Comprehensive Physiology Wiley Online Library

Attention: Behavior and Neural Mechanisms

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Behavioral Enhancement of Sensory Response as a Physiological Analogue of Attentional Processes
2 Arousal
3 Selective Attention
3.1 Relationships Between Selective Attention and Arousal
4 Intention
4.1 Frontal Lobes
4.2 Centromedian‐Parafascicularis‐Frontocortical‐Thalamic Reticular Nucleus System
4.3 Catecholamine Systems
5 Hemispheric Asymmetries of Attention and Intention
5.1 Attention
5.2 Intention
6 Summary and Conclusions
Figure 1. Figure 1.

Spatial selectivity of enhancement in monkey superior colliculus. Top, cartoon illustrates receptive field of a collicular neuron in relation to fovea. RF, stimulus in receptive field of neuron. Receptive field outlined by dashed line; FP, fixation point at which monkey stares; CON, control stimulus outside receptive field. A: response of neuron as raster diagram and histogram to onset of visual stimuli during a task in which animal looks at fixation point and does not break gaze when the 2 other stimuli are flashed on screen; B: enhanced response to appearance of stimulus when monkey is going to make a saccade to RF; C: lack of enhancement to appearance of both stimuli when monkey is going to make a saccade to CON.

From Wurtz and Mohler
Figure 2. Figure 2.

Saccade‐related enhancement of visual responsiveness. A: response of a single neuron in monkey frontal eye fields to onset of spot of light in its receptive field. Raster and histogram are synchronized on stimulus onset, signified by vertical line. B: response of the neuron to same spot when monkey makes a saccade to fixate stimulus. Raster and histogram are synchronized on stimulus onset. C: same trials synchronized on the eye movement. Significant activity occurs before beginning of saccade.

From Goldberg and Bushnell
Figure 3. Figure 3.

Spatially nonselective enhancement of visual activity in monkey striate cortex. Top, cartoon illustrates location of receptive field (RF) and control stimuli (CON) on the screen. FP, fixation point at which monkey stares. A: cell's response‐ to stimuli. B: response when monkey makes a saccade to stimulus in RF. C: response when monkey makes a saccade to CON.

From Wurtz and Mohler
Figure 4. Figure 4.

Task‐independent, spatially selective enhancement of visual activity in monkey posterior parietal cortex. A: response to visual stimulus by a parietal neuron when monkey does not have to respond to stimulus. B: response of same neuron to same stimulus when monkey makes a saccade to stimulus. C: response of same neuron to same stimulus when monkey attends to but does not make a saccade to stimulus. Vertical lines, onset of stimulus.

From Bushnell et al.
Figure 5. Figure 5.

Effect of mesencephalic stimulation on visual responsiveness of neurons in striate cortex. Three neurons were studied; in each a visual or electrical stimulus of optic tract was presented. Stimuli were presented alone and also paired with a mesencephalic reticular formation (MRF) electrical stimulus presented 75 ms before. A: response of neuron to flash (strobotron), MRF stimulation by flash after 75 ms (strobotron + MRF), and alone (MRF). B: response of another neuron to optic tract (OT), combined (OT + MRF), and alone (MRF). C: response of 3rd neuron to onset of light (on), onset and MRF stimulation (on + MRF), disappearance of light (off), disappearance combined with MRF (off + MRF), and alone (MRF).

From Bartlett and Doty
Figure 6. Figure 6.

Responses of parietal light‐sensitive neuron to visual stimuli when monkey was alert but not actively fixating, compared with those evoked by same stimulus when monkey was actively fixating. Raster‐histograms synchronized by onset of stimulus signified by vertical dotted lines. No‐task mode, monkey alert and resting. Task mode A, monkey fixating a spot of light. Task mode B, monkey fixating where a spot had been, but for interval of stimulus presentation, fixation point disappeared. Monkey nevertheless maintained fixation accurately, waiting for reappearance of fixation point. Black diamonds, bins in which response in no‐task mode differs significantly from responses in both task modes. Dotted lines above solid histograms, SEM for each bin.

From Mountcastle et al.
Figure 7. Figure 7.

Corticoreticular interactions: 1, polysynaptic reticulocortical pathways; 2, sensory transmission; 3, association cortex projections; 4, unimodal projections to reticular nucleus of the thalamus (NR); 5, sensory convergence to polymodal cortex; 6, supramodal cortex (inferior parietal lobule) and limbic connections; 7, cortical arousal through mesencephalic reticular formation (MRF) and NR. STS, superior temporal sulcus; VIS, visual; AUD, auditory; SOM, somatosensory; VPL, ventralis posterolateral; MG, medial geniculate; LG, lateral geniculate.

From Watson et al.


Figure 1.

Spatial selectivity of enhancement in monkey superior colliculus. Top, cartoon illustrates receptive field of a collicular neuron in relation to fovea. RF, stimulus in receptive field of neuron. Receptive field outlined by dashed line; FP, fixation point at which monkey stares; CON, control stimulus outside receptive field. A: response of neuron as raster diagram and histogram to onset of visual stimuli during a task in which animal looks at fixation point and does not break gaze when the 2 other stimuli are flashed on screen; B: enhanced response to appearance of stimulus when monkey is going to make a saccade to RF; C: lack of enhancement to appearance of both stimuli when monkey is going to make a saccade to CON.

