Comprehensive Physiology Wiley Online Library

Principles in the Organization of Invertebrate Sensory Systems

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Classification of Interneurons
2 Integration in the Absence of Interneurons
3 Thermoreception and Chemoreception
4 Mechanoreception
4.1 Arthropods
4.2 Annelids
4.3 Molluscs
4.4 Interneurons of Axial Nerve Cord Responsive to Touch in Octopus Arm Arranged According to Field Size
4.5 Gravity Reception
4.6 Summary of Mechanoreceptor Mechanisms
5 Vibration Sense and Hearing
5.1 Acrididae
5.2 Tettigoniidae and Gryllidae
5.3 Lepidoptera
5.4 Summary of Vibration Sense and Hearing
6 Photoreception
6.1 Molluscs
6.2 Arthropods
7 Vision
7.1 Crustacean Compound Eyes
7.2 Insect Compound Eyes
8 General Conclusions
Figure 1. Figure 1.

Innervation of mantle of an octopod. CNS, circumesophageal ganglia; e.CNS, efferent from CNS; m.c, mantle connective; m.n., motor neuron; mus., mantle muscles; n. musc., nerves to mantle muscles; r.n., receptor neuron; st.g., stellate ganglion; st.n., stellar nerve. Presynaptic terminals are indicated by •. Cell bodies of neurons on motor side are shaded; cell bodies of receptor neurons are unshaded.

From Gray
Figure 2. Figure 2.

Ventral aspect of a segmental ganglion of a leech. Three cells on each side labeled T are touch sensory cells, each of which responds to light touch applied to a discrete area of the ipsilateral skin. The two P cells respond to pressure and the two N cells to noxious stimuli.

From Baylor & Nicholls
Figure 3. Figure 3.

Three possible types (A‐C) of neural connections that would result in firing of a single interneuron when sensory areas of three separate segments were stimulated. Primary sensory fibers (‐‐‐); cell bodies, whose locations are unknown, of interneurons (····); interneurons (——); synapses in which several presynaptic fibers converge on a single postsynaptic fiber (—>—); a synapse between only two fibers (—<>—). It is now known, but not shown, that in C the primary fibers entering a posterior ganglion run forward and make synapses also in at least the two anterior ganglia with the same interneuron.

From Hughes & Wiersma
Figure 4. Figure 4.

Responses recorded in crayfish by suction electrode from an interneuron in sixth ganglion (upper traces); unitary excitatory postsynaptic potentials (EPSP's) can be associated with impulses in primary fibers of the fourth root of the sixth ganglion, shown in both middle (proximal electrode) and lower (distal electrode) traces. Relative locations of hairs in anterior middle of left half of anterior telson segment are indicated by circles: strong input to the interneuron, • weak input, •; no input, ○. Considerable differences are present in this distribution between animals.

From Kennedy
Figure 5. Figure 5.

Schematic circuit of elements and connections concerned with generating rapid tail flexion to phasic mechanical abdominal disturbances in crayfish. Single neurons, ○ populations of similar neurons, □ chemical junctions, ○ electrical junctions, ——⊣ (the one to the motor giant is rectifying). Multi‐segmental interneurons are interconnected (——) and are excited by some unisegmental interneurons. Separate pathways generating the α and β components of the lateral giant response are indicated. TR, tactile receptors; A, B, C, identified tactile interneurons; LG, lateral giant; MoG, motor giant; FFMN, fast flexor motor neurons. Fast flexor musculature is drawn on the right.

From Zucker
Figure 6. Figure 6.

Effect of “awakening” on a multimodal interneuron of commissure C‐120 in crayfish. Small and large dots indicate mechanical and visual stimuli, respectively. Note that this interneuron changes its reactivity proportionally for both its modalities. A, animal in sleeping position; B, animal awakened by stimuli; C, animal in return to quiet state. Integrated polygraph record; each horizontal line represents 20 s, vertical lines are logarithmically proportional to log of number of impulses per second.

From Aréchiga & Wiersma
Figure 7. Figure 7.

Interneurons that have evolved as giant fibers in a wide range of worms, usually acting as fast pathways in general shortening of the body. The only limitation placed on the structure is that it be adequate. Even at this level there is no one‐to‐one relationship between structure and response. 1 and 2, Euthalenessa; 3, Sigalion; 4, Lepidasthenia and Euthalenessa; 5 and 6, Lumbricus; 7, Euthalenessa; 8, Eunice; 9 and 10, Nereis and Neanthes; 11 and 12, Arenicola; 13, Nereis and Neanthes; 14 and 15, Halla and Aglaurides; 16, Mastobranchus; 17, Sabella and Spirographis 18, Myxicola.

From Horridge , after Nicol , with permission of W. H. Freeman & Co. Copyright © 1968
Figure 8. Figure 8.

Anatomy of left tympanal organ of the locust. [After Gray .] Letters a‐d indicate position of the 4 groups of receptor cells. Arrows indicate direction of dendrites.

From Michelsen
Figure 9. Figure 9.

Threshold curves for the 4 groups of receptor cells in isolated locust ear. Variations in threshold curves for different cells within each group (—).

From Michelsen
Figure 10. Figure 10.

Schematic representation of sensory nerve tracts synapsing on G interneuron (G‐neuron) of Locusta. Tympanal nerve fibers (+ + + + +); ipsilateral interneuron (——); ipsilateral interneuron running in contralateral connective (− − − −); contralateral interneuron (−·−·−·−·). Th2 and Th3, meta‐ and mesothoracic ganglia, respectively.

From Kalmring et al.
Figure 11. Figure 11.

Changes in the locust in response area of a central auditory neuron induced by cutting of peripheral sensory nerves. A, before cutting; B, after cutting the first abdominal segmental nerves; C, after cutting also the mesothoracic peripheral auditory nerves. Curve C has lost characteristic sharp rise of threshold for low pitches; it is similar to response area of a tympanic nerve.

From Yanagisawa et al.
Figure 12. Figure 12.

Modified chordotonal organs at proximal end of right prothoracic tibia of Decticus verrucivorus (Tettigoniidae), anterior to the right. al, Anterior ligament; atr. anterior trachea; cc, cap cells; ccc, crista cap cells each containing a stift (stiff rod); cri, crista; crn, crista nerve; crsn, sensory neurons of crista; io, intermediate organ; iocc, cap cells of intermediate organ; ion, nerve of intermediate organ; iosn and iost, sensory neurons and stifts of intermediate organ; itc, inner wall of tympanal cavity; lgr, lateral groove; otc, folded outer wall of tympanal cavity; pl, posterior ligament; ps, posterior supporting structure; ptr, posterior trachea; sn, SN1–3, subgenual nerve; SO, subgenual organ; soi, insertion of subgenual organ; sost, stifts of subgenual organ; t, typanum; tc, tympanal cavity; tn, tympanal nerve; tp, terminal pegs; Tr, trachea; tsn, branch of the tympanal nerve that supplies the subgenual organ; vMW, anterior support of the crista.

From Bullock & Horridge , adapted from Schwabe , with permission of W. H. Freeman & Co. Copyright © 1965
Figure 13. Figure 13.

Comparison of the chirp‐coding neuron (A) and the pulse‐coding neuron (B) in a female cricket.

From Stout & Huber
Figure 14. Figure 14.

Dorsal view of denuded head of Celerio lineata. Left labial palp (l pa) has been deflected laterally to expose distal lobe of left pilifer (pi). Right labial palp (r pa) is in its fully adducted position and has been transected obliquely at level of distal lobe to show region of apposition between distal lobe and medial wall of second palpal segment. Extensive air sac enclosed by thin walls of the palp is traversed by nerves and blood channels sheathed in tracheal epithelium. Compound eyes (e), antennae (a), and base of the proboscis (pr) are shown as points of reference. Scale, 1 mm.

From Roeder et al. . Copyright 1970 by the American Association for the Advancement of Science
Figure 15. Figure 15.

Frontal section of the left tympanic air sac and associated structures of ear of noctuid moth. BAx, axon of the B cell; B, Bügel; CTM, countertympanic membrane; TAS, tympanic air sac; TM, tympanic membrane; S, scoloparium with A cells; L, ligament; EPID, epidermis; TR EPITH, tracheal epithelium. Solid black lines, skeletal supports.

From Lechtenberg , adapted from Treat & Roeder
Figure 16. Figure 16.

Inhibitory connection of 5 photoreceptors of Hermissenda. Interactions between A cells are weak and not shown.

From Alkon & Fuortes
Figure 17. Figure 17.

Neuronal and synaptic organization within eye of sea hare. Pr, electrical synapses blocked by propionate; La, Mg, chemical synapses blocked by high magnesium‐low calcium or lanthanum ions.

From Strumwasser , adapted from Audesirk
Figure 18. Figure 18.

Right distal eyestalk segment and outer end of proximal segment, showing relationship of recording electrode to sense organ and information processing centers distal to optic nerve, which contains both afferent interneurons. On the basis of histological evidence for decapod crustaceans in general the following neuronal connections have been suggested: 1, primary neurosensory axons; 2 and 3, afferent interneurons of external and internal chiasmata, respectively (note that in brachyuran crabs these are actually in perpendicular planes rather than in the same plane as diagrammed); 4, afferents from medulla interna to medulla terminalis; 5–7, afferents from medulla terminalis, medulla externa, and medulla interna, respectively, to protocerebrum; 8 and 9, efferent interneurons of external and internal chiasmata, respectively; 10–12, efferent interneurons from protocerebrum to medulla terminalis, medulla interna, and medulla externa, respectively. No attempt has been made to indicate the complex and poorly known neural centers and tracts within the 4 optic ganglia themselves.

From Waterman, Wiersma, and Bush , drawn by Shirley G. Hartman
Figure 19. Figure 19.

Visual excitatory fields of the 14 identified sustaining fibers of the crayfish Procambarus clarki are shown in black. Numbers are code designations.

From Wiersma & Yamaguchi
Figure 20. Figure 20.

Response magnitude in crayfish. A: response magnitude as a function of stimulus intensity for sustaining fiber phasic impulse frequency (Rmax = 275 impulses/s) and intracellularly recorded transient retinular cell depolarization (Rmax = 35 mV). Unit intensity = 10−3 cd/ft2. Stimulus diameter = 100 μm. B: response magnitude as a function of stimulus intensity 1 s after stimulus onset. Sustaining fiber frequency was determined for the interval between 0.9 and 1.1 s after stimulus onset.

From Glantz
Figure 21. Figure 21.

Inhibition of response and background discharge of a seeing fiber (LO 141) of rock lobster by single moving vertical black stripe as shown in A in comparison to B. A: Vertical 15° black stripe built up of five 15° square black targets. B: Mid‐height 15° black target, after removal of the two targets above and the two below it. Time base, 5 s; drum speed, 8°/s.

From Wiersma & York
Figure 22. Figure 22.

Schematic drawing of the brain tracts of the cockroach Periplaneta. A, antennal glomerulus; Cp, corpora pedunculata; K, circumesophageal connective; M, antennal motor nerve; S, antennal sensory nerve; I, lamina; II, medulla; III, lobula of optic lobes.

From Hanström
Figure 23. Figure 23.

Two binocular units recorded simultaneously in the hawk moth. Top unit in right ventral nerve cord, lower unit in right optic lobe. Both have clockwise preferred directions. Top: no stimulation. Middle: continuous stripe movement in preferred direction; speed of movement increases toward optimum from beginning to end of record. Bottom: continuation of middle record; movement stops at arrow. Calibration, 1 s. Spikes retouched.

From Collett
Figure 24. Figure 24.

Relationship of peaks of 7 major types of color fibers in Papilio troilus: wide‐band fibers above abscissa; narrow‐band fibers plotted downward from abscissa. Shading indicates portions of the spectrum that presumably elicit the greatest inhibitory interaction between the various wide‐band fibers. Note the similarity between these shaded areas and the peaks of the narrow‐band green‐white and orange fibers.

From Swihart
Figure 25. Figure 25.

“Physiological” model illustrating the postulated inputs to the various categories of visual interneurons; excitatory interacaction (+); inhibition (−). YLW, yellow; GRN, green.

From Swihart
Figure 26. Figure 26.

Three records of simultaneously recorded on‐off and sustaining units of flies correspond to different location of 1.5° stimulus spot (dark spots) and characterize receptive field organization of both units. Whereas the on‐off unit responds in a transient fashion (on‐off) regardless of the stimulus location within the receptive field, the sustaining unit responds with a maintained discharge upon stimulation of the on‐region and with a pure off‐discharge upon stimulation of either adjacent off‐region. In this case the receptive fields of both units were coincident and are schematically represented by the dashed (on‐off unit) and solid (sustaining unit) lines.

