Comprehensive Physiology Wiley Online Library

Biochemistry and Physiology of Amino Acid Transmitters

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 How Amino Acids Became Recognized as Neurotransmitters
2 Possible Functions of Free Amino Acids
3 Transmitter Function of γ‐Aminobutyric Acid and Glycine
3.1 Inhibitory Action of Amino Acids
3.2 Agents That Block Amino Acid Inhibition
3.3 Synthesis and Storage of γ‐Aminobutyric Acid
3.4 Uptake of γ‐Aminobutyric Acid
3.5 Release of γ‐Aminobutyric Acid
3.6 Synthesis and Storage of Glycine
3.7 Uptake and Release of Glycine
3.8 Summary
4 Transmitter Function of L‐Glutamate and Related Amino Acids
4.1 Excitatory Action of Amino Acids
4.2 Distribution of L‐glutamate and L‐aspartate
4.3 Uptake and Release of L‐glutamate
4.4 Summary
Figure 1. Figure 1.

Potential changes produced in the junctional area of a crayfish muscle by stimulation of the inhibitory nerve (Aa) and the excitatory nerve (Ba) and by electrophoretic administration of GABA (Ab) and L‐glutamate (Bb). Upper traces in a and middle traces in b, extracellular records. Lower traces, intracellular records. Upper traces in b represent electrophoretic currents.

From Takeuchi & Takeuchi
Figure 2. Figure 2.

Action of L‐glutamate and GABA on a neuron of Deiters' nucleus of cat. Action potentials were recorded extracellularly with a multibarrel pipette. L‐glutamate was administered every 1.5 s by anionic currents of 200 nA and 40‐ms duration. GABA (18 nA) was applied at the time indicated.

From K. Obata, unpublished data
Figure 3. Figure 3.

Effects of GABA on the membrane potential of neurons of Deiters' nucleus of cat. Intracellular recording and extracellular administration of GABA (500 nA) with coaxial electrode. A, resting potential. GABA was applied at the time indicated by the bar. Dotted line represents the net transmembrane potential after correction for current artifact. B‐D, IPSP's induced by cerebellar stimulation. B, control. C, during GABA administration. D, after GABA administration. Presynaptic spikes (sharp negative‐going potentials just after the stimuli) remain unchanged. E‐G, EPSP's evoked by cerebellar stimulation. E, control. F, during GABA administration. G, after GABA administration. In E and G, action potentials were generated from the EPSP's in about half the sweeps, and hyperpolarizing IPSP's followed the EPSP's.

From Obata et al.
Figure 4. Figure 4.

Basket cell inhibition of a Purkinje cell of the cat and the effect of bicuculline and strychnine. The “off‐line” cerebellar cortex was stimulated at the time indicated by arrows. In each record the number of spikes in 4‐ms period was counted for 20 sweeps. A, before; B, during; and C, after, electrophoretic administration of bicuculline (100 nA). D, before; E, during; and F, after, administration of strychnine (20 nA).

From Curtis & Felix
Figure 5. Figure 5.

Effects of bicuculline and strychnine on the depressant action of GABA and glycine on neurons of the cat globus pallidus (entopeduncular nucleus). A‐C, GABA (30 nA) and glycine (100 nA) were administered electrophoretically as indicated. A, control. B, 1–2.5 min after the onset of bicuculline administration (107 nA). C, 1–2 min after the termination of bicuculline. D, GABA (43 nA) and glycine (63 nA) were administered as indicated. During the time indicated by the bar, strychnine (57 nA) was administered.

From Obata & Yoshida
Figure 6. Figure 6.

Dose‐response curves of GABA action and the effect of picrotoxin in the crayfish muscle. Ordinate, conductance increase of the muscle membrane produced by bath application of GABA. ○, in normal solution. •, in 1 × 106 M; x, in 2 × 106 M; +, in 5 × 10−6 M picrotoxin.

From Takeuchi & Takeuchi
Figure 7. Figure 7.

Firing frequency of a Renshaw cell of a cat and the effect of tetanus toxin. A, before, and B, 49 min after, local administration of tetanus toxin (within 100 μm of the cell under recording). During the period indicated by the bars with arrows, the ipsilateral hindpaw was stimulated by squeezing, and glycine (2 nA) and GABA (5 nA) were administered electrophoretically.

From Curtis & De Groat


Figure 1.

Potential changes produced in the junctional area of a crayfish muscle by stimulation of the inhibitory nerve (Aa) and the excitatory nerve (Ba) and by electrophoretic administration of GABA (Ab) and L‐glutamate (Bb). Upper traces in a and middle traces in b, extracellular records. Lower traces, intracellular records. Upper traces in b represent electrophoretic currents.

From Takeuchi & Takeuchi


Figure 2.

Action of L‐glutamate and GABA on a neuron of Deiters' nucleus of cat. Action potentials were recorded extracellularly with a multibarrel pipette. L‐glutamate was administered every 1.5 s by anionic currents of 200 nA and 40‐ms duration. GABA (18 nA) was applied at the time indicated.

From K. Obata, unpublished data


Figure 3.

Effects of GABA on the membrane potential of neurons of Deiters' nucleus of cat. Intracellular recording and extracellular administration of GABA (500 nA) with coaxial electrode. A, resting potential. GABA was applied at the time indicated by the bar. Dotted line represents the net transmembrane potential after correction for current artifact. B‐D, IPSP's induced by cerebellar stimulation. B, control. C, during GABA administration. D, after GABA administration. Presynaptic spikes (sharp negative‐going potentials just after the stimuli) remain unchanged. E‐G, EPSP's evoked by cerebellar stimulation. E, control. F, during GABA administration. G, after GABA administration. In E and G, action potentials were generated from the EPSP's in about half the sweeps, and hyperpolarizing IPSP's followed the EPSP's.

From Obata et al.


Figure 4.

Basket cell inhibition of a Purkinje cell of the cat and the effect of bicuculline and strychnine. The “off‐line” cerebellar cortex was stimulated at the time indicated by arrows. In each record the number of spikes in 4‐ms period was counted for 20 sweeps. A, before; B, during; and C, after, electrophoretic administration of bicuculline (100 nA). D, before; E, during; and F, after, administration of strychnine (20 nA).

From Curtis & Felix


Figure 5.

Effects of bicuculline and strychnine on the depressant action of GABA and glycine on neurons of the cat globus pallidus (entopeduncular nucleus). A‐C, GABA (30 nA) and glycine (100 nA) were administered electrophoretically as indicated. A, control. B, 1–2.5 min after the onset of bicuculline administration (107 nA). C, 1–2 min after the termination of bicuculline. D, GABA (43 nA) and glycine (63 nA) were administered as indicated. During the time indicated by the bar, strychnine (57 nA) was administered.

From Obata & Yoshida


Figure 6.

Dose‐response curves of GABA action and the effect of picrotoxin in the crayfish muscle. Ordinate, conductance increase of the muscle membrane produced by bath application of GABA. ○, in normal solution. •, in 1 × 106 M; x, in 2 × 106 M; +, in 5 × 10−6 M picrotoxin.

From Takeuchi & Takeuchi


Figure 7.

Firing frequency of a Renshaw cell of a cat and the effect of tetanus toxin. A, before, and B, 49 min after, local administration of tetanus toxin (within 100 μm of the cell under recording). During the period indicated by the bars with arrows, the ipsilateral hindpaw was stimulated by squeezing, and glycine (2 nA) and GABA (5 nA) were administered electrophoretically.

