Comprehensive Physiology Wiley Online Library

Transmitters in Motor Systems

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Chemical Transmitters
1.1 Definition
1.2 Varieties of Transmitters
1.3 Identification of Transmitters
2 Transmitters in Peripheral Motor Systems
3 Transmitters in Spinal Motor Mechanisms
3.1 Spinal Motoneurons and Their Synaptic Control
4 Transmitters in Supraspinal Motor Systems
4.1 Brain Stem
4.2 Cerebellum
4.3 Basal Ganglia
4.4 Motor Cortex
Figure 1. Figure 1.

The avoiding reaction of Paramecium. A: retreat from stimulus and resumption of forward locomotion. B: sequence of steps corresponding to numbers in A. Step 1, stretch of anterior membrane upon collision with obstacle; step 2, local increase in membrane conductance; step 3, inward receptor current through stimulated membrane; step 4, electrotonic spread of receptor current produces step 5, outward current through rest of membrane (arrows show current flow). Step 6, depolarization of cell membrane (receptor potential) produces step 7, increase in calcium conductance; step 8, inward Ca2+ current; step 9, rise in intracellular Ca2+ concentration; step 10, cilia reverse beat; and step 11, cell swims backward. Step 12, Ca2+ is pumped out; step 13, intracellular concentration of Ca2+ drops, cilia resume normal orientation; and step 14, cell swims forward.

From Eckert 119. Copyright 1972 by the American Association for the Advancement of Science
Figure 2. Figure 2.

Scheme illustrating synthesis, storage, and release of ACh in a model cholinergic nerve terminal. Choline acetyltransferase is represented by filled dots inside terminal, acetylcholinesterase by open triangles both inside terminal and on surface of postsynaptic cell, and receptors on latter by open squares. Ch, choline.

From MacIntosh and Collier 323
Figure 3. Figure 3.

Acetylcholine action at muscle end plate. A: end‐plate potential in Mg‐paralyzed rat diaphragm. B: ACh‐evoked potential; ACh was released by 1‐ms pulse of current (35 nA) through ACh‐containing micropipette. Thus when released near end plate, ACh can closely reproduce effect of natural transmission. C, D: ACh potentials and end‐plate potentials evoked in frog sartorius muscle have similar reversal potentials. C: nerve‐activated end‐plate potentials are superimposed on long depolarizing pulses of increasing intensity. D: ACh potentials superimposed on long depolarizing pulses.

A, B from Krnjević and Miledi 270; C,D from Katz and Miledi 244
Figure 4. Figure 4.

Diagram demonstrating technique for measuring γ‐aminobutyric acid (GABA) content inside Deiters' neurons and in their immediate surroundings in thin sections of frozen tissue.

From Okada and Shimada 371
Figure 5. Figure 5.

Unlike end‐plate potentials, monosynaptic excitatory postsynaptic potentials (EPSPs) in spinal motoneurons are seldom easily reversed and do not show quantal properties. A: monosynaptic group Ia EPSP in cat motoneurons diminishes with progressive depolarization (increasing depolarizing currents are indicated), but there is no true reversal by even the largest currents. Calibration pulses indicate 2 mV and time marks indicate ms. BD: charge fluctuations recorded in cat spinal motoneuron during stimulation of single Ia‐fiber. B shows fluctuations caused by unitary EPSP as well as background noise; C shows fluctuations caused by noise alone; D indicates charge variations due to EPSP alone (computed). Note all‐or‐none character indicating no quantal components.

A from Shapovalov and Kurchavyi 441. BD from Edwards et al. 121
Figure 6. Figure 6.

Depression of monosynaptic excitatory postsynaptic potentials (EPSP) in spinal cord of cats by extracellular Mn2+. Intracellular recording from sacral motoneuron, and EPSP evoked by stimulating posterior biceps‐semitendinosus nerve at intensity 1.25 × threshold for evoking detectable response from dorsal root fibers. Traces show, from above down, afferent volley monitored from dorsal roots near point of entry into spinal cord, EPSP at high‐gain AC amplification (see calibration bar in B), resting potential, and EPSP at lower gain DC amplification (see calibration bar in A), and time signal. In each instance two or more traces are superimposed during stimulation at 2/s. A, B: control EPSPs on fast and slow time base, respectively. C, D: EPSPs evoked by same intensity of stimulation after 2 min of Mn2+ release (from extracellular micropipettes). Note hyperpolarizing shift of DC trace. E, F: substantial recovery of EPSP between 7 and 8 min after end of release of Mn2+. Arrows in A, C., and E indicate small potential, apparently reflecting presynaptic fiber or terminal activity.

From Krnjević et al. 266
Figure 7. Figure 7.

Effect of glutamate on spinal motoneurons in isolated frog spinal cord. A, B: depolarizing effect evoked by brief application of glutamate. Iontophoretic current pulse is monitored in traces labeled 1 (110 nA for A, 130 nA for B). Superimposed constant current pulses, repeated at regular intervals, indicate marked reduction in input resistance of cell A, but little or no change in that of cell B. C: plot of peak amplitude of glutamate response against membrane potential. Note highly nonlinear relation and absence of reversal.

From Shapovalov et al. 440
Figure 8. Figure 8.

Some effects of substance P on spinal neurons. A: depolarizing action of glutamate (GLU) or substance P (SP) on frog motoneurons; note much longer effect of substance P. Responses obtained by sucrose‐gap technique from ventral root of isolated frog cord. B: after treatment with tetrodotoxin to prevent action potentials in adjacent cells and indirect excitation of motoneurons. C: selective block of ACh action on Renshaw cell, excited alternatively with glutamate, aspartate, or ACh (dots below traces indicate ACh applications).

A, B from Nicoll 361; C from Krnjević and Lekić 267. Reproduced by permission of the Natl. Res. Counc. Can. from the Can. J. Physiol. Pharmacol. 55: 958–961, 1977
Figure 9. Figure 9.

Depolarizing action of acetylcholine on spinal neurons in cats. A: superimposed traces show slow and prolonged depolarizing effect of increasing iontophoretic doses of acetylcholine, each applied for 20 s. B: current‐voltage plot obtained from interneuron in control state (filled circles) and during applications of ACh (250 nA) and glutamaté (200 nA). Note that ACh causes resistance to increase, and depolarizing action has negative reversal potential. By contrast, depolarizing action of glutamaté causes resistance to fall, and extrapolated reversal potential appears to be much more positive than resting potential.

From Zieglgänsberger and Reiter 531, © 1974, with permission of Pergamon Press, Ltd
Figure 10. Figure 10.

Effects of glycine on membrane potentials and conductance of cat spinal motoneuron. A1–A4, progressive block of antidromic action potential by increasing amounts of glycine (iontophoretic current of 31 nA in A2 and 90 nA in A3). A1 and A4 are initial and final control potentials. Iontophoretic current monitored by additional trace. Note also hyperpolarization in A3. Glycine also markedly depresses postsynaptic potentials (PSPs): compare excitatory PSPs in B1 and B2, the latter obtained while applying glycine (155 nA), similarly compare inhibitory PSPs in C1 and C2 (control and during glycine release of 69 nA). Finally, traces D1 and D2 show reduction in membrane resistance (as well as block of antidromic invasion) during application of glycine (189 nA), again monitored by extra trace.

From Aprison and Werman 11. With permission from M. H. Aprison and R. Werman. In: Neurosciences Research, edited by S. Ehrenpreis and O. C. Solnitsky. New York: Academic, 1968, vol. 1, p. 143–174. Copyright by Academic Press Inc. (London) Ltd
Figure 11. Figure 11.

Intracellular potentials recorded in two spinal motoneurons in cat demonstrate action of strychnine. A, B: control IPSP and EPSP evoked in gastrocnemius motoneuron by stimulating peroneal and gastrocnemius nerves, respectively. C, D: same PSPs after release of strychnine by diffusion from extracellular electrode for 3 min. Note marked reduction of IPSP, but little change in EPSP. E, F: hyperpolarizing responses evoked in another motoneuron by 30 nA glycine and 60 nA γ‐aminobutyric acid (GABA). Much briefer IPSPs are superimposed on DC trace. G, H: same responses during extracellular iontophoresis of strychnine. Note selective block of glycine response.

From Curtis 71
Figure 12. Figure 12.

A: electron‐microscopic autoradiograph from rat spinal cord slice incubated with [3H]‐glycine. Note strong radioactivity over presumed glycinergic bouton (×30,000). B: concentrations of glycine and γ‐aminobutyric acid (GABA) in four areas of cat spinal cord; distribution of glutamine included for comparison.

A from Hökfelt and Ljungdahl 192; B from Aprison and Werman 11. With permission from M. H. Aprison and R. Werman. In: Neurosciences Research, edited by S. Ehrenpreis and O. C. Solnitsky. New York: Academic, 1968, vol. 1, p. 143–174. Copyright by Academic Press Inc. (London) Ltd
Figure 13. Figure 13.

Evidence indicating involvement of γ‐aminobutyric acid (GABA) in spinal presynaptic inhibition. A: dorsal root reflex (DDR) and dorsal root potential (DRP) recorded in unanesthetized spinal cat practically eliminated by intravenous bicuculline. Note only partial recovery 1 h later. B: photomicrograph of dorsal horn from rat lumbosacral spinal cord. Arrows point to site of intense glutamic acid decarboxylase activity in marginal layer and in substantia gelatinosa. × 70.

A from Levy 311, B from McLaughlin et al. 339
Figure 14. Figure 14.

Diagram of connections between motoneurons (M), Renshaw cells (R), and interneuron mediating Ia inhibition (IN). Cholinergic terminals represented by filled triangles, glycinergic terminals by filled circles (strychnine sensitive) or half‐filled circles (strychnine resistant).

From Belcher et al. 23
Figure 15. Figure 15.

AF: effect of L‐dopa on dorsal root potentials evoked from flexor‐reflex afferents. Upper traces show dorsal root potentials recorded from most caudal dorsal root in L6. Lower traces recorded from L7 dorsal root entry zone. AC are initial control traces. In A, sural nerve was stimulated with intensity of about 10 × threshold. In B and C, anterior biceps‐semimembranous nerves were stimulated at 2.1 and 27 × threshold intensity. DF: corresponding records obtained after injection of dopa. Note depression of early dorsal root potential and appearance of late component evoked by high‐threshold stimulation. G: diagram of postulated neuronal pathways involved in depolarization of Ia‐afferent terminals by activity in flexor reflex afferents (such as sensory pathways activated in AF above). In spinal cat, activity in pathway through A normally prevents dorsal root potential evoked in Ia‐afferent through pathway B. By suppressing pathway through A, dopa would permit long‐latency depolarization of Ia‐terminals through pathway B. Filled circles represent postsynaptic inhibitory neuron.

From Anden et al. 8
Figure 16. Figure 16.

Inhibitory actions of norepinephrine (NA) in cat spinal cord. A: repetitive firing of spinal interneuron excited by single shock to peroneal nerve. B: ventral horn interneuron also firing repetitively in response to stimulation of gastrocnemius nerve. Iontophoretic applications of norepinephrine (14 nA in A, 25 nA in B) depress synaptic response. C: spontaneous firing of another ventral horn interneuron markedly reduced by short application of norepinephrine (50 nA); calibration shows frequency of firing in spikes per second.

A from Engberg and Ryall 130; B, C from Jordan et al. 232. Reproduced by permission of the Natl. Res. Counc. Can. from the Can. J. Physiol. Pharmacol. 55: 399–412, 1977
Figure 17. Figure 17.

Effects of possible transmitters and antagonists on synaptic responses in red nucleus of cat. A, B: intracellular records show that aspartic acid, applied iontophoretically, reduces amplitude of EPSPs evoked from cortex (A) or interpositus nucleus (B). Diminished amplitude of resistance‐measuring pulses in B also indicates marked increase in membrane conductance. C: iontophoretic application of bicuculline methochloride (120 nA for 100 s) abolished positive field potential (compare inset trace), reflecting inhibition evoked in red nucleus by cortical stimulation. Lack of effect of strychnine also indicates GABAergic nature of this inhibition.

A, B from Altmann et al. 2; C from Altmann et al. 1
Figure 18. Figure 18.

Action of serotonin (5‐HT), dopamine (DA), and norepinephrine (NA) on spontaneous firing of reticulospinal neuron, identified by antidromic activation from cervical spinal cord in decerebrated cat. Note short refractory period when 2 pulses were applied (AC) and good following at high frequency of stimulation (110/s) and constant latency in D. Note also strong firing evoked by serotonin and norepinephrine.

From Hösli et al. 202
Figure 19. Figure 19.

Identification of γ‐aminobutyric acid as inhibitory transmitter responsible for IPSPs evoked in Deiters' neurons of cat by cerebellar stimulation. AC: examples of experimental data. In A, reversal potential for IPSP (evoked at arrow) demonstrated by applying depolarizing or hyperpolarizing current, indicated in nA. B: similar series during iontophoretic administration of GABA (270 nA). C: control runs performed extracellularly. D: graph of voltage current data showing fall in resistance during IPSP (filled circles) and GABA application (triangles), and common reversal level at horizontal arrow.

From Obata et al. 369
Figure 20. Figure 20.

Gamma aminobutyric acid (GABA) and inhibition of frog cerebellar Purkinje cells. A: iontophoretic application of GABA causes hyperpolarization (upper trace) and marked reduction in resistance as shown by diminution of resistance‐testing pulses (below). Calibrations indicate 5 s and 20 mV (top) and 80 ms and 50 mV (bottom). B: synaptic inhibitory action evoked by local stimulation of parallel fibers blocked by topical application of picrotoxin (5 × 10–5 M). At left, controls show inhibitory pause in extracellularly recorded unit firing (above) and corresponding poststimulus time histogram (below). Traces at right illustrate disappearance of inhibition during application of picrotoxin.

From Woodward et al. 510
Figure 21. Figure 21.

Glutamate decarboxylase (GAD) reaction product indicates presumed GABAergic synaptic terminal (arrow) in molecular layer of rodent cerebellar cortex. Two adjacent terminals (t) not labeled. ×43,000.

From Wood et al. 509
Figure 22. Figure 22.

Climbing fiber‐evoked EPSPs in Purkinje cell of cat cerebellum are easily reversed by depolarization. Both sets of records obtained from same cell, those at right with slower sweeps and lower amplification.

From Eccles et al. 118
Figure 23. Figure 23.

Properties of EPSPs and effects of dopamine recorded in caudate neurons. AF: EPSP, evoked from median forebrain bundle, was enhanced by hyperpolarization (AC) and then depressed or reversed by depolarization (DF); lower trace of each pair is an extracellular control. G: action potential evoked by nigral stimulus recorded on high‐gain AC and low‐gain DC traces (above and below); lowest trace is an extracellular control. H: depolarizing response evoked by extracellular dopamine (DA) release (14 nA for 10 ms). Repeated applications of same dopamine pulse evoked progressively greater responses (compare I and J at same gain, and K at much lower gain). L: control recorded while applying pulse of Na+ instead of dopamine.

From Kitai et al. 256
Figure 24. Figure 24.

Inhibition of nigral unit in cat by caudate stimulation. A, B: ongoing firing of unit in substantia nigra maintained by slow release of glutamate; single shock stimulation in caudate was 1.5 × threshold in A and 2 × threshold in B. C: strong inhibitory effect of γ‐aminobutyric acid on glutamate‐evoked discharge of same unit. DE: poststimulus time histograms of firing of nigral unit inhibited by caudate stimulation, before and after injection of 2.5 mg/kg picrotoxin.

AC from Feltz 136. Reproduced by permission of the Natl. Res. Counc. Can. from the Can. J. Physiol. Pharmacol. 49: 1113–1115, 1971. DE from Precht and Yoshida 402
Figure 25. Figure 25.

Schematic diagram of basal ganglia showing main connections between various nuclei as well as probable function. Cx, cerebral cortex; Cd, caudate; Thal, thalamus; Pal i. and Pal e., internal and external segments of globus pallidus; ST, subthalamic nucleus; SN, substantia nigra; Py, pyramidal tract; Put, putamen; M, midbrain.

From Yoshida and Obata 524
Figure 26. Figure 26.

Excitatory action of glutamate and ACh on caudate neuron in cat: above, DC trace showing quick depolarization caused by glutamate and slow depolarization caused by ACh (resting potential −38 mV). Discharge frequency indicated on same time base by histogram below.

From Bernardi et al. 29
Figure 27. Figure 27.

Electrical stimulation of guinea pig cortical slices causes selective enhancement of release of endogenous putative transmitter amino acids: glutamate (GLU), aspartate (ASP), and γ‐aminobutyric acid (GABA); in contrast to alanine (ALA), threonine, serine, and glutamine (TSGn), and also α‐aminoisobutyric (aib). Selective release clearly seen in control graph above is totally abolished in absence of calcium or in presence of high concentration of magnesium (compare two graphs below). Endogenous amino acids labeled by superfusion with radioactive glucose; exogenous ones by super‐fusion with radioactive amino acids. Increase in release during electrical stimulation (ordinates) expressed as multiple of spontaneous release

From Potashner 401, © 1978, with permission of Pergamon Press, Ltd
Figure 28. Figure 28.

A: excitation of cortical neuron in cat by acetylcholine shows typical slow time course of depolarization and firing. B: changes in resistance of motor cortex neuron evoked by ACh with and without simultaneous electrical excitation (heavy bar indicates period of ACh release). Open triangles, mean values of resistance increase from 21 cells (with standard errors) in absence of other stimulation; open circles, corresponding data from 24 cells made to fire throughout period of ACh application by intracellular injection of depolarizing current; note longer persisting increase in resistance. Filled circles, control data from 15 cells made to discharge by depolarizing current but without application of ACh.

