Comprehensive Physiology Wiley Online Library

Sensory Research in Historical Perspective: Some Philosophical Foundations of Perception

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Sensory Science and Philosophy
1.1 Perception and Theory
1.2 Perceptual Research and History
1.3 Perception and Preparation for Action
2 Greek Science and Antiquity
2.1 Early Greek Philosophy and the Origin of Science
2.2 Hippocratic Medicine and Democritian Materialism
2.3 Aristotle and the School of Athens
2.4 Roman Science and Late Antiquity
2.5 Long‐Term Influence of Greco‐Roman Science
3 Medieval Science and Sensory Studies
3.1 Characteristics of Medieval Research
3.2 Arab Scientists and Greek Tradition
3.3 Medieval Concepts of the Senses
3.4 The Sciences in the Thirteenth Century
3.5 Optics and Vision
3.6 Scholasticism and Science
4 Sensory Science in Fifteenth and Sixteenth Centuries
4.1 Seeing Nature Through the Eye of Renaissance Man
4.2 Physiological Concepts of Leonardo da Vinci
5 Rise of Science After the Renaissance
5.1 Heliocentric Theory and Physics
5.2 Cartesian Machine Theory of the Body
5.3 Systematic Physiology, Evolution, and Behavior
6 Vision Research from Kepler to Newton
6.1 null
6.2 Kepler's Dioptrics
6.3 Other Visual Studies
6.4 Newton's Work on Optics and Vision
7 Empiricism and Rationalism in Seventeenth and Eighteenth Centuries
7.1 Sensualist Empiricism and Materialism
7.2 Leibnizian Rationalism
7.3 Berkeley's Concept of Space and Hume's Associationism
7.4 Kantian Synthesis of Perception and Thought
8 The Nineteenth Century and Modern Perceptual Research
8.1 Rise of Sensory Sciences
8.2 Six Founders of Sensory Physiology
8.3 Psychophysics and Scaling of Sensations
8.4 Psychology of Sensory Research
8.5 Philosophies and Perceptual Research
9 Objective Sensory Physiology and Neuronal Recordings
9.1 Adrian's Achievements
9.2 Sensory Afference and Brain Potentials
9.3 Cerebral Neuronal Mechanisms
10 Perception and Action
10.1 Intentional Preperception and Anticipation
10.2 Cerebral Correlates of Intention in Man
11 General Discussion
11.1 Contrasting Concepts and Their Complementary Role
11.2 Level Concepts and Perceptual Research
11.3 Reductionism—Ontological vs. Methodological
12 Summary
12.1 Retrospect and Prospect
Figure 1. Figure 1.

Aristotelian and medieval concept of five senses projecting to the heart and the sensorium commune, made around 1500. An unknown English scholar added this pen drawing to the sensory chapter of G. de Hardewyck's book of 1496 on Aristotle. Lower part: stimuli of five senses (acoustic, visual, olfactory, gustatory, and somatosensory for heat and pain). Sense organs project by lines to heart as seat of the soul (according to Aristotle's scheme), either directly or after coordination in “sensus communis” in the anterior part of head. Upper part: two heads with a fancy cerebral location of labeled division of four and five brain compartments; left, Galen's and Avicenna's “sensus communis,” “phantasia,” “cogitativa,” and “memorativa”; right: Albertus Magnus's similar concept of five faculties: “sensus communis,” “imaginativa,” “estimativa,” “phantasia,” and “memorativa.”

From the Library of the Wellcome Institute for the History of Medicine, London, by courtesy of the Trustees
Figure 2. Figure 2.

Emperor Frederick II's method of visual learning conditioning of falcons after visual deprivation, written ca. A.D. 1240. During a period of visual exclusion by lid suture the falcon is accustomed to the voice and touch of the falconer. After this period of visual deprivation the falconer trains the seeing falcon for hunting in a series of stages. A: some weeks after opening the lids the falcon is tied to a bar by a long line and quieted by feeding, the attendant keeping his face averted. Then the falcon is accustomed to the man wearing a hat. B: after this imprinting to a human being the falcon learns to sit on a leather glove and is trained to remain there with and without a hood covering the eyes. C: unrest is quieted by feeding with averted face and by caressing. This procedure is repeated until the falcon remains on the gloved left fist of the falconer. D: conditioned falcon keeps sitting on the falconer's glove, first while walking, then while riding. Frederick's original illustrated manuscript was lost during the siege of Parma in 1248, but several copies were preserved, the best being that of his son King Manfred. These figures are taken from a good facsimile of Manfred's manuscript.

Colored miniatures in Vatican library Codex Ms. Pal. lat. 1071. fol. 92y, 106r, 89r, 108r
Figure 3. Figure 3.

Experiments on light refraction, A, and theory of the rainbow, B, drawn by Dietrich (Theodoricus) of Freiberg around 1300. To explain the rainbow colors Dietrich studied the spectral refraction of light in glass models of raindrops. A: refraction study with hexagonal crystals and vessels filled with water showed spectral colors: he found that red is nearest, blue farthest, from original angle of the light rays, and yellow and green lie between them. White light beam enters vessel, refracting at k, is partly reflected at inner wall, passing out at left; partly refracted again, it leaves vessel downward in q. B: Scheme of the rainbow originating from sun, a, by double spectral refraction and reflection in 4 raindrops (right). Observer, c, sees red light from upper drop and yellow, green, and blue from other drops in order of the rainbow. Divergence of doubly refracted colored light is drawn incorrectly in the parallel lines for each color.

From Dietrich's manuscript in the University Library, Basel, reproduced with kind permission of the Library
Figure 4. Figure 4.

Alberti's illustrations of visual pyramid, perspective convergence of parallel lines, and foreshortening of horizontal and vertical patterns. Top: visual angle of eye looking to a quadrangle forms a pyramid; length and width of base increase linearly with distance. Middle: parallel lines on a plane converge to a central point (punto centrico) at horizon. Bottom: quadratic pattern on floor and two columns (A and B) show the same perspective convergence. Text says, “linea giacente, 9 bracchia. A, B pilastri o muri di 10 bracchia” (Floor lines of 9 ells and columns of 10 ells).

From Alberti about 1430, in printed 1652 edition of Leonardo , p. 5, 17, 27
Figure 5. Figure 5.

Dürer's sketch and woodcut of perspective reproduction with help of squared glass window grid. (made around 1524). Top: draftsman marks main object contours on glass window, where they are seen with perspective foreshortening. In addition he uses a string for measuring distances and for demonstrating direction of visual pyramid from eye to objects seen. Bottom: draftsman copies foreshortened contours of a woman on paper from projection of glass window that has same squared network as the paper. Pointed bar marks eye position and window distance.

Top: pen drawing in Landesbibliothek, Dresden. Reproduced with kind permission of the Library. Bottom: woodcut from Dürer , 3rd ed
Figure 6. Figure 6.

Leonardo's drawing of dependence of illumination on angle of reflecting surface. The light rays b‐m from source a meet different parts of face, with maximal luminance in rectangular projection (g, h, “equal angles”). Leonardo's mirror script reads in MacCurdy's translation: “Since it is proved that every light with fixed boundaries emanates or appears to emanate from a single point, that part illuminated by it will have those portions in highest light upon which the line of radiance falls, between two equal angles, as is shown above in the lines a‐g, also in a‐h, and similarly in a‐l; and that portion of the illuminated part will be less luminous upon which the line of incidence strikes at two more unequal angles, as may be seen in b, c and d; and in this way you will also be able to discern the parts deprived of light, as may be seen at m and k.”

; Pen on paper. From Leonardo manuscript in Royal Library of Windsor Castle. Reproduced with permission. Copyright reserved
Figure 7. Figure 7.

Leonardo da Vinci's note and sketch of his experiments with frog spinal cord (about 1500). Leonardo drew the spinal cord in the vertebral canal with vertebrate bodies. He wrote in mirror script on the cord “generative power” and described on left and right sides the experiment of cord destruction. English translation of the essential result of abolishing reflex action: “The frog instantly dies when its spinal cord is perforated. Although it lived before without head, without heart, or any entrails of intestines or skin. It thus seems that here lies the fundamental of motion and of life.”

From Leonardo manuscript in Royal Library of Windsor Castle. Reproduced with permission. Copyright reserved
Figure 8. Figure 8.

Descartes's schemes of multisensory perception. A: visual and somatosensory control. Under visual control two bars N and O are directed by hands to a target B. This movement elicits afferent “animal spirits” of nerves to brain and pineal body H. The pineal is supposed to bend for receiving and sending impulses from and to eyes, 7, and arms, 8. B: bisensory interaction of vision and olfaction, and visual attention. Nerve impulses from both eyes via optic nerves converge in brain from 2, 4, and 6 to the pineal. There visual attention is aroused and causes an efferent flow (abc) facilitating visual input from the arrow (ABC). This suppresses olfactory afference from flower D via olfactory nerves 8 having less access to the pineal (dotted lines).

From Descartes
Figure 9. Figure 9.

Descartes's schemes of sensorimotor coordination in the brain show cerebral mechanisms of reflex movements (A) and voluntary and emotional action (B) elicited by sensation of warmth. A: cerebral mechanisms of reflex movements. Heat of fire A stimulates reflex withdrawal of foot B and defense movements of hand. This is effected by afferent and efferent impulses (“animal spirits”) of nerves, conducted along filament CC to and from brain after convergence at pineal gland F. Descartes's text reads in English: “If the fire A is close to the foot B, the small parts of this fire, which move, as you know, very rapidly, have the power to move along with them the part of the skin of this foot which they touch; and by this means, pulling the small filament CC, which you see attached to it, they open at the same time the entrance of the pore de, where this small filament ends, just as, by pulling one of the ends of a cord, you cause a bell attached to the other end to ring at the same time.” B: voluntary and emotional action elicited by sensation of warmth. Burning heat of a fire causes different cerebral responses of attraction or avoidance, sent by pineal body into different nerve channels. When hand B is cold it is extended voluntarily toward fire A for warmth. If fire burns hand the strong sensation of pain, conducted by more animal spirits in nerves to the brain, causes efferent impulses in cranial nerves oprs and an outburst of crying and tears. Descartes's general conclusion for sensory projections to the brain is this: “There are many small filaments similar to CC; they all begin to separate from one another at the inner surface of the brain, from whence they originate, and going from there to disperse throughout the rest of the body they serve as the organs for the sense of touch.”

From Descartes
Figure 10. Figure 10.

Descartes's concept of reciprocal innervation of two antagonistic eye muscles. Tube CB represents a nerve branching at CB to innervate the two antagonistic ocular muscles E and AD. Muscle AD is contracting after receiving more impulses (esprits animaux) than relaxing muscle E and moves eye to side F. In addition to centrifugal nerve impulses Descartes discussed a nonexisting peripheral interaction between the two antagonists by valves in sclera; these allow impulses to flow from e to i, but not in opposite direction, because valve g is closed.

From Descartes
Figure 11. Figure 11.

Descartes's picture of inverted retinal image. It is observed after removal of posterior part of sclera as in Scheiner's experiment on ox's eye. The observer at P sees inverted image TSR of the outer object VXY projected through cornea BCD and lens 1–6 to retina.

From Descartes
Figure 12. Figure 12.

Newton's sketch of his prismatic experiments made around 1700. This original design, preserved among other “non‐optic” writings of Newton, shows how rays of white sunlight from the window hole are refracted by a prism into their spectral colors and are projected to a perforated screen at left. Lowest spectral color is projected further, beyond a screen hole and through a second prism to left side of wall, excluding the other spectral components that were projected above. Newton's Latin script says twice: “Nec variat lux fracta colorem” (the refracted light does not change its color).

Drawing at Bodleian Library, Oxford. Reproduced with kind permission of the Library and New College, Oxford
Figure 13. Figure 13.

Newton's postulate of partial decussation of optic nerves in the chiasma as illustrated in the eighteenth century by Taylor (1738) and Harris (1775). A: Taylor's figure of optic chiasma depicts crossing over of nasal parts of the retina to explain single vision in two half‐fields of both eyes without reference to Newton; images of the object (arrows BA) are projected to retinas of both eyes (ab in left eye and α‐β in right eye). From chiasma onward the right parts of both retinas (continuous lines) project to right (XWS), and left parts (dashed lines) to left optic tract (rtu). B: Harris's figure of binocular convergence to illustrate Newton's concept of central projection of corresponding parts of retina when eyes converge on line PS. After crossing of nasal parts of the retina the corresponding retinal areas T and X and V and Y are drawn to unite in FGH so that binocular convergence occurs in brain and is projected to a hypothetical central area abcd.

A: from Taylor . B: from Harris
Figure 14. Figure 14.

G. W. Leibniz's manuscript of the binary number theory, written on March 15, 1679. Latin text explains the principle to use the two signs 1 and 0 for all numbers.

Upper part of page shows his scheme of dual number systems, which he called “Progressio dyadica,” as written in title at top. Sequence of upper lines 1–32 is continued in left vertical column to reach number 100 in lowest part(not reproduced). Leibniz submitted this dual system to the Paris Academy in 1703, where it was published in 1705 . Practical application of this principle had to wait for electronic computers, which had less difficulty in using the long number sequences than a hand‐writing mathematician. Reproduced with kind permission of the Leibniz‐Archiv, Niedersächsiche Landesbibliothek, Hannover
Figure 15. Figure 15.