From Curtis & De Groat
References
 1. Albers, R. W., and R. O. Brady. The distribution of glutamic decarboxylase in the nervous system of the rhesus monkey. J. Biol. Chem. 234: 926–928, 1959.
 2. Alving, B. O. The action of strychnine at cholinergic junctions. Arch. Intern. Pharmacodyn. 131: 123–150, 1961.
 3. Ambache, N., R. S. Morgan, and G. Payling Wright. The action of tetanus toxin on the rabbit's iris. J. Physiol. London 107: 45–53, 1948.
 4. Andersen, P., J. C. Eccles, and Y. Løyning. Pathway of postsynaptic inhibition in the hippocampus. J. Neurophysiol. 27: 608–619, 1964.
 5. Andersen, P., J. C. Eccles, Y. Løyning, and P. E. Voorhoeve. Strychnine‐resistant central inhibition. Strychnine‐resistant inhibition in the brain. Nature 200: 843–845, 1963.
 6. Andersen, P., B. Holmqvist, and P. E. Voorhoeve. Entorhinal activation of dentate granule cells. Acta Physiol. Scand. 66: 448–460, 1966.
 7. Aprison, M. H. Evidence of the release of [14C]glycine from hemisected toad spinal cord with dorsal root stimulation. Pharmacologist 12: 222P, 1970.
 8. Aprison, M. H., R. A. Davidoff, and R. Werman. Glycine: its metabolic and possible transmitter roles in nervous tissue. In: Handbook of Neurochemistry, edited by A. Lajtha. New York: Plenum, 1970, vol. 3, p. 381–397.
 9. Aprison, M. H., R. P. Shank, and R. A. Davidoff. A comparison of the concentration of glycine, a transmitter suspect, in different areas of the brain and spinal cord in seven different vertebrates. Comp. Biochem. Physiol. 28: 1345–1355. 1969.
 10. Aprison, M. H., and R. Werman. The distribution of glycine in cat spinal cord and roots. Life Sci. 4: 2075–2083, 1965.
 11. Aprison, M. H., and R. Werman. A combined neurochemical and neurophysiological approach to identification of central nervous system transmitters. In: Neurosciences Research, edited by S. Ehrenpreis and O. C. Solnitzky. New York: Academic, 1968, vol. I, p. 143–174.
 12. Armstrong, C. M. The inhibitory pathway from the lateral geniculate body to the optic cortex in the cat. Exptl. Neurol. 21: 429–439, 1968.
 13. Awapara, J., A. J. Landua, R. Fuerst, and B. Seale. Free γ‐aminobutyric acid in brain. J. Biol. Chem. 187: 35–39, 1950.
 14. Balázs, R., Y. Machiyama, B. J. Hammond, T. Julian, and D. Richter. The operation of the γ‐aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro. Biochem. J. 116: 445–467, 1970.
 15. Banna, N. R., and S. J. Jabbur. Pharmacological studies on inhibition in the cuneate nucleus of the cat. Intern. J. Neuropharmacol. 8: 299–307, 1969.
 16. Barker, J. L., and R. A. Nicoll. The pharmacology and ionic dependency of amino acid responses in the frog spinal cord. J. Physiol. London 228: 259–277, 1973.
 17. Baxter, C. F. The nature of γ‐aminobutyric acid. In: Handbook of Neurochemistry, edited by A. Lajtha. New York: Plenum, 1970, vol. 3, p. 289–353.
 18. Bazemore, A., K. A. C. Elliott, and E. Florey. Factor I and γ‐aminobutyric acid. Nature 178: 1052–1053, 1956.
 19. Bazemore, A. W., K. A. C. Elliott, and E. Florey. Isolation of Factor I. J. Neurochem. 1: 334–339, 1957.
 20. Beart, P. M., D. R. Curtis, and G. A. R. Johnston. 4‐Aminotetrolic acid: a new conformationally‐restricted analogue of γ‐aminobutyric acid. Nature New Biol. 234: 80–81, 1971.
 21. Beart, P. M., and G. A. R. Johnston. Bicuculline and GABA‐metabolising enzymes. Brain Res. 38: 226–227, 1972.
 22. Beart, P. M., G. A. R. Johnston, and M. L. Uhr. Competitive inhibition of GABA uptake in rat brain slices by some GABA analogues of restricted conformation. J. Neurochem. 19: 1855–1861, 1972.
 23. Beart, P. M., M. L. Uhr, and G. A. R. Johnston. Inhibition of GABA transaminase activity by 4‐aminotetrolic acid. J. Neurochem. 19: 1849–1854, 1972.
 24. Bell, J. A., and E. G. Anderson. The influence of semicarbazide‐induced depletion of γ‐aminobutyric acid on presynaptic inhibition. Brain Res. 43: 161–169, 1972.
 25. Berl, S., and D. D. Clarke. Compartmentation of amino acid metabolism. In: Handbook of Neurochemistry, edited by A. Lajtha. New York: Plenum, 1969, vol. 2, p. 447–472.
 26. Berl, S., and H. Waelsch. Determination of glutamic acid, glutamine, glutathione and γ‐aminobutyric acid and their distribution in brain tissue. J. Neurochem. 3: 161–169, 1958.
 27. Bird, E. D., and L. L. Iversen. Huntington's chorea: postmortem measurement of glutamic acid decarboxylase, choline acetyltransferase and dopamine in basal ganglia. Brain 97: 457–472, 1974.
 28. Bisti, S., G. Iosif, G. F. Marchesi, and P. Strata. Pharmacological properties of inhibitions in the cerebellar cortex. Exptl. Brain Res. 14: 24–37, 1971.
 29. Bloom, F. E. Amino acids and polypeptides in neuronal function. Neurosci. Res. Program Bull. 10: 122–251, 1972.
 30. Bobbin, R. P., and T. Konishi. Acetylcholine mimics crossed olivo‐cochlear bundle stimulation. Nature New Biol. 231: 222–223, 1971.
 31. Boehme, D. H., M. W. Fordice, N. Marks, and W. Vogel. Distribution of glycine in human spinal cord and selected regions of brain. Brain Res. 50: 353–359, 1973.
 32. Boistel, J., and P. Fatt. Membrane permeability change during transmitter action in crustacean muscle. J. Physiol. London 144: 176–191, 1958.
 33. Bowery, N. G., and D. A. Brown. γ‐Aminobutyric acid uptake by sympathetic ganglia. Nature New Biol. 238: 89–91, 1972.
 34. Bradley, K., D. M. Easton, and J. C. Eccles. An investigation of primary or direct inhibition. J. Physiol. London 122: 474–488, 1953.
 35. Brooks, V. B. An intracellular study of the action of repetitive nerve volleys and of botulinum toxin on miniature endplate potentials. J. Physiol. London 134: 264–277, 1956.
 36. Brooks, V. B., and H. Asanuma. Pharmacological studies of recurrent cortical inhibition and facilitation. Am. J. Physiol. 208: 674–681, 1965.
 37. Brooks, V. B., D. R. Curtis, and J. C. Eccles. The action of tetanus toxin on the inhibition of motoneurones. J. Physiol. London 135: 655–672, 1957.
 38. Brown, K. T. The electroretinogram: its components and their origins. Vision Res. 8: 633–677, 1968.
 39. Cervetto, L., and E. F. MacNichol, Jr. Inactivation of horizontal cells in turtle retina by glutamate and aspartate. Science 178: 767–768, 1972.
 40. Clarke, G., and R. G. Hill. Effects of a focal penicillin lesion on responses of rabbit cortical neurones to putative neurotransmitters. Brit. J. Pharmacol. 44: 435–441, 1972.
 41. Collins, G. G. S. The spontaneous and electrically evoked release of [3H]GABA from the isolated hemisected frog spinal cord. Brain Res. 66: 121–137, 1974.
 42. Crawford, J. M., D. R. Curtis, P. E. Voorhoeve, and V. J. Wilson. Strychinine‐resistant central inhibition. Strychnine and cortical inhibition. Nature 200: 845–846, 1963.
 43. Crowshaw, K., S. J. Jessup, and P. W. Ramwell. Thin layer chromatography of 1‐dimethylaminonaphthalene‐5‐sulphonyl derivatives of amino acids present in superfusates of cat cerebral cortex. Biochem. J. 103: 79–85, 1967.
 44. Curtis, D. R. Pharmacological investigations upon inhibition of spinal neurones. J. Physiol. London 145: 175–192, 1959.
 45. Curtis, D. R. The depression of spinal inhibition by electrophoretically administered strychnine. Intern. J. Neuropharmacol. 1: 239–250, 1962.
 46. Curtis, D. R. The actions of amino acids upon mammalian neurones. In: Studies in Physiology, Presented to J. C. Eccles, edited by D. R. Curtis and A. K. McIntyre. Heidelberg: Springer Verlag, 1965, p. 34–42.
 47. Curtis, D. R., and J. M. Crawford. Central synaptic transmission — microelectrophoretic studies. Ann. Rev. Pharmacol. 9: 209–240, 1969.
 48. Curtis, D. R., and W. C. De Groat. Tetanus toxin and spinal inhibition. Brain Res. 10: 208–212, 1968.
 49. Curtis, D. R., A. W. Duggan, and D. Felix. GABA, bicuculline and inhibition of Deiters' neurons. Brain Res. 23: 117–120, 1970.
 50. Curtis, D. R., A. W. Duggan, D. Felix, and G. A. R. Johnston. GABA, bicuculline and central inhibition. Nature 226: 1222–1224, 1970.
 51. Curtis, D. R., A. W. Duggan, D. Felix, and G. A. R. Johnston. Bicuculline, an antagonist of GABA and synaptic inhibition in the spinal cord of the cat. Brain Res. 32: 69–96, 1971.
 52. Curtis, D. R., A. W. Duggan, D. Felix, G. A. R. Johnston, and H. McLennan. Antagonism between bicuculline and GABA in the cat brain. Brain Res. 33: 57–73, 1971.
 53. Curtis, D. R., A. W. Duggan, D. Felix, G. A. R. Johnston, A. K. Tebēcis, and J. C. Watkins. Excitation of mammalian central neurones by acidic amino acids. Brain Res. 41: 283–301, 1972.
 54. Curtis, D. R., A. W. Duggan, and G. A. R. Johnston. The inactivation of extracellularly administered amino acids in the feline spinal cord. Exptl. Brain Res. 10: 447–462, 1970.
 55. Curtis, D. R., and D. Felix. The effects of bicuculline upon synaptic inhibition in the cerebral and cerebellar cortices of the cat. Brain Res. 34: 301–321, 1971.
 56. Curtis, D. R., D. Felix, C. J. A. Game, and R. M. McCulloch. Tetanus toxin and the synaptic release of GABA. Brain Res. 51: 358–362, 1973.
 57. Curtis, D. R., D. Felix, and H. McLennan. GABA and hippocampal inhibition. Brit. J. Pharmacol. 40: 881–883, 1970.
 58. Curtis, D. R., C. J. A. Game, G. A. R. Johnston, R. M. McCulloch, and R. M. MacLachlan. Convulsive action of penicillin. Brain Res. 43: 242–245, 1972.
 59. Curtis, E. R., L. Hösli, and G. A. R. Johnston. A pharmacological study of the depression of spinal neurones by glycine and related amino acids. Exptl. Brain Res. 6: 1–18, 1968.
 60. Curtis, D. R., L. Hösli, G. A. R. Johnston, and I. H. Johnston. Glycine and spinal inhibition. Brain Res. 5: 112–114, 1967.