A from Krnjević et al. 284; B from Woody et al. 513
Figure 29. Figure 29.

Effects of muscarinic agents on rate constants of [3H]acetylcholine release evoked by 25 mM K+ in 3 different cerebral tissues. Note enhancement of release by atropine and depression by physostygmine.

From Szerb 478


Figure 1.

The avoiding reaction of Paramecium. A: retreat from stimulus and resumption of forward locomotion. B: sequence of steps corresponding to numbers in A. Step 1, stretch of anterior membrane upon collision with obstacle; step 2, local increase in membrane conductance; step 3, inward receptor current through stimulated membrane; step 4, electrotonic spread of receptor current produces step 5, outward current through rest of membrane (arrows show current flow). Step 6, depolarization of cell membrane (receptor potential) produces step 7, increase in calcium conductance; step 8, inward Ca2+ current; step 9, rise in intracellular Ca2+ concentration; step 10, cilia reverse beat; and step 11, cell swims backward. Step 12, Ca2+ is pumped out; step 13, intracellular concentration of Ca2+ drops, cilia resume normal orientation; and step 14, cell swims forward.

From Eckert 119. Copyright 1972 by the American Association for the Advancement of Science


Figure 2.

Scheme illustrating synthesis, storage, and release of ACh in a model cholinergic nerve terminal. Choline acetyltransferase is represented by filled dots inside terminal, acetylcholinesterase by open triangles both inside terminal and on surface of postsynaptic cell, and receptors on latter by open squares. Ch, choline.

From MacIntosh and Collier 323


Figure 3.

Acetylcholine action at muscle end plate. A: end‐plate potential in Mg‐paralyzed rat diaphragm. B: ACh‐evoked potential; ACh was released by 1‐ms pulse of current (35 nA) through ACh‐containing micropipette. Thus when released near end plate, ACh can closely reproduce effect of natural transmission. C, D: ACh potentials and end‐plate potentials evoked in frog sartorius muscle have similar reversal potentials. C: nerve‐activated end‐plate potentials are superimposed on long depolarizing pulses of increasing intensity. D: ACh potentials superimposed on long depolarizing pulses.

A, B from Krnjević and Miledi 270; C,D from Katz and Miledi 244


Figure 4.

Diagram demonstrating technique for measuring γ‐aminobutyric acid (GABA) content inside Deiters' neurons and in their immediate surroundings in thin sections of frozen tissue.

From Okada and Shimada 371


Figure 5.

Unlike end‐plate potentials, monosynaptic excitatory postsynaptic potentials (EPSPs) in spinal motoneurons are seldom easily reversed and do not show quantal properties. A: monosynaptic group Ia EPSP in cat motoneurons diminishes with progressive depolarization (increasing depolarizing currents are indicated), but there is no true reversal by even the largest currents. Calibration pulses indicate 2 mV and time marks indicate ms. BD: charge fluctuations recorded in cat spinal motoneuron during stimulation of single Ia‐fiber. B shows fluctuations caused by unitary EPSP as well as background noise; C shows fluctuations caused by noise alone; D indicates charge variations due to EPSP alone (computed). Note all‐or‐none character indicating no quantal components.

A from Shapovalov and Kurchavyi 441. BD from Edwards et al. 121


Figure 6.

Depression of monosynaptic excitatory postsynaptic potentials (EPSP) in spinal cord of cats by extracellular Mn2+. Intracellular recording from sacral motoneuron, and EPSP evoked by stimulating posterior biceps‐semitendinosus nerve at intensity 1.25 × threshold for evoking detectable response from dorsal root fibers. Traces show, from above down, afferent volley monitored from dorsal roots near point of entry into spinal cord, EPSP at high‐gain AC amplification (see calibration bar in B), resting potential, and EPSP at lower gain DC amplification (see calibration bar in A), and time signal. In each instance two or more traces are superimposed during stimulation at 2/s. A, B: control EPSPs on fast and slow time base, respectively. C, D: EPSPs evoked by same intensity of stimulation after 2 min of Mn2+ release (from extracellular micropipettes). Note hyperpolarizing shift of DC trace. E, F: substantial recovery of EPSP between 7 and 8 min after end of release of Mn2+. Arrows in A, C., and E indicate small potential, apparently reflecting presynaptic fiber or terminal activity.

From Krnjević et al. 266


Figure 7.

Effect of glutamate on spinal motoneurons in isolated frog spinal cord. A, B: depolarizing effect evoked by brief application of glutamate. Iontophoretic current pulse is monitored in traces labeled 1 (110 nA for A, 130 nA for B). Superimposed constant current pulses, repeated at regular intervals, indicate marked reduction in input resistance of cell A, but little or no change in that of cell B. C: plot of peak amplitude of glutamate response against membrane potential. Note highly nonlinear relation and absence of reversal.

From Shapovalov et al. 440


Figure 8.

Some effects of substance P on spinal neurons. A: depolarizing action of glutamate (GLU) or substance P (SP) on frog motoneurons; note much longer effect of substance P. Responses obtained by sucrose‐gap technique from ventral root of isolated frog cord. B: after treatment with tetrodotoxin to prevent action potentials in adjacent cells and indirect excitation of motoneurons. C: selective block of ACh action on Renshaw cell, excited alternatively with glutamate, aspartate, or ACh (dots below traces indicate ACh applications).

A, B from Nicoll 361; C from Krnjević and Lekić 267. Reproduced by permission of the Natl. Res. Counc. Can. from the Can. J. Physiol. Pharmacol. 55: 958–961, 1977


Figure 9.

Depolarizing action of acetylcholine on spinal neurons in cats. A: superimposed traces show slow and prolonged depolarizing effect of increasing iontophoretic doses of acetylcholine, each applied for 20 s. B: current‐voltage plot obtained from interneuron in control state (filled circles) and during applications of ACh (250 nA) and glutamaté (200 nA). Note that ACh causes resistance to increase, and depolarizing action has negative reversal potential. By contrast, depolarizing action of glutamaté causes resistance to fall, and extrapolated reversal potential appears to be much more positive than resting potential.

From Zieglgänsberger and Reiter 531, © 1974, with permission of Pergamon Press, Ltd


Figure 10.

Effects of glycine on membrane potentials and conductance of cat spinal motoneuron. A1–A4, progressive block of antidromic action potential by increasing amounts of glycine (iontophoretic current of 31 nA in A2 and 90 nA in A3). A1 and A4 are initial and final control potentials. Iontophoretic current monitored by additional trace. Note also hyperpolarization in A3. Glycine also markedly depresses postsynaptic potentials (PSPs): compare excitatory PSPs in B1 and B2, the latter obtained while applying glycine (155 nA), similarly compare inhibitory PSPs in C1 and C2 (control and during glycine release of 69 nA). Finally, traces D1 and D2 show reduction in membrane resistance (as well as block of antidromic invasion) during application of glycine (189 nA), again monitored by extra trace.

From Aprison and Werman 11. With permission from M. H. Aprison and R. Werman. In: Neurosciences Research, edited by S. Ehrenpreis and O. C. Solnitsky. New York: Academic, 1968, vol. 1, p. 143–174. Copyright by Academic Press Inc. (London) Ltd


Figure 11.

Intracellular potentials recorded in two spinal motoneurons in cat demonstrate action of strychnine. A, B: control IPSP and EPSP evoked in gastrocnemius motoneuron by stimulating peroneal and gastrocnemius nerves, respectively. C, D: same PSPs after release of strychnine by diffusion from extracellular electrode for 3 min. Note marked reduction of IPSP, but little change in EPSP. E, F: hyperpolarizing responses evoked in another motoneuron by 30 nA glycine and 60 nA γ‐aminobutyric acid (GABA). Much briefer IPSPs are superimposed on DC trace. G, H: same responses during extracellular iontophoresis of strychnine. Note selective block of glycine response.

From Curtis 71


Figure 12.

A: electron‐microscopic autoradiograph from rat spinal cord slice incubated with [3H]‐glycine. Note strong radioactivity over presumed glycinergic bouton (×30,000). B: concentrations of glycine and γ‐aminobutyric acid (GABA) in four areas of cat spinal cord; distribution of glutamine included for comparison.

A from Hökfelt and Ljungdahl 192; B from Aprison and Werman 11. With permission from M. H. Aprison and R. Werman. In: Neurosciences Research, edited by S. Ehrenpreis and O. C. Solnitsky. New York: Academic, 1968, vol. 1, p. 143–174. Copyright by Academic Press Inc. (London) Ltd


Figure 13.

Evidence indicating involvement of γ‐aminobutyric acid (GABA) in spinal presynaptic inhibition. A: dorsal root reflex (DDR) and dorsal root potential (DRP) recorded in unanesthetized spinal cat practically eliminated by intravenous bicuculline. Note only partial recovery 1 h later. B: photomicrograph of dorsal horn from rat lumbosacral spinal cord. Arrows point to site of intense glutamic acid decarboxylase activity in marginal layer and in substantia gelatinosa. × 70.

A from Levy 311, B from McLaughlin et al. 339


Figure 14.

Diagram of connections between motoneurons (M), Renshaw cells (R), and interneuron mediating Ia inhibition (IN). Cholinergic terminals represented by filled triangles, glycinergic terminals by filled circles (strychnine sensitive) or half‐filled circles (strychnine resistant).

From Belcher et al. 23


Figure 15.

AF: effect of L‐dopa on dorsal root potentials evoked from flexor‐reflex afferents. Upper traces show dorsal root potentials recorded from most caudal dorsal root in L6. Lower traces recorded from L7 dorsal root entry zone. AC are initial control traces. In A, sural nerve was stimulated with intensity of about 10 × threshold. In B and C, anterior biceps‐semimembranous nerves were stimulated at 2.1 and 27 × threshold intensity. DF: corresponding records obtained after injection of dopa. Note depression of early dorsal root potential and appearance of late component evoked by high‐threshold stimulation. G: diagram of postulated neuronal pathways involved in depolarization of Ia‐afferent terminals by activity in flexor reflex afferents (such as sensory pathways activated in AF above). In spinal cat, activity in pathway through A normally prevents dorsal root potential evoked in Ia‐afferent through pathway B. By suppressing pathway through A, dopa would permit long‐latency depolarization of Ia‐terminals through pathway B. Filled circles represent postsynaptic inhibitory neuron.

From Anden et al. 8


Figure 16.

Inhibitory actions of norepinephrine (NA) in cat spinal cord. A: repetitive firing of spinal interneuron excited by single shock to peroneal nerve. B: ventral horn interneuron also firing repetitively in response to stimulation of gastrocnemius nerve. Iontophoretic applications of norepinephrine (14 nA in A, 25 nA in B) depress synaptic response. C: spontaneous firing of another ventral horn interneuron markedly reduced by short application of norepinephrine (50 nA); calibration shows frequency of firing in spikes per second.

A from Engberg and Ryall 130; B, C from Jordan et al. 232. Reproduced by permission of the Natl. Res. Counc. Can. from the Can. J. Physiol. Pharmacol. 55: 399–412, 1977


Figure 17.

Effects of possible transmitters and antagonists on synaptic responses in red nucleus of cat. A, B: intracellular records show that aspartic acid, applied iontophoretically, reduces amplitude of EPSPs evoked from cortex (A) or interpositus nucleus (B). Diminished amplitude of resistance‐measuring pulses in B also indicates marked increase in membrane conductance. C: iontophoretic application of bicuculline methochloride (120 nA for 100 s) abolished positive field potential (compare inset trace), reflecting inhibition evoked in red nucleus by cortical stimulation. Lack of effect of strychnine also indicates GABAergic nature of this inhibition.

A, B from Altmann et al. 2; C from Altmann et al. 1


Figure 18.

Action of serotonin (5‐HT), dopamine (DA), and norepinephrine (NA) on spontaneous firing of reticulospinal neuron, identified by antidromic activation from cervical spinal cord in decerebrated cat. Note short refractory period when 2 pulses were applied (AC) and good following at high frequency of stimulation (110/s) and constant latency in D. Note also strong firing evoked by serotonin and norepinephrine.

From Hösli et al. 202


Figure 19.

Identification of γ‐aminobutyric acid as inhibitory transmitter responsible for IPSPs evoked in Deiters' neurons of cat by cerebellar stimulation. AC: examples of experimental data. In A, reversal potential for IPSP (evoked at arrow) demonstrated by applying depolarizing or hyperpolarizing current, indicated in nA. B: similar series during iontophoretic administration of GABA (270 nA). C: control runs performed extracellularly. D: graph of voltage current data showing fall in resistance during IPSP (filled circles) and GABA application (triangles), and common reversal level at horizontal arrow.

From Obata et al. 369


Figure 20.

Gamma aminobutyric acid (GABA) and inhibition of frog cerebellar Purkinje cells. A: iontophoretic application of GABA causes hyperpolarization (upper trace) and marked reduction in resistance as shown by diminution of resistance‐testing pulses (below). Calibrations indicate 5 s and 20 mV (top) and 80 ms and 50 mV (bottom). B: synaptic inhibitory action evoked by local stimulation of parallel fibers blocked by topical application of picrotoxin (5 × 10–5 M). At left, controls show inhibitory pause in extracellularly recorded unit firing (above) and corresponding poststimulus time histogram (below). Traces at right illustrate disappearance of inhibition during application of picrotoxin.

From Woodward et al. 510


Figure 21.

Glutamate decarboxylase (GAD) reaction product indicates presumed GABAergic synaptic terminal (arrow) in molecular layer of rodent cerebellar cortex. Two adjacent terminals (t) not labeled. ×43,000.

From Wood et al. 509


Figure 22.

Climbing fiber‐evoked EPSPs in Purkinje cell of cat cerebellum are easily reversed by depolarization. Both sets of records obtained from same cell, those at right with slower sweeps and lower amplification.

From Eccles et al. 118


Figure 23.

Properties of EPSPs and effects of dopamine recorded in caudate neurons. AF: EPSP, evoked from median forebrain bundle, was enhanced by hyperpolarization (AC) and then depressed or reversed by depolarization (DF); lower trace of each pair is an extracellular control. G: action potential evoked by nigral stimulus recorded on high‐gain AC and low‐gain DC traces (above and below); lowest trace is an extracellular control. H: depolarizing response evoked by extracellular dopamine (DA) release (14 nA for 10 ms). Repeated applications of same dopamine pulse evoked progressively greater responses (compare I and J at same gain, and K at much lower gain). L: control recorded while applying pulse of Na+ instead of dopamine.

From Kitai et al. 256


Figure 24.

Inhibition of nigral unit in cat by caudate stimulation. A, B: ongoing firing of unit in substantia nigra maintained by slow release of glutamate; single shock stimulation in caudate was 1.5 × threshold in A and 2 × threshold in B. C: strong inhibitory effect of γ‐aminobutyric acid on glutamate‐evoked discharge of same unit. DE: poststimulus time histograms of firing of nigral unit inhibited by caudate stimulation, before and after injection of 2.5 mg/kg picrotoxin.

AC from Feltz 136. Reproduced by permission of the Natl. Res. Counc. Can. from the Can. J. Physiol. Pharmacol. 49: 1113–1115, 1971. DE from Precht and Yoshida 402


Figure 25.

Schematic diagram of basal ganglia showing main connections between various nuclei as well as probable function. Cx, cerebral cortex; Cd, caudate; Thal, thalamus; Pal i. and Pal e., internal and external segments of globus pallidus; ST, subthalamic nucleus; SN, substantia nigra; Py, pyramidal tract; Put, putamen; M, midbrain.

From Yoshida and Obata 524


Figure 26.

Excitatory action of glutamate and ACh on caudate neuron in cat: above, DC trace showing quick depolarization caused by glutamate and slow depolarization caused by ACh (resting potential −38 mV). Discharge frequency indicated on same time base by histogram below.

From Bernardi et al. 29


Figure 27.

Electrical stimulation of guinea pig cortical slices causes selective enhancement of release of endogenous putative transmitter amino acids: glutamate (GLU), aspartate (ASP), and γ‐aminobutyric acid (GABA); in contrast to alanine (ALA), threonine, serine, and glutamine (TSGn), and also α‐aminoisobutyric (aib). Selective release clearly seen in control graph above is totally abolished in absence of calcium or in presence of high concentration of magnesium (compare two graphs below). Endogenous amino acids labeled by superfusion with radioactive glucose; exogenous ones by super‐fusion with radioactive amino acids. Increase in release during electrical stimulation (ordinates) expressed as multiple of spontaneous release

From Potashner 401, © 1978, with permission of Pergamon Press, Ltd


Figure 28.

A: excitation of cortical neuron in cat by acetylcholine shows typical slow time course of depolarization and firing. B: changes in resistance of motor cortex neuron evoked by ACh with and without simultaneous electrical excitation (heavy bar indicates period of ACh release). Open triangles, mean values of resistance increase from 21 cells (with standard errors) in absence of other stimulation; open circles, corresponding data from 24 cells made to fire throughout period of ACh application by intracellular injection of depolarizing current; note longer persisting increase in resistance. Filled circles, control data from 15 cells made to discharge by depolarizing current but without application of ACh.

A from Krnjević et al. 284; B from Woody et al. 513


Figure 29.