From Arnett . Copyright 1971 by the American Association for the Advancement of Science
Figure 27. Figure 27.

Comparison of basic responses to intensity, form, and motion of class Ia1 and class IIa1 units (Calliphora phaenicia). Curves are averages of 20 repeated stimuli for each pattern type. Firing rates are averaged over binwidth of 0.1 s for 4‐s display intervals and over 0.01 s for 0.2‐s interval.

From McCann & Dill


Figure 1.

Innervation of mantle of an octopod. CNS, circumesophageal ganglia; e.CNS, efferent from CNS; m.c, mantle connective; m.n., motor neuron; mus., mantle muscles; n. musc., nerves to mantle muscles; r.n., receptor neuron; st.g., stellate ganglion; st.n., stellar nerve. Presynaptic terminals are indicated by •. Cell bodies of neurons on motor side are shaded; cell bodies of receptor neurons are unshaded.

From Gray


Figure 2.

Ventral aspect of a segmental ganglion of a leech. Three cells on each side labeled T are touch sensory cells, each of which responds to light touch applied to a discrete area of the ipsilateral skin. The two P cells respond to pressure and the two N cells to noxious stimuli.

From Baylor & Nicholls


Figure 3.

Three possible types (A‐C) of neural connections that would result in firing of a single interneuron when sensory areas of three separate segments were stimulated. Primary sensory fibers (‐‐‐); cell bodies, whose locations are unknown, of interneurons (····); interneurons (——); synapses in which several presynaptic fibers converge on a single postsynaptic fiber (—>—); a synapse between only two fibers (—<>—). It is now known, but not shown, that in C the primary fibers entering a posterior ganglion run forward and make synapses also in at least the two anterior ganglia with the same interneuron.

From Hughes & Wiersma


Figure 4.

Responses recorded in crayfish by suction electrode from an interneuron in sixth ganglion (upper traces); unitary excitatory postsynaptic potentials (EPSP's) can be associated with impulses in primary fibers of the fourth root of the sixth ganglion, shown in both middle (proximal electrode) and lower (distal electrode) traces. Relative locations of hairs in anterior middle of left half of anterior telson segment are indicated by circles: strong input to the interneuron, • weak input, •; no input, ○. Considerable differences are present in this distribution between animals.

From Kennedy


Figure 5.

Schematic circuit of elements and connections concerned with generating rapid tail flexion to phasic mechanical abdominal disturbances in crayfish. Single neurons, ○ populations of similar neurons, □ chemical junctions, ○ electrical junctions, ——⊣ (the one to the motor giant is rectifying). Multi‐segmental interneurons are interconnected (——) and are excited by some unisegmental interneurons. Separate pathways generating the α and β components of the lateral giant response are indicated. TR, tactile receptors; A, B, C, identified tactile interneurons; LG, lateral giant; MoG, motor giant; FFMN, fast flexor motor neurons. Fast flexor musculature is drawn on the right.

From Zucker


Figure 6.

Effect of “awakening” on a multimodal interneuron of commissure C‐120 in crayfish. Small and large dots indicate mechanical and visual stimuli, respectively. Note that this interneuron changes its reactivity proportionally for both its modalities. A, animal in sleeping position; B, animal awakened by stimuli; C, animal in return to quiet state. Integrated polygraph record; each horizontal line represents 20 s, vertical lines are logarithmically proportional to log of number of impulses per second.

From Aréchiga & Wiersma


Figure 7.

Interneurons that have evolved as giant fibers in a wide range of worms, usually acting as fast pathways in general shortening of the body. The only limitation placed on the structure is that it be adequate. Even at this level there is no one‐to‐one relationship between structure and response. 1 and 2, Euthalenessa; 3, Sigalion; 4, Lepidasthenia and Euthalenessa; 5 and 6, Lumbricus; 7, Euthalenessa; 8, Eunice; 9 and 10, Nereis and Neanthes; 11 and 12, Arenicola; 13, Nereis and Neanthes; 14 and 15, Halla and Aglaurides; 16, Mastobranchus; 17, Sabella and Spirographis 18, Myxicola.

From Horridge , after Nicol , with permission of W. H. Freeman & Co. Copyright © 1968


Figure 8.

Anatomy of left tympanal organ of the locust. [After Gray .] Letters a‐d indicate position of the 4 groups of receptor cells. Arrows indicate direction of dendrites.

From Michelsen


Figure 9.

Threshold curves for the 4 groups of receptor cells in isolated locust ear. Variations in threshold curves for different cells within each group (—).

From Michelsen


Figure 10.

Schematic representation of sensory nerve tracts synapsing on G interneuron (G‐neuron) of Locusta. Tympanal nerve fibers (+ + + + +); ipsilateral interneuron (——); ipsilateral interneuron running in contralateral connective (− − − −); contralateral interneuron (−·−·−·−·). Th2 and Th3, meta‐ and mesothoracic ganglia, respectively.

From Kalmring et al.


Figure 11.

Changes in the locust in response area of a central auditory neuron induced by cutting of peripheral sensory nerves. A, before cutting; B, after cutting the first abdominal segmental nerves; C, after cutting also the mesothoracic peripheral auditory nerves. Curve C has lost characteristic sharp rise of threshold for low pitches; it is similar to response area of a tympanic nerve.

From Yanagisawa et al.


Figure 12.

Modified chordotonal organs at proximal end of right prothoracic tibia of Decticus verrucivorus (Tettigoniidae), anterior to the right. al, Anterior ligament; atr. anterior trachea; cc, cap cells; ccc, crista cap cells each containing a stift (stiff rod); cri, crista; crn, crista nerve; crsn, sensory neurons of crista; io, intermediate organ; iocc, cap cells of intermediate organ; ion, nerve of intermediate organ; iosn and iost, sensory neurons and stifts of intermediate organ; itc, inner wall of tympanal cavity; lgr, lateral groove; otc, folded outer wall of tympanal cavity; pl, posterior ligament; ps, posterior supporting structure; ptr, posterior trachea; sn, SN1–3, subgenual nerve; SO, subgenual organ; soi, insertion of subgenual organ; sost, stifts of subgenual organ; t, typanum; tc, tympanal cavity; tn, tympanal nerve; tp, terminal pegs; Tr, trachea; tsn, branch of the tympanal nerve that supplies the subgenual organ; vMW, anterior support of the crista.

From Bullock & Horridge , adapted from Schwabe , with permission of W. H. Freeman & Co. Copyright © 1965


Figure 13.

Comparison of the chirp‐coding neuron (A) and the pulse‐coding neuron (B) in a female cricket.

From Stout & Huber


Figure 14.

Dorsal view of denuded head of Celerio lineata. Left labial palp (l pa) has been deflected laterally to expose distal lobe of left pilifer (pi). Right labial palp (r pa) is in its fully adducted position and has been transected obliquely at level of distal lobe to show region of apposition between distal lobe and medial wall of second palpal segment. Extensive air sac enclosed by thin walls of the palp is traversed by nerves and blood channels sheathed in tracheal epithelium. Compound eyes (e), antennae (a), and base of the proboscis (pr) are shown as points of reference. Scale, 1 mm.

From Roeder et al. . Copyright 1970 by the American Association for the Advancement of Science


Figure 15.

Frontal section of the left tympanic air sac and associated structures of ear of noctuid moth. BAx, axon of the B cell; B, Bügel; CTM, countertympanic membrane; TAS, tympanic air sac; TM, tympanic membrane; S, scoloparium with A cells; L, ligament; EPID, epidermis; TR EPITH, tracheal epithelium. Solid black lines, skeletal supports.

From Lechtenberg , adapted from Treat & Roeder


Figure 16.

Inhibitory connection of 5 photoreceptors of Hermissenda. Interactions between A cells are weak and not shown.

From Alkon & Fuortes


Figure 17.

Neuronal and synaptic organization within eye of sea hare. Pr, electrical synapses blocked by propionate; La, Mg, chemical synapses blocked by high magnesium‐low calcium or lanthanum ions.

From Strumwasser , adapted from Audesirk


Figure 18.

Right distal eyestalk segment and outer end of proximal segment, showing relationship of recording electrode to sense organ and information processing centers distal to optic nerve, which contains both afferent interneurons. On the basis of histological evidence for decapod crustaceans in general the following neuronal connections have been suggested: 1, primary neurosensory axons; 2 and 3, afferent interneurons of external and internal chiasmata, respectively (note that in brachyuran crabs these are actually in perpendicular planes rather than in the same plane as diagrammed); 4, afferents from medulla interna to medulla terminalis; 5–7, afferents from medulla terminalis, medulla externa, and medulla interna, respectively, to protocerebrum; 8 and 9, efferent interneurons of external and internal chiasmata, respectively; 10–12, efferent interneurons from protocerebrum to medulla terminalis, medulla interna, and medulla externa, respectively. No attempt has been made to indicate the complex and poorly known neural centers and tracts within the 4 optic ganglia themselves.

From Waterman, Wiersma, and Bush , drawn by Shirley G. Hartman


Figure 19.

Visual excitatory fields of the 14 identified sustaining fibers of the crayfish Procambarus clarki are shown in black. Numbers are code designations.

From Wiersma & Yamaguchi


Figure 20.

Response magnitude in crayfish. A: response magnitude as a function of stimulus intensity for sustaining fiber phasic impulse frequency (Rmax = 275 impulses/s) and intracellularly recorded transient retinular cell depolarization (Rmax = 35 mV). Unit intensity = 10−3 cd/ft2. Stimulus diameter = 100 μm. B: response magnitude as a function of stimulus intensity 1 s after stimulus onset. Sustaining fiber frequency was determined for the interval between 0.9 and 1.1 s after stimulus onset.

From Glantz


Figure 21.

Inhibition of response and background discharge of a seeing fiber (LO 141) of rock lobster by single moving vertical black stripe as shown in A in comparison to B. A: Vertical 15° black stripe built up of five 15° square black targets. B: Mid‐height 15° black target, after removal of the two targets above and the two below it. Time base, 5 s; drum speed, 8°/s.

From Wiersma & York


Figure 22.

Schematic drawing of the brain tracts of the cockroach Periplaneta. A, antennal glomerulus; Cp, corpora pedunculata; K, circumesophageal connective; M, antennal motor nerve; S, antennal sensory nerve; I, lamina; II, medulla; III, lobula of optic lobes.

From Hanström


Figure 23.

Two binocular units recorded simultaneously in the hawk moth. Top unit in right ventral nerve cord, lower unit in right optic lobe. Both have clockwise preferred directions. Top: no stimulation. Middle: continuous stripe movement in preferred direction; speed of movement increases toward optimum from beginning to end of record. Bottom: continuation of middle record; movement stops at arrow. Calibration, 1 s. Spikes retouched.

From Collett


Figure 24.

Relationship of peaks of 7 major types of color fibers in Papilio troilus: wide‐band fibers above abscissa; narrow‐band fibers plotted downward from abscissa. Shading indicates portions of the spectrum that presumably elicit the greatest inhibitory interaction between the various wide‐band fibers. Note the similarity between these shaded areas and the peaks of the narrow‐band green‐white and orange fibers.

From Swihart


Figure 25.

“Physiological” model illustrating the postulated inputs to the various categories of visual interneurons; excitatory interacaction (+); inhibition (−). YLW, yellow; GRN, green.

From Swihart


Figure 26.

Three records of simultaneously recorded on‐off and sustaining units of flies correspond to different location of 1.5° stimulus spot (dark spots) and characterize receptive field organization of both units. Whereas the on‐off unit responds in a transient fashion (on‐off) regardless of the stimulus location within the receptive field, the sustaining unit responds with a maintained discharge upon stimulation of the on‐region and with a pure off‐discharge upon stimulation of either adjacent off‐region. In this case the receptive fields of both units were coincident and are schematically represented by the dashed (on‐off unit) and solid (sustaining unit) lines.

From Arnett . Copyright 1971 by the American Association for the Advancement of Science


Figure 27.

Comparison of basic responses to intensity, form, and motion of class Ia1 and class IIa1 units (Calliphora phaenicia). Curves are averages of 20 repeated stimuli for each pattern type. Firing rates are averaged over binwidth of 0.1 s for 4‐s display intervals and over 0.01 s for 0.2‐s interval.