 61. Curtis, D. R., L. Hösli, G. A. R. Johnston, and I. H. Johnston. The hyperpolarization of spinal motoneurones by glycine and related amino acids. Exptl. Brain Res. 5: 235–258, 1968.
 62. Curtis, D. R., and G. A. R. Johnston. Amino acid transmitters. In: Handbook of Neurochemistry, edited by A. Lajtha. New York: Plenum, 1970, vol. 4, p. 115–134.
 63. Curtis, D. R., G. A. R. Johnston, C. J. A. Game, and R. M. McCulloch. Antagonism of neuronal excitation by 1‐hydroxy‐3‐aminopyrrolidone‐2. Brain Res. 49: 467–470, 1973.
 64. Curtis, D. R., J. W. Phillis, and J. C. Watkins. The depression of spinal neurones by γ‐amino‐n ‐butyric acid and β‐alanine. J. Physiol. London 146: 185–203, 1959.
 65. Curtis, D. R., J. W. Phillis, and J. C. Watkins. The chemical excitation of spinal neurones by certain acidic amino acids. J. Physiol. London 150: 656–682, 1960.
 66. Curtis, D. R., J. W. Phillis, and J. C. Watkins. Actions of amino‐acids on the isolated hemisected spinal cord of the toad. Brit. J. Pharmacol. 16: 262–283, 1961.
 67. Curtis, D. R., and A. K. Tebēcis. Bicuculline and thalamic inhibition. Exptl. Brain Res. 16: 210–218, 1972.
 68. Curtis, D. R., and J. C. Watkins. The excitation and depression of spinal neurones by structurally related amino acids. J. Neurochem. 6: 117–141, 1960.
 69. Curtis, D. R., and J. C. Watkins. Analogues of glutamic and γ‐amino‐N‐butyric acids having potent actions on mammalian neurones. Nature 191: 1010–1011, 1961.
 70. Curtis, D. R., and J. C. Watkins. Acidic amino acids with strong excitatory actions on mammalian neurones. J. Physiol. London 166: 1–14, 1963.
 71. Curtis, D. R., and J. C. Watkins. The pharmacology of amino acids related to gamma‐aminobutyric acid. Pharmacol. Rev. 17: 347–391, 1965.
 72. Cutler, R. W. P., J. P. Hammerstad, L. R. Cornick, and J. E. Murray. Efflux of amino acid neurotransmitters from rat spinal cord slices. I. Factors influencing the spontaneous efflux of [14C]glycine and [3H]GABA. Brain Res. 35: 337–355, 1971.
 73. Davidoff, R. A. Penicillin and presynaptic inhibition in the amphibian spinal cord. Brain Res. 36: 218–222, 1972.
 74. Davidoff, R. A. Penicillin and inhibition in the cat spinal cord. Brain Res. 45: 638–642, 1972.
 75. Davidoff, R. A. Gamma‐aminobutyric acid antagonism and presynaptic inhibition in the frog spinal cord. Science 175: 331–333, 1972.
 76. Davidoff, R. A., and M. H. Aprison. Picrotoxin antagonism of the inhibitions of interneurons by glycine. Life Sci. 8: 107–112, 1969.
 77. Davidoff, R. A., V. Grayson, and R. Adair. GABA‐transaminase inhibitors and presynaptic inhibition in the amphibian spinal cord. Am. J. Physiol. 224: 1230–1234, 1973.
 78. Davidoff, R. A., R. P. Shank, L. T. Graham, Jr., M. H. Aprison, and R. Werman. Is glycine a neurotransmitter? Association of glycine with spinal interneurones. Nature 214: 680–681, 1967.
 79. Davidson, N., and H. Reisine. Presynaptic inhibition in cuneate blocked by GABA antagonists. Nature New Biol. 234: 223–224, 1971.
 80. Davidson, N., and C. A. P. Southwick. Amino acids and presynaptic inhibition in the rat cuneate nucleus. J. Physiol. London 219: 689–708, 1971.
 81. Davies, J., and J. C. Watkins. Microelectrophoretic studies on the depressant action of HA‐966 on chemically and synaptically excited neurones in the cat cerebral cortex and cuneate nucleus. Brain Res. 59: 311–322, 1973.
 82. Davies, W. E., and S. D. Comis. Bicuculline and its effect on γ‐aminobutyric acid transaminase in the guinea‐pig brain stem. Nature New Biol. 231: 156–157, 1971.
 83. Davies, L. P., and G. A. R. Johnston. Serine hydroxy‐methyltransferase in the central nervous system: regional and subcellular distribution studies. Brain Res. 54: 149–156, 1973.
 84. De Groat, W. C. The actions of γ‐aminobutyric acid and related amino acids on mammalian autonomic ganglia. J. Pharmacol. Exptl. Therap. 172: 384–396, 1970.
 85. De Groat, W. C. The effects of glycine, GABA and strychnine on sacral parasympathetic preganglionic neurons. Brain Res. 18: 542–544, 1970.
 86. De Groat, W. C. GABA‐depolarization of a sensory ganglion: antagonism by picrotoxin and bicuculline. Brain Res. 38: 429–432, 1972.
 87. De Groat, W. C., P. M. Lalley, and M. Block. The effect of bicuculline and GABA on the superior cervical ganglion of the cat. Brain Res. 25: 665–668, 1971.
 88. De Groat, W. C., P. M. Lalley, and W. R. Saum. Depolarization of dorsal root ganglia in the cat by GABA and related amino acids: antagonism by picrotoxin and bicuculline. Brain Res. 44: 273–277, 1972.
 89. Desmedt, J. E., and V. La Grutta. Function of the uncrossed efferent olivocochlear fibres in the cat. Nature 200: 472–474, 1963.
 90. Desmedt, J. E., and P. Monaco. Suppression par la strychnine de l'effet inhibiteur centrifuge exercé par le faisceau olivo‐cochléaire. Arch. Intern. Pharmacodyn. 129: 244–248, 1960.
 91. Desmedt, J. E., and P. Monaco. Mode of action of the efferent olivo‐cochlear bundle on the inner ear. Nature 192: 1263–1265, 1961.
 92. Diamond, J. The activation and distribution of GABA and L‐glutamate receptors on goldfish Mauthner neurons: an analysis of dendritic remote inhibition. J. Physiol. London 194: 669–723, 1968.
 93. Diamond, J., S. Roper, and G. M. Yasargil. The membrane effects, and sensitivity to strychnine, on neural inhibition of the Mauthner cell, and its inhibition by glycine and GABA. J. Physiol. London 232: 87–111, 1973.
 94. Dreifuss, J. J., J. S. Kelly, and K. Krnjević. Cortical inhibition and γ‐aminobutyric acid. Exptl. Brain Res. 9: 137–154, 1969.
 95. Dreifuss, J. J., and E. K. Matthews. Antagonism between strychnine and glycine, and bicuculline and GABA in the ventromedial hypothalamus. Brain Res. 45: 599–603, 1972.
 96. Dudel, J. Presynaptic and postsynaptic effects of inhibitory drugs on the crayfish neuromuscular junction. Pfluegers Arch. Ges. Physiol. 283: 104–118, 1965.
 97. Dudel, J. The action of inhibitory drugs on nerve terminals in crayfish muscle. Pfluegers Arch. Ges. Physiol. 284: 81–94, 1965.
 98. Dudel, J., R. Gryder, A. Kaji, S. W. Kuffler, and D. D. Potter. Gamma‐aminobutyric acid and other blocking compounds in Crustacea. I. Central nervous system. J. Neurophysiol. 26: 721–728, 1963.
 99. Dudel, J., and S. W. Kuffler. Presynaptic inhibition at the crayfish neuromuscular junction. J. Physiol. London 155: 534–562, 1961.
 100. Duggan, A. W., and G. A. R. Johnston. Glutamate and related amino‐acids in cat, dog, and rat spinal roots. Comp. Gen. Pharmacol. 1: 127–128, 1970.
 101. Duggan, A. W., and H. McLennan. Bicuculline and inhibition in the thalamus. Brain Res. 25: 188–191, 1971.
 102. Earl, J., and W. A. Large. The effects of bicuculline, picrotoxin and strychnine on neuromuscular inhibition in hermit crab (Eupagurus bernhardus). J. Physiol. London 244: 45P–46P, 1972.
 103. Earl, J., and W. A. Large. Effects of penicillin on the increase in membrane conductance induced by γ‐aminobutyric acid at the crab neuromuscular junction. Brit. J. Pharmacol. 48: 318–320, 1973.
 104. Eccles, J. C. The Physiology of Nerve Cells. Baltimore: Johns Hopkins, 1957.
 105. Eccles, J. C. The Physiology of Synapses. Berlin: Springer Verlag, 1964.
 106. Eccles, J. C., P. Fatt, and K. Koketsu. Cholinergic and inhibitory synapses in a pathway from motor‐axon collaterals to motoneurones. J. Physiol. London 126: 524–562, 1954.
 107. Eccles, J. C., M. Ito, and J. Szentágothai. The Cerebellum As a Neuronal Machine. New York: Springer, 1967.
 108. Eccles, J. C., R. Schmidt, and W. D. Willis. Pharmacological studies on presynaptic inhibition. J. Physiol. London 168: 500–530, 1963.
 109. Edwards, C., and S. Hagiwara. Potassium ions and the inhibitory process in the crayfish stretch receptor. J. Gen. Physiol. 43: 315–321, 1959.
 110. Edwards, C., and S. W. Kuffler. The blocking effect of γ‐aminobutyric acid (GABA) and the action of related compounds on single nerve cells. J. Neurochem. 4: 19–30, 1959.
 111. Ehinger, B., and B. Falck. Autoradiography of some suspected neurotransmitter substances: GABA, glycine, glutamic acid, histamine, dopamine, and L‐DOPA. Brain Res. 33: 157–172, 1971.
 112. Elliott, K. A. C., and E. Florey. Factor I. Inhibitory factor from brain. J. Neurochem. 1: 181–191, 1956.
 113. Elliott, K. A. C., and N. M. Van Gelder. Occlusion and metabolism of γ‐aminoburyric acid by brain tissue. J. Neurochem. 3: 28–40, 1958.
 114. Engberg, I., and A. Thaller. On the interaction of picrotoxin with GABA and glycine in the spinal cord. Brain Res. 19: 151–154, 1970.
 115. Fahn, S., and L. J. Côté. Regional distribution of γ‐aminobutyric acid (GABA) in brain of the rhesus monkey. J. Neurochem. 15: 209–213, 1968.
 116. Fatt, P., and B. Katz. The effect of inhibitory nerve impulses on a crustacean muscle fibre. J. Physiol. London 121: 374–389, 1953.
 117. Fedinec, A. A., and R. P. Shank. Effect of tetanus toxin on the content of glycine, gamma‐aminobutyric acid, glutamate, glutamine and aspartate in the rat spinal cord. J. Neurochem. 18: 2229–2234, 1971.
 118. Felix, D., and H. McLennan. The effect of bicuculline on the inhibition of mitral cells of the olfactory bulb. Brain Res. 25: 661–664, 1971.
 119. Feltz, A. Competitive interaction of β‐guanidino propionic acid and γ‐aminobutyric acid on the muscle fibre of the crayfish. J. Physiol. London 216: 391–401, 1971.
 120. Ferguson, R. K., B. Zablocka‐Esplin, and D. W. Esplin. Peripheral cholinergic blockade by drugs that block postsynaptic central inhibition. Arch. Intern. Pharmacodyn. 185: 298–307, 1970.
