Comprehensive Physiology Wiley Online Library

Central Neural Mechanisms of Hearing

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Cochlear Nuclear Complex
1.1 Innervation of Cochlear Nucleus
1.2 Parcellation of Cochlear Nucleus
1.3 Anteroventral Cochlear Nucleus
1.4 Posteroventral Cochlear Nucleus
1.5 Dorsal Cochlear Nucleus
2 Physiology of Cochlear Nucleus
2.1 Action Potential Wave Forms
2.2 Tonotopic Organization
2.3 Classification of Unit Discharge Patterns and Their Distributions
2.4 Tuning Curves
2.5 Responses as Function of Intensity
2.6 Phase Locking to Low‐Frequency Tones
2.7 Responses to Click Stimuli
2.8 Response Areas to Pure Tones and Effects of Anesthetic
2.9 Responses to Complex Stimuli
2.10 Morphology‐Physiology Correlations and Concept of Parallel Processing
3 Superior Olivary Complex
3.1 Anatomy of Superior Olivary Complex
3.2 Physiology of Superior Olivary Complex
3.3 null
4 Auditory Midbrain
4.1 Sources of Ascending Input to Inferior Colliculus
4.2 Nuclei of Lateral Lemniscus
5 Structure of Inferior Colliculus
5.1 Central Nucleus: Orientation and Lamination
5.2 Pericentral Nucleus
5.3 External Nucleus
6 Physiology and Organization of Inferior Colliculus
6.1 Representation of Cochlea Within Inferior Colliculus
6.2 Discharge Characteristics in Central Nucleus
6.3 Binaural Representation
6.4 Representation of Space
6.5 Organization According to Other Stimulus Dimensions
6.6 Discharge Characteristics in External and Pericentral Nuclei
6.7 Conclusions
7 Auditory Thalamus
7.1 Anatomy
7.2 Connections Between Auditory Midbrain and Thalamus
7.3 Physiological Studies of Units in Auditory Thalamus
7.4 Tonotopic Organization in Medial Geniculate Body
7.5 Distribution of Other Discharge Characteristics Within Ventral Division
7.6 Responses in Medial Division and Posterior Nuclear Group
7.7 Dorsal Division
7.8 Conclusions
8 Auditory Cortex
8.1 Introduction and Historical Background
8.2 Parcellation of Auditory Cortex and Tonotopic Organization
8.3 Fine Structure of Auditory Cortex
8.4 Connections with Thalamus
8.5 Centrifugal Connections
8.6 Corticocortical and Interhemispheric Connections
8.7 Neuronal Response Properties in Auditory Cortex
8.8 Behavioral Ablation Studies of Auditory Cortex Function
8.9 Acoustic Input to Association Cortex
8.10 Concluding Comments
9 General Conclusions
Figure 1. Figure 1.

Basic organization of ascending auditory pathway in mammals. For simplicity, only pathways to single cerebral hemisphere are shown. Auditory nerve bifurcates to terminate in dorsal and ventral cochlear nuclei (DCN and VCN, respectively). Several paths originate from this complex. Inputs from left and right cochlear nuclei converge on superior olivary complex (SOC) on each side, which in turn project via lateral lemniscus to midbrain auditory center, the inferior colliculus (IC). Other pathways from cochlear nuclei pass directly to contralateral IC via lateral lemniscus. Modest proportion of fibers in each of these pathways terminate in nuclei of lateral lemniscus (NLL). The IC projects bilaterally to auditory thalamus, medial geniculate body (MGB), by way of brachium of inferior colliculus. Finally, MGB projects to auditory cortical fields via auditory radiations. As figure indicates, each of major auditory centers comprises a number of subdivisions. Nature of these subdivisions and organization of their connections are described in greater detail in text and in subsequent figures.

Adapted from Merzenich and Kaas
Figure 2. Figure 2.

Parasagittal section through cochlear nucleus of 4‐day‐old cat stained by Golgi method. Auditory nerve fibers, AN, bifurcate to yield ascending branch to AVCN and descending branch to PVCN and DCN. Ascending branch terminates in AVCN with large end bulbs of Held.

From Lorente de Nó
Figure 3. Figure 3.

Cochlear nuclei in three dimensions showing bifurcation pattern in A, B: sagittal; C: transverse; and D: horizontal planes. Branches that represent high and low frequencies are labeled h and l, respectively. a.b., Ascending cochlear branch; a.v.c.n., anteroventral cochlear nucleus; C, caudal; co.f., cochlear nerve fiber; co. rest., restiform body; co. trap., trapezoid body; D, dorsal; d.b., descending cochlear branch; d.c.n., dorsal cochlear nucleus; gr.c.l., granular cell layer; m.l., molecular layer; L, lateral; M, medial; n.coch., cochlear nerve; n.vest., vestibular nerve; p.v.c.n., posteroventral cochlear nucleus; R, rostral; str.ac., acoustic striae; tr.sp.n.V., spinal fifth tract; V, ventral.

From Osen
Figure 4. Figure 4.

Schematic drawings of sagittal sections comparing A: divisions of cochlear nucleus identified by Brawer et al. , and B: divisions of cochlear nucleus of Osen . In A: AVCN, anterior ventral cochlear nucleus, which is divided into anterior division comprising AA, anterior; AP, posterior; and APD, dorsal parts; and a posterior division comprising PD, dorsal; and PV, ventral parts; PVCN, posterior ventral cochlear nucleus; G, granule cell layer; DCN, dorsal cochlear nucleus; dotted line represents position of fusiform (pyramidal) cell layer. In B: nvea, vestibular nerve; oca, octopus cell area; cap, small cell cap; crdcn, central region of dorsal cochlear nucleus; ab, ascending cochlear branch; cof, cochlear nerve fiber; db, descending cochlear branch; ml, molecular layer.

Figure 5. Figure 5.

Sagittal section of cochlear nucleus with superimposed electrode track (thionine stain), caudal and rostral to left and right, respectively. Major subdivisions in dorsal (DCN) and antero‐(AVN) and postero‐(PVN) ventral cochlear nuclei indicated by interrupted lines. Incoming cochlear fibers indicated by cn and arrow. Solid lines and crossbars indicate electrode track and depth from dorsal surface in millimeters. Top: plotted sequence of characteristic frequencies (CFs) from 21 units. First CF sequence of 8 units recorded in DCN, second recorded in AVN; both have been fitted with straight lines. Note increase in CF when electrode passes from DCN to AVN.

From Evans
Figure 6. Figure 6.

Outline of cochlear nuclei from computer graphics showing iso‐characteristic frequency sheets in anteroventral cochlear nucleus (AVCN) in three dimensions (A: transverse; B: horizontal; C: sagittal). Lines labeled with numbers indicate CF sheets. GCL, granular cell layer; A, anterior; D, dorsal; L, lateral; M, medial; P, posterior; V, ventral; AVCN, anterior ventral cochlear nucleus, which is divided into anterior division comprising AA, anterior; AP, posterior; and APD, dorsal parts; and a posterior division comprising PD, dorsal; and PV, ventral parts; PVCN, posterior ventral cochlear nucleus; DCN, dorsal cochlear nucleus.

Figure 7. Figure 7.

Schematic sagittal section showing frequency distributions of Pfeiffer characteristic frequency types recorded from various subdivisions of cochlear nuclei. Top row shows discharge pattern types from left to right: primarylike (diagonal lines); choppers (dots); on (cross hatch); pauser or buildup (horizontal lines). AVCN, anterior ventral cochlear nucleus divided into anterior division comprising AA, anterior; AP, posterior; and APD, dorsal parts; and a posterior division comprising PD, dorsal; and PV, ventral parts; PVCN, posterior ventral cochlear nucleus; A‐PVCN, anterior part of PVCN; C‐PVCN, central part of PVCN, also octopus cell area; P‐PVCN, posterior part of PVCN; DCN, dorsal cochlear nucleus; C‐DCN, polymorphic or deep layer of DCN; F‐DCN, fusiform or pyramidal cell layer of DCN.

From Tsuchitani
Figure 8. Figure 8.

Discharge characteristics for unit in dorsal cochlear nucleus (chloralose anesthesia). A: excitatory tuning curve (stippled); inhibitory tuning curve, CF, and inhibitory sidebands are cross hatched. B‐D: three‐dimensional arrays of poststimulus time histograms ordered in frequency (6–24 kHz) and intensity (10, 20, and 30 dB above threshold, respectively, as indicated in A). Tone burst (0.4 s) indicated by bar and interrupted lines; ordinate, firing rate in spikes/s. Note extensive “sea” of inhibition in D with narrow band (“island”) of delayed excitation at 21 kHz.

From Evans
Figure 9. Figure 9.

Discharge characteristics of dorsal cochlear nucleus unit with an entirely inhibitory characteristic frequency (unanesthetized decerebrate cat). A: Tuning curve. B: Three‐dimensional array of poststimulus time histograms to 0.4‐s tone (bar) at 25 dB above threshold. Note inhibition of spontaneous activity during and following tone. Ordinate: firing rate in spikes/s.

From Evans
Figure 10. Figure 10.

Montage of poststimulus time histograms showing response area of chopper unit (R75‐39‐9) recorded in posteroventral cochlear nucleus of rabbit. Stimuli were 25‐ms tone bursts presented at 10/s. Rise and fall times of stimulus were each 1.5 ms. Frequency range is from 10 to 20 kHz in steps of 1.0 kHz, shown above each histogram. Intensity levels from bottom row upwards are 20, 40, 60, 80 dB sound pressure level shown at left. Insert: isointensity curves indicating the number of spikes per tone burst. (Based on unpublished data of D. R. Perry and W. R. Webster).

Figure 11. Figure 11.

Schematic diagram of projections of cochlear nucleus to superior olivary complex and higher centers in cat, showing projections of some CN cell types, mso, Medial superior olive; lso, lateral superior olive; mntb, medial nucleus of trapezoid body; vntb, ventral nucleus of trapezoid body; lntb, lateral nucleus of trapezoid body; dmpo, dorsomedial periolivary nucleus; dlpo, dorsolateral periolivary nucleus; OCB, olivocochlear bundle; LLD, dorsal nucleus of lateral lemniscus; LLV, ventral nucleus of lateral lemniscus; lat. lemn, lateral lemniscus; cent. nuc. inf. coll., central nucleus of inferior colliculus; dors. ac. str., dorsal acoustic stria; interm. ac. str., intermediate acoustic stria.

Adapted from Moore and Osen
Figure 12. Figure 12.

Representation of terminal plexes in pontine auditory nuclei, stained by Golgi technique (2‐day‐old cat, transverse section). Large calyces of Held can be seen in MNTB (right). Insert: location of superior olivary nuclei. DPO, dorsal periolivary nucleus; DLPO, dorsolateral periolivary nucleus; DMPO, dorsomedial periolivary nucleus; VMPO, ventromedial periolivary nucleus; VLPO, ventrolateral periolivary nucleus; MSO, medial superior olive; LSO, lateral superior olive; LNTB, lateral nucleus of trapezoid body; MNTB, medial nucleus of trapezoid body; VNTB, ventral nucleus of trapezoid body.

From Tsuchitani
Figure 13. Figure 13.

Discharge rate and vector strength (a measure of degree of phase locking) plotted as function of interaural delay for a phase‐sensitive unit recorded in medial superior olive of beagle . Stimulus was best frequency tone of 444.5 Hz at 70 dB. Note that maximum discharge rate and maximum phase locking occur at same interaural delay. Points on left are discharge rates for contralateral, C, and ipsilateral, I, monaural stimuli and spontaneous level, NS.

From Goldberg and Brown
Figure 14. Figure 14.

Nissl‐stained frontal section through midbrain of cat, showing principal nuclei comprising auditory midbrain. Uniformly darkly stained cells of central nucleus of inferior colliculus, ICC, are flanked dorsally by smaller densely packed neurons of pericentral nucleus, ICP, whose cells mingle medially with fibers of commissure of inferior colliculus, ICO. A gradation in cytoarchitecture laterally corresponds to external nucleus, ICX, ventral to which lies a small pocket of densely packed neurons, nucleus sagulum, SAG. Two principal cell masses of nuclei of lateral lemniscus, dorsal, LLD, and ventral, LLV, are separated by intermediate zone containing few cells among many fibers of lateral lemniscus.

Figure 15. Figure 15.

Sequences of single‐unit characteristic frequencies recorded in A: dorsal‐to‐ventral, and B: caudal‐to‐rostral penetration through cat inferior colliculus shown schematically in sagittal plane. In A, CFs are listed at right of histological outline; in B: each unit is represented as a symbol on the graph relating caudal, C, to rostral, R, penetration distance in mm against CF in kHz. Different symbols refer to different binaural classes: filled circles, EI cells; open circles, EO cells; triangles, interaural time delay cells (see text for details). SP, distance from midline in mm; ICC, ICP, ICX, central, pericentral, and external nuclei of inferior colliculus, respectively; LLD, LLV, dorsal and ventral nuclei of lateral lemniscus; SCS, SCI, superficial and intermediate layers of superior colliculus; BC, brachium conjunctivum; T5, track number 5 in this cat. Pentobarbital anesthesia. (Based on unpublished data of M. N. Semple.)

Figure 16. Figure 16.

A: autoradiograph, and B: Nissl stain of same frontal section through cat inferior colliculus. Tone pips of 54 dB sound pressure level alternating in frequency (1 kHz, 250 ms; 100 ms pause; 8 kHz, 250 ms) were presented for 45 min to cochlea contralateral to inferior colliculus labeled in A (pentobarbital anesthesia). An intravenous injection of 2‐[14C]deoxyglucose (200 μCi/kg) was made at beginning of stimulation period. (Based on unpublished work of W. R. Webster and J. Servière.)

Figure 17. Figure 17.

Comparison of density of projections to central nucleus of inferior colliculus from selected ipsilateral (IPSI, left column) and contralateral (CONTRA, right column) brain stem auditory nuclei. MSO, LSO, DCN, medial and lateral superior olives and dorsal cochlear nucleus, respectively. An 0.5 μl injection of 30% HRP was made in lateral part of central nucleus of cat, and sections were cut in frontal plane at 90 μm, and every second section was reacted for HRP. All HRP‐labeled cells were counted in each of above nuclei in every section where they occurred. Counts for each section are given on ordinates; locations of section along relative rostral, R,‐to‐caudal, C, dimensions of each nucleus in mm are given on abscissas. Note that, for simplicity, each count is binned in 180μm bins because each 90‐μm HRP‐reacted section was separated from next by a 90‐μm unreacted Nissl‐stained section. Total R‐C thickness of each nucleus is shown as horizontal line at zero count level at base of each histogram. N, total number of labeled cells comprising each histogram.

Figure 18. Figure 18.

Characteristic frequency plotted as function of relative unit depth for dorsal‐to‐ventral penetrations in tonotopic region (top), transitional region (middle), and space‐mapped region (bottom) of MLD, auditory midbrain of barn owl. Unit depths measured with respect to first MLD unit encountered in each penetration. Each symbol signifies units from a single penetration, approximate location of which is indicated on right in diagram of horizontal section through optic lobe. Orientation of horizontal section indicated by crossed arrows. a, Anterior, p, posterior; l, lateral; m, medial; OT, optic tectum.

From Knudsen and Konishi
Figure 19. Figure 19.

Representation of auditory space in MLD, auditory midbrain of barn owl, as defined by centers of unit best areas. In upper left, coordinates of frontal hemisphere of auditory space are depicted as dotted globe surrounding owl. Elevations shown in relation to horizontal plane of owl's head—e.g., +30 (30° above horizontal plane). Azimuths shown in relation to interaural line, and MLD recorded from—e.g., 30c (30° from 0° azimuth in quadrant contralateral to MLD being studied); 20i (20° in ipsilateral field). Projected onto globe are best areas (solid‐line rectangles) of 14 units recorded in four separate penetrations. Large numbers backed by similar symbols represent units from same penetration; numbers themselves signify order in which units were encountered and are placed at centers of their best areas. Penetrations made with electrode oriented parallel to transverse plane at positions indicated in horizontal section by solid arrows. Below and to right of globe are three histological sections through MLD in horizontal, transverse, and sagittal planes. Stippled portion of MLD corresponds to space‐mapped region; remaining portion is tonotopic region. Isoazimuth contours, based on best‐area centers, shown as solid lines in horizontal and sagittal sections; isoelevation contours represented by dashed lines in transverse and sagittal sections. On each section, dashed arrows indicate planes of other two sections. Solid, crossed arrows at lower right of each section define orientation of section. a, Anterior; d, dorsal; l, lateral; m, medial; p, posterior; v, ventral; OT, optic tectum.

From Knudsen and Konishi . Copyright 1978 by the American Association for the Advancement of Science
Figure 20. Figure 20.

Major divisions of medial geniculate body, MGB, as defined by principal neuron types described in text. Transverse section (Golgi‐Cox) at junction of anterior and middle thirds of MGB. BCS, brachium of superior colliculus; CGL, lateral geniculate body; DP, deep dorsal nucleus of MGB; DS, superficial dorsal nucleus of MGB; LM, medial lemniscus; LV, pars lateralis of ventral division of MGB; M, medial division of MGB; NS, suprageniculate nucleus; PC, cerebral peduncle; TO, optic tract; TS, spinothalamic tract; VL, ventrolateral nucleus of MGB; VPL, thalamic ventral posterolateral nucleus; X, subnucleus, thalamic lateral posterior nucleus; ZM, marginal zone of MGB.