From McCann & Dill
References
 1. Ache, B. W. Amino acid receptors in the antennules of Homarus americanus. Comp. Biochem. Physiol. 42A: 807–811, 1972.
 2. Adam, L.‐J. Funktionsbereiche einzelner Hörneurone im Gehirn und Tonbereiche arteigener Laute der Heuschrecke Locusta migratoria. Verhandel. Deutsch. Zool. Ges. Heidelberg, 1967, p. 622–629.
 3. Adam, L.‐J. Neurophysiologie des Hörens und Bioakustik einer Feldheuschrecke (Locusta migratoria). Z. Vergleich. Physiol. 63: 227–289, 1969.
 4. Adam, L.‐J., and J. Schwartzkopff. Getrennte nervöse Representation für verschiedene Tonbereiche im Protocerebrum von Locusta migratoria. Z. Vergleich. Physiol. 54: 246–255, 1967.
 5. Adams, W. B. Mechanical tuning of the acoustic receptor of Prodenia eridania (Cramer) (Noctuidae). J. Exptl. Biol. 57: 297–304, 1972.
 6. Alexandrowicz, J. S. Notes on the nervous system in the Stomatopoda. V. The various types of sensory nerve cells. Pubbl. Staz. Zool. Napoli 29: 213–225, 1957.
 7. Alkon, D. L. Intersensory interactions in Hermissenda. J. Gen. Physiol. 61: 185–202, 1973.
 8. Alkon, D. L., and M. G. F. Fuortes. Responses of photoreceptors in Hermissenda. J. Gen. Physiol. 60: 631–649, 1972.
 9. Anderson, J. A. Patterns of response of neurons in the cerebral ganglion of Aplysia californica. Exptl. Neurol. 19: 65–77, 1967.
 10. Aréchiga, H., and C. A. G. Wiersma. The effect of motor activity on the reactivity of single visual units in the crayfish. J. Neurobiol. 1: 53–69, 1969.
 11. Aréchiga, H., and C. A. G. Wiersma. Circadian rhythm of responsiveness in crayfish visual units. J. Neurobiol. 1: 71–85, 1969.
 12. Aréchiga, H., and K. Yanagisawa. Inhibition of visual units in the crayfish. Vision Res. 13: 731–744, 1973.
 13. Arnett, D. W. Receptive field organization of units in the first optic ganglion of Diptera. Science 173: 929–931, 1971.
 14. Arnett, D. W. Spatial and temporal integration properties of units in first optic ganglion of dipterans. J. Neurophysiol. 35: 429–444, 1972.
 15. Arvanitaki, A., and N. Chalazonitis. Excitatory and inhibitory processes initiated by light and infra‐red radiations in single identifiable nerve cells (giant ganglion cells of Aplysia). In: Nervous Inhibition, edited by E. Florey. New York: Pergamon, 1961, p. 194–231.
 16. Audesirk, G. Spontaneous and light‐induced compound action potentials in the isolated eye of Aplysia: initiation and synchronization. Brain Res. 59: 229–242, 1973.
 17. Autrum, H. The physiological basis of colour vision in honeybees. In: Ciba Foundation Symposium on Physiology and Experimental Psychology of Colour Vision, edited by G. E. W. Wolstenholme and J. Knight. London: Churchill, 1965, p. 286–300.
 18. Autrum, H., and D. Burkhardt. Die spektrale Empfindlichkeit einzelner Sehzellen. Naturwiss. 22: 527, 1960.
 19. Autrum, H., and D. Burkhardt. Spectral sensitivity of single visual cells. Nature 190: 639, 1961.
 20. Autrum, H., and N. Metschl. Beziehungen zwischen Lichtreiz und Erregung im Ocellusnerven von Calliphora erythrocephala. Z. Naturforsch. 16: 384–388, 1961.
 21. Autrum, H., and N. Metschl. Die Arbeitsweise der Ocellen der Insekten. Z. Vergleich. Physiol. 47: 256–273, 1963.
 22. Autrum, H., and W. Schneider. Vergleichende Untersuchungen über den Erschütterungssinn der Insekten. Z. Vergleich. Physiol. 31: 77–88, 1948.
 23. Autrum, H., F. Zettler, and M. Järvilehto. Postsynaptic potentials from a single monopolar neuron of the ganglion opticum I of the blowfly Calliphora. Z. Vergleich. Physiol. 70: 414–424, 1970.
 24. Babu, K. S. Through‐conducting systems in ventral nerve cord of centipedes. Z. Vergleich. Physiol. 49: 114–129, 1964.
 25. Babu, K. S., and S. A. T. Venkatachari. Activity patterns of interneurons in the ventral nerve cord of the scorpion, Heterometrus fulvipes C. Koch. Indian J. Exptl. Biol. 10: 49–58, 1972.
 26. Bailey, D. F. Aspects of the neurophysiology of Buccinum undatum L. (Gastropoda). II. Central organisation. J. Exptl. Biol. 44: 149–161, 1966.
 27. Bailey, D. F., and M. S. Laverack. Aspects of the neurophysiology of Buccinum undatum L. (Gastropoda). I. Central responses to stimulation of the osphradium. J. Exptl. Biol. 44: 131–148, 1966.
 28. Balss, H. Decapoda. In: Bronn's Tierreich. Leipzig: Akademische Verlagsges, 1944, Bd. 5, Abt. 1, Bch. 7, Lfg. 1–5, p. 1–669. [Quoted from Waterman, Wiersma, and Bush , p. 136.].
 29. Barlow, R. B., Jr., and E. Kaplan. Limulus lateral eye: properties of the receptor units in the unexcised eye. Science 174: 1027–1029, 1971.
 30. Barrós‐Pita, J. C., and H. Maldonado. A fovea in the praying mantis eye. II. Some morphological characteristics. Z. Vergleich. Physiol. 67: 79–92, 1970.
 31. Barth, J. Intracellular recording from photoreceptor neurons in the eyes of a nudibranch mollusc (Hermissenda crassicornis). Comp. Biochem. Physiol. 11: 311–315, 1964.
 32. Baumann, F. Slow and spike potentials recorded from retinula cells of the honeybee drone in response to light. J. Gen. Physiol. 52: 855–875, 1968.
 33. Baumann, F., A. Mauro, R. Milecchia, S. Nightingale, and J. Z. Young. The extra‐ocular light receptors of the squids Todarodes and Illex. Brain Res. 21: 275–279, 1970.
 34. Baylor, D. A., and J. G. Nicholls. After‐effects of nerve impulses on signalling in the central nervous system of the leech. J. Physiol. London 203: 571–589, 1969.
 35. Baylor, D. A., and J. G. Nicholls. Chemical and electrical synaptic connexions between cutaneous mechanoreceptor neurones in the central nervous system of the leech. J. Physiol. London 203: 591–609, 1969.
 36. Bennett, R. R., J. Tunstall, and G. A. Horridge. Spectral sensitivity of single retinula cells of the locust. Z. Vergleich. Physiol. 55: 195–206, 1967.
 37. Bentley, D. R. Genetic control of an insect neuronal network. Science 174: 1139–1141, 1971.
 38. Bentley, D. R., and R. R. Hoy. Genetic control of the neuronal network generating cricket (Teleogryllus gryllus) song patterns. Animal Behav. 20: 478–492, 1972.
 39. Bishop, L. G. Neural correlates of the optomotor response in the fly. Kybernetik 3: 288–295, 1967.
 40. Bishop, L. G. Spectral response of single neurones recorded in the optic lobes of the housefly and blowfly. Nature 219: 1372–1373, 1968.
 41. Bishop, L. G. A search for color encoding in the responses of a class of fly interneurons. Z. Vergleich. Physiol. 64: 355–371, 1969.
 42. Bishop, L. G. The spectral sensitivity of motion detector units recorded in the optic lobe of the honeybee. Z. Vergleich. Physiol. 70: 374–381, 1970.
 43. Bishop, L. G. A note on the preservation of chromatic information in the lamina of the worker honeybee (Apis mellifera). J. Comp. Physiol. 77: 233–238, 1972.
 44. Bishop, L. G. An ultraviolet photoreceptor in a dipteran compound eye. J. Comp. Physiol. 91: 267–276, 1974.
 45. Bishop, L. G., and D. W. Chung. Convergence of visual sensory capabilities in a pair of Batesian mimics. J. Insect Physiol. 18: 1501–1508, 1972.
 46. Bishop, L. G., and D. G. Keehn. Two types of motion sensitive neurones in the optic lobe of the fly. Nature 212: 1374–1376, 1966.
 47. Bishop, L. G., D. G. Keehn, and G. D. McCann. Motion detection by interneurons of optic lobes and brain of the flies Calliphora phaenicia and Musca domestica. J. Neurophysiol. 31: 509–525, 1968.
 48. Blest, A. D., and T. S. Collett. Micro‐electrode studies of the medial protocerebrum of some Lepidoptera. I. Responses to simple, binocular visual stimulation. J. Insect. Physiol. 11: 1079–1103, 1965.
 49. Blest, A. D., and T. S. Collett. Micro‐electrode studies of the medial protocerebrum of some Lepidoptera. II. Responses to visual flicker. J. Insect Physiol. 11: 1289–1306, 1965.
 50. Boschek, C. B. On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Z. Zellforsch. Mikroskop. Anat. 118: 369–409, 1971.
 51. Boycott, B. B., J. Y. Lettvin, H. R. Maturana, and P. D. Wall. Octopus optic responses. Exptl. Neurol. 12: 247–256, 1965.
 52. Bullock, T. H. Physiological mapping of giant nerve fiber systems in polychaete annelids. Physiol. Comp. Oecol. 1: 1–14, 1948.
 53. Bullock, T. H., and G. A. Horridge. Structure and Function in the Nervous Systems of Invertebrates. San Francisco: Freeman, 1965, vols. I and II.
 54. Burkhardt, D. Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp. Soc. Exptl. Biol. 16: 86–109, 1962.
 55. Burrows, M., and C. H. F. Rowell. Connections between descending visual interneurons and metathoracic motoneurons in the locust. J. Comp. Physiol. 85: 221–234, 1973.
 56. Burtt, E. T., and W. T. Catton. Electrical responses to visual stimulation in the optic lobes of the locust and certain other insects. J. Physiol. London 133: 68–88, 1956.
 57. Burtt, E. T., and W. T. Catton. Transmission of visual responses in the nervous system of the locust. J. Physiol. London 146: 492–515, 1959.
 58. Burtt, E. T., and W. T. Catton. The properties of single‐unit discharges in the optic lobe of the locust. J. Physiol. London 154: 479–490, 1960.
 59. Burtt, E. T., and J. A. Patterson. Internal muscle in the eye of an insect. Nature 228: 183–184, 1970.
 60. Bush, B. M. H., and A. Roberts. Resistance reflexes from a crab muscle receptor without impulses. Nature 218: 1171–1173, 1968.
 61. Bush, B. M. H., and A. Roberts. Coxal muscle receptors in the crab: the receptor potentials of S and T fibres in response to ramp stretches. J. Exptl. Biol. 55: 813–832, 1971.
 62. Bush, B. M. H., C. A. G. Wiersma, and T. H. Waterman. Efferent mechanoreceptive responses in the optic nerve of the crab Podophthalmus. J. Cellular Comp. Physiol. 64: 327–345, 1964.
 63. Butler, R. The identification and mapping of spectral cell types in the retina of Periplaneta americana. Z. Vergleich. Physiol. 72: 67–80, 1971.
 64. Callec, J. J., J. C. Guillet, Y. Pichon, and J. Boistel. Further studies on synaptic transmission in insects. II. Relations between sensory information and its synaptic integration at the level of a single giant axon in the cockroach. J. Exptl. Biol. 55: 123–149, 1971.
 65. Camougis, G. Visual responses in crayfish. II. Central transmission and integration. J. Cellular Comp. Physiol. 63: 339–352, 1964.
 66. Camougis, G., and H. Kasprzak. Visual responses in crayfish. III. Further studies on transmission through the brain. J. Cellular Physiol. 67: 45–52, 1966.
 67. Castellucci, V., H. Pinsker, I. Kupfermann, and E. R. Kandel. Neuronal mechanisms of habituation and dishabituation of the gill‐withdrawal reflex in Aplysia. Science 167: 1745–1748, 1970.
 68. Catton, W. T., and A. Chakraborty. Single neurone responses to visual and mechanical stimuli in the thoracic nerve cord of the locust. J. Insect Physiol. 15: 245–258, 1969.
 69. Chappell, R. L., and J. E. Dowling. Neural organization of the median ocellus of the dragonfly. I. Intracellular electrical activity. J. Gen. Physiol. 60: 121–147, 1972.