Helmholtz's depictions of Thomas Young's three‐color concept compared with his own spectral sensitivity curves. A: for Young's theory of three receptor elements Helmholtz postulated in 1850 relatively broad spectral absorption curves showing 3 maxima—in orange, in green, and in blue‐violet, respectively. B: Helmholtz used König's and Dieterici's psychophysical data of their normal trichromatic eyes to obtain sensitivity curves of three elementary color sensations. Red curve R is shifted toward short‐wave side with a maximum at 560 nm, green curve G has a maximum at 550 nm, and violet V at 450 nm. This corresponds approximately to modern objective measurements of receptor absorptions (570, 540, 450 nm). Some individual differences are marked K for König and D for Dieterici.

From Helmholtz , 2nd ed
Figure 16. Figure 16.

E. D. Adrian's drawings of sensory nerve messages and their recording. A: cutaneous sensation. , Stimulus touching skin elicits rhythmic action potentials in nerve fiber. These messages are picked up from electrodes and magnified by an amplifier for recording instrument, . B: stretch receptors from muscle, lung, and carotid sinus are excited by muscle‐lengthening lung extension and carotid sinus dilatation, respectively. C: afferent neurons signaling touch, light, heat, and smell, and their processing of the receptor excitation: afferent fiber is connected with a hair touch receptor; optic nerve fiber is activated from a cone over two synapses; thermoreceptor activating a posterior root fiber and olfactory receptor with its primary fiber send their messages to central nervous system directly or after various synaptic transformations.

Original drawings made by Lord Adrian about 1927, reproduced with the kind permission of Dr. Richard Adrian
Figure 17. Figure 17.

Hans Berger's early 1929 and 1930 recordings of desynchronization of electroencephalogram (EEG) in man by sensory stimuli and attention. A, B: scalp recordings show blocking of α‐waves and EEG flattening caused by sensory stimuli, A, and during periodic alterations of attention, B, with EEG (middle records) and time 50/s (lowest records). Subjects: healthy men aged 30 (A) and 34 years (B). C, D, E: Berger's unpublished first direct recordings from human brain in 1930: C: Berger's drawing shows how the coated silver needle pairs were inserted in the parietal cortex and 4 cm below in the white matter during a diagnostic cerebral puncture in 20‐yr‐old man with brain tumor. D, E: simultaneous records demonstrate origin of EEG waves in cortex, the white matter having less electrical activity. On D Berger wrote “Cortex, Centr. semiovale,” and after name and date, “Nadelabl.”, in shorthand: “Augen geschlossen; eingeführte El.” (needle recording; eyes shut, electrodes inserted). E: during expectation of a second sensory stimulus the EEG flattened.

A, B: from Berger . C, D, E: records K 1766, 1768 Dec. 17, 1930, from the Freiburg Berger‐Archives
Figure 18. Figure 18.

Diagrams of intentional perception, aimed action, and directive attention. Schemes demonstrate anticipating preparation of perception and action in inner world and sensorimotor processes of behavior in outer world. A: Time relations of anticipating purpose, intention, and action as conceived by Aristotle. Aristotle described in the “Metaphysics” the cooperation of human knowledge and action by anticipation (noesis) of a foreseen aim (eidos) which acts in reverse in determining the action (poiesis) toward a goal. B: time relations of anticipating purpose, intention, and action, by scheme of N. Hartmann. Hartmann uses arrows to depict the peculiar time relations in the anticipating preparation of goal‐directed action. Willed intention must precede selection of means for the ends and this selection also precedes realization. Time scale of purpose (Zwecksetzung) and selection (Mittelwahl) shows opposite directions: purpose projects to future, and selection paradoxically acts against time flow as shown by arrows and time abscissa. This seemingly paradoxical inversion of time by preconceived future is present also in perceptual attention using internal world models given by sensory experience to search for and perceive the intended objects. C: psychophysical scheme of attentive perception, anticipation, and action. Interactions between perceiving subject and intended object are schematized for three active processes of expectation, attention, and orientation, and for passive afferent messages from sense organs to brain. Above the middle horizontal line are shown anticipatory processes of directive attention in the mind; below are shown physiological correlates of attentive orientation and perception in body and brain. Upper processes are psychic; lower are neurophysiological and behavioral functions. For vision the attentive and orientating processes include eye movements.

B: adapted from Hartmann
Figure 19. Figure 19.

Slow negative cortical potentials in man, correlated with intention to act (A, B) and to reach a target (C). Potential shifts (▭ before action, ▪ during action) are maximal at vertex and show higher amplitudes over motor cortex contralateral to moving limb. Motion is marked by arrows (↕ for brief movements; for longer movements). A: expectation wave or contingent negative variation (CNV) of Walter and co‐workers is dependent on sensory stimuli during conditioning. It is elicited by a first stimulus (here auditory and conditional), increases during expectancy of second stimulus (visual and imperative), and is terminated by a positive shift when conditioned action (key‐pressing) starts. B: readiness potential (Bereitschaftspotential ▭ of Kornhuber and co‐workers) precedes voluntary movements during intention to act and ends with a positive shift when brief movement (left‐hand flexion) begins. C: goal‐directed movement potential. increases premotion negativity (▭) during monitored movement for seconds until target is reached and a positive shift occurs. An intentional act with directed attention is common condition of these negative potential shifts. Maximal negativity appears in A B before brief movements and in C during goal‐directed movements.

Zielbewegungspotential (▪) of Grünewald and co‐workers. A: adapted from Walter ; B: adapted from Kornhuber and Deecke ; C: adapted from Grünwald‐Zuberbier, G. Grünwald, and Jung
Figure 20. Figure 20.

Diagram of Nicolai Hartmann's level concept of world and its relation to sensory sciences demonstrates structural stratification in four levels (inorganic, biological, psychic, and cultural) on left and shows the related hierarchical order of four classes of science. Sensory research concerns mainly the three lower levels, specialist studies being limited to one level and correlative sciences connecting several levels. Psychophysical research compares physical stimuli at inorganic level with mental experience at psychic level. Recordings of sensory messages belong to biological level. Psychophysiology relates afferent information processing by the brain to percepts. Gulf between organic and psychic strata is bridged by correlating perception at psychic level with sensory messages at biological, and physical stimuli at inorganic level. Each stratum depends on basic functions of all subjacent levels but has its specific new laws. These special laws increase in complexity and differentiation for higher levels, although natural laws of lower are also valid in all upper levels (as indicated by arrows).

Adapted from Jung


Figure 1.

Aristotelian and medieval concept of five senses projecting to the heart and the sensorium commune, made around 1500. An unknown English scholar added this pen drawing to the sensory chapter of G. de Hardewyck's book of 1496 on Aristotle. Lower part: stimuli of five senses (acoustic, visual, olfactory, gustatory, and somatosensory for heat and pain). Sense organs project by lines to heart as seat of the soul (according to Aristotle's scheme), either directly or after coordination in “sensus communis” in the anterior part of head. Upper part: two heads with a fancy cerebral location of labeled division of four and five brain compartments; left, Galen's and Avicenna's “sensus communis,” “phantasia,” “cogitativa,” and “memorativa”; right: Albertus Magnus's similar concept of five faculties: “sensus communis,” “imaginativa,” “estimativa,” “phantasia,” and “memorativa.”

From the Library of the Wellcome Institute for the History of Medicine, London, by courtesy of the Trustees


Figure 2.

Emperor Frederick II's method of visual learning conditioning of falcons after visual deprivation, written ca. A.D. 1240. During a period of visual exclusion by lid suture the falcon is accustomed to the voice and touch of the falconer. After this period of visual deprivation the falconer trains the seeing falcon for hunting in a series of stages. A: some weeks after opening the lids the falcon is tied to a bar by a long line and quieted by feeding, the attendant keeping his face averted. Then the falcon is accustomed to the man wearing a hat. B: after this imprinting to a human being the falcon learns to sit on a leather glove and is trained to remain there with and without a hood covering the eyes. C: unrest is quieted by feeding with averted face and by caressing. This procedure is repeated until the falcon remains on the gloved left fist of the falconer. D: conditioned falcon keeps sitting on the falconer's glove, first while walking, then while riding. Frederick's original illustrated manuscript was lost during the siege of Parma in 1248, but several copies were preserved, the best being that of his son King Manfred. These figures are taken from a good facsimile of Manfred's manuscript.

Colored miniatures in Vatican library Codex Ms. Pal. lat. 1071. fol. 92y, 106r, 89r, 108r


Figure 3.

Experiments on light refraction, A, and theory of the rainbow, B, drawn by Dietrich (Theodoricus) of Freiberg around 1300. To explain the rainbow colors Dietrich studied the spectral refraction of light in glass models of raindrops. A: refraction study with hexagonal crystals and vessels filled with water showed spectral colors: he found that red is nearest, blue farthest, from original angle of the light rays, and yellow and green lie between them. White light beam enters vessel, refracting at k, is partly reflected at inner wall, passing out at left; partly refracted again, it leaves vessel downward in q. B: Scheme of the rainbow originating from sun, a, by double spectral refraction and reflection in 4 raindrops (right). Observer, c, sees red light from upper drop and yellow, green, and blue from other drops in order of the rainbow. Divergence of doubly refracted colored light is drawn incorrectly in the parallel lines for each color.

From Dietrich's manuscript in the University Library, Basel, reproduced with kind permission of the Library


Figure 4.

Alberti's illustrations of visual pyramid, perspective convergence of parallel lines, and foreshortening of horizontal and vertical patterns. Top: visual angle of eye looking to a quadrangle forms a pyramid; length and width of base increase linearly with distance. Middle: parallel lines on a plane converge to a central point (punto centrico) at horizon. Bottom: quadratic pattern on floor and two columns (A and B) show the same perspective convergence. Text says, “linea giacente, 9 bracchia. A, B pilastri o muri di 10 bracchia” (Floor lines of 9 ells and columns of 10 ells).

From Alberti about 1430, in printed 1652 edition of Leonardo , p. 5, 17, 27


Figure 5.

Dürer's sketch and woodcut of perspective reproduction with help of squared glass window grid. (made around 1524). Top: draftsman marks main object contours on glass window, where they are seen with perspective foreshortening. In addition he uses a string for measuring distances and for demonstrating direction of visual pyramid from eye to objects seen. Bottom: draftsman copies foreshortened contours of a woman on paper from projection of glass window that has same squared network as the paper. Pointed bar marks eye position and window distance.

Top: pen drawing in Landesbibliothek, Dresden. Reproduced with kind permission of the Library. Bottom: woodcut from Dürer , 3rd ed


Figure 6.

Leonardo's drawing of dependence of illumination on angle of reflecting surface. The light rays b‐m from source a meet different parts of face, with maximal luminance in rectangular projection (g, h, “equal angles”). Leonardo's mirror script reads in MacCurdy's translation: “Since it is proved that every light with fixed boundaries emanates or appears to emanate from a single point, that part illuminated by it will have those portions in highest light upon which the line of radiance falls, between two equal angles, as is shown above in the lines a‐g, also in a‐h, and similarly in a‐l; and that portion of the illuminated part will be less luminous upon which the line of incidence strikes at two more unequal angles, as may be seen in b, c and d; and in this way you will also be able to discern the parts deprived of light, as may be seen at m and k.”

; Pen on paper. From Leonardo manuscript in Royal Library of Windsor Castle. Reproduced with permission. Copyright reserved


Figure 7.

Leonardo da Vinci's note and sketch of his experiments with frog spinal cord (about 1500). Leonardo drew the spinal cord in the vertebral canal with vertebrate bodies. He wrote in mirror script on the cord “generative power” and described on left and right sides the experiment of cord destruction. English translation of the essential result of abolishing reflex action: “The frog instantly dies when its spinal cord is perforated. Although it lived before without head, without heart, or any entrails of intestines or skin. It thus seems that here lies the fundamental of motion and of life.”

From Leonardo manuscript in Royal Library of Windsor Castle. Reproduced with permission. Copyright reserved


Figure 8.

Descartes's schemes of multisensory perception. A: visual and somatosensory control. Under visual control two bars N and O are directed by hands to a target B. This movement elicits afferent “animal spirits” of nerves to brain and pineal body H. The pineal is supposed to bend for receiving and sending impulses from and to eyes, 7, and arms, 8. B: bisensory interaction of vision and olfaction, and visual attention. Nerve impulses from both eyes via optic nerves converge in brain from 2, 4, and 6 to the pineal. There visual attention is aroused and causes an efferent flow (abc) facilitating visual input from the arrow (ABC). This suppresses olfactory afference from flower D via olfactory nerves 8 having less access to the pineal (dotted lines).

From Descartes


Figure 9.

Descartes's schemes of sensorimotor coordination in the brain show cerebral mechanisms of reflex movements (A) and voluntary and emotional action (B) elicited by sensation of warmth. A: cerebral mechanisms of reflex movements. Heat of fire A stimulates reflex withdrawal of foot B and defense movements of hand. This is effected by afferent and efferent impulses (“animal spirits”) of nerves, conducted along filament CC to and from brain after convergence at pineal gland F. Descartes's text reads in English: “If the fire A is close to the foot B, the small parts of this fire, which move, as you know, very rapidly, have the power to move along with them the part of the skin of this foot which they touch; and by this means, pulling the small filament CC, which you see attached to it, they open at the same time the entrance of the pore de, where this small filament ends, just as, by pulling one of the ends of a cord, you cause a bell attached to the other end to ring at the same time.” B: voluntary and emotional action elicited by sensation of warmth. Burning heat of a fire causes different cerebral responses of attraction or avoidance, sent by pineal body into different nerve channels. When hand B is cold it is extended voluntarily toward fire A for warmth. If fire burns hand the strong sensation of pain, conducted by more animal spirits in nerves to the brain, causes efferent impulses in cranial nerves oprs and an outburst of crying and tears. Descartes's general conclusion for sensory projections to the brain is this: “There are many small filaments similar to CC; they all begin to separate from one another at the inner surface of the brain, from whence they originate, and going from there to disperse throughout the rest of the body they serve as the organs for the sense of touch.”

