Comprehensive Physiology Wiley Online Library

Trophic Interactions of Neurons

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Development
1.1 Limb Regeneration
1.2 Muscle Development
1.3 Sensory Receptor Development
1.4 Effects of Peripheral Tissue on Developing Nerve Tissue
2 Denervation
2.1 Sensory Receptors
2.2 Muscle and Other Structures
3 Role of Nerve Activity
3.1 Inactivation Procedures
3.2 Direct Stimulation
4 Role of the Nerve Independent of Impulse Activity
4.1 Length of Nerve Stump
4.2 Partial Denervation and Reinnervation
4.3 Axonal Transport
5 Experimental Innervation
6 Cross‐Innervation and Related Procedures
7 Search for Trophic Substances
8 Some Comments
Figure 1. Figure 1.

Sensitivity of a cat muscle fiber to locally applied ACh was tested by moving the tip of an ACh pipette close to the muscle membrane at points separated by distances of about 0.5 mm. Upper trace in each record is the potential change, recorded by an intracellular pipette, to the pulse of ACh, ejected by the current pulse indicated in each lower trace. In an innervated fiber (B) only the visible end‐plate region is sensitive to ACh. In a 14‐day denervated fiber a constant pulse of ACh produced at each point of the membrane a potential change as shown in A. Time marker: 10 ms

From Axelsson & Thesleff 11
Figure 2. Figure 2.

Acetylcholine sensitivity of fibers from rat soleus muscle, tested by iontophoretic application of ACh. The muscle had been denervated for 7 days without stimulation, and then directly stimulated for 7 days. Δ, ○, ACh sensitivity of two different fibers at the locus of high sensitivity (presumably the former end plate). •, sensitivity of a number of fibers in the same muscle at a point midway between the end plate and tendon. ×, sensitivity at a comparable region of fibers in the opposite soleus muscle that had been only denervated for 14 days. Note that, at this extrajunctional site, stimulation of the denervated muscle has decreased the expected sensitivity by approximately 3 orders of magnitude

From Lømo & Rosenthal 188
Figure 3. Figure 3.

Effect of diffuse application of ACh to a partially denervated muscle fiber. Simultaneous intracellular recordings from a denervated (upper traces) and an innervated (lower traces) end plate in the same muscle fiber 15 days after section of both pelvic nerve branches. Distance between end plates, 14.5 mm. Resting potentials were 86 and 84 mV at the denervated and innervated end plates, respectively. During exposure to ACh: A, 10−8 M; B, 5 × 10−8 M; C, 10−7 M at 20‐min intervals. Voltage calibration same for both traces, B as in A; time calibration in C applies to A and B. Usual arrangement of nerve branches in frog's sartorius is illustrated at lower right. ×, sites where nerves were cut. Note that the membrane near the denervated end plate has become supersensitive, although the muscle fiber was presumably still activated by its remaining innervation. At the innervated region, sensitivity was low

From Miledi 200
Figure 4. Figure 4.

Series of twitches of the soleus (SOL) and flexor digitorum longus (FDL) muscles of the cat to show the effect of nerve cross‐union. The upper control records show contractions of muscle whose nerves have been severed, then resutured (self‐reinnervation). Lower records show contractions of muscles whose nerves have been severed and cross‐sutured (cross‐reinnervation). The self‐innervated muscles have normal contraction speeds. Note the speeding of the slow‐twitch soleus and the slowing of the fast‐twitch FDL following cross‐reinnervation. TM, temperature of muscle; TP, time to peak of contraction.

With kind permission of Drs. Buller, Kean, and Ranatunga, unpublished observations
Figure 5. Figure 5.

Cross sections of soleus muscle of rats incubated for actomyosin‐ATPase activity. Darkly stained fibers are presumed to be of the fast‐twitch type, others of slow‐twitch type. A: normal, unoperated rat. B: ipsilateral soleus, 8 mo after denervation of its antagonists by transection of the common peroneal nerve. Note the increased proportion of fast‐twitch fiber types. C: 21 wk after excision of the soleus synergists, gastrocnemius and plantaris. Note decreased proportion of fast‐twitch fibers in the operated limb (right). There is also a decrease in the fast‐twitch fibers in the contralateral, unoperated limb (left)

A and B from Guth & Wells 103; C from Guth & Yellin 104


Figure 1.

Sensitivity of a cat muscle fiber to locally applied ACh was tested by moving the tip of an ACh pipette close to the muscle membrane at points separated by distances of about 0.5 mm. Upper trace in each record is the potential change, recorded by an intracellular pipette, to the pulse of ACh, ejected by the current pulse indicated in each lower trace. In an innervated fiber (B) only the visible end‐plate region is sensitive to ACh. In a 14‐day denervated fiber a constant pulse of ACh produced at each point of the membrane a potential change as shown in A. Time marker: 10 ms

From Axelsson & Thesleff 11


Figure 2.

Acetylcholine sensitivity of fibers from rat soleus muscle, tested by iontophoretic application of ACh. The muscle had been denervated for 7 days without stimulation, and then directly stimulated for 7 days. Δ, ○, ACh sensitivity of two different fibers at the locus of high sensitivity (presumably the former end plate). •, sensitivity of a number of fibers in the same muscle at a point midway between the end plate and tendon. ×, sensitivity at a comparable region of fibers in the opposite soleus muscle that had been only denervated for 14 days. Note that, at this extrajunctional site, stimulation of the denervated muscle has decreased the expected sensitivity by approximately 3 orders of magnitude

From Lømo & Rosenthal 188


Figure 3.

Effect of diffuse application of ACh to a partially denervated muscle fiber. Simultaneous intracellular recordings from a denervated (upper traces) and an innervated (lower traces) end plate in the same muscle fiber 15 days after section of both pelvic nerve branches. Distance between end plates, 14.5 mm. Resting potentials were 86 and 84 mV at the denervated and innervated end plates, respectively. During exposure to ACh: A, 10−8 M; B, 5 × 10−8 M; C, 10−7 M at 20‐min intervals. Voltage calibration same for both traces, B as in A; time calibration in C applies to A and B. Usual arrangement of nerve branches in frog's sartorius is illustrated at lower right. ×, sites where nerves were cut. Note that the membrane near the denervated end plate has become supersensitive, although the muscle fiber was presumably still activated by its remaining innervation. At the innervated region, sensitivity was low

From Miledi 200


Figure 4.

Series of twitches of the soleus (SOL) and flexor digitorum longus (FDL) muscles of the cat to show the effect of nerve cross‐union. The upper control records show contractions of muscle whose nerves have been severed, then resutured (self‐reinnervation). Lower records show contractions of muscles whose nerves have been severed and cross‐sutured (cross‐reinnervation). The self‐innervated muscles have normal contraction speeds. Note the speeding of the slow‐twitch soleus and the slowing of the fast‐twitch FDL following cross‐reinnervation. TM, temperature of muscle; TP, time to peak of contraction.

With kind permission of Drs. Buller, Kean, and Ranatunga, unpublished observations


Figure 5.