From Wurtz and Mohler


Figure 2.

Saccade‐related enhancement of visual responsiveness. A: response of a single neuron in monkey frontal eye fields to onset of spot of light in its receptive field. Raster and histogram are synchronized on stimulus onset, signified by vertical line. B: response of the neuron to same spot when monkey makes a saccade to fixate stimulus. Raster and histogram are synchronized on stimulus onset. C: same trials synchronized on the eye movement. Significant activity occurs before beginning of saccade.

From Goldberg and Bushnell


Figure 3.

Spatially nonselective enhancement of visual activity in monkey striate cortex. Top, cartoon illustrates location of receptive field (RF) and control stimuli (CON) on the screen. FP, fixation point at which monkey stares. A: cell's response‐ to stimuli. B: response when monkey makes a saccade to stimulus in RF. C: response when monkey makes a saccade to CON.

From Wurtz and Mohler


Figure 4.

Task‐independent, spatially selective enhancement of visual activity in monkey posterior parietal cortex. A: response to visual stimulus by a parietal neuron when monkey does not have to respond to stimulus. B: response of same neuron to same stimulus when monkey makes a saccade to stimulus. C: response of same neuron to same stimulus when monkey attends to but does not make a saccade to stimulus. Vertical lines, onset of stimulus.

From Bushnell et al.


Figure 5.

Effect of mesencephalic stimulation on visual responsiveness of neurons in striate cortex. Three neurons were studied; in each a visual or electrical stimulus of optic tract was presented. Stimuli were presented alone and also paired with a mesencephalic reticular formation (MRF) electrical stimulus presented 75 ms before. A: response of neuron to flash (strobotron), MRF stimulation by flash after 75 ms (strobotron + MRF), and alone (MRF). B: response of another neuron to optic tract (OT), combined (OT + MRF), and alone (MRF). C: response of 3rd neuron to onset of light (on), onset and MRF stimulation (on + MRF), disappearance of light (off), disappearance combined with MRF (off + MRF), and alone (MRF).

From Bartlett and Doty


Figure 6.

Responses of parietal light‐sensitive neuron to visual stimuli when monkey was alert but not actively fixating, compared with those evoked by same stimulus when monkey was actively fixating. Raster‐histograms synchronized by onset of stimulus signified by vertical dotted lines. No‐task mode, monkey alert and resting. Task mode A, monkey fixating a spot of light. Task mode B, monkey fixating where a spot had been, but for interval of stimulus presentation, fixation point disappeared. Monkey nevertheless maintained fixation accurately, waiting for reappearance of fixation point. Black diamonds, bins in which response in no‐task mode differs significantly from responses in both task modes. Dotted lines above solid histograms, SEM for each bin.

From Mountcastle et al.


Figure 7.

Corticoreticular interactions: 1, polysynaptic reticulocortical pathways; 2, sensory transmission; 3, association cortex projections; 4, unimodal projections to reticular nucleus of the thalamus (NR); 5, sensory convergence to polymodal cortex; 6, supramodal cortex (inferior parietal lobule) and limbic connections; 7, cortical arousal through mesencephalic reticular formation (MRF) and NR. STS, superior temporal sulcus; VIS, visual; AUD, auditory; SOM, somatosensory; VPL, ventralis posterolateral; MG, medial geniculate; LG, lateral geniculate.