 70. Chapple, W. D. Sensory modalities and receptive fields in the abdominal nervous system of the hermit crab, Pagurus granosimanus (Stimpson). J. Exptl. Biol. 44: 209–223, 1966.
 71. Chapple, W. D. Motoneuron responses to visual stimuli in Oncopeltus fasciatus Dallas. J. Exptl. Biol. 45: 401–410, 1966.
 72. Coggeshall, R. E. A possible sensory‐motor neuron in Aplysia californica. Tissue Cell 3: 637–648, 1971.
 73. Cohen, M. J. The dual role of sensory systems: detection and setting central excitability. Cold Spring Harbor Symp. Quant. Biol. 30: 587–599, 1965.
 74. Collett, T. Centripetal and centrifugal visual cells in medulla of the insect optic lobe. J. Neurophysiol. 33: 239–256, 1970.
 75. Collett, T. Connections between wide‐field monocular and binocular movement detectors in the brain of a hawk moth. Z. Vergleich. Physiol. 75: 1–31, 1971.
 76. Collett, T. Visual neurones in the anterior optic tract of the privet hawk moth. J. Comp. Physiol. 78: 396–433, 1972.
 77. Collett, T. S., and A. D. Blest. Binocular, directionally selective neurones, possibly involved in the optomotor response of insects. Nature 212: 1330–1333, 1966.
 78. Collett, T., and A. J. King. Vision during flight. In: The Compound Eye and Vision in Insects, edited by G. A. Horridge. Oxford: Clarendon, 1975, p. 437–466.
 79. Cosens, D. J. Visual sensitivity in the light‐ and dark‐adapted compound eye of the desert locust. J. Insect Physiol. 12: 871–890, 1966.
 80. Crisp, M. Structure and abundance of receptors of the unspecialized external epithelium of Nassarius reticulatus (Gastropoda, Prosobranchia). J. Marine Biol. Assoc. UK 51: 865–890, 1971.
 81. Dagan, D., and I. Parnas. Giant fibre and small fibre pathways involved in the evasive response of the cockroach, Periplaneta americana. J. Exptl. Biol. 52: 313–324, 1970.
 82. Dambach, M. Der Vibrationssinn der Grillen. I. Schwellen‐messungen an Beinen frei beweglicher Tiere. Z. Vergleich. Physiol. 79: 281–304, 1972.
 83. Dambach, M. Der Vibrationssinn der Grillen. II. Antworten von Neuronen im Bauchmark. Z. Vergleich. Physiol. 79: 305–324, 1972.
 84. Dando, M. R., and A. I. Selverston. Command fibres from the supraesophageal ganglion to the stomatogastric ganglion in Panulirus argus. J. Comp. Physiol. 78: 138–175, 1972.
 85. Dennis, M. J. Electrophysiology of the visual system in a nudibranch mollusc. J. Neurophysiol. 30: 1439–1465, 1967.
 86. Dennis, M. J. Interactions between the five receptor cells of a simple eye. In: Invertebrate Nervous Systems, edited by C. A. G. Wiersma. Chicago: Univ. of Chicago Press, 1967, p. 259–262.
 87. Dethier, V. G. Feeding behavior of the blowfly. Advan. Study Behav. 2: 111–266, 1969.
 88. Dingle, H., and R. L. Caldwell. Multimodal interneurones in cockroach cerebrum. Nature 215: 63–64, 1967.
 89. Dingle, H., and S. S. Fox. Microelectrode analysis of light responses in the brain of the cricket (Gryllus domesticus). J. Cellular Physiol. 68: 45–60, 1966.
 90. Dorsett, D. A. The sensory and motor innervation of Nereis. Proc. Roy. Soc. London Ser. B 159: 652–667, 1964.
 91. Dorsett, D. A. Overlapping sensory fields of Nereis, and their possible role in locomotion. Proc. Roy. Soc. London Ser. B 164: 615–623, 1966.
 92. Dowling, J. E., and R. L. Chappell. Neural organization of the median ocellus of the dragonfly. II. Synaptic structure. J. Gen. Physiol. 60: 148–165, 1972.
 93. Dumpert, K. Alarmstoffrezeptoren auf der Antenne von Lasius fuliginosus (Latr.) (Hymenoptera, Formicidae). Z. Vergleich. Physiol. 76: 403–425, 1972.
 94. Eakin, R. M. Structure of invertebrate photoreceptors. In: Handbook of Sensory Physiology. Photochemistry of Vision, edited by H. J. A. Dartnall. Berlin: Springer Verlag, 1972, vol. VII, part 1, p. 625–684.
 95. Eckert, R. O. Reflex relationships of the abdominal stretch receptors of the crayfish. I. Feedback inhibition of the receptors. J. Cellular Comp. Physiol. 57: 149–162, 1961.
 96. Eguchi, E., and T. H. Waterman. Orthogonal microvillus pattern in the eighth rhabdomere of the rock crab Grapsus. Z. Zellforsch. Mikroskop. Anat. 137: 145–157, 1973.
 97. Enger, P. S., D. J. Aidley, and T. Szabo. Sound perception in the Brazilian cicada Fidicina rana Walk. J. Exptl. Biol. 51: 339–345, 1969.
 98. Eskin, A. Properties of the Aplysia visual system: in vitro entrainment of the circadian rhythm and centrifugal regulation of the eye. Z. Vergleich. Physiol. 74: 353–371, 1971.
 99. Fahrenbach, W. H. The micromorphology of some simple photoreceptors. Z. Zellforsch. Mikroskop. Anat. 66: 233–254, 1965.
 100. Fielden, A. Properties of interneurones in the abdominal nerve cord of a dragonfly nymph. J. Exptl. Biol. 40: 541–552, 1963.
 101. Fielden, A., and G. M. Hughes. Unit activity in the abdominal nerve cord of a dragonfly nymph. J. Exptl. Biol. 39: 31–44, 1962.
 102. Fields, H. L., W. H. Evoy, and D. Kennedy. Reflex role played by efferent control of an invertebrate stretch receptor. J. Neurophysiol. 30: 859–874, 1967.
 103. Florentine, G. J. An abdominal receptor of the American cockroach, Periplaneta americana (L.) and its response to airborne sound. J. Insect Physiol. 13: 215–218, 1967.
 104. Florentine, G. J. Response characteristics and probable behavioural roles for abdominal vibration receptors of some cockroaches. J. Insect Physiol. 14: 1577–1588, 1968.
 105. Frantsevich, L. I. Directionally‐sensitive neurones in the lobi optici of scarabaeid beetles [in Russian]. Zh. Evol. Biokhim. Fiziol. 5: 577–582, 1969.
 106. Frantsevich, L. I. Some observations on directionally sensitive neurones in scarabaeid beetles [in Russian]. Zh. Evol. Biokhim. Fiziol. 6: 446–452, 1970.
 107. Frantsevich, L. I., P. A. Mokrushov, A. V. Suprunovich, and L. A. Yushina. Optomotor response in beetles Geotrupes (Coleoptera, Scarabaeidae) [in Russian]. Vestn. Zool. 6: 3–7, 1970.
 108. Frings, H., and M. Frings. Uses of sounds by insects. Ann. Rev. Entomol. 3: 87–106, 1958.
 109. Frisch, K. von. Bees; Their Vision, Chemical Senses, and Language (revised ed.). Ithaca: Cornell Univ. Press, 1971.
 110. Galeano, C., and K. L. Chow. Response of caudal photoreceptor of crayfish to continuous and intermittent photic stimulation. Can. J. Physiol. Pharmacol. 49: 699–706, 1971.
 111. Gardner, D., and E. R. Kandel. Diphasic postsynaptic potential: a chemical synapse capable of mediating conjoint excitation and inhibition. Science 176: 675–678, 1972.
 112. Gelperin, A. Abdominal sensory neurons providing negative feedback to the feeding behavior of the blowfly. Z. Vergleich. Physiol. 72: 17–31, 1971.
 113. Gelperin, A. Regulation of feeding. Ann. Rev. Entomol. 16: 365–378, 1971.
 114. Gemperlein, R., and U. Smola. Übertragungseigenschaften der Sehzelle der Schmeissfliege Calliphora erythrocephala. 1. Abhängigkeit vom Ruhepotential. J. Comp. Physiol. 78: 30–52, 1972.
 115. Gemperlein, R., and U. Smola. Übertragungseigenschaften der Sehzelle der Schmeissfliege Calliphora erythrocephala. 3. Verbesserung des Signal‐Störungs‐Verhältnisses durch präsynaptische Summation in der Lamina ganglionaris. J. Comp. Physiol. 79: 393–409, 1972.
 116. Getting, P. A. The sensory control of motor output in fly proboscis extension. Z. Vergleich. Physiol. 74: 103–120, 1971.
 117. Getting, P. A., and R. A. Steinhardt. The interaction of external and internal receptors on the feeding behavior of the blowfly, Phormia regina. J. Insect Physiol. 18: 1673–1681, 1972.
 118. Gewecke, M., and P. Schlegel. Die Schwingungen der Antenne und ihre Bedeutung für die Flugsteuerung bei Calliphora erythrocephala. Z. Vergleich. Physiol. 67: 325–362, 1970.
 119. Gillary, H. L. Stimulation of the salt receptor of the blowfly. II. Temperature. J. Gen. Physiol. 50: 351–357, 1966.
 120. Glantz, R. M. Peripheral versus central adaptation in the crustacean visual system. J. Neurophysiol. 34: 485–492, 1971.
 121. Goldman, T., and H. Hermann. Photic responses in optic nerve of Helicacea. Vision Res. 7: 533–537, 1967.
 122. Gorman, A. L. F., and J. S. McReynolds. Hyperpolarizing and depolarizing receptor potentials in the scallop eye. Science 165: 309–310, 1969.
 123. Gotow, T., H. Tateda, and M. Kuwabara. Physiological role of photoexcitive neurones in the central ganglia of Onchidium verruculatum. Dobutsugaku Zasshi 81: 232–233, 1972.
 124. Gotow, T., H. Tateda, and M. Kuwabara. The function of photoexcitive neurones in the central ganglia for behavioral activity of the marine mollusc, Onchidium verruculatum. J. Comp. Physiol. 83: 361–376, 1973.
 125. Gray, E. G. The fine structure of the insect ear. Phil. Trans. Roy. Soc. London Ser. B 243: 75–94, 1960.
 126. Gray, J. A. B. Mechanically excitable receptor units in the mantle of the octopus and their connexions. J. Physiol. London 153: 573–582, 1960.
 127. Gribakin, F. G. Cellular basis of colour vision in the honey bee. Nature 223: 639–641, 1969.
 128. Gwilliam, G. F. The mechanism of the shadow reflex in Cirripedia. I. Electrical activity in the supraesophageal ganglion and ocellar nerve. Biol. Bull. 125: 470–485, 1963.
 129. Gwilliam, G. F. The mechanism of shadow reflex in Cirripedia. II. Photoreceptor cell response, second‐order responses, and motor cell output. Biol. Bull. 129: 244–256, 1965.
 130. Hámori, J., and G. A. Horridge. The lobster optic lamina. I. General organization. J. Cell Sci. 1: 249–256, 1966.
 131. Hámori, J., and G. A. Horridge. The lobster optic lamina. II. Types of synapse. J. Cell Sci. 1: 257–270, 1966.
 132. Hámori, J., and G. A. Horridge. The lobster optic lamina. III. Degeneration of retinula cell endings. J. Cell Sci. 1: 271–274, 1966.
 133. Hámori, J., and G. A. Horridge. The lobster optic lamina. IV. Glial cells. J. Cell Sci. 1: 275–280, 1966.
 134. Hanström, B. Vergleichende Anatomie des Nervensystems der wirbellosen Tiere unter Berücksichtigung seiner Funktion. Berlin: Springer, 1928.
 135. Harris, C. L., and T. Smyth, Jr. Structural details of cockroach giant axons revealed by injected dye. Comp. Biochem. Physiol. 40A: 295–303, 1971.
 136. Hartline, H. K., and F. Ratliff. Inhibitory interaction in the retina of Limulus. In: Handbook of Sensory Physiology. Physiology of Photoreceptor Organs, edited by M. G. F. Fuortes. Berlin: Springer Verlag, 1972, vol. VII, part 2, p. 381–447.
 137. Hassenstein, B., and W. Reichardt. Functional structure of a mechanism of perception of optical movement (Abstract). Proc. Intern. Congr. Cybernetics, 1st, 1956, p. 797–801.
 138. Hazlett, B. A. Non‐visual functions of crustacean eyestalk ganglia. Z. Vergleich. Physiol. 71: 1–13, 1971.
 139. Hengstenberg, R. Eye movements in the housefly Musca domestica. In: Information Processing in the Visual Systems of Arthropods, edited by R. Wehner. Berlin: Springer Verlag, 1972, p. 93–96.
 140. Hisano, N., H. Tateda, and M. Kuwabara. Photosensitive neurones in the marine pulmonate mollusc Onchidium verruculatum. J. Exptl. Biol. 57: 651–660, 1972.