Cross sections of soleus muscle of rats incubated for actomyosin‐ATPase activity. Darkly stained fibers are presumed to be of the fast‐twitch type, others of slow‐twitch type. A: normal, unoperated rat. B: ipsilateral soleus, 8 mo after denervation of its antagonists by transection of the common peroneal nerve. Note the increased proportion of fast‐twitch fiber types. C: 21 wk after excision of the soleus synergists, gastrocnemius and plantaris. Note decreased proportion of fast‐twitch fibers in the operated limb (right). There is also a decrease in the fast‐twitch fibers in the contralateral, unoperated limb (left)

A and B from Guth & Wells 103; C from Guth & Yellin 104
References
 1. Aguilar, C. E., M. A. Bisby, E. Cooper, and J. Diamond. Evidence that axoplasmic transport of trophic factors is involved in the regulation of peripheral nerve fields in salamander. J. Physiol. London 234: 449–464, 1973.
 2. Aguilar, C. E., M. A. Bisby, and J. Diamond. Impulses and the transfer of trophic factors in nerve. J. Physiol. London 226: 60P–61P, 1972.
 3. Aitken, J. T. Growth of nerve implants in voluntary muscle. J. Anat. 84: 38–49, 1950.
 4. Albuquerque, E. X., and R. J. McIsaac. Fast and slow mammalian muscles after denervation. Exptl. Neurol. 26: 183–202, 1970.
 5. Albuquerque, E. X., F. T. Schuh, and F. C. Kauffman. Early membrane depolarization of the fast mammalian muscle after denervation. Pfluegers Arch. European J. Physiol. 328: 36–50, 1971.
 6. Albuquerque, E. X., and S. Thesleff. A comparative study of membrane properties of innervated and chronically denervated fast and slow skeletal muscles of the rat. Acta Physiol. Scand. 73: 471–480, 1968.
 7. Albuquerque, E. X., J. E. Warnick, F. M. Sansone, and R. Onur. The effects of vinblastine and colchicine on neural regulation of muscle. Ann. NY Acad. Sci. 228: 224–243, 1974.
 8. Albuquerque, E. X., J. E. Warnick, J. R. Tasse, and F. M. Sansone. Effects of vinblastine and colchicine on neural regulation of the fast and slow skeletal muscles of the rat. Exptl. Neurol. 37: 607–634, 1972.
 9. Anders, H. E. Die entwicklungsmechanische Bedeutung der Doppelbildungen, nebst Untersuchungen über den Einfluss des Zentralnervensystems auf die quergestreifte Muskulatur des Embryo. Arch. Entwicklungsmech. Organ. 47: 452–497, 1921.
 10. Anderson, K. E., and A. Edstrom. Effects of nerve blocking agents on fast axonal transport of proteins in frog sciatic nerves in vitro. Brain Res. 50: 125–134, 1973.
 11. Axelsson, J., and S. Thesleff. A study of supersensitivity in denervated mammalian skeletal muscle. J. Physiol. London 147: 178–193, 1959.
 12. Bagust, J., D. M. Lewis, and R. A. Westerman. Polyneuronal innervation of kitten skeletal muscle. J. Physiol. London 229: 241–255, 1973.
 13. Bajusz, E. Red skeletal muscle fibres: relative dependence of neural control. Science 145: 938, 1964.
 14. Bárány, M. ATPase activity of myosin correlated with speed of muscle shortening. J. Gen. Physiol. Suppl. 50: 197–216, 1967.
 15. Beidler, L. M., and R. L. Smallman. Renewal of cells within taste buds. J. Cell Biol. 27: 263–272, 1965.
 16. Belmar, J., and C. Eyzaguirre. Pacemaker site of fibrillation potentials in denervated mammalian muscle. J. Neuro‐physiol. 29: 425–441, 1966.
 17. Bennett, M. R., E. M. McLachlan, and R. S. Taylor. The formation of synapses in reinnervated mammalian striated muscle. J. Physiol. London 233: 481–500, 1973.
 18. Bennett, M. R., E. M. McLachlan, and R. S. Taylor. The formation of synapses in mammalian striated muscle reinnervated with autonomic preganglionic nerves. J. Physiol. London 233: 501–517, 1973.
 19. Bennett, M. R., A. G. Pettigrew, and R. S. Taylor. The formation of synapses in reinnervated and cross‐reinnervated adult avian muscle. J. Physiol. London 230: 331–357, 1973.
 20. Beránek, R., and R. Vyskocil. The action of tubocurarine and atropine on the normal and denervated rat diaphragm. J. Physiol. London 188: 53–66, 1967.
 21. Berg, D. K., and Z. Hall. Acetylcholine receptors in normal and denervated muscle (Abstract). Soc. Neurosci., p. 229, 1973.
 22. Berg, D. K., and Z. Hall. Fate of α‐bungarotoxin bound to acetylcholine receptors of normal and denervated muscle. Science 184: 473–475, 1974.
 23. Berg, D. K., and Z. W. Hall. Increased extrajunctional acetylcholine sensitivity produced by chronic postsynaptic neuromuscular blockade. J. Physiol. London 244: 659–761, 1975.
 24. Bernstein, J. J., and L. Guth. Nonselectivity in establishment of neuromuscular connections following nerve regeneration in the rat. Exptl. Neurol. 4: 262–275, 1961.
 25. Betz, W. J., and B. Sakmann. Disjunction of frog neuromuscular synapses by treatment with proteolytic enzymes. Nature New Biol. 232: 94–95, 1971.
 26. Betz, W. J., and B. Sakmann. Effects of proteolytic enzymes on function and structure of frog neuromuscular junctions. J. Physiol. London 230: 673–688, 1973.
 27. Binkhorst, R. A. The effect of training on some isometric contraction characteristics of a fast muscle. Pfluegers Arch. European J. Physiol. 309: 193–202, 1969.
 28. Blinzinger, L., and G. Kreutzberg. Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z. Zellforsch. Mikroskop. Anat. 85: 145–157, 1968.
 29. Borisy, G. G., and E. W. Taylor. The mechanism of action of colchicine. J. Cell Biol. 34: 525–533, 1967.
 30. Brown, D. A. Responses of normal and denervated cat superior cervical ganglia to some stimulant compounds. J. Physiol. London 201: 225–236, 1969.
 31. Brown, G. L. The actions of acetylcholine on denervated mammalian and frog muscle. J. Physiol. London 89: 438–461, 1937.
 32. Bryant, S. H., and A. Morales‐Aguilera. Chloride conductance in normal and myotonic muscle fibres and the action of monocarboxylic aromatic acids. J. Physiol. London 219: 367–383, 1971.
 33. Brzin, M., and Z. Majcen‐Tkacev. Cholinesterase in denervated endplates and muscle fibers. J. Cell Biol. 19: 349–358, 1963.
 34. Buller, A. J., J. C. Eccles, and R. M. Eccles. Differentiation of fast and slow muscles in the cat hind limb. J. Neuro‐physiol. 150: 399–416, 1960.
 35. Buller, A. J., J. C. Eccles, and R. M. Eccles. Interactions between motor neurons and muscles in respect of the characteristic speeds of their responses. J. Physiol. London 150: 417–439, 1960.
 36. Buller, A. J., W. F. H. M. Mommaerts, and K. Seraydarian. Neural control of myofibrillar ATPase activity in rat skeletal muscle. Nature 233: 31–32, 1971.
 37. Burke, R. E., D. N. Levine, and F. E. Zajac. Mammalian motor units: physiological‐histochemical correlation in three types in cat gastrocnemius. Science 174: 709–712, 1971.
 38. Cangiano, A. Acetylcholine supersensitivity: the role of trophic factors. Brain Res. 58: 255–259, 1973.
 39. Cangiano, A., and J. A. Fried. Neurotrophic control of skeletal muscle of the rat. J. Physiol. London 239: 31P–33P, 1974.
 40. Cannon, W. B., and H. Haimovici. The sensitization of motoneurones by partial “denervation.” Am. J. Physiol. 126: 731–740, 1939.
 41. Cannon, W. B., and A. Rosenblueth. The Supersensitivity of Denervated Structures: a Law of Denervation. New York: MacMillan, 1949.
 42. del Castillo, J., and B. Katz. On the localization of acetylcholine receptors. J. Physiol. London 128: 157–181, 1955.