Effects of muscarinic agents on rate constants of [3H]acetylcholine release evoked by 25 mM K+ in 3 different cerebral tissues. Note enhancement of release by atropine and depression by physostygmine.

From Szerb 478
References
 1. Altmann, H., G. Ten eBruggencate, P. Pickelmann, and R. Steinberg. Effects of glutamate, aspartate, and two presumed antagonists on feline rubrospinal neurones. Pfluegers Arch. 364: 249–255, 1976.
 2. Altmann, H., G. Ten eBruggencate, P. Pickelmann, and R. Steinberg. Effects of GABA, glycine, picrotoxin and bicuculline methochloride on rubrospinal neurones in cats. Brain Res. 111: 337–345, 1976.
 3. Altmann, H., G. Ten eBruggencate, and W. Sonnhof. Differential strength of the action of glycine and GABA in hypoglossus nucleus. Pfluegers Arch. 331: 90–94, 1972.
 4. Alvarez‐Leefmans, F. J., A. De Santis, and R. Miledi. Effects of some divalent cations on synaptic transmission in frog spinal neurones. J. Physiol. London 294: 387–406, 1979.
 5. Anden, N.‐E., A. Dahlström, K. Fuxe, and K. Larsson. Further evidence for the presence of nigro‐neostriatal dopamine neurons in the rat. Am. J. Anat. 116: 329–333, 1965.
 6. Anden, N.‐E., M. G. M. Jukes, A. Lundberg, and L. Vyklicky. The effect of DOPA on the spinal cord. 1. Influence on transmission from primary afferents. Acta Physiol. Scand. 67: 373–386, 1966.
 7. Anden, N.‐E., M. G. M. Jukes, and A. Lundberg. The effect of DOPA on the spinal cord. 2. A pharmacological analysis. Acta Physiol. Scand. 67: 387–397, 1966.
 8. Anden, N.‐E., M. G. M. Jukes, A. Lundberg, and L. Vyklicky. The effect of DOPA on the spinal cord. Acta Physiol. Scand. 68: 322–336, 1966.
 9. Anderson, P., L. Gjerstad, and I. A. Langmoen. A cortical epilepsy model in vitro. In: Abnormal Neuronal Discharges, edited by N. Chalazonitis and M. Boisson. New York: Raven, 1978, p. 29–36.
 10. Anderson, E. G. Bulbospinal serotonin‐containing neurons and motor control. Federation Proc. 31: 107–112, 1972.
 11. Aprison, M. H., R. P. Shank, and R. A. Davidoff. A comparison of the concentration of glycine, a transmitter suspect, in different areas of the brain and spinal cord in seven different vertebrates. Comp. Biochem. Physiol. 28: 1345–1355, 1969.
 12. Aprison, M. H., and R. Werman. A combined neurochemical and neurophysiological approach to identification of central nervous system transmitters. In: Neurosciences Research, edited by S. Ehrenpreio and O. C. Solnitsky. New York: Academic, 1968, vol. 1, p. 143–174.
 13. Baker, P. F. Transport and metabolism of calcium ions in nerve. Prog. Biophys. Mol. Biol. 25: 177–223, 1972.
 14. Baker, P. F. The regulation of intracellular calcium. Symp. Soc. Exp. Biol. 30: 67–88, 1976.
 15. Balcar, V. J., and G. A. R. Johnston. The structural specificity of the high affinity uptake of l‐glutamate and l‐aspartate by rat brain slices. J. Neurochem. 19: 2657–2666, 1972.
 16. Barber, R., and K. Saito. Light microscopic visualization of GAD and GABA‐T in immunocytochemical preparations of rodent CNS. In: GABA in Nervous System Function, edited by E. Roberts, T. N. Chase, and D. B. Tower. New York: Raven, 1976, p. 113–132.
 17. Barber, R. P., J. E. Vaughn, K. Saito, B. J. McLaughlin, and E. Roberts. GABAergic terminals are presynaptic to primary afferent terminals in the substantia gelatinosa of the rat spinal cord. Brain Res. 141: 35–55, 1978.
 18. Barker, J. L., and R. N. McBurney. Different properties of single channels activated by GABA and glycine on cultured neurones. J. Physiol. London 284: 127P–128P, 1978.
 19. Barker, J. L., and T. G. Smith. Peptides as neurohormones. In: Neuroscience Symposia. Approaches to the Cell Biology of Neurons, edited by W. M. Cowan and J. A. Ferrendelli. Bethesda, MD: Soc. Neurosci., 1977, vol. 2, p. 340–373.
 20. Barrett, E. F., and J. N. Barrett. Separation of two voltage‐sensitive potassium currents, and demonstration of a tetrodo‐toxin‐resistant calcium current in frog motoneurones. J. Physiol. London 255: 737–774, 1976.
 21. Barrett, J. N., and E. F. Barrett. Excitation‐contraction coupling in skeletal muscle: blockade by high extracellular concentrations of calcium buffers. Science 200: 1270–1272, 1978.
 22. Barron, D. H., and B. H. C. Matthews. The interpretation of potential changes in the spinal cord. J. Physiol. London 92: 276–321, 1938.
 23. Bates, D., R. M. Weinshilboum, R. J. Campbell, and T. M. Sundt. The effect of lesions in the locus coeruleus on the physiological responses of the cerebral blood vessels in cats. Brain Res. 136: 431–443, 1977.
 24. Belcher, G., J. Davies, and R. W. Ryall. Glycine‐mediated inhibitory transmission of group Ia‐excited inhibitory interneurones by Renshaw cells. J. Physiol. London 256: 651–662, 1976.
 25. Belcher, G., and R. W. Ryall. Substance P and Renshaw cells: a new concept of inhibitory synaptic interactions. J. Physiol. London 272: 105–119, 1977.
 26. Ben‐Ari, Y., and J. S. Kelly. Dopamine evoked inhibition of single cells of the feline putamen and basolateral amygdala. J. Physiol. London 256: 1–21, 1976.
 27. Bennett, M. V. L. Electrical transmission: a functional analysis and comparison to chemical transmission. In: Handbook of Physiology. The Nervous System, edited by J. M. Brookhart and V. B. Mountcastle. Bethesda, MD: Am. Physiol. Soc., 1977, sect. 1, vol. I, pt. 1, chapt. 11, p. 357–416.
 28. Bergmans, J., and S. Grillner. Reciprocal control of spontaneous activity and reflex effects in static dynamic flexor γ‐motoneurones revealed by an injection of dopa. Acta Physiol. Scand. 77: 106–124, 1969.
 29. Berl, S., S. Puszkin, and W. J. Nicklas. Actomyosin‐like protein in brain. Science 179: 441–446, 1973.
 30. Bernardi, G., V. Floris, M. G. Marciani, C. Morocutti, and P. Stanzione. The action of acetylcholine and l‐glutamic acid on rat caudate neurons. Brain Res. 114: 134–138, 1976.
 31. Bernardi, G., M. G. Marciani, C. Morocutti, and P. Giacomini. The action of GABA on rat caudate neurones recorded intracellularly. Brain Res. 92: 511–515, 1975.
 32. Bird, E. D., and L. L. Iversen. Huntington's chorea. Postmortem measurements of glutamic decarboxylase, choline acetyltransferase and dopamine in basal ganglia. Brain 97: 457–472, 1974.
 33. Birdsall, N. J. M., and E. C. Hulme. Biochemical studies on muscarinic acetylcholine receptors. J. Neurochem. 27: 7–16, 1976.
 34. Biscoe, T. J., D. R. Curtis, and R. W. Ryall. An investigation of catecholamine receptors of spinal interneurones. Int. J. Neuropharmacol. 5: 429–434, 1966.
 35. Biscoe, T. J., J. Davies, A. Dray, R. H. Evans, M. R. Martin, and J. C. Watkins. D‐α‐aminoadipate, α, ε‐diaminopimelic acid and HA‐966 as antagonists of amino acid‐induced and synaptic excitation of mammalian spinal neurones in vivo. Brain Res. 148: 543–548, 1978.
 36. Bisti, S., G. Iosif, and P. Strata. Suppression of inhibition in the cerebellar cortex by picrotoxin and bicuculline. Brain Res. 28: 591–593, 1971.
 37. Bloom, F. E., E. Costa, and G. C. Salmoiraghi. Anesthesia and the responsiveness of individual neurons of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administered by microelectrophoresis. J. Pharmacol. Exp. Ther. 150: 244–252, 1965.
 38. Bloom, F. E., B. J. Hoffer, G. R. Siggins, J. L. Barker, and R. A. Nicoll. Effects of serotonin on central neurons: microiontophoretic administration. Federation Proc. 31: 97–106, 1972.
 39. Bradford, H. F. Metabolic response of synaptosomes to electrical stimulation: release of amino acids. Brain Res. 19: 239–247, 1970.
 40. Bradshaw, C. M., P. Bevan, and E. Szabadi. Adrenoceptors on cortical neurones. In: Recent Advances in the Pharmacology of Adrenoceptors, edited by E. Szabadi, C. M. Bradshaw, and P. Bevan. New York: Elsevier/North‐Holland, 1978, p. 83–91.
 41. Briggs, I. Ergothioneine in the central nervous system. J. Neurochem. 19: 27–35, 1972.
 42. Brooks, V. B. An intracellular study of the action of repetitive nerve volleys and of botulinum toxin on miniature end‐plate potentials. J. Physiol. London 134: 264–277, 1956.
 43. Brownstein, M. J., E. A. Mroz, M. L. Tapaz, and S. E. Leeman. On the origin of substance P and glutamic acid decarboxylase (GAD) in the substantia nigra. Brain Res. 135: 315–323, 1977.
 44. Buchwald, N. A., D. D. Price, L. Vernon, and C. D. Hull. Caudate intracellular response to thalamic and cortical inputs. Exp. Neurol. 38: 311–323, 1973.
 45. Buhrle, C. P., D. W. Richter, and U. Sonnhof. The action of glutamate upon the motoneuron membrane investigated by measuring extra‐ and intracellular ion activities. J. Physiol. London 284: 44P–45P, 1978.
 46. Burgen, A. S. V. Synaptic physiology. Nature London 204: 412, 1964.
 47. Burke, R. E., and P. Rudomin. Spinal neurons and synapses. In: Handbook of Physiology. The Nervous System, edited by J. M. Brookhart and V. B. Mountcastle. Bethesda, MD: Am. Physiol. Soc., 1977, sect. 1, vol. I, pt. 2, chapt. 24, 877–944.
 48. Burnstock, G. Purinergic nerves. Pharmacol. Rev. 24: 509–581, 1972.
 49. Campochiaro, P., and J. T. Coyle. Ontogenetic development of kainate neurotoxicitv: correlates with glutamatergic innervation. Proc. Natl. Acad. Sci. USA 75: 2025–2029, 1978.
 50. Caputo, C. Excitation and contraction processes in muscle. Annu. Rev. Biophys. Bioeng. 7: 63–83, 1978.
 51. Carlsson, A., B. Falck, K. Fuxe, and N.‐A. Hillarp. Cellular localization of monoamines in the spinal cord. Acta Physiol. Scand. 60: 112–119, 1964.
 52. Carlsson, A., T. Magnusson, and E. Rosengren. 5‐Hydroxytryptamine of the spinal cord normally and after transection. Experientia 19: 359–360, 1963.
 53. Carpenter, M. B. Anatomy of the basal ganglia and related nuclei: a review. Adv. Neurol. 14: 7–48, 1976.
 54. Catt, K. J., J. P. Harwood, G. Aguilera, and M. L. Dufau. Hormonal regulation of peptide receptors and target cell responses. Nature London 280: 109–116, 1979.
 55. Cattabeni, F., S. Koslow, and E. Costa. Gas chromatography‐mass fragmentography: a new approach to the estimation of amines and amine turnover. Adv. Biochem. Psychopharmacol. 6: 37–59, 1972.
 56. Chandler, W. K., R. F. Rakowski, and M. F. Schneider. Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. J. Physiol. London 254: 285–316, 1976.
 57. Cheung, W. Y., T. J. Lynch, and R. W. Wallace. An endogenous Ca2+‐dependent activator protein of brain adenylate cyclase and cyclic nucleotide phosphodiesterase. In: Adv. Cyclic Nucleotide Res. 9: 233–251, 1978.
 58. Christensen, H. N. Biological transport (2nd ed.). Reading, MA: Benjamin, 1975, p. 514.
 59. Chujo, T., Y. Yamada, and C. Yamamoto. Sensitivity of Purkinje cell dendrites to glutamic acid. Exp. Brain Res. 23: 293–300, 1975.
 60. Clark, R. M., and G. G. S. Collins. The release of endogenous amino acids from the rat visual cortex. J. Physiol. London 262: 383–400, 1976.
 61. Collier, B., and J. F. Mitchell. The central release of acetylcholine during consciousness and after brain lesions. J. Physiol. London 188: 83–98, 1967.
 62. Commissiong, J. W., C. L. Galli, and N. H. Neff. Differentiation of dopaminergic and noradrenergic neurons in rat spinal cord. J. Neurochem. 30: 1095–1099, 1978.
 63. Connor, D. Caudate nucleus neurones: correlation of the effects of substantia nigra stimulation with iontophoretic dopamine. J. Physiol. London 208: 691–703, 1970.
 64. Costa, E., and A. Guidotti. Molecular mechanisms in the receptor action of benzodiazepines. Annu. Rev. Pharmacol. Toxicol. 19: 531–545, 1979.
 65. Costantin, L. L. Activation in striated muscle. In: Handbook of Physiology. The Nervous System, edited by J. M. Brookhart and V. B. Mountcastle. Bethesda, MD: Am. Physiol. Soc., 1977, sect. 1, vol. I, pt. 1, chapt. 7, p. 215–259.
 66. Cotzias, G. C., M. H. Van Woert, and L. M. Schiffer. Aromatic amino acids and modification of Parkinsonism. N. Engl. J. Med. 276: 374–379, 1967.
 67. Crawford, J. M., and D. R. Curtis. Pharmacological studies on feline Betz cells. J. Physiol. London 186: 121–138, 1966.
 68. Crawford, J. M., D. R. Curtis, P. E. Voorhoeve, and V. J. Wilson. Acetylcholine sensitivity of cerebellar neurones in the cat. J. Physiol. London 186: 139–165, 1966.
 69. Creutzfeldt, O. D., H. D. Lux, and S. Watanabe. Electro‐physiology of cortical nerve cells. In: The Thalamus, edited by D. P. Purpura and M. D. Yahr. New York: Columbia Univ. Press, 1966, p. 209–235.
 70. Crossland, J., and J. F. Mitchell. The effect on the electrical activity of the cerebellum of a substance present in cerebellar extracts. J. Physiol. London 132: 391–405, 1956.
 71. Crossland, J., G. N. Woodruff, and J. F. Mitchell. Identity of the cerebellar factor. Nature London 203: 1388–1389, 1964.
 72. Cullheim, S., J.‐O. Kellerth, and S. Conradi. Evidence for direct synaptic interconnections between cat spinal α‐motoneurons via recurrent axon collaterals: a morphological study using intracellular injection of horseradish peroxidase. Brain Res. 132: 1–10, 1977.
 73. Curtis, D. R. Pharmacological investigations upon inhibition of spinal motoneurones. J. Physiol. London 145: 175–192, 1959.
 74. Curtis, D. R. Microelectrophoresis. In: Physical Techniques in Biological Research, Electrophysiological Methods, edited by W. L. Nastuk. New York: Academic, 1964, vol. V, pt. A, p. 144–190.
 75. Curtis, D. R. The pharmacology of spinal postsynaptic inhibition. In: Progress in Brain Research. Mechanisms of Synaptic Transmission, edited by K. Akert and P. G. Waser. Amsterdam: Elsevier, 1969, vol. 31, p. 171–189.
 76. Curtis, D. R., A. W. Duggan, D. Felix, G. A. R. Johnston, and H. McLennan. Antagonism between bicuculline and GABA in the cat brain. Brain Res. 33: 57–73, 1971.
 77. Curtis, D. R., and R. M. Eccles. The excitation of Renshaw cells by pharmacological agents applied electrophoretically. J. Physiol. London 141: 435–445, 1958.
 78. Curtis, D. R., C. J. A. Game, D. Lodge, and R. M. McCulloch. A pharmacological study of Renshaw cell inhibition. J. Physiol. London 258: 227–242, 1976.
 79. Curtis, D. R., L. Hösli, G. A. R. Johnston, and I. H. Johnston. The hyperpolarization of spinal motoneurones by glycine and related amino acids. Exp. Brain Res. 5: 235–258, 1968.
 80. Curtis, D. R., and G. A. R. Johnston. Amino acid transmitters in the mammalian central nervous system. Ergeb. Physiol. Biol. Chem. Exp. Pharmacol. 69: 97–188, 1974.
 81. Curtis, D. R., J. W. Phillis, and J. C. Watkins. The chemical excitation of spinal neurones by certain acidic amino acids. J. Physiol. London 150: 656–682, 1960.
 82. Curtis, D. R., and R. W. Ryall. The acetylcholine receptors of Renshaw cells. Exp. Brain Res. 2: 66–80, 1966.
 83. Dahlström, A., and K. Fuxe. Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol. Scand. Suppl. 247: 5–36, 1965.
 84. Davidson, N. Neurotransmitter Amino Acids. New York: Academic, 1976.
 85. Davidson, N., and C. A. P. Southwick. Amino acids and presynaptic inhibition in the rat cuneate nucleus. J. Physiol. London 219: 689–708, 1971.
 86. Davies, J., and A. Dray. Pharmacological and electrophysiological studies of morphine and enkephalin on rat supraspinal neurones and cat spinal neurones. Br. J. Pharmacol. 63: 87–96, 1978.