From Morest
Figure 21. Figure 21.

Schematic sagittal sections (dorsal, top; rostral, left) of cat showing micropipette recording and HRP electrophoresis sites in medial geniculate body (upper) and locations of HRP‐labeled cells in inferior colliculus (lower). A, B, C: three different experiments in which HRP has been effluxed between unit recording sites with stated best frequencies. M, number of millimeters medial to lateral surface of medial geniculate body; 5.0‐6.0, etc, distance of inferior colliculus sections from midline in mm. Calibration applied to all sections. ICC and ICP, central and pericentral nuclei of inferior colliculus, respectively. (Based on unpublished work of L. M. Aitkin and M. B. Calford.)

Figure 22. Figure 22.

Three parallel micropipette tracks with associated best frequency and binaural data on one cat. Schematic sagittal section through caudal thalamus (caudal to right) 2.5 mm from lateral edge of medial geniculate body (MGB). LGn, lateral geniculate nucleus; BIC, brachium of inferior colliculus; LV, OV, pars lateralis and pars ovoidea of ventral MGB; D, dorsal division of MGB. EE, EE*, units for which stimuli to each ear (convention: contra effect shown first) cause excitation, with asterisk denoting stronger response in terms of either spike count at given intensity or threshold; EI, contralateral stimuli excite, ipsilateral stimuli inhibit; EI*, threshold for ipsi inhibitory effect lower than for contra excitatory effect; EO, monaural contralateral excitatory input only; B, broadly tuned.

Adapted from Calford and Webster
Figure 23. Figure 23.

Auditory cortical fields in cat. A: parcellation proposed by Woolsey in 1960, showing cortical fields (AI, AII, EP, SF, INS, and AIII) described in text. In each field, orientation of cochlear representation is indicated by position of A (apex) and B (base). Auditory responses also recorded in association areas on suprasylvian and anterior lateral gyri (ASSOC.) and in pericruciate sensorimotor cortex (MI). Long‐latency (LATE) responses are recorded in visual cortex. B, C: parcellation into four tonotopic (AI, A, P, and VP) and additional belt fields (AII, DP, V, and T) described by Reale and Imig . Because location of physiologically determined field boundaries in different animals varies with respect to sulci, positions shown are general approximations only. In B, field positions are shown relative to sulci on a lateral view of surface of left cerebral hemisphere; sss: suprasylvian sulcus; aes: anterior ectosylvian sulcus; pes: posterior ectosylvian sulcus; pss: pseudosylvian sulcus. In C, unfolded cortical surface forming gyral surfaces and sulcal banks in unshaded region in B is shown. Cortical surfaces forming sulcal banks are shaded, whereas those forming gyral surfaces are not. Tonotopic fields are delimited by heavy broken lines, and locations of highest and lowest best frequencies in these fields are indicated by low and high, respectively.

A: from Woolsey ; B, C: from Imig and Reale
Figure 24. Figure 24.

A, B: Surface maps showing distribution of characteristic frequencies (CF) determined within parallel electrode penetrations (66 in A; 57 in B) into auditory cortex. Sites of electrode penetrations represented by dots in inset brain photographs. Each number in drawings is CF (in kHz) of neurons encountered within a penetration at that site. Dashed lines are approximately parallel to isofrequency contours. Stars represent electrode penetrations in which auditory responses were encountered, but in which no CF determination could be made.

From Merzenich et al.
Figure 25. Figure 25.

Characteristic frequency as a function of distance across cortical surface in AI of cat. Each graph (A, B, C, D1, and D2) is derived from an individual cortical map of type presented in Fig. . Ordinate is distance on cortical surface on axis perpendicular to cortical isofrequency contours. Distance measured from straight line caudal to mapped cortical surface and parallel to straight‐line approximations of isofrequency contours. Data in graph A derived from points along six parallel lines spanning entire mapped sector of AI; graphs in B and C based on five parallel lines, and those in D1 and D2 on four parallel lines. In each case, data points from different lines are represented by different symbols.

From Merzenich et al.
Figure 26. Figure 26.

Topographic organization of auditory corticocortical connections in cat as revealed by combined electrophysiological and anatomical tracing studies. Tonotopic maps of cortical fields were obtained by microelectrode mapping procedures, and distribution of axon terminals within a field was determined by autoradiographic labeling with tritiated proline and leucine. A, B: graphs showing relationship between range of best frequencies in central region of injection zone in AI (graph A) or field A (graph B), and range of best frequencies in labeled regions of target fields A, AI, V, or VP. Each rectangle represents a projection to a target field: horizontal side represents range of best frequencies in central region of injection zone (abscissa); vertical side represents range of best frequencies in labeled portion of target field. Letter associated with each rectangle identifies target field; subscript c indicates projections to fields in hemisphere contralateral to injection site.

From Imig and Reale
Figure 27. Figure 27.

Functions showing sensitivity to interaural intensity differences (IID) for five representative neurons in physiologically defined AI of anesthetized cat. Interaural intensity differences are generated by varying contralateral and ipsilateral intensities symmetrically around average binaural intensity of 50–60 dB sound pressure level. Note that in each case neuron responds maximally over range of IIDs for which contralateral intensity exceeds ipsilateral (corresponding to contralateral azimuths), and that response strength declines sharply over limited IID range. Functions for individual neurons differ in location of cutoff; it has not yet been determined whether variation in position of cutoff is a systematic function of neural place, either in cortex or in any subcortical structure (but see ref. ).

From unpublished data of D. P. Phillips and D. R. F. Irvine


Figure 1.

Basic organization of ascending auditory pathway in mammals. For simplicity, only pathways to single cerebral hemisphere are shown. Auditory nerve bifurcates to terminate in dorsal and ventral cochlear nuclei (DCN and VCN, respectively). Several paths originate from this complex. Inputs from left and right cochlear nuclei converge on superior olivary complex (SOC) on each side, which in turn project via lateral lemniscus to midbrain auditory center, the inferior colliculus (IC). Other pathways from cochlear nuclei pass directly to contralateral IC via lateral lemniscus. Modest proportion of fibers in each of these pathways terminate in nuclei of lateral lemniscus (NLL). The IC projects bilaterally to auditory thalamus, medial geniculate body (MGB), by way of brachium of inferior colliculus. Finally, MGB projects to auditory cortical fields via auditory radiations. As figure indicates, each of major auditory centers comprises a number of subdivisions. Nature of these subdivisions and organization of their connections are described in greater detail in text and in subsequent figures.

Adapted from Merzenich and Kaas


Figure 2.

Parasagittal section through cochlear nucleus of 4‐day‐old cat stained by Golgi method. Auditory nerve fibers, AN, bifurcate to yield ascending branch to AVCN and descending branch to PVCN and DCN. Ascending branch terminates in AVCN with large end bulbs of Held.

From Lorente de Nó


Figure 3.

Cochlear nuclei in three dimensions showing bifurcation pattern in A, B: sagittal; C: transverse; and D: horizontal planes. Branches that represent high and low frequencies are labeled h and l, respectively. a.b., Ascending cochlear branch; a.v.c.n., anteroventral cochlear nucleus; C, caudal; co.f., cochlear nerve fiber; co. rest., restiform body; co. trap., trapezoid body; D, dorsal; d.b., descending cochlear branch; d.c.n., dorsal cochlear nucleus; gr.c.l., granular cell layer; m.l., molecular layer; L, lateral; M, medial; n.coch., cochlear nerve; n.vest., vestibular nerve; p.v.c.n., posteroventral cochlear nucleus; R, rostral; str.ac., acoustic striae; tr.sp.n.V., spinal fifth tract; V, ventral.

From Osen


Figure 4.

Schematic drawings of sagittal sections comparing A: divisions of cochlear nucleus identified by Brawer et al. , and B: divisions of cochlear nucleus of Osen . In A: AVCN, anterior ventral cochlear nucleus, which is divided into anterior division comprising AA, anterior; AP, posterior; and APD, dorsal parts; and a posterior division comprising PD, dorsal; and PV, ventral parts; PVCN, posterior ventral cochlear nucleus; G, granule cell layer; DCN, dorsal cochlear nucleus; dotted line represents position of fusiform (pyramidal) cell layer. In B: nvea, vestibular nerve; oca, octopus cell area; cap, small cell cap; crdcn, central region of dorsal cochlear nucleus; ab, ascending cochlear branch; cof, cochlear nerve fiber; db, descending cochlear branch; ml, molecular layer.



Figure 5.

Sagittal section of cochlear nucleus with superimposed electrode track (thionine stain), caudal and rostral to left and right, respectively. Major subdivisions in dorsal (DCN) and antero‐(AVN) and postero‐(PVN) ventral cochlear nuclei indicated by interrupted lines. Incoming cochlear fibers indicated by cn and arrow. Solid lines and crossbars indicate electrode track and depth from dorsal surface in millimeters. Top: plotted sequence of characteristic frequencies (CFs) from 21 units. First CF sequence of 8 units recorded in DCN, second recorded in AVN; both have been fitted with straight lines. Note increase in CF when electrode passes from DCN to AVN.

From Evans


Figure 6.

Outline of cochlear nuclei from computer graphics showing iso‐characteristic frequency sheets in anteroventral cochlear nucleus (AVCN) in three dimensions (A: transverse; B: horizontal; C: sagittal). Lines labeled with numbers indicate CF sheets. GCL, granular cell layer; A, anterior; D, dorsal; L, lateral; M, medial; P, posterior; V, ventral; AVCN, anterior ventral cochlear nucleus, which is divided into anterior division comprising AA, anterior; AP, posterior; and APD, dorsal parts; and a posterior division comprising PD, dorsal; and PV, ventral parts; PVCN, posterior ventral cochlear nucleus; DCN, dorsal cochlear nucleus.



Figure 7.

Schematic sagittal section showing frequency distributions of Pfeiffer characteristic frequency types recorded from various subdivisions of cochlear nuclei. Top row shows discharge pattern types from left to right: primarylike (diagonal lines); choppers (dots); on (cross hatch); pauser or buildup (horizontal lines). AVCN, anterior ventral cochlear nucleus divided into anterior division comprising AA, anterior; AP, posterior; and APD, dorsal parts; and a posterior division comprising PD, dorsal; and PV, ventral parts; PVCN, posterior ventral cochlear nucleus; A‐PVCN, anterior part of PVCN; C‐PVCN, central part of PVCN, also octopus cell area; P‐PVCN, posterior part of PVCN; DCN, dorsal cochlear nucleus; C‐DCN, polymorphic or deep layer of DCN; F‐DCN, fusiform or pyramidal cell layer of DCN.

From Tsuchitani


Figure 8.

Discharge characteristics for unit in dorsal cochlear nucleus (chloralose anesthesia). A: excitatory tuning curve (stippled); inhibitory tuning curve, CF, and inhibitory sidebands are cross hatched. B‐D: three‐dimensional arrays of poststimulus time histograms ordered in frequency (6–24 kHz) and intensity (10, 20, and 30 dB above threshold, respectively, as indicated in A). Tone burst (0.4 s) indicated by bar and interrupted lines; ordinate, firing rate in spikes/s. Note extensive “sea” of inhibition in D with narrow band (“island”) of delayed excitation at 21 kHz.

From Evans


Figure 9.

Discharge characteristics of dorsal cochlear nucleus unit with an entirely inhibitory characteristic frequency (unanesthetized decerebrate cat). A: Tuning curve. B: Three‐dimensional array of poststimulus time histograms to 0.4‐s tone (bar) at 25 dB above threshold. Note inhibition of spontaneous activity during and following tone. Ordinate: firing rate in spikes/s.

From Evans


Figure 10.

Montage of poststimulus time histograms showing response area of chopper unit (R75‐39‐9) recorded in posteroventral cochlear nucleus of rabbit. Stimuli were 25‐ms tone bursts presented at 10/s. Rise and fall times of stimulus were each 1.5 ms. Frequency range is from 10 to 20 kHz in steps of 1.0 kHz, shown above each histogram. Intensity levels from bottom row upwards are 20, 40, 60, 80 dB sound pressure level shown at left. Insert: isointensity curves indicating the number of spikes per tone burst. (Based on unpublished data of D. R. Perry and W. R. Webster).



Figure 11.

Schematic diagram of projections of cochlear nucleus to superior olivary complex and higher centers in cat, showing projections of some CN cell types, mso, Medial superior olive; lso, lateral superior olive; mntb, medial nucleus of trapezoid body; vntb, ventral nucleus of trapezoid body; lntb, lateral nucleus of trapezoid body; dmpo, dorsomedial periolivary nucleus; dlpo, dorsolateral periolivary nucleus; OCB, olivocochlear bundle; LLD, dorsal nucleus of lateral lemniscus; LLV, ventral nucleus of lateral lemniscus; lat. lemn, lateral lemniscus; cent. nuc. inf. coll., central nucleus of inferior colliculus; dors. ac. str., dorsal acoustic stria; interm. ac. str., intermediate acoustic stria.

Adapted from Moore and Osen


Figure 12.

Representation of terminal plexes in pontine auditory nuclei, stained by Golgi technique (2‐day‐old cat, transverse section). Large calyces of Held can be seen in MNTB (right). Insert: location of superior olivary nuclei. DPO, dorsal periolivary nucleus; DLPO, dorsolateral periolivary nucleus; DMPO, dorsomedial periolivary nucleus; VMPO, ventromedial periolivary nucleus; VLPO, ventrolateral periolivary nucleus; MSO, medial superior olive; LSO, lateral superior olive; LNTB, lateral nucleus of trapezoid body; MNTB, medial nucleus of trapezoid body; VNTB, ventral nucleus of trapezoid body.

From Tsuchitani


Figure 13.

Discharge rate and vector strength (a measure of degree of phase locking) plotted as function of interaural delay for a phase‐sensitive unit recorded in medial superior olive of beagle . Stimulus was best frequency tone of 444.5 Hz at 70 dB. Note that maximum discharge rate and maximum phase locking occur at same interaural delay. Points on left are discharge rates for contralateral, C, and ipsilateral, I, monaural stimuli and spontaneous level, NS.

From Goldberg and Brown


Figure 14.

Nissl‐stained frontal section through midbrain of cat, showing principal nuclei comprising auditory midbrain. Uniformly darkly stained cells of central nucleus of inferior colliculus, ICC, are flanked dorsally by smaller densely packed neurons of pericentral nucleus, ICP, whose cells mingle medially with fibers of commissure of inferior colliculus, ICO. A gradation in cytoarchitecture laterally corresponds to external nucleus, ICX, ventral to which lies a small pocket of densely packed neurons, nucleus sagulum, SAG. Two principal cell masses of nuclei of lateral lemniscus, dorsal, LLD, and ventral, LLV, are separated by intermediate zone containing few cells among many fibers of lateral lemniscus.



Figure 15.

Sequences of single‐unit characteristic frequencies recorded in A: dorsal‐to‐ventral, and B: caudal‐to‐rostral penetration through cat inferior colliculus shown schematically in sagittal plane. In A, CFs are listed at right of histological outline; in B: each unit is represented as a symbol on the graph relating caudal, C, to rostral, R, penetration distance in mm against CF in kHz. Different symbols refer to different binaural classes: filled circles, EI cells; open circles, EO cells; triangles, interaural time delay cells (see text for details). SP, distance from midline in mm; ICC, ICP, ICX, central, pericentral, and external nuclei of inferior colliculus, respectively; LLD, LLV, dorsal and ventral nuclei of lateral lemniscus; SCS, SCI, superficial and intermediate layers of superior colliculus; BC, brachium conjunctivum; T5, track number 5 in this cat. Pentobarbital anesthesia. (Based on unpublished data of M. N. Semple.)



Figure 16.

A: autoradiograph, and B: Nissl stain of same frontal section through cat inferior colliculus. Tone pips of 54 dB sound pressure level alternating in frequency (1 kHz, 250 ms; 100 ms pause; 8 kHz, 250 ms) were presented for 45 min to cochlea contralateral to inferior colliculus labeled in A (pentobarbital anesthesia). An intravenous injection of 2‐[14C]deoxyglucose (200 μCi/kg) was made at beginning of stimulation period. (Based on unpublished work of W. R. Webster and J. Servière.)



Figure 17.

Comparison of density of projections to central nucleus of inferior colliculus from selected ipsilateral (IPSI, left column) and contralateral (CONTRA, right column) brain stem auditory nuclei. MSO, LSO, DCN, medial and lateral superior olives and dorsal cochlear nucleus, respectively. An 0.5 μl injection of 30% HRP was made in lateral part of central nucleus of cat, and sections were cut in frontal plane at 90 μm, and every second section was reacted for HRP. All HRP‐labeled cells were counted in each of above nuclei in every section where they occurred. Counts for each section are given on ordinates; locations of section along relative rostral, R,‐to‐caudal, C, dimensions of each nucleus in mm are given on abscissas. Note that, for simplicity, each count is binned in 180μm bins because each 90‐μm HRP‐reacted section was separated from next by a 90‐μm unreacted Nissl‐stained section. Total R‐C thickness of each nucleus is shown as horizontal line at zero count level at base of each histogram. N, total number of labeled cells comprising each histogram.



Figure 18.

Characteristic frequency plotted as function of relative unit depth for dorsal‐to‐ventral penetrations in tonotopic region (top), transitional region (middle), and space‐mapped region (bottom) of MLD, auditory midbrain of barn owl. Unit depths measured with respect to first MLD unit encountered in each penetration. Each symbol signifies units from a single penetration, approximate location of which is indicated on right in diagram of horizontal section through optic lobe. Orientation of horizontal section indicated by crossed arrows. a, Anterior, p, posterior; l, lateral; m, medial; OT, optic tectum.