 43. del Castillo, J., and B. Katz. Local activity at a depolarized nerve‐muscle junction. J. Physiol. London 128: 396–411, 1955.
 44. Close, R. Dynamic properties of fast and slow skeletal muscles of the rat during development. J. Physiol. London 173: 74–95, 1964.
 45. Close, R. Effects of a cross‐union of motor nerves to fast and slow skeletal muscles. Nature 206: 831–832, 1965.
 46. Cohen, S. A., and G. D. Fischbach. Regulation of muscle acetylcholine sensitivity by muscle activity in cell culture. Science 181: 76–78, 1973.
 47. Cowan, W. M., A. H. Martin, and E. Wenger. Mitotic patterns in the optic tectum of the chick during normal development and after early removal of the optic vesicle. J. Exptl. Zool. 169: 71–92, 1969.
 48. Cowan, W. M., and E. Wenger. Cell loss in the trochlear nucleus of the chick during normal development and after radical extirpation of the optic vesicle. J. Exptl. Zool. 164: 267–280, 1967.
 49. Dempsey, P. J., and T. Cooper. Supersensitivity of the chronically denervated feline heart. Am. J. Physiol. 215: 1245–1249, 1968.
 50. Dennis, M. J., A. J. Harris, and S. W. Kuffler. Synaptic transmission and its duplication by focally applied acetylcholine in parasympathetic neurons in the heart of the frog. Proc. Roy. Soc. London Ser. B 177: 509–539, 1971.
 51. Denny‐Brown, D., and J. B. Pennybacker. Fibrillation and fasciculation in voluntary muscle. Brain Res. 61: 311–334, 1938.
 52. Detweiler, S. R. On the hyperplasia of nerve centers resulting from excessive peripheral loading. Proc. Natl. Acad. Sci. US 6: 96–101, 1920.
 53. Detweiler, S. R. Experimental studies upon the development of the amphibian nervous system. Biol. Rev. Cambridge Phil. Soc. 8: 269–310, 1933.
 54. Diamond, J., and R. Miledi. A study of foetal and new‐born rat muscle fibres. J. Physiol. London 162: 393–408, 1962.
 55. Downman, C. B. B., J. C. Eccles, and A. K. McIntyre. Functional changes in chromatolysed motoneurones. J. Comp. Neurol. 98: 9–36, 1953.
 56. Drachman, D. B., The role of acetylcholine as a trophic neuromuscular transmitter. In: CIBA Foundation Symposium on Growth of the Nervous System, edited by G. E. W. Wolstenholme and M. O'Connor. London: Churchill, 1968, p. 251–273.
 57. Drachman, D. B. Neurotrophic regulation of muscle cholinesterase: effects of botulinum toxin and denervation. J. Physiol. London 226: 619–627, 1972.
 58. Drachman, D. B., and F. Witzke. Trophic regulation of acetylcholine sensitivity of muscle: effect of electrical stimulation. Science 176: 514–516, 1972.
 59. Duchen, L. W., and E. Stefani. Electrophysiological studies of neuromuscular transmission in hereditary “motor endplate disease” of the mouse. J. Physiol. London 212: 535–548, 1971.
 60. Duel, A. B. Clinical experiences in the surgical treatment of facial palsy by autoplastic nerve grafts. Arch. Otolaryngol. 16: 767–788, 1932.
 61. Dunnebacke, T. H. The effects of the extirpation of the superior oblique muscle on the trochlear nucleus in the chick embryo. J. Comp. Neurol. 98: 155–177, 1953.
 62. Eccles, J. C. Changes in muscle produced by nerve degeneration. Med. J. Australia 1: 573–575, 1941.
 63. Eccles, J. C. Investigations on muscle atrophies arising from disuse and tenotomy. J. Physiol. London 103: 253–266, 1944.
 64. Eccles, J. C., R. M. Eccles, and W. Kozak. Further investigations on the influence of motoneurones on the speed of muscle contraction. J. Physiol. London 163: 324–339, 1962.
 65. Eccles, J. C., B. Libet, and R. R. Young. The behavior of chromatolysed motoneurons studied by intracellular recording. J. Physiol. London 143: 11–40, 1958.
 66. Edds, M. V. Collateral regeneration of residual motor axons in partially denervated muscles. J. Exptl. Zool. 113: 517–552, 1950.
 67. Edds, M. V. Collateral nerve regeneration. Quart. Rev. Biol. 28: 260–276, 1953.
 68. Edgerton, V. R., L. Gerchman, and R. Carrow. Histochemical changes in rat skeletal muscle after exercise. Exptl. Neurol. 24: 110–123, 1969.
 69. Edstrom, E., and E. Kugelberg. Histochemical composition, distribution of fibres on fatigability of single motor unit. J. Neurol. Neurosurg. Psychiat. 31: 424–433, 1968.
 70. Elliott, T. R. The action of adrenaline. J. Physiol. London 2: 401–467, 1905.
 71. Elsberg, C. A. Experiments on motor nerve regeneration and the direct neurotization of paralyzed muscles by their own and by foreign nerves. Science 45: 318–320, 1917.
 72. Emmelin, N., D. Jacobsohn, and A. Muren. Effects of prolonged administration of atropine and pilocarpine on the submaxillary gland of the cat. Acta Physiol. Scand. 24: 128–143, 1951.
 73. Emmelin, N., and L. Malmfors. Development of supersensitivity as dependent on the length of degenerating nerve fibers. Quart. J. Exptl. Physiol. 50: 142–145, 1965.
 74. Emmelin, N., and A. Muren. Sensitization of the submaxillary gland to chemical stimuli. Acta Physiol. Scand. 24: 103–127, 1951.
 75. Erb, W. H. Zur Pathologie und pathologischen Anatomie peripherischer Paralysen. Deut. Arch. Klin. Med. 5, 1868.
 76. Fambrough, D. Acetylcholine sensitivity of muscle fiber membranes: mechanism of regulation by motoneurons. Science 168: 372–373, 1970.
 77. Fambrough, D. M., and H. C. Hartzell. Acetylcholine receptors: number and distribution at neuromuscular junctions in rat. Science 176: 189–191, 1972.
 78. Fedde, M. R. Electrical properties and acetylcholine sensitivity of singly and multiply innervated avian muscle fibres. J. Gen. Physiol. 53: 624–637, 1969.
 79. Feinstein, B., R. E. Pattle, and G. Weddell. Metabolic factors affecting fibrillation in denervated muscle. J. Neurol. Neurosurg. Psychiat. 8: 1–11, 1945.
 80. Feltz, A., and A. Mallart. An analysis of acetylcholine responses of junctional and extrajunctional receptors of frog muscle fibres. J. Physiol. London 218: 85–100, 1971.
 81. Feltz, A., and A. Mallart. Ionic permeability changes induced by some cholinergic agonists on normal and denervated frog muscles. J. Physiol. London 218: 101–116, 1971.
 82. Feng, T. P., A. W. Jung, and W. Y. Wu. Post denervation muscle hypertrophy. In: The Effect of Use and Disuse on Neuromuscular Function, edited by E. Gutmann and P. Hnik. Amsterdam: Elsevier, 1963, p. 431–441.
 83. Feng, T. P., and D. Y. Lu. New lights on the phenomenon of transient hypertrophy in the denervated hemidiaphragm of the rat. Sci. Sinica, Peking 14: 1772–1784, 1965.
 84. Fex, S., B. Sonesson, S. Thesleff, and J. Zelena. Nerve implants in botulinum poisoned mammalian muscle. J. Physiol. London 184: 872–882, 1966.
 85. Filogama, G., and G. Gabella. The development of neuromuscular correlations, in vertebrates. Arch. Biol., Liege 78: 9–60, 1967.
 86. Finch, L., and G. D. H. Leach. Effects of 6‐hydroxydopamine on the perfused rat mesentery preparation. J. Pharm. Pharmacol. 22: 543–544, 1970.
 87. Fink, B. R., R. D. Kennedy, A. E. Hendrickson, and M. E. Middaugh. Lidocaine inhibition of rapid axonal transport. Anesthesiology 36: 422–432, 1972.
 88. Fischbach, G. D., and S. A. Cohen. The distribution of acetylcholine sensitivity over uninnervated and innervated muscle fibers grown in cell culture. Develop. Biol. 31: 147–162, 1973.
 89. Fischbach, G. D., and N. Robbins. Changes in contractile properties of disused soleus muscles. J. Physiol. London 201: 305–320, 1969.