 121. Fex, J. Efferent inhibition in the cochlea by the olivocochlear bundle. In: Ciba Foundation Symposium on Hearing Mechanisms in Vertebrates, edited by A.V.S. de Reuck and J. Knight. London: Churchill, 1968, p. 169–186.
 122. Florey, E. An inhibitory and an excitatory factor of mammalian central nervous system and their action on a single sensory neuron. Arch. Intern. Physiol. 62: 33–53, 1954.
 123. Florey, E., and M. A. Biederman. Studies on the distribution of Factor I and acetylcholine in crustacean peripheral nerve. J. Gen. Physiol. 43: 509–522, 1960.
 124. Florey, E., and D. D. Chapman. The non‐identity of the transmitter substance of crustacean inhibitory neurons and gamma‐aminobutyric acid. Comp. Biochem. Physiol. 3: 92–98, 1961.
 125. Florey, E., and E. Florey. Studies on the distribution of Factor I in mammalian brain. J. Physiol. London 144: 220–228, 1958.
 126. Florey, E., and H. McLennan. The release of an inhibitory substance from mammalian brain and its effect on peripheral synaptic transmission. J. Physiol. London 129: 384–392, 1955.
 127. Fonnum, F. The distribution of glutamate decarboxylase and aspartate transaminase in subcellular fraction of rat and guinea pig brain. Biochem. J. 106: 401–412, 1968.
 128. Fonnum, F., I. Grofová, E. Rinvik, J. Storm‐Mathisen, and F. Walberg. Origin and distribution of glutamate decarboxylase in substantia nigra of the cat. Brain Res. 71: 77–92, 1974.
 129. Fonnum, F., J. Storm‐Mathisen, and F. Walberg. Glutamate decarboxylase in inhibitory neurons. A study of the enzyme in Purkinje cell axons and boutons in the cat. Brain Res. 20: 259–275, 1970.
 130. Fonnum, F., and F. Walberg. An estimation of the concentration of γ‐aminobutyric acid and glutamate decarboxylase in the inhibitory Purkinje axon terminals in the cat. Brain Res. 54: 115–127, 1973.
 131. Fukuda, J., S. M. Highstein, and M. Ito. Cerebellar inhibitory control of the vestibulo‐ocular reflex investigated in rabbit IIIrd nucleus. Exptl. Brain Res. 14: 511–526, 1972.
 132. Furshpan, E. J., and D. D. Potter. Slow post‐synaptic potentials recorded from the giant motor fibre of the crayfish. J. Physiol. London 145: 326–335, 1959.
 133. Furukawa, T., Y. Fukami, and Y. Asada. Effects of strychnine and procaine on collateral inhibition of the Mauthner cell of goldfish. Japan. J. Physiol. 14: 386–399, 1964.
 134. Furukawa, T., and I. Hanawa. Effects of some common cations on electroretinogram of the toad. Japan. J. Physiol. 5: 289–300, 1955.
 135. Gaitonde, M. K. Rate of utilization of glucose and compartmentation of α‐oxoglutarate and glutamate in rat brain. Biochem. J. 95: 803–810, 1965.
 136. Gaitonde, M. K., D. R. Dahl, and K. A. C. Elliott. Entry of glucose carbon into amino acids of rat brain and liver in vivo after injection of uniformly 14C‐labelled glucose. Biochem. J. 94: 345–352, 1965.
 137. Galambos, R. Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea. J. Neurophysiol. 19: 424–437, 1956.
 138. Galindo, A. GABA‐picrotoxin interaction in the mammalian central nervous system. Brain Res. 14: 763–767, 1969.
 139. Galindo, A., K. Krnjević, and S. Schwartz. Micro‐iontophoretic studies on neurones in the cuneate nucleus. J. Physiol. London 192: 359–377, 1967.
 140. Gfeller, E., M. J. Kuhar, and S. H. Snyder. Neurotransmitter‐specific synaptosomes in rat corpus striatum: morphological variations. Proc. Natl. Acad. Sci. US 68: 155–159, 1971.
 141. Goodchild, M., and M. J. Neal. The uptake of 3H‐γ‐aminobutyric acid by the retina. Brit. J. Pharmacol. 47: 529–542, 1973.
 142. Graham, L. T., Jr. Intraretinal distribution of GABA content and GAD activity. Brain Res. 36: 476–479, 1972.
 143. Graham, L. T., Jr., C. F. Baxter, and R. N. Lolley. In vivo influence of light or darkness on the GABA system in the retina of the frog (Rana pipiens). Brain Res. 20: 379–388, 1970.
 144. Graham, L. T., Jr., R. P. Shank, R. Werman, and M. H. Aprison. Distribution of some synaptic transmitter suspects in cat spinal cord: glutamic acid, aspartic acid, γ‐aminobutyric acid, glycine and glutamine. J. Neurochem. 14: 465–472, 1967.
 145. Green, J. D., M. Mancia, and R. Von Baumgarten. Recurrent inhibition in the olfactory bulb. I. Effects of antidromic stimulation of the lateral olfactory tract. J. Neurophvsiol. 25: 467–488, 1962.
 146. Grofova, I., and E. Rinvik. An experimental electron microscopic study on the striatonigral projection in the cat. Exptl. Brain Res. 11: 249–262, 1970.
 147. Grundfest, H., J. P. Reuben, and W. H. Rickles, Jr. The electrophysiology and pharmacology of lobster neuromuscular synapses. J. Gen. Physiol. 42: 1301–1323, 1959.
 148. Haas, H. L., and L. Hösli. The depression of brain stem neurones by taurine and its interaction with strychnine and bicuculline. Brain Res. 52: 399–402, 1973.
 149. Haber, B., K. Kuriyama, and E. Roberts. An anion stimulated L‐glutamic acid decarboxylase in non‐neural tissues: occurrence and subcellular localization in mouse kidney and developing chick embryo brain. Biochem. Pharmacol. 19: 1119–1136, 1970.
 150. Haber, B., K. Kuriyama, and E. Roberts. Mitochondrial localization of a new L‐glutamic acid decarboxylase in mouse and human brain. Brain Res. 22: 105–112, 1970.
 151. Hagiwara, S., K. Kusano, and S. Saito. Membrane changes in crayfish stretch receptor neuron during synaptic inhibition and under action of gamma‐aminobutyric acid. J. Neurophysiol. 23: 505–515, 1960.
 152. Haldeman, S., R. D. Huffman, K. C. Marshall, and H. McLennan. The antagonism of the glutamate‐induced and synaptic excitations of thalamic neurones. Brain Res. 39: 419–425, 1972.
 153. Haldeman, S., and H. McLennan. The antagonistic action of glutamic acid diethylester towards amino acid‐induced and synaptic excitations of central neurones. Brain Res. 45: 393–400, 1972.
 154. Hall, Z. W., M. D. Bownds, and E. A. Kravitz. The metabolism of gamma aminobutyric acid in the lobster nervous system. Enzymes in single excitatory and inhibitory axons. J. Cell. Biol. 46: 290–299, 1970.
 155. Hamberger, A. Amino acid uptake in neuronal and glial cell fractions from rabbit cerebral cortex. Brain Res. 31: 169–178, 1971.
 156. Hammerstad, J. P., and R. W. P. Cutler. Sodium ion movements and the spontaneous and electically stimulated release of [3H]GABA and [14C]glutamic acid from rat cortical slices. Brain Res. 47: 401–413, 1972.
 157. Hammerstad, J. P., J. E. Murray, and R. W. P. Cutler. Efflux of amino acid neurotransmitters from rat spinal cord slices. II. Factors influencing the electrically induced efflux of [14C]glycine and [3H]GABA. Brain Res. 35: 357–367, 1971.
 158. Hattori, T., P. L. McGeer, H. C. Fibiger, and E. G. McGeer. On the source of GABA‐containing terminals in the substantia nigra. Electron microscopic autoradiographic and biochemical studies. Brain Res. 54: 103–114, 1973.
 159. Hayashi, T. Chemical Physiology of Excitation in Muscle and Nerve. Tokyo: Nakayama‐Shoten, 1956.
 160. Hayashi, T., and K. Nagai. Action of ω‐amino acids on the motor cortex of higher animals, especially γ‐amino‐β‐oxybutyric acid on the real inhibitory principle in brain (Abstract). Intern. Physiol. Congr., 20th, 1956, Brussels, p. 410.
 161. Hebb, C. CNS at the cellular level: identity of transmitter agents. Ann. Rev. Physiol. 32: 165–192, 1970.
 162. Hebb, C. O., and A. Silver. Choline acetylase in the central nervous system of man and some other mammals. J. Physiol. London 134: 718–728, 1956.
 163. Highstein, S. M. Synaptic linkage in the vestbulo‐ocular and cerebello‐vestibular pathways to the VIth nucleus in the rabbit. Exptl. Brain Res. 17: 301–314, 1973.
 164. Highstein, S. M., M. Ito, and T. Tsuchiya. Synaptic linkage in the vestibulo‐ocular reflex pathway of rabbit. Exptl. Brain Res. 13: 306–326, 1971.
 165. Hildebrand, J. G., D. L. Barker, E. Herbert, and E. A. Kravitz. Screening for neurotransmitters: a rapid radiochemical procedure. J. Neurohiol. 2: 231–246, 1971.
 166. Hirsch, H. E., and E. Robins. Distribution of γ‐aminobutyric acid in the layers of the cerebral and cerebellar cortex. Implications for its physiological role. J. Neurochem. 9: 63–70, 1962.
 167. Hökfelt, T., and Å. Ljungdahl. Light and electron microscopic autoradiography on spinal cord slices after incubation with labelled glycine. Brain Res. 32: 189–194, 1971.
 168. Hökfelt, T., and Å. Ljungdahl. Autoradiographic identification of cerebral and cerebellar cortical neurons accumulating labeled gamma‐aminobutyric acid (3H‐GABA). Exptl. Brain Res. 14: 354–362, 1972.
 169. Holman, G. M., and B. J. Cook. Pharmacological properties of excitatory neuromuscular transmission in the hind‐gut of the cockroach Leucophaea mederae. J. Insect Physiol. 16: 1891–1907, 1970.
 170. Hopkin, J., and M. J. Neal. Effect of electrical stimulation and high potassium concentrations on the efflux of [14C]glycine from slices of spinal cord. Brit. J. Pharmacol. 42: 215–223, 1971.
 171. Hösli, L., and E. Hösli. Autoradiographic localization of the uptake of glycine in cultures of rat medulla oblongata. Brain Res. 45: 612–616, 1972.
 172. Hösli, L., and A. K. Tebēcis. Actions of amino acids and convulsants on bulbar reticular neurones. Exptl. Brain Res. 11: 111–127, 1970.
 173. Huffman, R. D., and L. S. McFadin. Effects of bicuculline on central inhibiton. Neuropharmacol. 11: 789–799, 1972.
 174. Ito, M., and M. Yoshida. The origin of cerebellar‐induced inhibition of Deiters neurones. I. Monosynaptic initiation of the inhibitory postsynaptic potentials. Exptl. Brain Res. 2: 330–349, 1966.