From Knudsen and Konishi


Figure 19.

Representation of auditory space in MLD, auditory midbrain of barn owl, as defined by centers of unit best areas. In upper left, coordinates of frontal hemisphere of auditory space are depicted as dotted globe surrounding owl. Elevations shown in relation to horizontal plane of owl's head—e.g., +30 (30° above horizontal plane). Azimuths shown in relation to interaural line, and MLD recorded from—e.g., 30c (30° from 0° azimuth in quadrant contralateral to MLD being studied); 20i (20° in ipsilateral field). Projected onto globe are best areas (solid‐line rectangles) of 14 units recorded in four separate penetrations. Large numbers backed by similar symbols represent units from same penetration; numbers themselves signify order in which units were encountered and are placed at centers of their best areas. Penetrations made with electrode oriented parallel to transverse plane at positions indicated in horizontal section by solid arrows. Below and to right of globe are three histological sections through MLD in horizontal, transverse, and sagittal planes. Stippled portion of MLD corresponds to space‐mapped region; remaining portion is tonotopic region. Isoazimuth contours, based on best‐area centers, shown as solid lines in horizontal and sagittal sections; isoelevation contours represented by dashed lines in transverse and sagittal sections. On each section, dashed arrows indicate planes of other two sections. Solid, crossed arrows at lower right of each section define orientation of section. a, Anterior; d, dorsal; l, lateral; m, medial; p, posterior; v, ventral; OT, optic tectum.

From Knudsen and Konishi . Copyright 1978 by the American Association for the Advancement of Science


Figure 20.

Major divisions of medial geniculate body, MGB, as defined by principal neuron types described in text. Transverse section (Golgi‐Cox) at junction of anterior and middle thirds of MGB. BCS, brachium of superior colliculus; CGL, lateral geniculate body; DP, deep dorsal nucleus of MGB; DS, superficial dorsal nucleus of MGB; LM, medial lemniscus; LV, pars lateralis of ventral division of MGB; M, medial division of MGB; NS, suprageniculate nucleus; PC, cerebral peduncle; TO, optic tract; TS, spinothalamic tract; VL, ventrolateral nucleus of MGB; VPL, thalamic ventral posterolateral nucleus; X, subnucleus, thalamic lateral posterior nucleus; ZM, marginal zone of MGB.

From Morest


Figure 21.

Schematic sagittal sections (dorsal, top; rostral, left) of cat showing micropipette recording and HRP electrophoresis sites in medial geniculate body (upper) and locations of HRP‐labeled cells in inferior colliculus (lower). A, B, C: three different experiments in which HRP has been effluxed between unit recording sites with stated best frequencies. M, number of millimeters medial to lateral surface of medial geniculate body; 5.0‐6.0, etc, distance of inferior colliculus sections from midline in mm. Calibration applied to all sections. ICC and ICP, central and pericentral nuclei of inferior colliculus, respectively. (Based on unpublished work of L. M. Aitkin and M. B. Calford.)



Figure 22.

Three parallel micropipette tracks with associated best frequency and binaural data on one cat. Schematic sagittal section through caudal thalamus (caudal to right) 2.5 mm from lateral edge of medial geniculate body (MGB). LGn, lateral geniculate nucleus; BIC, brachium of inferior colliculus; LV, OV, pars lateralis and pars ovoidea of ventral MGB; D, dorsal division of MGB. EE, EE*, units for which stimuli to each ear (convention: contra effect shown first) cause excitation, with asterisk denoting stronger response in terms of either spike count at given intensity or threshold; EI, contralateral stimuli excite, ipsilateral stimuli inhibit; EI*, threshold for ipsi inhibitory effect lower than for contra excitatory effect; EO, monaural contralateral excitatory input only; B, broadly tuned.

Adapted from Calford and Webster


Figure 23.

Auditory cortical fields in cat. A: parcellation proposed by Woolsey in 1960, showing cortical fields (AI, AII, EP, SF, INS, and AIII) described in text. In each field, orientation of cochlear representation is indicated by position of A (apex) and B (base). Auditory responses also recorded in association areas on suprasylvian and anterior lateral gyri (ASSOC.) and in pericruciate sensorimotor cortex (MI). Long‐latency (LATE) responses are recorded in visual cortex. B, C: parcellation into four tonotopic (AI, A, P, and VP) and additional belt fields (AII, DP, V, and T) described by Reale and Imig . Because location of physiologically determined field boundaries in different animals varies with respect to sulci, positions shown are general approximations only. In B, field positions are shown relative to sulci on a lateral view of surface of left cerebral hemisphere; sss: suprasylvian sulcus; aes: anterior ectosylvian sulcus; pes: posterior ectosylvian sulcus; pss: pseudosylvian sulcus. In C, unfolded cortical surface forming gyral surfaces and sulcal banks in unshaded region in B is shown. Cortical surfaces forming sulcal banks are shaded, whereas those forming gyral surfaces are not. Tonotopic fields are delimited by heavy broken lines, and locations of highest and lowest best frequencies in these fields are indicated by low and high, respectively.

A: from Woolsey ; B, C: from Imig and Reale


Figure 24.

A, B: Surface maps showing distribution of characteristic frequencies (CF) determined within parallel electrode penetrations (66 in A; 57 in B) into auditory cortex. Sites of electrode penetrations represented by dots in inset brain photographs. Each number in drawings is CF (in kHz) of neurons encountered within a penetration at that site. Dashed lines are approximately parallel to isofrequency contours. Stars represent electrode penetrations in which auditory responses were encountered, but in which no CF determination could be made.

From Merzenich et al.


Figure 25.

Characteristic frequency as a function of distance across cortical surface in AI of cat. Each graph (A, B, C, D1, and D2) is derived from an individual cortical map of type presented in Fig. . Ordinate is distance on cortical surface on axis perpendicular to cortical isofrequency contours. Distance measured from straight line caudal to mapped cortical surface and parallel to straight‐line approximations of isofrequency contours. Data in graph A derived from points along six parallel lines spanning entire mapped sector of AI; graphs in B and C based on five parallel lines, and those in D1 and D2 on four parallel lines. In each case, data points from different lines are represented by different symbols.

From Merzenich et al.


Figure 26.

Topographic organization of auditory corticocortical connections in cat as revealed by combined electrophysiological and anatomical tracing studies. Tonotopic maps of cortical fields were obtained by microelectrode mapping procedures, and distribution of axon terminals within a field was determined by autoradiographic labeling with tritiated proline and leucine. A, B: graphs showing relationship between range of best frequencies in central region of injection zone in AI (graph A) or field A (graph B), and range of best frequencies in labeled regions of target fields A, AI, V, or VP. Each rectangle represents a projection to a target field: horizontal side represents range of best frequencies in central region of injection zone (abscissa); vertical side represents range of best frequencies in labeled portion of target field. Letter associated with each rectangle identifies target field; subscript c indicates projections to fields in hemisphere contralateral to injection site.

From Imig and Reale


Figure 27.

Functions showing sensitivity to interaural intensity differences (IID) for five representative neurons in physiologically defined AI of anesthetized cat. Interaural intensity differences are generated by varying contralateral and ipsilateral intensities symmetrically around average binaural intensity of 50–60 dB sound pressure level. Note that in each case neuron responds maximally over range of IIDs for which contralateral intensity exceeds ipsilateral (corresponding to contralateral azimuths), and that response strength declines sharply over limited IID range. Functions for individual neurons differ in location of cutoff; it has not yet been determined whether variation in position of cutoff is a systematic function of neural place, either in cortex or in any subcortical structure (but see ref. ).

