Comprehensive Physiology Wiley Online Library

Perception of the Body in Space: Mechanisms

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Perception of Orientation Based on Multiple Sensory Modalities
1.1 Semicircular Canals
1.2 Otolith Organs
1.3 Somatosensory Cues
1.4 Limb Position
2 Psychophysical Measures of Perception of Orientation and Motion
3 Angular Acceleration
3.1 Rotation in Dark
3.2 Active Versus Passive Movement
3.3 Torsion‐Pendulum Model
3.4 Thresholds
3.5 Oculogyral Illusion
3.6 Adaptation
3.7 Caloric and Alcohol Effects
4 Linear Motion and Gravity
4.1 Nature of Linear Accelerometers
4.2 Static Orientation to Vertical
4.3 Contributions of Nonlabyrinthine Sensors to Perception of Tilt
4.4 Reduced Somatosensory Cues
4.5 Labyrinthine Defective Subjects
4.6 Amplified Somatosensory or Postural Cues
5 Dynamic Response of Otolith System
5.1 Ambiguity of Subjective Response to Acceleration
5.2 Linear Acceleration Steps
5.3 Sinusoidal Linear Acceleration
6 Combined Rotational and Linear Accelerations
6.1 Consistent and Inconsistent Vestibular Signals
6.2 Centripetal Acceleration
6.3 Cross‐Coupled Angular Accelerations; Coriolis Illusion
6.4 Rotation About Off‐Vertical Axes
7 Visual Effects on Perceived Orientation—Models
7.1 Static Visual Orientation
7.2 Moving Visual Fields
7.3 Static Visual‐ Vestibular Interaction
7.4 Vection and Dynamic Visual‐Vestibular Interaction
8 Spatial Orientation in Altered Environments
8.1 Motion Sickness
9 Summary
Figure 1. Figure 1.

Definition of axes for linear and angular motion.

From Hixon et al.
Figure 2. Figure 2.

Schematic representation of spatial orientation process. “True state” vector, X, consisting of linear and angular positions and velocities, is produced by changes resulting from three sources: unforced behavior of body, Xprocessed by A, commanded body changes, commands U processed by B, and unmeasured disturbances, R. Various sensors are each responsive, especially to one or more components of measured state. Symbol “∧” indicates an estimate of the vector; ω, angular velocity; f, specific force, gravity minus linear accleration; θ, angle. Measured state signals are combined with “expected state,” , derived from a presumed internal model of the body, in optimum estimator to produce estimate of orientation, .

From Young
Figure 3. Figure 3.

Subjective estimates of angular displacement (produced by triangular velocity wave form) are greater for retrospective than for concurrent estimates.

Adapted from Guedry
Figure 4. Figure 4.

Subjective angular velocity decays and may reverse during prolonged constant‐velocity rotation. Sudden stop after prolonged rotation elicits transient, oppositely directed, postrotatory response.

Figure 5. Figure 5.

Subjective velocity follows actual velocity only for 1st 10 s of constant angular acceleration, then plateaus and actually decays.

Adapted from Guedry and Lauver
Figure 6. Figure 6.

Normalized torsion‐pendulum response, X, for system with long time constant, TL = 15 s. A: rising response to acceleration step is detected when it reaches Xmin. B: decaying response following velocity step has duration tμ.

Figure 7. Figure 7.

Time to detect, tdet, step of yaw angular acceleration of magnitude α increases sharply for acceleration levels less than 2–3 deg/s2.

Adapted from Guedry
Figure 8. Figure 8.

Theoretical response of the torsion‐pendulum cupula model to threshold velocity step, Ut(t) = et/18, to threshold acceleration step, at(t) = 1 − et/18, and to a combined stimulus c(t) = K[Ut(t) + at(t)]. In theory, calculated cupula response for c(t) never exceeds threshold response to velocity or acceleration threshold steps alone and would be undetectable for K as large as unity. Measured thresholds for c(t) tended to values of K below 0.75, lending support to signal‐detection model rather than hard limit model for threshold.

Adapted from Ormsby
Figure 9. Figure 9.

Frequency response of adaptation model for subjective sensation during yaw angular motion: subjective angular velocity/input angular velocity equals 24.8e−0.3ss2/(s + 25)(s + 0.0625)(s + .033).

From Young and Oman
Figure 10. Figure 10.

Exaggerated cupula displacement during A: angular acceleration; B: caloric stimulation; C: first phase of alcohol nystagmus (PAN I).

Figure 11. Figure 11.

Measurement of relative inclination of luminous line that subjects set to apparent vertical when they are tilted laterally. Range and median shown for 13 subjects. Overestimation of tilt at small angles is the E or Müller effect shown by some subjects. The underestimation A or Aubert effect at large angles is more pronounced.

Adapted from Bischoff , using data of Udo de Haes
Figure 12. Figure 12.

Measurements of angle of a line set to apparent vertical, plotted against lateral component of specific force for various body tilt angles (ϕ) and g levels. Apparent tilt varies according to shear force; it also increases with compressive force component.

Adapted from Correia et al.
Figure 13. Figure 13.

Schematic representation of perceived pitch categories in various gravitational fields. The z‐axis component of specific force determines whether actual pitch is underestimated (category A) or overestimated (category E).

From Ormsby and Young
Figure 14. Figure 14.

Alteration of z‐component of specific force to yield observed errors in perceived pitch. See text for explanation.

From Ormsby and Young
Figure 15. Figure 15.

Model predictions for perceived lateral tilt angle as function of actual tilt (as in Fig. ) compared with data taken at 1 g and 2 g.

From Ormsby and Young
Figure 16. Figure 16.

Comparison between settings of line to perceived horizontal by normals and labyrinthine defectives (LDs) in air and when tactile cues were reduced by submersion in water.

Adapted from Graybiel
Figure 17. Figure 17.

Latency to detection of step of horizontal linear acceleration for subjects upright. See text for equation of model.

From Meiry
Figure 18. Figure 18.

Latency to detection of steps of vertical linear acceleration for subjects upright. Model is regression hyperbola for 8 subjects, yielding minimum response time of 0.37 s and velocity constant of 0.022 g‐s.

From Melvill‐Jones and Young
Figure 19. Figure 19.