From Watson et al.
References
 1. Adrian, E. D., and B. H. C. Matthews. The interpretation of potential waves in the cortex. J. Physiol. Lond. 81: 440–471, 1934.
 2. Akert, K., and K. H. von Monakow. Relationships of precentral, premotor, and prefrontal cortex to the mediodorsal and intralaminar nuclei of the monkey thalamus. Acta Neurobiol. Exp. Warsaw 40: 7–25, 1980.
 3. Albert, M. L. A simple test of visual neglect. Neurology 23: 658–664, 1973.
 4. Arbuthnott, G. W., and U. Ungerstedt. Turning behavior induced by electrical stimulation of the nigro‐striatal system of the rat. Exp. Neurol. 47: 162–172, 1975.
 5. Avemo, A., S. Antelman, and U. Ungerstedt. Rotational behavior after unilateral frontal cortex lesions in the rat (Abstract). Acta Physiol. Scand. Suppl. 396: 77, 1973.
 6. Baleydier, C., and F. Mauguière. The duality of the cingulate gyrus in monkey—neuroanatomical study in functional hypothesis. Brain 103: 525–554, 1980.
 7. Bartlett, J. R., and R. W. Doty, Sr.. Influence of mesencephalic stimulation on unit activity in striate cortex of squirrel monkeys. J. Neurophysiol. 37: 642–652, 1974.
 8. Bartlett, J. R., R. W. Doty, Sr., J. Pecci‐Saavedra, and P. D. Wilson. Mesencephalic control of lateral geniculate nucleus in primates. III. Modifications with state of alertness. Exp. Brain Res. 18: 214–224, 1973.
 9. Beaton, R., and J. M. Miller. Single cell activity in the auditory cortex of the unanesthetized, behaving monkey: correlation with stimulus controlled behavior. Brain Res. 100: 543–562, 1975.
 10. Beck, A. Die Bestimmung der Localisation der Gehirn‐ und Ruckenmarkfunctionen vermittelst der electrischen Erscheinungen (the determination of localization of brain and spinal cord function by means of electrical phenomena). Zentralbl. Physiol. 4: 473–476, 1890. [Cited by M. A. B. Brazier. Trails leading to the concept of the ascending reticular system. In: The Reticular Formation Revisited, edited by J. A. Hobson and M. A. B. Brazier. New York: Raven, 1980, p. 31–52.]
 11. Ben‐Ari, Y., R. Dingledine, I. Kanazawa, and J. S. Kelly. Inhibitory effects of acetylcholine on neurones in the feline nucleus reticularis thalami. J. Physiol. Lond. 261: 647–671, 1976.
 12. Benson, D. A., R. D. Heinz, and M. H. Goldstein, Jr. Observations on unit activity in monkey auditory cortex and dorsolateral frontal cortex during a sound localization task (Abstract). Soc. Neurosci. Symp. 5: 16, 1979.
 13. Benton, A. L., and R. J. Joynt. Reaction times in unilateral cerebral disease. Confin. Neurol. 19: 147–256, 1959.
 14. Berger, H. Über das Elektrenkephalogramm des Menschen. J. Psychol. Neurol. 40: 160–179, 1930.
 15. Bianchi, L. The functions of the frontal lobes. Brain 18: 497–522, 1895.
 16. Bignall, K. E., and M. Imbert. Polysensory and corticocortical projections to frontal lobe of squirrel and rhesus monkey. Electroencephalogr. Clin. Neurophysiol. 26: 206–215, 1969.
 17. Bizzi, E. Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys. Exp. Brain Res. 6: 69–80, 1968.
 18. Bizzi, E., and P. H. Schiller. Single unit activity in the frontal eye fields of unanesthetized monkeys during head and eye movement. Exp. Brain Res. 10: 151–158, 1970.
 19. Bradley, P. B. The effect of atropine and related drugs on the EEG and behavior. Prog. Brain Res. 28: 3–13, 1968.
 20. Brown, R. M., A. M. Crane, and P. S. Goldman. Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates. Brain Res. 168: 133–150, 1979.
 21. Bruce, C. J., and M. E. Goldberg. Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol. 53: 603–635, 1985.
 22. Bunney, B. S., and G. K. Aghajanian. Dopaminergic influence in the basal ganglia: evidence for striatonigral feedback regulation. In: The Basal Ganglia, edited by M. D. Yahr. New York: Raven, 1976, p. 249–267.
 23. Bushnell, M. C., G. H. Duncan, R. Dubner, and L. F. He. Activity of trigeminothalamic neurons in medullary dorsal horn of awake monkeys trained in a thermal discrimination task. J. Neurophysiol. 52: 170–187, 1984.
 24. Bushnell, M. C., M. E. Goldberg, and D. L. Robinson. Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. J. Neurophysiol. 46: 755–772, 1981.
 25. Chavis, D. A., and D. N. Pandya. Further observations on corticofrontal connections in the rhesus monkey. Brain Res. 117: 369–386, 1976.
 26. Cohen, B., and V. Henn. Unit activity in the pontine reticular formation associated with eye movements. Brain Res. 46: 403–410, 1972.
