Comprehensive Physiology Wiley Online Library

Polycystic Ovary Syndrome and the Neuroendocrine Consequences of Androgen Excess

Full Article on Wiley Online Library



Abstract

Polycystic ovary syndrome (PCOS) is a major endocrine disorder strongly associated with androgen excess and frequently leading to female infertility. Although classically considered an ovarian disease, altered neuroendocrine control of gonadotropin‐releasing hormone (GnRH) neurons in the brain and abnormal gonadotropin secretion may underpin PCOS presentation. Defective regulation of GnRH pulse generation in PCOS promotes high luteinizing hormone (LH) pulsatile secretion, which in turn overstimulates ovarian androgen production. Early and emerging evidence from preclinical models suggests that maternal androgen excess programs abnormalities in developing neuroendocrine circuits that are associated with PCOS pathology, and that these abnormalities are sustained by postpubertal elevation of endogenous androgen levels. This article will discuss experimental evidence, from the clinic and in preclinical animal models, that has significantly contributed to our understanding of how androgen excess influences the assembly and maintenance of neuroendocrine impairments in the female brain. Abnormal central gamma‐aminobutyric acid (GABA) signaling has been identified in both patients and preclinical models as a possible link between androgen excess and elevated GnRH/LH secretion. Enhanced GABAergic innervation and drive to GnRH neurons is suspected to contribute to the pathogenesis and early manifestation of neuroendocrine derangement in PCOS. Accordingly, this article also provides an overview of GABA regulation of GnRH neuron function from prenatal development to adulthood to discuss possible avenues for future discovery research and therapeutic interventions. © 2022 American Physiological Society. Compr Physiol 12:3347‐3369, 2022.

Figure 1. Figure 1. The cardinal features and heterogeneous manifestation of PCOS. Current diagnostic criteria for PCOS include androgen excess, menstrual irregularities, and polycystic ovarian morphology (PCOM) as the cardinal features of the disease. Other comorbidities, strongly associated with PCOS in the general population, are also illustrated. As androgen excess is a hallmark of PCOS, it is unclear whether menstrual irregularities and PCOM without hyperandrogenemia accurately represent PCOS. Adapted, with permission, from Lizneva D, et al., 2016 138.
Figure 2. Figure 2. An overview of the hypothalamic‐pituitary‐gonadal (HPG) axis in healthy women and women with PCOS. Panel (A) illustrates the normal HPG axis in females throughout the follicular phase. GnRH neurons secrete pulsatile GnRH into the hypophyseal portal system. In the pituitary gland, GnRH signaling coordinates the secretion of luteinizing hormone (LH) and follicle‐stimulating hormone (FSH). Both gonadotropins act downstream to orchestrate folliculogenesis and the synthesis of steroid hormones such as estrogens and progesterone. Gonadal steroid hormones act on steroid‐sensitive afferent neurons in the brain to ultimately control GnRH neuron activity. Panel (B) indicates the relationship between impaired gonadal steroid‐mediated negative feedback and, high frequency LH secretion in PCOS patients. Elevated LH signaling leads to increased ovarian androgen production reduced FSH impairs follicular development. Inappropriately high levels of androgens indirectly maintain the impaired negative feedback in the brain.
Figure 3. Figure 3. GABAergic signaling to GnRH neurons. GABA is produced through the catalysis of glutamate by the glutamic acid decarboxylase (GAD) enzyme. Next, GABA is efficiently packaged into presynaptic vesicles containing vesicular GABA transporter (VGAT) for release into the synaptic cleft. The expression of chloride (Cl) cotransporters dictates the intracellular Cl concentration in GnRH neurons. High Na+‐K+‐Cl cotransporter 1 (NKCC1) expression in GnRH neurons increases Cl inward flux, bringing the membrane potential to the depolarized reversal potential for Cl and establishing a depolarized membrane potential for GABA. Thus, GABA binding to its GABAAR, a Cl channel, promotes neuronal excitation of GnRH neurons. GABA also binds to GABAAB receptors, which are present at either presynaptic or postsynaptic sites. Through this signaling pathway, GABA may silence presynaptic GABAergic neurons through the inhibition of voltage‐gated Ca2+ channels and/or silence postsynaptic GnRH neurons through activation of G protein‐coupled inwardly‐rectifying K+ (GIRK) channels.
Figure 4. Figure 4. Enhanced putative GABAergic input to GnRH neurons is evident prior to puberty in PCOS‐like mice. (A) Representative confocal images of labeled GnRH neurons (green) and vesicular GABA transporter (VGAT) (red puncta) in the rostral preoptic area of the brain (rPOA) of control and prenatally androgenized (PNA) mice at postnatal day 25 (Scale bar = 10 μm). Insets show labeled VGAT close appositions to GnRH neuron soma (i) and dendrite (ii and iii). White arrowheads point to putative GABA inputs to the nonspiny GnRH neuron membrane and blue arrowheads show labeled VGAT puncta associated with spines (Scale bar = 5 μm). Figure 02[p. 004]/with permission from American Society for Clinical Investigation. (B‐D) Histograms (mean ± SEM) illustrate the significant increase in GABA appositions and density to GnRH neurons in PNA mice compared to controls at a prepubertal time point. Adapted, with permission, from Silva MSB, et al., 2018 214.
Figure 5. Figure 5. Long‐term androgen receptor (AR) blockade reverses GnRH neuron circuit abnormalities in adult PCOS‐like mice. (A) Projected 3D reconstruction of a GnRH neuron from an adult prenatally androgenized (PNA) mouse illustrating labeled vesicular GABA transporter (VGAT) puncta in close association with GnRH neurons. Adapted from Silva MSB, et al., 2018 214, Figure 03[p. 005]/with permission from American Society for Clinical Investigation. (B) Histogram (mean ± SEM) showing the elevated putative GABAergic contact to GnRH neurons in adult PNA mice compared with controls conditions; however, chronic treatment with flutamide (Flut), an AR antagonist, reverses neuroanatomical abnormalities. Adapted, with permission, from Silva MSB, et al., 2018 214.
Figure 6. Figure 6. Development of altered GABAergic innervation to GnRH neurons induced by prenatal androgenization. In utero androgen elevation may be achieved through either direct prenatal androgenized (PNA) or prenatal anti‐Müllerian hormone (PAMH) exposure during late pregnancy in mice 232,236. During prenatal development, overactivation of androgen signaling in steroid‐sensitive GABAergic afferents may program altered brain wiring. Over prepubertal life, altered GABAergic innervation on GnRH neurons can be detected in the hypothalamus, which may promote the increase of GABAergic transmission to GnRH neurons and disturb GnRH neuron activity. During pubertal development and maturation of the reproductive system, homeostatic control is lost, allowing the manifestation of neuroendocrine impairments of PCOS such as elevated GnRH/LH pulse secretion.


Figure 1. The cardinal features and heterogeneous manifestation of PCOS. Current diagnostic criteria for PCOS include androgen excess, menstrual irregularities, and polycystic ovarian morphology (PCOM) as the cardinal features of the disease. Other comorbidities, strongly associated with PCOS in the general population, are also illustrated. As androgen excess is a hallmark of PCOS, it is unclear whether menstrual irregularities and PCOM without hyperandrogenemia accurately represent PCOS. Adapted, with permission, from Lizneva D, et al., 2016 138.


Figure 2. An overview of the hypothalamic‐pituitary‐gonadal (HPG) axis in healthy women and women with PCOS. Panel (A) illustrates the normal HPG axis in females throughout the follicular phase. GnRH neurons secrete pulsatile GnRH into the hypophyseal portal system. In the pituitary gland, GnRH signaling coordinates the secretion of luteinizing hormone (LH) and follicle‐stimulating hormone (FSH). Both gonadotropins act downstream to orchestrate folliculogenesis and the synthesis of steroid hormones such as estrogens and progesterone. Gonadal steroid hormones act on steroid‐sensitive afferent neurons in the brain to ultimately control GnRH neuron activity. Panel (B) indicates the relationship between impaired gonadal steroid‐mediated negative feedback and, high frequency LH secretion in PCOS patients. Elevated LH signaling leads to increased ovarian androgen production reduced FSH impairs follicular development. Inappropriately high levels of androgens indirectly maintain the impaired negative feedback in the brain.


Figure 3. GABAergic signaling to GnRH neurons. GABA is produced through the catalysis of glutamate by the glutamic acid decarboxylase (GAD) enzyme. Next, GABA is efficiently packaged into presynaptic vesicles containing vesicular GABA transporter (VGAT) for release into the synaptic cleft. The expression of chloride (Cl) cotransporters dictates the intracellular Cl concentration in GnRH neurons. High Na+‐K+‐Cl cotransporter 1 (NKCC1) expression in GnRH neurons increases Cl inward flux, bringing the membrane potential to the depolarized reversal potential for Cl and establishing a depolarized membrane potential for GABA. Thus, GABA binding to its GABAAR, a Cl channel, promotes neuronal excitation of GnRH neurons. GABA also binds to GABAAB receptors, which are present at either presynaptic or postsynaptic sites. Through this signaling pathway, GABA may silence presynaptic GABAergic neurons through the inhibition of voltage‐gated Ca2+ channels and/or silence postsynaptic GnRH neurons through activation of G protein‐coupled inwardly‐rectifying K+ (GIRK) channels.


Figure 4. Enhanced putative GABAergic input to GnRH neurons is evident prior to puberty in PCOS‐like mice. (A) Representative confocal images of labeled GnRH neurons (green) and vesicular GABA transporter (VGAT) (red puncta) in the rostral preoptic area of the brain (rPOA) of control and prenatally androgenized (PNA) mice at postnatal day 25 (Scale bar = 10 μm). Insets show labeled VGAT close appositions to GnRH neuron soma (i) and dendrite (ii and iii). White arrowheads point to putative GABA inputs to the nonspiny GnRH neuron membrane and blue arrowheads show labeled VGAT puncta associated with spines (Scale bar = 5 μm). Figure 02[p. 004]/with permission from American Society for Clinical Investigation. (B‐D) Histograms (mean ± SEM) illustrate the significant increase in GABA appositions and density to GnRH neurons in PNA mice compared to controls at a prepubertal time point. Adapted, with permission, from Silva MSB, et al., 2018 214.