From Descartes


Figure 10.

Descartes's concept of reciprocal innervation of two antagonistic eye muscles. Tube CB represents a nerve branching at CB to innervate the two antagonistic ocular muscles E and AD. Muscle AD is contracting after receiving more impulses (esprits animaux) than relaxing muscle E and moves eye to side F. In addition to centrifugal nerve impulses Descartes discussed a nonexisting peripheral interaction between the two antagonists by valves in sclera; these allow impulses to flow from e to i, but not in opposite direction, because valve g is closed.

From Descartes


Figure 11.

Descartes's picture of inverted retinal image. It is observed after removal of posterior part of sclera as in Scheiner's experiment on ox's eye. The observer at P sees inverted image TSR of the outer object VXY projected through cornea BCD and lens 1–6 to retina.

From Descartes


Figure 12.

Newton's sketch of his prismatic experiments made around 1700. This original design, preserved among other “non‐optic” writings of Newton, shows how rays of white sunlight from the window hole are refracted by a prism into their spectral colors and are projected to a perforated screen at left. Lowest spectral color is projected further, beyond a screen hole and through a second prism to left side of wall, excluding the other spectral components that were projected above. Newton's Latin script says twice: “Nec variat lux fracta colorem” (the refracted light does not change its color).

Drawing at Bodleian Library, Oxford. Reproduced with kind permission of the Library and New College, Oxford


Figure 13.

Newton's postulate of partial decussation of optic nerves in the chiasma as illustrated in the eighteenth century by Taylor (1738) and Harris (1775). A: Taylor's figure of optic chiasma depicts crossing over of nasal parts of the retina to explain single vision in two half‐fields of both eyes without reference to Newton; images of the object (arrows BA) are projected to retinas of both eyes (ab in left eye and α‐β in right eye). From chiasma onward the right parts of both retinas (continuous lines) project to right (XWS), and left parts (dashed lines) to left optic tract (rtu). B: Harris's figure of binocular convergence to illustrate Newton's concept of central projection of corresponding parts of retina when eyes converge on line PS. After crossing of nasal parts of the retina the corresponding retinal areas T and X and V and Y are drawn to unite in FGH so that binocular convergence occurs in brain and is projected to a hypothetical central area abcd.

A: from Taylor . B: from Harris


Figure 14.

G. W. Leibniz's manuscript of the binary number theory, written on March 15, 1679. Latin text explains the principle to use the two signs 1 and 0 for all numbers.

Upper part of page shows his scheme of dual number systems, which he called “Progressio dyadica,” as written in title at top. Sequence of upper lines 1–32 is continued in left vertical column to reach number 100 in lowest part(not reproduced). Leibniz submitted this dual system to the Paris Academy in 1703, where it was published in 1705 . Practical application of this principle had to wait for electronic computers, which had less difficulty in using the long number sequences than a hand‐writing mathematician. Reproduced with kind permission of the Leibniz‐Archiv, Niedersächsiche Landesbibliothek, Hannover


Figure 15.

Helmholtz's depictions of Thomas Young's three‐color concept compared with his own spectral sensitivity curves. A: for Young's theory of three receptor elements Helmholtz postulated in 1850 relatively broad spectral absorption curves showing 3 maxima—in orange, in green, and in blue‐violet, respectively. B: Helmholtz used König's and Dieterici's psychophysical data of their normal trichromatic eyes to obtain sensitivity curves of three elementary color sensations. Red curve R is shifted toward short‐wave side with a maximum at 560 nm, green curve G has a maximum at 550 nm, and violet V at 450 nm. This corresponds approximately to modern objective measurements of receptor absorptions (570, 540, 450 nm). Some individual differences are marked K for König and D for Dieterici.

From Helmholtz , 2nd ed


Figure 16.

E. D. Adrian's drawings of sensory nerve messages and their recording. A: cutaneous sensation. , Stimulus touching skin elicits rhythmic action potentials in nerve fiber. These messages are picked up from electrodes and magnified by an amplifier for recording instrument, . B: stretch receptors from muscle, lung, and carotid sinus are excited by muscle‐lengthening lung extension and carotid sinus dilatation, respectively. C: afferent neurons signaling touch, light, heat, and smell, and their processing of the receptor excitation: afferent fiber is connected with a hair touch receptor; optic nerve fiber is activated from a cone over two synapses; thermoreceptor activating a posterior root fiber and olfactory receptor with its primary fiber send their messages to central nervous system directly or after various synaptic transformations.

Original drawings made by Lord Adrian about 1927, reproduced with the kind permission of Dr. Richard Adrian


Figure 17.

Hans Berger's early 1929 and 1930 recordings of desynchronization of electroencephalogram (EEG) in man by sensory stimuli and attention. A, B: scalp recordings show blocking of α‐waves and EEG flattening caused by sensory stimuli, A, and during periodic alterations of attention, B, with EEG (middle records) and time 50/s (lowest records). Subjects: healthy men aged 30 (A) and 34 years (B). C, D, E: Berger's unpublished first direct recordings from human brain in 1930: C: Berger's drawing shows how the coated silver needle pairs were inserted in the parietal cortex and 4 cm below in the white matter during a diagnostic cerebral puncture in 20‐yr‐old man with brain tumor. D, E: simultaneous records demonstrate origin of EEG waves in cortex, the white matter having less electrical activity. On D Berger wrote “Cortex, Centr. semiovale,” and after name and date, “Nadelabl.”, in shorthand: “Augen geschlossen; eingeführte El.” (needle recording; eyes shut, electrodes inserted). E: during expectation of a second sensory stimulus the EEG flattened.

A, B: from Berger . C, D, E: records K 1766, 1768 Dec. 17, 1930, from the Freiburg Berger‐Archives


Figure 18.

Diagrams of intentional perception, aimed action, and directive attention. Schemes demonstrate anticipating preparation of perception and action in inner world and sensorimotor processes of behavior in outer world. A: Time relations of anticipating purpose, intention, and action as conceived by Aristotle. Aristotle described in the “Metaphysics” the cooperation of human knowledge and action by anticipation (noesis) of a foreseen aim (eidos) which acts in reverse in determining the action (poiesis) toward a goal. B: time relations of anticipating purpose, intention, and action, by scheme of N. Hartmann. Hartmann uses arrows to depict the peculiar time relations in the anticipating preparation of goal‐directed action. Willed intention must precede selection of means for the ends and this selection also precedes realization. Time scale of purpose (Zwecksetzung) and selection (Mittelwahl) shows opposite directions: purpose projects to future, and selection paradoxically acts against time flow as shown by arrows and time abscissa. This seemingly paradoxical inversion of time by preconceived future is present also in perceptual attention using internal world models given by sensory experience to search for and perceive the intended objects. C: psychophysical scheme of attentive perception, anticipation, and action. Interactions between perceiving subject and intended object are schematized for three active processes of expectation, attention, and orientation, and for passive afferent messages from sense organs to brain. Above the middle horizontal line are shown anticipatory processes of directive attention in the mind; below are shown physiological correlates of attentive orientation and perception in body and brain. Upper processes are psychic; lower are neurophysiological and behavioral functions. For vision the attentive and orientating processes include eye movements.

B: adapted from Hartmann


Figure 19.

Slow negative cortical potentials in man, correlated with intention to act (A, B) and to reach a target (C). Potential shifts (▭ before action, ▪ during action) are maximal at vertex and show higher amplitudes over motor cortex contralateral to moving limb. Motion is marked by arrows (↕ for brief movements; for longer movements). A: expectation wave or contingent negative variation (CNV) of Walter and co‐workers is dependent on sensory stimuli during conditioning. It is elicited by a first stimulus (here auditory and conditional), increases during expectancy of second stimulus (visual and imperative), and is terminated by a positive shift when conditioned action (key‐pressing) starts. B: readiness potential (Bereitschaftspotential ▭ of Kornhuber and co‐workers) precedes voluntary movements during intention to act and ends with a positive shift when brief movement (left‐hand flexion) begins. C: goal‐directed movement potential. increases premotion negativity (▭) during monitored movement for seconds until target is reached and a positive shift occurs. An intentional act with directed attention is common condition of these negative potential shifts. Maximal negativity appears in A B before brief movements and in C during goal‐directed movements.

Zielbewegungspotential (▪) of Grünewald and co‐workers. A: adapted from Walter ; B: adapted from Kornhuber and Deecke ; C: adapted from Grünwald‐Zuberbier, G. Grünwald, and Jung


Figure 20.

Diagram of Nicolai Hartmann's level concept of world and its relation to sensory sciences demonstrates structural stratification in four levels (inorganic, biological, psychic, and cultural) on left and shows the related hierarchical order of four classes of science. Sensory research concerns mainly the three lower levels, specialist studies being limited to one level and correlative sciences connecting several levels. Psychophysical research compares physical stimuli at inorganic level with mental experience at psychic level. Recordings of sensory messages belong to biological level. Psychophysiology relates afferent information processing by the brain to percepts. Gulf between organic and psychic strata is bridged by correlating perception at psychic level with sensory messages at biological, and physical stimuli at inorganic level. Each stratum depends on basic functions of all subjacent levels but has its specific new laws. These special laws increase in complexity and differentiation for higher levels, although natural laws of lower are also valid in all upper levels (as indicated by arrows).