 27. Corbett, D., and R. A. Wise. Intracranial self‐stimulation in relation to the ascending dopaminergic systems of the midbrain: moveable electrode mapping study. Brain Res. 185: 1–15, 1980.
 28. Critchley, M. The Parietal Lobes. New York: Hafner, 1953.
 29. Denny‐Brown, D., and B. Q. Banker. Amorphosynthesis for left parietal lesions. Arch. Neurol. Psychiatry 71: 302–313, 1954.
 30. DeRenzi, E., and P. Faglioni. The comparative efficiency of intelligence and vigilance tests detecting hemispheric change. Cortex 1: 410–433, 1965.
 31. Deuel, R. K. Sensorimotor dysfunction after unilateral hypothalamic lesions in rhesus monkeys (Abstract). Neurology 30: 358, 1980.
 32. Divac, I., F. Fonnum, and J. Storm‐Mathisen. High affinity uptake of glutamate in terminals of corticostriatal axons. Nature Lond. 266: 377–378, 1977.
 33. Doty, R. W., P. D. Wilson, J. R. Bartlett, and J. Pecci‐Saavedra. Mesencephalic control of lateral geniculate nucleus in primates. I. Electrophysiology. Exp. Brain Res. 18: 189–203, 1973.
 34. Dubner, R., D. S. Hoffman, and R. L. Hayes. Neuronal activity in medullary dorsal horn of awake monkeys trained in a thermal discrimination task. III. Task‐related responses and their functional role. J. Neurophysiol. 46: 444–464, 1981.
 35. Faglioni, P., G. Scotti, and H. Spinnler. The performance of brain‐damaged patients in spatial localization of visual and tactile stimuli. Brain 94: 443–454, 1971.
 36. Feeney, D. M., and C. S. Wier. Sensory neglect after lesions of substantia nigra or lateral hypothalamus: differential severity and recovery of function. Brain Res. 178: 329–346, 1979.
 37. Ferrier, D. The localisation of function in the brain. Proc. R. Soc. Lond. Ser. B 22: 229–232, 1874.
 38. Filion, M., Y. Lamarre, and J. P. Cordeau. Neuronal discharges of the ventrolateral nucleus of the thalamus during sleep and wakefulness in the cat. II. Evoked activity. Exp. Brain Res. 12: 499–508, 1971.
 39. Fischer, B., and R. Boch. Enhanced activation of neurons in prelunate cortex before visually guided saccades of trained rhesus monkeys. Exp. Brain Res. 44: 129–137, 1981.
 40. Fonnum, F., and I. Wallas. Localisation of neurotransmitter candidates in neostriatum. In: The Neostriatum, edited by I. Divac and R. G. E. Oberg. Oxford, UK: Pergamon, 1979, p. 53–69.
 41. French, J. D., R. Hernández‐Peón, and R. B. Livingston. Projections from cortex to cephalic brain stem (reticular formation) in monkey. J. Neurophysiol. 18: 74–95, 1955.
 42. Giorguieff, M. F., M. L. Kemel, J. Glowinski, and M. J. Besson. Stimulation of dopamine release by GABA in rat striatal slices. Brain Res. 139: 115–130, 1978.
 43. Glick, S. D., and S. Greenstein. Possible modulating influence of frontal cortex on nigro‐striatal function. Br. J. Pharmacol. 49: 316–321, 1973.
 44. Glick, S. D., T. P. Jerussi, and B. Zimmerberg. Behavioral and neuropharmacological correlates of nigrostriatal asymmetry in rats. In: Lateralization in the Nervous System, edited by S. Harnad, R. W. Doty, J. Jaynes, L. Goldstein, and G. Krauthamer. New York: Academic, 1977, p. 213–249.
 45. Glowinski, J., M. F. Giorguieff, and A. Cheramy. Regulatory processes involved in the control of the activity of nigrostriatal dopaminergic neurons. In: The Reticular Formation Revisited, edited by J. A. Hobson and M. A. B. Brazier. New York: Raven, 1980, p. 285–301.
 46. Godfraind, J. M., and M. Meulders. Influence of the somato‐sensory stimulation on the visual receptive fields of suprageniculate and geniculate (LGB) neurons in the chloralose anesthetized cat. Exp. Brain Res. 9: 183–200, 1969.
 47. Goldberg, M. E., and M. C. Bushnell. Behavioral enhancement of visual responses in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. J. Neurophysiol. 46: 773–787, 1981.
 48. Goldberg, M. E., and R. H. Wurtz. Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. J. Neurophysiol. 35: 542–559, 1972.
 49. Goldberg, M. E., and R. H. Wurtz. Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. J. Neurophysiol. 35: 560–574, 1972.
 50. Goodale, D. P., D. B. Rusterholz, J. P. Long, J. R. Flynn, B. Walsh, J. G. Cannon, and T. Lee. Neurochemical and behavioral evidence for a selective presynaptic dopamine receptor agonist. Science Wash. DC 210: 1141–1143, 1980.
 51. Grofová, I. Extrinsic connections of the neostriatum. In: The Neostriatum, edited by I. Divac and R. G. E. Oberg. Oxford, UK: Pergamon, 1979, p. 37–51.
 52. Grossman, S. P., D. Dacey, A. E. Halaris, T. Collier, and A. Routtenberg. Aphagia and adipsia after preferential destruction of nerve cell bodies in hypothalamus. Science Wash. DC 202: 537–539, 1978.