 87. Davies, J., and P. Tongroach. Tetanus toxin and synaptic inhibition in the substantia nigra and striatum of the rat. J. Physiol. London 290: 23–36, 1979.
 88. Davis, R., and P. C. Vaughan. Pharmacological properties of feline red nucleus. Int. J. Neuropharmacol. 8: 475–488, 1969.
 89. De Belleroche, J. S., and H. F. Bradford. On the site of origin of transmitter amino acids released by depolarization of nerve terminals in vitro. J. Neurochem. 29: 335–343, 1977.
 90. De Belleroche, J. S., and H. F. Bradford. Biochemical evidence for the presence of presynaptic receptors on dopaminergic nerve terminals. Brain Res. 142: 53–68, 1978.
 91. Decima, E. E. Effects of blood calcium changes on spinal reflex activity. Exp. Neurol. 36: 14–34, 1972.
 92. De Felice, L. J. Fluctuation analysis in neurobiology. Int. Rev. Neurobiol. 20: 169–208, 1977.
 93. DeFeudis, F. V. Central glycine‐receptors. Gen. Pharmacol. 9: 139–144, 1978.
 94. DeFeudis, F. V., and R. Martin del Rio. Is β‐alanine an inhibitory neurotransmitter? Gen. Pharmacol. 8: 177–180, 1977.
 95. De la Torre, J. C. Evidence for central innervation of intracerebral blood vessels: local cerebral blood flow measurements and histofluorescence analysis by the sucrose‐phosphate‐glyoxylic acid (SPG) method. Neuroscience 1: 455–457, 1976.
 96. Del Castillo, J., and B. Katz. Biophysical aspects of neuromuscular transmission. Prog. Biophys. 6: 121–170, 1956.
 97. Descarries, L., A. Beaudet, and K. C. Watkins. Serotonin nerve terminals in adult rat neocortex. Brain Res. 100: 563–588, 1975.
 98. Descarries, L., K. C. Watkins, and Y. Lapierre. Noradrenergic axon terminals in the cerebral cortex of rat. III. Topometric ultrastructural analysis. Brain Res. 133: 197–222, 1977.
 99. Deschenes, M., P. Feltz, and Y. Lamour. A model for an estimate in vivo of the ionic basis of presynaptic inhibition: an intracellular analysis of the GABA‐induced depolarization in rat dorsal root ganglia. Brain Res. 118: 486–493, 1976.
 100. Desclin, J. C. Histological evidence supporting the inferior olive as the major source of cerebellar climbing fibers in the rat. Brain Res. 77: 365–384, 1974.
 101. De Wied, D. Pituitary‐adrenal system hormones and behaviour. In: The Neurosciences: Third Study Program, edited by F. O. Schmitt and F. G. Worden. Cambridge: MIT Press, 1974, p. 653–666.
 102. Diamond, J., and S. Roper. Analysis of Mauthner cell responses to iontophoretically delivered pulses of GABA, glycine and l‐glutamate. J. Physiol. London 232: 113–128, 1973.
 103. Divac, I., F. Fonnum, and J. Storm‐Mathisen. High affinity uptake of glutamate in terminals of corticostriatal axons. Nature London 266: 377–378, 1977.
 104. Dodd, J., and J. S. Kelly. Is somatostatin an excitatory transmitter in the hippocampus? Nature London 273: 674–675, 1978.
 105. Douglas, W. W. Stimulus‐secretion coupling: the concept and clues from chromaffin and other cells. Brit. J. Pharmacol. 34: 451–474, 1968.
 106. Dray, A. The striatum and substantia nigra: a commentary on their relationships. Neuroscience 4: 1407–1439, 1979.
 107. Dray, A., J. Davies, N. R. Oakely, P. Tongroach, and S. Vellucci. The dorsal and medial raphe projections to the substantia nigra in the rat: electrophysiological, biochemical and behavioural observations. Brain Res. 151: 431–442, 1978.
 108. Dray, A., and D. W. Straughan. Synaptic mechanisms in the substantia nigra. J. Pharm. Pharmacol. 28: 400–405, 1976.
 109. Dreifuss, J. J., J. S. Kelly, and K. Krnjević. Cortical inhibition and γ‐aminobutyric acid. Exp. Brain Res. 9: 137–154, 1969.
 110. Dudar, J. D., and J. C. Szerb. The effect of topically applied atropine on resting and evoked cortical acetylcholine release. J. Physiol. London 203: 741–762, 1969.
 111. Duggan, A. W. The differential sensitivity to l‐glutamate and l‐aspartate of spinal interneurones and Renshaw cells. Exp. Brain Res. 19: 522–528, 1974.
 112. Duggan, A. W., and D. R. Curtis. Morphine and the synaptic activation of Renshaw cells. Neuropharmacology 11: 189–196, 1972.
 113. Duggan, A. W., J. G. Hall, and C. Y. Lee. Alpha‐bungaro‐toxin, cobra neurotoxin and excitation of Renshaw cells by acetylcholine. Brain Res. 107: 166–170, 1976.
 114. Dunlap, K., and G. D. Fischbach. Neurotransmitters decrease the calcium component of sensory nerve action potentials. Nature London 276: 837–839, 1978.
 115. Duvoisin, R. C., and C. Mytilineou. Where is l‐dopa decarboxylated in the striatum after 6‐hydroxydopamine nigrotomy? Brain Res. 152: 369–373, 1978.
 116. Eccles, J. C. The Neurophysiological Basis of Mind. Oxford: Clarendon, 1953.
 117. Eccles, J. C. The Physiology of Nerve Cells. Baltimore: Johns Hopkins Press, 1957.
 118. Eccles, J. C. The Physiology of Synapses. Berlin: Springer‐Verlag, 1964.
 119. Eccles, J. C. The cerebellum as a computer: patterns in space and time. J. Physiol. London 229: 1–32, 1973.
 120. Eccles, J. C., R. M. Eccles, and P. Fatt. Pharmacological investigations on a central synapse operated by acetylcholine. J. Physiol. London 131: 154–169, 1956.
 121. Eccles, J. C., P. Fatt, and K. Koketsu. Cholinergic and inhibitory synapses in a pathway from motor‐axon collaterals to motoneurones. J. Physiol. London 126: 524–562, 1954.
 122. Eccles, J. C., M. Ito, and J. Szentagothai. The cerebellum as a neuronal machine. New York: Springer‐Verlag, 1967.
 123. Eccles, J. C., R. Llinas, and K. Sasaki. The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J. Physiol. London 182: 268–296, 1966.
 124. Eckert, R. Bioelectric control of ciliary activity (locomotion in the ciliated protozoa is regulated by membrane‐limited calcium fluxes). Science 176: 473–481, 1972.
 125. Edstrom, J. P., and J. W. Phillis. The effects of AMP on the potential of rat cerebral cortical neurones. Can. J. Physiol. Pharmacol. 54: 787–790, 1976.
 126. Edwards, F. R., S. J. Redman, and B. Walmsley. Statistical fluctuations in charge transfer at Ia synapses on spinal motoneurones. J. Physiol. London 259: 665–688, 1976.
 127. Edwards, F. R., S. J. Redman, and B. Walmsley. The effect of polarizing currents on unitary Ia excitatory post‐synaptic potentials evoked in spinal motoneurones. J. Physiol. London 259: 705–723, 1976.
 128. Elde, R., and T. Hökfelt. Localization of hypophysiotropic peptides and other biologically active peptides within the brain. Annu. Rev. Physiol. 41: 587–602, 1979.
 129. Elliott, K. A. C., and N. M. van Gelder. Occlusion and metabolism of γ‐aminobutyric acid of brain tissue. J. Neurochem. 3: 28–40, 1958.
 130. Endo, M. Calcium release from the sarcoplasmic reticulum. Physiol. Rev. 57: 71–108, 1977.
 131. Engberg, I., J. A. Flatman, and J. D. C. Lambert. The actions of excitatory amino acids on motoneurones in the feline spinal cord. J. Physiol. London 288: 227–261, 1979.
 132. Engberg, I., A. Lundberg, and R. W. Ryall. The effect of reserpine on transmission in the spinal cord. Acta Physiol. Scand. 72: 115–122, 1968.
 133. Engberg, I., A. Lundberg, and R. W. Ryall. Is the tonic decerebrate inhibition of reflex paths mediated by monoaminergic pathways? Acta Physiol. Scand. 72: 123–133, 1968.
 134. Engberg, I., and K. C. Marshall. Mechanism of noradrenaline hyperpolarization in spinal cord motoneurones of the cat. Acta Physiol. Scand. 83: 142–144, 1971.
 135. Engberg, I., and K. C. Marshall. Reversal potential for Ia excitatory post synaptic potentials in spinal motoneurons of cats. Neuroscience 4: 1583–1591, 1979.
 136. Engberg, I., and R. W. Ryall. The inhibitory action of noradrenaline and other monoamines on spinal neurones. J. Physiol. London 185: 298–322, 1966.
 137. Erulkar, S. D., G. E. Dambach, and D. Mender. The effect of magnesium at motoneurons of the isolated spinal cord of the frog. Brain Res. 66: 413–424, 1974.
 138. Fahn, S. Regional distribution studies on GABA and other putative neurotransmitters and their enzymes. In: GABA in Nervous System Function, edited by E. Roberts, T. N. Chase, and D. B. Tower. New York: Raven, 1976, p. 169–186.
 139. Fedina, L., A. Lundberg, and L. Vyklicky. The effect of a noradrenaline liberator (4, α‐dimethyl‐tyramine) on reflex transmission in spinal cats. Acta Physiol. Scand. 83: 495–504, 1971.
 140. Feldberg, W., and M. Vogt. Acetylcholine synthesis in different regions of the central nervous system. J. Physiol. London 107: 372–381, 1948.
 141. Felpel, L. P. Effects of strychnine, bicuculline and picrotoxin on inhibition of hypoglossal motoneurons. J. Neurosci. Res. 3: 289–294, 1977.
 142. Feltz, P. γ‐Aminobutyric acid and a caudato‐nigral inhibition. Can. J. Physiol. Pharmacol. 49: 1113–1115, 1971.
 143. Feltz, P. Pharmacological considerations about establishing true actions of dopamine on striatal neurones with nigral inputs. In: Iontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System, edited by R. W. Ryall and J. S. Kelly. Amsterdam: Elsevier/North‐Holland, 1978, p. 25–38.
 144. Feltz, P., and D. Albe‐Fessard. A study of an ascending nigro‐caudate pathway. Electroencephalogr. Clin. Neurophysiol. 33: 179–193, 1972.
 145. Feltz, P., and J. De Champlain. Persistence of caudate unitary responses to nigral stimulation after destruction and functional impairment of the striatal dopaminergic terminals. Brain Res. 43: 595–600, 1972.
 146. Fibiger, H. C. Drugs and reinforcement mechanisms: a critical review of the catecholamine theory. Annu. Rev. Pharmacol. Toxicol. 18: 37–56, 1978.
 147. Fonnum, F. Comments on localization of neurotransmitters in the basal ganglia. In: Amino Acids as Chemical Transmitters, edited by F. Fonnum. New York: Plenum, 1978, p. 143–153.
 148. Fonnum, F., Z. Gottesfeld, and I. Grofova. Distribution of glutamate decarboxylase, choline acetyltransferase and aromatic amino acid decarboxylase in the basal ganglia of normal and operated rats. Evidence for striatopallidal, striatoentope‐duncular and striatonigral GABAergic fibres. Brain Res. 143: 125–138, 1978.
 149. Fonnum, F., I. Grofova, and E. Rinvik. Origin and distribution of glutamate decarboxylase in the nucleus subthalamicus of the cat. Brain Res. 153: 370–374, 1978.
 150. Fonnum, F., J. Storm‐Mathisen, and F. Walberg. Glutamate decarboxylase in inhibitory neurons. A study of the enzyme in Purkinje cell axons and boutons in the cat. Brain Res. 20: 259–275, 1970.
 151. Forssberg, H., and S. Grillner. The locomotion of the acute spinal cat injected with clonidine i.v. Brain Res. 50: 184–186, 1973.
 152. Fox, S., K. Krnjević, M. E. Morris, E. Puil, and R. Werman. Action of baclofen on mammalian synaptic transmission. Neuroscience 3: 495–515, 1978.
 153. Frederickson, R. C. A., M. Neuss, S. L. Morzorati, and W. J. McBride. A comparison of the inhibitory effects of taurine and GABA on identified Purkinje cells and other neurons in the cerebellar cortex of the rat. Brain Res. 145: 117–126, 1978.
 154. Fuxe, K., T. Hökfelt, and U. Ungerstedt. Morphological and functional aspects of central monoamine neurons. Int. Ref. Neurobiol. 13: 93–126, 1970.
 155. Gale, J. S., E. D. Bird, E. G. Spokes, L. L. Iversen, and T. Jessell. Human brain substance P: distribution in controls and Huntington's chorea. J. Neurochem. 30: 633–634, 1978.
 156. Gale, K., J.‐S. Hong, and A. Guidotti. Presence of substance P and GABA in separate striatonigral neurons. Brain Res. 136: 371–375, 1977.
 157. Galindo, A. GABA‐picrotoxin interaction in the mammalian central nervous system. Brain Res. 14: 763–767, 1969.
 158. Galindo, A., K. Krnjević, and S. Schwartz. Microintophoretic studies on neurones in the cuneate nucleus. J. Physiol. London 192: 359–377, 1967.
 159. Gallagher, J. P., H. Higashi, and S. Nishi. Characterization and ionic basis of GABA‐induced depolarizations recorded in vitro from cat primary afferent neurones. J. Physiol. London 275: 263–282, 1978.
 160. Geller, H. M., and D. J. Woodward. Responses of cultured cerebellar neurons to iontophoretically applied aminoacids. Brain Res. 74: 67–80, 1974.
 161. Glowinski, J. Storage and release of monoamines in the central nervous system. In: Handbook of Neurochemistry, edited by A. Lajtha. New York: Plenum, 1970, vol. 4, p. 91–114.
 162. Godfraind, J. M., H. Kawamura, K. Krnjević, and R. Pumain. Actions of dinitrophenol and some other metabolic inhibitors on cortical neurones. J. Physiol. London 215: 199–222, 1971.
 163. Godfraind, J. M., K. Krnjević, H. Maretić, and R. Pumain. Inhibition of cortical neurones by imidazole and some derivatives. Can. J. Physiol. Pharmacol. 51: 790–797, 1973.
 164. Godfraind, J. M., K. Krnjević, and R. Pumain. Doubtful value of bicuculline as a specific antagonist of GABA. Nature London 228: 675–676, 1970.
 165. Godfraind, J. M., and R. Pumain. Cyclic adenosine monophosphate and norepinephrine: effect on Purkinje cells in rat cerebellar cortex. Science 174: 1257–1258, 1971.
 166. Graham, L. T., R. P. Shank, R. Werman, and M. H. Aprison. Distribution of some synaptic transmitter suspects in cat spinal cord: glutamic acid, aspartic acid, γ‐aminobutyric acid, glycine, and glutamine. J. Neurochem. 14: 465–472, 1967.
 167. Granit, R. The Basis of Motor Control. New York: Academic, 1970.
 168. Greengard, P. Cyclic nucleotides, protein phosphorylation and neuronal function. Adv. Cyclic Nucleotide Res. 5: 585–601, 1975.
 169. Greengard, P. Possible role for cyclic nucleotides and phosphorylated membrane proteins in postsynaptic actions of neurotransmitters. Nature London 260: 101–108, 1976.
 170. Grillner, S. Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol. Rev. 55: 247–304, 1975.
 171. Grillner, S., T. Hongo, and A. Lundberg. The effect of DOPA on the spinal cord. 7. Reflex activation of static γ‐motoneurones from the flexor reflex afferents. Acta Physiol. Scand. 70: 403–411, 1967.
 172. Grossman, M. I. Chemical messengers: a view from the gut. Federation Proc. 38: 2341–2343, 1979.
 173. Grubb, R. L., M. E. Raichle, and J. O. Eichling. Peripheral sympathetic regulation of brain water permeability. Brain Res. 144: 204–207, 1978.
 174. Gruol, D. L., J. L. Barker, L. M. Huang, and T. G. Smith. Is naloxone a specific opiate antagonist (Abstract)? Federation Proc. 38: 1401, 1979.
 175. Guyenet, P. G., and G. K. Aghajanian. Antidromic identification of dopaminergic and other output neurons of the rat substantia nigra. Brain Res. 150: 69–84, 1978.
 176. Hackett, J. T., S.‐M. Hou, and S. L. Cochran. Glutamate and synaptic depolarization of Purkinje cells evoked by parallel fibers and by climbing fibers. Brain Res. 170: 377–380, 1979.
 177. Haigler, H. J., and G. K. Aghajanian. Peripheral serotonin antagonists: failure to antagonize serotonin in brain areas receiving a prominent serotonergic input. J. Neural. Transm. 35: 257–273, 1974.
 178. Haldane, J. B. S. La signalisation animale. Annee Biol. 58: 89–98, 1954.
 179. Hamberger, A., G. Chiang, E. S. Nylén, S. W. Scheff, and C. W. Cotman. Stimulus evoked increase in the biosynthesis of the putative neurotransmitter glutamate in the hippocampus. Brain Res. 143: 549–555, 1978.