Adapted from Jung
References
 1. Adickes, E. Kant als Naturwissenschaftler. Kantstudien 29: 70–97, 1924.
 2. Adrian, E. D. The impulses produced by sensory nerve endings. Part 1. J. Physiol. London 61: 49–72, 1926.
 3. Adrian, E. D. The Basis of Sensation. The Action of the Sense Organs. London: Christophers, 1928.
 4. Adrian, E. D. Die Untersuchung der Sinnesorgane mit Hilfe elektrophysiologischer Methoden. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 26: 501–530, 1928.
 5. Adrian, E. D. Afferent discharges to the cerebral cortex from peripheral sense organs. J. Physiol. London 100: 159–191, 1941.
 6. Adrian, E. D. The Physical Background of Perception. Oxford, England: Clarendon, 1947.
 7. Adrian, E. D., and D. W. Bronk. The discharge of impulses in motor nerve fibres. Part 2. The frequency of discharge in reflex and voluntary contraction. J. Physiol. London 67: 119–151, 1929.
 8. Adrian, E. D., and B. H. C. Matthews. The Berger rhythm. Potential changes from the occipital lobes in man. Brain 57: 356–385, 1934.
 9. Adrian, E. D., and R. Matthews. The action of light on the eye. Part 1. The discharge of impulses in the optic nerve and its relation to the electric changes in the retina. J. Physiol. London 63: 378–414, 1927.
 10. Adrian, E. D., and G. Moruzzi. Impulses in the pyramidal tract. J. Physiol. London 97: 153–199, 1939.
 11. Adrian, E. D., and Y. Zotterman. The impulses produced by sensory nerve endings. Part 2. The response of a single end‐organ. J. Physiol. London 61: 151–171, 1926.
 12. Adrian, E. D., and Y. Zotterman. The impulses produced by sensory nerve endings. Part 3. J. Physiol. London 61: 465–483, 1926.
 13. Allport, F. H. Theories of Perception and Concept of Structure. New York: Wiley, 1955.
 14. Amassian, V. E. Evoked single cortical unit activity in the somatic sensory areas. Electroencephalogr. Clin. Neurophysiol. 5: 415–438, 1953.
 15. Arnheim, R. Visual Thinking. Berkeley: Univ. of California Press, 1969.
 16. Aristotle. The Works of Aristotle (transl. by W. D. Ross), edited by J. A. Smith. Oxford, England: Clarendon, 1908–1952, vol. 1–12.
 17. Attneave, F. Applications of Information Theory to Psychology. New York: Holt, 1959.
 18. Bacon, F. Instauratio magna. I. Novum organum scientiarum. London: 1620. II. Sylva sylvarum. London: 1627. (New impression edited by J. Spedding, R. C. Ellis, and D. D. Heath. London: 1858.)
 19. Bárány, R. Physiologie und Pathologie (Funktionsprüfung) des Bogengang‐Apparates beim Menschen. Klinische Studien. Wien: Deuticke, 1907.
 20. Barlow, H. B. Single units and sensation: a neuron doctrine for perceptual psychology. Perception 1: 371–394, 1972.
 21. Barlow, H. B. Visual experience and cortical development. Nature 258: 199–204, 1975.
 22. Bartley, S. H., and G. H. Bishop. Factors determining the form of the electrical response from the optic cortex in the rabbit. Am. J. Physiol. 103: 173–184, 1933.
 23. Bartley, S. H., and E. B. Newman. Studies of the dog's cortex. Am. J. Physiol. 99: 1–8, 1931.
 24. Baumgarten, R. von, and R. Jung. Microelectrode studies on the visual cortex. Rev. Neurol. 87: 151–155, 1952.
 25. Baumgartner, G. Indirekte Grössenbestimmung der rezeptiven Felder der Retina beim Menschen mittels der Hermannschen Gittertäuschung. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 272: 21–22, 1960.
 26. Baumgartner, G. Kontrastlichteffekte an retinalen Ganglien‐zellen: Ableitungen vom Tractus opticus der Katze. In: Neu‐rophysiologie und Psychophysik des visuellen Systems, edited by R. Jung and H. H. Kornhuber. Berlin: Springer‐Verlag, 1961, p. 45–55.
 27. Baumgartner, G. Die Reaktionen der Neurone des zentralen visuellen Systems der Katze in simultanen Helligkeitskontrast. In: Neurophysiologie und Psychophysik des visuellen Systems, edited by R. Jung and H. H. Kornhuber. Berlin: Springer‐Verlag, 1961, p. 296–311.
 28. Baumgartner, G., and P. Hakas. Reaktionen einzelner Opticusneurone und corticaler Nervenzellen der Katze im Hell‐Dunkel‐Grenzfeld (Simultankontrast). Pfluegers Arch. Gesamte. Physiol. Menschen Tiere 270: 29, 1959.
 29. Beck, A. Die Ströme der Nervenzentren. Zentralbl. Physiol. 4: 572–573, 1890–1891.
 30. Beck, A., and N. Cybulski. Weitere Untersuchungen über die elektrischen Erscheinungen in der Hirnrinde der Affen und Hunde. Zentralbl. Physiol. 6: 1–6, 1892.
 31. Békésy, G. von Über die Schwingungen der Schneckentrenn‐wand beim Präparat und Ohrenmodell. Akust. Z. 7: 173–186, 1942.
 32. Békésy, G. von Sensory Inhibition. Princeton, NJ: Princeton Univ. Press, 1967.
 33. Békésy, G. von Mach‐ and Hering‐type lateral inhibition in vision. Vision Res. 8: 1483–1499, 1968.
 34. Bell, C. Idea of a New Anatomy of the Brain: Submitted for the Observation of His Friends. London: Strahan and Preston, 1811. (Reproduced in: Selected Readings in the History of Physiology, edited by F. Fulton. Springfield, IL: Thomas, 1930, p. 273–279.)
 35. Bell, C. On the nervous circle which connects the voluntary muscles with the brain. Philos. Trans. R. Soc. London Ser. B 2: 172, 1826.
 36. Benn, A. W. The Greek Philosophers. London, 1882–1883, 2 vol.
 37. Berger, H. Über das Elektrenkephalogramm des Menschen. Arch. Psychiatr. Nervenkr. 87: 527–570, 1929.
 38. Berger, H. Über das Elektrenkephalogramm des Menschen. 2. Mitteilung. J. Psychol. Neurol. Leipzig 40: 160–179, 1930.
 39. Berger, H. Über das Elektrenkephalogramm des Menschen. 3. Mitteilung. Arch. Psychiatr. Nervenkr. 94: 16–60, 1931.
 40. Beritoff, J. S. (Beritashvili). Neural Mechanisms of Higher Vertebrate Behavior (Engl. transl). Boston, MA: Little, Brown, 1965.
 41. Berkeley, G. Essay Towards a New Theory of Vision. Theory of Vision Vindicated. Dublin: Aaron Rhames, 1709. [Reprint: Selections from Berkeley (6th ed.), edited by A. D. Fraser. Oxford, England: Clarendon, 1910.]
 42. Bernard, C. Leçons sur la physiologie et la pathologie du système nerveux. Paris: Baillière, 1858, vol. 1 and 2.
 43. Bernard, C. Leçons sur les phénomènes de la vie commune aux animaux et aux végetaux. Cours de physiologie générale du muséum d'histoire naturelle. Paris: Baillière, 1878/1879, vols. I and II.
 44. Bethe, A. Plastizität und Zentrenlehre. In: Handbuch der Physiologie, edited by A. Bethe, G. von Bergmann, G. Embden and A. Ellinger. Berlin: Springer‐Verlag, 1931, vol. 15, p. 1175–1220.
 45. Bethe, A., G. von Bergmann, G. Embden, and A. Ellinger (editors). Handbuch der Normalen und Pathologischen Physiologie. Receptionsorgane I: Tangoreceptoren. Thermoreceptoren. Chemoreceptoren. Phonoreceptoren. Statoreceptoren. Berlin: Springer‐Verlag, 1926, vol. 11.
 46. Bethe, A., G. von Bergmann, G. Embden, and A. Ellinger (editors). In: Handbuch der Normalen und Pathologischen Physiologie. Receptionsorgane II: Photoreceptoren (1. Teil, 1929). Receptionsorgane II: Photoreceptoren (2. Teil, 1931). Berlin: Springer‐Verlag, 1929–1931, vol. 12.
 47. Bishop, P. O. Synaptic transmission. An analysis of the electrical activity of the lateral geniculate nucleus of the cat after optic nerve stimulation. Proc. R. Soc. London Ser. B 141: 362–392, 1953.
 48. Blakemore, C. Mechanics of the Mind. London: Cambridge Univ. Press, 1977.
 49. Blakemore, C., and R. C. van Sluyters. Innate and environmental factors in the development of the kitten's visual cortex. J. Physiol. London 248: 663–716, 1975.
 50. Blix, M. Experimentelle Beiträge zur Lösung der Frage über die specifische Energie der Hautnerven. Z. Biol. Munich 20: 141–156, 1884.
 51. Borg, G., L. Diamant, and Y. Zotterman. The relation between neural and perceptual intensity: a comparative study on the neural and psychophysical response to taste stimuli. J. Physiol. London 192: 13–20, 1967.
 52. Boring, E. G. Sensation and Perception in the History of Experimental Psychology. New York: Appleton‐Century Crofts, 1942.
 53. Bouguer, M. Traité d'optique sur la gradation de la lumière, ouvrage posthume. Paris: H.‐L. Guérin, 1760.
 54. Boutroux, E. De la contingence des lois de la nature (2nd ed.). Paris: F. Alcan, 1898. (1st ed. 1874.)
 55. Brazier, M. A. B. The historical development of neurophysiology. In: Handbook of Physiology, Neurophysiology, edited by J. Field and H. W. Magoun. Washington, DC: Am. Physiol. Soc., 1959, sect. 1, vol. I, chapt. 1, p. 1–58.
 56. Bremer, F., and R. S. Dow. The cerebral acoustic area of the cat: a combined oscillographic and cytoarchitectonic study. J. Neurophysiol. 2: 308–318, 1939.
 57. Brentano, F. Vom sinnlichen und noetischen Bewuβtsein. In: Psychologie. Wahrnehmung, Empfindung, Begriff, edited by O. Kraus Leipzig: F. Meiner, 1929, part 1.
 58. Brindley, G. S. Sensory effects of the electrical stimulation of the visual and paravisual cortex in man. In: Handbook of Sensory Physiology. Central Processing of Visual Information, edited by R. Jung Berlin: Springer‐Verlag, 1973, vol. 7, pt. 3B, p. 583–594.
 59. Broca, P. Remarques sur le siège de la faculté de langage articulé suivi d'une observation d' aphémie. Bull. Soc. Anat. Paris Ser. 2, 6: 330–357, 1861.
 60. Brock, L. G., J. S. Coombs, and J. C. Eccles. Action potentials of motoneurones with intracellular electrode. Proc. Univ. Otago Med. Sch. 29: 14–15, 1951.
 61. Brock, L. G., J. S. Coombs, and C. Eccles. The recording of potentials from motoneurones with an intracellular electrode. J. Physiol. London 117: 431–460, 1952.
 62. Brodmann, K. Vergleichende Lokalisationslehre der Groβhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Barth, 1909.
 63. Bruner, J. S. On perceptual readiness. Psychol. Rev. 64: 123–152, 1957.
 64. Bruner, J. S., and L. Postman. Perception, cognition and behavior. J. Pers. 18: 14–31, 1949.
 65. Brunn, W. L. von. Kreislauffunktion in William Harvey's Schriften. Berlin: Springer‐Verlag, 1967.
 66. Burckhardt, C. Die Kultur der Renaissance in Italien (12th ed.). Leipzig: A. Kröner, 1919. (1st ed. 1860.)
 67. Cannon, W. B. Bodily Changes in Pain, Hunger, Fear and Rage. New York: Appleton, 1915.
 68. Carnap R. Der logische Aufbau der Welt. Berlin: Weltkreis, 1928.
 69. Carterette, E. C., and M. P. Friedman (editors). Handbook of Perception. Historical and Philosophical Roots of Perception. New York: Academic, 1974, vol. 1.
 70. Caton, R. Researches on electrical phenomena of cerebral grey matter. Trans. Ninth Int. Med. Congr. 3: 246–249, 1887.
 71. Clarke, E., and K. Dewhurst. An Illustrated History of Brain Function. Berkeley: Univ. of California Press, 1972.
 72. Clarke, E., and C. D. O'Malley. The Human Brain and Spinal Cord: A Historical Study Illustrated by Writings from Antiquity to the Twentieth Century. Berkeley: Univ. of California Press, 1968.
 73. Cleve, Th.C. van. The Emperor Frederic Second of Hohen‐staufen. Immutator Mundi. Oxford, England: Clarendon, 1972.
 74. Craik, K. J. W. The Nature of Explanation. Cambridge, England: Cambridge Univ. Press, 1943.
 75. Creed, R. S., D. E. Denny‐Brown, J. C. Eccles, E. G. T. Liddell, and C. S. Sherrington. Reflex Activity of the Spinal Cord. Oxford, England: Clarendon, 1932.
 76. Crombie, A. C. From Augustine to Galileo. Vol. I, Science in the Middle Ages: V‐XIII Centuries. Vol. II, Science in the later Middle Ages and early Modern Times: XIII‐XVII Centuries. London: Heineman, 1952.
 77. Crombie, A. C. Robert Grosseteste and the Origins of Experimental Science, 1100–1700. Oxford, England: Clarendon, 1953, vol. 9, p. 369S.
 78. Crombie, A. C. Early concepts of the senses and the mind. In: Perception: Mechanisms and Models, edited by R. Held and W. Richards. San Francisco, CA: Freeman, 1972, p. 8–16.