 53. Guitton, D., H. A. Buchtel, and R. M. Douglas. Disturbances of voluntary saccadic eye movement mechanisms following discrete unilateral frontal lobe removals. In: Functional Basis of Ocular Motility Disorders, edited by G. Lennerstrand, D. S. Zee, and E. L. Keller. Oxford, UK: Pergamon, 1982, p. 497–500.
 54. Hagamen, T. C., H. P. Greeley, W. D. Hagamen, and A. G. Reeves. Behavioral asymmetries following olfactory tubercle lesions in cats. Brain Behav. Evol. 14: 241–250, 1977.
 55. Heikkila, R. E., B. S. Shapiro, and R. C. Duvoisin. The relationship between loss of dopamine nerve terminals, striatal [3H]spiroperidol binding and rotational behavior in unilaterally 6‐hydroxydopamine‐lesioned rats. Brain Res. 211: 285–292, 1981.
 56. Heilman, K. M. Neglect and related disorders. In: Clinical Neuropsychology, edited by K. M. Heilman and E. Valenstein. New York: Oxford Univ. Press, 1979, p. 268–307.
 57. Heilman, K. M., D. N. Pandya, and N. Geschwind. Trimodal inattention following parietal lobe ablations. Trans. Am. Neurol. Assoc. 95: 259–261, 1970.
 58. Heilman, K. M., H. D. Schwartz, and R. T. Watson. Hypoarousal in patients with the neglect syndrome and emotional indifference. Neurology 28: 229–232, 1978.
 59. Heilman, K. M., and E. Valenstein. Frontal lobe neglect in man. Neurology 22: 660–664, 1972.
 60. Heilman, K. M., and T. Van Den Abell. Right hemispheric dominance for mediating cerèbral activation. Neuropsychologia 17: 315–321, 1979.
 61. Heilman, K. M., and T. Van Den Abell. Right hemisphere dominance for attention: the mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology 30: 327–330, 1980.
 62. Heilman, K. M., and R. T. Watson. The neglect syndrome—a unilateral defect of the orienting response. In: Lateralization in the Nervous System, edited by S. Harnad, R. W. Doty, J. Jaynes, L. Goldstein, and G. Krauthamer. New York: Academic, 1977, p. 285–302.
 63. Herkenham, M. The afferent and efferent connections of the ventromedial thalamic nucleus in the rat. J. Comp. Neurol. 183: 487–518, 1979.
 64. Hikosaka, O., and R. H. Wurtz. Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. J. Neurophysiol. 49: 1230–1253, 1983.
 65. Hocherman, S., D. A. Benson, M. H. Goldstein, Jr., H. E. Heffner, and R. D. Heinz. Evoked unit activity in auditory cortex of monkey performing a selective attention task. Brain Res. 117: 51–68, 1976.
 66. Howes, D., and F. Boller. Evidence for focal impairment from lesions of the right hemisphere. Brain 98: 317–332, 1975.
 67. Hoyman, L., G. D. Weese, and G. P. Frommer. Tactile discrimination performance deficits following neglect‐producing unilateral lateral hypothalamic lesions in the rat. Physiol. Behav. 22: 139–147, 1979.
 68. Hubel, D. H., C. O. Henson, A. Rupert, and R. Galambos. “Attention” units in the auditory cortex. Science Wash. DC 129: 1279–1280, 1959.
 69. Hyvärinen, J., and A. Poranen. Function of the parietal associative area 7 as revealed from cellular discharge in alert monkeys. Brain 97: 673–692, 1974.
 70. Hyvärinen, J., A. Poranen, and Y. Jokinen. Influence of attentive behavior on neuronal responses to vibration in primary somatosensory cortex of the monkey. J. Neurophysiol. 43: 870–882, 1980.
 71. Jacobs, B. L., and B. E. Jones. The role of central monoamine and acetylcholine systems in sleep wakefulness states. Mediation or modulation? In: Cholinergic‐Monoaminergic Interactions in the Brain, edited by L. L. Butcher. New York: Academic, 1978, p. 271–290.
 72. Jasper, H. H. Diffuse projection systems: the integrative action of the thalamic reticular system. Electroencephalogr. Clin. Neurophysiol. 1: 405–419, 1949.
 73. Jerussi, T. P., and S. D. Glick. Drug‐induced rotation in rats without lesions: behavioral and neurochemical indices of a normal asymmetry in nigro striatal function. Psychophar‐macologia 47: 249–260, 1976.
 74. Jones, E. G. Some aspects of the organization of the thalamic reticular complex. J. Comp. Neurol. 162: 285–308, 1975.
 75. Jones, E. G., and R. Y. Leavitt. Retrograde axonal transport and the demonstration of nonspecific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. J. Comp. Neurol. 154: 349–378, 1974.
 76. Jouvet, M. Neuropharmacology of the sleep‐waking cycle. In: Handbook of Psychopharmacology. Drugs and Neurotransmitters and Behavior, edited by L. L. Iverson, S. D. Iverson, and S. H. Snyder. New York: Plenum, 1977, vol. 8, p. 233–293.
 77. Kalil, K. Patch‐like termination of thalamic fibers in the putamen of the rhesus monkey: an autoradiographic study. Brain Res. 140: 333–339, 1978.
