, Deisseroth K, Bonci A. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475: 377‐380, 2011.
 294.Stuber GD, Wise RA. Lateral hypothalamic circuits for feeding and reward. Nat Neurosci 19: 198‐205, 2016.
 295.Suchankova P, Yan J, Schwandt ML, Stangl BL, Caparelli EC, Momenan R, Jerlhag E, Engel JA, Hodgkinson CA, Egli M, Lopez MF, Becker HC, Goldman D, Heilig M, Ramchandani VA, Leggio L. The glucagon‐like peptide‐1 receptor as a potential treatment target in alcohol use disorder: Evidence from human genetic association studies and a mouse model of alcohol dependence. Transl Psychiatry 5: e583, 2015.
 296.Sun F, Lei Y, You J, Li C, Sun L, Garza J, Zhang D, Guo M, Scherer PE, Lodge D, Lu XY. Adiponectin modulates ventral tegmental area dopamine neuron activity and anxiety‐related behavior through AdipoR1. Mol Psychiatry 24: 126‐144, 2019.
 297.Sun J, Gao Y, Yao T, Huang Y, He Z, Kong X, Yu KJ, Wang RT, Guo H, Yan J, Chang Y, Chen H, Scherer PE, Liu T, Williams KW. Adiponectin potentiates the acute effects of leptin in arcuate Pomc neurons. Mol Metab 5: 882‐891, 2016.
 298.Sustkova‐Fiserova M, Charalambous C, Havlickova T, Lapka M, Jerabek P, Puskina N, Syslova K. Alterations in rat accumbens endocannabinoid and GABA content during fentanyl treatment: The role of ghrelin. Int J Mol Sci 18: 2486, 2017.
 299.Suyama S, Lei W, Kubota N, Kadowaki T, Yada T. Adiponectin at physiological level glucose‐independently enhances inhibitory postsynaptic current onto NPY neurons in the hypothalamic arcuate nucleus. Neuropeptides 65: 1‐9, 2017.
 300.Suyama S, Maekawa F, Maejima Y, Kubota N, Kadowaki T, Yada T. Glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding. Sci Rep 6: 30796, 2016.
 301.Takayama K, Johno Y, Hayashi K, Yakabi K, Tanaka T, Ro S. Expression of c‐Fos protein in the brain after intravenous injection of ghrelin in rats. Neurosci Lett 417: 292‐296, 2007.
 302.Tataranni PA, Gautier J‐F, Chen K, Uecker A, Bandy D, Salbe AD, Pratley RE, Lawson M, Reiman EM, Ravussin E. Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc Natl Acad Sci 96: 4569‐4574, 1999.
 303.Tellez LA, Han W, Zhang X, Ferreira TL, Perez IO, Shammah‐Lagnado SJ, van den Pol AN, de Araujo IE. Separate circuitries encode the hedonic and nutritional values of sugar. Nat Neurosci 19: 465‐470, 2016.
 304.Tellez LA, Medina S, Han W, Ferreira JG, Licona‐Limon P, Ren X, Lam TT, Schwartz GJ, de Araujo IE. A gut lipid messenger links excess dietary fat to dopamine deficiency. Science 341: 800‐802, 2013.
 305.Thomsen M, Holst JJ, Molander A, Linnet K, Ptito M, Fink‐Jensen A. Effects of glucagon‐like peptide 1 analogs on alcohol intake in alcohol‐preferring vervet monkeys. Psychopharmacology 236: 603‐611, 2019.
 306.Tomas A, Jones B, Leech C. New insights into beta‐cell GLP‐1 receptor and cAMP signaling. J Mol Biol 432: 1347‐1366, 2020.
 307.Trellakis S, Tagay S, Fischer C, Rydleuskaya A, Scherag A, Bruderek K, Schlegl S, Greve J, Canbay AE, Lang S, Brandau S. Ghrelin, leptin and adiponectin as possible predictors of the hedonic value of odors. Regul Pept 167: 112‐117, 2011.
 308.Trevaskis JL, Turek VF, Griffin PS, Wittmer C, Parkes DG, Roth JD. Multi‐hormonal weight loss combinations in diet‐induced obese rats: Therapeutic potential of cholecystokinin? Physiol Behav 100: 187‐195, 2010.
 309.Umehara H, Fabbri R, Provensi G, Passani MB. The hypophagic factor oleoylethanolamide differentially increases c‐fos expression in appetite regulating centres in the brain of wild type and histamine deficient mice. Pharmacol Res 113: 100‐107, 2016.
 310.Unger JW, Livingston JN, Moss AM. Insulin receptors in the central nervous system: Localization, signalling mechanisms and functional aspects. Prog Neurobiol 36: 343‐362, 1991.
 311.Uribe‐Cerda S, Morselli E, Perez‐Leighton C. Updates on the neurobiology of food reward and their relation to the obesogenic environment. Curr Opin Endocrinol Diabetes Obes 25: 292‐297, 2018.
 312.Vaccarino FJ, Rankin J. Nucleus accumbens cholecystokinin (CCK) can either attenuate or potentiate amphetamine‐induced locomotor activity: Evidence for rostral‐caudal differences in accumbens CCK function. Behav Neurosci 103: 831‐836, 1989.
 313.van Bloemendaal L, IJzerman RG, Ten Kulve JS, Barkhof F, Konrad RJ, Drent ML, Veltman DJ, Diamant M. GLP‐1 receptor activation modulates appetite‐ and reward‐related brain areas in humans. Diabetes 63: 4186‐4196, 2014.