 90. Fischbach, G. D., and N. Robbins. Effect of chronic disuse of rat soleus neuromuscular junctions on postsynaptic membrane. J. Neurophysiol. 34: 562–569, 1971.
 91. Fleming, A. J., and F. C. MacIntosh. The effect of sympathetic stimulation and of autonomic drugs on the paralytic submaxillary gland of the cat. Quart. J. Exptl. Physiol. 25: 207–212, 1935.
 92. Fujimoto, S., and R. G. Murray. Fine structure of degeneration and regeneration in denervated rabbit vallate taste buds. Anat. Record 168: 393–414, 1970.
 93. Geffen, L. B., and C. C. Hughes. Degeneration of sympathetic nerves in vitro and development of smooth muscle supersensitivity to noradrenaline. J. Physiol. London 221: 71–84, 1972.
 94. Ginetzinsky, A. G., On the effect of electrical stimulation on the properties of denervated muscle [In Russian]. In: Problems of the Modern Physiology of the Nervous and Muscle Systems. Acad. Sci. Georgian SSR, 1956, p. 409–417.
 95. Goldberg, A., and C. Jablecki. Effects of use and disuse on amino acid transport and protein turnover in muscles. Ann. NY Acad. Sci. 228: 190–201, 1974.
 96. Gollnick, P. D., R. B. Armstrong, C. W. Saubert, K. Piehl, and B. Saltin. Enzyme activity and fiber composition in skeletal muscle of trained and untrained men. J. Appl. Physiol. 33: 312–319, 1972.
 97. Grampp, W., J. B. Harris, and S. Thesleff. Inhibition of denervation changes in skeletal muscle by blockers of protein synthesis. J. Physiol. London 221: 743–754, 1972.
 98. Green, R. D., and W. W. Fleming. Analysis of supersensitivity in the isolated spleen of the cat. J. Pharmacol. Exptl. Therap. 162: 254–262, 1968.
 99. Guth, L. The effects of glossopharyngeal nerve transection on the circumvallate papilla of the rat. Anat. Record 128: 715–731, 1957.
 100. Guth, L. Taste buds on the cat's circumvallate papilla after reinnervation by glossopharyngeal, vagus, and hypoglossal nerves. Anat. Record 130: 25–38, 1958.
 101. Guth, L. Neuromuscular function after regeneration of interrupted nerve fibers into partially denervated muscle. Exptl. Neurol. 6: 129–141, 1962.
 102. Guth, L. Trophic effects of vertebrate neurons. Neurosci. Res. Program Bull. 7: 1–71, 1969.
 103. Guth, L., R. W. Albers, and W. C. Brown. Quantitative changes in cholinesterase activity of denervated muscle fibers and sole plates. Exptl. Neurol. 10: 236–250, 1964.
 104. Guth, L., and J. J. Bernstein. Selectivity in the reestablishment of synapses in the superior cervical sympathetic ganglion of the cat. Exptl. Neurol. 4: 59–69, 1961.
 105. Guth, L., P. J. Dempsey, and T. Cooper. Maintenance of neurotrophically regulated proteins in denervated skeletal and cardiac muscle. Exptl. Neurol. 32: 478–488, 1971.
 106. Guth, L., and J. B. Wells. Physiological and histochemical properties of the soleus muscle after denervation of its antagonists. Exptl. Neurol. 36: 463–471, 1972.
 107. Guth, L., and H. Yellin. The dynamic nature of the so‐called “fiber types” of mammalian skeletal muscle. Exptl. Neurol. 31: 277–300, 1971.
 108. Gutmann, E. The reinnervation of muscle by sensory nerve fibres. J. Anat. 79: 1–7, 1945.
 109. Gutmann, E., I. Hajek, and P. Horsky. Effect of excessive use on contraction and metabolic properties of cross‐striated muscle. J. Physiol. London 203: 46P–47P, 1969.
 110. Gutmann, E., and V. Hanzlikova. Effects of accessory nerve supply to muscle achieved by implantation into muscle during regeneration of its nerve. Physiol. Bohemoslov. 16: 244–250, 1967.
 111. Gutmann, E., and J. Z. Young. The reinnervation of muscle after various periods of atrophy. J. Anat. 78: 15–43, 1944.
 112. Gutmann, E., and R. Zak. Nervous regulation of nucleic acid levels in cross‐striated muscle: changes in denervated muscle. Physiol. Bohemoslov. 10: 493–500, 1961.
 113. Gutmann, E., and J. Zelena. Morphological changes in the denervated muscle. In: The Denervated Muscle, edited by E. Gutmann. Prague: Czech. Acad. Sci., 1962, p. 57–102.
 114. Gwyn, D. G., and J. T. Aitken. The formation of new motor endplates in mammalian skeletal muscles. J. Anat. 100: 111–126, 1964.
 115. Haeusler, G., Short and long term effects of 6‐hydroxydopamine on peripheral organs. In: 6‐Hydroxydopamine and Catecholamine Neurons, edited by T. Malmfors and H. Thoenen. New York: Elsevier, 1971, p. 193–204.
 116. Haeusler, G., and W. Haefely. Pre‐ and postjunctional supersensitivity of the mesenteric artery preparation from normotensive and hypertensive rats. Arch. Exptl. Pathol. Pharmakol. 266: 18–33, 1970.
 117. Haeusler, G., W. Haefely, and H. Thoenen. Chemical sympathectomy of the cat with 6‐hydroxydopamine. J. Pharmacol. Exptl. Therap. 170: 50–61, 1969.
 118. Hall, Z. W., and R. B. Kelly. Enzymatic detachment of endplate acetylcholinesterase from muscle. Nature New Biol. 232: 62–63, 1971.
 119. Hamburger, V. Die Entwicklung experimentell erzeugter Nervloser und schwach innervierter Extremitäten von Anuren. Arch. Entwicklungsmech. Organ. 114: 272–363, 1928.
 120. Hamburger, V. Regression versus peripheral control of differentiation in motor hypoplasia. Am. J. Anat. 102: 365–410, 1958.
 121. Hamburger, V., and R. Levi‐Montalcini. Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J. Exptl. Zool. 111: 457–501, 1949.
 122. Hampel, C. W. The effect of denervation on the sensitivity to adrenine of the smooth muscle in the nictitating membrane of the cat. Am. J. Physiol. 111: 611–621, 1935.
 123. Harkmark, W. The influence of the cerebellum on development and maintenance of the inferior olive and the pons. An experimental investigation on chick embryos. J. Exptl. Zool. 131: 333–371, 1956.
 124. Van Harreveld, A. Re‐innervation of denervated muscle fibers by adjacent functioning motor units. Am. J. Physiol. 144: 477–493, 1945.
 125. Van Harreveld, A. On the mechanism of the “spontaneous” re‐innervation in paretic muscles. Am. J. Physiol. 150: 670–676, 1947.
 126. Harris, A. J., S. W. Kuffler, and M. J. Dennis. Differential chemosensitivity of synaptic and extrasynaptic areas on the neural surface membrane in parasympathetic neurons of the frog, tested by microapplication of acetylcholine. Proc. Roy. Soc. London Ser. B 177: 541–553, 1971.
 127. Harris, E. J., and J. Nicholls. The effect of denervation on the rate of entry of potassium into frog muscle. J. Physiol. London 131: 473–476, 1956.
 128. Harris, J. B., M. W. Marshall, and M. N. Ward. Action potential generation in singly and multiply innervated avian muscle fibres. J. Physiol. London 232: 51P–52P, 1973.
 129. Harris, J. B., and S. Thesleff. Nerve stump length and membrane changes in denervated skeletal muscle. Nature New Biol. 236: 60–61, 1972.
 130. Harrison, R. G. Experimentelle Untersuchungen uber die Entwicklungs der Sinnesorgane der Seitenlinie bei den Amphibien. Arch. Mikroskop. Anat. Entwicklungsmech. 63: 35–149, 1903.
 131. Harrison, R. G. An experimental study of the relation of the nervous system to the developing musculature in the embryo of the frog. Am. J. Anat. 3: 197–220, 1904.
 132. Hartzell, H. C., and D. M. Fambrough. Acetylcholine receptors. J. Gen. Physiol. 60: 248–262, 1972.
 133. Hartzell, H. C., and D. M. Fambrough. Acetylcholine receptor production and incorporation into membranes of developing muscle fibers. Develop. Biol. 30: 153–165, 1973.
 134. Heidenhain, R. Ueber pseudomotorische Nervenwirkungen. Arch. Physiol. Suppl. 133–177, 1883.