Figure 5. Long‐term androgen receptor (AR) blockade reverses GnRH neuron circuit abnormalities in adult PCOS‐like mice. (A) Projected 3D reconstruction of a GnRH neuron from an adult prenatally androgenized (PNA) mouse illustrating labeled vesicular GABA transporter (VGAT) puncta in close association with GnRH neurons. Adapted from Silva MSB, et al., 2018 214, Figure 03[p. 005]/with permission from American Society for Clinical Investigation. (B) Histogram (mean ± SEM) showing the elevated putative GABAergic contact to GnRH neurons in adult PNA mice compared with controls conditions; however, chronic treatment with flutamide (Flut), an AR antagonist, reverses neuroanatomical abnormalities. Adapted, with permission, from Silva MSB, et al., 2018 214.


Figure 6. Development of altered GABAergic innervation to GnRH neurons induced by prenatal androgenization. In utero androgen elevation may be achieved through either direct prenatal androgenized (PNA) or prenatal anti‐Müllerian hormone (PAMH) exposure during late pregnancy in mice 232,236. During prenatal development, overactivation of androgen signaling in steroid‐sensitive GABAergic afferents may program altered brain wiring. Over prepubertal life, altered GABAergic innervation on GnRH neurons can be detected in the hypothalamus, which may promote the increase of GABAergic transmission to GnRH neurons and disturb GnRH neuron activity. During pubertal development and maturation of the reproductive system, homeostatic control is lost, allowing the manifestation of neuroendocrine impairments of PCOS such as elevated GnRH/LH pulse secretion.
References
 1.Abbott DH, Rayome BH, Dumesic DA, Lewis KC, Edwards AK, Wallen K, Wilson ME, Appt SE, Levine JE. Clustering of PCOS‐like traits in naturally hyperandrogenic female rhesus monkeys. Hum Reprod 32: 1‐14, 2017.
 2.Abbott DH, Rogers J, Dumesic DA, Levine JE. Naturally occurring and experimentally induced rhesus macaque models for polycystic ovary syndrome: Translational gateways to clinical application. Med Sci (Basel, Switzerland) 7: 107, 2019.
 3.Adams J, Polson DW, Franks S. Prevalence of polycystic ovaries in women with anovulation and idiopathic hirsutism. Br Med J (Clin Res Ed) 293: 355‐359, 1986.
 4.Allaire PD, Ritter B, Thomas S, Burman JL, Denisov AY, Legendre‐Guillemin V, Harper SQ, Davidson BL, Gehring K, McPherson PS. Connecdenn, a novel DENN domain‐containing protein of neuronal clathrin‐coated vesicles functioning in synaptic vesicle endocytosis. J Neurosci 26: 13202‐13212, 2006.
 5.Andrisse S, Billings K, Xue P, Wu S. Insulin signaling displayed a differential tissue specific response to low dose DHT in female mice. Am J Physiol Metab 314: E353‐E365, 2017.
 6.Aponte Y, Atasoy D, Sternson SM. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci 14: 351‐355, 2011.
 7.Azziz R, Carmina E, Chen Z, Dunaif A, Laven JSE, Legro RS, Lizneva D, Natterson‐Horowtiz B, Teede HJ, Yildiz BO. Polycystic ovary syndrome. Nat Rev Dis Prim 2: 16057, 2016.
 8.Azziz R, Carmina E, Dewailly D, Diamanti‐Kandarakis E, Escobar‐Morreale HF, Futterweit W, Janssen OE, Legro RS, Norman RJ, Taylor AE, Witchel SF. The androgen excess and PCOS Society criteria for the polycystic ovary syndrome: The complete task force report. Fertil Steril 91: 456‐488, 2009.
 9.Azziz R, Marin C, Hoq L, Badamgarav E, Song P. Health care‐related economic burden of the polycystic ovary syndrome during the reproductive life span. J Clin Endocrinol Metab 90: 4650‐4658, 2005.
 10.Baillargeon J‐P, Nestler JE. Commentary: Polycystic ovary syndrome: A syndrome of ovarian hypersensitivity to insulin? J Clin Endocrinol Metab 91: 22‐24, 2006.
 11.Barber TM, Dimitriadis GK, Andreou A, Franks S. Polycystic ovary syndrome: Insight into pathogenesis and a common association with insulin resistance. Clin Med (Northfield Il) 16: 262‐266, 2016.
 12.Barnes RB, Rosenfield RL, Ehrmann DA, Cara JF, Cuttler L, Levitsky LL, Rosenthal IM. Ovarian hyperandrogynism as a result of congenital adrenal virilizing disorders: Evidence for perinatal masculinization of neuroendocrine function in women. J Clin Endocrinol Metab 79: 1328‐1333, 1994.
 13.Barrett ES, Hoeger KM, Sathyanarayana S, Abbott DH, Redmon JB, Nguyen RHN, Swan SH. Anogenital distance in newborn daughters of women with polycystic ovary syndrome indicates fetal testosterone exposure. J Dev Orig Health Dis 9: 307‐314, 2018.
 14.Bashour NM, Wray S. Progesterone directly and rapidly inhibits GnRH neuronal activity via progesterone receptor membrane component 1. Endocrinology 153: 4457‐4469, 2012.
 15.Belchetz PE, Plant TM, Nakai Y, Keogh EJ, Knobil E. Hypophysial responses to continuous and intermittent delivery of hypopthalamic gonadotropin‐releasing hormone. Science 202: 631‐633, 1978.
 16.Ben‐Ari Y. Excitatory actions of gaba during development: The nature of the nurture. Nat Rev Neurosci 3: 728‐739, 2002.
 17.Berg T, Silveira MA, Moenter SM. Prepubertal development of GABAergic transmission to gonadotropin‐releasing hormone (GnRH) neurons and postsynaptic response are altered by prenatal androgenization. J Neurosci 38: 2283‐2293, 2018.
 18.Berga SL, Guzick DS, Winters SJ. Increased luteinizing hormone and alpha‐subunit secretion in women with hyperandrogenic anovulation. J Clin Endocrinol Metab 77: 895‐901, 1993.
 19.Berga SL, Yen SC. Opioidergic regulation of LH pulsatility in women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 30: 177‐184, 1989.
 20.Bhattarai JP, Park SA, Park JB, Lee SY, Herbison AE, Ryu PD, Han SK. Tonic extrasynaptic GABAA receptor currents control gonadotropin‐releasing hormone neuron excitability in the mouse. Endocrinology 152: 1551‐1561, 2011.
 21.Bilo L, Meo R. Polycystic ovary syndrome in women using valproate: A review. Gynecol Endocrinol 24: 562‐570, 2008.
 22.Blank S, McCartney C, Helm K, Marshall J. Neuroendocrine effects of androgens in adult polycystic ovary syndrome and female puberty. Semin Reprod Med 25: 352‐359, 2007.
 23.Blank SK, McCartney CR, Chhabra S, Helm KD, Eagleson CA, Chang RJ, Marshall JC. Modulation of gonadotropin‐releasing hormone pulse generator sensitivity to progesterone inhibition in hyperandrogenic adolescent girls: Implications for regulation of pubertal maturation. J Clin Endocrinol Metab 94: 2360‐2366, 2009.
 24.Blasco V, Pinto FM, Fernández‐Atucha A, Prados N, Tena‐Sempere M, Fernández‐Sánchez M, Candenas L. Altered expression of the kisspeptin/KISS1R and neurokinin B/NK3R systems in mural granulosa and cumulus cells of patients with polycystic ovarian syndrome. J Assist Reprod Genet 36: 113‐120, 2019.
 25.Bowery N. GABAB receptors and their significance in mammalian pharmacology. Trends Pharmacol Sci 10: 401‐407, 1989.
 26.Bowery NG. GABAB receptor pharmacology. Annu Rev Pharmacol Toxicol 33: 109‐147, 1993.
 27.Brock O, De Mees C, Bakker J. Hypothalamic expression of oestrogen receptor α and androgen receptor is sex‐, age‐ and region‐dependent in mice. J Neuroendocrinol 27: 264‐276, 2015.
 28.Brown RE, Wilkinson DA, Imran SA, Caraty A, Wilkinson M. Hypothalamic kiss1 mRNA and kisspeptin immunoreactivity are reduced in a rat model of polycystic ovary syndrome (PCOS). Brain Res 1467: 1‐9, 2012.
 29.Burger LL, Vanacker C, Phumsatitpong C, Wagenmaker ER, Wang L, Olson DP, Moenter SM. Identification of genes enriched in GnRH neurons by translating ribosome affinity purification and RNAseq in mice. Endocrinology 159: 1922‐1940, 2018.
 30.Caanen MR, Kuijper EA, Hompes PG, Kushnir MM, Rockwood AL, Meikle WA, Homburg R, Lambalk CB. Mass spectrometry methods measured androgen and estrogen concentrations during pregnancy and in newborns of mothers with polycystic ovary syndrome. Eur J Endocrinol 174: 25‐32, 2016.
 31.Caldwell ASL, Edwards MC, Desai R, Jimenez M, Gilchrist RB, Handelsman DJ, Walters KA. Neuroendocrine androgen action is a key extraovarian mediator in the development of polycystic ovary syndrome. Proc Natl Acad Sci U S A 114: E3334‐E3343, 2017.
 32.Caldwell ASL, Eid S, Kay CR, Jimenez M, McMahon AC, Desai R, Allan CM, Smith JT, Handelsman DJ, Walters KA. Haplosufficient genomic androgen receptor signaling is adequate to protect female mice from induction of polycystic ovary syndrome features by prenatal hyperandrogenization. Endocrinology 156: 1441‐1452, 2015.
 33.Caldwell ASL, Middleton LJ, Jimenez M, Desai R, McMahon AC, Allan CM, Handelsman DJ, Walters KA. Characterization of reproductive, metabolic, and endocrine features of polycystic ovary syndrome in female hyperandrogenic mouse models. Endocrinology 155: 3146‐3159, 2014.
 34.Campbell RE, Han S‐K, Herbison AE. Biocytin filling of adult gonadotropin‐releasing hormone neurons in situ reveals extensive, spiny, dendritic processes. Endocrinology 146: 1163‐1169, 2005.
 35.Campbell RE, Suter KJ. Redefining the gonadotrophin‐releasing hormone neurone dendrite. J Neuroendocrinol 22: 650‐658, 2010.
 36.Casoni F, Ian Hutchins B, Donohue D, Fornaro M, Condie BG, Wray S. SDF and GABA interact to regulate axophilic migration of GnRH neurons. J Cell Sci 125: 5015‐5025, 2012.