From unpublished data of D. P. Phillips and D. R. F. Irvine
References
 1. Abeles, M., and M. H. Goldstein, Jr. Functional architecture in cat primary auditory cortex: columnar organization and organization according to depth. J. Neurophysiol. 33: 172–187, 1970.
 2. Adams, J. C. Single unit studies on the dorsal and intermediate acoustic striae. J. Comp. Neurol. 170: 97–106, 1976.
 3. Adams, J. C. Ascending projections to the inferior colliculus. J. Comp. Neurol. 183: 519–538, 1979.
 4. Adams, J. C., and W. B. Warr. Origins of axons in the cat's acoustic striae determined by injection of horseradish peroxidase into severed tracts. J. Comp. Neurol. 175: 107–122, 1975.
 5. Ades, H. W. Central auditory mechanisms. In: Handbook of Physiology. Neurophysiology, edited by J. Field and H. W. Magoun. Washington, DC: Am. Physiol. Soc., 1959, sect. 1, vol. I, chapt. 24, p. 585–613.
 6. Adrian, H. O., J. M. Goldberg, and J. F. Rugge. Auditory evoked cortical potentials after lesions of the brachium of inferior colliculus. J. Neurophysiol. 29: 456–466, 1966.
 7. Aitkin, L. M. Medial geniculate body of the cat: responses to tonal stimuli of neurons in medial division. J. Neurophysiol. 36: 275–283, 1973.
 8. Aitkin, L. M. Tonotopic organization at higher levels of the auditory pathway. In: Neurophysiology II, edited by R. Porter Baltimore, MD: University Park, 1976, vol. 10, p. 249–279. (Int. Rev. Physiol. Ser.)
 9. Aitkin, L. M. The auditory midbrain. Trends Neurosci. 2: 308–310, 1979.
 10. Aitkin, L. M., D. J. Anderson, and J. F. Brugge. Tonotopic organization and discharge characteristics of single neurons in nuclei of the lateral lemniscus of the cat. J. Neurophysiol. 33: 421–440, 1970.
 11. Aitkin, L. M., and J. Boyd. Responses of single units in cerebellar vermis of the cat to monaural and binaural stimuli. J. Neurophysiol. 38: 418–429, 1975.
 12. Aitkin, L. M., and J. Boyd. Acoustic input to the lateral pontine nuclei. Hearing Res. 1: 67–77, 1978.
 13. Aitkin, L. M., B. M. H. Bush, and G. R. Gates. The auditory midbrain of a marsupial, the brush‐tailed possum (Trichosurus vulpecula) Brain Res. 150: 29–44, 1978.
 14. Aitkin, L. M., M. B. Calford, C. E. Kenyon, and W. R. Webster. Some facets of the organization of the principal division of the cat medial geniculate body. In: Neuronal Mechanisms of Hearing, edited by J. Syka and L. M. Aitkin. New York: Plenum, 1981, p. 163–181.
 15. Aitkin, L. M., H. Dickhaus, W. Schult, and M. Zimmermann. External nucleus of inferior colliculus: auditory and spinal somatosensory afferents and their interactions. J. Neurophysiol. 41: 837–847, 1978.
 16. Aitkin, L. M., and C. W. Dunlop. Interplay of excitation and inhibition in the cat medial geniculate body. J. Neurophysiol. 31: 44–61, 1968.
 17. Aitkin, L. M., and C. W. Dunlop. Inhibition in the medial geniculate body of the cat. Exp. Brain Res. 1: 68–83, 1969.
 18. Aitkin, L. M., S. Fryman, D. W. Blake, and W. R. Webster. Responses of neurones in the rabbit inferior colliculus. I. Frequency‐specificity and topographic arrangements. Brain Res. 47: 77–90, 1972.
 19. Aitkin, L. M., C. E. Kenyon, and P. Philpott. The representation of the auditory and somatosensory systems in the external nucleus of the cat inferior colliculus. J. Comp. Neurol. 196: 25–40, 1981.
 20. Aitkin, L. M., and D. R. Moore. Inferior colliculus. II. Development of tuning characteristics and tonotopic organization in central nucleus of the neonatal cat. J. Neurophysiol. 38: 1208–1216, 1975.
 21. Aitkin, L. M., and S. M. Prain. Medial geniculate body: unit responses in the awake cat. J. Neurophysiol. 37: 512–521, 1974.
 22. Aitkin, L. M., and A. Reynolds. Development of binaural responses in the kitten inferior colliculus. Neurosci. Lett. 1: 315–319, 1975.
 23. Aitkin, L. M., and W. R. Webster. Tonotopic organization in the medial geniculate body of the cat. Brain Res. 26: 402–405, 1971.
 24. Aitkin, L. M., and W. R. Webster. Medial geniculate body of the cat: organization and responses to tonal stimuli of neurons in ventral division. J. Neurophysiol. 35: 365–380, 1972.
 25. Aitkin, L. M., W. R. Webster, J. L. Veale, and D. C. Crosby. Inferior colliculus. I. Comparison of response properties of neurons in central, pericentral and external nuclei of adult cat. J. Neurophysiol. 38: 1196–1207, 1975.
 26. Albe‐Fessard, D., and A. Fessard. Thalamic integrations and their consequences at the telencephalic level. In: Progress in Brain Research. Brain Mechanisms, edited by G. Moruzzi, A. Fessard, and H. H. Jasper. Amsterdam: Elsevier, 1963, vol. 1, p. 115–148.
 27. Altman, J. A., J. Syka, and G. N. Shmigidina. Neuronal activity in the medial geniculate body of the cat during monaural and binaural stimulation. Exp. Brain Res. 10: 81–93, 1970.
 28. Andersen, P., J. C. Eccles, and T. A. Sears. The ventrobasal complex of the thalamus: types of cells, their responses and their functional organization. J. Physiol. London 174: 370–399, 1964.
 29. Andersen, R. A. Patterns of Connectivity of the Auditory Forebrain of the Cat. San Francisco: Univ. of California, 1979. Dissertation.
 30. Andersen, R. A., P. L. Knight, and M. M. Merzenich. The thalamocortical and corticothalamic connections of AI, AII and the anterior auditory field (AAF) in the cat: evidence for two largely segregated systems of connections. J. Comp. Neurol. 194: 663–701, 1980.
 31. Andersen, R. A., G. L. Roth, L. M. Aitkin, and M. M. Merzenich. The efferent projections of the central nucleus and the pericentral nucleus of the inferior colliculus in the cat. J. Comp. Neurol. 194: 649–662, 1980.
 32. Andersen, R. A., R. L. Snyder, and M. M. Merzenich. The topographic organization of corticocollicular projections from physiologically defined loci in the AI, AII and anterior auditory cortical fields of the cat. J. Comp. Neurol. 191: 479–494, 1980.
 33. Avanzini, G., D. Mancia, and G. Pelliciolli. Ascending and descending connections of the insular cortex of the cat. Arch. Ital. Biol. 107: 696–714, 1969.
 34. Barrett, T. W. The response of auditory cortex neurons in cat to various parameters of acoustical stimulation. Brain Res. 28: 579–581, 1971.
 35. Beaton, R., and J. F. Miller. Single cell activity in the auditory cortex of the unanesthetized, behaving monkey: correlation with stimulus controlled behaviour. Brain Res. 100: 543–562, 1975.
 36. Benson, D. A., and R. D. Hienz. Single‐unit activity in the auditory cortex of monkeys selectively attending left vs. right ear stimuli. Brain Res. 159: 307–320, 1978.
 37. Benson, D. A., R. D. Hienz, and M. H. Goldstein. Observations on unit activity in monkey auditory cortex and dorsolateral frontal cortex during a sound localization task. Soc. Neurosci. Abstr. 5: 16, 1979.
 38. Benson, D. A., and D. C. Teas. Single unit study of binaural interaction in the auditory cortex of the chinchilla. Brain Res. 103: 313–338, 1976.
 39. Bental, E., and B. Bihari. Evoked activity of single neurons in sensory association cortex of the cat. J. Neurophysiol. 26: 207–214, 1963.
 40. Bentivoglio, M., H. G. J. M. Kuypers, C. E. Catsman‐Berrevoets, H. Loewe, and O. Dann. Two new fluorescent retrograde neuronal tracers which are transported over long distances. Neurosci. Lett. 18: 25–30, 1980.
 41. Berkley, K. J., J. Graham, and E. G. Jones. Differential incorporation of tritiated proline and leucine by neurons of the dorsal column nuclei in the cat. Brain Res. 132: 485–505, 1977.
 42. Berman, A. L. The Brain Stem of the Cat. A Cytoarchitectonic Atlas with Stereotaxic Coordinates. Madison: Univ. of Wisconsin Press, 1968.
 43. Beyerl, B. D. Afferent projections to the central nucleus of the inferior colliculus in the rat. Brain Res. 145: 209–223, 1978.
 44. Bibikov, N. The dependence of the reactions of the binaural neurons in the auditory system of the frog upon the interaural intensity difference in Russian. Fiziol. Zh. SSSR im. I. M. Sechenova 60: 724–732, 1974.
 45. Bibikov, N. Neuronal structure in the auditory midbrain center of the frog Rana ridibunda in Russian. J. Evol. Biochem. Physiol. USSR 15: 608–616, 1979.
 46. Bignall, K. E. Auditory input to frontal polysensory cortex of the squirrel monkey: possible pathways. Brain Res. 19: 77–86, 1970.
 47. Bignall, K. E., and M. Imbert. Polysensory and corticocortical projections to frontal lobe of squirrel and rhesus monkeys. Electroencephalogr. Clin. Neurophysiol. 26: 206–215, 1969.
 48. Bignall, K. E., and P. Singer. Auditory, somatic and visual input to association and motor cortex of the squirrel monkey. Exp. Neurol. 18: 300–312, 1967.
 49. Bilsen, F. A., J. H. TEN Kate, T. J. F. Buunen, and J. Raatgever. Responses of single units in the cochlear nucleus of the cat to cosine noise. J. Acoust. Soc. Am. 58: 858–866, 1975.
 50. Blum, P. S., L. D. Abraham, and S. Gilman. Vestibular, auditory, and somatic input to the posterior thalamus of the cat. Exp. Brain Res. 34: 1–10, 1979.
 51. Bock, G. R., and W. R. Webster. Coding of spatial location by single units in the inferior colliculus of the alert cat. Exp. Brain Res. 21: 387–398, 1974.
 52. Bock, G. R., W. R. Webster, and L. M. Aitkin. Discharge patterns of single units in inferior colliculus of the alert cat. J. Neurophysiol. 35: 265–277, 1972.
 53. Bonin, G. V., and W. R. Mehler. On columnar arrangement of nerve cells in cerebral cortex. Brain Res. 27: 1–9, 1971.
 54. Boudreau, J. C., and C. Tsuchitani. Binaural interaction in the cat superior olive S segment. J. Neurophysiol. 31: 442–454, 1968.
 55. Boudreau, J. C., and C. Tsuchitani. Cat superior olive S‐segment cell discharge to tonal stimulation. In: Contributions to Sensory Physiology, edited by W. D. Neff. New York: Academic, 1970, vol. 4, p. 143–213.
 56. Bourk, T. R. Electrical Responses of Neural Units in the Anteroventral Cochlear Nucleus of the Cat. Cambridge: Massachusetts Inst. of Technol., 1976. PhD thesis.
 57. Bourk, T. R., J. P. Mielcarz, and B. E. Norris. Tonotopic organization of the anteroventral cochlear nucleus of the cat. Hearing Res. 4: 215–241, 1981.
 58. Boyd, J., and L. M. Aitkin. Responses of single units in the pontine nuclei of the cat to acoustic stimulation. Neurosci. Lett. 3: 259–263, 1976.
 59. Brawer, J. R., and D. K. Morest. Relations between auditory nerve endings and cell types in the cat's anteroventral cochlear nucleus seen with the Golgi method and Nomarski optics. J. Comp. Neurol. 160: 491–506, 1975.
 60. Brawer, J. R., D. K. Morest, and E. C. Kane. The neuronal architecture of the cochlear nucleus of the cat. J. Comp. Neurol. 155: 251–299, 1974.
 61. Britt, R. H. Intracellular study of synaptic events related to phase‐locking responses of cat cochlear nucleus cells to low frequency tones. Brain Res. 112: 313–327, 1976.
 62. Britt, R., and A. Starr. Synaptic events and discharge patterns of cochlear nucleus cells. I. Steady‐frequency tone bursts. J. Neurophysiol. 39: 162–178, 1976.
 63. Britt, R., and A. Starr. Synaptic events and discharge patterns of cochlear nucleus cells. II. Frequency‐modulated tones. J. Neurophysiol. 39: 179–194, 1976.
 64. Brodal, P. The cortico‐pontine projection in the cat. The projection from the auditory area. Arch. Ital. Biol. 110: 119–144, 1972.
 65. Brownell, W. E. Organization of the cat trapezoid body and the discharge characteristics of its fibers. Brain Res. 94: 413–433, 1975.
 66. Brownell, W. E., P. B. Manis, and L. A. Ritz. Ipsilateral inhibitory responses in the cat lateral superior olive. Brain Res. 177: 189–193, 1979.
 67. Brugge, J. F. Progress in neuroanatomy and neurophysiology of auditory cortex. In: The Nervous System. Human Communication and its Disorders, edited by D. B. Tower. New York: Raven, 1975, vol. 3, p. 97–111.
 68. Brugge, J. F., D. J. Anderson, and L. M. Aitkin. Responses of neurons in the dorsal nucleus of the lateral lemniscus of cat to binaural tonal stimulation. J. Neurophysiol. 33: 441–458, 1970.
 69. Brugge, J. F., N. A. Dubrovsky, L. M. aitkin, and D. J. Anderson. Sensitivity of single neurons in auditory cortex of cat to binaural tonal stimulation; effects of varying interaural time and intensity. J. Neurophysiol. 32: 1005–1024, 1969.
 70. Brugge, J. F., and C. D. geisler. Auditory mechanisms of the lower brain stem. Ann. Rev. Neurosci. 1: 363–394, 1978.
 71. Brugge, J. F., and M. M. merzenich. Responses ofeurons in auditory cortex of the macaque monkey to monaural and binaural stimulation. J. Neurophysiol. 36: 1138–1158, 1973.
 72. Brugge, J. F., and M. M. Merzenich. Patterns of activity of single neurons of the auditory cortex in monkey. In: Basic Mechanisms in Hearing, edited by A. R. Møller. New York: Academic, 1973, p. 745–772.
 73. Burke, W., and A. J. Sefton. Recovery of responsiveness of cells of lateral geniculate nucleus of rat. J. Physiol. London 187: 213–229, 1966.
 74. Burton, H., and E. G. Jones. The posterior thalamic region and its cortical projection in New World and Old World monkeys. J. Comp. Neurol. 168: 249–302, 1976.
 75. Buser, P., and K. E. Bignall. Nonprimary sensory projections on the cat neocortex. Int. Rev. Neurobiol. 10: 111–165, 1967.
 76. Buser, P., J. St. Laurent, and C. Menini. Intervention du colliculus inferieur dans l'elaboration et le controle cortical specifique des decharges cloniques au son chez le chat sous chloralose. Exp. Brain Res. 1: 102–126, 1966.
 77. Butler, R. A., I. T. Diamond, and W. D. Neff. Role of auditory cortex in discrimination of changes of frequency. J. Neurophysiol. 20: 108–120, 1957.
 78. Calford, M. B., and W. R. Webster. The auditory representation within the principal division of the cat medial geniculate body: an electrophysiological study. J. Neurophysiol. 45: 1013–1028, 1981.
 79. Campbell, A. W. Histological Studies on the Localization of Cerebral Function. Cambridge, UK: Cambridge Univ. Press, 1905.
 80. Cant, N. B., and D. K. Morest. Organization of the neurons in the anterior division of the anterolateral cochlear nucleus of the cat. Light‐microscopic observations. Neuroscience 4: 1909–1923, 1979.
 81. Cant, N. B., and D. K. Morest. The bushy cells in the anteroventral cochlear nucleus of the cat. A study with the electron microscope. Neuroscience 4: 1925–1945, 1979.
 82. Caspary, D. Classification of subpopulations of neurons in the cochlear nuclei of the kangaroo rat. Exp. Neurol. 37: 131–151, 1972.
 83. Casseday, J. H., I. T. Diamond, and J. K. Harting. Auditory pathways to the cortex in Tupaia glis J. Comp. Neurol. 166: 303–340, 1976.
 84. Casseday, J. H., D. R. Jones, and I. T. Diamond. Projections from cortex to tectum in the tree shrew, Tupaia glis J. Comp. Neurol. 185: 253–292, 1979.
 85. Casseday, J. H., and W. D. Neff. Auditory localization: role of auditory pathways in brain stem of the cat. J. Neurophysiol. 38: 842–858, 1975.
 86. Clark, G. M. The ultrastructure of nerve endings in the medial superior olive of the cat. Brain Res. 14: 293–305, 1969.
 87. Clark, G. M., and C. W. Dunlop. Poststimulus‐time response patterns in the nuclei of the cat superior olivary complex. Exp. Neurol. 23: 266–290, 1969.
 88. Clopton, B. M., and J. A. Winfield. Tonotopic organization in the inferior colliculus of the rat. Brain Res. 56: 355–358, 1973.
 89. Cohen, E. S., J. R. Brawer, and D. K. Morest. Projections of the cochlea to the dorsal cochlear nucleus in the cat. Exp. Neurol. 35: 470–479, 1972.
 90. Colavita, F. B. Insular‐temporal lesions and vibrotactile temporal pattern discrimination in cats. Physiol. Behav. 12: 215–218, 1974.
 91. Colavita, F. B. Insular‐temporal cortex and temporal pattern perception. Physiol. Behav. 18: 513–521, 1977.
 92. Colavita, F. B., F. V. Szeligo, and S. D. Zimmer. Temporal pattern discrimination in cats with insular‐temporal lesions. Brain Res. 79: 153–156, 1974.
 93. Colonnier, M. L. The structural design of the neocortex. In: Brain and Conscious Experience, edited by J. C. Eccles. New York: Springer‐Verlag, 1966, p. 1–23.
 94. Colonnier, M. The fine structural arrangement of the cortex. Arch. Neurol. Chicago 16: 651–657, 1967.
 95. Colwell, S. A., and M. M. Merzenich. Organization of thalamocortical and corticothalamic projections to and from physiologically defined loci within primary auditory cortex in the cat (Abstract). Anat Rec. 181: 336, 1975.
 96. Comis, S. D. Centrifugal inhibitory processes affecting neurones in the cat cochlear nucleus. J. Physiol. London 210: 751–760, 1970.
 97. Comis, S. D., and P. S. Guth. The release of acetylcholine from the cochlear nucleus upon stimulation of the crossed olivo‐cochlear bundle. Neuropharmacology 13: 633–641, 1974.
 98. Cooper, M. H., and P. A. Young. Cortical projections to the inferior colliculus of the cat. Exp. Neurol. 51: 488–502, 1976.
 99. Cowey, A., and J. H. Dewson. Effects of unilateral ablation of superior temporal cortex on auditory sequence discrimination in Macaca mulatta Neuropsychologia 10: 279–289, 1972.
 100. Cowey, A., and L. Weiskrantz. Auditory sequence discrimination in Macaca mulatta. The role of the superior temporal cortex. Neuropsychologia 14: 1–10, 1976.
 101. Cranford, J. L. Polysensory cortex lesions and auditory frequency discrimination in the cat. Brain Res. 148: 499–503, 1978.