 141. Hisano, N., H. Tateda, and M. Kuwabara. An electrophysiological study of the photo‐excitative neurones of Onchidium verruculatum in situ. J. Exptl. Biol. 57: 661–671, 1972.
 142. Hodgson, E. S., and K. D. Roeder. Electrophysiological studies of arthropod chemoreception. I. General properties of the labellar chemoreceptors of Diptera. J. Cellular Comp. Physiol. 48: 51–75, 1956.
 143. Horch, K. An organ for hearing and vibration sense in the ghost crab Ocypode. Z. Vergleich. Physiol. 73: 1–21, 1971.
 144. Horch, K. W., and M. Salmon. Production, perception and reception of acoustic stimuli by semiterrestrial crabs (genus Ocypode and Uca, family Ocypodidae). Forma Functio 1: 1–25, 1969.
 145. Horn, G., and C. H. F. Rowell. Medium and long‐term changes in the behaviour of visual neurones in the tritocerebrum of locusts. J. Exptl. Biol. 49: 143–169, 1968.
 146. Horridge, G. A. Analysis of the rapid responses of Nereis and Harmothoë (Annelida). Proc. Roy. Soc. London Ser. B 150: 245–262, 1959.
 147. Horridge, G. A. Pitch discrimination in locusts. Proc. Roy. Soc. London Ser. B 155: 218–231, 1961.
 148. Horridge, G. A. Proprioceptors, bristle receptors, efferent sensory impulses, neurofibrils and number of axons in the parapodial nerve of the polychaete Harmothoë. Proc. Roy. Soc. London Ser. B 157: 199–222, 1963.
 149. Horridge, G. A. Multimodal interneurones of locust optic lobe. Nature 204: 499–500, 1964.
 150. Horridge, G. A. The retina of the locust. In: The Functional Organization of the Compound Eye, edited by C. G. Bernhard. Oxford: Pergamon, 1966, p. 513–541.
 151. Horridge, G. A. Perception of polarization plane, colour and movement in two dimensions by the crab, Carcinus. Z. Vergleich. Physiol. 55: 207–224, 1967.
 152. Horridge, G. A. Interneurons; Their Origin, Action, Specificity, Growth, and Plasticity. London: Freeman, 1968.
 153. Horridge, G. A. The eye of Dytiscus (Coleoptera). Tissue Cell 1: 425–442, 1969.
 154. Horridge, G. A. Alternatives to superposition images in clear‐zone compound eyes. Proc. Roy. Soc. London Ser. B 179: 97–124, 1971.
 155. Horridge, G. A., and P. S. Boulton. Prey detection by Chaetognatha via a vibration sense. Proc. Roy. Soc. London Ser. B 168: 413–419, 1967.
 156. Horridge, G. A., C. Giddings, and G. Stange. The superposition eye of skipper butterflies. Proc. Roy. Soc. London Ser. B 182: 457–495, 1972.
 157. Horridge, G. A., and I. A. Meinertzhagen. The accuracy of the patterns of connexions of the first‐ and second‐order neurons of the visual system of Calliphora. Proc. Roy. Soc. London Ser. B 175: 69–82, 1970.
 158. Horridge, G. A., and I. A. Meinertzhagen. The exact neural projection of the visual fields upon the first and second ganglia of the insect eye. Z. Vergleich. Physiol. 66: 369–378, 1970.
 159. Horridge, G. A., J. H. Scholes, S. Shaw, and J. Tunstall. Extracellular recordings from single neurones in the optic lobe and brain of the locust. In: The Physiology of the Insect Central Nervous System, edited by J. E. Treherne and J. W. L. Beament. New York: Academic, 1965, p. 165–202.
 160. Horridge, G. A., B. Walcott, and A. C. Ioannides. The tiered retina of Dytiscus: a new type of compound eye. Proc. Roy. Soc. London Ser. B 175: 83–94, 1970.
 161. Hoy, R. R., and R. C. Paul. Genetic control of song specificity in crickets. Science 180: 82–83, 1973.
 162. Hoyle, G. Functioning of the insect ocellar nerve. J. Exptl. Biol. 32: 397–407, 1955.
 163. Hoyle, G. Neural machinery underlying behavior in insects. In: The Neurosciences: Third Study Program, edited by F. O. Schmitt and F. G. Worden. Cambridge, Mass.: MIT Press, 1974, p. 397–410.
 164. Hoyle, G., and M. Burrows. Neural mechanisms underlying behavior in the locust Schistocerca gregaria. II. Integrative activity in metathoracic neurons. J. Neurobiol. 4: 43–67, 1973.
 165. Huber, F. Central nervous control of sound production in crickets and some speculations on its evolution. Evolution 16: 429–442, 1962.
 166. Hughes, G. M., and W. D. Chapple. The organization of nervous systems. In: Invertebrate Nervous Systems, edited by C. A. G. Wiersma. Chicago: Univ. of Chicago Press, 1967, p. 177–195.
 167. Hughes, G. M., and C. A. G. Wiersma. Neuronal pathways and synaptic connexions in the abdominal cord of the crayfish. J. Exptl. Biol. 37: 291–307, 1960.
 168. Ilse, D. Colour discrimination in the dronefly, Eristalis tenax. Nature 163: 255–256, 1949.
 169. Ishikawa, S. Visual response patterns of single ganglion cells in the optic lobe of the silkworm moth, Bombyx mori L. J. Insect Physiol. 8: 485–491, 1962.
 170. Jacklet, J. W. Circadian rhythm of optic nerve impulses recorded in darkness from isolated eye of Aplysia. Science 164: 562–563, 1969.
 171. Jacklet, J. W. Electrophysiological organization of the eye of Aplysia. J. Gen. Physiol. 53: 21–42, 1969.
 172. Jacklet, J. W., R. Alvarez, and B. Bernstein. Ultrastructure of the eye of Aplysia. J. Ultrastruct. Res. 38: 246–261, 1972.
 173. Jacklet, J. W., and J. Geronimo. Circadian rhythm: population of interacting neurons. Science 174: 299–302, 1971.
 174. Jahan‐Parwar, B. Behavioral and electrophysiological studies on chemoreception in Aplysia. Am. Zoologist 12: 525–537, 1972.
 175. Jander, R. Visual pattern recognition and directional orientation in insects. Ann. NY Acad. Sci. 188: 5–11, 1971.
 176. Jander, R., and C. K. Barry. Die phototaktische Gegenkopplung von Sternocellen und Facettenaugen in der Phototropotaxis der Heuschrecken und Grillen (Saltatoptera: Locusta migratoria und Gryllus bimaculatus). Z. Vergleich. Physiol. 57: 432–458, 1968.
 177. Jansen, J. K. S., A. Njå, K. Ormstad, and L. Walløe. On the innervation of the slowly adapting stretch receptor of the crayfish abdomen. An electrophysiological approach. Acta Physiol. Scand. 81: 273–285, 1971.
 178. Järvilehto, M., and F. Zettler. Localized intracellular potentials from pre‐ and postsynaptic components in the external plexiform layer of an insect retina. Z. Vergleich. Physiol. 75: 422–440, 1971.
 179. Järvilehto, M., and F. Zettler. Electrophysiological‐histological studies on some functional properties of visual cells and second order neurons of an insect retina. Z. Zellforsch. Mikroskop. Anat. 136: 291–306, 1973.
 180. Josephson, R. K. Spontaneous electrical activity in a hydroid polyp. Comp. Biochem. Physiol. 5: 45–58, 1962.
 181. Josephson, R. K. Three parallel conducting systems in the stalk of a hydroid. J. Exptl. Biol. 42: 139–152, 1965.
 182. Kaiser, W., and L. G. Bishop. Directionally selective motion detecting units in the optic lobe of the honeybee. Z. Vergleich. Physiol. 67: 403–413, 1970.
 183. Kaissling, K.‐E. Insect olfaction. In: Handbook of Sensory Physiology. Chemical Senses. Olfaction, edited by L. M. Beidler. New York: Springer Verlag, 1971, vol. 4, part 1, p. 351–431.
 184. Kalmring, K. Akustische Neuronen im Unterschlundganglion der Wanderheuschrecke Locusta migratoria. Z. Vergleich. Physiol. 72: 95–110, 1971.
 185. Kalmring, K., J. Rheinlaender, and H. Rehbein. Akustische Neuronen im Bauchmark der Wanderheuschrecke Locusta migratoria. Z. Vergleich. Physiol. 76: 314–332, 1972.
 186. Kalmring, K., J. Rheinlaender, and H. Römer. Akustische Neuronen im Bauchmark von Locusta migratoria. Der Einfluss der Schallrichtung auf die Antwortmuster. J. Comp. Physiol. 80: 325–352, 1972.
 187. Kameda, K. Electrical activity of optic ganglion cells in locust. Bull. Tokyo Med. Dent. Univ. 11: 281–295, 1964.
 188. Kehler, J. G., K. N. Smalley, and E. C. Rowe. Ventral phasic mechanoreceptors in the cockroach abdomen. J. Insect Physiol. 16: 483–497, 1970.
 189. Kendig, J. J. Structure and function in the third abdominal ganglion of the crayfish Procambarus clarkii (Girard). J. Exptl. Zool. 164: 1–20, 1967.
 190. Kennedy, D. Neural photoreception in a lamellibranch mollusc. J. Gen. Physiol. 44: 277–299, 1960.
 191. Kennedy, D. Physiology of photoreceptor neurons in the abdominal nerve cord of the crayfish. J. Gen. Physiol. 46: 551–572, 1963.
 192. Kennedy, D. Crayfish interneurons. Physiologist 14: 5–30, 1971.
 193. Kennedy, D., and DeF. Mellon, Jr. Receptive‐field organization and response patterns in neurons with spatially distributed input. In: Neural Theory and Modeling, edited by R. F. Reiss. Stanford, Calif.: Stanford Univ. Press, 1964, p. 400–413.
 194. Kirschfeld, K., and N. Franceschini. Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca. Kybernetik 6: 13–22, 1969.
 195. Knapp, M. F., and P. J. Mill. Chemoreception and efferent sensory impulses in Lumbricus terrestris Linn. Comp. Biochem. Physiol. 25: 523–528, 1968.
 196. Krasne, F. B. Escape from recurring tactile stimulation in Branchiomma vesiculosum. J. Exptl. Biol. 42: 307–322, 1965.
 197. Krasne, F. B. Excitation and habituation of the crayfish escape reflex: the depolarizing response in lateral giant fibres of the isolated abdomen. J. Exptl. Biol. 50: 29–46, 1969.
 198. Kunze, P. Untersuchung des Bewegungssehens fixiert fliegender Bienen. Z. Vergleich. Physiol. 44: 656–684, 1961.
 199. Kunze, P. Histologische Untersuchungen zum Bau des Auges von Ocypode cursor (Brachyura). Z. Zellforsch. Mikroskop. Anat. 82: 466–478, 1967.
 200. Kunze, P. Die Orientierung der Retinulazellen im Auge von Ocypode. Z. Zellforsch. Mikroskop. Anat. 90: 454–462, 1968.
 201. Kunze, P. Verhaltensphysiologische und optische Experiment zur Superpositionstheorie der Bildentstehung im Komplexaugen. Verhandel. Deutsch. Zool. Ges. 64: 234–238, 1970.
 202. Kutsch, W., and D. Otto. Evidence for spontaneous song production independent of head ganglia in Gryllus campestris L. J. Comp. Physiol. 81: 115–119, 1972.
 203. Lacher, V. Elektrophysiologische Untersuchungen an einzelnen Rezeptoren für Geruch, Kohlendioxyd, Luftfeuchtigkeit und Temperatur auf den Antennen der Arbeitsbiene und der Drohne (Apis mellifica L.), Z. Vergleich. Physiol. 48: 587–623, 1964.
 204. Land, M. F. Activity in the optic nerve of Pecten maximus in response to changes in light intensity, and to pattern and movement in the optical environment. J. Exptl. Biol. 45: 83–99, 1966.
 205. Land, M. F. Movements of the retinae of jumping spiders (Salticidae: Dendryphantinae) in response to visual stimuli. J. Exptl. Biol. 51: 471–493, 1969.
 206. Larimer, J. L. The effects of temperature on the activity of the caudal photoreceptor. Comp. Biochem. Physiol. 22: 683–700, 1967.
 207. Laughlin, S. B., and G. A. Horridge. Angular sensitivity of the retinula cells of dark‐adapted worker bee. Z. Vergleich. Physiol. 74: 329–335, 1971.
 208. Laverack, M. S. Tactile and chemical perception in earthworms. I. Responses to touch, sodium chloride, quinine and sugars. Comp. Biochem. Physiol. 1: 155–163, 1960.
 209. Laverack, M. S. Tactile and chemical perception in earthworms. II. Responses to acid pH solutions. Comp. Biochem. Physiol. 2: 22–34, 1961.