 37.Catalano PN, Bonaventura MM, Silveyra P, Bettler B, Libertun C, Lux‐Lantos VA. GABA(B1) knockout mice reveal alterations in prolactin levels, gonadotropic axis, and reproductive function. Neuroendocrinology 82: 294‐305, 2005.
 38.Catalano PN, Di Giorgio N, Bonaventura MM, Bettler B, Libertun C, Lux‐Lantos VA. Lack of functional GABA(B) receptors alters GnRH physiology and sexual dimorphic expression of GnRH and GAD‐67 in the brain. Am J Physiol Endocrinol Metab 298: E683‐E696, 2010.
 39.Cernea M, Phillips R, Padmanabhan V, Coolen LM, Lehman MN. Prenatal testosterone exposure decreases colocalization of insulin receptors in kisspeptin/neurokinin B/dynorphin and agouti‐related peptide neurons of the adult ewe. Eur J Neurosci 44: 2557‐2568, 2016.
 40.Cesta CE, Öberg AS, Ibrahimson A, Yusuf I, Larsson H, Almqvist C, D'Onofrio BM, Bulik CM, Fernández De La Cruz L, Mataix‐Cols D, Landén M, Rosenqvist MA. Maternal polycystic ovary syndrome and risk of neuropsychiatric disorders in offspring: Prenatal androgen exposure or genetic confounding? Psychol Med 12: 1‐9, 2019.
 41.Chachlaki K, Malone SA, Qualls‐Creekmore E, Hrabovszky E, Münzberg H, Giacobini P, Ango F, Prevot V. Phenotyping of nNOS neurons in the postnatal and adult female mouse hypothalamus. J Comp Neurol 525: 3177‐3189, 2017.
 42.Chang WY, Knochenhauer ES, Bartolucci AA, Azziz R. Phenotypic spectrum of polycystic ovary syndrome: Clinical and biochemical characterization of the three major clinical subgroups. Fertil Steril 83: 1717‐1723, 2005.
 43.Chappell PE, Lydon JP, Conneely OM, Malley BWO, Levine JE. Endocrine defects in mice carrying a null mutation for the progesterone receptor gene. Endocrinology 138: 4147‐4152, 1997.
 44.Chaudhry FA, Reimer RJ, Bellocchio EE, Danbolt NC, Osen KK, Edwards RH, Storm‐Mathisen J. The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J Neurosci 18: 9733‐9750, 1998.
 45.Chen Z‐J, Zhao H, He L, Shi Y, Qin Y, Shi Y, Li Z, You L, Zhao J, Liu J, Liang X, Zhao X, Zhao J, Sun Y, Zhang B, Jiang H, Zhao D, Bian Y, Gao X, Geng L, Li Y, Zhu D, Sun X, Xu J, Hao C, Ren C, Zhang Y, Chen S, Zhang W, Yang A, Yan J, Li Y, Ma J, Zhao Y. Genome‐wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet 43: 55‐59, 2011.
 46.Cheng XB, Jimenez M, Desai R, Middleton LJ, Joseph SR, Ning G, Allan CM, Smith JT, Handelsman DJ, Walters KA. Characterizing the neuroendocrine and ovarian defects of androgen receptor‐knockout female mice. AJP Endocrinol Metab 305: E717‐E726, 2013.
 47.Cheong RY, Porteous R, Chambon P, Ábrahám I, Herbison AE. Effects of neuron‐specific estrogen receptor (ER) α and ERβ deletion on the acute estrogen negative feedback mechanism in adult female mice. Endocrinology 155: 1418‐1427, 2014.
 48.Cimino I, Casoni F, Liu X, Messina A, Parkash J, Jamin SP, Catteau‐Jonard S, Collier F, Baroncini M, Dewailly D, Pigny P, Prescott M, Campbell R, Herbison AE, Prevot V, Giacobini P. Novel role for anti‐Müllerian hormone in the regulation of GnRH neuron excitability and hormone secretion. Nat Commun 7: 10055, 2016.
 49.Claahsen‐van der Grinten HL, Stikkelbroeck NMML, Sweep CGJ, Hermus ARMM, Otten BJ. Fertility in patients with congenital adrenal hyperplasia. J Pediatr Endocrinol Metab 19: 677‐685, 2006.
 50.Clarke IJ, Burman KJ, Doughton BW, Cummins JT. Effects of constant infusion of gonadotrophin‐releasing hormone in ovariectomized ewes with hypothalamo‐pituitary disconnection: Further evidence for differential control of LH and FSH secretion and the lack of a priming effect. J Endocrinol 111: 43‐49, 1986.
 51.Clarke IJ, Cummins JT. The temporal relationship between gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) secretion in ovariectomized ewes. Endocrinology 111: 1737‐1739, 1982.
 52.Clarke IJ, Cummins JT. GnRH pulse frequency determines LH pulse amplitude by altering the amount of releasable LH in the pituitary glands of ewes. J Reprod Fertil 73: 425‐431, 1985.
 53.Clarkson J, Han SY, Piet R, McLennan T, Kane GM, Ng J, Porteous RW, Kim JS, Colledge WH, Iremonger KJ, Herbison AE. Definition of the hypothalamic GnRH pulse generator in mice. Proc Natl Acad Sci U S A 114: E10216‐E10223, 2017.
 54.Conde K, Fabelo C, Krause WC, Propst R, Goethel J, Fischer D, Hur J, Meza C, Ingraham HA, Wagner EJ. Testosterone rapidly augments retrograde endocannabinoid signaling in proopiomelanocortin neurons to suppress glutamatergic input from steroidogenic factor 1 neurons via upregulation of diacylglycerol lipase‐α. Neuroendocrinology 105: 341‐356, 2017.
 55.Constantin S, Iremonger KJ, Herbison AE. In vivo recordings of GnRH neuron firing reveal heterogeneity and dependence upon GABAA receptor signaling. J Neurosci 33: 9394‐9401, 2013.
 56.Constantin S, Klenke U, Wray S. The calcium oscillator of GnRH‐1 neurons is developmentally regulated. Endocrinology 151: 3863, 2010.
 57.Constantin S, Piet R, Iremonger K, Hwa Yeo S, Clarkson J, Porteous R, Herbison AE. GnRH neuron firing and response to GABA in vitro depend on acute brain slice thickness and orientation. Endocrinology 153: 3758‐3769, 2012.
 58.Conway GS, Honour JW, Jacobs HS. Heterogeneity of the polycystic ovary syndrome: Clinical, endocrine and ultrasound features in 556 patients. Clin Endocrinol (Oxf) 30: 459‐470, 1989.
 59.Cooney LG, Lee I, Sammel MD, Dokras A. High prevalence of moderate and severe depressive and anxiety symptoms in polycystic ovary syndrome: A systematic review and meta‐analysis. Hum Reprod 32: 1075‐1091, 2017.
 60.Cottrell EC, Campbell RE, Han S‐K, Herbison AE. Postnatal remodeling of dendritic structure and spine density in gonadotropin‐releasing hormone neurons. Endocrinology 147: 3652‐3661, 2006.
 61.Coutinho E, Prescott M, Hessler S, Marshall C, Herbison A, Campbell RE. Activation of a classic hunger circuit slows luteinizing hormone pulsatility. Neuroendocrinology, 2019. DOI: 10.1159/000504225.
 62.Czieselsky K, Prescott M, Porteous R, Campos P, Clarkson J, Steyn FJ, Campbell RE, Herbison AE. Pulse and surge profiles of luteinizing hormone secretion in the mouse. Endocrinology 157: 4794‐4802, 2016.
 63.Dale PO, Tanbo T, Vaaler S, Abyholm T. Body weight, hyperinsulinemia, and gonadotropin levels in the polycystic ovarian syndrome: Evidence of two distinct populations. Fertil Steril 58: 487‐491, 1992.
 64.Dalkin AC, Haisenleder DJ, Ortolano GA, Ellis TR, Marshall JC. The frequency of gonadotropin‐releasing‐hormone stimulation differentially regulates gonadotropin subunit messenger ribonucleic acid expression. Endocrinology 125: 917‐923, 1989.
 65.Daniels TL, Berga SL. Resistance of gonadotropin releasing hormone drive to sex steroid‐induced suppression in hyperandrogenic anovulation. J Clin Endocrinol Metab 82: 4179‐4183, 1997.
 66.Davison SL, Bell RJ, Gavrilescu M, Searle K, Maruff P, Gogos A, Rossell SL, Adams J, Egan GF, Davis SR. Testosterone improves verbal learning and memory in postmenopausal women: Results from a pilot study. Maturitas 70: 307‐311, 2011.
 67.Day F, Karaderi T, Jones MR, Meun C, He C, Drong A, Kraft P, Lin N, Huang H, Broer L, Magi R, Saxena R, Laisk T, Urbanek M, Hayes MG, Thorleifsson G, Fernandez‐Tajes J, Mahajan A, Mullin BH, Stuckey BGA, Spector TD, Wilson SG, Goodarzi MO, Davis L, Obermayer‐Pietsch B, Uitterlinden AG, Anttila V, Neale BM, Jarvelin MR, Fauser B, Kowalska I, Visser JA, Andersen M, Ong K, Stener‐Victorin E, Ehrmann D, Legro RS, Salumets A, McCarthy MI, Morin‐Papunen L, Thorsteinsdottir U, Stefansson K, Styrkarsdottir U, Perry JRB, Dunaif A, Laven J, Franks S, Lindgren CM, Welt CK. Large‐scale genome‐wide meta‐analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genet 14: e1007813, 2018.
 68.Day FR, Hinds DA, Tung JY, Stolk L, Styrkarsdottir U, Saxena R, Bjonnes A, Broer L, Dunger DB, Halldorsson BV, Lawlor DA, Laval G, Mathieson I, McCardle WL, Louwers Y, Meun C, Ring S, Scott RA, Sulem P, Uitterlinden AG, Wareham NJ, Thorsteinsdottir U, Welt C, Stefansson K, Laven JSE, Ong KK, Perry JRB. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nat Commun 6: 8464, 2015.
 69.De Leo V, Lanzetta D, D'Antona D, la Marca A, Morgante G. Hormonal effects of flutamide in young women with polycystic ovary syndrome. J Clin Endocrinol Metab 83: 99‐102, 1998.