 175. Iurato, S., L. Luciano, E. Pannese, and E. Reale. Histochemical localization of acetylcholinesterase (AChE) activity in the inner ear. Acta Oto‐Laryngol. Suppl. 279: 1–50, 1970.
 176. Iversen, L. L. The Uptake and Storage of Noradrenaline in Sympathetic Nerves. Cambridge: Univ. Press, 1967.
 177. Iversen, L. L. The uptake, storage, release, and metabolism of GABA in inhibitory nerves. In: Perspectives in Neuropharmacology. A Tribute to Julius Axelrod, edited by S. H. Snyder. New York: Oxford Univ. Press, 1972, p. 75–111.
 178. Iversen, L. L., and F. E. Bloom. Studies of the uptake of 3H‐GABA and [3H]glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res. 41: 131–143, 1972.
 179. Iversen, L. L., and G. A. R. Johnston. GABA uptake in rat central nervous system: comparison of uptake in slice and homogenates and the effects of some inhibitors. J. Neurochem. 18: 1939–1950, 1971.
 180. Iverson, L. L., and E. A. Kravitz. The metabolism of gamma‐aminobutyric acid (GABA) in the lobster nervous system — uptake of GABA in nerve‐muscle preparations. J. Neurochem. 15: 609–620, 1968.
 181. Iversen, L. L., J. F. Mitchell, and V. Srinivasan. The release of γ‐aminobutyric acid during inhibition in the cat visual cortex. J. Physiol. London 212: 519–534, 1971.
 182. Iversen, L. L., and M. J. Neal. The upake of [3H]GABA by slices of rat cerebral cortex. J. Neurochem. 15: 1141–1149, 1968.
 183. Jakoby, W. B., and E. M. Scott. Aldehyde oxidation. III. Succinic semialdehyde dehydrogenase. J. Biol. Chem. 234: 937–940, 1959.
 184. Jasper, H. H., R. T. Khan, and K. A. C. Elliott. Amino acids released from the cerebral cortex in relation to its state of activation. Science 147: 1448–1449, 1965.
 185. Jasper, H. H., and I. Koyama. Rate of release of amino acids from the cerebral cortex in the cat as affected by brainstem and thalamic stimulation. Can. J. Physiol. Pharmacol. 47: 889–905, 1969.
 186. Jasser, A., and P. S. Guth. The synthesis of acetylcholine by the olivocochlear bundle. J. Neurochem. 20: 45–53, 1973.
 187. Johnson, J. L. Glutamic acid as a synaptic transmitter in the nervous system. Brain Res. 37: 1–20, 1972.
 188. Johnston, G. A. R. The intraspinal distribution of some depressant amino acids. J. Neurochem. 15: 1013–1017, 1968.
 189. Johnston, G. A. R. Muscimol and the uptake of γ‐aminobutyric acid by rat brain slices. Psychopharmacologia 22: 230–233, 1971.
 190. Johnston, G. A. R., D. R. Curtis, W. C. De Groat, and A. W. Duggan. Central actions of ibotenic acid and muscimol. Biochem. Pharmacol. 17: 2488–2489, 1968.
 191. Johnston, G. A. R., W. C. De Groat, and D. R. Curtis. Tetanus toxin and amino acid levels in cat spinal cord. J. Neurochem. 16: 797–800, 1969.
 192. Johnston, G. A. R., and L. L. Iversen. Glycine uptake in rat central nervous system slices and homogenates: evidence for different uptake systems in spinal cord and cerebral cortex. J. Neurochem. 18: 1951–1961, 1971.
 193. Johnston, G. A. R., and M. V. Vitali. Glycine producing transaminase activity in extracts of spinal cord. Brain Res. 12: 471–472, 1969.
 194. Johnston, G. A. R., and M. V. Vitali. Glycine:2‐oxoglutarate transaminase in rat cerebral cortex. Brain Res. 15: 201–208, 1969.
 195. Johnston, G. A. R., M. V. Vitali, and H. M. Alexander. Regional and subcellular distribution studies on glycine:2‐oxoglutarate transaminase activity in cat spinal cord. Brain Res. 20: 361–367, 1970.
 196. Jones, H. C. The action of L‐glutamic acid and of structurally related compounds on the hindgut of the crayfish. J. Physiol. London 164: 295–300, 1962.
 197. Kanazawa, I., Y. Miyata, Y. Toyokura, and M. Otuska. The distribution of γ‐aminobutyric acid (GABA) in the human substantia nigra. Brain Res. 51: 363–365, 1973.
 198. Kano, M., and K. Ishikawa. Effect of tetanus toxin on the inhibitory neuromuscular junction of crayfish muscle. Exptl. Neurol. 37: 550–561, 1972.
 199. Katz, B., and S. Thesleff. A study of the ‘desensitization’ produced by acetylcholine at the motor end‐plate. J. Physiol. London 138: 63–80, 1957.
 200. Kawai, N., and C. Yamamoto. Effect of γ‐amino‐butyric acid on the potentials evoked in vitro in the superior colliculus. Experientia 23: 822–823, 1967.
 201. Kawamura, H., and L. Provini. Depression of cerebellar Purkinje cells by microelectrophoretic application of GABA and related amino acids. Brain Res. 24: 293–304, 1970.
 202. Kellerth, J.‐O., and A. J. Szumski. Two types of stretch‐activated post‐synaptic inhibitions in spinal motoneurones as differentiated by strychnine. Acta Physiol. Scand. 66: 133–145, 1966.
 203. Kellerth, J.‐O., and A. J. Szumski. Effects of picrotoxin on stretch‐activated post‐synaptic inhibitions in spinal motoneurones. Acta Physiol. Scand. 66: 146–156, 1966.
 204. Kelly, J. S., and K. Krnjević. The action of glycine on cortical neurones. Exptl. Brain Res. 9: 155–163, 1969.
 205. Kelly, J. S., and L. P. Renaud. On the pharmacology of the γ‐aminobutyric acid receptors on the cuneo‐thalamic relay cells of the cat. Brit. J. Pharmacol. 48: 369–386, 1973.
 206. Kelly, J. S., and L. P. Renaud. On the pharmacology of the glycine receptors on the cuneo‐thalamic relay cells in the cat. Brit. J. Pharmacol. 48: 387–395, 1973.
 207. Kelly, J. S., and L. P. Renaud. On the pharmacology of ascending, descending and recurrent postsynaptic inhibition of the cuneo‐thalamic relay cells in the cat. Brit. J. Pharmacol. 48: 396–408, 1973.
 208. Kerkut, G. A., L. D. Leake, A. Shapira, S. Cowan, and R. J. Walker. The presence of glutamate in nerve‐muscle perfusates of Helix, Carcinus and Periplaneta. Comp. Biochem. Physiol. 15: 485–502, 1965.
 209. Kim, J. S., I. J. Bak, R. Hassler, and Y. Okada. Role of γ‐aminobutyric acid (GABA) in the extrapyramidal motor system. II. Some evidence for the existence of a type of GABA‐rich strio‐nigral neurons. Exptl. Brain Res. 14: 95–104, 1971.
 210. Klinke, R., N. Galley, M. Pause, and W.‐H. Storch. Tetanus toxin blocks the efferent endings in the cochlea. Brain Res. 49: 447–450, 1973.
 211. Knauff, H. G., G. Meyer, and D. Max. Über die Aminosäurezusammensetzung der Gehirnproteine. Z. Physiol. Chem. 326: 78–88, 1961.
 212. Koechlin, B. A. On the chemical composition of the axoplasm of squid giant nerve fibers with particular reference to its ion pattern. J. Biophys. Biochem. Cytol. 1: 511–529, 1955.
 213. Konishi, S., and M. Otsuka. Excitatory action of hypothalamic substance P on spinal motoneurones of newborn rats. Nature 252: 734–735, 1974.
 214. Kravitz, E. A. Acetylcholine, γ‐aminobutyric acid, and glutamic acid: physiological and chemical studies related to their roles as neurotransmitter agents. In: The Neurosciences: A Study Program, planned and edited by G. C. Quarton, T. Melnechuk, and F. O. Schmitt. New York: Rockefeller Univ. Press, 1967, p. 433–444.
 215. Kravitz, E. A., S. W. Kuffler, and D. D. Potter. Gamma‐aminobutyric acid and other blocking compounds in Crustacea. III. Their relative concentrations in separated motor and inhibitory axons. J. Neurophysiol. 26: 739–751, 1963.
 216. Kravitz, E. A., S. W. Kuffler, D. D. Potter, and N. M. Van Gelder. Gamma‐aminobutyric acid and other blocking compounds in Crustacea. II. Peripheral nervous system. J. Neurophysiol. 26: 729–738, 1963.
 217. Kravitz, E. A., P. B. Molinoff, and Z. W. Hall. A comparison of the enzymes and substrates of gamma‐aminobutyric acid metabolism in lobster excitatory and inhibitory axons. Proc. Natl. Acad. Sci. US 54: 778–782, 1965.
 218. Kravitz, E. A., and D. D. Potter. A further study of the distribution of γ‐aminobutyric acid between excitatory and inhibitory axons of the lobster. J. Neurochem. 12: 323–328, 1965.
 219. Kravitz, E. A., C. R. Slater, K. Takahashi, M. D. Bownds, and R. M. Grossfeld. Excitatory transmission in invertebrates‐glutamate as a potential neuromuscular transmitter compound. In: Proceedings of the Fifth International Meeting of Neurobiologists. Excitatory Synaptic Mechanisms, edited by P. Andersen and J. K. S. Jansen. Oslo: Universitetsforlaget, 1970, p. 85–93.
 220. Krnjević, K. Micro‐iontophoretic studies on cortical neurons. Intern. Rev. Neurobiol. 7: 41–98, 1964.
 221. Krnjević, K. Actions of drugs on single neurones in the cerebral cortex. Brit. Med. Bull. 21: 10–14, 1965.
 222. Krnjević, K. Glutamate and γ‐aminobutyric acid in brain. Nature 228: 119–124, 1970.
 223. Krnjević, K., M. Randić, and D. W. Straughan. An inhibitory process in the cerebral cortex. J. Physiol. London 184: 16–48, 1966.
 224. Krnjević, K., M. Randić, and D. W. Straughan. Pharmacology of cortical inhibition. J. Physiol. London 184: 78–105, 1966.
 225. Krnjević, K., and S. Schwartz. Is γ‐aminobutyric acid an inhibitory transmitter? Nature 211: 1372–1374, 1966.
 226. Krnjević, K., and S. Schwartz. The action of γ‐aminobutyric acid on cortical neurones. Exptl. Brain Res. 3: 320–336, 1967.
 227. Kuffler, S. W. Excitation and inhibition in single nerve cells. Harvey Lectures Ser. 54: 176–218, 1960.
 228. Kuffler, S. W., and C. Edwards. Mechanism of gamma‐aminobutyric acid (GABA) action and its relation to synaptic inhibition. J. Neurophysiol. 21: 589–610, 1958.
 229. Kuffler, S. W., and C. Eyzaguirre. Synaptic inhibition in an isolated nerve cell. J. Gen. Physiol. 39: 155–184, 1955.
 230. Kuhar, M. H., A. I. Green, S. H. Snyder, and E. Gfeller. Separation of synaptosomes storing catecholamines and gamma‐aminobutyric acid in rat corpus striatum. Brain Res. 21: 405–417, 1970.