 210. Laverack, M. S. Responses of cuticular sense organs of the lobster, Homarus vulgaris (Crustacea). I. Hair‐peg organs as water current receptors. Comp. Biochem. Physiol. 5: 319–325, 1962.
 211. Laverack, M. S. Responses of cuticular sense organs of the lobster, Homarus vulgaris (Crustacea). II. Hair‐fan organs as pressure receptors. Comp. Biochem. Physiol. 6: 137–145, 1962.
 212. Laverack, M. S. Responses of cuticular sense organs of the lobster, Homarus vulgaris (Crustacea). III. Activity invoked in sense organs of the carapace. Comp. Biochem. Physiol. 10: 261–272, 1963.
 213. Laverack, M. S. Mechanoreceptors, photoreceptors and rapid conduction pathways in the leech, Hirudo medicinalis. J. Exptl. Biol. 50: 129–140, 1969.
 214. Lawry, J., Jr. Efferent sensory impulses in annelids. Comp. Biochem. Physiol. 27: 377–379, 1968.
 215. Lechtenberg, R. Acoustic response of the B cell in noctuid moths. J. Insect Physiol. 17: 2395–2408, 1971.
 216. Leutscher‐Hazelhoff, J. T., and J. W. Kuiper. Clock‐spikes in the Calliphora optic lobe and a hypothesis for their function in object location. In: The Functional Organization of the Compound Eye, edited by C. G. Bernhard. Oxford: Pergamon, 1966, p. 483–492.
 217. Levín, L., and H. Maldonado. A fovea in the praying mantis eye. III. The centering of the prey. Z. Vergleich. Physiol. 67: 93–101, 1970.
 218. Levitan, H., and L. Tauc. Acetylcholine receptors: topographic distribution and pharmacological properties of two receptor types on a single molluscan neurone. J. Physiol. London 222: 537–558, 1972.
 219. Loftus, R. The response of the antennal cold receptor of Periplaneta americana to rapid temperature changes and to steady temperature. Z. Vergleich. Physiol. 59: 413–455, 1968.
 220. Loftus, R. Differential thermal components in the response of the antennal cold receptor of Periplaneta americana to slowly changing temperature. Z. Vergleich. Physiol. 63: 415–433, 1969.
 221. Lukowiak, K., and J. W. Jacklet. Habituation and dishabituation: interactions between peripheral and central nervous systems in Aplysia. Science 178: 1306–1308, 1972.
 222. Maldonado, H., and J. C. Barrós‐Pita. A fovea in the praying mantis eye. I. Estimation of the catching distance. Z. Vergleich. Physiol. 67: 58–78, 1970.
 223. Maldonado, H., and L. Levin. Distance estimation and the monocular cleaning reflex in praying mantis. Z. Vergleich. Physiol. 56: 258–267, 1967.
 224. Maldonado, H., L. Levin, and J. C. Barros‐Pita. Hit distance and the predatory strike of the praying mantis. Z. Vergleich. Physiol. 56: 237–257, 1967.
 225. Markl, H. Verständigung durch Vibrationssignale bei Arthropoden. Naturwiss. 56: 499–505, 1969.
 226. Markl, H. Die Verständigung durch Stridulationssignale bei Blattschneiderameisen. III. Die Empfindlichkeit für Substratvibrationen. Z. Vergleich. Physiol. 69: 6–37, 1970.
 227. Marmarelis, P. Z., and G. D. McCann. Development and application of white‐noise modeling techniques for studies of insect visual nervous system. Kybernetik 12: 74–89, 1973.
 228. Maynard, D. M. Organization of central ganglia. In: Invertebrate Nervous Systems, edited by C. A. G. Wiersma. Chicago: Univ. of Chicago Press, 1967, p. 231–255.
 229. Maynard, D. M. Simpler networks. Ann. NY Acad. Sci. 193: 59–72, 1972.
 230. Maynard, D. M., and A. Sallee. Disturbance of feeding behavior in the spiny lobster, Panulirus argus, following bilateral ablation of the medulla terminalis. Z. Vergleich. Physiol. 66: 123–140, 1970.
 231. Maynard, D. M., and J. G. Yager. Function of an eyestalk ganglion, the medulla terminalis, in olfactory integration in the lobster, Panulirus argus. Z. Vergleich. Physiol. 59: 241–249, 1968.
 232. McCann, G. D. The fundamental mechanism of motion detection in the insect visual system. Kybernetik 12: 64–73, 1973.
 233. McCann, G. D., and D. W. Arnett. Spectral and polarization sensitivity of the dipteran visual system. J. Gen. Physiol. 59: 534–558, 1972.
 234. McCann, G. D., and J. C. Dill. Fundamental properties of intensity, form, and motion perception in the visual nervous systems of Calliphora phaenicia and Musca domestica. J. Gen. Physiol. 53: 385–413, 1969.
 235. McKay, J. M. The auditory system of Homorocoryphus (Tettigonioidea, Orthoptera). J. Exptl. Biol. 51: 787–802, 1969.
 236. McKay, J. M. Central control of an insect sensory interneurone. J. Exptl. Biol. 53: 137–145, 1970.
 237. Meinertzhagen, I. A. Erroneous projection of retinula axons beneath a dislocation in the retinal equator of Calliphora. Brain Res. 41: 39–49, 1972.
 238. Mellon, DeF., Jr. Electrophysiology of touch sensitive neurons in a mollusc. J. Comp. Physiol. 79: 63–78, 1972.
 239. Mellon, DeF., Jr., and D. J. Prior. Components of a response programme involving inhibitory and excitatory reflexes in the surf clam. J. Exptl. Biol. 53: 711–725, 1970.
 240. Menzel, R. Das Gedächtnis der Honigbiene für Spektralfarben. I. Kurzzeitiges und langzeitiges Behalten. Z. Vergleich. Physiol. 60: 82–102, 1968.
 241. Metschl, N. Electrophysiologische Untersuchungen an den Ocellen von Calliphora. Z. Vergleich. Physiol. 47: 230–255, 1963.
 242. Michelsen, A. Pitch discrimination in the locust ear: observations on single sense cells. J. Insect Physiol. 12: 1119–1131, 1966.
 243. Michelsen, A. The physiology of the locust ear. I. Frequency sensitivity of single cells in the isolated ear. Z. Vergleich. Physiol. 71: 49–62, 1971.
 244. Michelsen, A. The physiology of the locust ear. II. Frequency discrimination based upon resonances in the tympanum. Z. Vergleich. Physiol. 71: 63–101, 1971.
 245. Michelsen, A. The physiology of the locust ear. III. Acoustical properties of the intact ear. Z. Vergleich. Physiol. 71: 102–128, 1971.
 246. Milburn, N. S., and D. R. Bentley. On the dendritic topology and activation of cockroach giant interneurons. J. Insect Physiol. 17: 607–623, 1971.
 247. Mill, P. J. Neural activity in the abdominal nervous system of aeschnid nymphs. Comp. Biochem. Physiol. 8: 83–98, 1963.
 248. Mill, P. J. The structure of the abdominal nervous system of aeschnid nymphs. J. Comp. Neurol. 122: 157–171, 1964.
 249. Mill, P. J., and M. F. Knapp. Efferent sensory impulses and the innervation of tactile receptors in Allolobophora longa Ude and Lumbricus terrestris Linn. Comp. Biochem. Physiol. 23: 263–276, 1967.
 250. Millecchia, R., and G. F. Gwilliam. Photoreception in a barnacle: electrophysiology of the shadow reflex pathway in Balanus cariosus. Science 177: 438–441, 1972.
 251. Millecchia, R., and A. Mauro. The ventral photoreceptor cells of Limulus. II. The basic photoresponse. J. Gen. Physiol. 54: 310–330, 1969.
 252. Miller, L. A. Physiological responses of green lacewings (Chrysopa, Neuroptera) to ultrasound. J. Insect Physiol. 17: 491–506, 1971.
 253. Mimura, K. Movement discrimination by the visual system of flies. Z. Vergleich. Physiol. 73: 105–138, 1971.
 254. Mimura, K. Neural mechanisms, subserving directional selectivity of movement in the optic lobe of the fly. J. Comp. Physiol. 80: 409–437, 1972.
 255. Mimura, K., H. Tateda, H. Morita, and M. Kuwabara. Regulation of insect brain excitability by ocellus. Z. Vergleich. Physiol. 62: 382–394, 1969.
 256. Mimura, K., H. Tateda, H. Morita, and M. Kuwabara. Convergence of antennal and ocellar inputs in the insect brain. Z. Vergleich. Physiol. 68: 301–310, 1970.
 257. Mittelstaedt, H. Prey capture in mantids. In: Recent Advances in Invertebrate Physiology, edited by B. T. Scheer. Eugene: Univ. of Oregon, 1957, p. 51–71.
 258. Mpitosos, G. J. Single‐fiber analysis of the visual response in a lamellibranch mollusc (Lima scabra) (Abstract). Am. Zoologist 8: 773–774, 1968.
 259. Mpitsos, G. J. Physiology of vision in the mollusk Lima scabra. J. Neurophysiol. 36: 371–383, 1973.
 260. Murphey, R. K. Sensory aspects of the control of orientation to prey by the waterstrider, Gerris remigis. Z. Vergleich. Physiol. 72: 168–185, 1971.
 261. Murphey, R. K., and M. D. Zaretsky. Orientation to calling song by female crickets, Scapsipedus marginatus (Gryllidae). J. Exptl. Biol. 56: 335–352, 1972.
 262. Murray, R. W. Temperature receptors. Advan. Comp. Physiol. Biochem. 1: 117–175, 1962.
 263. Nicholls, J. G., and D. A. Baylor. Specific modalities and receptive fields of sensory neurons in CNS of the leech. J. Neurophysiol. 31: 740–756, 1968.
 264. Nicholls, J. G., and D. Purves. Monosynaptic chemical and electrical connexions between sensory and motor cells in the central nervous system of the leech. J. Physiol. London 209: 647–667, 1970.
 265. Nicholls, J. G., and D. Purves. A comparison of chemical and electrical synaptic transmission between single sensory cells and a motoneurone in the central nervous system of the leech. J. Physiol. London 225: 637–656, 1972.
 266. Nicol, J. A. C. The giant axons of annelids. Quart. Rev. Biol. 23: 291–323, 1948.
 267. Nocke, H. Physiological aspects of sound communication in crickets (Gryllus campestris L.). J. Comp. Physiol. 80: 141–162, 1972.
 268. Northrop, R. B., and E. F. Guignon. Information processing in the optic lobes of the lubber grasshopper. J. Insect Physiol. 16: 691–713, 1970.
 269. Nosaki, H. Electrophysiological study of color encoding in the compound eye of crayfish, Procambarus clarkii. Z. Vergleich. Physiol. 64: 318–323, 1969.
 270. Nunnemacher, R. F. The fine structure of optic tracts of Decapoda. In: The Functional Organization of the Compound Eye, edited by C. G. Bernhard. Oxford: Pergamon, 1966, p. 363–375.
 271. Offutt, G. C. Acoustic stimulus perception by the American lobster Homarus americanus (Decapoda). Experientia 26: 1276–1278, 1970.
 272. Pabst, H., and D. Kennedy. Cutaneous mechanoreceptors influencing motor output in the crayfish abdomen. Z. Vergleich. Physiol. 57: 190–208, 1967.
 273. Palka, J. An inhibitory process influencing visual responses in a fibre of the ventral nerve cord of locusts. J. Insect Physiol. 13: 235–248, 1967.
 274. Palka, J. Discrimination between movements of eye and object by visual interneurones of crickets. J. Exptl. Biol. 50: 723–732, 1969.
 275. Palka, J. Moving movement detectors. Am. Zoologist 12: 497–505, 1972.
 276. Pantin, C. F. A. Capabilities of the coelenterate behavior machine. Am. Zoologist 5: 581–589, 1965.
 277. Pareto, A. Die zentrale Verteilung der Fühlerafferenz bei Arbeiterinnen der Honigbiene, Apis mellifera L. Z. Zellforsch. Mikroskp. Anat. 131: 109–140, 1972.
 278. Parker, G. H. The compound eyes in crustaceans. Bull. Museum Comp. Zool. Harvard Coll. 21: 45–140, 1891.
 279. Passano, L. M. Pacemakers and activity patterns in medusae: Homage to Romanes. Am. Zoologist 5: 465–481, 1965.
 280. Pasztor, V. M. The neurophysiology of respiration in decapod crustacea. II. The sensory system. Can. J. Zool. 47: 435–441, 1969.
 281. Paul, D. H. Decremental conduction over “giant” afferent processes in an arthropod. Science 176: 680–682, 1972.