 70.de Zegher F, López‐Bermejo A, IBáñez L. Central obesity, faster maturation, and “PCOS” in girls. Trends Endocrinol Metab 29: 815‐818, 2018.
 71.DeFazio RA, Heger S, Ojeda SR, Moenter SM. Activation of A‐type gamma‐aminobutyric acid receptors excites gonadotropin‐releasing hormone neurons. Mol Endocrinol 16: 2872‐2891, 2002.
 72.Del Rio JA, Soriano E, Ferrer I. Development of GABA‐immunoreactivity in the neocortex of the mouse. J Comp Neurol 326: 501‐526, 1992.
 73.Detti L, Christiansen ME, Francillon L, Ikuwezunma G, Diamond MP, Mari G, Tobiasz AM. Serum Anti‐Müllerian hormone (AMH) in mothers with polycystic ovary syndrome (PCOS) and their term fetuses. Syst Biol Reprod Med 65: 147‐154, 2019.
 74.DeUgarte CM, Bartolucci AA, Azziz R. Prevalence of insulin resistance in the polycystic ovary syndrome using the homeostasis model assessment. Fertil Steril 83: 1454‐1460, 2005.
 75.Dewailly D, Robin G, Peigne M, Decanter C, Pigny P, Catteau‐Jonard S. Interactions between androgens, FSH, anti‐Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update 22: 709‐724, 2016.
 76.Diamanti‐Kandarakis E, Argyrakopoulou G, Economou F, Kandaraki E, Koutsilieris M. Defects in insulin signaling pathways in ovarian steroidogenesis and other tissues in polycystic ovary syndrome (PCOS). J Steroid Biochem Mol Biol 109: 242‐246, 2008.
 77.Diamanti‐Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: An update on mechanisms and implications. Endocr Rev 33: 981‐1030, 2012.
 78.Dierschke DJ, Bhattacharya AN, Atkinson LE, Knobil E. Circhoral oscillations of plasma LH levels in the ovariectomized rhesus monkey. Endocrinology 87: 850‐853, 1970.
 79.Dudek M, Ziarniak K, Sliwowska JH. Kisspeptin and metabolism: The brain and beyond. Front Endocrinol (Lausanne) 9: 145, 2018.
 80.Dulka E, DeFazio R, Moenter S. Chemogenetic suppression of GnRH neurons during pubertal development can alter adult GnRH neuron firing rate and reproductive parameters in female mice. eNeuro 7: 1‐13, 2020.
 81.Dulka EA, Moenter SM. Prepubertal development of gonadotropin‐releasing hormone (GnRH) neuron activity is altered by sex, age and prenatal androgen exposure. Endocrinology 158: 3943‐3953, 2017.
 82.Dumesic D, Goodarzi M, Chazenbalk G, Abbott D. Intrauterine environment and polycystic ovary syndrome. Semin Reprod Med 32: 159‐165, 2014.
 83.Dumesic DA, Richards JS. Ontogeny of the ovary in polycystic ovary syndrome. Fertil Steril 100: 23‐38, 2013.
 84.Dunaif A. Do androgens directly regulate gonadotropin secretion in the polycystic ovary syndrome? J Clin Endocrinol Metab 63: 215‐221, 1986.
 85.Eagleson CA, Gingrich MB, Pastor CL, Arora TK, Burt CM, Evans WS, Marshall JC. Polycystic ovarian syndrome: Evidence that flutamide restores sensitivity of the gonadotropin‐releasing hormone pulse generator to inhibition by estradiol and progesterone. J Clin Endocrinol Metab 85: 4047‐4052, 2000.
 86.Elenis E, Desroziers E, Persson S, Sundström Poromaa I, Campbell RE. Early initiation of anti‐androgen treatment is associated with increased probability of spontaneous conception leading to childbirth in women with polycystic ovary syndrome: A population‐based multiregistry cohort study in Sweden. Hum Reprod 36: 1427‐1435, 2021.
 87.Evans WS, Weltman JY, Johnson ML, Weltman A, Veldhuis JD, Rogol AD. Effects of opioid receptor blockade on luteinizing hormone (LH) pulses and interpulse LH concentrations in normal women during the early phase of the menstrual cycle. J Endocrinol Invest 15: 525‐531, 1992.
 88.Farquhar CM, Birdsall M, Manning P, Mitchell JM, France JT. The prevalence of polycystic ovaries on ultrasound scanning in a population of randomly selected women. Aust N Z J Obstet Gynaecol 34: 67‐72, 1994.
 89.Foecking EM, Levine JE. Effects of experimental hyperandrogenemia on the female rat reproductive axis: Suppression of progesterone‐receptor messenger RNA expression in the brain and blockade of luteinizing hormone surges. Gend Med 2: 155‐165, 2005.
 90.Fracp SRM, Mbchb SMN, Fracp CMO, Stewart JM, Merry SN. Polycystic ovary syndrome and depression in New Zealand adolescents. J Pediatr Adolesc Gynecol 26: 142‐147, 2013.
 91.Franks S, Mason H, Willis D. Follicular dynamics in the polycystic ovary syndrome. Mol Cell Endocrinol 163: 49‐52, 2000.
 92.Fraser G, Obermayer‐Pietsch B, Laven J, Griesinger G, Pintiaux A, Timmerman D, Fauser B, Lademacher C, Combalbert J, Hoveyda H, Ramael S. Randomized controlled trial of neurokinin 3 receptor antagonist fezolinetant for treatment of polycystic ovary syndrome. J. Clin. Endocrinol. Metab., 2021. DOI: 10.1210/CLINEM/DGAB320.
 93.George JT, Kakkar R, Marshall J, Scott ML, Finkelman RD, Ho TW, Veldhuis J, Skorupskaite K, Anderson RA, Mcintosh S, Webber L. Neurokinin B receptor antagonism in women with polycystic ovary syndrome: A randomized, placebo‐controlled trial. J Clin Endo‐crinol Metab 101: 4313, 2016.
 94.Gilling‐Smith C, Story H, Rogers V, Franks S. Evidence for a primary abnormality of thecal cell steroidogenesis in the polycystic ovary syndrome. Clin Endocrinol (Oxf) 47: 93‐99, 1997.
 95.Goodman RL, Bittman EL, Foster DL, Karsch FJ. The endocrine basis of the synergistic suppression of luteinizing hormone by estradiol and progesterone. Endocrinology 109: 1414‐1417, 1981.
 96.Goodman RL, Coolen LM, Anderson GM, Hardy SL, Valent M, Connors JM, Fitzgerald ME, Lehman MN. Evidence that dynorphin plays a major role in mediating progesterone negative feedback on gonadotropin‐releasing hormone neurons in sheep. Endocrinology 145: 2959‐2967, 2004.
 97.Goodman RL, Hileman SM, Nestor CC, Porter KL, Connors JM, Hardy SL, Millar RP, Cernea M, Coolen LM, Lehman MN. Kisspeptin, neurokinin B, and dynorphin act in the arcuate nucleus to control activity of the GnRH pulse generator in ewes. Endocrinology 154: 4259‐4269, 2013.
 98.Goodman RL, Lehman MN, Smith JT, Coolen LM, de Oliveira CVR, Jafarzadehshirazi MR, Pereira A, Iqbal J, Caraty A, Ciofi P, Clarke IJ. Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology 148: 5752‐5760, 2007.
 99.Gorsic LK, Kosova G, Werstein B, Sisk R, Legro RS, Hayes MG, Teixeira JM, Dunaif A, Urbanek M. Pathogenic anti‐Müllerian hormone variants in polycystic ovary syndrome. J Clin Endocrinol Metab 102: 2862‐2872, 2017.
 100.Hague WM, Adams J, Reeders ST, Peto TE, Jacobs HS. Familial polycystic ovaries: A genetic disease? Clin Endocrinol (Oxf) 29: 593‐605, 1988.
 101.Hansen SL, Svendsen PF, Jeppesen JF, Hoeg LD, Andersen NR, Kristensen JM, Nilas L, Lundsgaard A‐M, Wojtaszewski JFP, Madsbad S, Kiens B. Molecular mechanisms in skeletal muscle underlying insulin resistance in lean women with polycystic ovary syndrome. J Clin Endocrinol Metab 104: 1841‐1854, 2019.
 102.He W, Li X, Adekunbi D, Liu Y, Long H, Wang L, Lyu Q, Kuang Y, O'Byrne KT. Hypothalamic effects of progesterone on regulation of the pulsatile and surge release of luteinising hormone in female rats. Sci Rep 7: 8096, 2017.
 103.Hedström H, Bäckström T, Bixo M, Nyberg S, Wang M, Gideonsson I, Turkmen S. Women with polycystic ovary syndrome have elevated serum concentrations of and altered GABAA receptor sensitivity to allopregnanolone. Clin Endocrinol (Oxf) 83: 643‐650, 2015.
 104.Heger S, Seney M, Bless E, Schwarting GA, Bilger M, Mungenast A, Ojeda SR, Tobet SA. Overexpression of glutamic acid decarboxylase‐67 (GAD‐67) in gonadotropin‐releasing hormone neurons disrupts migratory fate and female reproductive function in mice. Endocrinology 144: 2566‐2579, 2003.
 105.Herbison AE. The gonadotropin‐releasing hormone pulse generator. Endocrinology 159: 3723‐3736, 2018.
 106.Herbison AE, Moenter SM. Depolarising and hyperpolarising actions of GABA‐A receptor activation on gonadotrophin‐releasing hormone neurones: Towards an emerging consensus. J Neuroendocrinol 23: 557‐569, 2011.
 107.Herbison AE, Pape J‐R. New evidence for estrogen receptors in gonadotropin‐releasing hormone neurons. Front Neuroendocrinol 22: 292‐308, 2001.
 108.Herbison AE, Skinner DC, Robinson JE, King IS. Androgen receptor‐immunoreactive cells in ram hypothalamus: Distribution and co‐localization patterns with gonadotropin‐releasing hormone, somatostatin and tyrosine hydroxylase. Neuroendocrinology 63: 120‐131, 1996.
 109.Herde MK, Herbison AE. Morphological characterization of the action potential initiation segment in GnRH neuron dendrites and axons of male mice. Endocrinology 156: 4174‐4186, 2015.
 110.Herde MK, Iremonger KJ, Constantin S, Herbison AE. GnRH neurons elaborate a long‐range projection with shared axonal and dendritic functions. J Neurosci 33: 12689‐12697, 2013.