 102. Cranford, J. L. Auditory cortex lesions and interaural intensity and phase‐angle discrimination in cats. J. Neurophysiol. 42: 1518–1526, 1979.
 103. Cranford, J. L., M. Igarishi, and J. H. Stramler. Effect of auditory neocortex ablation on pitch perception in the cat. J. Neurophysiol. 39: 143–153, 1979.
 104. Cranford, J. L., S. J. Ladner, C. B. G. Campbell, and W. D. Neff. Efferent projections of the insular and temporal neocortex of the cat. Brain Res. 117: 195–210, 1976.
 105. Curry, M. J., and G. Gordon. Spinal input to the posterior group in the cat. An electrophysiological investigation. Brain Res. 44: 417–437, 1972.
 106. Desmedt, J. E., and K. Mechelse. Mise en evidence d'une quatrieme aire de projection acoustique dans l'ecorce cerebrale du chat. J. Physiol. Paris 51: 448–449, 1959.
 107. Dewson, J. H. III.. Speech sound discrimination by cats. Science 144: 555–556, 1964.
 108. Dewson, J. H., III, A. Cowey, and L. Weiskrantz. Disruptions of auditory sequence discrimination by unilateral and bilateral cortical ablations of superior temporal gyrus in the monkey. Exp. Neural. 28: 529–548, 1970.
 109. Diamond, I. T., K. L. Chow, and W. D. Neff. Degeneration of caudal medial geniculate body following cortical lesions ventral to auditory area II in cat. J. Comp. Neurol. 109: 349–362, 1958.
 110. Diamond, I. T., J. M. Goldberg, and W. D. Neff. Tonal discrimination after ablation of auditory cortex. J. Neurophysiol. 25: 223–235, 1962.
 111. Diamond, I. T., E. G. Jones, and T. P. S. Powell. Interhemispheric fiber connections of the auditory cortex of the cat. Brain Res. 11: 177–193, 1968.
 112. Diamond, I. T., E. G. Jones, and T. P. S. Powell. The association connections of the auditory cortex of the cat. Brain Res. 11: 560–579, 1968.
 113. Diamond, I. T., E. G. Jones, and T. P. S. Powell. The projection of the auditory cortex upon the diencephalon and brain stem of the cat. Brain Res. 15: 305–340, 1969.
 114. Diamond, I. T., and W. D. Neff. Ablation of temporal cortex and discrimination of auditory patterns. J. Neurophysiol. 20: 300–315, 1957.
 115. Disterhoft, J. F., R. E. Perkins, and S. Evans. Neuronal morphology of the rabbit cochlear nucleus. J. Comp. Neurol. 192: 687–702, 1980.
 116. Dräger, U. C., and D. H. Hubel. Responses to visual stimulation and relationship between visual, auditory, and somatosensory inputs in mouse superior colliculus. J. Neurophysiol. 38: 690–713, 1975.
 117. Dubner, R. Single cell analysis of sensory interaction in anterior lateral and suprasylvian gyri of the cat cerebral cortex. Exp. Neurol. 15: 255–273, 1966.
 118. Dubner, R., and L. T. Rutledge. Recording and analysis of converging input upon neurons in cat association cortex. J. Neurophysiol. 27: 620–634, 1964.
 119. Dubner, R., and L. T. Rutledge. Intracellular recording of the convergence of input upon neurons in cat association cortex. Exp. Neurol. 12: 349–369, 1965.
 120. Economo, C. VON. The Cytoarchitectonics of the Human Cerebral Cortex. London: Oxford Univ. Press, 1929.
 121. Eisenman, L. M. Neural encoding of sound location: an electrophysiological study in auditory cortex (AI) of the cat using free field stimuli. Brain Res. 75: 203–214, 1974.
 122. Elliott, D. N., and C. Trahiotis. Cortical lesions and auditory discrimination. Psychol. Bull. 77: 198–222, 1972.
 123. Elverland, H. H. Descending connections between the superior olivary and cochlear nucleus complexes in the cat studied by autoradiographic and horseradish peroxidase methods. Exp. Brain Res. 27: 397–412, 1977.
 124. Elverland, H. H. Ascending and intrinsic projections of the superior olivary complex in the cat. Exp. Brain Res. 32: 117–134, 1978.
 125. Engel, J., JR. Intracellular study of auditory evoked activity in pericruciate cortex of the awake, non‐paralyzed cat. Brain Res. 85: 69–73, 1975.
 126. Engel, J., JR., and C. D. Woody. Effects of character and significance of stimulus on unit activity at coronal‐pericruciate cortex of cat during performance of conditioned motor response. J. Neurophysiol. 35: 220–229, 1972.
 127. Erulkar, S. D. The responses of single units of the inferior colliculus of the cat to acoustic stimulation. Proc. R. Soc. London Ser. B 150: 336–355, 1959.
 128. Erulkar, S. D. Comparative aspects of spatial localization of sound. Physiol. Rev. 52: 237–360, 1972.
 129. Erulkar, S. D., R. A. Butler, and G. L. Gerstein. Excitation and inhibition in cochlear nucleus. II. Frequency‐modulated tones. J. Neurophysiol. 31: 537–548, 1968.
 130. Erulkar, S. D., J. E. Rose, and P. W. Davies. Single unit activity in the auditory cortex of the cat. Bull. Johns Hopkins Hosp. 99: 55–86, 1956.
 131. Etholm, B. Inhibitory processes in the medial geniculate body. Acta Oto‐Laryngol. 80: 323–334, 1975.
 132. Evans, E. F. Cortical representation. In: Hearing Mechanisms in Vertebrates, edited by A. V. S. de Reuck and J. Knight. London: Churchill, 1968, p. 272–295 (Ciba Found. Symp.)
 133. Evans, E. F. Upper and lower levels of the auditory system: A contrast of structure and function. In: Neural Networks, edited by E. R. Caianiello. Berlin: Springer‐Verlag, 1968, p. 24–33. (School on Neural Networks, Ravello, Italy, June, 1967).
 134. Evans, E. F. Cochlear nerve and cochlear nucleus. In: Handbook of Sensory Physiology, edited by W. D. Keidel and W. D. Neff. New York: Springer‐Verlag, 1975, vol. 5, pt. 2, p. 1–108.
 135. Evans, E. F., and P. G. Nelson. The responses of single neurones in the cochlear nucleus of the cat as a function of their location and the anaesthetic state. Exp. Brain Res. 17: 402–427, 1973.
 136. Evans, E. F., and P. G. Nelson. On the functional relationship between the dorsal and ventral divisions of the cochlear nucleus of the cat. Exp. Brain Res. 17: 428–442, 1973.
 137. Evans, E. F., and A. R. Palmer. Responses of units in the cochlear nerve and nucleus of the cat to signals in the presence of bandstop noise. J. Physiol. London 252: 60P–62P, 1975.
 138. Evans, E. F., H. F. Ross, and I. C. Whitfield. The spatial distribution of unit characteristic frequency in the primary auditory cortex of the cat. J. Physiol. London 179: 238–247, 1965.
 139. Evans, E. F., and I. C. Whitfield. Classification of unit responses in the auditory cortex of the unanesthetized and unrestrained cat. J. Physiol. London 171: 476–493, 1964.
 140. Fallon, J. H., and L. A. Benevento. Auditory‐visual interaction in cat orbital‐insular cortex. Neurosci. Lett. 6: 143–149, 1977.
 141. Fallon, J. H., L. A. Benevento, and P. R. Loe. Frequency‐dependent inhibition to tones in neurons of cat insular cortex (AIV). Brain Res. 145: 161–167, 1978.
 142. Feldman, M. L., and J. M. Harrison. The projection of the acoustic nerve to the ventral cochlear nucleus of the rat. A Golgi study. J. Comp. Neurol. 137: 267–294, 1969.
 143. Fernandez, C., and F. Karapas. The course and termination of the striae of Monakow and Held in the cat. J. Comp. Neurol. 131: 371–386, 1967.
 144. Ferrier, D. The Functions of the Brain. London: Smith, Elder, 1876.
 145. Fitzpatrick, K. A. Cellular architecture and topographic organization of the inferior colliculus of the squirrel monkey. J. Comp. Neurol. 164: 185–208, 1975.
 146. Fitzpatrick, K. A., and T. J. Imig. Projections of auditory cortex upon the thalamus and midbrain in the owl monkey. J. Comp. Neurol. 111: 537–556, 1978.
 147. Fitzpatrick, K. A., and T. J. Imig. Auditory cortico‐cortical connections in the owl monkey. J. Comp. Neurol. 192: 589–610, 1980.
 148. Fitzpatrick, K. A., T. J. Imig, and R. A. Reale. Thalamic projections to the posterior auditory field in cat. Soc. Neurosci. Abstr. 3: 6, 1977.
 149. Forbes, B. F., and N. M. Moskowitz. Projections of auditory responsive cortex in the squirrel monkey. Brain Res. 67: 239–254, 1974.
 150. Forbes, B. F., and N. Moskowitz. Cortico‐cortical connections of the superior temporal gyrus in the squirrel monkey. Brain Res. 136: 547–552, 1977.
 151. Funkenstein, H. H., and P. Winter. Responses to acoustic stimuli of units in the auditory cortex of the awake squirrel monkey. Exp. Brain Res. 18: 464–485, 1973.
 152. Galaburda, A., and F. Sanides. Cytoarchitectonic organization of the human auditory cortex. J. Comp. Neurol. 190: 597–610, 1980.
 153. Galambos, R. Studies of the auditory system with implanted electrodes. In: Neural Mechanisms of the Auditory and Vestibular Systems, edited by G. L. Rasmussen and W. F. Windle. Springfield, IL: Thomas, 1960, p. 137–151.
 154. Galambos, R., J. Schwartzkopff, and A. Rupert. Micro‐electrode study of superior olivary nuclei. Am. J. Physiol. 197: 527–536, 1959.
 155. Geisert, E. E., JR. The use of tritiated horseradish peroxidase for defining neuronal pathways: a new application. Brain Res. 117: 130–135, 1976.
 156. Geisler, C. D., W. S. Rhode, and D. W. Hazelton. Responses of inferior colliculus neurons in the cat to binaural acoustic stimuli having wide‐band spectra. J. Neurophysiol. 32: 960–974, 1969.
 157. Geniec, P., and D. K. Morest. The neuronal architecture of the human posterior colliculus. Acta Oto‐Laryngol. Suppl. 295: 1–33, 1971.
 158. Gentschev, T., and C. Sotelo. Degenerative patterns in the ventral cochlear nucleus of the rat after primary deafferentation. An ultrastructural study. Brain Res. 62: 37–60, 1973.
 159. Gerstein, G. L., R. A. Butler, and S. D. Erulkar. Excitation and inhibition in cochlear nucleus. I. Tone‐burst stimulation. J. Neurophysiol. 31: 526–536, 1968.
 160. Gerstein, G. L., and N. Y. S. Kiang. Responses of single units in the auditory cortex. Exp. Neurol. 10: 1–18, 1964.
 161. Giannazzo, E., R. Raffaele, S. Sapienza, and A. Urbano. Non‐specific influences of the magnocellular division of the medial geniculate body on the cat cerebral cortex. Electroen‐cephalogr. Clin. Neurophysiol. 31: 247–257, 1971.
 162. Glaser, E. M., H. Van Der Loos, and M. Gissler. Tangential orientation and spatial order in dendrites of cat auditory cortex: a computer microscope study of Golgi‐impregnated material. Exp. Brain Res. 36: 411–431, 1979.
 163. Glass, I., and Z. Wollberg. Lability in the response of cells in the auditory cortex of squirrel monkeys to species‐specific vocalizations. Exp. Brain Res. 34: 489–498, 1979.
 164. Glattke, T. J. Unit responses of the cat cochlear nucleus to amplitude‐modulated stimuli. J. Acoust. Soc. Am. 45: 419–425, 1969.
 165. Godfrey, D. A., N. Y.‐S. Kiang, and B. E. Norris. Single unit activity in the posteroventral cochlear nucleus of the cat. J. Comp. Neurol. 162: 247–268, 1975.
 166. Godfrey, D. A., N. Y.‐S. Kiang, and B. E. Norris. Single unit activity in the dorsal cochlear nucleus of the cat. J. Comp. Neurol. 162: 269–284, 1975.
 167. Goldberg, J. M. Physiological studies of auditory nuclei of the pons. In: Handbook of Sensory Physiology, edited by W. D. Keidel and W. D. Neff. New York: Springer‐Verlag, 1975, vol. 5, pt. 2, p. 109–144.
 168. Goldberg, J. M., H. O. Adrian, and F. D. Smith. Response of neurons of the superior olivary complex of the cat to acoustic stimuli of long duration. J. Neurophysiol. 27: 706–749, 1964.
 169. Goldberg, J. M., and P. B. Brown. Functional organization of the dog superior olivary complex: an anatomical and electrophysiological study. J. Neurophysiol. 31: 639–656, 1968.
 170. Goldberg, J. M., and P. B. Brown. Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J. Neurophysiol. 32: 613–636, 1969.
 171. Goldberg, J. M., and W. E. Brownell. Discharge characteristics of neurons in anteroventral and dorsal cochlear nuclei of cat. Brain Res. 64: 35–54, 1973.
 172. Goldberg, J. M., and D. D. Greenwood. Response of neurons of the dorsal and posteroventral cochlear nuclei of the cat to acoustic stimuli of long duration. J. Neurophysiol. 29: 72–93, 1966.
 173. Goldberg, J. M., and R. Y. Moore. Ascending projections of the lateral lemniscus in the cat and monkey. J. Comp. Neurol. 129: 143–156, 1967.
 174. Goldberg, J. M., and W. D. Neff. Frequency discrimination after bilateral ablation of cortical auditory areas. J. Neurophysiol. 24: 119–128, 1961.
 175. Goldstein, M. H., JR., and M. Abeles. Note on tonotopic organization of primary auditory cortex in the cat. Brain Res. 100: 188–191, 1975.
 176. Goldstein, M. H., JR., and M. Abeles. Single unit activity of the auditory cortex. In: Handbook of Sensory Physiology. Auditory System. Physiology (CNS), Behavioral Studies, Psychoacoustics, edited by W. D. Keidel and W. D Neff. Berlin: Springer‐Verlag, 1975, vol. 5, pt. 2, p. 199–218.
 177. Goldstein, M. H., JR., M. Abeles, R. L. Daly, and J. McIntosh. Functional architecture in cat primary auditory cortex: tonotopic organization. J. Neurophysiol. 33: 188–197, 1970.
 178. Goldstein, M. H., JR., J. L. Hall, and B. O. Butterfield. Single unit activity in the primary auditory cortex of unanesthetized cats. J. Acoust. Soc. Am. 43: 444–455, 1968.
 179. Gordon, B. Receptive fields in deep layers of cat superior colliculus. J. Neurophysiol. 36: 157–178, 1973.
 180. Graybiel, A. M. Some ascending connections of the pulvinar and lateralis posterior of the thalamus in the cat. Brain Res. 44: 99–125, 1972.
 181. Graybiel, A. M. Some fiber pathways related to the posterior thalamic region in the cat. Brain Behav. Evol. 6: 363–393, 1972.
 182. Graybiel, A. M. The thalamo‐cortical projection of the so‐called posterior nuclear group: a study with anterograde degeneration methods in the cat. Brain Res. 49: 229–244, 1973.
 183. Greenwood, D. D., and J. M. Goldberg. Response of neurons in the cochlear nuclei to variations in noise bandwidth and to tone‐noise combinations. J. Acoust. Soc. Am. 47: 1022–1040, 1970.
 184. Greenwood, D. D., and N. Maruyama. Excitatory and inhibitory response areas of auditory neurons in the cochlear nucleus. J. Neurophysiol. 28: 863–892, 1965.
 185. Gross, N. B., W. S. Lifschitz, and D. J. Anderson. The tonotopic organization of the auditory thalamus of the squirrel monkey (Samiri sciurius). Brain Res. 65: 323–332, 1974.
 186. Guinan, J. J., JR., S. S. Guinan, and B. E. Norris. Single auditory units in the superior olivary complex. I. Responses to sounds and classifications based on physiological properties. Int. J. Neurosci. 4: 101–120, 1972.
 187. Guinan, J. J., JR., B. E. Norris, and S. S. Guinan. Single auditory units in the superior olivary complex. II. Locations of unit categories and tonotopic organization. Int. J. Neurosci. 4: 147–166, 1972.
 188. Hall, J. L. Binaural interaction in the accessory superior‐olivary nucleus of the cat. J. Acoust. Soc. Am. 37: 814–823, 1965.
 189. Hall, J. L., and M. H. Goldstein, JR. Representation of binaural stimuli by single units in primary auditory cortex of unanesthetized cats. J. Acoust. Soc. Am. 43: 456–461, 1968.
 190. Hand, P. J., and T. Van Winkle. The efferent connections of the feline nucleus cuneatus. J. Comp. Neurol. 171: 83–110, 1977.
 191. Harnischfeger, G. Single unit study in the inferior colliculus of the house mouse (Mus musculus) Neurosci Lett. 9: 279–284, 1978.
 192. Harrison, J. M., and M. L. Feldman. Anatomical aspects of the cochlear nucleus and superior olivary complex. In: Contributions to Sensory Physiology, edited by W. D. Neff. New York: Academic, 1970, vol. 4, p. 95–142.
 193. Harrison, J. M., and M. E. Howe. Anatomy of the afferent auditory system of mammals. In: Handbook of Sensory Physiology, edited by W. D. Keidel and W. D. Neff. New York: Springer‐Verlag, 1974, vol. 5, pt. 1, p. 284–336.
 194. Harrison, J. M., and M. E. Howe. Anatomy of the descending auditory system (mammalian). In: Handbook of Sensory Physiology, edited by W. D. Keidel and W. D. Neff. New York: Springer‐Verlag, 1974, vol. 5, pt. 1, p. 365–388.
 195. Harrison, J. M., and R. Irving. The anterior ventral cochlear nucleus. J. Comp. Neurol. 124: 15–42, 1965.
 196. Harrison, J. M., and R. Irving. Ascending connections of the anterior ventral cochlear nucleus in the rat. J. Comp. Neurol. 126: 51–64, 1966.
 197. Harrison, J. M., and R. Irving. The organization of the posterior ventral cochlear nucleus in the rat. J. Comp. Neurol. 126: 391–402, 1966.
 198. Harrison, J. M., and W. B. Warr. A study of the cochlear nuclei and ascending auditory pathways of the medulla. J. Comp. Neurol. 119: 341–380, 1962.
 199. Hayes, N. L., and A. Rustioni. Dual projections of single neurons are visualized simultaneously: use of enzymatically inactive 3HHRP. Brain Res. 165: 321–326, 1979.
 200. Heath, C. J., and E. G. Jones. An experimental study of ascending connections from the posterior group of thalamic nuclei in the cat. J. Comp. Neurol. 141: 397–426, 1971.
 201. Heath, C. J., and E. G. Jones. The anatomical organization of the suprasylvian gyrus of the cat. Ergeb. Anat. Entwick‐lungsgesch. 45: 1–64, 1971.
 202. Heffner, H. Effect of auditory cortex ablation on localization and discrimination of brief sounds. J. Neurophysiol. 41: 963–976, 1978.
 203. Heffner, H., and B. Masterton. Contribution of auditory cortex to sound localization in the monkey (Macaca mulatto.) J. Neurophysiol. 38: 1340–1358, 1975.