 135. Hines, H. M., and G. C. Knowlton. Changes in the skeletal muscle of the rat following denervation. Am. J. Physiol. 104: 379–391, 1933.
 136. Hinkley, R. E., and L. S. Green. Effects of halothane and colchicine on microtubules and electrical activity of rabbit vagus nerves. J. Neurobiol. 2: 97–105, 1971.
 137. Hirano, H. Ultrastructural study on the morphogenesis of the neuromuscular junction in the skeletal muscle of the chick. Z. Zellforsch. Mikrosk. Anat. 79: 198–208, 1967.
 138. Hnik, P., I. Jirmanova, L. Vyklicky, and J. Zelena. Fast and slow muscles of the chick after nerve cross‐union. J. Physiol. London 193: 309–325, 1967.
 139. Hodgkin, A. L., and P. Horowicz. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J. Physiol. London 148: 127–160, 1959.
 140. Hoffman, H. Local re‐innervation in partially denervated muscle: a histophysiological study. Australian J. Exptl. Biol. Med. Sci. 28: 383–397, 1950.
 141. Hoffman, H. A study of the factors influencing innervation of muscles by implanted nerves. Australian J. Exptl. Biol. Med. Sci. 29: 289–307, 1951.
 142. Hoffman, H. Acceleration and retardation of the process of axon‐sprouting in partially denervated muscles. Australian J. Exptl. Biol. Med. Sci. 30: 541–566, 1952.
 143. Hoffman, W. W., and S. Thesleff. Studies on the trophic influence of nerve on skeletal muscle. European J. Pharmacol. 20: 256–260, 1972.
 144. Hubbard, S. J. The electrical constants and the component conductances of frog skeletal muscle after denervation. J. Physiol. London 165: 443–456, 1963.
 145. Hughes, A. F. Cell degeneration in the larval ventral horn of Xenopus laevis (Daudin). J. Embryol. Exptl. Morphol. 9: 269–284, 1961.
 146. Hughes, A. F., and P. A. Tschumi. The factors controlling the development of the dorsal root ganglia and ventral horn in Xenopus laevis. J. Anat. 92: 498–527. 1958.
 147. Hutter, O. F., and D. Noble. The chloride conductance of frog skeletal muscle. J. Physiol. London 151: 89–102, 1960.
 148. Iversen, L. L. The Uptake and Storage of Noradrenaline in Sympathetic Nerves. London: Cambridge Univ. Press, 1967.
 149. Iwayama, T. Relation of regenerating nerve terminals to original endplates. Nature 224: 181–182, 1969.
 150. Jacobson, M. Developmental Neurobiology. New York: Holt, Rinehart, and Winston, 1970.
 151. Jansen, J. K. S., T. Lømo, K. Nicolaysen, and R. H. Westgaard. Hyperinnervation of skeletal muscle fibers: dependence on muscle activity. Science 181: 559–561, 1973.
 152. Jean, D. H., L. Guth, and R. W. Albers. Neural regulation of the structure of myosin. Exptl. Neurol. 38: 458–471, 1973.
 153. Jenkinson, D. H. The antagonism between tubocurarine and substances which depolarize the motor end‐plate. J. Physiol. London 152: 309–324, 1960.
 154. Jewell, P. A., and E. Zaimis. Changes at the neuromuscular junction of red and white muscle fibres in the cat induced by disuse atrophy and hypertrophy. J. Physiol. London 124: 429–442, 1954.
 155. Johansson, B., B. Ljung, T. Malmfors, and L. Olson. Prejunctional supersensitivity in the rat portal vein as related to its pattern of innervation. Acta Physiol. Scand. Suppl. 349: 5–16, 1970.
 156. Johns, T. R., and S. Thesleff. Effects of motor inactivation on the chemical sensitivity of skeletal muscle. Acta Physiol. Scand. 51: 136–141, 1961.
 157. Jones, D. P., and M. Singer. Neurotrophic dependence of the lateral line sensory organs of the newt, Triturus viridescens. J. Exptl. Zool. 171: 433–439, 1969.
 158. Jones, R., and G. Vrbová. Effect of muscle activity on denervation hypersensitivity. J. Physiol. London 210: 144P–145P, 1970.
 159. Jones, R., and G. Vrbová. Activity as a factor for the development of some pharmacological properties of the neuromuscular junction. J. Physiol. London 214: 17P–18P, 1971.
 160. Jones, R., and G. Vrbová. Two factors responsible for the development of denervation hypersensitivity. J. Physiol. London 236: 517–538, 1974.
 161. Josefsson, J. O., and S. Thesleff. Electromyographic findings in experimental botulinum intoxication. Acta Physiol. Scand. 51: 163–168, 1961.
 162. Kagayama, M., and A. Nishiyama. Membrane potential and input resistance in acinar cells from cat and rabbit submaxillary glands in vivo: effects of autonomic nerve stimulation. J. Physiol. London 242: 157–172, 1974.
 163. Kasuya, Y., K. Goto, H. Hashimoto, H. Watanabe, H. Munakata, and M. Watanabe. Non‐specific denervation supersensitivity in the rat vas deferens “in vitro.” European J. Pharmacol. 8: 177–184, 1969.
 164. Katz, B., and R. Miledi. The development of acetylcholine sensitivity in nerve free segments of skeletal muscle. J. Physiol. London 170: 389–396, 1964.
 165. Kauffman, F. C., J. E. Warnick, and E. X. Albuquerque. Uptake of [3H]colchicine from Silastic implants by mammalian nerves and muscles. Exptl. Neurol. 44: 404–416, 1974.
 166. Kelly, A. M., and S. I. Zacks. The fine structure of motor endplate morphogenesis. J. Cell Biol. 42: 154–169, 1969.
 167. Kernan, R. P. Active transport in innervated and denervated mammalian skeletal muscle. J. Physiol. London 179: 63P, 1965.
 168. Koenig, J. Contribution à l'étude de la morphologie des plaques motrices des grands dorsaux antérieur et postérieur du poulet après innervation croisée. Arch. Anat. Microscop. 59: 403–426, 1970.
 169. Kuffler, S. W., M. J. Dennis, and A. J. Harris. The development of chemosensitivity in extrasynaptic areas of the neuronal surface after denervation of parasympathetic ganglion cells in the heart of the frog. Proc. Roy. Soc. London Ser. B 177: 555–563, 1971.
 170. Kuffler, S. W., and E. M. Vaughan Williams. Small‐nerve junctional potentials. The distribution of small motor nerves to frog skeletal muscle and the membrane characteristics of the fibres they innervate. J. Physiol. London 121: 289–317, 1953.
 171. Kuffler, S. W., and E. M. Vaughan Williams. Properties of the “slow” skeletal muscle of the frog. J. Physiol. London 121: 318–340, 1953.
 172. Kuno, M., and R. Llinas. Alterations of synaptic action in chromatolysed motoneurones of the cat. J. Physiol. London 210: 823–838, 1970.
 173. Landmesser, L. Contractile and electrical responses of vagus‐innervated frog sartorius muscle. J. Physiol. London 213: 707–725, 1971.
 174. Landmesser, L. Pharmacological properties, cholinesterase activity and anatomy of nerve‐muscle junctions on vagus‐innervated frog sartorius. J. Physiol. London 220: 243–356, 1972.
 175. Langer, S. Z., P. R. Draskoczy, and U. Trendelenburg. Time course of the development of supersensitivity to various amines in the nictitating membrane of the pithed cat, after denervation or decentralization. J. Pharmacol. Exptl. Therap. 157: 255–273, 1967.
 176. Langley, J. N. The Autonomic Nervous System. Cambridge: Heffer, 1921.
 177. Langley, J. N., and H. K. Anderson. The union of different kinds of nerve fibres. J. Physiol. London 31: 365–391, 1904.
 178. Langley, J. N., and T. Kato. The physiological action of physostigmine and its action on denervated skeletal muscle. J. Physiol. London 49: 410–431, 1914.
 179. Lebowitz, P., and M. Singer. Neurotrophic control of protein synthesis in the regenerating limb of the newt, Triturus. Nature 255: 824–827, 1970.