 111.Hickey M, Sloboda DM, Atkinson HC, Doherty DA, Franks S, Norman RJ, Newnham JP, Hart R. The relationship between maternal and umbilical cord androgen levels and polycystic ovary syndrome in adolescence: A prospective cohort study. J Clin Endocrinol Metab 94: 3714‐3720, 2009.
 112.Holte J, Bergh T, Gennarelli G, Wide L. The independent effects of polycystic ovary syndrome and obesity on serum concentrations of gonadotrophins and sex steroids in premenopausal women. Clin Endocrinol (Oxf) 41: 473‐481, 1994.
 113.Homburg R, Gudi A, Shah A, Layton AM. A novel method to demonstrate that pregnant women with polycystic ovary syndrome hyper‐expose their fetus to androgens as a possible stepping stone for the developmental theory of PCOS. A pilot study. Reprod Biol Endocrinol 15: 61, 2017.
 114.Homburg R, Pariente C, Lunenfeld B, Jacobs HS. The role of insulin‐like growth factor‐1 (IGF‐1) and IGF binding protein‐1 (IGFBP‐1) in the pathogenesis of polycystic ovary syndrome. Hum Reprod 7: 1379‐1383, 1992.
 115.Horton RJE, Li J‐Y, Cummins JT, Smith I, Shen P‐J, Clarke IJ. Morphine decreases LH secretion in ovariectomized ewes only after steroid priming and not by direct pituitary action. Neuroendocrinology 52: 612‐617, 1990.
 116.Hrabovszky E, Molnár CS, Nagy R, Vida B, Borsay BÁ, Rácz K, Herczeg L, Watanabe M, Kalló I, Liposits Z. Glutamatergic and GABAergic innervation of human gonadotropin‐releasing hormone‐I neurons. Endocrinology 153: 2766‐2776, 2012.
 117.Hughesdon PE. Morphology and morphogenesis of the Stein‐Leventhal ovary and of so‐called “hyperthecosis”. Obstet Gynecol Surv 37: 59‐77, 1982.
 118.Iremonger KJ, Herbison AE. Initiation and propagation of action potentials in gonadotropin‐releasing hormone neuron dendrites. J Neurosci 32: 151‐158, 2012.
 119.James McQuillan H, Han SY, Cheong I, Herbison AE. GnRH pulse generator activity across the estrous cycle of female mice. Endocrinology 160: 1480‐1491, 2019.
 120.Jennes L, Stumpf WE, Sheedy ME. Ultrastructural characterization of gonadotropin‐releasing hormone (GnRH)‐producing neurons. J Comp Neurol 232: 534‐547, 1985.
 121.Joffe H, Cohen LS, Suppes T, McLaughlin WL, Lavori P, Adams JM, Hwang CH, Hall JE, Sachs GS. Valproate is associated with new‐onset oligoamenorrhea with hyperandrogenism in women with bipolar disorder. Biol Psychiatry 59: 1078‐1086, 2006.
 122.Jones MR, Chua AK, Mengesha EA, Taylor KD, Chen YDI, Li X, Krauss RM, Rotter JI, Legro RS, Azziz R, Goodarzi MO. Metabolic and cardiovascular genes in polycystic ovary syndrome: A candidate‐wide association study (CWAS). Steroids 77: 317‐322, 2012.
 123.Karsch FJ, Bowen JM, Caraty A, Evans NP, Moenter SM. Gonadotropin‐releasing hormone requirements for ovulation. Biol Reprod 56: 303‐309, 1997.
 124.Kauffman AS, Thackray VG, Ryan GE, Tolson KP, Glidewell‐Kenney CA, Semaan SJ, Poling MC, Iwata N, Breen KM, Duleba AJ, Stener‐Victorin E, Shimasaki S, Webster NJ, Mellon PL. A novel letrozole model recapitulates both the reproductive and metabolic phenotypes of polycystic ovary syndrome in female mice. Biol Reprod 93: 69, 2015.
 125.Kaufman DL, Houser CR, Tobin AJ. Two forms of the gamma‐aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J Neurochem 56: 720‐723, 1991.
 126.Kawwass JF, Sanders KM, Loucks TL, Rohan LC, Berga SL. Increased cerebrospinal fluid levels of GABA, testosterone and estradiol in women with polycystic ovary syndrome. Hum Reprod 32: 1450‐1456, 2017.
 127.Kelly MJ, Rønnekleiv OK. Membrane‐initiated actions of estradiol that regulate reproduction, energy balance and body temperature. Front Neuroendocrinol 33: 376‐387, 2012.
 128.Knobil E, Plant T, Wildt L, Belchetz P, Marshall G. Control of the rhesus monkey menstrual cycle: Permissive role of hypothalamic gonadotropin‐releasing hormone. Science 207: 1371‐1373, 1980.
 129.Kontula K, Seppänen P, van Duyne P, Bardin C, Jänne O. Effect of a nonsteroidal antiandrogen, flutamide, on androgen receptor dynamics and ornithine decarboxylase gene expression in mouse kidney. Endocrinology 116: 226‐233, 1985.
 130.Krashes MJ, Shah BP, Koda S, Lowell BB. Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP. Cell Metab 18: 588‐595, 2013.
 131.La Marca A, Giulini S, Orvieto R, De Leo V, Volpe A. Anti‐Müllerian hormone concentrations in maternal serum during pregnancy. Hum Reprod 20: 1569‐1572, 2005.
 132.Legro RS, Arslanian SA, Ehrmann DA, Hoeger KM, Murad MH, Pasquali R, Welt CK, Endocrine Society. Diagnosis and treatment of polycystic ovary syndrome: An endocrine society clinical practice guideline. J Clin Endocrinol Metab 98: 4565‐4592, 2013.
 133.Lenz KM, McCarthy MM. Organized for sex ‐ steroid hormones and the developing hypothalamus. Eur J Neurosci 32: 2096‐2104, 2010.
 134.Leranth C, Hajszan T, MacLusky NJ. Androgens increase spine synapse density in the ca1 hippocampal subfield of ovariectomized female rats. J Neurosci 24: 495‐499, 2004.
 135.Lim SS, Norman RJ, Davies MJ, Moran LJ. The effect of obesity on polycystic ovary syndrome: A systematic review and meta‐analysis. Obes Rev 14: 95‐109, 2013.
 136.Liu H, Zhao H, Chen ZJ. Genome‐wide association studies for polycystic ovary syndrome. Semin Reprod Med 34: 224‐229, 2016.
 137.Liu X, Herbison AE. Estrous cycle‐ and sex‐dependent changes in pre‐ and postsynaptic GABA B control of GnRH neuron excitability. Endocrinology 152: 4856‐4864, 2011.
 138.Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova‐Jordan L, Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril 106: 6‐15, 2016.
 139.Lydon JP, DeMayo FJ, Conneely OM, O'Malley BW. Reproductive phenotpes of the progesterone receptor null mutant mouse. J Steroid Biochem Mol Biol 56: 67‐77, 1996.
 140.MacLusky NJ, Hajszan T, Prange‐Kiel J, Leranth C. Androgen modulation of hippocampal synaptic plasticity. Neuroscience 138: 957‐965, 2006.
 141.Marshall CJ, Desroziers E, McLennan T, Campbell RE. Defining subpopulations of arcuate nucleus GABA neurons in male, female and prenatally androgenized female mice. Neuroendocrinology 105: 157‐169, 2016.
 142.Marshall CJ, Prescott M, Campbell RE. Investigating the NPY/AgRP/GABA to GnRH neuron circuit in prenatally androgenized PCOS‐like mice. J Endocr Soc 4: 1‐12, 2020.
 143.McAllister JM, Modi B, Miller BA, Biegler J, Bruggeman R, Legro RS, Strauss JF. Overexpression of a DENND1A isoform produces a polycystic ovary syndrome theca phenotype. Proc Natl Acad Sci 111: E1519‐E1527, 2014.
 144.Mcarthur JW, Ingersoll FM, And J, Worcester DRPH. Urinary excretion of ICSH and FSH activity by women with diseases of the reproductive system. J Clin Endocrinol Metab 18: 1202‐1215, 1958.
 145.McCarthy MM. How it's made: Organisational effects of hormones on the developing brain. J Neuroendocrinol 22: 736‐742, 2010.
 146.McCartney CR, Blank SK, Prendergast KA, Chhabra S, Eagleson CA, Helm KD, Yoo R, Chang RJ, Foster CM, Caprio S, Marshall JC. Obesity and sex steroid changes across puberty: Evidence for marked hyperandrogenemia in pre‐ and early pubertal obese girls. J Clin Endocrinol Metab 92: 430‐436, 2007.
 147.McCartney CR, Eagleson CA, Marshall JC. Regulation of gonadotropin secretion: Implications for polycystic ovary syndrome. Semin. Reprod. Med. 20: 317‐325, 2002.
 148.McCartney CR, Gingrich MB, Hu Y, Evans WS, Marshall JC. Hypothalamic regulation of cyclic ovulation: Evidence that the increase in gonadotropin‐releasing hormone pulse frequency during the follicular phase reflects the gradual loss of the restraining effects of progesterone. J Clin Endocrinol Metab 87: 2194‐2200, 2002.
 149.McCartney CR, Prendergast KA, Blank SK, Helm KD, Chhabra S, Marshall JC. Maturation of luteinizing hormone (gonadotropin‐releasing hormone) secretion across puberty: Evidence for altered regulation in obese peripubertal girls. J Clin Endocrinol Metab 94: 56‐66, 2009.
 150.McIntire SL, Reimer RJ, Schuske K, Edwards RH, Jorgensen EM. Identification and characterization of the vesicular GABA transporter. Nature 389: 870‐876, 1997.
 151.Micevych PE, Mermelstein PG, Sinchak K. Estradiol membrane‐initiated signaling in the brain mediates reproduction. Trends Neurosci. 40: 654‐666, 2017.
 152.Milsom SR, Nair SM, Ogilvie CM, Stewart JM, Merry SN. Polycystic ovary syndrome and depression in New Zealand adolescents. J Pediatr Adolesc Gynecol 26: 142‐147, 2013.
 153.Mimouni NEH, Paiva I, Barbotin AL, Timzoura FE, Plassard D, Le Gras S, Ternier G, Pigny P, Catteau‐Jonard S, Simon V, Prevot V, Boutillier AL, Giacobini P. Polycystic ovary syndrome is transmitted via a transgenerational epigenetic process. Cell Metab 33: 513‐530.e8, 2021.