Phase angle frequency response for perceived velocity vs, input velocity. Vertical lines showing ±1 SD.

Dynamic ocular counterrolling vs. lateral specific force, measured by Kellogg . From Young and Meiry
Figure 20. Figure 20.

Illustration of perception of pitch during constant acceleration.

From Benson
Figure 21. Figure 21.

Shift of direction of specific force vector during constant velocity centrifuge rotation produces slow shift in direction of estimated vertical or horizontal.

Adapted from Young and Graybiel and Brown
Figure 22. Figure 22.

Coordinated turn leading to error of spatial orientation.

Figure 23. Figure 23.

Illustration of cross‐coupled stimulation. Rolling head movement, ωx, during sustained yaw rotation, ωz, leads to erroneous transient perception of yaw and pitch velocity.

From Benson
Figure 24. Figure 24.

Schematic representation of compensation principle for effect of head tilt on retinal image or proximal stimulus. ϕ, Interference function; ϕ−1, compensatory function; S, mapping function of sensory channel.

Adapted from Bischoff
Figure 25. Figure 25.

Flow‐chart representation of visual‐vestibular interaction.

From Young
Figure 26. Figure 26.

Model of optic‐vestibular orientation to the vertical.

Adapted from Bischoff
Figure 27. Figure 27.

Sensory conflict model for resolution of visual‐vestibular interaction. A: dual input conflict model; B: conflict measure and weighting function.

From Zacharias and Young


Figure 1.

Definition of axes for linear and angular motion.

From Hixon et al.


Figure 2.

Schematic representation of spatial orientation process. “True state” vector, X, consisting of linear and angular positions and velocities, is produced by changes resulting from three sources: unforced behavior of body, Xprocessed by A, commanded body changes, commands U processed by B, and unmeasured disturbances, R. Various sensors are each responsive, especially to one or more components of measured state. Symbol “∧” indicates an estimate of the vector; ω, angular velocity; f, specific force, gravity minus linear accleration; θ, angle. Measured state signals are combined with “expected state,” , derived from a presumed internal model of the body, in optimum estimator to produce estimate of orientation, .

From Young


Figure 3.

Subjective estimates of angular displacement (produced by triangular velocity wave form) are greater for retrospective than for concurrent estimates.

Adapted from Guedry


Figure 4.

Subjective angular velocity decays and may reverse during prolonged constant‐velocity rotation. Sudden stop after prolonged rotation elicits transient, oppositely directed, postrotatory response.



Figure 5.

Subjective velocity follows actual velocity only for 1st 10 s of constant angular acceleration, then plateaus and actually decays.

Adapted from Guedry and Lauver


Figure 6.

Normalized torsion‐pendulum response, X, for system with long time constant, TL = 15 s. A: rising response to acceleration step is detected when it reaches Xmin. B: decaying response following velocity step has duration tμ.



Figure 7.

Time to detect, tdet, step of yaw angular acceleration of magnitude α increases sharply for acceleration levels less than 2–3 deg/s2.

Adapted from Guedry


Figure 8.

Theoretical response of the torsion‐pendulum cupula model to threshold velocity step, Ut(t) = et/18, to threshold acceleration step, at(t) = 1 − et/18, and to a combined stimulus c(t) = K[Ut(t) + at(t)]. In theory, calculated cupula response for c(t) never exceeds threshold response to velocity or acceleration threshold steps alone and would be undetectable for K as large as unity. Measured thresholds for c(t) tended to values of K below 0.75, lending support to signal‐detection model rather than hard limit model for threshold.

Adapted from Ormsby


Figure 9.

Frequency response of adaptation model for subjective sensation during yaw angular motion: subjective angular velocity/input angular velocity equals 24.8e−0.3ss2/(s + 25)(s + 0.0625)(s + .033).

From Young and Oman


Figure 10.

Exaggerated cupula displacement during A: angular acceleration; B: caloric stimulation; C: first phase of alcohol nystagmus (PAN I).



Figure 11.

Measurement of relative inclination of luminous line that subjects set to apparent vertical when they are tilted laterally. Range and median shown for 13 subjects. Overestimation of tilt at small angles is the E or Müller effect shown by some subjects. The underestimation A or Aubert effect at large angles is more pronounced.

Adapted from Bischoff , using data of Udo de Haes


Figure 12.

Measurements of angle of a line set to apparent vertical, plotted against lateral component of specific force for various body tilt angles (ϕ) and g levels. Apparent tilt varies according to shear force; it also increases with compressive force component.

Adapted from Correia et al.


Figure 13.

Schematic representation of perceived pitch categories in various gravitational fields. The z‐axis component of specific force determines whether actual pitch is underestimated (category A) or overestimated (category E).

From Ormsby and Young


Figure 14.

Alteration of z‐component of specific force to yield observed errors in perceived pitch. See text for explanation.

From Ormsby and Young


Figure 15.

Model predictions for perceived lateral tilt angle as function of actual tilt (as in Fig. ) compared with data taken at 1 g and 2 g.

From Ormsby and Young


Figure 16.

Comparison between settings of line to perceived horizontal by normals and labyrinthine defectives (LDs) in air and when tactile cues were reduced by submersion in water.

Adapted from Graybiel


Figure 17.

Latency to detection of step of horizontal linear acceleration for subjects upright. See text for equation of model.

From Meiry


Figure 18.

Latency to detection of steps of vertical linear acceleration for subjects upright. Model is regression hyperbola for 8 subjects, yielding minimum response time of 0.37 s and velocity constant of 0.022 g‐s.

From Melvill‐Jones and Young


Figure 19.

Phase angle frequency response for perceived velocity vs, input velocity. Vertical lines showing ±1 SD.

Dynamic ocular counterrolling vs. lateral specific force, measured by Kellogg . From Young and Meiry


Figure 20.

Illustration of perception of pitch during constant acceleration.

From Benson


Figure 21.

Shift of direction of specific force vector during constant velocity centrifuge rotation produces slow shift in direction of estimated vertical or horizontal.

Adapted from Young and Graybiel and Brown


Figure 22.

Coordinated turn leading to error of spatial orientation.



Figure 23.