 180. Lee, C. Y., L. F. Tseng, and T. H. Chiu. Influence of denervation on localization of neurotoxins from Elapid venoms in rat diaphragm. Nature 215: 1177–1178, 1967.
 181. Lenman, J. A. R. Effect of denervation on the resting membrane potential of healthy and dystrophic muscle. J. Neurol. Neurosurg. Psychiat. 28: 525–528, 1965.
 182. Lentz, T. L. Development of the neuromuscular junction. I. Cytological and cytochemical studies on the neuromuscular junction of differentiating muscle in the regenerating limb of the newt, Triturus. J. Cell Biol. 42: 431–443, 1969.
 183. Lentz, T. L. Neurotrophic function: in vitro assay of effects of nerve tissue on muscle cholinesterase activity. Science 171: 187–189, 1971.
 184. Lentz, T. L. Development of the neuromuscular junction. III. Degeneration of motor endplates after denervation and maintenance in vitro by nerve explants. J. Cell Biol. 55: 93–103, 1972.
 185. Lentz, T. L. A role of cyclic AMP in a neurotrophic process. Nature New Biol. 238: 154–155, 1972.
 186. Lentz, T. L. Neurotrophic regulation at the neuromuscular junction. Ann. NY Acad. Sci. 228: 323–337, 1974.
 187. Lewis, D. M. The effect of denervation on the mechanical and electrical responses of fast and slow mammalian muscle. J. Physiol. London 222: 51–75, 1972.
 188. Lewis, D. M. Effect of denervation on the differentiation of twitch muscles in the kitten hind limb. Nature 241: 285–286, 1973.
 189. Li, C. L., G. M. Shy, and J. Wells. Some properties of mammalian skeletal muscle fibres with particular reference to fibrillation potentials. J. Physiol. London 135: 522–535, 1957.
 190. Locatelli, P. Nuovi experimenti sulla funcione del sistema nervoso sulla regenerazione. Arch. Sci. Biol. 7: 301–311, 1925.
 191. Locatelli, P. Der Einfluss des Nervensystems auf die Regeneration. Arch. Entwicklungsmech. Organ. 114: 686–770, 1929.
 192. Locke, S., and H. C. Solomon. Relation of resting potential of rat gastrocnemius and soleus muscle to innervation, activity and the Na‐K pump. J. Exptl. Zool. 166: 377–386, 1967.
 193. Lømo, T. Neurotrophic control of colchicine effects on muscle? Nature 249: 473–474, 1974.
 194. Lømo, T., and J. Rosenthal. Control of ACh sensitivity by muscle activity in the rat. J. Physiol. London 221: 493–513, 1972.
 195. Lømo, T., and R. H. Westgaard. Contractile properties of muscle: control by pattern of muscle activity in the rat. Proc. Roy. Soc. London Ser. B 187: 99–103 1974.
 196. de Long, R. G., and R. L. Sidman. Effects of eye removal at birth on histogenesis of the mouse superior colliculus. An autoradiographic analysis with tritiated thymidine. J. Comp. Neurol. 118: 205–224, 1962.
 197. Lowey, S., and D. Risby. Light chains from fast and slow muscle myosins. Nature 234: 81–85, 1971.
 198. Luco, J. V., and C. Eyzaguirre. Fibrillation and hypersensitivity to ACh in denervated muscle: effect of length of degenerating nerve fibers. J. Neurophysiol. 18: 65–73, 1955.
 199. Lüllmann, H., and W. Pracht. Uber den Einfluss von Acetylcholin auf das Membranpotential denervierter Rattenzwerchfelle. Experientia 13: 288–289, 1957.
 200. Maclagan, J., and G. Vrbová. The importance of peripheral changes in determining the sensitivity of striated muscle to depolarizing drugs. J. Physiol. London 184: 618–630, 1966.
 201. Mallart, A., and A. Trautmann. Ionic properties of the neuromuscular junction of the frog: effects of denervation and pH. J. Physiol. London 234: 553–567, 1973.
 202. Margreth, A., and G. Salviati. Biochemical characteristics of slow skeletal muscle in work‐induced hypertrophy. Biochem. J. 124: 669–671, 1971.
 203. Marotte, L. R., and R. F. Mark. The mechanism of selective reinnervation offish eye muscle. I. Evidence from muscle function recovery. Brain Res. 19: 41–51, 1970.
 204. May, R. M. The relation of nerves to degenerating and regenerating taste buds. J. Exptl. Zool. 42: 371–410, 1925.
 205. McArdle, J. J., and E. X. Albuquerque. A study of the reinnervation of fast and slow mammalian muscles. J. Gen. Physiol. 61: 1–23, 1972.
 206. McMahan, U. J., and S. W. Kuffler. Visual identification of synaptic boutons on living ganglion cells and of varicosities in post ganglionic axons of the heart of the frog. Proc. Roy. Soc. London Ser. B 177: 485–508, 1971.
 207. Meltzer, S. J., and C. M. Auer. Studies on the “paradoxical” pupil dilatation caused by adrenaline. I. The effect of subcutaneous injections and instillations of adrenaline upon the pupils of rabbits. Am. J. Physiol. 11: 28–36, 1904.
 208. Miledi, R. The acetylcholine sensitivity of frog muscle fibres after complete or partial denervation. J. Physiol. London 151: 1–23, 1960.
 209. Miledi, R. Properties of regenerating neuromuscular synapses in the frog. J. Physiol. London 154: 190–205, 1960.
 210. Miledi, R. Induced innervation of end‐plate free muscle segments. Nature 193: 281–282, 1962.
 211. Miledi, R., and L. T. Potter. Acetylcholine receptors in muscle. Nature 233: 599–603, 1971.
 212. Miledi, R., and C. R. Slater. Electron‐microscopic structure of denervated skeletal muscle. Proc. Roy. Soc. London Ser. B 174: 253–269, 1969.
 213. Miledi, R., and E. Stefani. Nonselective re‐innervation of slow and fast muscle fibres in the rat. Nature 222: 569–571, 1969.
 214. Miledi, R., E. Stefani, and A. B. Steinbach. Induction of the action potential mechanism in slow muscle fibres of the frog. J. Physiol. London 217: 737–754, 1971.
 215. Miledi, R., E. Stefani, and J. Zelena. Neural control of acetylcholine sensitivity in rat muscle fibres. Nature 220: 497–498, 1968.
 216. Miledi, R., and J. Zelena. Sensitivity to acetylcholine in rat slow muscle. Nature 210: 855–856, 1966.
 217. Mintz, B., and L. D. Stone. Transplantation of taste organs in adult Triturus viridescens. Proc. Soc. Exptl. Biol. Med. 31: 1080–1082, 1934.
 218. Mumenthaler, M., and W. K. Engel. Cytological localization of cholinesterase in developing chick embryo skeletal muscle. Acta Anat. 47: 274–299, 1961.
 219. Nadeau, R. A., J. De Champlain, and G. Tremblay. Supersensitivity of the isolated rat heart after chemical sympathectomy with 6‐hydroxydopamine. Can. J. Physiol. Pharmacol. 49: 36–44, 1971.
 220. Nelson, P. G. Functional consequences of tenotomy in hind limb muscles of the cat. J. Physiol. London 201: 321–333, 1969.
 221. Nicholls, J. G. The electrical properties of denervated skeletal muscle. J. Physiol. London 131: 1–12, 1956.
 222. Nickerson, M., and H. D. House. Mechanisms of denervation sensitization. Federation Proc. 17: 388, 1958.
 223. Ochs, S., and N. Ranish. Characteristics of the fast transport system in mammalian nerve fibers. J. Neurobiol. 1: 247–261, 1969.
 224. Oh, T. H., D. D. Johnson, and S. U. Kim. Neurotrophic effect on isolated chick embryo muscle in culture. Science 178: 1298–1300, 1972.
 225. Olmsted, J. M. D. The nerve as a formative influence in the development of taste‐buds. J. Comp. Neurol. 31: 465–468, 1920.
 226. Olson, C. B., and C. P. Swett, Jr. Speed of contraction of skeletal muscles. The effect of hypoactivity and hyperactivity. Arch. Neurol. 20: 263–270, 1969.
 227. Ozawa, H., and K. Sugawara. Sensitivity of the isolated vas deferens of the guinea‐pig to norepinephrine and acetylcholine after denervation, decentralization and treatments by various agents. European J. Pharmacol. 11: 56–66, 1970.