 154.Mittelman‐Smith MA, Williams H, Krajewski‐Hall SJ, Lai J, Ciofi P, McMullen NT, Rance NE. Arcuate kisspeptin/neurokinin B/dynorphin (KNDy) neurons mediate the estrogen suppression of gonadotropin secretion and body weight. Endocrinology 153: 2800‐2812, 2012.
 155.Moenter SM, DeFazio RA. Endogenous γ‐aminobutyric acid can excite gonadotropin‐releasing hormone neurons. Endocrinology 146: 5374‐5379, 2005.
 156.Moore AM, Campbell RE. Polycystic ovary syndrome: Understanding the role of the brain. Front Neuroendocrinol 46: 1‐14, 2017.
 157.Moore AM, Lohr DB, Coolen LM, Lehman MN. Prenatal androgen exposure alters KNDy neurons and their afferent network in a model of polycystic ovarian syndrome. Endocrinology, 2021. DOI: 10.1210/ENDOCR/BQAB158.
 158.Moore AM, Prescott M, Campbell RE. Estradiol negative and positive feedback in a prenatal androgen‐induced mouse model of polycystic ovarian syndrome. Endocrinology 154: 796‐806, 2013.
 159.Moore AM, Prescott M, Czieselsky K, Desroziers E, Yip SH, Campbell RE, Herbison AE. Synaptic innervation of the GnRH neuron distal dendron in female mice. Endocrinology 159: 3200‐3208, 2018.
 160.Moore AM, Prescott M, Marshall CJ, Yip SH, Campbell RE. Enhancement of a robust arcuate GABAergic input to gonadotropin‐releasing hormone neurons in a model of polycystic ovarian syndrome. Proc Natl Acad Sci U S A 112: 596‐601, 2015.
 161.Moore JP, Shang E, Wray S. In situ GABAergic modulation of synchronous gonadotropin releasing hormone‐1 neuronal activity. J Neurosci 22: 8932‐8941, 2002.
 162.Moraru A, Cakan‐Akdogan G, Strassburger K, Males M, Mueller S, Jabs M, Muelleder M, Frejno M, Braeckman BP, Ralser M, Teleman AA. THADA regulates the organismal balance between energy storage and heat production. Dev Cell 41: 72‐81.e6, 2017.
 163.Nakane R, Oka Y. Excitatory action of GABA in the terminal nerve gonadotropin‐releasing hormone neurons. J Neurophysiol 103: 1375‐1384, 2010.
 164.Namba H, Nagano T, Jodo E, Eifuku S, Horie M, Takebayashi H, Iwakura Y, Sotoyama H, Takei N, Nawa H. Epidermal growth factor signals attenuate phenotypic and functional development of neocortical GABA neurons. J Neurochem 142: 886‐900, 2017.
 165.Navarro VM, Gottsch ML, Chavkin C, Okamura H, Clifton DK, Steiner RA. Regulation of gonadotropin‐releasing hormone secretion by Kisspeptin/Dynorphin/Neurokinin B neurons in the arcuate nucleus of the mouse. J Neurosci 29: 11859‐11866, 2009.
 166.Nelson VL, Qin KN, Rosenfield RL, Wood JR, Penning TM, Legro RS, Strauss JF, McAllister JM. The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome. J Clin Endocrinol Metab 86: 5925‐5933, 2001.
 167.Nestler JE, Powers LP, Matt DW, Steingold KA, Plymate SR, Rittmaster RS, Clore JN, Blackard WG. A direct effect of hyperinsulinemia on serum sex hormone‐binding globulin levels in obese women with the polycystic ovary syndrome. J Clin Endocrinol Metab 72: 83‐89, 1991.
 168.Nohara K, Zhang Y, Waraich RS, Laque A, Tiano JP, Tong J, Münzberg H, Mauvais‐Jarvis F. Early‐life exposure to testosterone programs the hypothalamic melanocortin system. Endocrinology 152: 1661, 2011.
 169.Nugent BM, Wright CL, Shetty AC, Hodes GE, Lenz KM, Mahurkar A, Russo SJ, Devine SE, McCarthy MM. Brain feminization requires active repression of masculinization via DNA methylation. Nat Neurosci 18: 690‐697, 2015.
 170.Olsen RW, Sieghart W. GABA A receptors: Subtypes provide diversity of function and pharmacology. Neuropharmacology 56: 141‐148, 2009.
 171.Osuka S, Iwase A, Nakahara T, Kondo M, Saito A, Bayasula, Nakamura T, Takikawa S, Goto M, Kotani T, Kikkawa F. Kisspeptin in the hypothalamus of 2 rat models of polycystic ovary syndrome. Endocrinology 158: 367‐377, 2017.
 172.Padmanabhan V, Veiga‐Lopez A. Sheep models of polycystic ovary syndrome phenotype. Mol. Cell. Endocrinol. 373: 8‐20, 2013.
 173.Pagán YL, Srouji SS, Jimenez Y, Emerson A, Gill S, Hall JE. Inverse relationship between luteinizing hormone and body mass index in polycystic ovarian syndrome: Investigation of hypothalamic and pituitary contributions. J Clin Endocrinol Metab 91: 1309‐1316, 2006.
 174.Pankhurst MW, Kelley RL, Sanders RL, Woodcock SR, Oorschot DE, Batchelor NJ. Anti‐Müllerian hormone overexpression restricts preantral ovarian follicle survival. J Endocrinol 237: 153‐163, 2018.
 175.Papadakis G, Kandaraki E, Tseniklidi E, Papalou O, Diamanti‐Kandarakis E. Polycystic ovary syndrome and NC‐CAH: Distinct characteristics and common findings. A Systematic Review. Front Endocrinol (Lausanne) 10: 388, 2019.
 176.Paradisi R, Fabbri R, Battaglia C, Venturoli S. Ovulatory effects of flutamide in the polycystic ovary syndrome. Gynecol Endocrinol 29: 391‐395, 2013.
 177.Park J‐Y, Su Y‐Q, Ariga M, Law E, Jin S‐LC, Conti M. EGF‐like growth factors as mediators of LH action in the ovulatory follicle. Science (80‐) 303: 682‐684, 2004.
 178.Pastor CL, Griffin‐Korf ML, Aloi JA, Evans WS, Marshall JC. Polycystic ovary syndrome: Evidence for reduced sensitivity of the gonadotropin‐releasing hormone pulse generator to inhibition by estradiol and progesterone. J Clin Endocrinol Metab 83: 582‐590, 1998.
 179.Pérez‐López FR, Ornat L, López‐Baena MT, Santabárbara J, Savirón‐Cornudella R, Pérez‐Roncero GR. Circulating kisspeptin and anti‐müllerian hormone levels, and insulin resistance in women with polycystic ovary syndrome: A systematic review, meta‐analysis, and meta‐regression. Eur J Obstet Gynecol Reprod Biol 260: 85‐98, 2021.
 180.Pettorossi VE, Di Mauro M, Scarduzio M, Panichi R, Tozzi A, Calabresi P, Grassi S. Modulatory role of androgenic and estrogenic neurosteroids in determining the direction of synaptic plasticity in the CA1 hippocampal region of male rats. Physiol Rep 1: e00185, 2013.
 181.Pielecka J, Quaynor SD, Moenter SM. Androgens increase gonadotropin‐releasing hormone neuron firing activity in females and interfere with progesterone negative feedback. Endocrinology 147: 1474‐1479, 2006.
 182.Piet R, Kalil B, McLennan T, Porteous R, Czieselsky K, Herbison AE. Dominant neuropeptide co‐transmission in kisspeptin‐GABA regulation of GnRH neuron firing driving ovulation. J Neurosci 38: 0658‐0618, 2018.
 183.Pignatelli R, Pereira S, Pasquali R. Androgens in congenital adrenal hyperplasia. Front Horm Res 53: 65‐76, 2019.
 184.Piltonen TT, Giacobini P, Edvinsson Å, Hustad S, Lager S, Morin‐Papunen L, Tapanainen JS, Sundström‐Poromaa I, Arffman RK. Circulating antimüllerian hormone and steroid hormone levels remain high in pregnant women with polycystic ovary syndrome at term. Fertil Steril 111: 588‐596.e1, 2019.
 185.Plant TM. Neuroendocrine control of the onset of puberty. Front Neuroendocrinol 38: 73‐88, 2015.
 186.Polderman KH, Gooren LJ, Asscheman H, Bakker A, Heine RJ. Induction of insulin resistance by androgens and estrogens. J Clin Endocrinol Metab 79: 265‐271, 1994.
 187.Poretsky L, Cataldo NA, Rosenwaks Z, Giudice LC. The insulin‐related ovarian regulatory system in health and disease. Endocr Rev 20: 535‐582, 1999.
 188.Porter DT, Moore AM, Cobern JA, Padmanabhan V, Goodman RL, Coolen LM, Lehman MN. Prenatal testosterone exposure alters GABAergic synaptic inputs to GnRH and KNDy neurons in a sheep model of polycystic ovarian syndrome. Endocrinology 160: 2529‐2542, 2019.
 189.Prevot V, Rio C, Cho GJ, Lomniczi A, Heger S, Neville CM, Rosenthal NA, Ojeda SR, Corfas G. Normal female sexual development requires neuregulin‐erbB receptor signaling in hypothalamic astrocytes. J Neurosci 23: 230‐239, 2003.
 190.Prizant H, Gleicher N, Sen A. Androgen actions in the ovary: Balance is key. J Endocrinol 222: R141‐R151, 2014.
 191.Quigley CA, De Bellis A, Marschke KB, el‐Awady MK, Wilson EM, French FS. Androgen receptor defects: Historical, clinical, and molecular perspectives. Endocr Rev 16: 271‐321, 1995.
 192.Rebar R, Judd HL, Yen SSC, Rakoff J, Vandenberg G, Naftolin F. Characterization of the inappropriate gonadotropin secretion in polycystic ovary syndrome. J Clin Invest 57: 1320‐1329, 1976.
 193.Rice S, Christoforidis N, Gadd C, Nikolaou D, Seyani L, Donaldson A, Margara R, Hardy K, Franks S. Impaired insulin‐dependent glucose metabolism in granulosa‐lutein cells from anovulatory women with polycystic ovaries. Hum Reprod 20: 373‐381, 2005.