 204. Hellweg, F. C., R. Koch, and M. Vollrath. Representation of the cochlea in the neocortex of guinea pigs. Exp. Brain Res. 29: 467–474, 1977.
 205. Henkel, C. K., and S. B. Edwards. The superior colliculus control of pinna movements in the cat: possible anatomical connections. J. Comp. Neurol. 182: 763–776, 1978.
 206. Hind, J. E. An electrophysiological determination of tonotopic organization in the auditory cortex of cat. J. Neurophysiol. 16: 475–489, 1953.
 207. Hind, J. E., J. M. Goldberg, D. D. Greenwood, and J. E. Rose. Some discharge characteristics of single neurons in the inferior colliculus of the cat. II. Timing of the discharges and observations on binaural stimulation. J. Neurophysiol. 26: 321–341, 1963.
 208. Hind, J. E., J. E. Rose, P. W. Davies, C. N. Woolsey, R. M. Benjamin, W. I. Welker, and R. F. Thompson. Unit activity in the auditory cortex. In: Neural Mechanisms of the Auditory and Vestibular Systems, edited by G. L. Rasmussen and W. F. Windle. Springfield, II: Thomas, 1960, p. 201–210.
 209. Hirsch, H. R., and M. M. Gibson. Responses of single units in the cat cochlear nucleus to sinusoidal amplitude modulation of tones and noise: linearity and relation to speech perception. J. Neurosci. Res. 2: 337–356, 1976.
 210. Hocherman, S., D. A. Benson, M. H. Goldstein, JR., H. E. Heffner, and R. D. Hienz. Evoked unit activity in auditory cortex of monkeys performing a selective attention task. Brain Res. 117: 51–68, 1976.
 211. Huang, C. C., and D. B. Lindsley. Polysensory responses and sensory interaction in pulvinar and related postero‐lateral thalamic nuclei in cat. Electroencephalogr. Clin. Neurophysiol. 34: 265–280, 1973.
 212. Hubel, D. H., C. O. Henson, A. Rupert, and R. Galambos. “Attention” units in the auditory cortex. Science 129: 1279–1280, 1959.
 213. Hui, G. S., and J. F. Disterhoft. Cochlear nucleus unit responses to pure tones in the unanesthetized rabbit. Exp. Neurol. 69: 576–588, 1980.
 214. Ibata, Y., and G. D. Pappas. The fine structure of synapses in relation to the large spherical neurons in the anterior ventral cochlear nucleus of the cat. J. Neurocytol. 5: 395–406, 1976.
 215. Imig, T. J., and H. O. Adrian. Binaural columns in the primary field (AI) of cat auditory cortex. Brain Res. 138: 241–257, 1977.
 216. Imig, T. J., and J. F. Brugge. Sources and terminations of callosal axons related to binaural and frequency maps in primary auditory cortex of the cat. J. Comp. Neurol. 182: 637–660, 1978.
 217. Imig, T. J., and R. A. Reale. Patterns of cortico‐cortical connections related to tonotopic maps in cat auditory cortex. J. Comp. Neurol. 192: 293–332, 1980.
 218. Imig, T. J., M. A. Ruggero, L. M. Kitzes, E. Javel, and J. F. Brugge. Organization of auditory cortex in the owl monkey (Aotus trivirgatus). J. Comp. Neurol. 171: 111–128, 1977.
 219. Irvine, D. R. F. Acoustic properties of neurons in posteromedial thalamus of cat. J. Neurophysiol. 43: 395–408, 1980.
 220. Irvine, D. R. F., and H. Huebner. Acoustic response characteristics of neurons in nonspecific areas of cat cerebral cortex. J. Neurophysiol. 42: 107–122, 1979.
 221. Irvine, D. R. F., and D. P. Phillips. Polysensory “association” areas of the cerebral cortex: organization of acoustic input in the cat. In: Cortical Sensory Organization. Multiple Auditory Areas, edited by C. N. Woolsey. Clifton, NJ: Humana, 1982, vol. 3, p. 111–156.
 222. Irving, R., and J. M. Harrison. The superior olivary complex and audition: a comparative study. J. Comp. Neurol. 130: 77–86, 1967.
 223. Jackson, G., and Irvine, D. R. F. Acoustic properties of neurons in cat mesencephalic reticular formation. Proc. Aust. Physiol. Pharmacol. Soc. 9: 177P, 1978.
 224. Jane, J. A., R. B. Masterton, and I. T. Diamond. The function of the tectum for attention to auditory stimuli in the cat. J. Comp. Neurol. 125: 165–192, 1965.
 225. Jean‐Baptiste, M., and D. K. Morest. Transneuronal changes of synaptic endings and nuclear chromatin in the trapezoid body following cochlear ablations in cats. J. Comp. Neurol. 162: 111–134, 1975.
 226. Jones, D. R., and J. H. Casseday. Projections of auditory nerve in the cat as seen by anterograde transport methods. Neuroscience 4: 1299–1313, 1979.
 227. Jones, E. G. Functional subdivision and synaptic organization of the mammalian thalamus. In: Neurophysiology IV, edited by R. Porter Baltimore, MD: University Park, 1981, vol. 25, p. 173–245. (Int. Rev. Physiol. Ser.)
 228. Jones, E. G., and H. Burton. Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates. J. Comp. Neurol. 168: 197–248, 1976.
 229. Jones, E. G., and T. P. S. Powell. Electron microscopy of synaptic glomeruli in the thalamic relay nuclei of the cat. Proc. R. Soc. London Ser. B 172: 153–171, 1969.
 230. Jones, E. G., and T. P. S. Powell. An electron microscopic study of the mode of termination of cortico‐thalamic fibers within the sensory relay nuclei of the thalamus. Proc. R. Soc. London. Ser. B 172: 173–185, 1969.
 231. Jones, E. G., and T. P. S. Powell. An analysis of the posterior group of thalamic nuclei on the basis of its afferent connections. J. Comp. Neurol. 143: 185–216, 1971.
 232. Jones, E. G., and A. J. Rockel. The synaptic organization in the medial geniculate body of afferent fibres ascending from the inferior colliculus. Z. Zellforsch. Mikroscop. Anat. 113: 44–66, 1971.
 233. Kane, E. C. Octopus cells in the cochlear nucleus of the cat: heterotypic synapses upon homeotypic neurons. Int. J. Neurosci. 5: 251–279, 1973.
 234. Kane, E. C. Patterns of degeneration in the caudal cochlear nucleus of the cat after cochlear ablation. Anat. Rec. 179: 67–91, 1974.
 235. Kane, E. C. Synaptic organization in the dorsal cochlear nucleus of the cat: a light and electron microscopic study. J. Comp. Neurol. 155: 301–329, 1974.
 236. Kane, E. S. C. Descending projections to specific regions of cat cochlear nucleus: a light microscopic study. Exp. Neurol. 52: 372–388, 1976.
 237. Kane, E. S. Descending inputs to caudal cochlear nucleus in cats: a horseradish peroxidase (HRP) study. Am. J. Anat. 146: 433–441, 1976.
 238. Kane, E. S. Descending inputs to the octopus cell area of the cat cochlear nucleus: an electron microscopic study. J. Comp. Neurol. 173: 337–354, 1977.
 239. Kane, E. S., and R. C. Finn. Descending and intrinsic inputs to dorsal cochlear nucleus of cats: a horseradish peroxidase study. Neuroscience 2: 897–912, 1977.
 240. Karten, H. J. The organization of the ascending auditory pathway in the pigeon. I. Diencephalic projection of the inferior colliculus (nucleus mesenephalic lateralis, pars dorsalis). Brain Res. 6: 409–427, 1967.
 241. Katsuki, Y., N. Suga, and Y. Kanno. Neural mechanism of the peripheral and central auditory system in monkeys. J. Acoust. Soc. Am. 34: 1396–1410, 1962.
 242. Katsuki, Y., T. Sumi, H. Uchiyama, and T. Watanabe. Electric responses of auditory neurons in cats to sound stimulation. J. Neurophysiol. 21: 569–588, 1958.
 243. Katsuki, Y., T. Watanabe, and N. Maruyama. Activity of auditory neurons in upper levels of brain of cat. J. Neurophysiol. 22: 343–359, 1959.
 244. Kawamura, K. Corticocortical fiber connections of the cat cerebrum. I. The temporal region. Brain Res. 51: 1–21, 1973.
 245. Kawamura, K. The pontine projection from the inferior colliculus. An experimental study. Brain Res. 95: 309–322, 1975.
 246. Kelly, J. B. The effects of insular and temporal lesions in cats on two types of auditory pattern discrimination. Brain Res. 62: 71–87, 1973.
 247. Kelly, J. B., and S. J. Glazier. Auditory cortex lesions and discrimination of spatial location by the rat. Brain Res. 145: 315–321, 1978.
 248. Kiang, N. Y. S. Stimulus coding in the auditory nerve and cochlear nucleus. Acta Oto‐Laryngol. 59: 186–200, 1965.
 249. Kiang, N. Y. S. A survey of recent developments in the study of auditory physiology. Ann. Otol. Rhinol. Laryngol. 77: 656–675, 1968.
 250. Kiang, N. Y. S. Stimulus representation in the discharge patterns of auditory neurons. In: The Nervous System. Human Communication and Its Disorders, edited by D. B. Tower. New York: Raven, 1975, vol. 3, p. 81–96.
 251. Kiang, N. Y. S., D. A. Godfrey, B. E. Norris, and S. E. Moxon. A block model of the cat cochlear nucleus. J. Comp. Neurol. 162: 221–246, 1975.
 252. Kiang, N. Y. S., D. K. Morest, D. A. Godfrey, J. J. Guinan, JR., and E. C. Kane. Stimulus coding at caudal levels of the cat's auditory nervous system. I. Response characteristics of single units. In: Basic Mechanisms in Hearing, edited by A. R. Møller. New York: Academic, 1973, p. 455–478.
 253. Kiang, N. Y. S., R. R. Pfeiffer, W. B. Warr, and A. S. N. Backus. Stimulus coding in the cochlear nucleus. Ann. Otol. Rhinol. Laryngol. 74: 463–485, 1965.
 254. Kiang, N. Y.‐S., T. Watanabe, E. C. Thomas, and L. F. Clark. Discharge Patterns of Single Fibers in the Cat's Auditory Nerve. Cambridge, MA: MIT Press, 1965.
 255. Kitzes, L. M., G. R. Farley, and A. Starr. Modulation of auditory cortex unit activity during the performance of a conditioned response. Exp. Neurol. 62: 678–697, 1978.
 256. Kitzes, L. M., K. S. Wrege, and J. M. Cassady. Patterns of responses of cortical cells to binaural stimulation. J. Comp. Neurol. 192: 455–472, 1980.
 257. Knight, P. L. Representation of the cochlea within the anterior auditory field (AAF) of the cat. Brain Res. 130: 447–467, 1977.
 258. Knudsen, E. I., G. G. Blasdel, and M. Konishi. Sound localization by the barn owl (Tyto alba) measured with the search coil technique. J. Comp. Physiol. 133: 1–12, 1979.
 259. Knudsen, E. I., and M. Konishi. A neural map of auditory space in the owl. Science 200: 795–797, 1978.
 260. Knudsen, E. I., and M. Konishi. Space and frequency are represented separately in auditory midbrain of the owl. J. Neurophysiol. 41: 870–884, 1978.
 261. Knudsen, E. L, and M. Konishi. Mechanisms of sound localization in the barn owl (Tyto alba) J. Comp. Physiol. 133: 13–22, 1979.
 262. Knudsen, E. I., M. Konishi, and J. D. Pettigrew. Receptive fields of auditory neurons in the owl. Science 198: 1278–1280, 1977.
 263. Koerber, K. C., R. R. Pfeiffer, W. B. Warr, and N. Y. S. Kiang. Spontaneous spike discharges from single units in the cochlear nucleus after destruction of the cochlea. Exp. Neurol. 16: 119–130, 1966.
 264. KÖFF‐Maier, P. A new type of synapse in the ventral cochlear nucleus. Cell Tissue Res. 198: 373–380, 1979.
 265. Konishi, M. Locatable and non‐locatable acoustic signals for barn owls. Am. Nat. 107: 775–785, 1973.
 266. Konishi, M. How the owl tracks its prey. Am. Sci. 61: 414–427, 1973.
 267. Kudo, M., and K. Niimi. Ascending projections of the inferior colliculus onto the medial geniculate body in the cat studied by anterograde and retrograde tracing techniques. Brain Res. 155: 113–117, 1978.
 268. Kudo, M., and K. Niimi. Ascending projections of the inferior colliculus in the cat: an autoradiographic study. J. Comp. Neurol. 191: 545–556, 1980.
 269. Kusama, T., K. Otani, and E. Kawana. Projections of the motor, somatic sensory, auditory and visual cortices in cat. In: Progress in Brain Research. Correlative Neurosciences. Part A. Fundamental Mechanisms, edited by T. Tokizane and J. P. Schadé. Amsterdam: Elsevier, 1966, vol 21A, p. 292–322.
 270. Kuwada, S., T. J. Buunen, J. Syka, and R. Wickesberg. Responses of inferior colliculus neurons to interaural time differences in the cat. Soc. Neurosci. Abstr. 3: 9, 1977.
 271. Lavine, R. A. Phase‐locking in response of single neurons in cochlear nuclear complex of the cat to low‐frequency tonal stimuli. J. Neurophysiol. 34: 467–483, 1971.
 272. Layton, B. S., A. W. Toga, S. Horenstein, and D. G. Davenport. Temporal pattern discrimination survives simultaneous bilateral ablation of suprasylvian cortex but not sequential bilateral ablation of insular‐temporal cortex in the cat. Brain Res. 173: 337–340, 1979.
 273. Leiman, A. L., and E. R. Hafter. Responses of inferior colliculus neurons to free field auditory stimuli. Exp. Neurol. 35: 431–449, 1972.
 274. Lenn, N. J., and T. S. Reese. The fine structure of nerve endings in the nucleus of the trapezoid body and the ventral cochlear nucleus. Am. J. Anat. 118: 375–389, 1966.
 275. Lindsey, B. G. Fine structure and distribution of axon terminals from the cochlear nucleus on neurons in the medial superior olivary nucleus of the cat. J. Comp. Neurol. 160: 81–103, 1975.
 276. Lippe, W. R., and N. M. Weinberger. The distribution of sensory evoked activity within the medial geniculate body of the unanesthetized cat. Exp. Neurol. 40: 431–444, 1973.
 277. Locke, S. Subcortical projection of the magnocellular medial geniculate body of monkey. J. Comp. Neurol. 138: 321–328, 1961.
 278. Loe, P. R., and L. A. Benevento. Auditory visual interaction in single units in the orbito‐insular cortex of the cat. Electroencephalogr. Clin. Neurophysiol. 26: 395–398, 1969.
 279. Lorente de Nó, R. Anatomy of the eighth nerve. III. General plan of structure of the primary cochlear nuclei. Laryngoscope 43: 327–350, 1933.
 280. Lorente de Nó, R. Cerebral cortex: architecture, intracortical connections, motor projections. In: Physiology of the Nervous System, (3rd ed.), edited by J. F. Fulton. New York: Oxford Univ. Press, 1949, p. 288–330.
 281. Lorente de Nó, R. Central representation of the eighth nerve. In: Ear Diseases, Deafness and Dizziness, edited by V. Good‐hill. New York: Harper & Row, 1979, p. 64–83.
 282. Love, J. A., and J. W. Scott. Some response characteristics of cells of the magnocellular division of the medial geniculate body of the cat. Can. J. Physiol. Pharmacol. 47: 881–888, 1969.
 283. McDonald, D. M., and G. L. Rasmussen. Ultrastructural characteristics of synaptic endings in the cochlear nucleus having acetylcholinesterase activity. Brain Res. 28: 1–18, 1971.
 284. Majorossy, K., and A. Kiss. Specific patterns of neuron arrangement and of synaptic articulation in the medial geniculate body. Exp. Brain Res. 26: 1–17, 1976.
 285. Majorossy, K., and A. Kiss. Types of interneurons and their participation in the neuronal network of the medial geniculate body. Exp. Brain Res. 26: 19–37, 1976.
 286. Majorossy, K., and M. Réthelyi. Synaptic architecture in the medial geniculate body (ventral division). Exp. Brain Res. 6: 306–323, 1968.
 287. Manley, J. A., and P. MÜLLER‐Preuss. Response variability of auditory cortex cells in the squirrel monkey to constant acoustic stimuli. Exp. Brain Res. 32: 171–180, 1978.
 288. Manley, J. A., and P. MÜLLER‐Preuss. Response variability in the mammalian auditory cortex: an objection to feature detection? Federation Proc. 37: 2355–2359, 1978.
 289. Massopust, L. C., JR., and J. M. Ordy. Auditory organization of the inferior colliculi in the cat. Exp. Neurol. 66: 465–477, 1962.
 290. Masterton, R. B., and I. T. Diamond. Effects of auditory cortex ablation on discrimination of small binaural time differences. J. Neurophysiol. 27: 15–36, 1964.
 291. Masterton, B., G. C. Thompson, J. K. Bechtold, and M. J. Robards. Neuroanatomical basis of binaural phase‐difference analysis for sound localization: a comparative study. J. Comp. Physiol. Psychol. 89: 379–386, 1975.
 292. Merzenich, M. M., R. A. Andersen, and J. H. Middle‐Brooks. Functional and topographic organization of the auditory cortex. In: Hearing Mechanisms and Speech, edited by O. Creutzfeldt, H. Scheich, and C. Schreiner. Berlin: Springer‐Verlag, 1979, p. 61–75 (EBBS Workshop, Gottingen, April 26–28, 1979. Exp. Brain Res. Suppl. Ser. 2).
 293. Merzenich, M. M., and J. F. Brugge. Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Res. 50: 275–296, 1973.
 294. Merzenich, M. M., and J. Kaas. Principles of organization of sensory‐perceptual systems in mammals. In: Progress in Psychobiology and Physiological Psychology, edited by J. M. Sprague and A. N. Epstein. New York: Academic, vol. 9, 1980, p. 1–42.
 295. Merzenich, M. M., J. H. Kaas, and G. L. Roth. Auditory cortex in the gray squirrel: tonotopic organization and architectonic fields. J. Comp. Neurol. 166: 387–402, 1976.
 296. Merzenich, M. M., P. L. Knight, and G. L. Roth. Representation of cochlea within primary auditory cortex in the cat. J. Neurophysiol. 38: 231–249, 1975.
 297. Merzenich, M. M., and M. D. Reid. Representation of the cochlea within the inferior colliculus of the cat. Brain Res. 77: 397–415, 1974.
 298. Mesulam, M. M., and D. N. Pandya. The projections of the medial geniculate complex within the sylvian fissure of the rhesus monkey. Brain Res. 60: 315–333, 1973.
 299. Meyer, D. R., and C. N. Woolsey. Effects of localized cortical destruction on auditory discriminative conditioning in cat. J. Neurophysiol. 15: 149–162, 1952.
 300. Middlebrooks, J. C., R. W. Dykes, and M. M. Merzenich. Binaural response‐specific bands in primary auditory cortex (AI) of the cat: topographical organization orthogonal to isofrequency contours. Brain Res. 181: 31–48, 1980.
 301. Middlebrooks, J. C., and J. D. Pettigrew. Functional classes of neurons in primary auditory cortex of the cat distinguished by sensitivity to sound location. J. Neurosci. 1: 107–120, 1981.