 231. Kuriyama, K., B. Haber, and E. Roberts. Occurrence of a new L‐glutamic acid decarboxylase in several blood vessels of the rabbit. Brain Res. 23: 121–123, 1970.
 232. Kuriyama, K., B. Haber, B. Sisken, and E. Roberts. The γ‐aminobutyric acid system in rabbit cerebellum. Proc. Natl. Acad. Sci. US 55: 846–852, 1966.
 233. Kuriyama, K., E. Roberts, and T. Kakefuda. Association of the γ‐aminobutyric acid system with a synaptic vesicle fraction from mouse brain. Brain Res. 8: 132–152. 1968.
 234. Kuriyama, K., B. Sisken, B. Haber, and E. Roberts. The γ‐aminobutyric acid system in rabbit retina. Brain Res. 9: 165–168, 1968.
 235. Lam, D. M. K. The biosynthesis and content of gamma‐aminobutyric acid in the goldfish retina. J. Cell Biol. 54: 225–231, 1972.
 236. Lam, D. M. K., and L. Steinman. The uptake of [γ‐3H]aminobutyric acid in the goldfish retina. Proc. Natl. Acad. Sci. US 68: 2777–2781, 1971.
 237. Larson, M. D. An analysis of the action of strychnine on the recurrent IPSP and amino acid induced inhibitions in the cat spinal cord. Brain Res. 15: 185–200, 1969.
 238. Levy, R. A., and E. G. Anderson. The effect of the GABA antagonists bicuculline and picrotoxin on primary afferent terminal excitability. Brain Res. 43: 171–180, 1972.
 239. Lewis, P. R. The free amino‐acids of invertebrate nerve. Biochem. J. 52: 330–338, 1952.
 240. Li, C. ‐L., A. Oritz‐Golvin, S. N. Chou, and S. Y. Howard. Cortical intracellular potentials in responses to stimulation of lateral geniculate body. J. Neurophysiol. 23: 592–601, 1960.
 241. Libet, B. Generation of slow inhibitory and excitatory postsynaptic potentials. Federation Proc. 29: 1945–1955, 1970.
 242. Llinás, R. Mechanisms of supraspinal actions upon spinal cord activities. Pharmacological studies on reticular inhibition of alpha extensor motoneurons. J. Neurophysiol. 27: 1127–1137, 1964.
 243. Logan, W. J., and S. H. Snyder. High affinity uptake systems for glycine, glutamic and aspartic acids in synaptosomes of rat central nervous tissues. Brain Res. 42: 413–431, 1972.
 244. Longo, V. G., and S. Chiavarelli. Neuropharmacological analysis of strychnine‐like drugs. In: Proceedings of the First International Pharmacology Meeting. Pharmacological Analysis of Central Nervous Action, edited by W. D. M. Paton. Oxford: Pergamon vol. 8, 1962, p. 189–198.
 245. Lowe, I. P., E. Robins, and G. S. Eyerman. The fluorometric measurement of glutamic decarboxylase and its distribution in brain. J. Neurochem. 3: 8–18, 1958.
 246. Lowry, O. H., J. V. Passonneau, D. W. Shulz, and M. K. Rock. The measurement of pyridine nucleotides by enzymatic cycling. J. Biol. Chem. 236: 2746–2755, 1961.
 247. MacIntosh, F. C. The distribution of acetylcholine in the peripheral and central nervous system. J. Physiol. London 99: 436–442, 1941.
 248. Mangan, J. L., and V. P. Whittaker. The distribution of free amino acids in subcellular fractions of guinea‐pig brain. Biochem. J. 98: 128–137, 1966.
 249. Martin, A. R., W. O. Wickelgren, and R. Berànek. Effects of iontophoretically applied drugs on spinal interneurones of the lamprey. J. Physiol. London 207: 653–665, 1970.
 250. Matsuda, T., J.‐Y. Wu, and E. Roberts. Immunochemical studies on glutamic acid decarboxylase (EC 4.1.1.15) from mouse brain. J. Neurochem. 21: 159–166, 1973.
 251. Matus, A. I., and M. E. Dennison. Autoradiographic localization of tritiated glycine at ‘flat vesicle’ synapses in spinal cord. Brain Res. 32: 195–197, 1971.
 252. McDonald, T. J., and R. D. O'Brien. Relative potencies of L‐glutamate analogs on excitatory neuromuscular synapses of the grasshopper, Romalea microptera. J. Neurobiol. 3: 277–290, 1972.
 253. McGeer, P. L., E. G. McGeer, and H. C. Fibiger. Choline acetylase and glutamic acid decarboxylase in Huntington's chorea. A preliminary study. Neurology 23: 912–917, 1973.
 254. McKinstry, D. N., and G. B. Koelle. Effects of drugs on acetylcholine release from the cat superior cervical ganglion by carbachol and by preganalionic stimulation. J. Pharmacol. Exptl. Therap. 157: 328–336, 1967.
 255. McLaughlin, B. J., J. G. Wood, K. Saito, R. Barber, J. E. Vaughn, E. Roberts, and J. ‐Y. Wu. The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum. Brain Res. 76: 377–391, 1974.
 256. McLennan, H. Synaptic Transmission. Philadelphia: Saunders, 1963.
 257. McLennan, H. Bicuculline and inhibition of crayfish stretch receptor neurones. Nature 228: 674–675, 1970.
 258. McLennan, H. The pharmacology of inhibition of mitral cells in the olfactory bulb. Brain Res. 29: 177–184, 1971.
 259. Miledi, R. Spontaneous synaptic potentials and quantal release of transmitter in the stellate ganglion of the squid. J. Physiol. London 192: 379–406, 1967.
 260. Miledi, R. Transmitter action in the giant synapse of the squid. Nature 223: 1284–1286, 1969.
 261. Miller, A. L., and F. N. Pitts, Jr. Brain succinate semialdehyde dehydrogenase. III. Activities in twenty‐four regions of human brain. J. Neurochem. 14: 579–584, 1967.
 262. Mitchell, J. F., and V. Srinivasan. Release of 3H‐γ‐amino‐butyric acid from the brain during synaptic inhibition. Nature 224: 663–666, 1969.
 263. Miyata, Y., and M. Otsuka. Distribution of γ‐aminobutyric acid in cat spinal cord and the alteration produced by local ischemia. J. Neurochem. 19: 1833–1834, 1972.
 264. Morin, W. A., and H. L. Atwood. A comparative study of gamma‐aminobutyric acid uptake in crustacean nerve‐muscle preparations. Comp. Biochem. Physiol. 30: 577–583, 1969.
 265. Müller, P. B., and H. Langemann. Distribution of glutamic acid decarboxylase activity in human brain. J. Neurochem. 9: 399–401, 1962.
 266. Murakami, M., K. Ohtsu, and T. Ohtsuka. Effects of chemicals on receptors and horizontal cells in the retina. J. Physiol. London 227: 899–913, 1972.
 267. Murayama, S., and C. M. Smith. Rigidity of hind limbs of cats produced by occlusion of spinal cord blood supply. Neurology 15: 565–577, 1965.
 268. Nakajima, Y., A. D. Tisdale, and M. P. Henkart. Presynaptic inhibition at inhibitory nerve terminals. A new synapse in the crayfish stretch receptor. Proc. Natl. Acad. Sci. US 70: 2462–2466, 1973.
 269. Neal, M. J. The uptake of [14C]glycine by slices of mammalian spinal cord. J. Physiol. London 215: 103–118, 1971.
 270. Neal, M. J., and L. L. Iversen. Subcellular distribution of endogenous and [3H]γ‐aminobutyric acid in rat cerebral cortex. J. Neurochem. 16: 1245–1252, 1969.
 271. Neal, M. J., and L. L. Iversen. Autoradiographic localization of 3H‐GABA in rat retina. Nature New Biol. 235: 217–218, 1972.
 272. Nicoll, R. A. Pharmacological evidence for GABA as the transmitter in granule cell inhibition in the olfactory bulb. Brain Res. 35: 137–149, 1971.
 273. Nicoll, R. A., and J. L. Barker. The pharmacology of recurrent inhibition in the supraoptic neurosecretory system. Brain Res. 35: 501–511, 1971.
 274. Nishi, S., S. Minota, and A. G. Karczmar. Primary afferent neurones: the ionic mechanism of GABA‐mediated depolarization. Neuropharmacology 13: 215–219, 1974.
 275. Obata, K. Pharmacological study on postsynaptic inhibition of Deiters' neurones (Abstract). Intern. Physiol. Congr., 23rd, August 1965, Tokyo, p. 406.
 276. Obata, K. Transmitter sensitivities of some nerve and muscle cells in culture. Brain Res. 73: 71–88, 1974.
 277. Obata, K. The inhibitory action of γ‐aminobutyric acid, a probable synaptic transmitter. Intern. Rev. Neurobiol. 15: 167–187, 1972.
 278. Obata, K., and S. M. Highstein. Blocking by picrotoxin of both vestibular inhibition and GABA action on rabbit oculomotor neurones. Brain Res. 18: 538–541, 1970.
 279. Obata, K., M. Ito, R. Ochi, and N. Sato. Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of γ‐aminobutyric acid on Deiters neurones. Exptl. Brain Res. 4: 43–57, 1967.
 280. Obata, K., and K. Takeda. Release of γ‐aminobutyric acid into the fourth ventricle induced by stimulation of the cat's cerebellum. J. Neurochem. 16: 1043–1047, 1969.
 281. Obata, K., K. Takeda, and H. Shinozaki. Further study on pharmacological properties of the cerebellar‐induced inhibition of Deiters neurones. Exptl. Brain Res. 11: 327–342, 1970.
 282. Obata, K., and M. Yoshida. Caudate‐evoked inhibition and action of GABA and other substances on cat pallidal neurons. Brain Res. 64: 455–459, 1973.
 283. Ochi, R. Ionic mechanism of the inhibitory postsynaptic potential of crayfish giant motor fiber. Pfluegers Arch. Ges. Physiol. 311: 131–143, 1969.
 284. Okada, Y. Distribution of γ‐aminobutyric acid (GABA) in the layers of superior colliculus (Abstract). Intern. Soc. Neurochem., 4th Meeting, August 1973, Tokyo, p. 313.
 285. Okada, Y., and R. Hassler. Uptake and release of γ‐aminobutyric acid (GABA) in slices of substantia nigra of rat. Brain Res. 49: 214–217, 1973.
 286. Okada, Y., C. Nitsch‐Hassler, J. S. Kim, I. J. Bak, and R. Hassler. Role of γ‐aminobutyric acid (GABA) in the extrapyramidal motor system. I. Regional distribution of GABA in rabbit, rat, guinea pig and baboon CNS. Exptl. Brain Res. 13: 514–518, 1971.
 287. Orkand, P. M., and E. A. Kravitz. Localization of the sites of γ‐aminobutyric acid (GABA) uptake in lobster nerve‐muscle preparations. J. Cell Biol. 49: 75–89, 1971.
 288. Otsuka, M. γ‐Aminobutyric acid in the nervous system. In: The Structure and Function of Nervous Tissue, edited by G. H. Bourne. New York: Academic, 1972, vol. 4, p. 249–289.
 289. Otsuka, M., L. L. Iversen, Z. W. Hall, and E. A. Kravitz. Release of gamma‐aminobutyric acid from inhibitory nerves of lobster. Proc. Natl. Acad. Sci. US 56: 1110–1115, 1966.