 282. Pearson, L. The corpora pedunculata of Sphinx ligustri L. and other Lepidoptera: an anatomical study. Proc. Roy. Soc. London Ser. B 259: 477–516, 1971.
 283. Peretz, B. Habituation and dishabituation in the absence of a central nervous system. Science 169: 379–381, 1970.
 284. Pickens, P. E. Bioelectric activity during the startle response of a hemichordate worm. J. Exptl. Biol. 58: 295–304, 1973.
 285. Popov, A. V. The characteristics of the activity of central auditory neurons in locusts [in Russian]. In: Probleme Fiziologischeskoi Akustiki. Moscow, Leningrad: Nauka, 1967, p. 108–121.
 286. Popov, A. V. Synaptic transmission at the level of the first synapses of the auditory system in Locusta migratoria [in Russian]. In: Evoliutsionnaia Neirofiziologiia i Neirokhimiia, edited by E. M. Kreps. Leningrad: Nauka, 1967, p. 54–67.
 287. Popov, A. V. Comparative investigation of sound signals of communication and some principles of hearing system organization in cicadas and Orthoptera. Tr. Vses. Entomol. Obshchest. (Horae Soc. Entomol. Rossicae) 54: 182–221, 1969.
 288. Preston, J. B., and D. Kennedy. Spontaneous activity in crustacean neurons. J. Gen. Physiol. 45: 821–836, 1962.
 289. Pringle, J. W. S. Proprioception in insects. I. A new type of mechanical receptor from the palps of the cockroach. J. Exptl. Biol. 15: 101–113, 1938.
 290. Pringle, J. W. S. A physiological analysis of cicada song. J. Exptl. Biol. 31: 525–560, 1954.
 291. Prior, D. J. Electrophysiological analysis of peripheral neurones and their possible role in the local reflexes of a mollusc. J. Exptl. Biol. 57: 133–145, 1972.
 292. Prior, D. J. A neural correlate of behavioural stimulus intensity discrimination in a mollusc. J. Exptl. Biol. 57: 147–160, 1972.
 293. Prosser, C. L. Action potentials in the nervous system of the crayfish. II. Responses to illumination of the eye and caudal ganglion. J. Cellular Comp. Physiol. 4: 363–377, 1934.
 294. Prosser, C. L. Action potentials in the nervous system of the crayfish. III. Central responses to proprioceptive and tactile stimulation. J. Comp. Neurol. 62: 495–505, 1935.
 295. Pumphrey, R. J., and A. F. Rawdon‐Smith. Synaptic transmission of nervous impulses through the last abdominal ganglion of the cockroach. Proc. Roy. Soc. London Ser. B 122: 106–118, 1937.
 296. Ripley, S. H., B. M. H. Bush, and A. Roberts. Crab muscle receptor which responds without impulses. Nature 218: 1170–1171, 1968.
 297. Roberts, A., and B. M. H. Bush. Coxal muscle receptors in the crab: the receptor current and some properties of the receptor nerve fibres. J. Exptl. Biol. 54: 515–525, 1971.
 298. Roberts, M. B. V. The giant fibre reflex of the earthworm, Lumbricus terrestris L. II. Fatigue. J. Exptl. Biol. 39: 229–237, 1962.
 299. Roeder, K. D. Organization of the ascending giant fiber system in the cockroach (Periplaneta americana). J. Exptl. Zool. 108: 243–262, 1948.
 300. Roeder, K. D. Aspects of the noctuid tympanic nerve response having significance in the avoidance of bats. J. Insect Physiol. 10: 529–546, 1964.
 301. Roeder, K. D. Acoustic sensitivity of the noctuid tympanic organ and its range for the cries of bats. J. Insect Physiol. 12: 843–859, 1966.
 302. Roeder, K. D. Auditory system of noctuid moths. Science 154: 1515–1521, 1966.
 303. Roeder, K. D. Interneurons of the thoracic nerve cord activated by tympanic nerve fibres in noctuid moths. J. Insect Physiol. 12: 1227–1244, 1966.
 304. Roeder, K. D. Turning tendency of moths exposed to ultrasound while in stationary flight. J. Insect Physiol. 13: 873–888, 1967.
 305. Roeder, K. D. Acoustic interneurons in the brain of noctuid moths. J. Insect Physiol. 15: 825–838, 1969.
 306. Roeder, K. D. Brain interneurons in noctuid moths: differential suppression by high sound intensities. J. Insect Physiol. 15: 1713–1718, 1969.
 307. Roeder, K. D. Acoustic alerting mechanisms in insects. Ann. NY Acad. Sci. 188: 63–79, 1971.
 308. Roeder, K. D. Acoustic and mechanical sensitivity of the distal lobe of the pilifer in choerocampine hawkmoths. J. Insect Physiol. 18: 1249–1264, 1972.
 309. Roeder, K. D., N. K. Kennedy, and E. A. Samson. Synaptic conduction to giant fibers of the cockroach and the action of anticholinesterases. J. Neurophysiol. 10: 1–10, 1947.
 310. Roeder, K. D., and A. E. Treat. Ultrasonic reception by the tympanic organ of noctuid moths. J. Exptl. Zool. 134: 127–158, 1957.
 311. Roeder, K. D., and A. E. Treat. An acoustic sense in some hawkmoths (Choerocampinae). J. Insect Physiol. 16: 1069–1086, 1970.
 312. Roeder, K. D., A. E. Treat, and J. S. Vande Berg. Distal lobe of the pilifer: an ultrasonic receptor in choerocampine hawkmoths. Science 170: 1098–1099, 1970.
 313. Roelofs, W. L., and R. T. Cardé. Hydrocarbon sex pheromone in tiger moths (Arctiidae). Science 171: 684–686, 1971.
 314. Rowell, C. H. F. Activity of interneurones in the arm of Octopus in response to tactile stimulation. J. Exptl. Biol. 44: 589–605, 1966.
 315. Rowell, C. H. F. Antennal cleaning, arousal and visual interneurone responsiveness in a locust. J. Exptl. Biol. 55: 749–761, 1971.
 316. Rowell, C. H. F. The orthopteran descending movement detector (DMD) neurones: a characterisation and review. Z. Vergleich. Physiol. 73: 167–194, 1971.
 317. Rowell, C. H. F. Variable responsiveness of a visual interneurone in the free‐moving locust, and its relation to behaviour and arousal. J. Exptl. Biol. 55: 727–747, 1971.
 318. Rowell, C. H. F., and G. Horn. Dishabituation and arousal in the response of single nerve cells in an insect brain. J. Exptl. Biol. 49: 171–183, 1968.
 319. Rowell, C. H. F., and J. M. McKay. An acridid auditory interneurone. I. Functional connexions and response to single sounds. J. Exptl. Biol. 51: 231–245, 1969.
 320. Rowell, C. H. F., and J. M. McKay. An acridid auditory interneurone. II. Habituation, variation in response level and central control. J. Exptl. Biol. 51: 247–260, 1969.
 321. Ruck, P. Electrophysiology of the insect dorsal ocellus. I. Origin of the components of the electroretinogram. J. Gen. Physiol. 44: 605–627, 1961.
 322. Ruck, P. Electrophysiology of the insect dorsal ocellus. II. Mechanisms of generation and inhibition of impulses in the ocellar nerve of dragonflies. J. Gen. Physiol. 44: 629–639, 1961.
 323. Ruck, P. Electrophysiology of the insect dorsal ocellus. III. Responses to flickering light of the dragonfly ocellus. J. Gen. Physiol. 44: 641–657, 1961.
 324. Salmon, M., and K. Horch. Vibration reception by the fiddler crab, Uca minax. Comp. Biochem. Physiol. 44A: 527–541, 1973.
 325. Sanjeeva‐Reddy, P., and K. P. Rao. The central course of the hair afferents and the pattern of contralateral activation in the central nervous system of the scorpion, Heterometrus fulvipes. J. Exptl. Biol. 53: 165–169, 1970.
 326. Schiff, H. Dim light vision of Squilla mantis L. Am. J. Physiol. 205: 927–940, 1963.
 327. Schiff, H., and N. Schönenberger. Preliminary data for the elaboration of the visual code in Squilla mantis. Rev. Suisse Zool. 78: 660–666, 1971.
 328. Schlegel, P. Die Leistungen eines Gelenkrezeptors der Antenne von Calliphora für die Perzeption von Luftströmungen. Elektrophysiologische Untersuchungen. Z. Vergleich. Physiol. 66: 45–77, 1970.
 329. Schneider, D. Insect antennae. Ann. Rev. Entomol. 9: 103–122, 1964.
 330. Schnorbus, H. Die subgenualen Sinnesorgane von Periplaneta americana: Histologie und Vibrationsschwellen. Z. Vergleich. Physiol. 71: 14–48, 1971.
 331. Scholes, J. Discontinuity of the excitation process in locust visual cells. Cold Spring Harbor Symp. Quant. Biol. 30: 517–527, 1965.
 332. Schwabe, J. Beiträge zur Morphologie und Histologie der tympanelen Sinnesapparate der Orthopteren. Zoologica 50: 1–154, 1906. [Cited in Bullock & Horridge , p. 952.].
 333. Seitz, G. Nachweis einer Pupillenreaktion im Auge der Schmeissfliege. Z. Vergleich. Physiol. 69: 169–185, 1970.
 334. Selverston, A. I., and D. Kennedy. Structure and function of identified nerve cells in the crayfish. Endeavour 38: 107–113, 1969.
 335. Shaw, S. R. Simultaneous recording from two cells in the locust retina. Z. Vergleich. Physiol. 55: 183–194, 1967.
 336. Shaw, S. R. Organization of the locust retina. Symp. Zool. Soc. London 23: 135–163, 1968.
 337. Shaw, S. R. Interreceptor coupling in ommatidia of drone honeybee and locust compound eyes. Vision Res. 9: 999–1029, 1969.
 338. Shaw, S. R. Decremental conduction of the visual signal in barnacle lateral eye. J. Physiol. London 220: 145–175, 1972.
 339. Shimozawa, T., T. Takeda, and T. Yamaguchi. Movement perception by the movement fibre in the optic tract of the crayfish. Analysis of temporal factors in movement perception. Japan. J. Biomed. Engr. 10: 186–195, 1972.
 340. Slifer, E. H. The structure of arthropod chemoreceptors. Ann. Rev. Entomol. 15: 121–142, 1970.
 341. Smith, J. E. The nervous anatomy of the body segments of nereid polychaetes. Phil. Trans. Roy. Soc. London Ser. B 240: 135–196, 1957.
 342. Smola, U., and R. Gemperlein. Übertragungseigenschaften der Sehzelle der Schmeissfliege Calliphora erythrocephala. 2. Die Abhängigkeit vom Ableitort: Retina‐Lamina ganglionaris. J. Comp. Physiol. 79: 363–392, 1972.
 343. Snodderly, D. M., Jr. Processing of visual inputs by brain of Limulus. J. Neurophysiol. 34: 588–611, 1971.
 344. Stinnakre, J., and L. Tauc. Central neuronal response to the activation of osmoreceptors in the osphradium of Aplysia. J. Exptl. Biol. 51: 347–361, 1969.
 345. Stout, J. F., and F. Huber. Responses of central auditory neurons of female crickets (Gryllus campestris L.) to the calling song of the male. Z. Vergleich. Physiol. 76: 302–313, 1972.
 346. Strausfeld, N. J. Golgi studies on insects. II. The optic lobes of Diptera. Phil. Trans. Roy. Soc. London Ser. B 258: 135–223, 1970.
 347. Strausfeld, N. J., and A. D. Blest. Golgi studies on insects. The optic lobes of Lepidoptera. Phil. Trans. Roy. Soc. London Ser. B 258: 81–134, 1970.
 348. Strumwasser, F. Neural and humoral factors in the temporal organization of behavior. Physiologist 16: 9–42, 1973.
 349. Suga, N. Functional organization of two tympanic neurons in noctuid moths. Japan. J. Physiol. 11: 666–677, 1961.
 350. Suga, N. Central mechanism of hearing and sound localization in insects. J. Insect Physiol. 9: 867–873, 1963.
 351. Suga, N. Ultrasonic production and its reception in some neotropical Tettigoniidae. J. Insect Physiol. 12: 1039–1050, 1966.
 352. Suga, N. Neural responses to sound in a Brazilian mole cricket. J. Auditory Res. 8: 129–134, 1968.
 353. Suga, N., and Y. Katsuki. Central mechanism of hearing in insects. J. Exptl. Biol. 38: 545–548, 1961.
 354. Swihart, S. L. The nature of the electroretinogram of a tropical butterfly. J. Insect Physiol. 10: 547–562, 1964.