 194.Risal S, Pei Y, Lu H, Manti M, Fornes R, Pui H‐P, Zhao Z, Massart J, Ohlsson C, Lindgren E, Crisosto N, Maliqueo M, Echiburú B, Ladrón de Guevara A, Sir‐Petermann T, Larsson H, Rosenqvist MA, Cesta CE, Benrick A, Deng Q, Stener‐Victorin E. Prenatal androgen exposure and transgenerational susceptibility to polycystic ovary syndrome. Nat Med 25: 1894‐1904, 2019.
 195.Roa J, Herbison AE. Direct regulation of GnRH neuron excitability by arcuate nucleus POMC and NPY neuron neuropeptides in female mice. Endocrinology 153: 5587‐5599, 2012.
 196.Roland AV, Moenter SM. Prenatal androgenization of female mice programs an increase in firing activity of gonadotropin‐releasing hormone (GnRH) neurons that is reversed by metformin treatment in adulthood. Endocrinology 152: 618‐628, 2011.
 197.Roland AV, Nunemaker CS, Keller SR, Moenter SM. Prenatal androgen exposure programs metabolic dysfunction in female mice. J Endocrinol 207: 213‐223, 2010.
 198.Romano GJ, Krust A, Pfaff DW. Expression and estrogen regulation of progesterone receptor mRNA in neurons of the mediobasal hypothalamus: An in situ hybridization study. Mol Endocrinol 3: 1295‐1300, 1989.
 199.Rosenfield RL. Current concepts of polycystic ovary syndrome pathogenesis. Curr Opin Pediatr 32: 698‐706, 2020.
 200.Rosenfield RL, Bordini B. Evidence that obesity and androgens have independent and opposing effects on gonadotropin production from puberty to maturity. Brain Res 1364: 186‐197, 2010.
 201.Rotterdam ESHRE/ASRM‐Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long‐term health risks related to polycystic ovary syndrome. Fertil Steril 81: 19‐25, 2004.
 202.Ruddenklau A, Campbell RE. Neuroendocrine impairments of polycystic ovary syndrome. Endocrinology 160: 2230‐2242, 2019.
 203.Ruth KS, Day FR, Tyrrell J, Thompson DJ, Wood AR, Mahajan A, Beaumont RN, Wittemans L, Martin S, Busch AS, Erzurumluoglu AM, Hollis B, O'Mara TA, McCarthy MI, Langenberg C, Easton DF, Wareham NJ, Burgess S, Murray A, Ong KK, Frayling TM, Perry JRB. Using human genetics to understand the disease impacts of testosterone in men and women. Nat Med 26: 252‐258, 2020.
 204.Sahin S, Eroglu M, Selcuk S, Turkgeldi L, Kozali S, Davutoglu S, Muhcu M. Intrinsic factors rather than vitamin D deficiency are related to insulin resistance in lean women with polycystic ovary syndrome. Eur Rev Med Pharmacol Sci 18: 2851‐2856, 2014.
 205.Sati A, Prescott M, Holland S, Jasoni CL, Desroziers E, Campbell RE. Morphological evidence indicates a role for microglia in shaping the PCOS‐like brain. J Neuroendocrinol 33: e12999, 2021.
 206.Schoemaker J, van Weissenbruch MM, Scheele F, van der Meer M. The FSH threshold concept in clinical ovulation induction. Baillieres Clin Obstet Gynaecol 7: 297‐308, 1993.
 207.Sergeeva A, Jansen HT. Neuroanatomical plasticity in the gonadotropin‐releasing hormone system of the ewe: Seasonal variation in glutamatergic and gamma‐aminobutyric acidergic afferents. J Comp Neurol 515: 615‐628, 2009.
 208.Sheppard KM, Padmanabhan V, Coolen LM, Lehman MN. Prenatal programming by testosterone of hypothalamic metabolic control neurones in the ewe. J Neuroendocrinol 23: 401‐411, 2011.
 209.Shi J, Gao Q, Cao Y, Fu J. Dennd1a, a susceptibility gene for polycystic ovary syndrome, is essential for mouse embryogenesis. Dev Dyn 248: 351‐362, 2019.
 210.Shi Y, Zhao H, Shi Y, Cao Y, Yang D, Li Z, Zhang B, Liang X, Li T, Chen J, Shen J, Zhao J, You L, Gao X, Zhu D, Zhao X, Yan Y, Qin Y, Li W, Yan J, Wang Q, Zhao J, Geng L, Ma J, Zhao Y, He G, Zhang A, Zou S, Yang A, Liu J, Li W, Li B, Wan C, Qin Y, Shi J, Yang J, Jiang H, Xu J, Qi X, Sun Y, Zhang Y, Hao C, Ju X, Zhao D, Ren C, Li X, Zhang W, Zhang Y, Zhang J, Wu D, Zhang C, He L, Chen Z‐J. Genome‐wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet 44: 1020‐1025, 2012.
 211.Shifren JL, Braunstein GD, Simon JA, Casson PR, Buster JE, Redmond GP, Burki RE, Ginsburg ES, Rosen RC, Leiblum SR, Caramelli KE, Mazer NA, Daugherty CA, Mazer NA. Transdermal testosterone treatment in women with impaired sexual function after oophorectomy. N Engl J Med 343: 682‐688, 2000.
 212.Sidhu HS, Srinivasa R, Sadhotra A. Evaluate the effects of antiepileptic drugs on reproductive endocrine system in newly diagnosed female epileptic patients receiving either Valproate or Lamotrigine monotherapy: A prospective study. Epilepsy Res 139: 20‐27, 2018.
 213.Silva MSB, Desroziers E, Hessler S, Prescott M, Coyle C, Herbison AE, Campbell RE. Activation of arcuate nucleus GABA neurons promotes luteinizing hormone secretion and reproductive dysfunction: Implications for polycystic ovary syndrome. EBioMedicine 44: 582‐596, 2019.
 214.Silva MSB, Prescott M, Campbell RE. Ontogeny and reversal of brain circuit abnormalities in a preclinical model of PCOS. JCI Insight 3: pii: 99405, 2018.
 215.Sim JA, Skynner MJ, Pape JR, Herbison AE. Late postnatal reorganization of GABA(A) receptor signalling in native GnRH neurons. Eur J Neurosci 12: 3497‐3504, 2000.
 216.Simonian SX, Skynner MJ, Sieghart W, Essrich C, Luscher B, Herbison AE. Role of the GABA(A) receptor gamma2 subunit in the development of gonadotropin‐releasing hormone neurons in vivo. Eur J Neurosci 12: 3488‐3496, 2000.
 217.Sirmans SM, Pate KA. Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin Epidemiol 6: 1‐13, 2013.
 218.Sir‐Petermann T, Codner E, Pérez V, Echiburú B, Maliqueo M, Ladrón de Guevara A, Preisler J, Crisosto N, Sánchez F, Cassorla F, Bhasin S. Metabolic and reproductive features before and during puberty in daughters of women with polycystic ovary syndrome. J Clin Endocrinol Metab 94: 1923‐1930, 2009.
 219.Sir‐Petermann T, Maliqueo M, Codner E, Echiburú B, Crisosto N, Pérez V, Pérez‐Bravo F, Cassorla F. Early metabolic derangements in daughters of women with polycystic ovary syndrome. J Clin Endocrinol Metab 92: 4637‐4642, 2007.
 220.Skinner DC, Caraty A, Allingham R. Unmasking the progesterone receptor in the preoptic area and hypothalamus of the ewe: No colocalization with gonadotropin‐releasing neurons. Endocrinology 142: 573‐579, 2001.
 221.Skinner DC, Evans NP, Delaleu B, Goodman RL, Bouchard P, Caraty A. The negative feedback actions of progesterone on gonadotropin‐releasing hormone secretion are transduced by the classical progesterone receptor. Proc Natl Acad Sci U S A 95: 10978‐10983, 1998.
 222.Smith JT. Sex steroid regulation of kisspeptin circuits. Adv Exp Med Biol 784: 275‐295, 2013.
 223.Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 146: 3686‐3692, 2005.
 224.Smith MS, Freeman ME, Neill JD. The control of progesterone secretion during the estrus cycle and early pseudopregnancy in the rat: Gonadotropin and steroid levels associated with rescue of the corpus luteum of pseudopregnancy. Endocrinology 96: 219‐226, 1975.
 225.Soules MR, Steiner RA, Clifton DK, Cohen NL, Aksel S, Bremner W. Progesterone modulation of pulsatile luteinizing hormone secretion in normal women. J Clin Endocrinol Metab 58: 378‐383, 1984.
 226.Spanos C, Bretherton I, Zajac JD, Cheung AS. Effects of gender‐affirming hormone therapy on insulin resistance and body composition in transgender individuals: A systematic review. World J Diabetes 11: 66‐77, 2020.
 227.Spergel DJ, Krüth U, Hanley DF, Sprengel R, Seeburg PH. GABA‐ and glutamate‐activated channels in green fluorescent protein‐tagged gonadotropin‐releasing hormone neurons in transgenic mice. J Neurosci 19: 2037‐2050, 1999.
 228.Srouji SS, Pagán YL, D'Amato F, Dabela A, Jimenez Y, Supko JG, Hall JE. Pharmacokinetic factors contribute to the inverse relationship between luteinizing hormone and body mass index in polycystic ovarian syndrome. J Clin Endocrinol Metab 92: 1347‐1352, 2007.
 229.Stein IF, Leventhal ML. Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol 29: 181‐191, 1935.
 230.Stener‐Victorin E, Padmanabhan V, Walters KA, Campbell RE, Benrick A, Giacobini P, Dumesic DA, Abbott DH. Animal models to understand the etiology and pathophysiology of polycystic ovary syndrome. Endocr Rev 41: 538‐576, 2020.
 231.Sucquart IE, Nagarkar R, Edwards MC, Rodriguez Paris V, Aflatounian A, Bertoldo MJ, Campbell RE, Gilchrist RB, Begg DP, Handelsman DJ, Padmanabhan V, Anderson RA, Walters KA. Neurokinin 3 receptor antagonism ameliorates key metabolic features in a hyperandrogenic PCOS mouse model. Endocrinol (United States) 162: bqab020, 2021.
 232.Sullivan SD, Moenter SM. Prenatal androgens alter GABAergic drive to gonadotropin‐releasing hormone neurons: Implications for a common fertility disorder. Proc Natl Acad Sci U S A 101: 7129‐7134, 2004.