 78. Kanai, T., and J. C. Szerb. Mesencephalic reticular activating system and cortical acetylcholine output. Nature Lond. 205: 80–82, 1965.
 79. Kebabian, J. W., and D. B. Calne. Multiple receptors for dopamine. Nature Lond. 277: 93–96, 1979.
 80. Kelly, P. H. Unilateral 6‐hydroxydopamine lesions of nigro‐striatal or mesolimbic dopamine‐containing terminals and the drug‐induced rotation of rats. Brain Res. 100: 163–169, 1975.
 81. Kennard, M. A., and L. Ectors. Forced circling in monkeys following lesions of the frontal lobes. J. Neurophysiol. 1: 45–54, 1938.
 82. Kievit, J., and H. G. J. M. Kuypers. Organization of the thalamocortical connexions to the frontal lobe in the rhesus monkey. Exp. Brain Res. 29: 299–322, 1977.
 83. King, W. M., and A. F. Fuchs. Reticular control of vertical saccadic eye movements by mesencephalic burst neurons. J. Neurophysiol. 42: 861–876, 1979.
 84. Krauthamer, G. M. Sensory functions of the neostriatum. In: The Neostriatum, edited by I. Divac and R. G. E. Oberg. New York: Pergamon, 1979, p. 263–289.
 85. Kuypers, H. G. J. M., and D. G. Lawrence. Cortical projections to the red nucleus and the brain stem in the rhesus monkey. Brain Res. 4: 151–188, 1967.
 86. Lansing, R. W., E. Schwartz, and D. B. Lindsley. Reaction time and EEG activation under alerted and nonalerted conditions. J. Exp. Psychol. 58: 1–7, 1959.
 87. Lawrence, D. G., and H. G. J. M. Kuypers. The functional organization of the motor system in the monkey. Brain 91: 1–36, 1968.
 88. Lindvall, O., A. Björklund, R. Y. Moore, and U. Stenevi. Mesencephalic dopamine neurons projecting to neocortex. Brain Res. 81: 325–331, 1974.
 89. Ljungberg, T., and U. Ungerstedt. Sensory inattention produced by 6‐hydroxydopamine‐induced degeneration of ascending dopamine neurons in the brain. Exp. Neurol. 53: 585–600, 1976.
 90. Loeb, C., G. Rosadini, and G. F. Poggio. Electroencephalograms during coma: normal and borderline records in 5 patients. Neurology 9: 610–618, 1959.
 91. Lynch, J. C. The functional organization of posterior parietal association cortex. Behav. Brain Sci. 3: 485–534, 1980.
 92. Lynch, J. C., V. B. Mountcastle, W. H. Talbot, and T. C. T. Yin. Parietal lobe mechanisms for directed visual attention. J. Neurophysiol. 40: 362–389, 1977.
 93. Lynn, R. Attention Arousal and the Orientation Reaction. Oxford, UK: Pergamon, 1966.
 94. Marshall, J. F. Somatosensory inattention after dopamine‐depleting intracerebral 6‐OHDA injections: spontaneous recovery and pharmacological control. Brain Res. 177: 311–324, 1979.
 95. Marshall, J. F., J. S. Richardson, and P. Teitelbaum. Nigrostriatal bundle damage and the lateral hypothalamic syndrome. J. Comp. Physiol. Psychol. 87: 808–830, 1974.
 96. Marshall, J. F., H. Turner, and P. Teitelbaum. Sensory neglect produced by lateral hypothalamic damage. Science Wash. DC 174: 523–525, 1971.
 97. Mehler, W. R. Further notes of the center median nucleus of Luys. In: The Thalamus, edited by D. P. Purpura and M. D. Yahr. New York: Columbia Univ. Press, 1966, p. 109–122.
 98. Mesulam, M., G. W. Van Hoesen, D. N. Pandya, and N. Geschwind. Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: a study with a new method for horseradish peroxidase histochemistry. Brain Res. 136: 393–414, 1977.
 99. Mikami, A., S. Ito, and K. Kubota. Visual response properties of dorsolateral prefrontal neurons during visual fixation task. J. Neurophysiol. 47: 593–605, 1982.
 100. Mills, R. P., and P. D. Swanson. Vertical oculomotor apraxia and memory loss. Ann. Neurol. 4: 149–153, 1978.
 101. Moruzzi, G., and H. W. Magoun. Brainstem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1: 455–473, 1949.
 102. Motter, B. C., and V. B. Mountcastle. The functional properties of the light‐sensitive neurons of the posterior parietal cortex studied in waking monkeys: foveal sparing and opponent vector organization. J. Neurosci. 1: 3–26, 1981.
 103. Mountcastle, V. B. Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol. 20: 408–434, 1957.
 104. Mountcastle, V. B. The world around us: neural command functions for selective attention. Neurosci. Res. Program Bull. 14, Suppl.: 1–47, 1976.
 105. Mountcastle, V. B., R. A. Anderson, and B. C. Motter. The influence of attentive fixation upon the excitability of the light‐sensitive neurons of the posterior parietal cortex. J. Neurosci. 1: 1218–1225, 1981.
 106. Mountcastle, V. B., J. C. Lynch, A. Georgopoulos, H. Sakata, and C. Acuna. Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J. Neurophysiol. 38: 871–908, 1975.