 355. Swihart, S. L. Hearing in butterflies (Nymphalidae: Heliconius, Ageronia). J. Insect Physiol. 13: 469–476, 1967.
 356. Swihart, S. L. Single unit activity in the visual pathway of the butterfly Heliconius erato. J. Insect Physiol. 14: 1589–1601, 1968.
 357. Swihart, S. L. Colour vision and the physiology of the superposition eye of a butterfly (Hesperiidae). J. Insect Physiol. 15: 1347–1365, 1969.
 358. Swihart, S. L. The neural basis of colour vision in the butterfly, Papilio troilus. J. Insect Physiol. 16: 1623–1636, 1970.
 359. Swihart, S. L. Modelling the butterfly visual pathway. J. Insect Physiol. 18: 1915–1928, 1972.
 360. Swihart, S. L. The neural basis of colour vision in the bufferly, Heliconius erato. J. Insect Physiol. 18: 1015–1025, 1972.
 361. Swihart, S. L. Variability and the nature of the insect electroretinogram. J. Insect Physiol. 18: 1221–1240, 1972.
 362. Takahashi, K. Electrical responses to light stimuli in the isolated radial nerve of the sea urchin, Diadema setosum (Leske). Nature 201: 1343–1344, 1964.
 363. Taylor, R. C. Water‐vibration reception: a neurophysiological study in unrestrained crayfish. Comp. Biochem. Physiol. 27: 795–805, 1968.
 364. Taylor, R. C. Environmental factors which control the sensitivity of a single crayfish interneuron. Comp. Biochem. Physiol. 33: 911–921, 1970.
 365. Thorson, J. Small‐signal analysis of a visual reflex in the locust. I. Input parameters. Kybernetik 3: 41–53, 1966.
 366. Thorson, J. Small‐signal analysis of a visual reflex in the locust. II. Frequency dependence. Kybernetik 3: 53–66, 1966.
 367. Treat, A. E. The response to sound in certain Lepidoptera. Ann. Entomol. Soc. Am. 48: 272–284, 1955.
 368. Treat, A. E., and K. D. Roeder. A nervous element of unknown function in the tympanic organs of moths. J. Insect Physiol. 3: 262–270, 1959.
 369. Treviño, D. L., and J. L. Larimer. The responses of one class of neurons in the optic tract of crayfish (Procambarus) to monochromatic light. Z. Vergleich. Physiol. 69: 139–149, 1970.
 370. Trujillo‐Cenóz, O., and J. Melamed. Light and electron‐microscope study of one of the systems of centrifugal fibers found in the lamina of muscoid flies. Z. Zellforsch. Mikroskop. Anat. 110: 336–349, 1970.
 371. Tunstall, J., and G. A. Horridge. Electrophysiological investigation of the optics of the locust retina. Z. Vergleich. Physiol. 55: 167–182, 1967.
 372. Uexküll, J. J. von. Umwelt und Innenwelt der Tiere. Berlin: Springer, 1909. [Cited in Bullock & Horridge , p. 34.].
 373. Van Essen, D. C. The contribution of membrane hyperpolarization to adaptation and conduction block in sensory neurones of the leech. J. Physiol. London 230: 509–534, 1973.
 374. Vareschi, E. Duftunterscheidung bei der Honigbiene‐Einzelzell‐Ableitungen und Verhaltensreaktionen. Z. Vergleich. Physiol. 75: 143–173, 1971.
 375. Vowles, D. M. The structure and connexions of the corpora pedunculata in bees and ants. Quart. J. Microscop. Sci. 96: 239–255, 1955.
 376. Vowles, D. M. Models and the insect brain. In: Neural Theory and Modeling, edited by R. F. Reiss. Stanford: Stanford Univ. Press, 1964, p. 377–399.
 377. Waldow, U. Elektrophysiologische Untersuchungen an Feuchte‐, Trocken‐ und Kälterezeptoren auf der Antenne der Wanderheuschrecke Locusta. Z. Vergleich. Physiol. 69: 249–283, 1970.
 378. Waterman, T. H. Polarotaxis and primary photoreceptor events in Crustacea. In: The Functional Organization of the Compound Eye, edited by C. G. Bernhard. Oxford: Pergamon, 1966, p. 493–511.
 379. Waterman, T. H., and C. A. G. Wiersma. Electrical responses in decapod crustacean visual systems. J. Cellular Comp. Physiol. 61: 1–16, 1963.
 380. Waterman, T. H., C. A. G. Wiersma, and B. M. H. Bush. Afferent visual responses in the optic nerve of the crab, Podophthalmus. J. Cellular Comp. Physiol. 63: 135–155, 1964.
 381. Wehner, R. Pattern recognition in bees. Nature 215: 1244–1248, 1967.
 382. Wehner, R. (editor). Information Processing in the Visual Systems of Arthropods. Berlin: Springer Verlag, 1972.
 383. Wehner, R., and T. Labhart. Perception of the geomagnetic field in the fly Drosophila melanogaster. Experientia 26: 967–968, 1970.
 384. Westfall, J. A. Ultrastructural evidence for a granule‐containing sensory‐motor‐interneuron in Hydra littoralis. J. Ultrastruct. Res. 42: 268–282, 1973.
 385. Westfall, J. A. Ultrastructural evidence for neuromuscular systems in coelenterates. Am. Zoologist 13: 237–246, 1973.
 386. Wiersma, C. A. G. On the number of nerve cells in a crustacean central nervous system. Acta Physiol. Pharmacol. Neerl. 6: 135–142, 1957.
 387. Wiersma, C. A. G. On the functional connections of single units in the central nervous system of the crayfish, Procambarus clarkii Girard. J. Comp. Neurol. 110: 421–471, 1958.
 388. Wiersma, C. A. G. Movement receptors in decapod Crustacea. J. Marine Biol. Assoc. UK 38: 143–152, 1959.
 389. Wiersma, C. A. G. Integration in the visual pathway of Crustacea. Symp. Soc. Exptl. Biol. 20: 151–177, 1966.
 390. Wiersma, C. A. G. Visual central processing in crustaceans. In: Invertebrate Nervous Systems, edited by C. A. G. Wiersma. Chicago: Univ. of Chicago Press, 1967, p. 269–284.
 391. Wiersma, C. A. G. Regulative mechanisms for the discharges of specific interneurons. In: The Interneuron, edited by M. A. B. Brazier. Berkeley: Univ. of California Press, 1969, p. 113–129. (UCLA Forum Med. Sci. No. 11.)
 392. Wiersma, C. A. G. Neuronal components of the optic nerve of the crab, Carcinus maenas. Proc. Koninkl. Ned. Akad. Wetenschap. Ser. C 73: 25–34, 1970.
 393. Wiersma, C. A. G. Behavior of neurons. In: The Neurosciences: Third Study Program, edited by F. O. Schmitt and F. G. Worden. Cambridge, Mass.: MIT Press, 1974, p. 419–431.
 394. Wiersma, C. A. G., and E. G. Boettiger. Unidirectional movement fibres from a proprioceptive organ of the crab, Carcinus maenas. J. Exptl. Biol. 36: 102–112, 1959.
 395. Wiersma, C. A. G., and B. M. H. Bush. Functional neuronal connections between the thoracic and abdominal cords of the crayfish, Procambarus clarkii (Girard). J. Comp. Neurol. 121: 207–235, 1963
 396. Wiersma, C. A. G., B. M. H. Bush, and T. H. Waterman. Efferent visual responses of contralateral origin in the optic nerve of the crab Podophthalmus. J. Cellular Comp. Physiol. 64: 309–326, 1964.
 397. Wiersma, C. A. G., and G. M. Hughes. On the functional anatomy of neuronal units in the abdominal cord of the crayfish, Procambarus clarkii (Girard). J. Comp. Neurol. 116: 209–228, 1961.
 398. Wiersma, C. A. G., and P. J. Mill. “Descending” neuronal units in the commissure of the crayfish central nervous system; and their integration of visual, tactile and proprioceptive stimuli. J. Comp. Neurol. 125: 67–94, 1965.
 399. Wiersma, C. A. G., and R. L. C. Pilgrim. Thoracic stretch receptors in crayfish and rocklobster. Comp. Biochem. Physiol. 2: 51–64, 1961.
 400. Wiersma, C. A. G., S. H. Ripley, and E. Christensen. The central representation of sensory stimulation in the crayfish. J. Cellular Comp. Physiol. 46: 307–326, 1955.
 401. Wiersma, C. A. G., and T. Yamaguchi. The neuronal components of the optic nerve of the crayfish as studied by single unit analysis. J. Comp. Neurol. 128: 333–358, 1966.
 402. Wiersma, C. A. G., and T. Yamaguchi. Integration of visual stimuli by the crayfish central nervous system. J. Exptl. Biol. 47: 409–431, 1967.
 403. Wiersma, C. A. G., and T. Yamaguchi. The integration of visual stimuli in the rock lobster. Vision Res. 7: 197–203, 1967.
 404. Wiersma, C. A. G., and K. Yanagisawa. On types of interneurons responding to visual stimulation present in the optic nerve of the rock lobster, Panulirus interruptus. J. Neurobiol. 2: 291–309, 1971.
 405. Wiersma, C. A. G., and B. York. Properties of the seeing fibers in the rock lobster: field structure, habituation, attention and distraction. Vision Res. 12: 627–640, 1972.
 406. Wiese, K. Wahrnehmung von Oberflächenwellen geringer Amplitude durch den Wasserläufer. Naturwiss. 11: 575, 1969.
 407. Wiese, K. Das mechanorezeptorische Beuteortungssytem von Notonecta. I. Die Funktion des tarsalen Scolopidialorgans. J. Comp. Physiol. 78: 83–102, 1972.
 408. Wilkens, L. A., and J. L. Larimer. The CNS photoreceptor of crayfish: morphology and synaptic activity. J. Comp. Physiol. 80: 389–407, 1972.
 409. Wilska, A., and H. K. Hartline. The origin of “off‐responses” in the optic pathway. Am. J. Physiol. 133: P491–P492, 1941.
 410. Wilson, D. M. Nervous control of movement in annelids. J. Exptl. Biol. 37: 46–56, 1960.
 411. Woodcock, A. E. R., and T. H. Goldsmith. Spectral responses of sustaining fibers in the optic tracts of crayfish (Procambarus). Z. Vergleich. Physiol. 69: 117–133, 1970.
 412. Wyse, G. A. Receptor organization and function in Limulus chelae. Z. Vergleich. Physiol. 73: 249–273, 1971.
 413. Yamada, M. Extracellular recording from single neurones in the olfactory centre of the cockroach. Nature 217: 778–779, 1968.
 414. Yanagisawa, K., T. Hashimoto, and Y. Katsuki. Frequency discrimination in the central nerve cords of locusts. J. Insect Physiol. 13: 635–643, 1967.
 415. York, B. Sustaining fibers in the rock lobster. J. Neurobiol. 3: 303–309, 1972.
 416. Young, J. Z. The Anatomy of the Nervous System of Octopus Vulgaris. London: Oxford, 1971.
 417. Zaretsky, M. D. Patterned response to song in cricket central auditory neurone. Nature 229: 195–196, 1971.
 418. Zaretsky, M. D. Specificity of the calling song and short term changes in the phonotactic response by female crickets Scapsipedus marginatus (Gryllidae). J. Comp. Physiol. 79: 153–172, 1972.
 419. Zettler, F., and M. Järvilehto. Decrement‐free conduction of graded potentials along the axon of a monopolar neuron. Z. Vergleich. Physiol. 75: 402–421, 1971.
 420. Zettler, F., and M. Järvilehto. Lateral inhibition in an insect eye. Z. Vergleich. Physiol. 76: 233–244, 1972.
 421. Zhantiev, R. D. Functional properties of ascending neurons in the abdominal sector of the central nervous system of orthopterous insects (Orthoptera, Dolichocera). Dokl. Akad. Nauk SSSR 181: 494–496, 1968.
 422. Zucker, R. S. Crayfish escape behavior and central synapses. I. Neural circuit exciting lateral giant fiber. J. Neurophysiol. 35: 599–620, 1972.
 423. Zucker, R. S. Crayfish escape behavior and central synapses. II. Physiological mechanisms underlying behavioral habituation. J. Neurophysiol. 35: 621–637, 1972.
 424. Zucker, R. S., D. Kennedy, and A. I. Selverston. Neuronal circuit mediating escape responses in crayfish. Science 173: 645–650, 1971.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

C. A. G. Wiersma, Joan L. M. Roach. Principles in the Organization of Invertebrate Sensory Systems. Compr Physiol 2011, Supplement 1: Handbook of Physiology, The Nervous System, Cellular Biology of Neurons: 1089-1135. First published in print 1977. doi: 10.1002/cphy.cp010128