 228. Parker, G. H. On the trophic impulse so called, its rate and nature. Am. Naturalist 66: 147–158, 1932.
 229. Parker, G. H., and V. L. Paine. Progressive nerve degeneration and its rate in the lateral‐line nerve of the catfish. Am. J. Anat. 54: 1–25, 1934.
 230. Peckham, H., J. T. Mortimer, and J. P. Van Der Muelen. Physiologic and metabolic changes in a white muscle of the cat following induced exercise. Brain Res. 50: 424–429, 1973.
 231. Pellegrino, C., and C. Franzini. An electronmicroscope study of denervation atrophy in red and white skeletal muscle fibres. J. Cell Biol. 17: 327–349, 1963.
 232. Petersen, O. H., and G. L. Pedersen. Membrane effects mediated by alpha‐ and beta‐adrenoceptors in mouse parotid acinar cells. J. Membrane Biol. 16: 353–362, 1974.
 233. Philipeaux, J. M., and A. Vulpian. Note sur une modification physiologique qui se produit dans le nerf lingual par suite de l'abolition temporaire de la motricité dans le nerf hypoglosse du měme côté. Compt. Rend. 56: 1009–1011, 1863.
 234. Pilar, G., and L. Landmesser. Axotomy mimicked by localized colchicine application. Science 177: 1116–1118, 1972.
 235. Poritsky, R. L., and M. Singer. The fate of taste buds in tongue transplants in the orbit in the urodele Triturus. J. Exptl. Zool. 153: 211–218, 1963.
 236. Prestige, M. C. Cell turnover in the spinal ganglia of Xenopus laevis tadpoles. J. Embryol. Exptl. Morphol. 13: 63–72, 1965.
 237. Prestige, M. C. The control of cell number in the lumbar spinal ganglia during the development of Xenopus laevis tadpoles. J. Embryol. Exptl. Morphol. 17: 453–471, 1967.
 238. Prestige, M. C. The control of cell number in the lumbar ventral horns during the development of Xenopus laevis tadpoles. J. Embryol. Exptl. Morphol. 18: 359–387, 1967.
 239. Purves, D., and B. Sakmann. The effect of activity on rat muscle maintained in organ culture. J. Physiol. London 237: 157–182, 1974.
 240. Raniver, L. Traite Technique d'Histologie. Paris: Sary, 1875, p. 948.
 241. Redfern, P. A. Neuromuscular transmission in new‐born rats. J. Physiol. London 209: 701–709, 1970.
 242. Redfern, P., and S. Thesleff. Action potential generation in denervated rat skeletal muscle. II. The action of tetrodotoxin. Acta Physiol. Scand. 82: 70–78, 1971.
 243. Reid, G. The reaction of muscle to denervation in cold blooded animals. Australian J. Exptl. Biol. Med. Sci. 19: 199–206, 1941.
 244. Riley, D. A., and E. F. Allin. The effects of inactivity, programmed stimulation, and denervation on the histochemistry of skeletal muscle fiber types. Exptl. Neurol. 40: 391–413, 1973.
 245. Robbins, N. The role of the nerve in maintenance of frog taste buds. Exptl. Neurol. 17: 364–380, 1967.
 246. Robbins, N. Peripheral modification of sensory nerve responses after cross‐regeneration. J. Physiol. London 192: 493–504, 1967.
 247. Robbins, N., G. Karpati, and W. K. Engel. Histochemical and contractile properties in the cross‐innervated guinea pig soleus muscle. Arch. Neurol. 20: 318–329, 1969.
 248. Robert, E. D., and Y. T. Oester. Nerve impulses and trophic effect. Arch. Neurol. 22: 57–63, 1970.
 249. Robert, E. D., and Y. T. Oester. Absence of supersensitivity to acetylcholine in innervated muscle subjected to a prolonged pharmacologic nerve block. J. Pharmacol. Exptl. Therap. 174: 133–140, 1970.
 250. Romanul, F. C., and J. P. Van Der Meulen. Slow and fast muscles after cross innervation. Arch. Neurol. 17: 387–402, 1967.
 251. Rosenblueth, A., and J. V. Luco. A study of denervated mammalian skeletal muscle. Am. J. Physiol. 120: 781–797, 1937.
 252. Saito, A., and S. I. Zacks. Fine structure of neuromuscular junctions after nerve section and implantation of nerve in denervated muscle. Exptl. Mol. Pathol. 10: 256–273, 1969.
 253. Salafsky, B., Y. Bell, and M. Prewitt. Development of fibrillation potentials in denervated fast and slow skeletal muscles. Am. J. Physiol. 215: 637–643, 1968.
 254. Salmons, S., and G. Vrbová. Influence of activity on some contractile characteristics of mammalian fast and slow muscles. J. Physiol. London 201: 535–549, 1969.
 255. Salpeter, M. M. Electron microscope radioautography as a quantitative tool in enzyme cytochemistry. II. The distribution of acetylcholinesterase at motor endplates of a vertebrate twitch muscle. J. Cell Biol. 32: 379–389, 1967.
 256. Samaha, F. J., L. Guth, and R. W. Albers. Differences between slow and fast muscle myosin. J. Biol. Chem. 245: 219–224, 1970.
 257. Samaha, F. J., L. Guth, and R. W. Albers. The neural regulation of gene expression in the muscle cell. Exptl. Neurol. 27: 276–282, 1970.
 258. Schiaffino, S., and S. P. Bormioli. Adaptive changes in developing rat skeletal muscle in response to functional overload. Exptl. Neurol. 40: 126–137, 1973.
 259. Schiff, M. Ueber motorische Lahmung der Zunge. Arch. Physiol. Heilk. 10: 579–593, 1851.
 260. Schubert, P., G. W. Kreutzberg, and H. D. Lux. Neuroplasmic transport in dendrites: effects of colchicine on morphology and physiology of motoneurones in the cat. Brain Res. 47: 331–343, 1972.
 261. Sherrington, C. S. On the anatomical constitution of nerves of skeletal muscles. J. Physiol. London 17: 211–218, 1894.
 262. Singer, M. The nervous system and regeneration of the forelimb of adult Triturus. II. The role of the sensory supply. J. Exptl. Zool. 92: 297–315, 1943.
 263. Singer, M. The nervous system and regeneration of the forelimb of adult Triturus. J. Exptl. Zool. 101: 221–239, 1946.
 264. Singer, M. The nervous system and regeneration of the forelimb of adult Triturus. V. The influence of number of nerve fibers, including a quantitative study of limb innervation. J. Exptl. Zool. 101: 299–337, 1946.
 265. Singer, M. Induction of regeneration of the forelimb of the postmetamorphic frog by augmentation of the nerve supply. J. Exptl. Zool. 126: 419–472, 1954.
 266. Singer, M., A theory of the trophic nervous control of amphibian limb regeneration, including a reevaluation of quantitative nerve requirements. In: Regeneration in Animals, edited by V. Kiortsis and H. A. L. Trampusch. Amsterdam: North Holland, 1965, p. 20–32.
 267. Slater, C. R. Time course of failure of neuromuscular transmission after motor nerve section. Nature 209: 305–306, 1966.
 268. Sola, O. M., and A. W. Martin. Denervation hypertrophy and atrophy of the hemidiaphragm of the rat. Am. J. Physiol. 172: 324–332, 1953.
 269. Solandt, D. Y., and J. W. Magladery. A comparison of effects of upper and lower motor neurone lesions on skeletal muscle. J. Neurophysiol. 5: 373–380, 1942.
 270. Solandt, D. Y., R. C. Partridge, and J. Hunter. The effect of skeletal fixation on skeletal muscle. J. Neurophysiol. 6: 17–22, 1943.
 271. Sonesson, B., and S. Thesleff. Cholinesterase activity after DFP application in botulinum poisoned, surgically denervated or normally innervated rat skeletal muscles. Life Sci. 7: 411–417, 1968.
 272. Speidel, C. C. Adjustments of nerve endings. Harvey Lectures Ser. 126–158, 1941.
 273. Speidel, C. C. The trophic influence of specific nerve supply on special sensory organs, as revealed by prolonged survival of denervated lateral‐line organs. Anat. Record 88: 459, 1944.
 274. Speidel, C. C. Correlated studies of sense organs and nerves of the lateral‐line in living frog tadpoles. Am. J. Anat. 82: 277–320, 1948.