 180. Hammerstad, J. P., J. E. Murray, and R. W. P. Cutler. Efflux of amino acid neurotransmitters from rat spinal cord slices. II. Factors influencing the electrically induced efflux of [14C]glycine and 3H‐GABA. Brain Res. 35: 357–367, 1971.
 181. Harvey, A. M., and F. C. MacIntosh. Calcium and synaptic transmission in a sympathetic ganglion. J. Physiol. London 97: 408–416, 1940.
 182. Headley, P. M., A. W. Duggan, and B. T. Griersmith. Selective reduction by noradrenaline and 5‐hydroxytryptamine of nociceptive responses of cat dorsal horn neurones. Brain Res. 145: 185–189, 1978.
 183. Hebb, C. O., K. Krnjević, and A. Silver. Effect of undercutting on the acetylcholinesterase and choline acetyltransferase activity in the cat's cerebral cortex. Nature London 198: 692, 1963.
 184. Hebb, C. O., and A. Silver. Choline acetylase in the central nervous system of man and some other mammals. J. Physiol. London 134: 718–728, 1956.
 185. Heidmann, T., and J.‐P. Changeux. Structural and functional properties of the acetylcholine receptor protein in its purified and membrane‐bound states. Annu. Rev. Biochem. 47: 317–357, 1978.
 186. Henderson, G., J. Hughes, and H. W. Kosterlitz. In vitro release of Leu‐ and Met‐enkephalin from the corpus striatum. Nature London 271: 677–678, 1978.
 187. Henry, J. L. Effects of substance P on functionally identified units in cat spinal cord. Brain Res. 114: 439–451, 1976.
 188. Henry, J. L., K. Krnjević, and M. E. Morris. Substance P and spinal neurones. Can. J. Physiol. Pharmacol. 53: 423–432, 1975.
 189. Herz, A., and W. Zieglgänsberger. The influence of microelectrophoretically applied biogenic amines, cholinominetics and procaine on synaptic excitation in the corpus striatum. Int. J. Neuropharmacol. 7: 221–230, 1968.
 190. Hicks, T. P., J. G. Hall, and H. McLennan. Ranking of excitatory amino acids by the antagonists glutamic acid diethylester and D‐α‐aminoadipic acid. Can. J. Physiol. Pharmacol. 56: 901–907, 1978.
 191. Hicks, T. P., and H. McLennan. Amino acids and the synaptic pharmacology of granule cells in the dentate gyrus of the rat. Can. J. Physiol. Pharmacol. 57: 973–978, 1979.
 192. Hill, R. G., M. A. Simmonds, and D. W. Straughan. A comparative study of some convulsant substances as γ‐aminobutyric acid antagonists in the feline cerebral cortex. Br. J. Pharmacol. 49: 37–51, 1973.
 193. Hiller, J. M., E. J. Simon, S. M. Crain, and E. R. Peterson. Opiate receptors in cultures of fetal mouse dorsal root ganglia (DRG) and spinal cord: predominance in DRG neurites. Brain Res. 145: 396–400, 1978.
 194. Hoffer, B. J., R. Freedman, D. Puro, and D. J. Woodward. Interaction of norepinephrine with cerebellar neuronal circuitry. Neurosci. Abstr. 1: 204, 1975.
 195. Hökfelt, T., R. Elde, O. Johansson, A. Ljungdahl, M. Schultzberg, K. Fuxe, M. Goldstein, G. Nilsson, B. Pernow, L. Terenius, D. Ganten, S. L. Jeffcoate, J. Rehfeld, and S. Said. Distribution of peptide‐containing neurons. In: Psychopharmacology: A Generation of Progress, edited by M. A. Lipton, A. Di Mascio, and K. F. Killam. New York: Raven, 1978, p. 39–66.
 196. Hökfelt, T., R. Elde, O. Johansson, R. Luft, G. Nilsson, and A. Arimura. Immunohistochemical evidence for separate populations of somatostatin‐containing and substance P–containing primary afferent neurons in the rat. Neuroscience 1: 131–136, 1976.
 197. Hökfelt, T., and K. Fuxe. Cerebellar monoamine nerve terminals, a new type of afferent fibers to the cortex cerebelli. Exp. Brain Res. 9: 63–72, 1969.
 198. Hökfelt, T., J. O. Kellerth, G. Nilsson, and B. Pernow. Substance P: localization in the central nervous system and in some primary sensory neurons. Science 190: 889–890, 1975.
 199. Hökfelt, T., and A. Ljungdahl. Light and electron microscopic autoradiography on spinal cord slices after incubation with labelled glycine. Brain Res. 32: 189–194, 1971.
 200. Hökfelt, T., and A. Ljungdahl. Autoradiographic identification of cerebral and cerebellar cortical neurons accumulating labeled gamma‐aminobutyric acid (3H‐GABA). Exp. Brain Res. 14: 354–362, 1972.
 201. Holton, F. A., and P. Holton. The capillary dilator substances in drug powders of spinal roots; a possible role of adenosine triphosphate in chemical transmission from nerve endings. J. Physiol. London 126: 124–140, 1954.
 202. Hong, J. S., H. Y. T. Yang, G. Racagni, and E. Costa. Projections of substance P containing neurons from neostriatum to substantia nigra. Brain Res. 122: 541–544, 1977.
 203. Hopkin, J., and M. J. Neal. Effect of electrical stimulation and high potassium concentrations on the efflux of [14C]glycine from slices of spinal cord. Br. J. Pharmacol. 42: 215–223, 1971.
 204. Hornykiewicz, O. Dopamine: its physiology, pharmacology and pathological neurochemistry. In: Biogenic Amines and Physiological Membranes in Drug Therapy, edited by J. H. Biel and L. B. Abood. New York: Dekker, 1971, pt. B, p. 173–258.
 205. Hornykiewicz, O. Parkinson's disease: from brain homogenate to treatment. Federation Proc. 32: 183–190, 1973.
 206. Horton, E. W. Hypotheses on physiological roles of prostaglandins. Physiol. Rev. 49: 122–161, 1969.
 207. Hosey, M. M., and M. Tao. Protein kinases and membrane phosphorylation. Curr. Top. Membr. Transp. 9: 233–320, 1977.
 208. Hösli, L., P. F. Andres, and E. Hösli. Ionic mechanisms associated with the depolarization by glutamate and aspartate on human and rat spinal neurones in tissue culture. Pfluegers Arch. 363: 43–48, 1976.
 209. ösli, L., A. K. Tebecis, and H. P. Schonwetter. A comparison of the effects of monoamines on neurones of the bulbar reticular formation. Brain Res. 25: 357–370, 1971.
 210. Hounsgaard, J. Inhibition produced by iontophoretically applied acetylcholine in area CA1 of thin hippocampal slices from the rat. Acta Physiol. Scand. 103: 110–111, 1978.
 211. Huffman, R. D., and R. Davis. Pharmacology of the brachium conjunctivum: red nucleus synaptic system in the baboon. J. Neurosci. Res. 3: 175–192, 1977.
 212. Hughes, J. Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine. Brain Res. 88: 295–308, 1975.
 213. Hull, C. D., G. Bernardi, D. D. Price, and N. A. Buchwald. Intracellular responses of caudate neurons to temporally and spatially combined stimuli. Exp. Neurol. 38: 324–336, 1973.
 214. Hultborn, H. Convergence on interneurones in the reciprocal Ia inhibitory pathway to motoneurones. Acta Physiol. Scand. Suppl. 375: 5–42, 1972.
 215. Hultborn, H., E. Jankowska, and S. Lindström. Recurrent inhibition of interneurones monosynaptically activated from group Ia afferents. J. Physiol. London 215: 613–636, 1971.
 216. Hunt, D. F., and F. W. Crow. Electron captive negative chemical ionization mass spectrometry. Analyt. Chem. 50: 1781–1784, 1978.
 217. Hutchinson, G. B., H. McLennan, and H. V. Wheal. The responses of Renshaw cells and spinal interneurones of the rat to l‐glutamate and l‐aspartate. Brain Res. 141: 129–136, 1978.
 218. Huxley, A. F., and R. E. Taylor. Local activation of striated muscle fibres. J. Physiol. London 144: 426–441, 1958.
 219. Israel, M., and V. P. Whittaker. The isolation of mossy fibre endings from the granular layer of the cerebellar cortex. Experientia 21: 325–327, 1965.
 220. Ito, M. Neurophysiological aspects of the cerebellar motor control system. Int. J. Neurol. 7: 162–176, 1970.
 221. Ito, M., S. M. Highstein, and T. Tsuchiya. The postsynaptic inhibition of rabbit oculomotor neurones by secondary vestibular impulses and its blockage by picrotoxin. Brain Res. 17: 520–523, 1970.
 222. Ito, M., and M. Yoshida. The origin of cerebellar‐induced inhibition of Deiters' neurones. 1. Monosynaptic initiation of the inhibitory postsynaptic potentials. Exp. Brain Res. 2: 330–349, 1966.
 223. Ito, M., M. Yoshida, K. Obata, N. Kawai, and M. Udo. Inhibitory control of intracerebellar nuclei by the Purkinje cell axons. Exp. Brain Res. 10: 64–80, 1970.
 224. Iversen, L. L. Role of transmitter uptake mechanisms in synaptic neurotransmission. Br. J. Pharmacol. 41: 571–591, 1971.
 225. Jan, Y. N., L. Y. Jan, and S. W. Kuffler. A peptide as a possible transmitter in sympathetic ganglia of the frog. Proc. Natl. Acad. Sci. USA 76: 1501–1505, 1979.
 226. Jankowska, E., M. G. M. Jukes, S. Lund, and A. Lundberg. The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. Acta Physiol. Scand. 70: 369–388, 1967.
 227. Jankowska, E., and S. Lindström. Morphological identification of Renshaw cells. Acta Physiol. Scand. 81: 428–430, 1971.
 228. Jankowska, E., and S. Lindström. Morphology of interneurones mediating Ia reciprocal inhibition of motoneurones in the spinal cord of the cat. J. Physiol. London 226: 805–823, 1972.
 229. Jankowska, E., Y. Padel, and R. Tanaka. Projections of pyramidal tract cells to α‐motoneurones innervating hind‐limb muscles in the monkey. J. Physiol. London 249: 637–667, 1975.
 230. Jankowska, E., and W. J. Roberts. Synaptic actions of single interneurones mediating reciprocal Ia inhibition of motoneurones. J. Physiol. London 222: 623–642, 1972.
 231. Jankowska, E., and R. Tanaka. Neuronal mechanism of the disynaptic inhibition evoked in primate spinal motoneurones from the corticospinal tract. Brain Res. 75: 163–166, 1974.
 232. Jasper, H., and I. Koyama. Rate of release of amino acids from the cerebral cortex in the cat as affected by brainstem and thalamic stimulation. Can. J. Physiol. Pharmacol. 47: 889–905, 1969.
 233. Jessell, T. M. Substance P release from the rat substantia nigra. Brain Res. 151: 469–478, 1978.
 234. Johnson, J. L. Glutamic acid as a synaptic transmitter candidate in the dorsal sensory neuron: reconsiderations. Life Sci. 20: 1637–1644, 1977.
 235. Johnson, E. S., M. H. T. Roberts, A. Sobieszek, and D. W. Straughan. Noradrenaline sensitive cells in cat cerebral cortex. Int. J. Neuropharmacol. 8: 549–566, 1969.
 236. Johnston, G. A. R. Physiologic pharmacology of GABA and its antagonists in the vertebrate nervous system. In: GABA in Nervous System Function, edited by E. Roberts, T. N. Chase, and D. B. Tower. New York: Raven, 1976, p. 395–411.
 237. Johnston, G. A. R. Neuropharmacology of amino acid inhibitory transmitters. Annu. Rev. Pharmacol. Toxicol. 18: 269–289, 1978.
 238. Johnston, G. A. R., and L. L. Iversen. Glycine uptake in rat central nervous systems slices and homogenates: evidence for different uptake systems in spinal cord and cerebral cortex. J. Neurochem. 18: 1951–1961, 1971.
 239. Johnstone, R. M. Electrogenic amino acid transport. Can. J. Physiol. Pharmacol. 57: 1–15, 1979.
 240. Jordan, L. M., D. A. McCrea, J. D. Steeves, and J. E. Menzies. Noradrenergic synapses and effects of noradrenaline on interneurones in the ventral horn of the cat spinal cord. Can. J. Physiol. Pharmacol. 55: 399–412, 1977.
 241. Jordan, L. M., and J. D. Steeves. Chemical lesioning of the spinal noradrenaline pathway: effects on locomotion in the cat. In: Neural Control of Locomotion, edited by R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart. New York: Plenum, 1976, p. 769–773.
 242. Kan, K.‐S. K., L.‐P. Chao, and L. F. Eng. Immunohistochemical localization of choline acetyltransferase in rabbit spinal cord and cerebellum. Brain Res. 146: 221–229, 1978.
 243. Kanno, T., D. E. Cochrane, and W. W. Douglas. Exocytosis (secretory granule extrusion) induced by injection of calcium into mast cells. Can. J. Physiol. Pharmacol. 51: 1001–1004, 1973.
 244. Karlsen, R. L., and F. Fonnum. Evidence for glutamate as a neurotransmitter in the corticofugal fibres to the dorsal lateral geniculate body and the superior colliculus in rats. Brain Res. 151: 457–467, 1978.
 245. Kasa, P., S. P. Mann, and C. Hebb. Localization of choline acetyltransferase. Nature London 226: 812–816, 1970.
 246. Kasa, P., and A. Silver. The correlation between choline acetyltransferase and acetylcholinesterase activity in different areas of the cerebellum of rat and guinea pig. J. Neurochem. 16: 389–396, 1969.
 247. Kasamatsu, T., and J. D. Pettigrew. Depletion of brain catecholamines: failure of ocular dominance shift after monocular occlusion in kittens. Science 194: 206–208, 1976.
 248. Katz, B. Nerve, Muscle and Synapse. New York: McGraw‐Hill, 1966.
 249. Katz, B. The Release of Neural Transmitter Substances. Liverpool: University Press, 1969.
 250. Katz, B., and R. Miledi. The characteristics of ‘end‐plate noise’ produced by different depolarizing drugs. J. Physiol. London 230: 707–717, 1973.
 251. Katz, B., and R. Miledi. Transmitter leakage from motor nerve endings. Proc. R. Soc. London Ser. B 196: 59–72, 1977.
 252. Katz, B., and R. Miledi. The reversal potential at the desensitized end‐plate. Proc. R. Soc. London Ser. B 199: 329–334, 1977.
 253. Kawamura, H., and L. Provini. Depression of cerebellar Purkinje cells by microiontophoretic application of GABA and related amino acids. Brain Res. 24: 293–304, 1970.
 254. Kebabian, J. W. Venom of Russell's viper uncouples the dopamine receptor from striatal adenylyl cyclase. Brain Res. 144: 194–198, 1978.
 255. Kebabian, J. W., G. L. Petzold, and P. Greengard. Dopamine‐sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor.” Proc. Natl. Acad. Sci. USA 69: 2145–2149, 1972.
 256. Kellerth, J. O. Aspects on the relative significance of pre‐and postsynaptic inhibition in the spinal cord. In: Structure and Function of Inhibitory Neuronal Mechanisms, edited by C. von Euler, S. Skoglund, and V. Söderberg. Oxford: Pergamon, 1968, p. 197–212.
 257. Kelly, J. S., and K. Krnjević. The action of glycine on cortical neurones. Exp. Brain Res. 9: 155–163, 1969.
 258. Kelly, J. S., and L. P. Renaud. On the pharmacology of the γ‐aminobutyric acid receptors on the cuneo‐thalamic relay cells of the cat. Br. J. Pharmacol. 48: 369–386, 1973.
 259. Kemp, J. M., and T. P. S. Powell. The synaptic organization of the caudate nucleus. Philos. Trans. R. Soc. London Ser. B 262: 403–412, 1971.
 260. Kievit, J., and H. G. J. M. Kuypers. Basal forebrain and hypothalamic connections to frontal and parietal cortex in the rhesus monkey. Science 187: 660–662, 1974.
 261. Kim, R., K. Nakano, A. Jayaraman, and M. B. Carpenter. Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey. J. Comp. Neurol. 169: 263–290, 1976.
 262. Kim, J. S., R. Hassler, P. Haug, and K.‐S. Pair. Effect of frontal cortex ablation on striatal glutamic acid level in rat. Brain Res. 132: 370–374, 1977.
 263. Kitai, S. T., J. D. Kocsis, and J. Wood. Origin and characteristics of the cortico‐caudate afferents: an anatomical and electrophysiological study. Brain Res. 118: 137–141, 1976.
 264. Kitai, S. T., M. Sugimori, and J. D. Kocsis. Excitatory nature of dopamine in the nigro‐caudate pathway. Exp. Brain Res. 24: 351–363, 1976.
 265. Kobayashi, R. M., M. Palkovits, R. E. Hruska, R. Rothschild, and H. I. Yamamura. Regional distribution of muscarinic cholinergic receptors in rat brain. Brain Res. 154: 12–23, 1978.