 107. Nauta, W. J. H., and H. G. J. M. Kuypers. Some ascending pathways in the brainstem reticular formation. In: Reticular Formation of the Brain, edited by H. H. Jasper, L. D. Proctor, R. S. Knighton, W. C. Noshay, and R. T. Costello. Boston, MA: Little, Brown, 1958, p. 3–30.
 108. Niki, H., and M. Watanabe. Prefrontal cingulate unit activity during timing behavior in monkey. Brain Res. 171: 213–224, 1979.
 109. Olds, J., and P. Milner. Positive reinforcement produced by electrical stimulation of septal area and other regions of the rat brain. J. Comp. Physiol. Psychol. 47: 419–427, 1954.
 110. Palmer, L. A., A. L. Rosenquist, and R. Tusa. The retinotopic organization of lateral suprasylvian visual area in the cat. J. Comp. Neurol. 177: 237–256, 1978.
 111. Pandya, D. N., and H. G. J. M. Kuypers. Cortico‐cortical connections in the rhesus monkey. Brain Res. 13: 13–36, 1969.
 112. Petras, J. M. Connections of the parietal lobe. J. Psychiatr. Res. 8: 189–201, 1971.
 113. Pribram, K. H., and D. McGuinness. Arousal, activation, and effort in the control of attention. Psychol. Rev. 182: 116–149, 1975.
 114. Prohovnik, I., J. Risberg, S. Hagstadius, and V. Maximilian. Cortical activity during unilateral tactile stimulation: a regional cerebral blood flow study. Meet. Int. Neuropsychol. Soc., Atlanta, Georgia, February 1981.
 115. Purpura, D. P. Operations and processes in thalamic and synaptically related neural subsystems. In: The Neurosciences: Second Study Program, edited by F. O. Schmitt. New York: Rockefeller Univ. Press, 1970, p. 458–470.
 116. Pycock, C. J. Turning behaviour in animals. Neuroscience 5: 461–514, 1980.
 117. Reeves, A. G., and W. D. Hagamen. Behavioral and EEG asymmetry following lesions of the forebrain and midbrain of cats. Electroencephalogr. Clin. Neurophysiol. 30: 83–86, 1971.
 118. Robinson, D. A., and A. F. Fuchs. Eye movements evoked by stimulation of frontal eye fields. J. Neurophysiol. 32: 637–648, 1969.
 119. Robinson, D. L., J. S. Baizer, and B. M. Dow. Behavioral enhancement of visual responses of prestriate neurons of the rhesus monkey. Invest. Ophthalmol. 9: 1120–1123, 1980.
 120. Robinson, D. L., M. E. Goldberg, and G. B. Stanton. Parietal association cortex in the primate: sensory mechanisms and behavioral modulations. J. Neurophysiol. 41: 910–932, 1978.
 121. Robinson, D. L., and W. Keys. Visuo‐motor properties of neurons in superior colliculus and pulvinar nucleus of the monkey. In: Advances in Physiological Sciences. Regulatory Functions of the CNS: Subsystems, edited by J. Szentagothai, J. Hamori, and M. Palkovits. New York: Pergamon, 1980, vol. 2, p. 279–285.
 122. Robinson, D. L., and R. H. Wurtz. Use of an extraretinal signal by monkey superior colliculus neurons to distinguish real from self‐induced stimulus movement. J. Neurophysiol. 39: 852–870, 1976.
 123. Robinson, T. E., C. H. Vanderwolf, and B. A. Pappas. Are the dorsal noradrenergic bundle projections from the locus coeruleus important for neocortical or hippocampal activation? Brain Res. 8: 75–98, 1977.
 124. Ropert, N., and M. Steriade. Input‐output organization of midbrain reticular core. J. Neurophysiol. 46: 17–31, 1981.
 125. Rosen, A. D., R. C. Gur, M. Reivich, A. Alavi, and J. Greenberg. Preliminary observations of stimulus‐related arousal and glucose metabolism. Meet. Int. Neuropsychol. Soc., Atlanta, Georgia, February 1981.
 126. Scheibel, M. E., and A. B. Scheibel. The organization of the nucleus reticularis thalami: a Golgi study. Brain Res. 1: 43–62, 1966.
 127. Scheibel, M. E., and A. B. Scheibel. Structural organization of nonspecific thalamic nuclei and their projection toward cortex. Brain Res. 6: 60–94, 1967.
 128. Schiller, P. H., S. D. True, and J. L. Conway. Deficits in eye movements following frontal eye‐field and superior colliculus ablations. J. Neurophysiol. 44: 1175–1189, 1980.
 129. Segundo, J. P., R. Naquet, and P. Buser. Effects of cortical stimulation on electrocortical activity in monkeys. J. Neurophysiol. 18: 236–245, 1955.
 130. Shute, C. C. D., and P. R. Lewis. The ascending cholinergic reticular system, neocortical, olfactory and subcortical projections. Brain 90: 496–520, 1967.
 131. Siegel, J. M. Behavioral functions of the reticular formation. Brain Res. Rev. 1: 69–105, 1979.
 132. Siegel, J. M., R. Nienhuis, R. L. Wheeler, D. J. McGinty, and R. M. Harper. Discharge pattern of reticular formation unit pairs in waking and REM sleep. Exp. Neurol. 74: 875–891, 1981.