 302. Miller, J. M., R. D. Beaton, T. O'connor, and B. E. Pfingst. Response pattern complexity of auditory cells in the cortex of unanesthetized monkeys. Brain Res. 69: 101–113, 1974.
 303. Miller, J. M., D. Sutton, B. Pfingst, A. Ryan, R. Beaton, and G. Gourevitch. Single cell activity in the auditory cortex of rhesus monkeys: behavioral dependency. Science 111: 449–451, 1972.
 304. Moiseff, A., and M. Konishi. Neuronal and behavioral sensitivity to binaural time differences in the owl. J. Neurosci. 1: 40–48, 1981.
 305. Møller, A. R. Unit responses in the rat cochlear nucleus to repetitive transient sounds. Acta Physiol. Scand. 75: 542–551, 1969.
 306. Møller, A. R. Unit responses in the cochlear nucleus of the rat to sweep tones. Acta Physiol. Scand. 76: 503–512, 1969.
 307. Møller, A. R. Coding of amplitude and frequency modulated sounds in the cochlear nucleus of the rat. Acta Physiol. Scand. 86: 233–238, 1972.
 308. Møller, A. R. Coding of sounds in lower levels of the auditory system. Q. Rev. Biophys. 5: 59–155, 1972.
 309. Møller, A. R. Dynamic properties of excitation and two‐tone inhibition in the cochlear nucleus studied using amplitude‐modulated tones. Exp. Brain Res. 25: 307–321, 1976.
 310. Molnar, C. E., and R. R. Pfeiffer. Interpretation of spontaneous spike discharge patterns of neurons in the cochlear nucleus. Proc. IEEE. 56: 993–1004, 1968.
 311. Moore, B. C. J. Introduction to the Psychology of Hearing. London: Macmillan, 1977.
 312. Moore, C. N., J. H. Casseday, and W. D. Neff. Sound localization: the role of the commissural pathways of the auditory system of the cat. Brain Res. 82: 13–26, 1974.
 313. Moore, D. R., and D. R. F. Irvine. Development of responses to acoustic interaural intensity differences in the cat inferior colliculus. Exp. Brain Res. 41: 301–309, 1981.
 314. Moore, J. K., and K. K. Osen. The human cochlear nuclei. In: Hearing Mechanisms and Speech, edited by O. Creutzfeldt, H. Scheich, and C. Schreiner. Berlin: Springer‐Verlag, 1979, p. 36–44 (EBBS Workshop, Gottingen, April 26–28, 1979. Exp. Brain Res. Suppl. Ser. 2).
 315. Moore, R. Y., and J. M. Goldberg. Ascending projections of the inferior colliculus in the cat. J. Comp. Neurol. 121: 109–136, 1963.
 316. Moore, R. Y., and J. M. Goldberg. Projections of the inferior colliculus in the monkey. Exp. Neurol. 14: 429–438, 1966.
 317. Moore, T. J., and J. L. Cashin. Response patterns of cochlear nucleus neurons to excerpts from sustained vowels. J. Acoust. Soc. Am. 56: 1565–1576, 1974.
 318. Morest, D. K. The laminar structure of the inferior colliculus of the cat. Anat. Rec. 148: 314, 1964.
 319. Morest, D. K. The neuronal architecture of the medial geniculate body of the cat. J. Anat. 98: 611–630, 1964.
 320. Morest, D. K. The laminar structure of the medial geniculate body of the cat. J. Anat. 99: 143–160, 1965.
 321. Morest, D. K. The lateral tegmental system of the midbrain and the medial geniculate body: a study with Golgi and Nauta methods in cats. J. Anat. 99: 611–634, 1965.
 322. Morest, D. K. The cortical structure of the inferior quadrigeminal lamina of the cat. Anat. Rec. 154: 389–390, 1966.
 323. Morest, D. K. The collateral system of the medial nucleus of the trapezoid body of the cat, its neuronal architecture and relation to the olivocochlear bundle. Brain Res. 9: 288–311, 1968.
 324. Morest, D. K. Auditory neurons of the brain stem. Adv. Oto‐Rhino‐Laryngol. 20: 337–356, 1973.
 325. Morest, D. K. Synaptic relationship of Golgi type II cells in the medial geniculate body of the cat. J. Comp. Neurol. 162: 157–194, 1975.
 326. Morest, D. K., N. Y. S. Kiang, E. C. Kane, J. J. Guinan, JR., and D. A. Godfrey. Stimulus coding at caudal levels of the cat's auditory nervous system: II. Patterns of synaptic organization. In: Basic Mechanisms In Hearing, edited by A. R. Møller. New York: Academic, 1973, p. 479–509.
 327. Mountcastle, V. B., J. C. Lynch, A. Georgopoulos, H. Sakata, and C. Acuna. Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J. Neurophysiol. 38: 871–908, 1975.
 328. Moushegian, G., A. L. Rupert, and T. L. Langford. Stimulus coding by medial superior olivary neurons. J. Neurophysiol. 30: 1239–1261, 1967.
 329. Moushegian, G., A. Rupert, and M. A. Whitcomb. Medial superior‐olivary‐unit response patterns to monaural and binaural clicks. J. Acoust. Soc. Am. 36: 196–202, 1964.
 330. Neff, W. D. Neural structures concerned in localization of sound in space. Psychol. Beitr. 6: 492–500, 1962.
 331. Neff, W. D. Localization and lateralization of sound in space. In: Hearing Mechanisms in Vertebrates, edited by A. V. S. de Reuck and J. Knight. London: Churchill, 1968, p. 207–233 (Ciba Found. Symp. September, 1967)).
 332. Neff, W. D., and J. H. Casseday. Effects of unilateral ablation of auditory cortex on monaural cat's ability to localize sound. J. Neurophysiol. 40: 44–52, 1977.
 333. Neff, W. D., I. T. Diamond, and J. H. Casseday. Behavioral studies of auditory discrimination: central nervous system. In: Handbook of Sensory Physiology. Auditory System. Physiolgy (CNS), Behavioral Studies, Psychoacoustics, edited by W. D. Keidel and W. D. Neff. Berlin: Springer‐Verlag, 1975, vol. 5, pt. 2, p. 307–400.
 334. Neff, W. D., J. F. Fisher, I. T. Diamond, and M. Yela. Role of auditory cortex in discrimination requiring localization of sound in space. J. Neurophysiol. 19: 500–512, 1956.
 335. Nelson, C. N., and K. E. Bignall. Interactions of sensory and nonspecific thalamic inputs to cortical polysensory units in the squirrel monkey. Exp. Neurol. 40: 189–206, 1973.
 336. Nelson, P. G., and S. D. Erulkar. Synaptic mechanisms of excitation and inhibition in the central auditory pathway. J. Neurophysiol. 26: 908–923, 1963.
 337. Nelson, P. G., S. D. Erulkar, and J. S. Bryan. Responses of units of the inferior colliculus to time‐varying acoustic stimuli. J. Neurophysiol. 29: 834–860, 1966.
 338. Newman, J. D., and D. F. Lindsley. Single unit analysis of auditory processing in squirrel monkey frontal cortex. Exp. Brain Res. 25: 169–181, 1976.
 339. Newman, J. D., and D. Symmes. Arousal effects on unit responsiveness to vocalizations in squirrel monkey auditory cortex. Brain Res. 78: 125–138, 1974.
 340. Newman, J. D., and D. Symmes. Feature detection by single units in squirrel monkey auditory cortex. In: Hearing Mechanisms and Speech, edited by O. Creutzfeldt, H. Scheich, and C. Schreiner. Berlin: Springer‐Verlag, 1979, p. 140–145. (EBBS Workshop, Gottingen, April, 26–28, 1979. Exp. Brain Res. Suppl. Ser. 2).
 341. Newman, J. D., and Z. Wollberg. Responses of single neurons in the auditory cortex of squirrel monkeys to variants of a single cell type. Exp. Neurol. 40: 821–824, 1973.
 342. Niimi, K., and M. Matsuoka. Thalamocortical organization of the auditory system in the cat studied by retrograde axonal transport of horseradish peroxidase. Adv. Anat. Embryol. Cell Biol. 57: 1–56, 1979.
 343. Niimi, K., and F. D. Naito. Cortical projections of the medial geniculate body in the cat. Exp. Brain Res. 19: 326–342, 1974.
 344. Oliver, D. L., and W. C. Hall. The medial geniculate body of the tree shrew, Tupaia glis. I. Cytoarchitecture and mid‐brain connections. J. Comp. Neurol. 182: 423–458, 1978.
 345. Oliver, D. L., and W. C. Hall. The medial geniculate body of the tree shrew, Tupaia glis. II. Connections with the neocortex. J. Comp. Neurol. 182: 459–494, 1978.
 346. Oonishi, S., and Y. Katsuki. Functional organization and integrative mechanism of the auditory cortex of the cat. Jpn. J. Physiol. 15: 342–365, 1965.
 347. Osen, K. K. Cytoarchitecture of the cochlear nuclei in the cat. J. Comp. Neurol. 136: 453–484, 1969.
 348. Osen, K. K. The intrinsic organization of the cochlear nuclei in the cat. Acta Oto‐Laryngol. 67: 352–359, 1969.
 349. Osen, K. K. Afferent and efferent connections of three well‐defined cell types of the cat cochlear nuclei. In: Excitatory Synaptic Mechanisms, edited by P. Andersen and J. K. S. Jansen. Oslo: Universitetsforlaget, 1970, p. 295–300.
 350. Osen, K. K. Course and termination of the primary afferents in the cochlear nuclei of the cat. An experimental study. Arch. Ital. Biol. 108: 21–51, 1970.
 351. Osen, K. K. Projection of the cochlear nuclei on the inferior colliculus in the cat. J. Comp. Neurol. 144: 355–372, 1972.
 352. Pandya, D. N., M. Hallett, and S. K. Mukherjee. Intra‐and interhemispheric connections of the neocortical auditory system in the rhesus monkey. Brain Res. 14: 49–65, 1969.
 353. Pandya, D. N., and F. Sanides. Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Z. Anat. Entwicklungsgesch. 139: 127–161, 1973.
 354. Paula‐Barbosa, M. M., P. B. Feyo, and A. Sousa‐Pinto. The association connexions of the suprasylvian fringe (SF) and other areas of the cat auditory cortex. Exp. Brain Res. 23: 535–554, 1975.
 355. Paula‐Barbosa, M. M., and A. Sousa‐Pinto. Auditory cortical projections to the superior colliculus in the cat. Brain Res. 50: 47–61, 1973.
 356. Perkins, R. E. An electron microscopic study of synaptic organization in the medial superior olive of normal and experimental chinchillas. J. Comp. Neurol. 148: 387–416, 1973.
 357. Perry, D. R., and W. R. Webster. Neuronal organization of the rabbit cochlear nucleus: some anatomical and electrophysiological observations. J. Comp. Neurol. 197: 623–638, 1981.
 358. Petrosini, L., D. Troiani, and E. A. Pallestrini. Neuronal activity in medial geniculate body following single semicircular canal stimulation. Neurosci. Lett. 10: 135–139, 1978.
 359. Pfeiffer, R. R. Anteroventral cochlear nucleus: waveforms of extracellularly recorded spike potentials. Science 154: 667–668, 1966.
 360. Pfeiffer, R. R. Classification of response patterns of spike discharges for units in the cochlear nucleus: tone‐burst stimulation. Exp. Brain Res. 1: 220–235, 1966.
 361. Pfeiffer, R. R., and N. Y. S. Kiang. Spike discharge patterns of spontaneous and continuously stimulated activity in the cochlear nucleus of anesthetized cats. Biophys. J. 5: 301–316, 1965.
 362. Pfingst, B. E., T. A. O'connor, and J. M. Miller. Response plasticity of neurons in auditory cortex of rhesus monkey. Exp. Brain Res. 29: 393–404, 1977.
 363. Phillips, D. P., and D. R. F. Irvine. Methodological considerations in mapping auditory cortex: binaural columns in AI of cat. Brain Res. 161: 342–346, 1979.
 364. Phillips, D. P., and D. R. F. Irvine. Acoustic input to single neurons in pulvinar‐posterior complex of cat thalamus. J. Neurophysiol. 42: 123–136, 1979.
 365. Phillips, D. P., and D. R. F. Irvine. Responses of single neurons in physiologically‐defined primary auditory cortex (AI) of the cat: frequency tuning and responses to intensity. J. Neurophysiol. 45: 48–58, 1981.
 366. Phillips, D. P., and D. R. F. Irvine. Responses of single neurons in physiologically‐defined area AI of cat cerebral cortex: sensitivity to interaural intensity differences. Hearing Res. 4: 299–307, 1981.
 367. Phillips, D. P., and D. R. F. Irvine. Properties of single neurones in the anterior auditory field (AAF) of cat cerebral cortex. Brain Res. 248: 237–244, 1982.
 368. Phillips, D. P., and D. R. F. Irvine. Some features of binaural input to single neurons in physiologically defined area AI of cat cerebral cortex. J. Neurophysiol. 49: 383–395, 1983.
 369. Phillips, D. S., D. D. Denney, R. T. Robertson, L. H. Hicks, and R. F. Thompson. Cortical projections of ascending nonspecific systems. Physiol. Behav. 8: 269–277, 1972.
 370. Poggio, G. F., and V. B. Mountcastle. A study of the functional contributions of the lemniscal and spinothalamic systems to somatic sensibility. Bull. Johns Hopkins Hasp. 106: 266–316, 1960.
 371. Pontes, C., F. F. Reis, and A. Sousa‐Pinto. The auditory cortical projections onto the medial geniculate body in the cat. An experimental anatomical study with silver and autoradiographic methods. Brain Res. 91: 43–63, 1975.
 372. Powell, E. W., and J. B. Hatton. Projections of the inferior colliculus in cat. J. Comp. Neurol. 136: 183–192, 1969.
 373. Powell, T. P. S., and W. M. Cowan. An experimental study of the projection of the cochlea. J. Anat. 96: 269–284, 1962.
 374. Raczkowski, D., I. T. Diamond, and J. Winer. Organization of thalamocortical auditory system in the cat studied with horseradish peroxidase. Brain Res. 101: 345–354, 1975.
 375. Ramó N Y Cajal, S. Histologie du Système Nerveux de l'Homme et des Vertébrés. Madrid: Instituto Ramón y Cajal, 1955.
 376. Rasmussen, G. L. Anatomic relationships of the ascending and descending auditory systems. In: Neurological Aspects of Auditory and Vestibular Disorders, edited by W. S. Field and B. R. Alford. Springfield, IL: Thomas, 1964, p. 5–19.
 377. Rasmussen, G. L. Efferent connections of the cochlear nucleus. In: Sensorineural Hearing Processes and Disorders, edited by A. B. Graham. Boston, MA: Little, Brown, 1967, p. 61–75.
 378. Ravizza, R., and I. T. Diamond. Role of auditory cortex in sound localization: a comparative ablation study of hedgehog and bushbaby. Federation Proc. 33: 1917–1919, 1974.
 379. Ravizza, R., and B. Masterton. Contribution of neocortex to sound localization in opossum (Didelphis virginiana) J. Neurophysiol. 35: 344–356, 1972.
 380. Reale, R. A., and T. J. Imig. Tonotopic organization in auditory cortex of the cat. J. Comp. Neurol. 192: 265–291, 1980.
 381. Ribaupierre, F. DE, M. H. Goldstein, JR., and G. Yenikomshian. Intracellular study of the cat's primary auditory cortex. Brain Res. 48: 185–204, 1972.
 382. Ribaupierre, F. DE, E. Rouiller, A. Toros, and Y. DE Ribaupierre. Transmission delay of phase‐locked cells in the medial geniculate body. Hearing Res. 3: 65–77, 1980.
 383. Ribaupierre, F. DE, and A. Toros. The tonotopic organization of the medial geniculate body at the unit level. Experientia 29: 448, 1973.
 384. Ribaupierre, F. DE, and A. Toros. Single unit properites related to the laminar structure of the MGN. In: Afferent and Intrinsic Organization of Laminated Structures in the Brain, edited by O. Creutzfeldt. Berlin: Springer‐Verlag, 1978, p. 503–505.
 385. Ribaupierre, F. DE, A. Toros, and Y. DE Ribaupierre. Acoustical responses of single units in the medial geniculate body of the cat. Exp. Brain Res. Suppl. 23: 51, 1975.
 386. Rioch, D., McK. Studies on the diencephalon of carnivora. Part I. The nuclear configuration of the thalamus, epithalamus and hypothalamus of the dog and cat. J. Comp. Neurol. 49: 1–119, 1929.
 387. Riss, W. Effect of bilateral temporal cortical ablation on discrimination of sound direction. J. Neurophysiol. 22: 374–384, 1959.
 388. Robards, M. J. Somatic neurons in the brain stem and neocortex projecting to the external nucleus of the inferior colliculus. J. Comp. Neurol. 184: 547–566, 1979.
 389. Robards, M. J., D. W. Watkins III, and R. B. Masterton. An anatomical study of some somesthetic afferents to the intercollicular terminal zone of the midbrain of the opossum. J. Comp. Neurol. 170: 499–524, 1976.
 390. Robertson, R. T., K. S. Mayers, T. J. Teyler, L. A. Bettinger, H. Birch, J. L. Davis, D. S. Phillips, and R. F. Thompson. Unit activity in posterior association cortex of cat. J. Neurophysiol. 38: 780–793, 1975.
 391. Robertson, R. T., and R. F. Thompson. Effects of subcortical ablations on cortical association responses in the cat. Physiol. Behav. 10: 245–252, 1973.
 392. Robinson, D. L., M. E. Goldberg, and G. B. Stanton. Parietal association cortex in the primate: sensory mechanisms and behavioral modulations. J. Neurophysiol. 41: 910–932, 1978.
 393. Rockel, A. J., and E. G. Jones. The neuronal organization of the inferior colliculus of the adult cat. I. The central nucleus. J. Comp. Neurol. 147: 11–60, 1973.
 394. Rockel, A. J., and E. G. Jones. Observations on the fine structure of the central nucleus of the inferior colliculus of the cat. J. Comp. Neurol. 147: 61–92, 1973.
 395. Rockel, A. J., and E. G. Jones. The neuronal organization of the inferior colliculus of the adult cat. II. The pericentral nucleus. J. Comp. Neurol. 149: 301–334, 1973.
 396. Rodieck, R. W., N. Y.‐S. Kiang, and G. L. Gerstein. Some quantitative methods for the study of spontaneous activity of single neurons. Biophys. J. 2: 351–368, 1962.
 397. Romand, R. Survey of intracellular recording in the cochlear nucleus of the cat. Brain Res. 148: 43–65, 1978.
 398. Romano, R. Intracellular recording of “chopper responses” in the cochlear nucleus of the cat. Hearing Res. 1: 95–99, 1979.
 399. Rose, J. E. The cellular structure of the auditory region of the cat. J. Comp. Neurol. 91: 408–440, 1949.
 400. Rose, J. E. Organization of frequency‐sensitive neurons in the cochlear nuclear complex of the cat. In: Neural Mechanisms of the Auditory and Vestibular Systems, edited by G. L. Rasmussen and W. F. Windle. Springfield, IL: Thomas, 1960, p. 116–136.
 401. Rose, J. E., R. Galambos, and J. R. Hughes. Microelectrode studies of the cochlear nuclei of the cat. Bull. Johns Hopkins Hasp. 104: 211–251, 1959.
 402. Rose, J. E., D. D. Greenwood, J. M. Goldberg, and J. E. Hind. Some discharge characteristics of single neurons in the inferior colliculus of the cat. I. Tonotopical organization, relation of spike‐counts to tone intensity, and firing patterns of single elements. J. Neurophysiol. 26: 294–320, 1963.