 314.van Bloemendaal L, Ten Kulve JS, la Fleur SE, Ijzerman RG, Diamant M. Effects of glucagon‐like peptide 1 on appetite and body weight: Focus on the CNS. J Endocrinol 221: T1‐T16, 2014.
 315.van Bloemendaal L, Veltman DJ, ten Kulve JS, Drent ML, Barkhof F, Diamant M, IJzerman RG. Emotional eating is associated with increased brain responses to food‐cues and reduced sensitivity to GLP‐1 receptor activation. Obesity (Silver Spring) 23: 2075‐2082, 2015.
 316.Vickroy TW, Bianchi BR. Pharmacological and mechanistic studies of cholecystokinin‐facilitated [3H]dopamine efflux from rat nucleus accumbens. Neuropeptides 13: 43‐50, 1989.
 317.Volkow ND, Wang G‐J, Baler RD. Reward, dopamine and the control of food intake: Implications for obesity. Trends Cogn Sci 15: 37‐46, 2011.
 318.Wand GS, Schumann H. Relationship between plasma adrenocorticotropin, hypothalamic opioid tone, and plasma leptin1. J Clin Endocrinol Metab 83: 2138‐2142, 1998.
 319.Werther GA, Hogg A, Oldfield BJ, McKinley MJ, Figdor R, Allen AM, Mendelsohn FA. Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry. Endocrinology 121: 1562‐1570, 1987.
 320.West DB, Fey D, Woods SC. Cholecystokinin persistently suppresses meal size but not food intake in free‐feeding rats. Am J Phys 246: R776‐R787, 1984.
 321.Whiting L, McCutcheon JE, Boyle CN, Roitman MF, Lutz TA. The area postrema (AP) and the parabrachial nucleus (PBN) are important sites for salmon calcitonin (sCT) to decrease evoked phasic dopamine release in the nucleus accumbens (NAc). Physiol Behav 176: 9‐16, 2017.
 322.Wilkinson M, Brown R, Imran SA, Ur E. Adipokine gene expression in brain and pituitary gland. Neuroendocrinology 86: 191‐209, 2007.
 323.Wilson C, Nomikos GG, Collu M, Fibiger HC. Dopaminergic correlates of motivated behavior: Importance of drive. J Neurosci 15: 5169‐5178, 1995.
 324.Woods SC, Seeley RJ, Baskin DG, Schwartz MW. Insulin and the blood‐brain barrier. Curr Pharm Des 9: 795‐800, 2003.
 325.Wren AM, Small CJ, Abbott CR, Dhillo WS, Seal LJ, Cohen MA, Batterham RL, Taheri S, Stanley SA, Ghatei MA, Bloom SR. Ghrelin causes hyperphagia and obesity in rats. Diabetes 50: 2540‐2547, 2001.
 326.Wren AM, Small CJ, Fribbens CV, Neary NM, Ward HL, Seal LJ, Ghatei MA, Bloom SR. The hypothalamic mechanisms of the hypophysiotropic action of ghrelin. Neuroendocrinology 76: 316‐324, 2002.
 327.Yamaguchi E, Yasoshima Y, Shimura T. Systemic administration of anorexic gut peptide hormones impairs hedonic‐driven sucrose consumption in mice. Physiol Behav 171: 158‐164, 2017.
 328.Yang Y, Chen M, Georgeson KE, Harmon CM. Mechanism of oleoylethanolamide on fatty acid uptake in small intestine after food intake and body weight reduction. Am J Phys Regul Integr Comp Phys 292: R235‐R241, 2007.
 329.You ZB, Wang B, Gardner EL, Wise RA. Cocaine and cocaine expectancy increase growth hormone, ghrelin, GLP‐1, IGF‐1, adiponectin, and corticosterone while decreasing leptin, insulin, GIP, and prolactin. Pharmacol Biochem Behav 176: 53‐56, 2019.
 330.Zeeni N, Nadkarni N, Bell JD, Even PC, Fromentin G, Tome D, Darcel N. Peripherally injected cholecystokinin‐induced neuronal activation is modified by dietary composition in mice. NeuroImage 50: 1560‐1565, 2010.
 331.Zhang Y, Chua S Jr. Leptin function and regulation. Compr Physiol 8: 351‐369, 2017.
 332.Zhang Y, Kahng MW, Elkind JA, Weir VR, Hernandez NS, Stein LM, Schmidt HD. Activation of GLP‐1 receptors attenuates oxycodone taking and seeking without compromising the antinociceptive effects of oxycodone in rats. Neuropsychopharmacology, 45 (3): 451‐461, 2019.
 333.Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 494: 528‐548, 2006.
 334.Zipf WB, O'Dorisio TM, Cataland S, Dixon K. Pancreatic polypeptide responses to protein meal challenges in obese but otherwise normal children and obese children with Prader‐Willi syndrome. J Clin Endocrinol Metab 57: 1074‐1080, 1983.
 335.Zipf WB, O'Dorisio TM, Cataland S, Sotos J. Blunted pancreatic polypeptide responses in children with obesity of Prader‐Willi syndrome. J Clin Endocrinol Metab 52: 1264‐1266, 1981.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Anica Klockars, Allen S. Levine, Mitchell A. Head, Claudio E. Perez‐Leighton, Catherine M. Kotz, Pawel K. Olszewski. Impact of Gut and Metabolic Hormones on Feeding Reward. Compr Physiol 2021, 11: 1425-1447. doi: 10.1002/cphy.c190042