 290. Otsuka, M., S. Konishi, and T. Takahashi. A further study of the motoneuron‐depolarizing peptide extracted from dorsal roots of bovine spinal nerves. Proc. Japan Acad. 48: 747–752, 1972.
 291. Otsuka, M., E. A. Kravitz, and D. D. Potter. Physiological and chemical architecture of a lobster ganglion with particular reference to gamma‐aminobutyrate and glutamate. J. Neurophysiol. 30: 725–752, 1967.
 292. Otsuka, M., K. Obata, Y. Miyata, and Y. Tanaka. Measurement of γ‐aminobutyric acid in isolated nerve cells of cat central nervous system. J. Neurochem. 18: 287–295, 1971.
 293. Ozawa, S., and K. Tsuda. Membrane permeability change during inhibitory transmitter action in crayfish stretch receptor cell. J. Neurophysiol. 26: 805–816, 1973.
 294. Ozeki, M., A. R. Freeman, and H. Grundfest. The membrane components of crustacean neuromuscular systems. II. Analysis of interactions among the electrogenic components. J. Gen. Physiol. 49: 1335–1349, 1966.
 295. Pasantes‐Morales, H., J. Klethi, P. E. Urban, and P. Mandel. The physiological role of taurine in retina. Uptake and effect on electroretinogram. Physiol. Chem. Phys. 4: 339–348, 1972.
 296. Pasantes‐Morales, H., P. E. Urban, J. Klethi, and P. Mandel. Etude de l'effet de la taurine sur l‐électrorétinogramme de la rétine en perfusion. Compt. Rend. 275: 699–702, 1972.
 297. Pasantes‐Morales, H., P. E. Urban, J. Klethi, and P. Mandel. Light stimulated release of [32S]taurine from chicken retina. Brain Res. 51: 375–378, 1973.
 298. Perry, T. L., S. Hansen, and M. Kloster. Huntington's chorea. Deficiency of γ‐aminobutyric acid in brain. New Engl. J. med. 288: 337–342, 1973.
 299. Pisano, J. J. Peptides. In: Handbook of Neurochemistry, edited by A. Lajtha. New York: Plenum, 1969, vol. 1, p. 53–74.
 300. Pollen, D. A., and C. Ajmone Marsan. Cortical inhibitory postsynaptic potentials and strychninization. J. Neurophysiol. 28: 342–358, 1965.
 301. Precht, W., and M. Yoshida. Blockage of caudate‐evoked inhibition of neurons in the substantia nigra by picrotoxin. Brain Res. 32: 229–233, 1971.
 302. Rexed, B. A cytoarchitechtonic atlas of the spinal cord in the cat. J. Comp. Neurol. 100: 297–379, 1954.
 303. Rizzoli, A. A. Distribution of glutamic acid, aspartic acid, γ‐aminobutyric acid and glycine in six areas of cat spinal cord before and after transection. Brain Res. 11: 11–18, 1968.
 304. Rizzoli, A. A. Distribution of glutamate in spinal roots of different species: a comparative study. Comp. Biochem. Physiol. 26: 1131–1133, 1968.
 305. Robbins, J. The excitation and inhibition of crustacean muscle by amino acids. J. Physiol. London 148: 39–50, 1959.
 306. Robbins, J., and W. G. Van Der Kloot. The effect of picrotoxin on peripheral inhibition in the crayfish. J. Physiol. London 143: 541–552, 1958.
 307. Roberts, E. γ‐Aminobutyric acid. In: Neurochemistry. edited by K. A. C. Elliott, I. H. Page, and J. H. Quastel. Springfield, Ill.: Thomas, 1962, p. 636–672.
 308. Roberts, E., C. F. Baxter, A. Van Harreveld, C. A. G. Wiersma, W. R. Adey, and K. F. Killam (editors). Inhibition in the Nervous System and Gamma‐Aminobutyric Acid. Oxford: Pergamon, 1960.
 309. Roberts, E., and S. Frankel. γ‐Aminobutyric acid in brain: its formation from glutamic acid. J. Biol. Chem. 187: 55–63, 1950.
 310. Roberts, E., and R. Hammerschlag. Amino acid transmitters. In: Basic Neurochemistry, edited by R. W. Albers, G. J. Siegel, R. Katzmann, and B. W. Agranoff. Boston: Little, Brown, 1972, p. 131–165.
 311. Roberts, E., and K. Kuriyama. Biochemical‐physiological correlations in studies of the γ‐aminobutyric acid system. Brain Res. 8: 1–35, 1968.
 312. Roberts, P. J., and J. F. Mitchell. The release of amino acids from the hemisected spinal cord during stimulation. J. Neurochem. 19: 2473–2481, 1972.
 313. Ryall, R. W. The subcellular distribution of acetylcholine, substance P, 5‐hydroxytryptamine, γ‐aminobutyric acid and glutamic acid in brain homogenates. J. Neurochem. 11: 131–145, 1964.
 314. Ryali, R. W., M. F. Piercey, and C. Polosa. Strychnine‐resistant mutual inhibition of Renshaw cells. Brain Res. 41: 119–129, 1972.
 315. Salganicoff, L., and E. De Robertis. Subcellular distribution of the enzymes of the glutamic acid, glutamine and γ‐aminobutyric acid cycles in rat brain. J. Neurochem. 12: 287–309, 1965.
 316. Salvador, R. A., and R. W. Albers. The distribution of glutamic‐γ‐aminobutyrie transaminase in the nervous system of the rhesus monkey. J. Biol. Chem. 234: 922–925, 1959.
 317. Sano, I. Simple peptides in brain. Intern. Rev. Neurobiol. 12: 235–263, 1970.
 318. Schmidt, R. F. Presynaptic inhibition in the vertebrate central nervous system. Ergeb. Physiol. Biol. Chem. Exptl. Pharmakol. 63: 21–101, 1971.
 319. Scholes, N. W., and E. Roberts. Pharmacological studies of the optic system of the chick. Effect of γ‐aminobutyric acid and pentobarbital. Biochem. Pharmacol. 13: 1319–1329, 1964.
 320. Schon, F., and L. L. Iversen. Selective accumulation of [3H]GABA by stellate cells in rat cerebellar cortex in vivo. Brain Res. 42: 503–507, 1972.
 321. Schuknecht, H. F., J. A. Churchill, and R. Doran. The localization of acetylcholinesterase in the cochlea. Arch. Otolaryngol. 69: 549–559, 1959.
 322. Semba, T., and M. Kano. Glycine in the spinal cord of cat with local tetanus rigidity. Science 164: 571–572, 1969.
 323. Shank, R. P., and M. H. Aprison. Metabolism in vivo of glycine and serine in eight areas of the rat central nervous system. J. Neurochem. 17: 1461–1475, 1970.
 324. Shank, R. P., M. H. Aprison, and C. F. Baxter. Precursors of glycine in the nervous system: comparison of specific activities in glycine and other amino acids after administration of [U‐14C]glucose, [3,4‐14C]glucose, [1‐14C]glucose, [U‐14C]serine or [1.5‐14C]citrate to the rat. Brain Res. 52: 301–308, 1973.
 325. Shende, M. C., and R. B. King. Excitability changes of trigeminal primary afferent preterminals in brain‐stem nuclear complex of squirrel monkey (Saimiri sciureus). J. Neurophysiol. 30: 949–963, 1967.
 326. Sheridan, J. J., K. L. Sims, and F. N. Pitts, Jr. Brain γ‐aminobutyrate‐α‐oxoglutarate transaminase. II. Activities in twenty‐four regions of human brain. J. Neurochem. 14: 571–578, 1967.
 327. Sherrington, C. S. Integrative Action of the Nervous System. New Haven: Yale Univ. Press, 1906.
 328. Schon, F., and J. S. Kelly. Autoradiographic localization of [3H]GABA and [3H]glutamate over satellite glial cells. Brain Res. 66: 275–288, 1974.
 329. Schon, F., and J. S. Kelly. The characterisation of [3H]GABA uptake into the satelite glial cells of rat sensory ganglia. Brain Res. 66: 289–300, 1974.
 330. Siggins, G. R., A. P. Oliver B. J. Hoffer, and F. E. Bloom. Cyclic adenosine monophosphate and norepinephrine: effects on transmembrane properties of cerebellar Purkinje cells. Science 171: 192–194. 1971.
 331. Sims, K. L., H. A. Weitsen, and F. E. Bloom. GABA catabolism: localization of succinic semialdehyde dehydrogenase in brain motor and sensory nuclei. Science 175: 1479–1480, 1972.
 332. Sorenson, M. M. The free amino acids in peripheral nerves and in isolated inhibitory and excitatory nerve fibres of Cancer magister. J. Neurochem. 20: 1231–1245, 1973.
 333. Sotelo, C., A. Privat, and M.‐J. Drian. Localization of [3H]GABA in tissue culture of rat cerebellum using electron microscopy radioautography. Brain Res. 45: 302–308, 1972.
 334. Srinivasan, V., M. J. Neal, and J. F. Mitchell. The effect of electrical stimulation and high potassium concentrations on the efflux of [3H]γ‐aminobutyric acid from brain slices. J. Neurochem. 16: 1235–1244, 1969.
 335. Stahl, W. L., and P. D. Swanson. Biochemical abnormalities in Huntington's chorea. Neurology 24: 813–819, 1974.
 336. Starr, M. S. Effect of dark adaptation on the GABA system in retina. Brain Res. 59: 331–338, 1973.
 337. Starr, M. S., and M. J. Voaden. The uptake of [14C]‐γ‐aminobutyric acid by isolated retina of the rat. Vision Res. 12: 549–557, 1972.
 338. Stefanis, C., and H. Jasper. Strychnine reversal of inhibitory potentials in pyramidal tract neurones. Intern. J. Neuropharmacol. 4: 125–138, 1965.
 339. Storm‐Mathisen, J. Glutamate decarboxylase in the rat hippocampal region after lesions of the afferent fibre systems. Evidence that the enzyme is localized in intrinsic‐neurones. Brain Res. 40: 215–235, 1972.
 340. Storm‐Mathisen, J., and F. Fonnum. Quantitative histochemistry of glutamate decarboxylase in the rat hippocampal region. J. Neurochem. 18: 1105–1111, 1971.
 341. Straughan, D. W., M. J. Neal, M. A. Simmonds, G. G. S. Collins, and R. G. Hill. Evaluation of bicuculline as a GABA antagonist. Nature 233: 352–354, 1971.
 342. Sugawara, K., and K. Negishi. Effects of some amino acids on the horizontal cell membrane potential in the isolated carp retina. Vision Res. 13: 977–981, 1973.
 343. Susz, J. P., B. Haber, and E. Roberts. Purification and some properties of mouse brain L‐glutamate decarboxylase. Biochemistry 5: 2870–2876, 1966.
 344. Suzuki, H., and Y. Tukahara. Recurrent inhibition of the Betz cell. Japan. J. Physiol. 13: 386–398, 1963.
 345. Sverdlov, Y. S., and V. I. Alekseeva. Effect of tetanus toxin on presynaptic inhibition in the spinal cord. Federation Proc. 25: T931–T935, 1966.
 346. Szabo, J. Topical distribution of the striatal efferents in the monkey. Exptl. Neurol. 5: 21–36, 1962.
 347. Takeuchi, A., and K. Onodera. Effect of bicuculline on the GABA receptor of the crayfish neuromuscular junction. Nature New Biol. 236: 55–56, 1972.