 79. Democritus of Abdera. Demokritos. In: Die Fragmente der Vorsokratiker (grieschisch und deutsch, 2nd ed.), by H. Diels. Berlin: Weidmannische Buchhandlung, 1906/1907, no. 55, p. 350–450.
 80. Denny‐Brown, D. On the nature of postural reflexes. Proc. R. Soc. London Ser. B 104: 252–301, 1929.
 81. Descartes, R. Discours de la methode pour bien conduire sa raison et chercher la vérité dans les sciences, plus la dioptrique, les météores et la géométrie qui sont des essais de cete méthode. Leiden: Jan Maire, 1637.
 82. Descartes, R. Les Passions de l'âme. Paris: Le Gras, 1649. (Reprint in Oeuvres, Paris: Vrin, 1956/1957, vol. 11, p. 301–497.)
 83. Descartes, R. Renati Descartes tractatus de homine et de formatione foetus, edited by F. Schuyl Leiden: Offic. Hackiani, 1662.
 84. Descartes, R. L'Homme de Renée Descartes et un traité de la formation du foetus du mesme autheur, edited by L. de la Forge. Paris: Le Gras, 1664.
 85. Descartes, R. Oeuvres de Descartes publiées par C. Adam et P. Tannery. Paris: Vrin, 1956/1957, 13 vol.
 86. Dewey, J. The reflex arc concepts in psychology. Psychol. Rev. 3: 357–370, 1896.
 87. Dichgans, J., and R. Jung. Attention, eye movements and motion detection: facilitation and selection in optokinetic nystagmus and railway nystagmus. In: Attention in Neurophysiology, edited by C. R. Evans and T. B. Mulholland. London: Butterworth, 1969, p. 348–375.
 88. Diels, H. Die Fragmente der Vorsokratiker (griechisch und deutsch. 2nd ed.). Berlin: Weidmannische Buchhandlung, 1906/1907, 2 vol.
 89. Droogleever Fortuyn, J. A contribution of “Cognitive Neurology.” In: Eighth Int. Congr. Cybernetics, Namur, Belgium, 1976, p. 919–925.
 90. Du Bois‐Reymond, E. Untersuchungen über thierische Electricität. Berlin: Reimer, 1848, vol. 1; 1849, vol. 2.
 91. Duke‐Elder, S., and K. C. Wybar. The anatomy of the visual system. Sect. 1: Historical development. In: System of Ophthalmology, edited by S. Duke‐Elder. London: Kimpton, 1961, vol. 2, p. 1–72.
 92. Dürer, A. Underweysung der Messung mit dem Zirckel un Rchtscheyt in Linien, Ebnen unnd Gantzen Corporen. Nürnberg: 1525. (3rd ed. Nürnberg: H. Formschneyder, 1538.)
 93. Dusser de Barenne, J. G. Experimental researches on sensory localization in the cerebral cortex. Q. J. Exp. Physiol. 9: 355–390, 1916.
 94. Eccles, J. C. The Neurophysiological Basis of Mind: Principles of Neurophysiology. Oxford, England: Clarendon, 1953.
 95. Eccles, J. C. The Physiology of Nerve Cells. Baltimore, MD: Johns Hopkins Univ. Press, 1957.
 96. Eccles, J. C. Facing Reality. Philosophical Adventures by a Brain Scientist. Berlin: Springer‐Verlag, 1970.
 97. Eccles, J. C., and J. J. Gibson. Sherrington: His Life and Thought. Berlin: Springer‐Verlag, 1979.
 98. Eccles, J. C., and C. S. Sherrington. Studies on the flexor reflex. VI. Inhibition. Proc. R. Soc. London Ser. B 109: 91–113, 1931.
 99. Ekman, G. Psychophysik und psychologische Methoden. In: Lehrbuch der Experimentellen Psychologie (2nd ed.), by R. Meili and H. Rohracher. Bern: Huber, 1968, p. 19–56.
 100. Epicurus. In: Epicurus. The Extant Remains; and in: The Greek atomists and Epicurus, edited by C. Bailey Oxford, England: Clarendon, 1926, 1928.
 101. Erb, W. Über Sehnenreflexe bei Gesunden und Rückenmarkskranken. Arch. Psychiatr. Nervenkr. 5: 792–802, 1875.
 102. Erdmann, B., and R. Dodge. Psychologische Untersuchungen über das Lesen auf experimenteller Grundlage. Halle, Germany: Niemeyer, 1898.
 103. Erlanger, J., and H. S. Gasser. Electrical Signs of Nervous Activity. Philadelphia: Univ. of Pennsylvania Press, 1937.
 104. Evarts, E. V., and J. Tanji. Gaiting of motor cortex reflexes by prior instruction. Brain Res. 71: 479–494, 1974.
 105. Exner, S. Entwurf zu einer physiologischen Erklärung der psychischen Erscheinungen. Leipzig: Deuticke, 1894.
 106. Fechner, G. T. Elemente der Psychophysik. Leipzig: Breit‐kopf & Härtel, 1860, 2 vols.
 107. (Elements of Psychophysics, transl. by H. E. Adler. New York: Holt, Reinhart, 1966.)
 108. Ferrier, D. The Function of the Brain. London: Smith, Elder, 1876.
 109. Fischer, B., and H. J. Freund. Eine mathematische Formulierung für Reiz‐Reaktionsbeziehungen retinaler Ganglienzellen. Kybernetik 7: 160–166, 1970.
 110. Fischer, M. H. Elekrobiologische Erscheinungen an der Hirnrinde. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 230: 161–178, 1932.
 111. Flechsig, P. Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetischer Grundlage. Leipzig: Thieme, 1920.
 112. Flourens, P. Recherches expérimentales sur les propriétés et les fonctions du système nerveux dans les animaux vertébrés. Paris: Crevot, 1824.
 113. Flourens, P. Experiences sur le système nerveux. Paris: Crevot, 1825.
 114. Foerster, O. Die Physiologie und Pathologie der Koordination. Jena, Germany: Fischer, 1902.
 115. Foerster, O. The dermatomes of man. Brain: 56: 1–39, 1933.
 116. Foerster, O. Sensible corticale Felder. In: Handbuch der Neurologie, edited by O. Bumke and O. Foerster. Berlin: Springer‐Verlag, 1936, vol. 6, p. 358–448.
 117. Fredericus II of Hohenstaufen. De arte venandi cum avibus (facsim. vol. XVI). Graz, Austria: Graz Akademie, 1969, vol. 31.
 118. (The Art of Falconry. Frederick II of Hohenstaufen, edited by C. A. Wood and F. M. Fyfe. Stanford, CA: Stanford Univ. Press, 1943.)
 119. Frey, M. von Beiträge zur Physiologie des Schmerzsinns. Ber. Verh. Saeschs. Akad. Wiss. Leipzig Math. Naturw. Kl. 46: 185–196, 1894.
 120. Frey, M. von Untersuchungen über die Sinnesfunctionen der menschlichen Haut. 1. Abhandl.: Druckempfindung und Schmerz. Abh. Math. Phys. Kl. Koenigl. Saechs. Ges. Wiss. 23: 171–266, 1896.
 121. Frey, M. von Physiologie der Sinnesorgane der menschlichen Haut. I. Der Temperatursinn. Ergeb. Physiol. Biol. Chem. Exp. Pharmacol. 9: 351–368, 1910.
 122. II. Der Drucksinn. Ergeb. Physiol. Biol. Chem. Exp. Pharmacol. 13: 96–124, 1913.
 123. Frey, M. von Die Tangoreceptoren des Menschen. In: Handbuch der Normalen und Pathologischen Physiologie, edited by A. Bethe, G. von Bergmann, G. Embden, and A. Ellinger. Berlin: Springer‐Verlag, 1926, vol. 11, p. 94–130.
 124. Frisch, K. von Der Farbensinn und Formensinn der Biene. Zool. Jahrb. Abt. Zool. Physiol. Tiere 35: 1–188, 1914.
 125. Fritsch, G. T., and E. Hitzig. Über die elektrische Erregbar‐keit des Groβhirns. Arch. Anat. Physiol. Wiss. Med., p. 300–332, 1870.
 126. (Engl. transl. in Neurosurgical Classics by H. Wilkins. XII. J. Neurosurg. 20: 904–916, 1963.)
 127. Fulton, F. (editor). Selected Readings in the History of Physiology. Springfield, IL: Thomas, 1930. (2nd ed. enlarged,
 128. Selected Readings in the History of Physiology. edited by F. Fulton and L. G. Wilson. Springfield, IL: Thomas, 1966).
 129. Galen. Claudiu Galenu Hapanta. Claudii Galeni opera omnia, edited by C. G. Kühn. Leipzig: 1821–1833, vol. I‐XX.
 130. Gall, F. J., and J. C. Spurzheim. Anatomie et physiologie du système nerveux en général, et du cerveau en particulier.… Paris: Schoell, 1810–1819, 4 vol.
 131. Galvani, L. De viribus electricitatis in motu musculari. Commentarius de Bononiensi Scientiarum et Artium Instituto atque Academia 7: 363–418, 1791. (Reprint: Memorie et esperimenti, edited by L. Galvani. Bologna, Italy: Capelli, 1937.)
 132. Gibson, J. J. The Perception of the Visual World. Boston, MA: Houghton, 1950.
 133. Gibson, J. J. The Senses Considered as Perceptual Systems. Boston, MA: Houghton, 1966.
 134. Goldscheider, A. Über Wärme‐, Kälte‐ und Druckpunkte. Verhandl. Physiol. Ges. Berlin 1884–1885. Neue Tatsachen über die Hautsinnesnerven. Arch. Anat. Physiol. Physiol. Abt. Suppl. 1–110, 1885.
 135. Goldscheider, A. Gesammelte Abhandlungen I. Physiologie der Hautnerven. Leipzig: Barth, 1898. (Contains ref. .)
 136. Granit, R. Sensory Mechanisms of the Retina with an Appendix on Electroretinography. London: Oxford Univ. Press, 1947.
 137. Granit, R. Receptors and Sensory Perception. New Haven, CT: Yale Univ. Press, 1955.
 138. Granit, R. Charles Scott Sherrington. An Appraisal. London: Nelson, 1966.
 139. Granit, R. The Purposive Brain. Cambridge, MA: MIT Press, 1977.
 140. Grünewald‐Zuberbier, E., and G. Grünewald. Goal‐directed movement potentials of human cerebral cortex. Exp. Brain Res. 33: 135–138, 1978.
 141. Grünewald‐Zuberbier, E., G. Grünewald, and R. Jung. Slow potentials of the human precentral and parietal cortex during goal‐directed movements (Zielbewegungspotentiale). J. Physiol. London 284: 181P–182P, 1978.
 142. Gudden, B. von Ueber die Kreuzung der Fasern im chiasma nervorum opticum. Albrecht von Graefes Arch. Ophthalmol. 20: 249–268, 1874.
 143. Hall, M. On the reflex function of the medulla oblongata and medulla spinalis. Philos. Trans. R. Soc. London 123: 635–665, 1833.
 144. Haller, A. von De partibus corporis humani sensibilibus et irritabilibus. Comment. Soc. Reg. Sci. Göttingen 2: 114–158, 1753.
 145. Haller, A. von Elementa physiologiae corporis humani. Lausanne: Sumptibus Marci‐Michael, Bousquet & Sociorum. Berne: Sumptibus Societatis Typographicae, 1757–1766, 8 vol.
 146. Haller, A. von Grundriβ der Physiologie für Vorlesungen. (Nach der 4. lateinischen Ausgabe übersetzt von K. F. Uden.) Berlin: 1784. (Nach der 4. lateinischen Ausgabe aufs Neue übersetzt und mit Anmerkungen versehen durch Sömmering und Meckel.) Berlin: Haude & Spener, 1788.
 147. Harris, J. Treatise of Optics. London: B. White, 1775.
 148. Hartline, H. K. Impulses in single optic nerve fibres of the vertebrate retina. (Abstract). Am J. Physiol. 113: 59–60, 1935.
 149. Hartline, H. K. The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am. J. Physiol. 121: 400–415, 1938.
 150. Hartline, H. K. Inhibition of activity of visual receptors by illuminating nearby retinal areas in the Limulus eye. Federation Proc. 8: 69, 1949.
 151. Hartline, H. K., and C. H. Graham. Nerve impulses from single receptors in the eye. J. Cell. Comp. Physiol. 1: 277–295, 1932.
 152. Hartmann, M. Philosophie der Naturwissenschaften. Berlin: Springer‐Verlag, 1937.
 153. Hartmann, N. Philosophische Grundlagen der Biologie. Göttingen, Germany: Van den Hoeck, 1912.
 154. Hartmann, N. Systematische Selbstdarstellung. Berlin: Junker & Dünnhaupt, 1933.
 155. Hartmann, N. Der Aufbau der realen Welt. Grundriβ der allgemeinen Kategorienlehre. Berlin: de Gruyter, 1940.
 156. Hartmann, N. Philosophie der Natur, Abriβ der speziellen Kategorienlehre. Berlin: de Gruyter, 1950.
 157. Hartmann, N. Teleologisches Denken. Berlin: de Gruyter, 1951.
 158. Harvey, W. Exercitatio anatomica de motu cordis et sanguinis in animalibus. Frankfurt am Main: G. Pfitzeri, 1628. (Engl. transl. by G. T. Whitteridge. Oxford, England: Blackwell, 1976.)
 159. Haskins, C. H. De Arte Venandi cum Avibus of Frederic II of Hohenstaufen. Studies in the History of Medieval Science. Cambridge, MA: Harvard Univ. Press, 1927.
 160. Hayek, F. A. The Sensory Order. London: Routledge and Kegan Paul, 1952.
 161. Haymaker, W. (editor). The Founders of Neurology. Springfield, IL: Thomas, 1953.
 162. Head, H. Studies in Neurology. London: Frowde, Hodder & Stoughton, 1920, 2 vol.
 163. Head, H., and G. Holmes. Sensory disturbances from cerebral lesions. Brain: 102–254, 1911.
 164. Hebb, D. O. Organization of Behavior. New York: Wiley, 1949.
 165. Heidegger, M. Sein und Zeit. Jahrb. Philos. Phänomenol. Forsch. 8: 1–438, 1927.
 166. Held, R. Two models of processing spatially distributed visual stimulation. In: The Neurosciences, edited by F. O. Schmitt. New York: Rockefeller Univ. Press, 1970, p. 317–324.