Illustration of cross‐coupled stimulation. Rolling head movement, ωx, during sustained yaw rotation, ωz, leads to erroneous transient perception of yaw and pitch velocity.

From Benson


Figure 24.

Schematic representation of compensation principle for effect of head tilt on retinal image or proximal stimulus. ϕ, Interference function; ϕ−1, compensatory function; S, mapping function of sensory channel.

Adapted from Bischoff


Figure 25.

Flow‐chart representation of visual‐vestibular interaction.

From Young


Figure 26.

Model of optic‐vestibular orientation to the vertical.

Adapted from Bischoff


Figure 27.

Sensory conflict model for resolution of visual‐vestibular interaction. A: dual input conflict model; B: conflict measure and weighting function.

From Zacharias and Young
References
 1. Aubert, H. Eine scheinbare bedeutende Drehung von Objekten bei Neigung des Kopfes nach rechts oder links. Virchows Arch. 20: 381–393, 1861.
 2. BÁRány, R. New methods of examination of the semicircular canals and their practical significance. Ann. Ophthalmol. 16: 755–861, 1907.
 3. Barrett, G. V., and G. L. Thornton. Relationship between perceptual style and simulator sickness. J. Appl. Psychol. 52: 304–308, 1968.
 4. Benson, J. Modification of the response to angular accelerations. In: Handbook of Sensory Physiology. Vestibular System, edited by H. H. Kornhuber. New York: Springer‐Verlag, 1974, vol. 6, pt. 2, p. 281–320.
 5. Benson, A. J. Perceptual illusions. In: Aviation Medicine, edited by G. Dhenin London: Tri‐Med Books, 1978.
 6. Benson, A. J., and G. R. Barnes. Responses to Rotating Linear Acceleration Vector Considered in Relation to a Model of the Otolith Organs. Washington, DC: U.S. Aeronaut. and Space Admin., 1973, SP‐314, p. 221–236.
 7. Benson, A. J., and M. A. Bodin. Interaction of linear and angular acceleration on vestibular receptors in man. Aerosp. Med. 37: 144–154, 1966.
 8. Benson, A. J., and F. E. Guedry. Comparison of tracking task performance and nystagmus during sinusoidal oscillations in yaw and pitch. Aerosp. Med. 42: 593–601, 1971.
 9. Berthoz, A., L. R. Young, and F. Oliveras. Action of alcohol on vestibular compensation and habituation in the cat. Acta Oto‐Laryngol. 84: 317–327, 1977.
 10. Bischoff, N. Optic‐vestibular orientation to the vertical. In: Handbook of Sensory Physiology. Vestibular System, edited by H. H. Kornhuber. New York: Springer‐Verlag, 1974, vol. 6, pt. 2, p. 155–192.
 11. Bischoff, N., and E. Scheerer. Systemanalyse der optischvestibulären Interaktion bei der Wahrnehmung der Vertikalen. Psychol. Forsch. 34: 99–181, 1970.
 12. Bitterman, M. E., and P. Worchel. The phenomenal vertical and horizontal in blind and sighted subjects. Am. J. Psychol. 66: 598–602, 1953.
 13. Blanks, R. H. I., I. S. Curthoys, and C. H. Markham. Planar relationships of the semicircular canals in man. acta Oto‐Laryngol. 80: 185–196, 1975.
 14. Bock, O., and W. H. Zangemeister. A mathematical model of air and water caloric nystagmus. Biol. Cybern. 31: 91–95, 1978.
 15. Borah, J., L. R. Young, and R. E. Curry. Sensory Mechanism Modelling. Dayton, OH: Wright‐Patterson AFB, Adv. Syst. Div., 1977. (AFHRL‐TR‐77‐70.)
 16. Borah, J., L. R. Young, and R. E. Curry. Optimal estimator model for human spatial orientation. IEEE Trans. Syst. Man Cybern. In press.
 17. Boring, E. G. Sensation and Perception in the History of Experimental Psychology. New York: Appleton, 1942.
 18. Brandt, Th., J. Dichgans, and E. Koenig. Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Exp. Brain Res. 16: 476–491, 1973.
 19. Brandt, Th., H. C. Diener, and J. Dichgans. Motion sickness induced through angular oscillations of the body or the visual surround in normals and after labyrinthine lesions. Int. Congr. Aviat. Space Med., 23rd, Acapulco, 1975.
 20. Brandt, Th., E. R. Wist, and J. Dichgans. Foreground and background in dynamic spatial orientation. Percept. Psychophys. 17: 497–503, 1975.
 21. Brown, J. L. Orientation to the vertical during water immersion. Aerosp. Med. 32: 209–217, 1961.
 22. Bühler, K. Die Erscheinungsweisen der Farben. Jena, Germany: Fischer, 1922.
 23. Büttner, U., and V. Henn. Thalamic unit activity in the alert monkey during natural vestibular stimulation. Brain Res. 103: 127–132, 1976.
 24. Büttner, U., V. Henn, and L. R. Young. Frequency response of the vestibulo‐ocular reflex (VOR) in the monkey. Aviat. Space Environ. Med. 52: 73–77, 1981.
 25. Büttner, U., V. Henn, and H. P. Oswald. Vestibular related neuronal activity in the thalamus of the alert monkey during sinusoidal rotation in the dark. Exp. Brain Res. 30: 435–444, 1977.
 26. Büttner, U., W. Waespe, and T. S. Miles. Transfer characteristics of the vestibular system determined from nystagmus and neuronal activity in the alert monkey. In: Kybernetic 1977, edited by E. Butenand and G. Hauske. Munich: Oldenbourg, 1978, p. 126–136.
 27. Byford, G. H. Eye movements and the optogyral illusion. Aerosp. Med. 34: 119–123, 1963.
 28. Cappel, K. Determination of Physical Constants of Semicircular Canals From Measurement of Single Neural Unit Activity Under Constant Angular Acceleration. Washington, DC: U.S. Aeronaut. and Space Admin., 1966, SP‐115, p. 229–236.