 348. Takeuchi, A., and K. Onodera. Reversal potentials of the excitatory transmitter and L‐glutamate at the crayfish neuromuscular junction. Nature New Biol. 242: 124–126, 1973.
 349. Takeuchi, A., and N. Takeuchi. The effect on crayfish muscle of iontophoretically applied glutamate. J. Physiol. London 170: 296–317, 1964.
 350. Takeuchi, A., and N. Takeuchi. Localized action of gamma‐aminobutyric acid on the crayfish muscle. J. Physiol. London 177: 225–238, 1965.
 351. Takeuchi, A., and N. Takeuchi. A study of the inhibitory action of γ‐aminobutyric acid on neuromuscular transmission in the crayfish. J. Physiol. London 183: 419–432, 1966.
 352. Takeuchi, A., and N. Takeuchi. On the permeability of the presynaptic terminal of the crayfish neuromuscular junction during synaptic inhibition and the action of γ‐aminobutyric acid. J. Physiol. London 183: 433–449, 1966.
 353. Takeuchi, A., and N. Takeuchi. Anion permeability of the inhibitory postsynaptic membrane of the crayfish neuromuscular junction. J. Physiol. London 191: 575–590, 1967.
 354. Takeuchi, A., and N. Takeuchi. A study of the action of picrotoxin on the inhibitory neuromuscular junction of the crayfish. J. Physiol. London 205: 377–391, 1969.
 355. Takeuchi, A., and N. Takeuchi. Variations in the permeability properties of the inhibitory post‐synaptic membrane of the crayfish neuromuscular junction when activated by different concentrations of GABA. J. Physiol. London 217: 341–358, 1971.
 356. Tallan, H. H. Studies on the distribution of N‐acetyl‐L‐aspartic acid in brain. J. Biol. Chem. 224: 41–45, 1957.
 357. Tallan, H. H., S. Moore, and W. H. Stein. Studies on the free amino acids and related compounds in the tissues of the cat. J. Biol. Chem. 211: 927–939, 1954.
 358. Tallan, H. H., S. Moore, and W. H. Stein. N‐Acetyl‐L‐aspartic acid in brains. J. Biol. Chem. 219: 257–264, 1956.
 359. Tallan, H. H., S. Moore, and W. H. Stein. L‐Cystathionine in human brain. J. Biol. Chem. 230: 707–716, 1958.
 360. Tanaka, Y., and Y. Katsuki. Pharmacological investigations of cochlear responses and of olivocochlear inhibition. J. Neurophysiol. 29: 94–108, 1966.
 361. Taraskevich, P. S. Reversal potentials of L‐glutamate and the excitatory transmitter at the neuromuscular junction of the crayfish. Biochem. Biophys. Acta 241: 700–703, 1971.
 362. Tebēcis, A. K., and A. Di Maria. Strychnine‐sensitive inhibition in the medullary reticular formation: evidence for glycine as an inhibitory transmitter. Brain Res. 40: 373–383, 1972.
 363. Tebēcis, A. K., L. Hösli, and H. L. Haas. Bicuculline and the depression of medullary reticular neurones by GABA and glycine. Experientia 27: 548, 1971.
 364. Tebēcis, A. K., and T. Ishikawa. Glycine and GABA as inhibitory transmitters in the medullary reticular formation. Studies involving intra‐ and extracellular recording. Pfluegers Arch. European J. Physiol. 338: 273–278, 1973.
 365. Ten Bruggencate, G., and I. Engberg. Analysis of glycine actions on spinal interneurones by intracellular recording. Brain Res. 11: 446–450, 1968.
 366. Ten Bruggencate, G., and I. Engberg. Iontophoretic studies in Deiters' nucleus of the inhibitory actions of GABA and related amino acids and the interactions of strychnine and picrotoxin. Brain Res. 25: 431–448, 1971.
 367. Ten Bruggencate, G., and U. Sonnhof. Effects of glycine and GABA, and blocking actions of strychnine and picrotoxin in the hypoglossus nucleus. Pfluegers Arch. European J. Physiol. 334: 240–252, 1972.
 368. Toyoda, J. Membrane resistance changes underlying the bipolar cell response in the carp retina. Vision Res. 13: 283–294, 1973.
 369. Toyoda, J., H. Nosaki, and T. Tomita. Light‐induced resistance changes in single photoreceptors of Necturus and Gekko. Vision Res. 9: 453–463, 1969.
 370. Tsukada, Y., S. Hirano, Y. Nagata, and T. Matsutani. Metabolic studies of gamma‐aminobutyric acid in mammalian tissues. In: Inhibition in the Nervous System and Gamma‐Aminobutyric Acid, edited by E. Roberts, C. F. Baxter, A. Van Harreveld, C. A. G. Wiersma, W. R. Adey, and K. F. Killam. Oxford: Pergamon, 1960, p. 163–168.
 371. Tsukahara, N., T. Bando, S. T. Kitai, and T. Kiyohara. Cerebello‐pontine reverberating circuit. Brain Res. 33: 233–237, 1971.
 372. Udenfriend, S. Identification of γ‐aminobutyric acid in brain by the isotope derivative method. J. Biol. Chem. 187: 65–69, 1950.
 373. Usherwood, P. N. R. Action of iontophoretically applied gamma‐aminobutyric acid on locust muscle fibres. Comp. Biochem. Physiol 44A: 663–664, 1973.
 374. Usherwood, P. N. R., and H. Grundfest. Peripheral inhibition in skeletal muscle of insects. J. Neurophysiol. 28: 497–518, 1965.
 375. Usherwood, P. N. R., and P. Machili. Pharmacological properties of excitatory neuromuscular synapses in the locust. J. Exptl. Biol. 49: 341–361, 1968.
 376. Usherwood, P. N. R., P. Machili, and G. Leaf. L‐Glutamate at insect excitatory nerve‐muscle synapses. Nature 219: 1169–1172, 1968.
 377. Van den Berg, C. J. Glutamate and glutamine. In: Handbook of Neurochemistry, edited by A. Lajtha. New York: Plenum, 1970, vol. 3, p. 355–379.
 378. Van der Kloot, W. G., and J. Robbins. The effect of γ‐aminobutyric acid and picrotoxin on the junctional potential and the contraction of crayfish muscle. Experientia 15: 35–36, 1959.
 379. Van Gelder, N. M. The histochemical demonstration of γ‐aminobutyric acid metabolism by reduction of a tetrazolium salt. J. Neurochem. 12: 231–237, 1965.
 380. Van Gelder, N. M. A comparison of γ‐aminobutyric acid metabolism in rabbit and mouse nervous tissue. J. Neurochem. 12: 239–244, 1965.
 381. Van Gelder, N. M. Hydrazinopropionic acid: a new inhibitor of aminobutyrate transaminase and glutamate decarboxylase. J. Neurochem. 15: 747–757, 1968.
 382. Van Gelder, N. M. The action in vivo of a structural analogue of GABA: hydrazinopropionic acid. J. Neurochem. 16: 1355–1360, 1969.
 383. Van Harreveld, A. The nerve supply of doubly and triply innervated crayfish muscles related to their function. J. Comp. Neurol. 70: 267–284, 1939.
 384. Van Harreveld, A., and M. Mendelson. Glutamate‐induced contractions in crustacean muscle. J. Cellular Comp. Physiol. 54: 85–94, 1959.
 385. Van Kempen, G. M. J., C. J. Van den Berg, H. J. Van der Helm, and H. Veldstra. Intracellular localization of glutamate decarboxylase, γ‐aminobutyrate transaminase and some other enzymes in brain tissue. J. Neurochem. 12: 581–588, 1965.
 386. Voneida, T. An experimental study of the course and destination of fibers arising in the head of the caudate nucleus in the cat and monkey. J. Comp. Neurol. 115: 75–87, 1960.
 387. Walberg, F., and J. Jansen. Cerebellar corticovestibular fibers in the cat. Exptl. Neurol. 3: 32–52, 1961.
 388. Walker, R. J., A. R. Crossman, G. N. Woodruff, and G. A. Kerkut. The effect of bicuculline on the gamma‐aminobutyric acid (GABA) receptors of neurons of Periplaneta americana and Helix aspersa. Brain Res. 33: 75–82, 1971.
 389. Wall, P. D. Presynaptic control of impulses at the first central synapse in the cutaneous pathway. In: Progress in Brain Research. Physiology of Spinal Neurons, edited by J. C. Eccles and J. P. Schadé. Amsterdam: Elsevier, 1964, vol. 12, p. 92–118.
 390. Wallach, D. P. Studies on the GABA pathway. I. The inhibition of γ‐aminobutyric acid‐α‐ketoglutaric acid transaminase in vitro and in vivo by U‐7524 (amino‐oxyacetic acid). Biochem. Pharmacol. 5: 323–311, 1961.
 391. Watanabe, T., and Z. Simada. Pharmacological properties of cat's collicular auditory neurons. Japan. J. Physiol. 23: 291–308, 1973.
 392. Weinstein, H., E. Roberts, and T. Kakefuda. Studies of subcellular distribution of γ‐aminobutyric acid and glutamic decarboxylase in mouse brain. Biochem. Pharmacol. 12: 503–509, 1963.
 393. Werman, R., R. A. Davidoff, and M. H. Aprison. Inhibitory action of glycine on spinal neurons in the cat. J. Neurophysiol. 31: 81–95, 1968.
 394. Whelam, D. T., C. R. Scriver, and F. Mohyuddin. Glutamic acid decarboxylase and gamma‐aminobutyric acid in mammalian kidney. Nature 224: 916–917, 1969.
 395. Witkovsky, P. Peripheral mechanisms of vision. Ann. Rev. Physiol. 33: 257–280, 1971.
 396. Wofsey, A. R., M. J. Kuhar, and S. H. Snyder. A unique synaptosomal fraction, which accumulates glutamic and aspartic acids, in brain tissue. Proc. Natl. Acad. Sci. US 68: 1102–1106, 1971.
 397. Woodward, J. K., C. P. Bianchi, and S. D. Erulkar. Electrolyte distribution in rabbit superior cervical ganglion. J. Neurochem. 16: 289–299, 1969.
 398. Woodward, D. J., B. J. Hoffer, G. R. Siggins, and A. P. Oliver. Inhibition on Purkinje cells in the frog cerebellum. II. Evidence for GABA as the inhibitory transmitter. Brain Res. 33: 91–100, 1971.
 399. Wright, G. P. The neurotoxins of Clostridium botulinum and Clostridium tetani. Pharmacol Rev. 7: 413–465, 1955.
 400. Yoshida, M., and W. Precht. Monosynaptic inhibition of neurons of the substantia nigra by caudato‐nigral fibers. Brain Res. 32: 225–228, 1971.
 401. Yoshida, M., A. Rabin, and M. Anderson. Monosynaptic inhibition of pallidal neurons by axon collaterals of caudatonigral fibers. Exptl. Brain Res. 15: 333–347, 1972.
 402. Zieglgänsberger, W., and E. A. Puil. Actions of glutamic acid on spinal neurones. Exptl. Brain Res. 17: 35–49, 1973.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

K. Obata. Biochemistry and Physiology of Amino Acid Transmitters. Compr Physiol 2011, Supplement 1: Handbook of Physiology, The Nervous System, Cellular Biology of Neurons: 625-650. First published in print 1977. doi: 10.1002/cphy.cp010117