 266. Kocsis, J. D., and S. T. Kitai. Dual excitatory inputs to caudate spiny neurons from substantia nigra stimulation. Brain Res. 138: 271–283, 1977.
 267. Krivoy, W. A., J. R. Couch, J. L. Henry, and J. M. Stewart. Synaptic modulation by substance P. Federation Proc. 38: 2344–2347, 1979.
 268. Kriz, N., E. Sykova, and L. Vyklicky. Extracellular potassium changes in the spinal cord of the cat and their relation to slow potentials, active transport and impulse transmission. J. Physiol. London 249: 167–182, 1975.
 269. Krnjević, K. Microiontophoresis. In: Methods of Neurochemistry, edited by R. Fried. New York: Dekker, 1971, p. 129–172.
 270. Krnjević, K. Chemical nature of synaptic transmission in vertebrates. Physiol. Rev. 54: 418–540, 1974.
 271. Krnjević, K. Acetylcholine receptors in vertebrate CNS. In: Handbook of Psychopharmacology, edited by L. L. Iversen, and S. H. Snyder. New York: Plenum, 1975, vol. 6, p. 97–125.
 272. Krnjević, K. Effects of substance P on central neurons in cats. In: Substance P, edited by U. S. von Euler and B. Pernow. New York: Raven, 1977, p. 217–230.
 273. Krnjević, K., Y. Lamour, J. F. MacDonald, and A. Nistri. Intracellular actions of monoamine transmitters. Can. J. Physiol. Pharmacol. 56: 896–900, 1978.
 274. Krnjević, K., Y. Lamour, J. F. MacDonald, and A. Nistri. Depression of monosynaptic EPSPs by Mn and Co in cat spinal cord. Neuroscience 4: 1331–1339, 1979.
 275. Krnjević, K., and D. Lekić. Substance P selectively blocks excitation of Renshaw cell by acetylcholine. Can. J. Physiol. Pharmacol. 55: 958–961, 1977.
 276. Krnjević, K., and A. Lisiewicz. Injections of calcium ions into spinal motoneurones. J. Physiol. London 225: 363–390, 1972.
 277. Krnjević, K., and R. Miledi. Some effects of adrenaline upon neuromuscular propagation in rats. J. Physiol. London 141: 291–304, 1958.
 278. Krnjević, K., and R. Miledi. Acetylcholine in mammalian neuromuscular transmission. Nature London 182: 805–806, 1958.
 279. Krnjević, K., and J. F. Mitchell. The release of acetylcholine in the isolated rat diaphragm. J. Physiol. London 155: 246–262, 1961.
 280. Krnjević, K., and M. E. Morris. An excitatory action of substance P on cuneate neurones. Can. J. Physiol. Pharmacol. 52: 736–744, 1974.
 281. Krnjević, K., and M. E. Morris. Extracellular accumulation of K+ evoked by activity of primary afferent fibers in the cuneate nucleus and dorsal horn of cats. Can. J. Physiol. Pharmacol. 52: 852–871, 1974.
 282. Krnjević, K., and M. E. Morris. Correlation between extracellular focal potentials and K+ potentials evoked by primary afferent activity. Can. J. Physiol. Pharmacol. 53: 912–922, 1975.
 283. Krnjević, K., and J. W. Phillis. Iontophoretic studies of neurones in the mammalian cerebral cortex. J. Physiol. London 165: 274–304, 1963.
 284. Krnjević, K., and J. W. Phillis. Acetylcholine‐sensitive cells in the cerebral cortex. J. Physiol. London 166: 296–327, 1963.
 285. Krnjević, K., and J. W. Phillis. Pharmacological properties of acetylcholine‐sensitive cells in the cerebral cortex. J. Physiol. London 166: 328–350, 1963.
 286. Krnjević, K., and J. W. Phillis. Actions of certain amines on cerebral cortical neurones. Br. J. Pharmacol. Chemother. 20: 471–490, 1963.
 287. Krnjević, K., and E. Puil. Electrophysiological studies on actions of taurine. In: Taurine, edited by R. Huxtable and A. Barbeau. New York: Raven, 1976, p. 179–189.
 288. Krnjević, K., E. Puil, and R. Werman. Is cyclic guanosine monophosphate the internal “second messenger” for cholinergic actions on central neurons? Can. J. Physiol. Pharmacol. 54: 172–176, 1976.
 289. Krnjević, K., E. Puil, and R. Werman. GABA and glycine actions on spinal motoneurones. Can. J. Physiol. Pharmacol. 55: 658–669, 1977.
 290. Krnjević, K., E. Puil, and R. Werman. Bicuculline, benzyl penicillin and inhibitory amino acids in the spinal cord of the cat. Can. J. Physiol. Pharmacol. 55: 670–680, 1977.
 291. Krnjević, K., E. Puil, and R. Werman. EGTA and moto‐neuronal after‐potentials. J. Physiol. London 275: 199–223, 1978.
 292. Krnjević, K., R. Pumain, and L. Renaud. Excitation of cortical cells by barium. J. Physiol. London 211: 43P–44P, 1970.
 293. Krnjević, K., R. Pumain, and L. Renaud. The mechanism of excitation by acetylcholine in the cerebral cortex. J. Physiol. London 215: 247–268, 1971.
 294. Krnjević, K., M. Randić, and D. W. Straughan. Ergothioneine and central neurones. Nature London 205: 603–604, 1965.
 295. Krnjević, K., M. Randić, and D. W. Straughan. Inhibitory process in the cerebral cortex. J. Physiol. London 184: 16–48, 1966.
 296. Krnjević, K., M. Randić, and D. W. Straughan. Pharmacology of cortical inhibition. J. Physiol. London 184: 78–105, 1966.
 297. Krnjević, K., and S. Schwartz. Some properties of unresponsive cells in the cerebral cortex. Exp. Brain Res. 3: 306–319, 1967.
 298. Krnjević, K., and S. Schwartz. The action of γ‐aminobutyric acid on cortical neurones. Exp. Brain Res. 3: 320–336, 1967.
 299. Krnjević, K., and A. Silver. A histochemical study of cholinergic fibres in the cerebral cortex. J. Anat. 99: 711–759, 1965.
 300. Krnjević, K., and A. Silver. Acetylcholinesterase in the developing forebrain. J. Anat. 100: 63–89, 1966.
 301. Kuba, K. Effects of catecholamines on the neuromuscular junction in the rat diaphragm. J. Physiol. London 211: 551–570, 1970.
 302. Kuffler, S. W. Specific excitability of the end‐plate region in normal and denervated muscle. J. Neurophysiol. 6: 99–110, 1943.
 303. Kuffler, S. W., and D. Yoshikami. The number of transmitter molecules in a quantum: an estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. J. Physiol. London 251: 465–482, 1975.
 304. Kuhar, M. J. Histochemical localization of opiate receptors and opioid peptides. Federation Proc. 37: 153–157, 1978.
 305. Kuno, M. Quantum aspects of central and ganglionic synaptic transmission in vertebrates. Physiol. Rev. 51: 647–678, 1971.
 306. Kupfermann, I. Modulatory actions of neurotransmitters. Annu. Rev. Neurosci. 2: 447–465, 1979.
 307. Kuriyama, K., B. Haber, B. Sisken, and E. Roberts. The γ‐aminobutyric acid system in rabbit cerebellum. Proc. Natl. Acad. Sci. USA 55: 846–852, 1966.
 308. Lake, N., and L. M. Jordan. Failure to confirm cyclic AMP as second messenger for norepinephrine in rat cerebellum. Science 183: 663–664, 1974.
 309. Landgren, S., C. G. Phillips, and R. Porter. Minimal synaptic actions of pyramidal impulses on some alpha motoneurones of the baboon's hand and forearm. J. Physiol. London 161: 91–111, 1962.
 310. Lapierre, Y., A. Beaudet, N. Demianczuk, and L. Descarries. Noradrenergic axon terminals in the cerebral cortex of rat. II. Quantitative data revealed by light and electron microscope radioautography of the frontal cortex. Brain Res. 63: 175–182, 1973.
 311. Larramendi, L. M. H., and T. Victor. Synapses on the Purkinje cell spines in the mouse. An electron microscopic study. Brain Res. 5: 15–30, 1967.
 312. Larson, M. D. An analysis of the action of strychnine on the recurrent IPSP and amino acid induced inhibitions in the cat spinal cord. Brain Res. 15: 185–200, 1969.
 313. Lavyne, M. H., W. A. Koltun, J. A. Clement, D. L. Rosene, K. S. Pickren, N. T. Zervas, and R. J. Wurtman. Decrease in neostriatal blood flow after D‐amphetamine administration or electrical stimulation of the substantia nigra. Brain Res. 135: 76–86, 1977.
 314. Leeman, S. E., and E. A. Mroz. Substance P. Life Sci. 15: 2033–2044, 1974.
 315. Lekić, D. Presynaptic depression of synaptic response of Renshaw cells by adenosine 5′‐monophosphate. Can. J. Physiol. Pharmacol. 55: 1391–1393, 1977.
 316. Lembeck, F. Zur Frage der centralen Übertragung afferenter Impulse. III. Das Vorkommen und die Bedeutung der Substanz P in den dorsalen Wurzeln des Ruckenmarks. Arch. Exp. Pathol. Pharmakol. 219: 197–213, 1953.
 317. Levi, G., and M. Raiteri. Modulation of γ‐aminobutyric acid transport in nerve endings: role of extracellular γ‐aminobutyric acid and of cationic fluxes. Proc. Natl. Acad. Sci. USA 75: 2981–2985, 1978.
 318. Levy, R. A. GABA: a direct depolarizing action at the mammalian primary afferent terminal. Brain Res. 76: 155–160, 1974.
 319. Levy, R. A. The effect of intravenously administered γ‐aminobutyric acid on afferent fiber polarization. Brain Res. 92: 21–34, 1975.
 320. Levy, R. A. The role of GABA in primary afferent depolarization. Prog. Neurobiol. Oxford 9: 211–267, 1977.
 321. Lewis, P. R., and Z. J. Selim. A combination of two histochemical techniques for tracing putative cholinergic central neurones. J. Physiol. London 284: 29P–30P, 1978.
 322. Lindvall, O., A. Bjorklund, and I. Divac. Organization of catecholamine neurons projecting to the frontal cortex in the rat. Brain Res. 142: 1–24, 1978.
 323. Ljungdahl, A., T. Hökfelt, and G. Nilsson. Distribution of substance P‐like immunoreactivity in the central nervous system of the rat. 1. Cell bodies and nerve terminals. Neuroscience 3: 861–943, 1978.
 324. Llinas, R. Electrical synaptic transmission in the mammalian central nervous system. In: Golgi Centennial Symposium Proceedings, edited by M. Santini. New York: Raven, 1975, p. 379–386.
 325. Llinas, R., and R. Baker. A chloride‐dependent inhibitory postsynaptic potential in cat trochlear motoneurons. J. Neurophysiol. 35: 484–492, 1972.
 326. Lodge, D., D. R. Curtis, and S. J. Brand. Pharmacological study of the inhibition of ventral group la‐excited spinal interneurones. Exp. Brain Res. 29: 97–105, 1977.
 327. Lynch, G. S., P. A. Lucas, and S. A. Deadwyler. The demonstration of acetylcholinesterase containing neurones within the caudate nucleus of the rat. Brain Res. 45: 617–621, 1972.
 328. MacDonald, R. L., and J. L. Barker. Enhancement of GABA‐mediated postsynaptic inhibition in cultured mammalian spinal cord neurons: a common mode of anticonvulsant action. Brain Res. 167: 323–336, 1979.
 329. MacDonald, R. L., and P. G. Nelson. Specific opiate‐induced depression of transmitter release from dorsal root ganglion cells in culture. Science 199: 1449–1451, 1978.
 330. MacIntosh, F. C. The distribution of acetylcholine in the peripheral and the central nervous system. J. Physiol. London 99: 436–442, 1941.
 331. MacIntosh, F. C., and B. Collier. Neurochemistry of cholinergic terminals. Handb. Exp. Pharmacol. 42: 99–228, 1976.
 332. MacIntosh, F. C., and P. E. Oborin. Release of acetylcholine from intact cerebral cortex. Abstr. 19th Int. Physiol. Congr. Montreal, 1958, p. 580–581.
 333. MacIntosh, F. C., and W. L. M. Perry. Biological estimation of ACh. Methods Med. Res. 3: 78–92, 1950.
 334. Malmfors, T., and H. Thoenen. 6‐Hydroxydopamine and Catecholamine Neurons. New York: Elsevier, 1971.
 335. Marshall, K. C., and I. Engberg. Reversal potential for noradrenaline‐induced hyperpolarization of spinal motoneurons. Science 205: 422–425, 1979.
 336. Martin, A. R. Junctional transmission II. Presynaptic mechanisms. In Handbook of Physiology. The Nervous System, edited by J. M. Brookhart and V. B. Mountcastle. Bethesda, MD: Am. Physiol. Soc., 1977, sect. 1, vol. I, pt. 1, chapt. 10, p. 329–355.
 337. Martin, A. R., and G. Pilar. Transmission through the ciliary ganglion of the chick. J. Physiol. London. 168: 464–475, 1963.
 338. Martin, D. L. Carrier‐mediated transport and removal of GABA from synaptic regions. In: GABA in Nervous System Function, edited by E. Roberts, T. N. Chase, and D. B. Tower. New York: Raven, 1976, p. 347–386.
 339. Mason, S. T., and S. D. Iversen. Learning in the absence of forebrain noradrenaline. Nature London 258: 422–424, 1975.
 340. Mason, S. T., and S. D. Iversen. Reward, attention and the dorsal noradrenergic bundle. Brain Res. 150: 135–158, 1978.
 341. McCall, R. B., and G. H. Aghajanian. Serotonergic facilitation of facial motoneuron excitation: a modulatory effect. Brain Res. 169: 11–27, 1979.
 342. McCance, I., and J. W. Phillis. Cholinergic mechanisms in the cerebellar cortex. Int. J. Neuropharmacol. 7: 447–462, 1968.
 343. McEwen, B. S. Steroid hormone receptors in developing and mature brain tissue. In: Neuroscience Symposia, edited by J. A. Ferrendelli, B. S. McEwen, and S. H. Snyder. Bethesda, MD: Soc. Neurosci., 1976, vol. 1, p. 50–66.
 344. McGeer, E. G., P. L. McGeer, and K. Singh. Kainate‐induced degeneration of neostriatal neurons: dependency upon corticostriatal tract. Brain Res. 139: 381–383, 1978.
 345. McGeer, P. L., D. S. Grewaal, and E. G. McGeer. Influence of noncholinergic drugs on rat striatal acetylcholine levels. Brain Res. 80: 211–217, 1974.
 346. McGeer, P. L., E. G. McGeer, J. A. Wada, and E. Jung. Effects of globus pallidus lesions and Parkinson's disease on brain glutamic acid decarboxylase. Brain Res. 32: 425–431, 1971.
 347. McLaughlin, B. J., R. Barber, K. Saito, E. Roberts, and J. Y. Wu. Immunocytochemical localization of glutamate decarboxylase in rat spinal cord. J. Comp. Neurol. 164: 305–322, 1975.
 348. McLaughlin, B. J., J. G. Wood, K. Saito, R. Barber, J. E. Vaughn, E. Roberts, and J.‐Y. Wu. The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum. Brain Res. 76: 377–391, 1974.
 349. McLennan, H. Actions of excitatory amino acids and their antagonism. Neuropharmacology 13: 449–454, 1974.
 350. McLennan, H., and D. H. York. Cholinergic mechanisms in the caudate nucleus. J. Physiol. London 187: 163–175, 1966.
 351. McLennan, H., and D. H. York. The action of dopamine on neurones of the caudate nucleus. J. Physiol. London 189: 393–402, 1967.
 352. Meech, R. W. Intracellular calcium injection causes increased potassium conductance in Aplysia nerve cells. Comp. Biochem. Physiol. 42A: 493–499, 1972.
 353. Meech, R. W. Calcium‐dependent potassium activation in nervous tissues. Annu. Rev. Biophys. Bioeng. 7: 1–18, 1978.
 354. Melzack, R., and P. D. Wall. Pain mechanisms: a new theory. Science 150: 971–979, 1965.
 355. Miledi, R. Transmitter release induced by injection of calcium ions into nerve terminals. Proc. R. Soc. London Ser. B 183: 421–425, 1973.
 356. Mitchell, J. F., and V. Srinivasan. Release of 3H‐γ‐amino‐butyric acid from the brain during synaptic inhibition. Nature London 224: 663–666, 1969.
 357. Miyata, Y., and M. Otsuka. Quantitative histochemistry of γ‐aminobutyric acid in cat spinal cord with special reference to presynaptic inhibition. J. Neurochem. 25: 239–244, 1975.
 358. Monod, J., J. Wyman, and J.‐P. Changeux. On the nature of allosteric transition: a plausible model. J. Mol. Biol. 12: 88–118, 1965.
 359. Morimoto, T., M. Takata, and Y. Kawamura. Effect of lingual nerve stimulation on hypoglossal motoneurons. Exp. Neurol. 22: 174–190, 1968.
 360. Morris, M. E., G. Di Costanzo, S. Fox, J. F. MacDonald, and R. Werman. Actions of GABA, glycine and baclofen on afferent fibres and their central synapses. Soc. Neurosci. Abstr. 4: 582, 1978.
 361. Mudge, A. W., S. E. Leeman, and G. D. Fischbach. Enkephalin inhibits release of substance P from sensory neurons in culture and decreases action potential duration. Proc. Natl. Acad. Sci. USA 76: 526–530, 1979.