 29. Cawthorne, T., M. Dix, C. Hallpike, and J. Hood. The investigation of vestibular function. Br. Med. Bull. 12: 131–142, 1956.
 30. Chambers, M. R., K. H. Andres, M. Deuring, and A. Iggo. The structure and function of the slowly adapting type II mechanoreceptor in hairy skin. Q. J. Exp. Physiol. 57: 417–455, 1972.
 31. Clark, B., and A. Graybiel. Perception of postural vertical following prolonged bodily tilt in normals and subjects with labyrinthine defects. Acta Oto‐Laryngol. 58: 143–148, 1964.
 32. Clark, B., and J. D. Stewart. Effects of angular rotation on man. Thresholds for the perception of rotation and the oculogyral illusion. Aerosp. Med. 40: 952–956, 1969.
 33. Coats, A. C., and S. Y. Smith. Body position and the intensity of caloric nystagmus. Acta Oto‐Laryngol. 63: 515–532, 1967.
 34. Cohen, B., T. Uemera, and S. Takemori. Effects of labyrinthectomy on optokinetic nystagmus (OKN) and optokinetic afternystagmus (OKAN). Equil. Res. 3: 88–93, 1973.
 35. Collins, W. E., and F. E. Guedry. Duration of angular acceleration and ocular nystagmus from cats and man. I. Responses from the lateral and vertical canals to two stimulus durations. Acta Oto‐Laryngol. 64: 373–387, 1967.
 36. Correia, M. J., and F. E. Guedry, Jr. Modification of Vestibular Responses as a Function of Rate of Rotation About an Earth‐Horizontal Axis. Pensacola, FL: Naval Aerosp. Med. Inst, 1966. (NAMI Rep. 957.)
 37. Correia, M. J., W. C. Hixson, and J. I. Niven. Otolith Shear and the Visual Perception of Force Directions: discrepancies and a Proposed Resolution. Pensacola, FL: Naval Aerosp. Med. Inst., 1965. (NAMI Rep. 951.)
 38. Correia, M. J., W. C. Hixson, and J. I. Niven. On predictive equations for subjective judgments of vertical and horizontal in a force field. Acta Oto‐Laryngol. Suppl. 230: 1–20, 1968.
 39. Correia, M. J., J. P. Landolt, M.‐D. Ni, A. R. Eden, and J. L. Rae. A species comparison of linear and nonlinear transfer characteristics of primary afferents innervating the semicircular canal. In: Vestibular Function and Morphology, edited by T. Gualtierotti New York: Springer‐Verlag, 1981, chapt. 16, p. 280–316.
 40. Correia, M. J., J. B. Nelson, and F. E. Guedry, Jr. The antisomatogyral illusion. Aviat. Space Environ. Med. 48: 859–862, 1977.
 41. Daunton, N. G., D. D. Thomsen, and C. A. Christensen. Visual vestibular interaction in vertically sensitive otolith‐dependent units. Soc. Neurosci. Abstr. 5: 690, 1979.
 42. DeVries, H. L. The mechanics of the labyrinth otoliths. Acta Oto‐Laryngol. 38: 263–273, 1950.
 43. Dichgans, J., and Th. Brandt. Optokinetic motion sickness and pseudo‐Coriolis effects induced by moving visual stimuli. Acta Oto‐Laryngol. 76: 339–348, 1973.
 44. Dichgans, J., and Th. Brandt. The psychophysics of visually induced perception of self‐motion and tilt. In: The Neurosciences: Third Study Program, edited by F. O. Schmitt and F. G. Worden. Cambridge, MA: MIT Press, 1974, p. 123–129.
 45. Dichgans, J., and Th. Brandt. Visual vestibular interaction: effects on self‐motion perception and postural control. In: Handbook of Sensory Physiology. Perception, edited by R. Held, H. Liebowitz, and H. L. Teuber. New York: Springer‐Verlag, 1978, vol. 8, p. 775–804.
 46. Dichgans, J., R. Held, L. R. Young, and T. Brandt. Moving visual scenes influence the apparent direction of gravity. Science 178: 1217–1219, 1972.
 47. Dohlman, G. Towards a method for quantitative measurement of the functional capacity of the vestibular apparatus. Acta Oto‐Laryngol. 23: 50–62, 1935.
 48. Ewald, J. R. Physiologische Untersuchungen über das Endorgan des Nervus Octavus. Wiesbaden, Germany: Bergmann, 1892.
 49. Fechner, G. T. Elements der Psychophysik. Leipzig: Breitkopf & Härtel, 1860, 2 vol.
 50. Elements of Psychophysics, transl. by H. E. Adler. New York: Holt, Reinhart, 1966.
 51. Fernández, C., and J. M. Goldberg. Physiology of the peripheral neurons innervating the semicircular canals of the squirrel monkey. The response to sinusoidal stimulation and dynamics of the peripheral vestibular system. J. Neurophysiol. 34: 661–675, 1971.
 52. Fernández, C., and J. M. Goldberg. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. Parts I, II, and III. J. Neurophysiol. 39: 970–1008, 1976.
 53. Fischer, M. H. Messender Untersuchungen über die Gegenrollung der Augen und die Lokalisation der scheinbaren Vertikalen bei seitlicher Neigung (des Kopfes, des Stammes, und Gesamtkörpers). I. Neigungen bis zu 40.. Von Graefes Arch. Ophthalmol. 118: 633–680, 1927.
 54. Fischer, M. H. Messender Untersuchungen über die Gegenrollung der Augen und die Localisation der scheinbaren Vertikalen bei seitlicher Neigung des Gesamtkörpers bis zu 360°. II. Mitteilung, Untersuchungen an Normalen. Von Graefes Arch. Ophthalmol. 123: 476–508, 1930.
 55. Fischer, M. H. Messender Untersuchungen über die Gegenrollung der Augen und die Lokalisation der scheinbaren Vertikalen bei seitlicher Neigung des Körpers, Kopfes und Stammes. III. Mitteilung, Untersuchungen an einem einseitig Labyrinthlosen. Von Graefes Arch. Ophthalmol. 123: 509–531, 1930.
 56. Fischer, M. H., and A. Kornmüller. Optokinetisch ausgelöste Bewegungswahrnehmungen und optokinetischer Nystagmus. J. Psychol. Neurol. 41: 273–308, 1930.