 233.Sullivan SD, Moenter SM. GABAergic integration of progesterone and androgen feedback to gonadotropin‐releasing hormone neurons. Biol Reprod 72: 33‐41, 2005.
 234.Sun BZ, Kangarloo T, Adams JM, Sluss P, Chandler DW, Zava DT, McGrath JA, Umbach DM, Shaw ND. The relationship between progesterone, sleep, and LH and FSH secretory dynamics in early postmenarchal girls. J Clin Endocrinol Metab 104: 2184‐2194, 2019.
 235.Sylvester PW, Van Vugt DA, Aylsworth CA, Hanson EA, Meites J. Effects of morphine and naloxone on inhibition by ovarian hormones of pulsatile release of LH in ovariectomized rats. Neuroendocrinology 34: 269‐273, 1982.
 236.Tata B, Mimouni NEH, Barbotin A‐L, Malone SA, Loyens A, Pigny P, Dewailly D, Catteau‐Jonard S, Sundström‐Poromaa I, Piltonen TT, Dal Bello F, Medana C, Prevot V, Clasadonte J, Giacobini P. Elevated prenatal anti‐Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nat Med 24: 834‐846, 2018.
 237.Taylor AE, McCourt B, Martin KA, Anderson EJ, Adams JM, Schoenfeld D, Hall JE. Determinants of abnormal gonadotropin secretion in clinically defined women with polycystic ovary syndrome. J Clin Endocrinol Metab 82: 2248‐2256, 1997.
 238.Taylor‐Burds C, Cheng P, Wray S. Chloride accumulators NKCC1 and AE2 in mouse GnRH neurons: Implications for GABAA mediated excitation. PLoS One 10: 1‐19, 2015.
 239.Taymor ML, Barnard R. Luteinizing hormone excretion in the polycystic ovary syndrome. Fertil Steril 13: 501‐512, 1962.
 240.Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, Piltonen T, Norman RJ, Andersen M, Azziz R, Balen A, Baye E, Boyle J, Brennan L, Broekmans F, Dabadghao P, Devoto L, Dewailly D, Downes L, Fauser B, Franks S, Garad RM, Gibson‐Helm M, Harrison C, Hart R, Hawkes R, Hirschberg A, Hoeger K, Hohmann F, Hutchison S, Joham A, Johnson L, Jordan C, Kulkarni J, Legro RS, Li R, Lujan M, Malhotra J, Mansfield D, Marsh K, McAllister V, Mocanu E, Mol BW, Ng E, Oberfield S, Ottey S, Peña A, Qiao J, Redman L, Rodgers R, Rombauts L, Romualdi D, Shah D, Speight J, Spritzer PM, Stener‐Victorin E, Stepto N, Tapanainen JS, Tassone EC, Thangaratinam S, Thondan M, Tzeng C‐R, van der Spuy Z, Vanky E, Vogiatzi M, Wan A, Wijeyaratne C, Witchel S, Woolcock J, Yildiz BO. Recommendations from the international evidence‐based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod 33: 1602‐1618, 2018.
 241.Thind KK, Goldsmith PC. Expression of estrogen and progesterone receptors in glutamate and GABA neurons of the pubertal female monkey hypothalamus. Neuroendocrinology 65: 314‐324, 1997.
 242.Thompson IR, Kaiser UB. GnRH pulse frequency‐dependent differential regulation of LH and FSH gene expression. Mol. Cell. Endocrinol. 385: 28‐35, 2014.
 243.Tobet SA, Chickering TW, King JC, Stopa EG, Kim K, Kuo‐Leblank V, Schwarting GA. Expression of gamma‐aminobutyric acid and gonadotropin‐releasing hormone during neuronal migration through the olfactory system. Endocrinology 137: 5415‐5420, 1996.
 244.Todman MG, Han S‐K, Herbison AE. Profiling neurotransmitter receptor expression in mouse gonadotropin‐releasing hormone neurons using green fluorescent protein‐promoter transgenics and microarrays. Neuroscience 132: 703‐712, 2005.
 245.Tosi F, Negri C, Brun E, Castello R, Faccini G, Bonora E, Muggeo M, Toscano V, Moghetti P. Insulin enhances ACTH‐stimulated androgen and glucocorticoid metabolism in hyperandrogenic women. Eur J Endocrinol 164: 197‐203, 2011.
 246.Unluhizarci K, Karaca Z, Kelestimur F. Role of insulin and insulin resistance in androgen excess disorders. World J Diabetes 12: 616‐629, 2021.
 247.van den Pol AN. GABA immunoreactivity in hypothalamic neurons and growth cones in early development in vitro before synapse formation. J Comp Neurol 383: 178‐188, 1997.
 248.Vastagh C, Csillag V, Solymosi N, Farkas I, Liposits Z. Gonadal cycle‐dependent expression of genes encoding peptide‐, growth factor‐, and orphan G‐protein‐coupled receptors in gonadotropin‐releasing hormone neurons of mice. Front Mol Neurosci 13: 243, 2021. DOI: 10.3389/fnmol.2020.594119
 249.Vastagh C, Schwirtlich M, Kwakowsky A, Erdélyi F, Margolis FL, Yanagawa Y, Katarova Z, Szabó G. The spatiotemporal segregation of GAD forms defines distinct GABA signaling functions in the developing mouse olfactory system and provides novel insights into the origin and migration of GnRH neurons. Dev Neurobiol 75: 249‐270, 2015.
 250.Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH, Vermeer H, Toonen RF, Hammer RE, van den Berg TK, Missler M, Geuze HJ, Südhof TC. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287: 864‐869, 2000.
 251.Vink JM, Sadrzadeh S, Lambalk CB, Boomsma DI. Heritability of polycystic ovary syndrome in a Dutch twin‐family study. J Clin Endocrinol Metab 91: 2100‐2104, 2006.
 252.Vong L, Ye C, Yang Z, Choi B, Chua S, Lowell BB. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71: 142‐154, 2011.
 253.Walters KA, Edwards MC, Tesic D, Caldwell ASL, Jimenez M, Smith JT, Handelsman DJ. The role of central androgen receptor actions in regulating the hypothalamic‐pituitary‐ovarian axis. Neuroendocrinology 106: 389‐400, 2018.
 254.Walters KA, Gilchrist RB, Ledger WL, Teede HJ, Handelsman DJ, Campbell RE. New perspectives on the pathogenesis of PCOS: Neuroendocrine origins. Trends Endocrinol Metab 29: 841‐852, 2018.
 255.Wang L, DeFazio RA, Moenter SM. Excitability and burst generation of AVPV kisspeptin neurons are regulated by the estrous cycle via multiple conductances modulated by estradiol action. eNeuro 3: ENEURO.0094-16.2016 2016. DOI: 10.1523/ENEURO.0094-16.2016
 256.Wang L, Vanacker C, Burger LL, Barnes T, Shah YM, Myers MG, Moenter SM. Genetic dissection of the different roles of hypothalamic kisspeptin neurons in regulating female reproduction. Elife 8: e43999, 2019. DOI: 10.1523/ENEURO.0094-16.2016.
 257.Watanabe M, Sakuma Y, Kato M. GABA‐A receptors mediate excitation in adult rat GnRH neurons. Biol Reprod 81: 327‐332, 2009.
 258.Weems PW, Coolen LM, Hileman SM, Hardy S, McCosh RB, Goodman RL, Lehman MN. Evidence that dynorphin acts upon KNDy and GnRH neurons during GnRH pulse termination in the ewe. Endocrinology 159: 3187‐3199, 2018.
 259.Wildt L, Hausler A, Marshall G, Hutchison JS, Plant TM, Belchetz PE, Knobil E. Frequency and amplitude of gonadotropin‐releasing hormone stimulation and gonadotropin secretion in the rhesus monkey. Endocrinology 109: 376‐385, 1981.
 260.Wilson ME, Fisher J, Chikazawa K. Estradiol negative feedback regulates nocturnal luteinizing hormone and follicle‐stimulating hormone secretion in prepubertal female rhesus monkeys. J Clin Endocrinol Metab 89: 3973‐3978, 2004.
 261.Wintermantel TM, Campbell RE, Porteous R, Bock D, Gröne H‐J, Todman MG, Korach KS, Greiner E, Pérez CA, Schütz G, Herbison AE. Definition of estrogen receptor pathway critical for estrogen positive feedback to gonadotropin‐releasing hormone neurons and fertility. Neuron 52: 271‐280, 2006.
 262.Witchel SF, Plant TM. Neurobiology of puberty and its disorders. Handb Clin Neurol 181: 463‐496.
 263.Wray S, Grant P, Gainer H. Evidence that cells expressing luteinizing hormone‐releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc Natl Acad Sci U S A 86: 8132‐8136, 1989.
 264.Young JM, McNeilly AS. Theca: The forgotten cell of the ovarian follicle. Reproduction 140: 489‐504, 2010.
 265.Zawadzki J, Dunaif A. Diagnostic criteria for polycystic ovary syndrome: Towards a rationale approach. In: Dunaif A, Givens JR, Haseltine FP, editors. Polycystic Ovary Syndrome. Boston, MA: Blackwell Scientific, 1992, pp. 377‐384.
 266.Zhang C, Bosch MA, Qiu J, Rønnekleiv OK, Kelly MJ. 17β‐Estradiol increases persistent Na(+) current and excitability of AVPV/PeN Kiss1 neurons in female mice. Mol Endocrinol 29: 518‐527, 2015.
 267.Zhang C, Bosch MA, Rønnekleiv OK, Kelly MJ. Gamma‐aminobutyric acid B receptor mediated inhibition of gonadotropin‐releasing hormone neurons is suppressed by kisspeptin‐G protein‐coupled receptor 54 signaling. Endocrinology 150: 2388‐2394, 2009.
 268.Zhang C, Bosch MA, Rønnekleiv OK, Kelly MJ. γ‐Aminobutyric acid B receptor mediated inhibition of gonadotropin‐releasing hormone neurons is suppressed by kisspeptin‐G protein‐coupled receptor 54 signaling. Endocrinology 150: 2388‐2394, 2009.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Mauro S.B. Silva, Rebecca E. Campbell. Polycystic Ovary Syndrome and the Neuroendocrine Consequences of Androgen Excess. Compr Physiol 2022, 12: 3347-3369. doi: 10.1002/cphy.c210025