 275. Sreter, F. A., I. Gergely, S. Salmons, and F. Romanul. Synthesis by fast muscle of myosin light chains characteristic of slow muscle in response to long term stimulation. Nature 241: 17–19, 1973.
 276. Stent, G. A physiological mechanism for Hebb's postulate of learning. Proc. Natl. Acad. Sci. US 70: 997–1001, 1973.
 277. Stewart, D. M., and A. W. Martin. Hypertrophy of the denervated diaphragm. Am. J. Physiol. 186: 497–500, 1956.
 278. Stirling, R. V. The effect of increasing the innervation field sizes of nerves on their reflex response time in salamanders. J. Physiol. London 229: 657–679, 1973.
 279. Stone, L. S. Studies on the migratory lateral‐line primordia in Amblystoma. Anat. Record 48: 64, 1931.
 280. Stone, L. S. Independence of taste organs with respect to their nerve fibers demonstrated in living salamanders. Proc. Soc. Exptl. Biol. Med. 30: 1256–1257, 1933.
 281. Stone, L. S. Experimental studies of various developmental stages in the lateral‐line system of amphibians. Anat. Record 64: 48, 1936.
 282. Stone, L. S. Further experimental studies of development of lateral‐line organs in amphibians observed in living preparations. J. Comp. Neurol. 68: 83–115, 1937.
 283. Stromblad, B. C. R. Cholinesterase activity in skeletal muscle after bolulinum treatment. Experientia 16: 458–459, 1960.
 284. Szamier, R. B., and M. V. L. Bennett. Rapid degeneration of ampullary electroreceptor organs after denervation. J. Cell Biol. 56: 466–477, 1973.
 285. Tauc, L., and H. Gerschenfeld. L'acetylcholine comme transmetteur possible de l'inhibition chez l'Aplysie. Compt. Rend. 251: 3076–3078, 1960.
 286. Teravainen, H. Development of myoneural junction in the rat. Z. Zellforsch. Mikroskop. Anat. 87: 249–265, 1968.
 287. Thesleff, S. Supersensitivity of skeletal muscle produced by botulinum toxin. J. Physiol. London 151: 598–607, 1960.
 288. Thesleff, S., Spontaneous electrical activity in denervated rat skeletal muscle. In: The Effect of Use and Disuse on Neuromuscular Functions, edited by E. Gutmann and P. Hnik. Amsterdam: Elsevier, 1963, p. 41–51.
 289. Thornton, C. S. Recuperation of ability to regenerate denervated larval, urodele limb. Am. Zoologist 8: 785, 1968.
 290. Thornton, C. S., and R. A. Tassava. Regeneration and supernumery limb formation under sparsely innervated conditions. J. Morphol. 127: 225–232, 1969.
 291. Todd, J. J. On the process of reproduction of the members of the aquatic salamander. Quart. J. Sci. Literature Arts 16: 84–96, 1823.
 292. Torrey, T. W. The relation of taste buds to their nerve fibers. J. Comp. Neurol. 59: 203–220, 1934.
 293. Torrey, T. W. The influence of nerve fibres upon taste buds during embryonic development. Proc. Natl. Acad. Sci. US 26: 627–634, 1940.
 294. Tower, S. S. Atrophy and degeneration in the muscle spindle. Brain 55: 77–89, 1932.
 295. Tower, S. S. Atrophy and degeneration in skeletal muscle. Am. J. Anat. 56: 1–43, 1935.
 296. Tower, S. S. Function and structure in the chronically isolated lumbro‐sacral spinal cord of the dog. J. Comp. Neurol. 67: 109–131, 1937.
 297. Tower, S. S. Trophic control of non‐nervous tissues by the nervous system: a study of muscle and bone innervated from an isolated and quiescent region of spinal cord. J. Comp. Neurol. 67: 241–267, 1937.
 298. Tower, S. S., H. Howe, and D. Bodian. Fibrillation in skeletal muscle in relation to denervation and to inactivation without denervation. J. Neurophysiol. 4: 398–401, 1941.
 299. Trendelenburg, U. Mechanisms of supersensitivity and subsensitivity to sympathomimetic amines. Pharmacol. Rev. 18: 629–640, 1966.
 300. Tsai, T. H., S. Denham, and W. R. McGrath. Sensitivity of the isolated nictitating membrane of the cat to norepinephrine and acetylcholine after various procedures and agents. J. Pharmacol. Exptl. Therap. 164: 146–157, 1968.
 301. Vera, C. L., and J. V. Luco. Reinnervation of smooth and striated muscle by sensory nerve fibers. J. Neurophysiol. 30: 620–627, 1967.
 302. Von Vintschgau, M. Beobachtungen über die Veranderungen der Schmeckbecher nach Durchschneidung des N. glossopharyngeus. Pfluegers Arch. Ges. Physiol. 23: 1–13, 1880.
 303. Von Vintschgau, M., and J. Honigschmied. Nervous glossopharyngeus und Schmeckbecher. Pfluegers Arch Ges. Physiol. 14: 443–448, 1876.
 304. Vrbová, G. The effect of motoneurone activity on the speed of contraction of striated muscle. J. Physiol. London 169: 513–526, 1963.
 305. Vrbová, G. The control of chemosensitivity at the neuromuscular junction. Proc. 4th Intern. Congr. Pharmacol., Basel, 1969, p. 158–169.
 306. Vyskocil, F., J. Moravec, and L. Jansky. Resting state of the myoneural junction in a hibernator. Brain Res. 34: 381–384, 1971.
 307. Ware, F., A. L. Bennett, and A. R. McIntyre. Membrane resting potential of denervated mammalian skeletal muscle measured in vivo. Am. J. Physiol. 177: 115–118, 1954.
 308. Weddell, G., L. Guttmann, and E. Gutmann. The local extension of nerve fibres into denervated areas of skin. J. Neurol. Neurosurg. Psychiat. 4: 206–225, 1941.
 309. Weeds, A. G., D. R. Trentham, C. J. C. Kean, and A. J. Buller. Myosin from cross‐reinnervated cat muscles. Nature 247: 135–139, 1974.
 310. Weiss, P., and M. V. Edds. Spontaneous recovery of muscle following partial denervation. Am. J. Physiol. 145: 587–607, 1945.
 311. Weiss, P., and M. V. Edds. Sensory‐motor nerve crosses in the rat. J. Neurophysiol. 8: 173–193, 1945.
 312. Weiss, P., and A. Hoag. Competitive reinnervation of rat muscles by their own and foreign nerves. J. Neurophysiol. 9: 413–418, 1946.
 313. Yntema, C. L. Relations between innervation and regeneration of the forelimb in urodele larvae. Anat. Record 103: 524, 1949.
 314. Yntema, C. L. Regeneration in sparsely innervated and aneurogenic forelimbs of amblystoma larvae. J. Exptl. Zool. 140: 101–124, 1959.
 315. Zalewski, A. Combined effects of testosterone and motor, sensory or gustatory nerve reinnervation on the regeneration of taste buds in the rat. Exptl. Neurol. 24: 285–297, 1969.
 316. Zalewski, A. Regeneration of taste buds after reinnervation by peripheral or central fibres of vagal ganglia. Exptl. Neurol. 25: 429–437, 1969.
 317. Zalewski, A. Regeneration of taste buds in tongue grafts after reinnervation by neurons in transplanted lumbar ganglia. Exptl. Neurol. 40: 161–169, 1973.
 318. Zelena, J. The morphogenetic influence of innervation on the ontogenetic development of muscle spindle. J. Embryol. Exptl. Morphol. 5: 283–292, 1957.
 319. Zelena, J., Development, degeneration and regeneration of receptor organs. In: Mechanisms of Neural Regeneration, edited by M. Singer and J. P. Schade. Amsterdam: Elsevier, 1964, p. 175–213.
 320. Zelena, J., I. Jirmanova, and L. Vyklicky. Motor end‐plates in fast and slow muscles after cross‐union of their nerves. Nature 214: 1010–1011, 1967.
 321. Zelena, J., and J. Szentagothai. Verlagerung der Lokalisation spezifischer Cholinesterase während der Entwicklung der Muskelinnervation. Acta Histochem. 3: 284–296, 1957.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Jean Rosenthal. Trophic Interactions of Neurons. Compr Physiol 2011, Supplement 1: Handbook of Physiology, The Nervous System, Cellular Biology of Neurons: 775-801. First published in print 1977. doi: 10.1002/cphy.cp010121