 57. Flourens, J. M. P. Experiences sur les canaux semicirculaire de l'orielle dans les mammifères. Acad. R. Sci. Paris 9: 467–477, 1830.
 58. Flourens, J. M. P. Recherches expérimentales sur les proprietes du système nerveux dans l'animaux vertebrés (2nd ed.). Paris: Baillière, 1842.
 59. Fluur, E., and A. Mellstróm. Saccular stimulation and oculomotor reactions. Laryngoscope 80: 1713–1721, 1970.
 60. Fraenkel, G. S., and D. L. Gunn. The Orientation of Animals. New York: Dover, 1940.
 61. Fuchs, A. F., and H. H. Kornhuber. Extraocular muscle afferents to the cerebellum of the cat. J. Physiol. London 200: 713–722, 1969.
 62. Gibson, J. J., and M. Radner. Adaptation, after‐effects and contrast in the perception of tilted lines. J. Exp. Psychol. 20: 452–467, 553–569, 1937.
 63. Gillingham, K. A Primer of Vestibular Function, Spatial Disorientation and Motion Sickness. San Antonio, TX: Brooks AFB, US Air Force Sch. of Aviat. Med., 1966. (SAM Aeromed. Rev. 4–66.)
 64. Gillingham, K., and R. W. Krutz. Effects of the Abnormal Acceleratory Environment of Flight. San Antonio, TX: Brooks AFB, US Air Force Sch. of Aviat. Med., 1977. (SAM Aeromed. Rev. 10–74.)
 65. Gonshor, A., and G. Melvill‐jones. Changes of human vestibuloocular responses induced by vision reversal during head rotation. J. Physiol. London 234: 102P–103P, 1973.
 66. Gonshor, A., and G. Melvill‐jones. Extreme vestibuloocular response induced by prolonged optical reversal of vision. J. Physiol. London 256: 381–414, 1976.
 67. Goodwin, G. M., D. I. McClaskey, and P. B. C. Matthews. The contributions of muscle afferents to kinesthesia shown by vibration induced illusions of movement and by the effects of paralyzing joint afferents. Brain 95: 705–708, 1972.
 68. Graybiel, A. Measurement of otolith function. In: Handbook of Sensory Physiology. Vestibular System, edited by H. H. Kornhuber. New York: Springer‐Verlag, 1974, vol. 6, pt. 2, p. 233–266.
 69. Graybiel, A., and R. H. Brown. The delay in visual reorientation following a change in direction of the resultant force on a human centrifuge. J. Gen. Psychol. 45: 143–150, 1951.
 70. Graybiel, A., W. A. Kerr, and S. H. Bartley. Stimulus threshold of the semicircular canal as a function of angular acceleration. Am. J. Psychol. 61: 21–36, 1948.
 71. Graybiel, A., E. F. Miller II, J. Billingham, R. Waite, C. A. Berry, and L. F. Deitlein. Vestibular experiments in Gemini flights V and VII. Aerosp. Med. 38: 360–370, 1967.
 72. Graybiel, A., E. F. Miller, II, and J. L. Homick. Experiment M‐131. Human Vestibular Function. NASA TMX‐58154. Washington, DC: U.S. Aeronaut. and Space Admin., 1974, p. 169–220. (Proc. Skylab Life Sci. Symp.)
 73. Graybiel, A., E. F. Miller II, B. D. Newsom, and R. S. Kennedy. The effect of water immersion on perception of the oculogravic illusion in normal and labyrinthine defective subjects. Acta Oto‐Laryngol. 65: 599–610, 1968.
 74. Groen, J. J. Adaptation. Pract. Oto‐Rhino‐Laryngol. 19: 524–530, 1957.
 75. Groen, J. J. Vestibular stimulation and its effects from the point of view of theoretical physics. Confin. Neurol. 21: 380–389, 1969.
 76. Groen, J. J., and L. B. W. Jongkees. The threshold of angular acceleration perception. J. Physiol. London 107: 1–7, 1948.
 77. Guedry, F. E. Orientation of the rotation axis relative to gravity: Its influence on nystagmus and the sensation of rotation. Acta Oto‐Laryngol. 60: 30–48, 1965.
 78. Guedry, F. E. Psychophysics of vestibular stimulation. In: Handbook of Sensory Physiology. Vestibular System, edited by H. H. Kornhuber. New York: Springer‐Verlag, 1974, vol. 6, pt. 2, p. 3–154.
 79. Guedry, F. E., and A. J. Benson. Coriolis cross‐coupling effects: disorienting and nauseogenic or not? Aviat. Space Environ. Med. 49: 29–35, 1978.
 80. Guedry, F. E., and S. J. Ceran. Derivation of Subjective Velocity from Angular Displacement Estimates Made During Prolonged Angular Acceleration: Adaptation Effects. Fort Knox, KY: US Aviat. Med. Res. Lab., 1958. (USAMRL Rep. 376.)
 81. Guedry, F. E., and W. E. Collins. Duration of angular acceleration and ocular nystagmus in cat and man. Acta Oto‐Laryngol. 65: 257–269, 1968.
 82. Guedry, F. E., and L. S. Lauver. Vestibular reactions during prolonged constant angular acceleration. J. Appl. Physiol. 16: 215–220, 1961.
 83. Guedry, F. E., C. E. Mortenson, J. B. Nelson, and M. J. Correia. A comparison of nystagmus and turning sensations generated by active and passive turning. In: Vestibular Mechanisms in Health and Disease, edited by J. D. Hood. New York: Academic, 1978, p. 317–325.
 84. Guedry, F. E., G. G. Owens, and J. W. Norman. Assessment of Semicircular Canal Function. I. Measurement of Subjective Effects Produced by Triangular Waveforms. Pensacola, FL: US Naval Aerosp. Med. Inst., 1969. (NAMI‐1073.)
 85. Guedry, F. E., C. W. Stockwell, and R. D. Gilson. Comparison of subjective responses to semicircular canal stimulation produced by rotation about different axes. Acta Oto‐Laryngol. 72: 101–106, 1971.
 86. Guedry, F. E., C. W. Stockwell, J. W. Norman, and G. G. Owens. Use of triangular waveforms of angular velocity for the study of vestibular function. Acta Oto‐Laryngol. 71: 439–448, 1971.