 403. Rose, J. E., N. B. Gross, C. D. Geisler, and J. E. Hind. Some neural mechanisms in the inferior colliculus of the cat which may be relevant to localization of a sound source. J. Neurophysiol. 29: 288–314, 1966.
 404. Rose, J. E., L. M. Kitzes, M. M. Gibson, and J. E. Hind. Observations on phase‐sensitive neurons of anteroventral cochlear nucleus of the cat: nonlinearity of cochlear output. J. Neurophysiol. 37: 218–253, 1974.
 405. Rose, J. E., and C. N. Woolsey. The relations of thalamic connections, cellular structure and evocable electrical activity in the auditory region of the cat. J. Comp. Neurol. 91: 441–466, 1949.
 406. Rose, J. E., and C. N. Woolsey. Cortical connections and functional organization of the thalamic auditory system of the cat. In: Biological and Biochemical Bases of Behavior, edited by H. F. Harlow and C. N. Woolsey. Madison: Univ. of Wisconsin Press, 1958, p. 127–150.
 407. Roth, G. L., L. M. Aitkin, R. A. Andersen, and M. M. Merzenich. Some features of the spatial organization of the central nucleus of the inferior colliculus of the cat. J. Comp. Neurol. 182: 661–680, 1978.
 408. Roth, G. L., R. K. Kochhar, and J. E. Hind. Interaural time differences: implications regarding the neurophysiology of sound localization. J. Acoust. Soc. Am. 68: 1643–1651, 1980.
 409. Rouiller, E., Y. DE Ribaupierre, and F. DE Ribaupierre. Phase‐locked responses to low frequency tones in the medial geniculate body. Hearing Res. 1: 213–226, 1979.
 410. Rowe, M. J., and B. J. Sessle. Somatic afferent input to posterior thalamic neurones and their axon projections to cerebral cortex in cat. J. Physiol. London 196: 19–35, 1968.
 411. Rubel, E. W. Ontogeny of structure and function in the vertebrate auditory system. In: Handbook of Sensory Physiology, Development of Sensory Systems, edited by M. Jacobsen. Berlin: Springer‐Verlag, 1978. vol. 9, p. 135–237.
 412. Ryan, A., and J. Miller. Single unit responses in the inferior colliculus of the awake and performing rhesus monkey. Exp. Brain Res. 32: 389–407, 1978.
 413. Ryugo, D. K., and H. P. Killackey. Differential telencephalic projections of the medial and ventral divisions of the medial geniculate body of the rat. Brain Res. 82: 173–177, 1974.
 414. Ryugo, D. K., and H. P. Killackey. The neuronal organization and efferent connections of the inferior colliculus of the rat. Soc. Neurosci. Abstr. 1: 30, 1975.
 415. Sakai, H., and C. D. Woody. Identification of auditory responsive cells in coronal‐pericruciate cortex of awake cats. J. Neurophysiol. 44: 223–231, 1980.
 416. Sauerland, E. K., R. A. Velluti, and R. M. Harper. Cortically‐induced changes of presynaptic excitability in higher‐order auditory afferents. Exp. Neurol. 36: 79–87, 1972.
 417. Scheibel, M. E., and A. B. Scheibel. Neuropil organization in the superior olive of the cat. Exp. Neurol. 43: 339–348, 1974.
 418. Schroeder, D. M., and J. A. Jane. The intercollicular terminal zone of the inferior colliculus. Brain Behav. Evol. 13: 125–141, 1976.
 419. Schuller, G., and G. Pollack. Disproportionate frequency representation in the inferior colliculus of Doppler‐compensating greater horseshoe bats: evidence for an acoustic fovea. J. Comp. Physiol. 132: 47–54, 1979.
 420. Schwartz, A. M., and R. L. Gulley. Non‐primary afferents to the principal cells of the rostral anteroventral cochlear nucleus of the guinea‐pig. Am. J. Anat. 153: 489–508, 1978.
 421. Schwartz, I. R. Axonal endings in the cat medial superior olive: coated vesicles and intercellular substance. Brain Res. 46: 187–202, 1972.
 422. Schwartz, I. R. Dendritic arrangements in the cat medial superior olive. Neuroscience 2: 81–101, 1977.
 423. Seltzer, B., and D. N. Pandya. Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res. 149: 1–24, 1978.
 424. Semple, M. N., and L. M. Aitkin. Representation of sound frequency and laterality by units in central nucleus of cat inferior colliculus. J. Neurophysiol. 42: 1626–1639, 1979.
 425. Semple, M. N., and L. M. Aitkin. Physiology of pathway from dorsal cochlear nucleus to inferior colliculus revealed by electrical and auditory stimulation. Exp. Brain Res. 41: 19–28, 1980.
 426. Semple, M. N., and L. M. Aitkin. Integration and segregation of input to the cat inferior colliculus. In: Neuronal Mechanism, of Hearing, edited by J. Syka and L. M. Aitkin. New York: Plenum, 1981, p. 155–161.
 427. Siegel, A., L. Sasso, and J. P. Tassoni. Fiber connections of the temporal lobe with the corpus striatum and related structures in the cat. Exp. Neurol. 33: 130–146, 1971.
 428. Sindberg, R. M., and R. F. Thompson. Auditory response fields in ventral temporal and insular cortex of cat. J. Neurophysiol. 25: 21–28, 1962.
 429. Slimp, J. C., and A. L. Towe. Characteristics of somatic receptive fields of neurons in postcruciate cerebral cortex in awake‐restrained and two anesthetic conditions in the same cat. Soc. Neurosci. Abstr. 3: 492, 1977.
 430. Smith, D. E., and N. Moskowitz. Ultrastructure of layer IV of the primary auditory cortex of the squirrel monkey. Neuroscience 4: 349–359, 1979.
 431. Sousa‐Pinto, A. The structure of the first auditory cortex (AI) in the cat. I. Light microscopic observations on its organization. Arch. Ital. Biol. 111: 112–137, 1973.
 432. Sousa‐Pinto, A. Cortical projections of the medial geniculate body in the cat. Adv. Anat. Embryol. Cell Biol. 48: 1–42, 1973.
 433. Sousa‐Pinto, A., M. Paula‐Barbosa, and D. Do Carmo Matos. A Golgi and electron microscopical study of nerve cells in layer I of the cat auditory cortex. Brain Res. 95: 443–458, 1975.
 434. Sovijärvi, A. R. A. Detection of natural complex sounds by cells in the primary auditory cortex of the cat. Acta Physiol. Scand. 93: 318–335, 1975.
 435. Sovijärvi, A. R. A., and J. Hyvärinen. Auditory cortical neurons in the cat sensitive to the direction of sound source movement. Brain Res. 73: 455–471, 1974.
 436. Starr, A., and M. Don. Responses of squirrel monkey (Samiri sciureus) medial geniculate units to binaural click stimuli. J. Neurophysiol. 35: 501–517, 1972.
 437. Stein, B. E., B. Magalhãtes‐Castro, and L. Kruger. Relationship between visual and tactile representations in cat superior colliculus. J. Neurophysiol. 39: 401–419, 1976.
 438. Stein, R. B. The information capacity of nerve cells using frequency code. Biophys. J. 1: 797–826, 1967.
 439. Stillman, R. D. Characteristic delay neurons in the inferior colliculus of the kangaroo rat. Exp. Neurol. 32: 404–412, 1971.
 440. Stillman, R. D. Responses of high‐frequency inferior colliculus neurons to interaural intensity differences. Exp. Neurol. 36: 118–126, 1972.
 441. Stotler, W. A. An experimental study of the cells and connections of the superior olivary complex of the cat. J. Comp. Neurol. 98: 401–431, 1953.
 442. Strominger, N. L. Localization of sound in space after unilateral and bilateral ablation of auditory cortex. Exp. Neurol. 25: 521–533, 1969.
 443. Strominger, N. L. The anatomical organization of the primate auditory pathway. In: Sensory Systems of Primates, edited by C. R. Noback. New York: Plenum, 1978, p. 53–91.
 444. Strominger, N. L., L. R. Nelson, and W. J. Dougherty. Second order auditory pathways in the chimpanzee. J. Comp. Neurol. 172: 349–366, 1977.
 445. Strominger, N. L., and A. I. Strominger. Ascending brain stem projections of the anteroventral cochlear nucleus in the rhesus monkey. J. Comp. Neurol. 143: 217–242, 1971.
 446. Suga, N. Amplitude spectrum representation in the Doppler‐shifted‐CF processing area of the auditory cortex of the mustache bat. Science 196: 64–67, 1977.
 447. Suga, N. Specialization of the auditory system for reception and processing of species‐specific sounds. Federation Proc. 37: 2342–2354, 1978.
 448. Suga, N., and P. H.‐S. Jen. Disproportionate tonotopic representation for processing CF‐FM sonar signals in the mustache bat auditory cortex. Science 194: 542–544, 1976.
 449. Suga, N., W. E. O'neill, and T. Manabe. Cortical neurons sensitive to combinations of information‐bearing elements of biosonar signals in the mustache bat. Science 200: 778–781, 1978.
 450. Thompson, R. F. Function of auditory cortex of cat in frequency discrimination. J. Neurophysiol. 23: 321–334, 1960.
 451. Thompson, R. F. Role of cortical association fields in auditory frequency discrimination. J. Comp. Physiol. Psychol. 57: 335–339, 1964.
 452. Thompson, R. F., R. H. Johnson, and J. J. Hoopes. Organization of auditory, somatic sensory and visual projections to association fields of cerebral cortex in the cat. J. Neurophysiol. 26: 343–364, 1963.
 453. Thompson, R. F., and R. M. Sindberg. Auditory response fields in association and motor cortex of cat. J. Neurophysiol. 23: 87–105, 1960.
 454. Thompson, R. F., and H. E. Smith. Effects of association area lesions on auditory frequency discrimination in cat. Psychon. Sci. 8: 123–124, 1967.
 455. Tsuchitani, C. Functional organization of lateral cell groups of cat superior olivary complex. J. Neurophysiol. 40: 296–318, 1977.
 456. Tsuchitani, C. Lower auditory brainstem structures of the cat. In: Evoked Electrical Activity in the Auditory Nervous System, edited by R. F. Naunton and C. Fernandez. New York: Academic, 1978, p. 373–401.
 457. Tsuchitani, C., and J. C. Boudreau. Single unit analysis of cat superior olive S segment with tonal stimuli. J. Neurophysiol. 29: 684–697, 1966.
 458. Tsuchitani, C., and J. C. Boudreau. Stimulus level of dichotically presented tones and cat superior olive S‐segment cell discharge. J. Acoust. Soc. Am. 46: 979–988, 1969.
 459. Tunturi, A. R. Further afferent connections to the acoustic cortex of the dog. Am. J. Physiol. 144: 389–394, 1945.
 460. Tunturi, A. R. Physiological determination of the arrangement of the afferent connections to the middle ectosylvian auditory area in the dog. Am. J. Physiol. 162: 489–502, 1950.
 461. Tunturi, A. R. A difference in the representation of auditory signals for the left and right ears in the iso‐frequency contours of the right middle ectosylvian auditory cortex of the dog. Am. J. Physiol. 168: 712–727, 1952.
 462. Tunturi, A. R. Classification of neurons in the ectosylvian auditory cortex of the dog. J. Comp. Neurol. 142: 153–166, 1971.
 463. Van Gisbergen, J. A. M., J. L. Grashuis, P. I. M. Johannesma, and A. J. H. Vendrik. Neurons in the cochlear nucleus investigated with tone and noise stimuli. Exp. Brain Res. 23: 387–406, 1975.
 464. Van Gisbergen, J. A. M., J. L. Grashuis, P. I. M. Johannesma, and A. J. H. Vendrik. Statistical analysis and interpretation of the initial response of cochlear nucleus neurons to tone bursts. Exp. Brain Res. 23: 407–423, 1975.
 465. Van Noort, J. The Structure and Connections of the Inferior Colliculus. An Investigation of the Lower Auditory System. Assen, Netherlands: Van Gorcum, 1969.
 466. Vater, M., P. Schlegel, and H. Zöller. Comparative auditory neurophysiology of the inferior colliculus of two molossid bats, Molossus ater and Molossus molossus. I. Gross evoked potential and single unit response to pure tones. J. Comp. Physiol., 131: 137–145, 1979.
 467. Voigt, H. F., and E. D. Young. Evidence of inhibitory interactions between neurons in dorsal cochlear nucleus. J. Neurophysiol. 44: 76–96, 1980.
 468. Warr, W. B. Fiber degeneration following lesions of the anterior ventral cochlear nucleus of the cat. Exp. Neurol. 14: 453–473, 1966.
 469. Warr, W. B. Fiber degeneration following lesions in the posteroventral cochlear nucleus of the cat. Exp. Neurol. 23: 140–155, 1969.
 470. Warr, W. B. Fiber degeneration following lesions in the multipolar and globular cell areas in the ventral cochlear nucleus of the cat. Brain Res. 40: 247–270, 1972.
 471. Warr, W. B. Olivocochlear and vestibular efferent neurons of the feline brain stem: their location, morphology and number determined by retrograde axonal transport and acetylcholin‐esterase histochemistry. J. Comp. Neurol. 161: 159–182, 1975.
 472. Watanabe, T., and Y. Katsuki. Response patterns of single auditory neurons of the cat to species specific vocalization. Jpn. J. Physiol. 24: 135–155, 1974.
 473. Watanabe, T., K. Yanagisawa, J. Kanzaki, and Y. Katsuki. Cortical efferent flow influencing unit responses of medial geniculate body to sound stimulation. Exp. Brain. Res. 2: 302–317, 1966.
 474. Webster, W. R. Central neural mechanisms of hearing. Proc. Aust. Physiol. Pharmacol. Soc. 8: 1–7, 1977.
 475. Webster, W. R. Chopper units recorded in the cochlear nucleus of the awake cat. Neurosci. Lett. 7: 261–265, 1977.
 476. Webster, W. R., and L. M. Aitkin. Evoked potential and single unit studies of neural mechanisms underlying the effects of repetitive stimulation in the auditory pathway. Electroen‐cephalogr. Clin. Neurophysiol. 31: 581–592, 1971.
 477. Webster, W. R., and L. M. Aitkin. Central auditory processing. In: Handbook of Psychobiology, edited by M. S. Gazzaniga and C. Blakemore. New York: Academic, 1975, p. 325–364.
 478. Webster, W. R., J. Serviére, C. Batini, and S. Laplante. Autoradiographic demonstration with 14C‐2‐deoxyglucose of frequency selectivity in the auditory system of cats under conditions of functional activity. Neurosci. Lett. 10: 43–48, 1978.
 479. Wepsic, J. G. Multimodal sensory activation of cells in the magnocellular medial geniculate nucleus. Exp. Neurol. 15: 299–318, 1966.
 480. Wester, K. G., D. R. F. Irvine, and R. F. Thompson. Acoustic tuning of single cells in middle suprasylvian cortex of cat. Brain Res. 76: 493–502, 1974.
 481. Whitfield, I. C., J. Cranford, R. Ravizza, and I. T. Diamond. Effects of unilateral ablation of auditory cortex in cat on complex sound localization. J. Neurophysiol. 35: 718–731, 1972.
 482. Whitfield, I. C., and E. F. Evans. Responses of auditory cortical neurons to stimuli of changing frequency. J. Neurophysiol. 28: 655–672, 1965.
 483. Whitfield, I. C., and D. Purser. Microelectrode study of the medial geniculate body in unanesthetized free‐moving cats. Brain Behav. Evol. 6: 311–322, 1972.
 484. Wilson, M. E., and B. G. Cragg. Projections from the medial geniculate body to the cerebral cortex in the cat. Brain Res. 13: 462–475, 1969.
 485. Winer, J. A., I. T. Diamond, and D. Raczkowski. Subdivisions of the auditory cortex of the cat: the retrograde transport of horseradish peroxidase to the medial geniculate body and posterior thalamic nuclei. J. Comp. Neurol. 176: 387–418, 1977.
 486. Winter, P., and H. H. Funkenstein. The effect of species‐specific vocalization on the discharge of auditory cortical cells in the awake squirrel monkey (Saimiri sciureus) Exp. Brain Res. 18: 489–504, 1973.
 487. Winter, P., D. Ploog, and J. Latta. Vocal repertoire of the squirrel monkey (Saimiri sciureus), its analysis and significance. Exp. Brain Res. 1: 359–384, 1966.
 488. Wise, L. Z., and D. R. F. Irvine. Auditory response properties of neurons in deep layers of cat superior colliculus. J. Neurophysiol. 49: 674–685, 1983.
 489. Wong, W. C. The tangential organization of dendrites and axons in three auditory areas of the cat's cerebral cortex. J. Anat. 101: 419–433, 1967.
 490. Woollard, H. H., and J. A. Harpman. The connexions of the inferior colliculus and of the dorsal nucleus of the lateral lemniscus. J. Anat. 74: 441–458, 1940.
 491. Woolsey, C. N. Organization of the cortical auditory system: a review and a synthesis. In: Neural Mechanisms of the Auditory and Vestibular Systems, edited by G. L. Rasmussen and W. F. Windle. Springfield, IL: Thomas, 1960, p. 165–180.
 492. Woolsey, C. N. Organization of cortical auditory system. In: Sensory Communication, edited by W. A. Rosenblith. Cambridge, MA: MIT Press, 1961, p. 235–257.
 493. Woolsey, C. N. Electrophysiological studies on thalamocortical relations in the auditory system. In: Unfinished Tasks in the Behavioral Sciences, edited by A. Abrams, H. H. Garner, and J. E. P. Toman. Baltimore, MD: Williams & Wilkins, 1964, p. 45–57.
 494. Woolsey, C. N., and E. M. Walzl. Topical projection of nerve fibers from local regions of the cochlea to the cerebral cortex of the cat. Bull. Johns Hopkins Hosp. 71: 315–344, 1942.
 495. Worden, F. G., and R. Galambos. Auditory processing of biologically significant sounds. Neurosci. Res. Program Bull. 10: 1–119, 1972. (N.R.P. Work Session, September 1970.)
 496. Wright, C. G., and C. D. Barnes. Audio‐spinal reflex responses in decerebrate and chloralose‐anesthetized cats. Brain Res. 36: 307–331, 1972.
 497. Young, E. D. Identification of response properties of ascending axons from dorsal cochlear nucleus. Brain Res. 200: 23–37, 1980.
 498. Young, E. D., and W. E. Brownell. Responses to tones and noise of single cells in dorsal cochlear nucleus of unanesthetized cats. J. Neurophysiol. 39: 282–300, 1976.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

L. M. Aitkin, D. R. F. Irvine, W. R. Webster. Central Neural Mechanisms of Hearing. Compr Physiol 2011, Supplement 3: Handbook of Physiology, The Nervous System, Sensory Processes: 675-737. First published in print 1984. doi: 10.1002/cphy.cp010316