 167. Held, R., and A. Hein. Movement‐produced stimulation in the development of visually guided behavior. J. Comp. Physiol. Psychol. 56: 872–876, 1963.
 168. Helmholtz, H. Messungen über den zeitlichen Verlauf der Zuckung animalischer Muskeln und die Fortpflanzungs‐geschwindigkeit der Reizung der Nerven. Arch. Anat. Physiol. Wiss. Med. 276–364, 1850.
 169. Helmholtz, H. Beschreibung eines Augenspiegels zur Unter‐suchung der Netzhaut im lebenden Auge. Berlin: A. Förstner, 1851.
 170. Helmholtz, H. Handbuch der Physiologischen Optik. 1859–1867; 2nd ed. edited by A. König. Hamburg: Voss, 1896; 3rd ed. edited by Gullstrand et al., 1909–1911. (Transl. and edited by J. P. C. Southall. New York: Optical Soc. Am., 1924–1925. Reprinted New York: Dover, 1962.)
 171. Helmholtz, H. Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik. Braunschweig, Germany: Vieweg, 1863. (On the Sensation of Tone, transl. by A. J. Ellis. 2nd English ed., 1885.)
 172. Helmholtz, H. (and N. Baxt). Mittheilung betreffend Versuche über Fortpflanzungsgeschwindigkeit der Reizung in den motorischen Nerven des Menschen, welche Herr N. Baxt aus Petersburg im Physiologischen Laboratorium zu Heidelberg ausgeführt hat. Monatsber. Akad. Wiss. Berlin 228–234, 1867.
 173. Hensel, H., and K. Boman. Afferent impulses in cutaneous sensory nerves in human subjects. J. Neurophysiol. 23: 564–578, 1960.
 174. Herbart, J. F. Psychologie als Wissenschaft, neugegründet auf Erfahrung, Metaphysik und Mathematik. Königsberg: W. Unzer, 1824/1825, 2 vol.
 175. (A Textbook in Psychology, an Attempt to Found the Science of Psychology on Experience, Metaphysics and Mathematics, transl. by M. K. Smith. New York: Appleton, 1891.)
 176. Herder, J. G. Ideen zur Philosophie der Geschichte der Menschheit. Leipzig: Hartknoch, 1785, vol. 1.
 177. Hering, E. Die Lehre vom binocularen Sehen. Leipzig: Engelmann, 1868.
 178. Hering, E. Über das Gedächtnis als eine allgemeine Funktion der organisierten Materie. 1870. In: Fünf Reden von E. Hering. Leipzig: Engelmann, 1921.
 179. Hering, E. Zur Lehre vom Lichtsinne. Wien: Gerold & Söhne, 1878.
 180. Hering, E. Der Raumsinn und die Bewegungen der Augen. In: Handbuch der Physiologie, edited by L. Hermann Leipzig: Vogel, 1879, vol. 3, p. 343–601.
 181. Hering, E. Grundzüge der Lehre vom Lichtsinn. In: Handbuch der Gesamten Augenheilkunde, edited by A. Graefe, Th. Saemisch, and C. Hess. Leipzig: Engelmann, 1905; 2nd ed. 1907, vol. 3/1, p. 1–294.
 182. (Outline of a Theory of the Lightsense, transl. by L. M. Hurvich and D. Jameson. Cambridge, MA.: Harvard Univ. Press, 1964).
 183. Hering, E. Wissenschaftliche Abhandlungen. Leipzig: Thieme, 1931, vol. 1 and 2.
 184. Herrnstein, R. J., and E. G. Boring (editors). A Source Book in the History of Psychology. Cambridge, MA: Harvard Univ. Press, 1965.
 185. Hess, W. R. Die Motorik als Organisationsproblem. Biol. Zentralbl. 61: 545–572, 1941.
 186. Hess, W. R. Das Zwischenhirn. Syndrome, Lokalisationen, Funktionen. Basel: Schwabe, 1949.
 187. Hess, W. R. Cerebrale Organisation somatomotorischer Leistungen. I. Physikalische Vorbemerkungen und Analyse kon‐kreter Beispiele. Arch. Psychiatr. Nervenkr. & Z. Gesamte Neurol. Psychiatr. 207: 33–44, 1965.
 188. Hippocrates. The Genuine Works of Hippocrates (transl. by F. Adams). London: Sydenham Soc., 1849, 2 vol.
 189. Hirsch, H. V. B., and D. N. Spinelli. Modification of the distribution of receptive field orientation in cats by selective visual exposure during development. Exp. Brain Res. 13: 509–527, 1971.
 190. Hodgkin, A. L., and A. F. Huxley. Resting and action potentials in single nerve fibres. J. Physiol. London 104: 176–195, 1945.
 191. Hoffmann, P. Beiträge zur Kenntnis der menschlichen Reflexe mit besonderer Berücksichtigung der elektrischen Er‐scheinungen. Arch. Anat. Physiol. Physiol. Leipzig 223–246, 1910.
 192. Hoffmann, P. Die Eigenreflexe (Sehnenreflexe) menschlicher Muskeln. Berlin: Springer‐Verlag, 1922.
 193. Holmgren, F. Method att objectivera effecten av ljusintryck pa retina. Upsala Laekarefoeren. Foerh. 1: 177–191, 1865–1866.
 194. Holst, E. von Zentralnervensystem und Peripherie in ihrem gegenseitigen Verhältnis. Klin. Wochschr. 29: 97–105, 1951.
 195. Holst, E. von Aktive Leistungen der menschlichen Gesichts‐wahrnehmung. Stud. Gen. 10: 231–243, 1957.
 196. Holst, E. von, and H. Mittelstaedt. Das Reafferenzprinzip. Wechselwirkung zwischen Zentralnervensystem und Peripherie. Naturwissenschaften 37: 464–476, 1950.
 197. Hubel, D. H., and T. N. Wiesel. Receptive fields of single neurones in the cat's striate cortex. J. Physiol. London 148: 574–591, 1959.
 198. Hubel, D. H., and T. N. Wiesel. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. London 160: 106–154, 1962.
 199. Hubel, D. H., and T. N. Wiesel. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. London 206: 419–436, 1970.
 200. Hubel, D. H., and T. N. Wiesel. Functional architecture of macaque monkey visual cortex. Proc. R. Soc. London Ser. B 198: 1–59, 1977.
 201. Hume, D. Treatise on Human Nature: Being an Attempt to Introduce the Experimental Method of Reasoning into Moral Subjects. Reprint of corrected parts of 1777 edition, edited by L. A. Selby‐Bigge and P. H. Nidditch. Oxford, England: Clarendon, 1975.
 202. Hume, D. An Enquiry Concerning Human Understanding. (First ed. 1748 titled Philosophical Essays Concerning Human Understanding.) Reprint of posthumous edition 1777, edited by L. A. Selby‐Bigge and P. H. Nidditch. Oxford, England: Clarendon, 1975.
 203. Humboldt, F. A. von Versuche über die gereizte Muskel‐und Nervenfaser nebst Vermutungen über den chemischen Process des Lebens in der Thier‐ und Pflanzenwelt. Berlin: Rottmann, 1797, 2 vol.
 204. Husserl, E. Ideen zu einer reinen Phänomenologie und phänomeno‐logischen Philosophie. Jahrb. Phänomenol. Philos. Forsch. 1: 1–360, 1913.
 205. Ivins, W. M., Jr. Art and Geometry. A Study in Space Intuitions. Cambridge, MA: Harvard Univ. Press, 1946.
 206. Jackson, J. H. Selected Writings of John Hughlings Jackson, edited by J. Taylor. London: Hodder & Stoughton, 1931, 2 vol.
 207. James, W. The Principles of Psychology. New York: Holt, 1890.
 208. Jaspers, K. Allgemeine Psychopathologie. Berlin: Springer‐Verlag, 1913.
 209. Jaspers, K. Philosophie. I. Philosophische Weltorientierung. Berlin: Springer‐Verlag, 1956.
 210. Jung, R. Allgemeine Neurophysiologie: Die Tätigkeit des Nervensystems. In: Handbuch der Inneren Medizin, (4th ed.) edited by G. von Bergmann, W. Frey, and W. Schwiegk. Berlin: Springer‐Verlag, 1953, vol. 5/1, p. 1–181.
 211. Jung, R. Neuronal discharge. Electroencephalogr. Clin. Neurophysiol. Suppl. 4: 57–71, 1953.
 212. Jung, R. Correlation of bioelectrical and autonomic phenomena with alterations of consciousness and arousal in man. In: Brain Mechanisms and Consciousness. Symposium, edited by J. F. Delafresnay, E. D. Adrian, F. Bremer, and H. H. Jasper. Oxford, England: Blackwell, 1954, p. 310–344.
 213. Jung, R. Korrelationen von Neuronentätigkeit und Sehen. In: Neurophysiologie und Psychophysik des visuellen Systems, edited by R. Jung and H. H. Kornhuber. Berlin: Springer‐Verlag, 1961, p. 410–435.
 214. Jung, R. Neurophysiologie und Psychiatrie. In: Psychiatrie der Gegenwart, edited by H. W. Gruhle, R. Jung, W. Mayer‐Gross, and M. Müller. Berlin: Springer‐Verlag, 1967, vol. 1, pt. 1A, p. 325–928.
 215. Jung, R. Visual perception and neurophysiology. In: Handbook of Sensory Physiology. Central Processing of Visual Information, edited by R. Jung Berlin: Springer‐Verlag, 1973, vol. 7, pt. 3A, p. 1–152.
 216. Jung, R. Perception, consciousness and visual attention. In: Cerebral Correlates of Conscious Experience, edited by P. Buser and A. Rougeul‐Buser. Amsterdam: Elsevier, 1978, vol. 359, p. 15–36.
 217. Jung, R., R. von Baumgarten, and G. Baumgartner. Mikroableitungen von einzelnen Nervenzellen im optischen Cortex der Katze: Die lichtaktivierten B‐Neurone. Arch. Psychiatr. Nervenkr. + Z. Gesamte Neurol. Psychiatr. 189: 521–539, 1952.
 218. Jung, R., H. Kornhuber, and J. S. da Fonseca. Multisensory convergence on cortical neurons. Neuronal effects of visual, acoustic and vestibular stimuli in the superior convolutions of the cat's cortex. In: Progress in Brain Research. Brain Mechanisms: Specific and Unspecific Mechanisms of Sensory Motor Integration, edited by G. Moruzzi, A. Fessard, and H. H. Jasper. Amsterdam: Elsevier, 1964, vol. 1, p. 207–240.
 219. Kandel, E. R. Cellular Basis of Behavior. An Introduction to Behavioral Neurobiology. San Francisco, CA: Freeman, 1976.
 220. Kant, I. Allgemeine Naturgeschichte und Theorie des Himmels oder Versuch von der Verfassung und dem mechan‐ischen Ursprunge des ganzen Weltgebäudes nach Newtonischen Grundsätzen abgehandelt. 1755. (Reprint in Gesammelte Schriften. Berlin: Reimer, 1910–1917, vol. 1, p. 215–368.)
 221. Kant, I. Critik der reinen Vernunft. 1781; 2nd ed. Riga: Hartknoch, 1783.
 222. (Critique of Pure Reason, transl. by M. K. Smith. London: Macmillan, 1929.)
 223. Kant, I. Prolegomena zu einer künftigen Metaphysik, die als Wissenschaft wird auftreten können. Riga: Hartknoch, 1783.
 224. Kant, I. Metaphysische Anfangsgründe der Naturwissen‐schaft. Riga: Hartknoch, 1786.
 225. Kant, I. Critik der Urtheilskraft. Berlin: Lagarde and Friederich, 1790.
 226. Kant, I. Gesammelte Schriften. Berlin: Reimer, 1910–1917, 8 vol.
 227. Kantorowicz, E. Kaiser Friedrich II. Düsseldorf, Germany: G. Bondi, 1927; Ergänzungsb. 1931; 4th ed., 1936.
 228. Kepler, J. Dioptrice. Augsburg, Germany: Frank, 1611. In:
 229. Gesammelte Werke, edited by W. von Dyck and M. Caspar. München: Beck, 1937–1963, vol. 4.
 230. Kepler, J. Harmonices Mundi. Linz, Austria: Tampach, Plancus, 1619. In:
 231. Gesammelte Werke, edited by W. von Dyck and M. Caspar. München: Beck, 1937–1963, vol. 6.
 232. Keynes, G. The Life of William Harvey. Oxford, England: Clarendon, 1964.
 233. Kluever H. Behavior Mechanism of Monkeys. Chicago, IL: Univ. of Chicago Press, 1964.
 234. Koffka, K. Principles of Gestalt Psychology, edited by M. R. Harrower. New York: Harcourt, 1935.
 235. Kohler, I. Über Aufbau und Wandlungen der Wahrneh‐mungswelt: insbesondere über “bedingte Empfindungen.” Sitzungsber. Oesterr. Akad. Wiss. Philos. Hist. Kl. 227 (1): 1–118, 1951.
 236. (Engl. transl. with additions: The Formation and Transformation of the Perceptual World. New York: Intl. Univs. Press, 1964.)
 237. Köhler, W. Intelligenzprüfungen an Anthropoiden. I. Berlin: Königl. Akademie Wissenschaften, 1917.
 238. Köhler, W. Die physischen Gestalten in Ruhe und im stationären Zustand. Braunschweig, Germany: Vieweg, 1920.
 239. Köhler, W. Gestalt Psychology. New York: Liveright, 1947.
 240. Kohts, N. Infant Ape and Human Child (Instincts, Emotions, Play, Habits). Moscow: Darwin Museum, 1935.
 241. Kornhuber, H. H. Neural control of input into long term memory: Limbic system and amnestic syndrome in man. In: Memory and Transfer of Information, edited by H. P. Zippel. New York: Plenum, 1971.
 242. Kornhuber, H. H., and L. Deecke. Hirnpotentialänderun‐gen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 284: 1–17, 1965.
 243. Kornmüller, A. E. Architektonische Lokalisation bioelek‐trischer Erscheinungen auf der Groβhirnrinde. I. Mitt.: Unter‐suchungen am Kaninchen bei Augenbelichtung. J. Psychol. Neurol. Leipzig 44: 447–459, 1932.
 244. Kornmüller, A. E. Die bioelektrischen Erscheinungen archi‐tektonischer Felder der Groβhirnrinde. Biol. Rev. Biol. Proc. Cambridge Philos. Soc. 10: 383–426, 1935.