 87. Held, R., J. Dichgans, and J. Bauer. Characteristics of moving visual scenes influencing spatial perception. Vision Res. 15: 357–365, 1975.
 88. Helmholtz, H. Von Handbuch der physiologischen Optik. Hamburg: Voss, 1896.
 89. Henn, V., B. Cohen, and L. R. Young. Visual vestibular interaction in motion perception and the generation of nystagmus. Neurosci. Res. Program Bull. 18: 459–651, 1980.
 90. Henn, V., and L. R. Young. Ernst Mach on the vestibular system 100 years ago. ORL‐J. Oto‐Rhino‐Laryngol. Its Borderl. 37: 138–148, 1975.
 91. Hillman, D. E., and J. W. McLaren. Displacement configuration of the semicircular canal cupulae. Neuroscience 4: 1989–2000, 1979.
 92. Hixson, W., J. Niven, and M. Correia. Kinematic Nomenclature for Physiological Accelerations with Special Reference to Vestibular Applications. Pensacola, FL: US Naval Aeromed. Inst., 1966. (Monograph 14.)
 93. Howard, I. P., and W. B. Templeton. Human Spatial Orientation. New York: Wiley, 1966.
 94. Huang, J. K., and L. R. Young. Sensation of rotation about a vertical axis with a fixed visual field in different illuminations and in the dark. Exp. Brain Res. 41: 172–183, 1981.
 95. Iggo, A., and A. R. Muir. The structure and function of a slowly adapting touch corpuscle in hairy skin. J. Physiol. London 300: 762–769, 1969.
 96. Johnson, W. H. Motion sickness. Part I. Aetiology and autonomic effects. In: Handbook of Sensory Physiology. Vestibular System, edited by H. H. Kornhuber. New York: Springer‐Verlag, 1974, vol. 6, pt. 2, p. 389–404.
 97. Jongkees, L. B. W., and J. J. Groen. The nature of the vestibular stimulus. J. Laryngol. 61: 529–541, 1946.
 98. Kardos, L. Ding Farbenwahrnehmung und Duplizatätstheorie. Z. Psychol. 108: 240, 1928.
 99. Kardos, L. Die “konstanz” phänomenaler Dingmoment. In: Beiträge zur Problemgeschichte der Psychologie, edited by E. Brunswick Jena, Germany: Fischer, 1929.
 100. Kellogg, R. S. The Role of Vestibular Organs in the Exploration of Space. Washington, DC: U.S. Aeronaut. and Space Admin., 1965, SP‐77, p. 195–202.
 101. Kellogg, R. S., and A. Graybiel. Lack of response to thermal stimulation of the semicircular canals in the weightless phase of parabolic flight. Aerosp. Med. 38: 487–490, 1967.
 102. Kleint, H. Versuche über die Wahrnehmung. Z. Physiol. 138: 1–34, 1937.
 103. Klix, F. Elementaranalysen zur Psychophysik der Raumwahrnehmung. Berlin: Dtsch. Verlag Wissensch., 1962.
 104. Kron, G. J., and J. M. Kleinwaks. Development of the advanced g‐cuing system. Presented at the AIAA Flight Simulation Conf. Arlington, TX, 1978.
 105. Lackner, J., and M. S. Levine. Changes in apparent body orientation and sensory localization induced by vibration of postural muscles: vibratory myesthetic illusions. Aviat. Space Environ. Med. 50: 346–54, 1979.
 106. Lechner‐steinleitner, S., H. Schöne, and N. J. Wade. Perception of the visual vertical: utricular and somatosensory contributions. Psychol. Rev. 40: 407–414, 1979.
 107. Ledoux, A. Activité électrique des nerfs des canaux semicirculaire du saccule et de l'utricle chez la grenouille. Acta Oto‐Rhino‐Laryngol. Belg. 3: 335–349, 1949.
 108. Loeb, J. Forced Movements, Tropism and Animal Conduct. Philadelphia and London, 1918.
 109. Lowenstein, O. E. Physiology of vestibular receptors. In: Progress in Brain Research. Basic Aspects of Central Vestibular Mechanisms, edited by A. Brodal and O. Pompeiano. Amsterdam: Elsevier, 1972, vol. 37, p. 19–30.
 110. Mach, E. Grundlinien der Lehre von den Bewegungsempfinden. Leipzig: Englemann, 1875.
 111. Makarov, P. O., and D. S. Motoyan. Topaxia: the significance of the spatial factor in the excitability of the cutaneous sensory system in man. Biofizika 13: 662–669, 1968.
 112. Malcolm, R., and G. Melvill‐jones. A quantitative study of vestibular adaptation in humans. Acta Oto‐Laryngol. 70: 126–135, 1970.
 113. Malcolm, R., and G. Melvill‐jones. Erroneous perception of vertical motion by humans seated in the upright position. Acta Oto‐Laryngol. 77: 274–283, 1974.
 114. Mann, C. W., and H. J. Dauterive. The perception of the vertical. I. The modification of non‐labyrinthine cues. J. Exp. Psychol. 39: 700–707, 1949.
 115. Mayne, R. A systems concept of the vestibular organs. In: Handbook of Sensory Physiology, Vestibular System, edited by H. H. Kornhuber. New York: Springer‐Verlag, 1974, vol. 6, pt. 2, p. 493–560.
 116. Meiry, J. L. The Vestibular System and Human Spatial Orientation. Cambridge: Massachusetts Inst. of Technol., 1965. Sc.D. thesis.
 117. Melvill‐jones, G. Origin, significance and amelioration of Coriolis illusions from the semicircular canals: a nonmathematical appraisal. Aerosp. Med. 41: 483–490, 1970.
 118. Melvill‐jones, G., W. Barry, and N. Kowalsky. Dynamics of the semicircular canals compared in yaw, pitch and roll. Aerosp. Med. 35: 984–989, 1964.
 119. Melvill‐jones, G., and J. H. Milsum. Characteristics of neural transmission from the semicircular canal to the vestibular nuclei of cats. J. Physiol. London 209: 295–319, 1969.
 120. Melvill‐jones, G., and K. E. Spells. A theoretical and comparative study of the functional dependence of the semicircular canal upon its physical dimensions. Proc. R. Soc. London Ser. B 157: 403–419, 1963.