 362. Nadi, N. S., D. Kanter, W. J. McBride, and M. H. Aprison. Effects of 3‐acetylpyridine on several putative neurotransmitter amino acids in the cerebellum and medulla of the rat. J. Neurochem. 28: 661–662, 1977.
 363. Nadi, N. S., W. J. McBride, and M. H. Aprison. Distribution of several amino acids in regions of the cerebellum of the rat. J. Neurochem. 28: 453–455, 1977.
 364. Nagy, J. I., D. A. Carter, J. Lehmann, and H. C. Fibiger. Evidence for a GABA‐containing projection from the entopeduncular nucleus to the lateral habenula in the rat. Brain Res. 145: 360–364, 1978.
 365. Nagy, J. I., S. R. Vincent, J. Lehmann, H. C. Fibiger, and E. G. McGeer. The use of kainic acid in the localization of enzymes in the substantia nigra. Brain Res. 149: 431–441, 1978.
 366. Neal, M. J. The uptake of [14C]glycine by slices of mammalian spinal cord. J. Physiol. London 215: 103–117, 1971.
 367. Nelson, P. G., B. R. Ransom, M. Henkart, and P. N. Bullock. Mouse spinal cord in cell culture. IV. Modulation of inhibitory synaptic function. J. Neurophysiol. 40: 1178–1187, 1977.
 368. Nicoll, R. A. Promising peptides. In: Neuroscience Symposia, edited by J. A. Ferrendelli, B. S. McEwen, and S. H. Snyder. Bethesda, MD: Soc. Neurosci., 1976, vol. 1, p. 99–122.
 369. Nieoullon, A., A. Cheramy, and J. Glowinski. Release of dopamine in vivo from cat substantia nigra. Nature London 266: 375–377, 1977.
 370. Nishi, S., S. Minota, and A. G. Karczmar. Primary afferent neurones: the ionic mechanism of GABA‐mediated depolarization. Neuropharmacology 13: 215–219, 1974.
 371. Nistri, A., and A. Constanti. Pharmacological characterization of different types of GABA and glutamate receptor in vertebrates and invertebrates. Prog. Neurobiol. Oxford 13: 117–235, 1979.
 372. Obata, K., and S. M. Highstein. Blocking by picrotoxin of both vestibular inhibition and GABA action on rabbit oculomotor neurones. Brain Res. 18: 538–541, 1970.
 373. Obata, K., M. Ito, R. Ochi, and N. Sato. Pharmacological properties of the post‐synaptic inhibition by Purkinje cell axons and the action of γ‐aminobutyric acid on Deiters' neurones. Exp. Brain Res. 4: 43–57, 1967.
 374. Obata, K., M. Otsuka, and Y. Tanaka. Determination of γ‐aminobutyric acid in single nerve cells of cat central nervous system. J. Neurochem. 17: 697–698, 1970.
 375. Obata, K., and K. Takeda. Release of γ‐aminobutyric acid into the fourth ventricle induced by stimulation of the cat's cerebellum. J. Neurochem. 16: 1043–1047, 1969.
 376. Obata, K., K. Takeda, and H. Shinozaki. Further study on pharmacological properties of the cerebellar‐induced inhibition of Deiters' neurones. Exp. Brain Res. 11: 327–342, 1970.
 377. Ohye, C., C. Le Guyader, and J. Feger. Responses of subthalamic and pallidal neurons to striatal stimulation: an extracellular study on awake monkeys. Brain Res. 111: 241–252, 1976.
 378. Okada, Y., and C. Shimada. Gamma‐aminobutyric acid (GABA) concentration in a single neuron—localization of GABA in Deiters' neuron. Brain Res. 107: 658–662, 1976.
 379. Okamoto, K., D. M. J. Quastel, and J. H Quastel. Action of amino acids and convulsants on cerebellar spontaneous action potentials in vitro: effects of deprivation of Cl–, K+ or Na+. Brain Res. 113: 147–158, 1976.
 380. Olianas, M. C., G. De Montis, G. Mulas, and A. Tagliamonte. The striatal dopaminergic function is mediated by the inhibition of a nigral non‐dopaminergic neuronal system via a strio‐nigral GABAergic pathway. Eur. J. Pharmacol. 49: 233–241, 1978.
 381. Olsen, R. W., M. Ban, and T. Miller. Studies on the neuropharmacological activity of bicuculline and related compounds. Brain Res. 102: 283–299, 1976.
 382. Olsen, R. W., M. K. Ticku, P. C. Van Ness, and D. Greenlee. Effects of drugs on γ‐aminobutyric acid receptors, uptake, release and synthesis in vitro. Brain Res. 139: 277–294, 1978.
 383. Olson, L., and K. Fuxe. On the projections from the locus coeruleus noradrenaline neurons: the cerebellar innervation. Brain Res. 28: 165–171, 1971.
 384. Onodera, K., and A. Takeuchi. Permeability changes produced by l‐glutamate at the excitatory post‐synaptic membrane of the crayfish muscle. J. Physiol. London 255: 669–685, 1976.
 385. Oppenheimer, J. H. Thyroid hormone action at the cellular level. Science 203: 971–979, 1979.
 386. Otsuka, M., and T. Takahashi. Putative peptide neurotransmitters. Annu. Rev. Pharmacol. Toxicol. 17: 425–439, 1977.
 387. Paley, S. L., and V. Chan‐Paley. Cerebellar Cortex. New York: Springer‐Verlag, 1974.
 388. Palkovits, M., M. Brownstein, and J. M. Saavedra. Serotonin content of the brain stem nuclei in the rat. Brain Res. 80: 237–249, 1974.
 389. Perry, T. L., R. D. Currier, S. Hansen, and J. MacLean. Aspartate‐taurine imbalance in dominantly inherited olivoponto cerebellar atrophy. Neurology 27: 257–261, 1977.
 390. Perry, T. L., S. Hansen, and M. Kloster. Huntington's chorea. Deficiency of γ‐aminobutyric acid in brain. N. Engl. J. Med. 288: 337–342, 1973.
 391. Pettigrew, J. D., and T. Kasamatsu. Local perfusion of noradrenaline maintains visual cortical plasticity. Nature London 271: 761–763, 1978.
 392. Phillipps, G. H. Structure‐activity relationships in steroidal anaesthetics. In: Molecular Mechanisms in General Anaesthesia. edited by M. J. Halsey, R. A. Millar, and J. A. Sutton. New York: Churchill Livingston, 1974, p. 32–47.
 393. Phillips, C. G. Actions of antidromic pyramidal volleys on single Betz cells in the cat. Q. J. Exp. Physiol. 44: 1–25, 1959.
 394. Phillis, J. W. Acetylcholinesterase in the feline cerebellum. J. Neurochem. 15: 691–698, 1968.
 395. Phillis, J. W. The Pharmacology of Synapses. London: Pergamon, 1970.
 396. Phillis, J. W. Neomycin and ruthenium red antagonism of monoaminergic depression of cerebral cortical neurones. Life Sci. 15: 213–222, 1974.
 397. Phillis, J. W., and G. C. Chong. Acetylcholine release from the cerebral and cerebellar cortices: its role in cortical arousal. Nature London 207: 1253–1255, 1965.
 398. Phillis, J. W., N. Lake, and G. Yarbrough. Calcium mediation of the inhibitory effects of biogenic amines on cerebral cortical neurones. Brain Res. 53: 465–469, 1973.
 399. Phillis, J. W., A. K. Tebecis, and D. H. York. Depression of spinal motoneurones by noradrenaline, 5‐hydroytryptamine and histamine. Eur. J. Pharmacol. 4: 471–475, 1968.
 400. Phillis, J. W., and D. H. York. Cholinergic inhibition in the cerebral cortex. Brain Res. 5: 517–520, 1967.
 401. Pickel, V. M. Immunocytochemical localization of neuronal antigens: tyrosine hydroxylase, substance P, [Met5]‐enkephalin. Federation Proc. 38: 2374–2380, 1979.
 402. Pierau, F.‐K., and P. Zimmerman. Action of a GABA‐derivative on postsynaptic potentials and membrane properties of cats' spinal motoneurones. Brain Res. 54: 376–380, 1973.
 403. Poirier, L. J., and T. L. Sourkes. Influence of the substantia nigra on the catecholamine content of the striatum. Brain 88: 181–192, 1965.
 404. Polak, R. L. An analysis of the stimulating action of atropine on release and synthesis of acetylcholine in cortical slices from rat brain. In: Drugs and Cholinergic Mechanisms in the CNS, edited by E. Heilbronn and A. Winter. Stockholm: Forsvarets Forskningsanstalt, 1970, p. 323–338.
 405. Pollen, D. A., and H. D. Lux. Conductance changes during inhibitory post‐synaptic potentials in normal and strychninized cortical neurons. J. Neurophysiol. 29: 369–381, 1966.
 406. Posner, B. I., and J. M. McKenzie. Hormone receptors: general considerations and clinical significance. Clin. Invest. Med. 1: 81–85, 1978.
 407. Potashner, S. J. Baclofen: effects on amino acid release. Can. J. Physiol. Pharmacol. 56: 150–154, 1978.
 408. Potashner, S. J. The spontaneous and electrically evoked release, from slices of guinea‐pig cerebral cortex, of endogenous amino acids labelled via metabolism of D‐ U‐14C glucose. J. Neurochem. 31: 177–186, 1978.
 409. Precht, W., and M. Yoshida. Blockage of caudate‐evoked inhibition of neurons in the substantia nigra by picrotoxin. Brain Res. 32: 229–233, 1971.
 410. Preston, J. B., and D. G. Whitlock. Intracellular potentials recorded from motoneurons following percentral gyrus stimulation in primate. J. Neurophysiol. 24: 91–100, 1961.
 411. Purpura, D. P., and R. J. Shofer. Cortical intracellular potentials during augmenting and recruiting responses. I. Effects of injected hyperpolarizing currents on evoked membrane potential changes. J. Neurophysiol. 27: 117–132, 1964.
 412. Rabié, A., C. Favre, M. C. Clavel, and J. LeGrand. Sequential effects of thyroxine on the developing cerebellum of rats made hypothyroid by propylthiouracil. Brain Res. 161: 469–479, 1979.
 413. Rall, W., R. E. Burke, T. G. Smith, P. G. Nelson, and K. Frank. Dendritic location of synapses and possible mechanism for the monosynaptic EPSP in motoneurons. J. Neurophysiol. 39: 1169–1193, 1967.
 414. Randić, M., R. Siminoff, and D. W. Straughan. Acetylcholine depression of cortical neurones. Exp. Neurol. 9: 236–242, 1964.
 415. Rang, H. P. Acetylcholine receptors. Q. Rev. Biophys. 7: 283–399, 1975.
 416. Ranje, C., and U. Ungerstedt. High correlations between number of dopamine cells, dopamine levels and motor performance. Brain Res. 134: 83–93, 1977.
 417. Ransom, B. R., P. N. Bullock, and P. G. Nelson. Mouse spinal cord in cell culture. III. Neuronal chemosensitivity and its relationship to synaptic activity. J. Neurophysiol. 40: 1163–1177, 1977.
 418. Rasmussen, H., and D. B. P. Goodman. Relationships between calcium and cyclic nucleotides in cell activation. Physiol. Rev. 57: 422–509, 1977.
 419. Redman, S. Junctional mechanisms at group Ia synapses. Prog. Neurobiol. Oxford 12: 33–83, 1979.
 420. Rehfeld, J. F., N. Goltermann, L.‐I. Larsson, P. M. Emson, and C. M. Lee. Gastrin and cholecystokinin in central and peripheral neurons. Federation Proc. 38: 2325–2329, 1979.
 421. Renaud, L., and A. Padjen. Electrophysiological analysis of peptide actions in neural tissue. In: Centrally Acting Peptides, edited by J. Hughes. London: Macmillan, 1978, p. 59–84.
 422. Renshaw, B. Activity in the simplest spinal reflex pathways. J. Neurophysiol. 3: 373–387, 1940.
 423. Renshaw, B. Influence of discharge of motoneurons upon excitation of neighboring motoneurons. J. Neurophysiol. 4: 167–183, 1941.
 424. Ribak, C. E., J. E. Vaughn, K. Saito, R. Barber, and E. Roberts. Immunocytochemical localization of glutamate decarboxylase in rat substantia nigra. Brain Res. 116: 287–298, 1976.
 425. Richardson, T. L., J. J. Miller, and H. McLennan. Mechanisms of excitation and inhibition in the nigrostriatal system. Brain Res. 127: 219–234, 1977.
 426. Robbins, J. The excitation and inhibition of crustacean muscle by amino acids. J. Physiol. London 148: 39–50, 1959.
 427. Roberts, E., and S. Frankel. Glutamic acid decarboxylase in brain. J. Biol. Chem. 188: 789–795, 1951.
 428. Roberts, P. J. The release of amino acids with proposed neurotransmitter function from the cuneate and gracile nuclei of the rat in vivo. Brain Res. 67: 419–428, 1974.
 429. Roberts, P. J., and P. Keen. Effect of dorsal root section on amino acids of rat spinal cord. Brain Res. 74: 333–337, 1970.
 430. Roberts, P. J., and J. F. Mitchell. The release of amino acids from the hemisected spinal cord during stimulation. J. Neurochem. 19: 2473–2481, 1972.
 431. Roffler‐Tarlov, S., and R. L. Sidman. Concentrations of glutamic acid in cerebellar cortex and deep nuclei of normal mice and weaver, staggerer and nervous mutants. Brain Res. 142: 269–283, 1978.
 432. Rubin, R. P. Calcium and the Secretory Process. New York: Plenum, 1974.
 433. Ryall, R. W. Neuropharmacology of the spinal cord. In: The Spinal Cord, edited by G. Austin. Springfield, IL: Thomas, 1972, p. 113–146.
 434. Ryall, R. W., and H. L. Haas. On the physiological significance of muscarinic receptors on Renshaw cells: a hypothesis. In: Cholinergic Mechanisms, edited by P. G. Waser. New York: Raven, 1975, p. 335–341.
 435. Ryall, R. W., M. F. Piercey, and C. Polosa. Intersegmental and intrasegmental distribution of mutual inhibition of Renshaw cells. J. Neurophysiol. 34: 700–707, 1971.
 436. Salmoiraghi, G. C., and C. N. Stefanis. Patterns of central neurons responses to suspected transmitters. Arch. Ital. Biol. 103: 705–724, 1965.
 437. Salmoiraghi, G. C., and C. N. Stefanis. A critique of ionotophoretic studies of central nervous system neurons. Int. Rev. Neurobiol. 10: 1–30, 1967.
 438. Salmoiraghi, G. C., and F. Weight. Micromethods in neuropharmacology: an approach to the study of anesthetics. Anesthesiology 28: 54–64, 1967.
 439. Samuelsson, B., M. Goldyne, E. Granström, M. Hamberg, S. Hammarström, and C. Malmsten. Prostaglandins and thromboxanes. Annu. Rev. Biochem. 47: 997–1029, 1978.
 440. Scally, M. C., I. H. Ulus, R. J. Wurtman, and D. J. Pettibone. Regional distribution of neurotransmitter‐synthesizing enzymes and substance P within the rat corpus striatum. Brain Res. 143: 556–560, 1978.
 441. Schally, A. V., D. H. Coy, and C. A. Meyers. Hypothalamic regulatory hormones. Annu. Rev. Biochem. 47: 89–128, 1978.
 442. Schmidt, R. F. Presynaptic inhibition in the vertebrate central nervous system. Ergeb. Physiol. Biol. Exp. Pharmacol. 63: 20–101, 1971.
 443. Schwarcz, R., and J. T. Coyle. Neurochemical sequence of kainate injections in corpus striatum and substantia nigra of the rat. Life Sci. 20: 431–436, 1977.
 444. Seeman, P., J. L. Tedesco, T. Lee, M. Chau‐Wong, P. Muller, J. Bowles, P. M. Whitaker, C. McManus, M. Tittler, P. Weinreich, W. C. Friend, and G. M. Brown. Dopamine receptors in the central nervous system. Federation Proc. 37: 130–136, 1978.
 445. Selye, H. Anesthetic effect of steroid hormones. Proc. Soc. Exp. Biol. Med. 46: 116–121, 1941.
 446. Shapovalov, A. I., V. I. Shiriaev, and Z. A. Tamarova. Synaptic activity in motoneurons of the immature cat spinal cord in vitro. Effects of manganese and tetrodotoxin. Brain Res. 160: 524–528, 1979.
 447. Shapovalov, A. I., B. I. Shiriaev, and A. A. Velumian. Mechanisms of postsynaptic excitation in amphibian motoneurones. J. Physiol. London 279: 437–455, 1978.
 448. Shapovalov, A. I., and G. G. Kurchavyi. Effects of transmembrane polarization and TEA injection on monosynaptic actions from motor cortex, red nucleus, and group Ia afferents on lumbar motoneurons in the monkey. Brain Res. 82: 49–67, 1974.
 449. Sherrington, C. The Integrative Action of the Nervous System. New Haven: Yale Univ. Press. 1906.
 450. Shik, M. L., and G. N. Orlovsky. Neurophysiology of locomotor automation. Physiol. Rev. 56: 465–501, 1976.
 451. Shimahara, T., and L. Tauc. Heterosynaptic facilitation in the giant cell of Aplysia. J. Physiol. London 247: 321–341, 1975.
 452. Shlevin, H. H. Effects of external calcium concentration and pH on charge movement in frog skeletal muscle. J. Physiol. London 288: 129–158, 1979.
 453. Shute, C. C. D., and P. R. Lewis. Cholinesterase‐containing systems of the brain of the rat. Nature London 199: 1160–1164, 1963.