 245. Kornmüller, A. E., and J. F. Tönnies. Registrierung der spezifischen Aktionsströme eines architektonischen Feldes der Groβhirnrinde vom uneröffneten Schädel. Psychiatr. Neurol. Wochenschr. 34: 581, 1932.
 246. Kries, J. von Allgemeine Sinnesphysiologie. Leipzig: Vogel, 1923.
 247. Kries, J. von Immanuel Kant und seine Bedeutung für die Naturforschung der Gegenwart. Berlin: Springer‐Verlag, 1924.
 248. Kuffler, S. W. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16: 37–68, 1953.
 249. Kühne, W. Über den Sehpurpur. Untersuch. Physiol. Inst. Univ. Heidelberg 1: 15–103, 1877.
 250. Kühne, W. Chemische Vorgänge in der Netzhaut. In: Hand‐buch der Physiologie. Sinnesorgane, edited by L. Hermann Leipzig: Vogel, 1879, vol. 3, pt. 1, p. 235–342.
 251. Küpfmüller, K. Grundlagen der Informationstheorie und der Kybernetik. In: Physiologie des Menschen. Allgemeine Neurophysiologie, edited by O. H. Gauer, K. Kramer, and R. Jung. Berlin: Urban & Schwarzenberg, 1971, vol. 10, p. 195–231.
 252. La Mettrie, J. O. de. L'Homme machine. Leiden, 1748. (L'Homme machine. Critical ed., with introductory monograph and notes, transl. by A. Vartanian. Princeton, NJ: Princeton Univ. Press, 1960.)
 253. La Mettrie, J. O. de. Les Animaux plus que machines. 1750.
 254. Lange, F. A. Geschichte des Materialismus und Kritik seiner Bedeutung in der Gegenwart (3rd ed.). Iserlohn, Germany: Baedeker, 1876, 2 vols.
 255. (The History of Materialism, transl. by E. C. Thomas. London: Routledge & Kegan Paul, 1925.
 256. Leibnitz, G. W. Explication de l'arithmétique binaire, qui se sert des seuls caractères 0 et 1 …. In: Histoire de l'Academie Royale des Sciences, année 1703. Paris: Boudot, 1705, p. 85–89.
 257. Leibniz, G. W. von. Nouveaux essais sur l'entendement humain. In: Oeuvres philosophiques de feu Mr. de Leibniz, edited by R. E. Raspe. Amsterdam: Schreuder, 1765, vol. 2, pt. 1, 2. (Reprint: Philosophische Schriften. Nouveaux essais, by G. W. Leibniz. Berlin: Akademie‐Verlag, 1962, vol. 6.)
 258. Leibniz, G. W. von. Die Philosophischen Schriften, edited by C. J. Gerhardt. Berlin: 1875–1890. (Reprint: Hildesheim, Germany: Olms, 1965.)
 259. Leonardo da Vinci. Trattato della pittura di Lionardo da Vinci, novamente dato in luce, con la vita dell'istesso autore, scritta da Raffaelle du Fresne. Paris: Langlois, 1651.
 260. (Traktat von der Malerei. In: Quellenschrift der Kunstgeschichte und Kunsttechnik des Mittelalters und der Renaissance, transl. by H. Ludwig. Wien: Braumüller, 1882; nach Codex Vaticanus Urbinas no. 1270.)
 261. Leonardo da Vinci. The Notebooks of Leonardo da Vinci, edited by E. MacCurdy London: Reprint Soc., 1954, 2 vol.
 262. Lewin, K. Principles of Topological Psychology. New York: McGraw‐Hill, 1936.
 263. Li, C., and H. H. Jasper. Microelectrode studies of the electrical activity of the cerebral cortex in the cat. J. Physiol. London 121: 117–140, 1953.
 264. Liddell, E. G. T., and C. S. Sherrington. Recruitment and some other features of reflex inhibition. Proc. R. Soc. London Ser. B 97: 488–518, 1925.
 265. Liebig, J. von Francis Bacon von Verulam und die Methode der Naturforschung. 1863. Induction und Deduction. 1865. In: Reden und Abhandlungen. Leipzig: 1874, p. 220–254, 296–309.
 266. Locke, J. Essay Concerning Human Understanding. London: Holt, 1690. (Reprint edited by A. C. Fraser. Oxford, England: Clarendon, 1894, 2 vol.)
 267. Loewi, O. Über humorale Übertragbarkeit der Herznerven‐wirkung. 1. Mitt. Pflüegers Arch. Gesamte Physiol. Menschen Tiere 189: 239–242, 1921.
 268. Lorente de Nó, R. Ausgewählte Kapitel aus der vergleichenden Physiologie des Labyrinthes. Die Augenmuskelreflexe beim Kaninchen und ihre Grundlagen. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 32: 73–242, 1931.
 269. Lorente de Nó, R. The synaptic delay of the motoneurones. Am. J. Physiol. 111: 272–282, 1935.
 270. Lorente de Nó, R. Analysis of the activity of the chains of internuncial neurons. J. Neurophysiol. 1: 207–244, 1938.
 271. Lorenz, K. Die angeborenen Formen möglicher Erfahrung. Z. Tierpsychol. 5: 235–409, 1943.
 272. Lorenz, K. The comparative method in studying innate behavior patterns. Symp. Soc. Exp. Biol. 4: 220–268, 1950.
 273. Lotze, R. H. Medicinische Psychologie (oder Physiologie der Seele). Leipzig: Weidmann, 1852.
 274. Lucretius (Titus Lucretius Carus). De rerum natura, transl. and edited by C. Bailey Oxford, England: Clarendon, 1947, vol 1.
 275. Lynch, J. C., V. B. Mountcastle, W. H. Talbot, and T. C. T. Yin. Parietal lobe mechanisms for directed visual attention. J. Neurophysiol. 40: 362–389, 1977.
 276. Mach, E. Über die Wirkung der räumlichen Verteilung des Lichtreizes auf die Netzhaut. Sitzungsber. Kaiserl. Akad. Wiss., Wien Math. Naturw. Kl. 52(2): 303–322, 1865.
 277. Mach, E. Grundlinien der Lehre von den Bewegungsempfin‐dungen. Leipzig: Engelmann, 1875.
 278. Mach, E. Beiträge zur Analyse der Empfindungen. Jena, Germany: Fischer, 1886.
 279. (Engl. transl.: Contributions to the Analyses of the Sensations, transl. by C. M. Williams. Chicago, IL: Open Court Publ., 1897.)
 280. Die Analyse der Empfindungen und das Verhältnis des Physischen zum Psychischen (2nd ed.) Jena, Germany: Fischer, 1900.
 281. Mach, E. Erkenntnis und Irrtum. 1905. 5th ed. Leipzig: A. Barth, 1926.
 282. MacDougall, W. Physiological Psychology. London: Dent, 1921.
 283. MacKay, D. M. On the logical indeterminacy of a free choice. Mind: 69: 31–40, 1960.
 284. MacKay, D. M. Cerebral organization and conscious control of action. In: Brain and Conscious Experience, edited by J. C. Eccles. Berlin: Springer‐Verlag, 1966, p. 442–445.
 285. MacKay, D. M. Perception and brain function. In: The Neurosciences, Second Study Program, edited by F. O. Schmitt. New York: Rockefeller Univ. Press, 1970, p. 303–316.
 286. MacKay, D. M. Visual stability and voluntary eye movements. In: Handbook of Sensory Physiology. Central Processing of Visual Information, edited by R. Jung Berlin: Springer‐Verlag, 1973, vol. 7, pt. 3, p. 307–331.
 287. MacKay, D. M., and D. A. Jeffreys. Visually evoked potentials and visual perception in man. In: Handbook of Sensory Physiology. Central Processing of Visual Information, edited by R. Jung Berlin: Springer‐Verlag, 1973, vol. 7, pt. 3A, p. 647–678.
 288. Magendie, F. J. Expériences sur les fonctions des racines des nerfs qui naissent de la moelle épinière. J. Physiol. Exp. Pathol. 2: 366–371, 1822.
 289. (Transl. by A. Walker in: Documents and Dates of Modern Discoveries in the Nervous System. London: Churchill, 1839.)
 290. Magnus, R. Körperstellung. Experimentell‐physiologische Untersuchungen über die einzelnen bei der Körperstellung in Tätigkeit tretenden Reflexe, über ihr Zusammenwirken und ihre Störungen. Berlin: Springer‐Verlag, 1924.
 291. Matteucci, C. Essai sur les phénomènes électriques des animaux. Paris: Carillian‐Goeury & Dalmot, 1840.
 292. Matteucci, C. Traités des phénomènes électro‐physiolo‐giques des animaux. Paris: Fortin & Masson, 1844.
 293. Matthews, B. H. C. The response of a muscle spindle during active contraction of a muscle. J. Physiol. London 72: 153–174, 1931.
 294. Matthews, B. H. C. The response of a single endorgan. J. Physiol. London 71: 64–110, 1931.
 295. Merleau‐Ponty, M. Phénoménologie de la perception. Paris: Gallimard, 1945.
 296. Metzger, W. Gesetze des Sehens. Frankfurt am Main: Kramer, 1936.
 297. Meyer‐Baer, K. Music of the Spheres and Dance of Death. Studies in Musical Iconology. Princeton, NJ: Princeton Univ. Press, 1970.
 298. Mill, J. S. A System of Logic. London, 1843. (8th ed., New York: Longmans, Green, 1872.)
 299. Monakow, C. von Die Lokalisation im Groβhirn und der Abbau der Funktion durch kortikale Herde. Wiesbaden, Germany: Bergmann, 1914.
 300. Monod, J. Le Hasard et la nécessité. Paris: Seuil, 1970.
 301. Moruzzi, G. L'Opera elettrofisiologica di Carlo Matteucci. Physis rivista internazionale di storia della scienza, edited by L. S. Olschki. Florence: 1964, vol. 6, fasc. 2.
 302. Moruzzi, G., and H. W. Magoun. Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1: 455–473, 1949.
 303. Mountcastle, V. B. Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol. 20: 408–434, 1957.
 304. Mountcastle, V. B. The view from within: pathways to the study of perception. Johns Hopkins Med. J. 136: 109–131, 1975.
 305. Mountcastle, V. B. An organizing principle for cerebral function: the unit module and the distributed system. In: The Mindful Brain, edited by G. M. Edelman and V. B. Mountcastle. Cambridge, MA: MIT. Press, 1978, p. 7–50.
 306. Mountcastle, V. B., G. G. Pogglio, and G. Werner. The relation of thalamic cell response to peripheral stimuli varied over an intensive continuum. J. Neurophysiol. 26: 807–834, 1963.
 307. Müller, G. E. Zur Psychophysik der Gesichtsempfindungen. Z. Psychol. Z. Physiol. Sennesorg. 10: 1–82, 321–413;
 308. Z. Psychol. Z. Physiol. Sennesorg. 14: 1–76, 161–196; 1896/1897.
 309. Müller, G. E. Zur Analyse der Gedächtnistätigkeit und des Vorstellungsverlaufes. In: Z. Psychol. Ergänzungsbände. Leipzig: J. A. Barth, 1911–1917, 3 vol.
 310. Müller, J. Zur vergleichenden Physiologie des Gesi‐chtssinnes des Menschen und der Thiere, nebst einem Versuch über die Bewegungen der Augen und den menschlichen Blick. Leipzig: Knobloch, 1826.
 311. Müller, J. Handbuch der Physiologie des Menschen für Vorlesungen (2nd ed.). Coblenz, Germany: Hölscher, 1838.
 312. Newton, I. Philosophiae naturalis principia mathematica. London: 1687. (2nd ed. with Scholium generale, 1713.)
 313. Newton, I. Opticks: Or a Treatise of the Reflexions, Refractions, Inflexions and Colours of Light. Also Two Treatises of the Species and Magnitude of Curvilinear Figures. London: S. Smith & B. Walford, 1704. (Repr. of the 1730 ed., the last corrected by the author. New York: McGraw‐Hill, 1931; New York: Dover, 1952.)
 314. Newton, I. Opera quae extant omnia, edited by S. Horsley London: Nichols, 1779–1785, 5 vol.
 315. Ohm, G. S. Über die Definition des Tones, nebst darangek‐nüpfter Theorie der Sirene und ähnlicher tonbildender Vorrichtungen. Ann. Phys. Chem. 59: 513–565, 1843.
 316. Pawlow, I. P. Sämtliche Werke [of I. P. Pavlov]. Berlin: Akademie Verlag, 1954, vol. 1–6.
 317. Penfield, W. The role of the temporal cortex in recall of past experience and interpretation of the present. In: Neurological Basis of Behavior, edited by G. E. W. Wolstenholme and C. M. O'Connor. London: Churchill, 1958.
 318. Penfield, W., and T. Rasmussen. The Cerebral Cortex of Man. New York: Macmillan, 1950.
 319. Pettigrew, J. D. The effect of visual experience on the development of stimulus specificity by kitten cortical neurones. J. Physiol. London 237: 49–74, 1974.
 320. Pflüger, E. F. N. Die sensorischen Funktionen des Rücken‐marks der Wirbelthiere nebst einer neuen Lehre über die Leitungsgesetze der Reflexionen. Berlin: Hirschwald, 1853.
 321. Piaget, J. La construction du réel chez l'enfant. Paris: Delachaux et Niestlé, 1937.
 322. Piaget, J., and B. Inhelder. L'Image mentale chez l'enfant. Paris: Presse Universitaire de France, 1966.
 323. Piaget, J., and Vinh‐Bang. Comparaison des mouvements oculaires et des centrations du regard chez l'enfant et chez l'adulte. Arch. Psychol. Geneva 38: 167–200, 1961.
 324. Plateau, J. A. F. Sur la mesure des sensations physiques, et sur la loi qui lie l'intensité de ces sensations à l'intensité de la cause excitante. Bull. Acad. R. Sci. Lett. Beaux‐Arts Belgique Bruxelles 33: 376–385, 1872.
 325. Plato. The Dialogues of Plato (transl. by B. Jowett, II, 3rd ed.). Oxford, England: Clarendon, 1892.
 326. Polyak, S. The Vertebrate Visual System. Chicago, IL: Univ. of Chicago Press, 1957.