 121. Melvill‐jones, G., and L. R. Young. Subjective detection of vertical acceleration: A velocity dependent response? Acta Oto‐Laryngol. 85: 45–53, 1978.
 122. Miller, E. F., II, and A. Graybiel. Magnitude of gravitoinertial force, an independent variable in egocentric visual localization of the horizontal. J. Exp. Psychol. 71: 452–460, 1966.
 123. Miller, J. W., and J. E. Goodson. Motion sickness in a helicopter simulator. Aerosp. Med. 31: 204–211, 1960.
 124. Money, K. E. Motion sickness. Physiol. Rev. 50: 1–39, 1970.
 125. Money, K. E., and W. S. Myles. Heavy water nystagmus and effects of alcohol. Nature London 247: 404–405, 1974.
 126. Mountcastle, V. B. The problem of sensing and the neural coding of sensory events. In: The Neurosciences. New York: Rockefeller Univ. Press, 1967.
 127. Müller, G. E. Über das Aubertsche Phänomen. Z. Sinnes‐physiol. 49: 109–244, 1916.
 128. Oman, C. M. Dynamic Response of the Semicircular Canals and Lateral Line Organs. Cambridge: Massachusetts Inst. of Technol., 1972. Ph.D. thesis.
 129. Oman, C. M. A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta Oto‐Laryngol. Suppl. 392, 1982.
 130. Oman, C. M., O. Bock, and J. K. Huang. Visually induced self‐motion sensation adapts rapidly to left‐right vision reversal. Science 209: 706–708, 1980.
 131. Oman, C. M., L. S. Frishkopf, and M. Goldstein. Cupula motion in the semicircular canal of the skate, Raja erinacea: an experimental investigation. Acta Oto‐Laryngol. 87: 528–538, 1979.
 132. Oman, C. M., and Young, L. R. Physiologic range of pressure difference and cupula deflections in the human semicircular canals. In: Progress in Brain Research. Basic Aspects of Central Vestibular Mechanisms, edited by A. Brodal and O. Pompeiano. Amsterdam: Elsevier, 1972, vol. 37, p. 539–549.
 133. Oman, C. M., and L. R. Young. Physiological range of pressure difference and cupula deflections in the human semicircular canals: theoretical considerations. Acta Oto‐Laryngol. 74: 324–331, 1972.
 134. Oosterveld, W. J., and W. D. Van Der Laarse. Effect of gravity on vestibular nystagmus. Aerosp. Med. 40: 382–385, 1969.
 135. Ormsby, C. C. Model of Human Dynamic Orientation. Cambridge: Massachusetts Inst. of Technol., 1974. Ph.D. thesis.
 136. Ormsby, C. C., and L. R. Young. Perception of static orientation in a constant gravitoinertial environment. Aviat. Space Environ. Med. 47: 159–164, 1976.
 137. Parker, D. E. The vestibular apparatus. Sci. Am. 243: 118–135, 1980.
 138. Poulton, E. C. The new psychophysics: six models for magnitude estimation. Psychol. Bull. 69: 1–19, 1968.
 139. Reason, J. T., and J. J. Brand. Motion Sickness. New York: Academic, 1975.
 140. Roggeveen, L. J., and P. Nijhoff. The normal and pathological threshold of the perception of angular accelerations for the optogyral illusion and the turning sensation. Acta Oto‐Laryngol. 46: 533–541, 1956.
 141. Schneider, C. W., and S. H. Bartley. A study of the effects of mechanically induced tension of the neck muscles on the perception of verticality. J. Psychol. 52: 245–248, 1962.
 142. Schock, G. J. D. Perception of the horizontal and vertical in simulated subgravity conditions. US Armed Forces Med. J. 11: 786–793, 1960.
 143. Schöne, H. Über den Einfluss der Schwerkraft auf die Augenrollung und auf die Wahrnehmung der Lage im Raum. Z. Vgl. Physiol. 46: 57–87, 1962.
 144. Schöne, H. On the role of gravity in human spatial orientation. Aerosp. Med. 35: 764–772, 1964.
 145. Schöne, H. Orientierung in Raum. Stuttgart, West Germany: Wissenschaftliche Verlagsgesellschaft., 1980.
 146. Schöne, H., and H. Udo de Haes. Space orientation in humans with special reference to the interaction of vestibular, somaesthetic and visual inputs. Biokybernetik 3: 172–191, 1971.
 147. Solley, C. M. Reduction of error with practice in perception of the postural vertical. J. Exp. Psychol. 52: 329–333, 1956.
 148. Steele, J. E. Motion sickness and spatial perception—a theoretical study. In: Symposium on Motion Sickness with Special Reference to Weightlessness. Dayton, OH: Wright‐Patterson AFB, 1963. (ASD Tech. Rep. 61–530.)
 149. Steer, R. W. Progress in Vestibular Modelling. Part I. Responses of Semicircular Canals to Constant Speed Rotation in a Linear Acceleration Field. Washington, DC: U. S. Aeronaut, and Space Admin., 1970, SP‐187, p. 353–362.
 150. Steer, R. W., Y. T. Li, L. R. Young, and J. L. Meiry. Physical Properties of the Labyrinthine Fluids and Quantification of the Phenomenon of Caloric Stimulation. Washington, DC: U. S. Aeronaut, and Space Admin., 1968, SP‐152, p. 409–420.
 151. Steinhausen, W. Über den Nachweis der Bewegung der Cupula in der intakten Bogengansampulle des Labyrinths bei der natürlichen rotatorischen und calorischen Reizung. Pfluegers Arch. Ges. Physiol. 228: 322–328, 1931.
 152. Steinhausen, W. Observations of the cupula in the ampullae of the semicircular canals of a living pike. Pfluegers Arch. Ges. Physiol. 232: 500–512, 1933. (NASA TTF‐13,665, 1971.)
 153. Stevens, S. S. On the psychophysical law. Psychol. Rev. 64: 153–181, 1957.
 154. Stevens, S. S. The psychophysics of sensory function. Am. Sci. 48: 226–253, 1960.