 454. Shute, C. C. D., and P. R. Lewis. The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections. Brain 90: 497–520, 1967.
 455. Siggins, G. R., B. J. Hoffer, and F. E. Bloom. Cyclic adenosine monophosphate: possible mediator for norepinephrine effects on cerebellar Purkinje cells. Science 165: 1018–1020, 1969.
 456. Siggins, G. R., A. P. Oliver, B. J. Hoffer, and F. E. Bloom. Cyclic adenosine monophosphate and norepinephrine: effects on trans‐membrane properties of cerebellar Purkinje cells. Science 171: 192–194, 1971.
 457. Silver, A. Cholinesterases of the central nervous system with special reference to the cerebellum. Int. Rev. Neurobiol. 10: 57–109, 1967.
 458. Silver, A. The Biology of Cholinesterases. Amsterdam: North Holland, 1974.
 459. Silver, A., and J. H. Wolstencroft. The distribution of cholinesterases in relation to the structure of the spinal cord in the cat. Brain Res. 34: 205–227, 1971.
 460. Simantov, R., M. J. Kuhar, G. W. Pasternak, and S. H. Snyder. The regional distribution of a morphine‐like factor enkephalin in monkey brain. Brain Res. 106: 189–197, 1976.
 461. Sjostrom, A., and P. Zangger. Muscle spindle control during locomotor movements generated by the deafferented spinal cord. Acta Physiol. Scand. 97: 281–291, 1976.
 462. Snodgrass, S. R. Use of 3H‐muscimol for GABA receptor studies. Nature London 273: 392–394, 1978.
 463. Snyder, S. H., and R. B. Innis. Peptide neurotransmitters. Annu. Rev. Biochem. 48: 755–782, 1979.
 464. Snyder, S. H., and R. Simantov. The opiate receptor and opioid peptides. J. Neurochem. 28: 13–20, 1977.
 465. Snyder, S. H., A. B. Young, J. P. Bennett, and A. H. Mulder. Synaptic biochemistry of amino acids. Federation Proc. 32: 2039–2047, 1973.
 466. Sonnhof, U., P. Grafe, D. W. Richter, N. Parekh, G. Krumnikl, and M. Linder. Investigations of the effects of glutamate on motoneurons of the isolated frog spinal cord. In: Iontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System, edited by R. W. Ryall and J. S. Kelly. Amsterdam: Elsevier, 1978, p. 391–393.
 467. Sourkes, T. L. Central actions of DOPA and dopamine. Rev. Can. Biol. 31: (Suppl.) 153–168, 1972.
 468. Spehlmann, R. Acetylcholine and prostigmine electrophoresis at visual cortical neurons. J. Neurophysiol. 26: 127–139, 1963.
 469. Spencer, H. J., and V. Havlicek. Alterations by anesthetic agents of the responses of rat striatal neurons to iontophoretically applied amphetamine, acetylcholine, noradrenaline, and dopamine. Can. J. Physiol. Pharmacol. 52: 808–813, 1974.
 470. Spiecker, W., W. Melzer, and H. C. Lüttgau. Extracellular Ca2+ and excitation‐contraction coupling. Nature London 280: 158–160, 1979.
 471. Stavinoha, W. B., J. Frazer, and A. T. Modak. Microwave fixation for the study of acetylcholine metabolism. In: Cholinergic Mechanisms and Psychopharmacology, edited by D. J. Jenden. New York, Plenum, 1978, p. 169–179.
 472. Steeves, J. D., B. J. Schmidt, B. J. Skovgaard, and L. M. Jordan. Effect of noradrenaline and 5‐hydroxytryptamine depletion on locomotion in the cat. Brain Res. 185: 349–362, 1980.
 473. Stefanis, C., and H. Jasper. Recurrent collateral inhibition in pyramidal tract neurons. J. Neurophysiol. 27: 855–877, 1964.
 474. Steiner, F. A., and G. Weber. Die Beeinflussung labyrinthär erregbarer. Neurone des Hirnstammes durch Acetylcholin. Helv. Physiol. Pharmacol. Acta 23: 82–89, 1965.
 475. Steriade, M., M. Deschênes, and G. Oakson. Inhibitory process and interneuronal apparatus in motor cortex during sleep and waking. 1. Background firing and responsiveness of pyramidal tract neurons and interneurons. J. Neurophysiol. 37: 1062–1092, 1974.
 476. Steriade, M., and J. A. Hobson. Neuronal activity during the sleep‐waking cycle. Prog. Neurobiol. Oxford 6: 155–376, 1976.
 477. Steriade, M., P. Wyzinski, M. Deschenes, and M. Guerin. Disinhibition during waking in motor cortex neuronal chains in cat and monkey. Brain Res. 30: 211–217, 1971.
 478. Stern, J. R., L. V. Eggleston, R. Hems, and H. A. Krebs. Accumulation of glutamic acid in isolated brain tissue. Biochem. J. 44: 410–418, 1949.
 479. Stone, T. W. Cholinergic mechanisms in the rat somatosensory cerebral cortex. J. Physiol. London 225: 485–499, 1972.
 480. Stone, T. W. Cortical pyramidal tract interneurones and their sensitivity to l‐glutamic acid. J. Physiol. London 233: 211–225, 1973.
 481. Stone, T. W. Blockade by amino acid antagonists of neuronal excitation mediated by the pyramidal tract. J. Physiol. London 257: 187–198, 1976.
 482. Storm‐Mathisen, J. High affinity uptake of GABA in presumed GABAergic nerve endings in rat brain. Brain Res. 84: 409–427, 1975.
 483. Sutherland, E. W. Studies on the mechanism of hormone action. Science 177: 401–408, 1972.
 484. Sutherland, E. W., and G. A. Robison. Metabolic effects of catecholamines. A. The role of cyclic‐3′,5′‐AMP in responses to catecholamines and other hormones. Pharmacol. Rev. 18: 145–161, 1966.
 485. Sweetman, A. J., and A. F. Esmail. Evidence for the role of calcium ions and mitochondria in the maintenance of anaesthesia in the rat. Biochem. Biophys. Res. Commun. 64: 885–890, 1975.
 486. Szerb, J. C. Cortical acetylcholine release and electroencephalographic arousal. J. Physiol. London 192: 329–343, 1967.
 487. Szerb, J. C. Characterization of presynpatic muscarinic receptors in central cholinergic neurons. In: Cholinergic Mechanisms and Psychopharmacology; Advances in Behavioural Biology, edited by D. J. Jenden. New York: Plenum, 1978, vol. 24, p. 49–60.
 488. Takagi, M., and C. Yamamoto. Suppressing action of cholinergic agents on synaptic transmissions in the corpus striatum of rats. Exp. Neurol. 62: 433–443, 1978.
 489. Takahashi, T. Intracellular recording from visually identified motoneurones in rat spinal cord slices. Proc. R. Soc. London Ser. B 202: 417–421, 1978.
 490. Takeuchi, A. Junctional transmission 1. Postsynaptic mechanisms. In: Handbook of Physiology. The Nervous System, edited by J. M. Brookhart and V. B. Mountcastle. Bethesda, MD: Am. Physiol. Soc., 1977, sect. 1, vol. I, pt. 1, chapt. 9, p. 295–327.
 491. Tarsy, D., C. J. Pycock, B. S. Meldrum, and C. D. Marsden. Focal contralateral myoclonus produced by inhibition of GABA action in the caudate nucleus of rats. Brain 101: 143–162, 1978.
 492. Taylor, S. R., and R. E. Godt. Calcium release and contraction in vertebrate skeletal muscle. Symp. Soc. Exp. Biol. Cambridge 30: 361–380, 1976.
 493. Tebécis, A. K., and A. Di Maria. Strychnine‐sensitive inhibition in the medullary reticular formation: evidence for glycine as an inhibitory transmitter. Brain Res. 40: 373–383, 1972.
 494. Ten eBruggencate, G., and I. Engberg. Effects of GABA and related amino acids on neurones in Deiters' nucleus. Brain Res. 14: 533–536, 1969.
 495. Ten eBruggencate, G., and I. Engberg. Iontophoretic studies in Deiters' nucleus of the inhibitory actions of GABA and related amino acids and the interactions of strychnine and picrotoxin. Brain Res. 25: 431–448, 1971.
 496. Ten eBruggencate, G., and U. Sonnhof. Effects of glycine and GABA, and blocking actions of strychnine and picrotoxin in the hypoglossus nucleus. Pfluegers Arch. 334: 240–252, 1972.
 497. Tsukahara, N., and D. R. G. Fuller. Conductance changes during pyramidally induced postsynaptic potentials in red nucleus neurons. J. Neurophysiol. 32: 35–42, 1969.
 498. Tsukahara, N., K. Toyama, and K. Kosaka. Electrical activity of red nucleus neurones investigated with intracellular microelectrodes. Exp. Brain Res. 4: 18–33, 1967.
 499. Ueki, S., K. Koketsu, and E. F. Domino. Effects of mecamylamine on the Golgi recurrent collateral‐Renshaw cell synapse in the spinal cord. Exp. Neurol. 3: 141–148, 1961.
 500. Ungerstedt, U. Post‐synaptic supersensitivity after 6‐hydroxy‐dopamine induced degeneration of the nigro‐striatal dopamine system. Acta Physiol. Scand. Suppl. 367: 69–93, 1971.
 501. Valdés, F., and F. Orrego. Electrically induced, calcium‐dependent release of endogenous GABA from rat brain cortex slices. Brain Res. 141: 357–363, 1978.
 502. Van Harreveld, A., and E. Fifkova. Effects of amino acids on the isolated chicken retina, and on its response to glutamate stimulation. J. Neurochem. 20: 947–962, 1973.
 503. Veech, R. L., and R. A. Hawkins. Brain blowing: a technique for in vivo study of brain metabolism. In: Research Methods in Neurochemistry, edited by N. Marks and R. Rodnight. New York: Plenum, 1974, vol. 2, p. 171–182.
 504. Versteeg, D. H. G., J. Van Der Gugten, W. De Jong, and M. Palkovits. Regional concentrations of noradrenaline and dopamine in rat brain. Brain Res. 113: 563–574, 1976.
 505. Von Euler, U. S. Synthesis, uptake and storage of catecholamines in adrenergic nerves, the effect of drugs. Handb. Exp. Pharmakol. New Ser. 33: 186–230, 1972.
 506. Wall, P. D. The gate control theory of pain mechanisms. An examination of and re‐statement. Brain 101: 1–18, 1978.
 507. Weight, F. F., and G. C. Salmoiraghi. Responses of spinal cord interneurons to acetylcholine, norepinephrine and serotonin administered by microelectrophoresis. J. Pharmacol. Exp. Ther. 153: 420–427, 1966.
 508. Weight, F. F., and G. C. Salmoiraghi. Adrenergic responses of Renshaw cells. J. Pharmacol. Exp. Ther. 154: 391–397, 1966.
 509. Weight, F. F., and G. C. Salmoiraghi. Motoneurone depression by norepinephrine. Nature London 213: 1229–1230, 1967.
 510. Weight, F. F., and J. Votava. Slow synaptic excitation in sympathetic ganglion cells: evidence for synaptic inactivation of potassium conductance. Science 170: 755–758, 1970.
 511. Werman, R. Criteria for identification of central nervous system transmitter. Comp. Biochem. Physiol. 18: 745–766, 1966.
 512. Werman, R., and P. Carlen. Unusual behavior of the Ia EPSP in cat spinal motoneurons. Brain Res. 112: 395–401, 1976.
 513. Werman, R., R. A. Davidoff, and M. H. Aprison. Inhibition of motoneurons by iontophoresis of glycine. Nature London 214: 681–683, 1967.
 514. Werman, R., R. A. Davidoff, and M. H. Aprison. Inhibitory action of glycine on spinal neurons in the cat. J. Neurophysiol. 31: 81–95, 1968.
 515. White, W. F., J. V. Nadler, and C. W. Cotman. The effect of acidic amino acid antagonists on synaptic transmission in the hippocampal formation in vitro. Brain Res. 164: 177–194, 1979.
 516. Whittaker, V. P. The application of subcellular fractionation techniques to the study of brain function. Progr. Biophys. 15: 39–96, 1965.
 517. Wojtowicz, J. M., K. C. Marshall, and W. J. Hendelman. Electrophysiological and pharmacological studies of the inhibitory projection from the cerebellar cortex to the deep cerebellar nuclei in tissue culture. Neuroscience 3: 607–618, 1978.
 518. Wood, J. G., B. J. McLaughlin, and J. E. Vaughn. Immunocytochemical localization of GAD in electron microscopic preparations of rodent CNS. In: GABA in Nervous System Function, edited by E. Roberts, T. N. Chase, and D. B. Tower. New York: Raven, 1976, p. 133–148.
 519. Woodward, D. J., B. J. Hoffer, G. R. Siggins, and A. P. Oliver. Inhibition of Purkinje cells in the frog cerebellum. II. Evidence for GABA as the inhibitory transmitter. Brain Res. 33: 91–100, 1971.
 520. Woodward, D. J., H. C. Moises, B. D. Waterhouse, B. J. Hoffer, and R. Freedman. Modulatory actions of norepinephrine in the central nervous system. Federation Proc. 38: 2109–2116, 1979.
 521. Woody, C. D. Aspects of the electrophysiology of cortical processes related to the development and performance of learned motor responses. Physiologist 17: 49–69, 1974.
 522. Woody, C. D., B. E. Swartz, and E. Gruen. Effects of acetylcholine and cyclic GMP on input resistance of cortical neurons in awake cats. Brain Res. 158: 373–395, 1978.
 523. Wu, J.‐Y. Microanalytical methods for neuronal analysis. Physiol. Rev. 58: 863–904, 1978.
 524. Yalow, R. S. Radioimmunoassay: a probe for the fine structure of biological systems. Science 200: 1236–1245, 1978.
 525. Yamamoto, C. Pharmacologic studies of norepinephrine, acetylcholine and related compounds on neurons in Deiters' nucleus and the cerebellum. J. Pharmacol. Exp. Ther. 156: 39–47, 1967.
 526. Yamamoto, C. Activation of hippocampal neurons by mossy fiber stimulation in thin brain sections in vitro. Exp. Brain Res. 14: 423–435, 1972.
 527. Yamamoto, C. Electrical activity recorded from thin sections of the lateral geniculate body, and the effects of 5‐hydroxytryptamine. Exp. Brain Res. 19: 271–281, 1974.
 528. Yamamoto, C., and N. Kawai. Presynaptic action of acetylcholine in thin sections from the guinea pig dentate gyrus in vitro. Exp. Neurol. 19: 176–187, 1967.
 529. Yamamoto, C., and H. McIlwain. Electrical activities in thin sections from the mammalian brain maintained in chemically‐defined media in vitro. J. Neurochem. 13: 1333–1343, 1966.
 530. Yamamoto, C., H. Yamashita, and T. Chujo. Inhibitory action of glutamic acid on cerebellar interneurones. Nature London 262: 786–787, 1976.
 531. Yamamura, H. I., M. J. Kuhar, and S. H Snyder. In vivo identification of muscarinic cholinergic receptor binding in rat brain. Brain Res. 80: 170–176, 1974.
 532. York, D. H. Possible dopaminergic pathway from substantia nigra to putamen. Brain Res. 20: 233–249, 1970.
 533. Yoshida, M., and K. Obata. Actions of putative neurotransmitters on cat pallidal neurons. In: Iontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System, edited by R. W. Ryall and J. S. Kelly. Amsterdam: Elsevier, 1978, p. 71–74.
 534. Yoshida, M., and W. Precht. Monosynaptic inhibition of neurons of the substantia nigra by caudato‐nigral fibers. Brain Res. 32: 225–228, 1971.
 535. Yoshida, M., A. Rabin, and M. Anderson. Monosynaptic inhibition of pallidal neurons by axon collaterals of caudatonigral fibres. Exp. Brain Res. 15: 333–347, 1972.
 536. Young, A. B., M. L. Oster‐Granite, R. M. Herndon, and S. H. Snyder. Glutamic acid: selective depletion by viral induced granule cell loss in hamster cerebellum. Brain Res. 73: 1–13, 1974.
 537. Zarzecki, P., D. J. Blake, and G. G. Somjen. Interactions of nigrostriate synaptic transmission, iontophoretic O‐methylated phenethylamines, dopamine, apomorphine and acetylcholine. Brain Res. 115: 257–272, 1976.
 538. Zieglgänsberger, W., and A. Herz. Changes of cutaneous receptive fields of spino‐cervical‐tract neurones and other dorsal horn neurones by microelectrophoretically administered amino acids. Exp. Brain Res. 13: 111–126, 1971.
 539. Zieglgänsberger, W., and E. Puil. Actions of glutamic acid on spinal neurones. Exp. Brain Res. 17: 35–49, 1973.
 540. Zieglgänsberger, W., and C. Reiter. A cholinergic mechanism in the spinal cord of cats. Neuropharmacology 13: 519–527, 1974.
 541. Zieglgänsberger, W., and I. F. Tulloch. Effects of substance P on neurones in the dorsal horn of the spinal cord of the cat. Brain Res. 166: 273–282, 1979.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

K. Krnjević. Transmitters in Motor Systems. Compr Physiol 2011, Supplement 2: Handbook of Physiology, The Nervous System, Motor Control: 107-154. First published in print 1981. doi: 10.1002/cphy.cp010204