 327. Popper, K. R. Logik der Forschung. Wien: Springer‐Verlag, 1935. (Engl. ed., The Logic of Scientific Discovery. London: Hutchinson, 1959.
 328. Popper, K. R. Objective Knowledge: An Evolutionary Approach. Oxford, England: Clarendon, 1972.
 329. Popper, K. R., and J. C. Eccles. The Self and its Brain. London: Springer‐Verlag, 1977.
 330. Purkinje, J. E. Beiträge zur Kenntniss des Sehens in subjectiver Hinsicht. Prague: Calve, 1819.
 331. Rand, B. (editor). The Classical Psychologists… From Anaxagoras to Wundt. 1912. (Repr., Gloucester, MA: P. Smith, 1966.)
 332. Ratliff, F. Mach Bands: Quantitative Studies on Neural Networks in the Retina. San Francisco, CA: Holden‐Day, 1965.
 333. Ricco, A. Relazione fra il minimo angolo visuale e l'intensita luminosa. Mem. R. Accad. Sci. Lett. Arti Modena. 17: 47–160, 1877.
 334. Rivers, W. H. R., and H. Head. A human experiment in nerve division. Brain 31: 323–450, 1908.
 335. Rose, J. E., and R. Galambos. Microelectrode studies on medial geniculate body of cat. I. Thalamic region activated by click stimuli. J. Neurophysiol. 15: 343–357, 1952.
 336. Rose, J. E., and V. E. Mountcastle. Activity of single neurons in the tactile thalamic region of the cat in response to a transient peripheral stimulus. Bull. Johns Hopkins Hosp. 94: 238–282, 1954.
 337. Rothschuh, K. E. Geschichte der Physiologie. Berlin: Springer‐Verlag, 1953.
 338. Russell, B. History of Western Philosophy and its Connection with Political and Social Circumstances from the Earliest Times to the Present Day. London: Allen and Unwin, 1961.
 339. Russell, B., and A. N. Whitehead. Principia mathematica (2nd ed.) Oxford, England: Oxford Univ. Press, 1925–1927, 2 vol.
 340. Scheiner, Ch. Oculus hoc est: fundamentum opticum …. Oenoponti (Innsbruck): D. Agricolam, 1619.
 341. Schlick, M. Allgemeine Erkenntnislehre (2nd ed.) Berlin: Springer‐Verlag, 1925.
 342. Schrödinger, E. Mind and Matter. London: Cambridge Univ. Press, 1958.
 343. Sechenov, I. M. Physiologische Studien über die Hemmungs‐mechanismen für die Reflextätigkeit des Rückenmarkes im Gehirne des Frosches. Berlin: Hirschwald, 1863. (Reprint in: Biographical Sketch and Essays, by I. M. Sechenov, New York: Arno, 1973.)
 344. Seebeck, A. Beobachtungen über einige Bedingungen der Entstehung von Tönen. Ann. Phys. Chem. 53: 417–436, 1841.
 345. Seebeck, A. Über die Definition des Tones. Ann. Phys. Chem. 63: 353–368, 1844.
 346. Shannon, C. E., and W. Weaver. The Mathematical Theory of Communication. Urbana: Univ. of Illinois Press, 1949.
 347. Sherrington, C. S. Integrative Action of the Nervous System. New Haven, CT: Yale Univ. Press, 1906;
 348. Integrative Action of the Nervous System. 2nd ed., New Haven, CT: Yale Univ. Press, 1947.
 349. Sherrington, C. S. Man on His Nature. The Gifford Lectures, 1937, 1938. New York: Macmillan, 1941;
 350. Man on His Nature. The Gifford Lectures, 1937, 1938. Cambridge, England: Cambridge Univ. Press, 1941.
 351. Sperry, R. W. Neural basis of the spontaneous optokinetic response produced by visual inversion. J. Comp. Physiol. Psychol. 43: 482–489, 1950.
 352. Stegmüller, W. Wissenschaftliche Erklärung und Begründung. Berlin: Springer‐Verlag, 1969.
 353. Stegmüller, W. Hauptströmungen der Gegenwartsphilosophie (5th ed.). Stuttgart, West Germany: Kröner, 1975, 2 vol.
 354. Steinbuch, K., and M. Frank. Nichtdigitale Lernmatrizen als Perzeptoren. Kybernetik 1: 117–124, 1961.
 355. Steinhausen, W. Über Sichtbarmachung und Funktions‐prüfung der Cupula terminalis in den Bogengangsampullen des Labyrinthes. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 217: 747–755, 1927.
 356. Stevens, S. S. The psychophysics of sensory function. In: Sensory Communication, edited by W. A. Rosenblith. Cambridge, MA: MIT Press, 1961.
 357. Stevens, S. S. Sensory power functions and neural events. In: Handbook of Sensory Physiology. Principles of Receptory Physiology, edited by W. R. Loewenstein. Berlin: Springer‐Verlag, 1971, vol. 1, p. 226–242.
 358. Stratton, G. M. Vision without inversion of the retinal image. Psychol. Rev. 4: 341–360, 463–481, 1897.
 359. Stratton, G. M. Eye movements and the aisthesis of visual form. Philos. Stud. Leipzig 20: 336–359, 1902.
 360. Svaetichin, G. The cone action potential. Acta Physiol. Scand. Suppl. 106: 565–610, 1953.
 361. Svaetichin, G. Spectral response curves from single cones. Acta Phsyiol. Scand. Suppl. 134: 17–46, 1956.
 362. Szentágothai, J. Die Rolle der einzelnen Labyrinthrezeptoren bei der Orientation von Augen und Kopf im Raume. Budapest: Akademie‐Verlag, 1952.
 363. Talbot, S. A., and W. H. Marshall. Physiological studies on neural mechanisms of visual localization and discrimination. Am. J. Ophthalmol. 24: 1255–1263, 1941.
 364. Taylor, J. Le méchanisme ou le nouveau traité d'anatomie du globe de l'oeil. Paris: M. E. David, 1738.
 365. (German transl.: Mechanismus oder neue Abhandlung von der künstlichen Zusammensetzung des menschlichen Auges. Frankfurt am Main: Stoks and Schilling, 1750.)
 366. Ter Braak, J. W. G. Untersuchungen über optokinetischen Nystagmus. Arch. Néerl. Physiol. 21: 309–376, 1936.
 367. Teuber, H.‐L. Perception. In: Handbook of Physiology. Neurophysiology, edited by J. Field and M. W. Magoun. Washington, DC: Am. Physiol. Soc., 1960, sect. 1, vol. III, chapt. 65, p. 1595–1668.
 368. Theodoricus Teutonicus de Vriberg. De Iride et Radialibus Impressionibus. Manuscr. Univ. Bibliothek, Basel. (Some figures are reproduced in ref. .)
 369. Thorpe, W. H. Learning and Instinct in Animals. London: Methuen, 1956.
 370. Tinbergen, N. The Study of Instinct. Oxford, England: Oxford Univ. Press, 1951.
 371. Titchener, E. B. A Text‐Book of Psychology. New York: MacMillan, 1910.
 372. Tönnies, J. F. Die Ableitung bioelektrischer Effekte vom uneröffneten Schädel. Physikalische Behandlung des Problems. J. Psychol. Neurol. 45: 154–171, 1933.
 373. Uexküll, J., von Theoretische Biologie (2nd ed.). Berlin: Springer‐Verlag, 1928.
 374. Vesalius, A. De humani corporis fabrica libri septem. Basel: Oporinus, 1543.
 375. Transl. by C. Singer of Bk VII: Vesalius on the human brain. London: Oxford Univ. Press, 1952 (based partly on edition of 1555).
 376. Vieth, G. U. A. Ueber die Richtung der Augen. Ann. Physiol. 58: 233–255, 1818.
 377. Vogt, C., and O. Vogt. Allgemeine Ergebnisse unserer Hirnforschung. J. Psychol. Neurol. 25: 273–462, 1919.
 378. Vogt, O. Psychologie, Neurophysiologie und Neuroanatomie. J. Psychol. Neurol. Leipzig 1: 1–3, 1902/1903.
 379. Vogt, O., and C. Vogt. Zur anatomischen Gliederung des Cortex cerebri. J. Psychol. Neurol. Leipzig 2: 160–180, 1903.
 380. Walter, W. G. Slow potential waves in the human brain associated with expectancy, attention and decision. Arch. Psychiatr. Nervenkr. +Z. Gesamte Neurol. Psychiatr. 206: 309–322, 1964/65.
 381. Watson, J. B. Psychology as the behaviorist views it. Psychol. Rev. 20: 158–177, 1913.
 382. Weber, E. H. Der Tastsinn und das Gemeingefühl. In: Handwörterbuch der Physiologie, edited by R. Wagner Braunschweig, Germany: Vieweg, 1846, vol. 3, pt. 2, p. 481–588.
 383. (Transl. by H. E. Ross and D. J. Murray: Weber: The Sense of Touch. London: Academic, 1978.)
 384. Weber, E. F. W., and E. H. Weber. Expériences qui prouvent que les nerfs vagues, stimulés par l'appareil de rotation galvan‐ometrique, peuvent retarder et měme arrěter le mouvement du coeur. Arch. Anat. Gén. Physiol. Suppl. to Arch. Gén. Méd.) 4th ser. 1: 12–13, 1846.
 385. Weiss, P. A. Life, order and understanding. A theme in three variations. Graduate J. Suppl. 8: 1–157, 1970.
 386. Werner, G., and V. B. Mountcastle. Neural activity in mechanoreceptive cutaneous afferents: stimulus‐response relations, Weber functions, and information transmission. J. Neurophysiol. 28: 359–397, 1965.
 387. Wernicke, C. Der aphasische Symptomenkomplex: Eine psy‐chologische Studie auf anatomischer Basis. Breslau, Germany: Cohn & Weigert, 1874.
 388. Wertheimer, M. Experimentelle Studien über das Sehen von Bewegung. Z. Psychol. 61: 161–265, 1912.
 389. Wertheimer, M. Untersuchungen zur Lehre von der Gestalt. II. Psychol. Forsch. 4: 301–350, 1923.
 390. Westphal, C. Über einige Bewegungserscheinungen an gelähmten Gliedern. Arch. Psychiar. Nervenkr. 5: 803–841, 1875.
 391. Wheatstone, C. Contributions to the physiology of vision. I. On some remarkable and hitherto unobserved, phenomena of binocular vision. Philos. Trans. R. Soc. London 128: 371–394, 1838.
 392. Whitteridge, G. William Harvey's de motu locali animalum. 1627. (Latin text and Engl. transl., Cambridge, England: Cambridge Univ. Press, 1959.)
 393. Wiener, N. Cybernetics, or Control and Communication in the Animal and the Machine. New York: Wiley, 1948.
 394. Wiesel, T. N., and D. H. Hubel. Single‐cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26: 1003–1017, 1963.
 395. Wiesel, T. N., and D. H. Hubel. Ordered arrangement of orientation columns in monkeys lacking visual experience. J. Comp. Neurol. 158: 307–318, 1974.
 396. Willemsen, C. A. (editor). Kaiser Friedrich II. Über die Kunst mit Vögeln zu jagen. Frankfurt am Main: Insel, 1964, 3 vol.
 397. Willis, Th. De anima brutorum. Oxford, England: R. Davis, 1672.
 398. Windelband, W. Lehrbuch der Geschichte der Philosophie. 1891. (13th ed., Tübingen, Germany: Mohr, 1935.)
 399. Wittgenstein, L. Tractatus logico‐philosophicus. Wien: 1921.
 400. Wittgenstein, L. Philosophical Investigation (transl. by G. E. M. Anscombe). Oxford, England: Blackwell, 1953.
 401. Wolman, B. B. (editor). Historical Roots of Contemporary Psychology. New York: Harper & Row, 1968.
 402. Woolsey, C. N., W. H. Marshall, and P. Bard. Representation of cutaneous tactile sensibility in the cerebral cortex of the monkey as indicated by evoked potentials. Bull. Johns Hopkins Hosp. 70: 399, 1942.
 403. Worden, F. G., J. P. Swazey, and G. Adelman (editors). The Neurosciences: Paths of Discovery. Cambridge, MA: MIT Press, 1975.
 404. Wundt, W. Theorie der Sinneswahrnehmung. Leipzig: Winter, 1862.
 405. Wundt, W. Grundzüge der physiologischen Psychologie (5th ed). Leipzig: Engelmann, 1902, 1903, 3 vol.
 406. (English transl. of Grundzüge der physiologischen Psychologie 3rd ed. by E. B. Titchener. London: Macmillan, 1896, 2 vol.)
 407. Wurtz, R. H., and C. W. Mohler. Organization of monkey superior colliculus: enhanced visual response of superficial layer cells. J. Neurophysiol. 39: 745–765, 1976.
 408. Yerkes, R. M., and A. W. Yerkes. The Great Apes: A Study of Anthropoid Life. New Haven, CT: Yale Univ. Press, 1929.
 409. Young, R. M. Mind, Brain and Adaptation in the Nineteenth Century. Cerebral Localization and its Biological Context from Gall to Ferrier. Oxford, England: Clarendon, 1970.
 410. Young, T. On the theory of light and colours. Philos. Trans. R. Soc. London 92: 18–21, 1802.
 411. Zeller, E. Die Philosophie der Griechen in ihrer historischen Entwicklung (5th ed.). Leipzig: Fues, 1891/1892, 3 parts in 6 vol. (New ed. Aalen, Germany: Scientia, 1971.)
 412. Zotterman, Y. Studies in the peripheral nervous mechanism of pain. Acta. Med. Scand. 80: 1–64, 1933.
 413. Zotterman, Y. Touch, pain and tickling: an electrophysiological investigation on cutaneous sensory nerves. J. Physiol. London 95: 1–28, 1939.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Richard Jung. Sensory Research in Historical Perspective: Some Philosophical Foundations of Perception. Compr Physiol 2011, Supplement 3: Handbook of Physiology, The Nervous System, Sensory Processes: 1-74. First published in print 1984. doi: 10.1002/cphy.cp010301