 155. Stone, R. W., and W. Letko. Some Observations during Weightlessness Simulated with a Subject Immersed in a Rotating Water Tank. Washington, DC: U. S. Aeronaut. and Space Admin., 1964, TND‐2195.
 156. Teuber, H.‐L. Perception. In: Handbook of Physiology. Neurophysiology, edited by J. Field, H. W. Magoun, and V. E. Hall. Washington, DC: Am. Physiol. Soc., 1960, sect. 1, vol. III, chapt. 65, p. 1595–1661.
 157. Teuber, H.‐L., and R. S. Liebert. Auditory vection. Am. Psychol. 11: 430, 1956.
 158. Triesmann, M. Motion sickness: an evolutionary hypothesis. Science 197: 493–495, 1977.
 159. Trincker, D. E. W. Neuere Aspekte der Mechanismus der Haarzell‐Erregung. Acta Oto‐Laryngol. Suppl. 163: 67–75, 1961.
 160. Twitchell, T. E. Posture control. J. Am. Phys. Ther. Assoc. 45: 415, 1965.
 161. Udo de Haes, H. Stability of apparent vertical and ocular counterrolling as a function of lateral tilt. Percept. Psychophys. 8: 137–142, 1970.
 162. Udo de Haes, H., and H. Schöne. Interaction between statolith organs and semicircular canals on apparent vertical and nystagmus. Acta Oto‐Laryngol. 69: 25–31, 1970.
 163. Van Dishoeck, H. A. E., A. Spoor, and P. Nijhoff. The optogyral illusion and its relation to the nystagmus of the eyes. Acta Oto‐Laryngol. 44: 597–607, 1954.
 164. Van Egmond, A. A. J., J. J. Groen, and L. B. W. Jongkees. The mechanics of the semicircular canal. J. Physiol. London 110: 1–17, 1949.
 165. Verillo, R. T. Vibrotactile thresholds for hairy skin. J. Exp. Psychol. 73: 47–50, 1966.
 166. Von Holst, E., and H. Mittelstaedt. Das Reafferenzprinzip. Naturwissenschaften. 37: 464, 1950.
 167. Waespe, W., and V. Henn. Neuronal activity in the vestibular nuclei of the alert monkey during vestibular and optokinetic stimulation. Exp. Brain Res. 27: 523–538, 1977.
 168. Walsh, E. G. Role of vestibular apparatus in the perception of motion on a parallel swing. J. Physiol. London 155: 506–513, 1961.
 169. Walsh, E. G. The perception of rhythmically repeated linear motion in the horizontal plane. Br. J. Psychol. 53: 439–445, 1962.
 170. Wapner, S., H. Werner, and K. A. Chandler. Experiments on sensory‐tonic field theory of perception: I. Effect of extraneous stimulation on the visual perception of verticality. J. Exp. Psychol. 42: 341–343, 1951.
 171. Weber, E. H. Der Tastsinn und das Gemeingefühl. In: Handwörterbuch der Physiologie, edited by R. Wagner Brunswick: Vieweg, 1846, Vol. III, pt. 2, p. 481–588.
 172. (Transl. by H. E. Ross and D. J. Murras: E. H. Weber The Sense of Touch. London: Academic, 1978.)
 173. Werner, H., S. Wapner, and K. A. Chandler. Experiments on sensory‐tonic field theory of perception: II. Effect of supported and unsupported tilt on the visual perception of verticality. J. Exp. Psychol. 42: 346–350, 1951.
 174. Whiteside, T. D. M., A. Graybiel, and J. I. Niven. Visual illusions of movement. Brain 88: 193–210, 1965.
 175. Wilson, V., and G. Melvill‐Jones. Mammalian Vestibular Physiology. New York: Plenum, 1979.
 176. Witkin, H. A. The perception of the upright. Sci. Am. 182: 50–72, 1959.
 177. Witkin, H. A., and S. E. Asch. Studies in space orientation. IV. Further experiments on perception of the upright with displaced visual fields. J. Exp. Psychol. 38: 762–778, 1948.
 178. Wood, R. W. The “haunted swing” illusion. Psychol. Rev. 2: 277–278, 1895.
 179. Yasui, S., and L. R. Young. Perceived visual motion as effective stimulus to pursuit eye movement system. Science 190: 906–908, 1975.
 180. Young, L. R. On visual vestibular interaction. In: Proc. Fifth Symposium on the Role of the Vestibular Organs in Space Exploration. Washington, DC: U. S. Aeronaut. and Space Admin., 1970, SP‐314, p. 205–210.
 181. Young, L. R. Visually induced motion in flight simulation. AGARD Conf. Proc. 249: 16‐1–16‐8, 1977. (Presented at the AGARD Flight Mechanics Panel Specialists' Meeting on Piloted Aircraft Environmental Simulation Techniques. Brussels, April 24–27, 1977.)
 182. Young, L. R. Man's internal navigation system. Technol. Rev. 80: 40–45, 1978.
 183. Young, L. R., J. Dichgans, R. Murphy, and Th. Brandt. Interaction of optokinetic and vestibular stimuli in motion perception. Acta Oto‐Laryngol. 76: 24–31, 1973.
 184. Young, L. R., B. K. Lichtenberg, A. P. Arrott, T. A. Crites, C. M. Oman, and E. R. Edelman. Ocular countertorsion on earth and in weightlessness. N. Y. Acad. Sci. 374: 80–92, 1981.
 185. Young, L. R., and J. Meiry. A revised dynamic otolith model. Aerosp. Med. 39: 606–608, 1968.
 186. Young, L. R., and C. M. Oman. Model for vestibular adaptation to horizontal rotation. Aerosp. Med. 39: 606–608, 1969.
 187. Young, L. R., C. M. Oman, and J. Dichgans. Influence of head position on visually induced pitch and roll sensation. Aviat. Space Environ. Med. 46: 264–268, 1975.
 188. Zacharias, G. L., and L. R. Young. Influence of combined visual and vestibular cues on human perception and control of horizontal rotation. Exp. Brain Res. 41: 159–171, 1981.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Laurence R. Young. Perception of the Body in Space: Mechanisms. Compr Physiol 2011, Supplement 3: Handbook of Physiology, The Nervous System, Sensory Processes: 1023-1066. First published in print 1984. doi: 10.1002/cphy.cp010322