 133. Siegel, J. M., and K. S. Tomaszewski. Behavioral organization of reticular formation: studies in the unrestrained cat. I. Cells related to axial, limb, eye, and other movements. J. Neurophysiol. 50: 696–716, 1983.
 134. Siegel, J. M., K. S. Tomaszewski, and R. L. Wheeler. Behavioral organization of reticular formation: studies in the unrestrained cat. II. Cells related to facial movements. J. Neurophysiol. 50: 717–723, 1983.
 135. Singer, W. The effect of mesencephalic reticular stimulation on intracellular potential of cat lateral geniculate. Brain Res. 61: 55–68, 1973.
 136. Singer, W. Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system. Physiol. Rev. 57: 386–420, 1977.
 137. Skinner, J. E., and C. D. Yingling. Regulation of slow potential shifts in nucleus reticularis thalami by the mesencephalic reticular formation and the frontal granular cortex. Electroencephalogr. Clin. Neurophysiol. 40: 288–296, 1976.
 138. Skinner, J. E., and C. D. Yingling. Central gating mechanisms that regulate event‐related potentials and behavior—a neural model for attention. In: Progress in Clinical Neurophysiology, edited by J. E. Desmedt. New York: Karger, 1977, vol. 1, p. 30–69.
 139. Sokolov, Y. N. Perception and the Conditioned Reflex. Oxford, UK: Pergamon, 1963.
 140. Steriade, M., and L. L. Glenn. Neocortical and caudate projections of intralaminar thalamic neurons and their synaptic excitation from midbrain reticular core. J. Neurophysiol. 48: 352–371, 1982.
 141. Suzuki, H., and M. Azuma. Prefrontal neuronal activity during gazing at a light spot in the monkey. Brain Res. 126: 497–508, 1977.
 142. Teitelbaum, P., and A. N. Epstein. The lateral hypothalamic syndrome: recovery of feeding and drinking after lateral hypothalamic lesions. Psychol. Rev. 69: 74–90, 1962.
 143. Ungerstedt, U. Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behavior. Acta Physiol. Scand. Suppl. 367: 49–68, 1971.
 144. Ungerstedt, U. Post‐synaptic supersensitivity after 6‐hydroxydopamine induced degeneration of the nigro‐striatal dopamine system in the rat brain. Acta Physiol. Scand. Suppl. 367: 69–93, 1971.
 145. Ungerstedt, U. Brain dopamine neurons and behavior. In: The Neurosciences: Third Study Program, edited by F. O. Schmidt and F. G. Worden. Cambridge, MA: MIT Press, 1974, p. 695–703.
 146. Valenstein, E., and K. M. Heilman. Unilateral hypokinesia and motor extinction. Neurology 31: 445–448, 1981.
 147. Vanderwolf, C. H., and T. E. Robinson. Reticulo‐cortical activity and behavior: a critique of arousal theory and a new synthesis. Behav. Brain Sci. 4: 459–514, 1981.
 148. Velasco, F., and M. Velasco. A reticulothalamic system mediating proprioceptive attention and tremor in man. Neurosurgery 4: 30–36, 1979.
 149. Wagman, I. H., and W. R. Mehler. Physiology and anatomy of the cortico‐oculomotor mechanism. Prog. Brain Res. 37: 619–635, 1972.
 150. Walker, A. E. Internal structure and afferent‐efferent relations of the thalamus. In: The Thalamus, edited by D. P. Purpura and M. D. Yahr. New York: Columbia Univ. Press, 1966, p. 1–12.
 151. Walter, W. G. Human frontal lobe function in sensory‐motor association. In: Psychophysiology of the Frontal Lobes, edited by K. H. Pribram and A. R. Luria. New York: Academic, 1973, p. 109–122.
 152. Waszak, M., and J. Schlag. Responses of cells in thalamic reticular nucleus to thalamic and cortical stimulation (Abstract). Federation Proc. 30: 489, 1971.
 153. Watson, R. T., K. M. Heilman, J. C. Cauthen, and F. A. King. Neglect after cingulectomy. Neurology 23: 1003–1007, 1973.
 154. Watson, R. T., K. M. Heilman, B. D. Miller, and F. A. King. Neglect after mesencephalic reticular formation lesions. Neurology 24: 294–298, 1974.
 155. Watson, R. T., B. D. Miller, and K. M. Heilman. Nonsensory neglect. Ann. Neurol. 3: 505–508, 1978.
 156. Watson, R. T., E. Valenstein, and K. M. Heilman. Thalamic neglect: the possible role of the medial thalamus and nucleus reticularis thalami in behavior. Arch. Neurol. 38: 501–507, 1981.
 157. Welch, K., and P. Stuteville. Experimental production of unilateral neglect in monkeys. Brain 81: 341–347, 1958.
 158. Whishaw, I. Q., T. E. Robinson, T. Schallert, M. De Ryck, and V. D. Ramirez. Electrical activity of the hippocampus and neocortex in rats depleted of brain dopamine and norepinephrine: relations to behavior and effects of atropine. Exp. Neurol. 62: 748–767, 1978.
 159. Wurtz, R. H., and M. E. Goldberg. Activity of superior colliculus in behaving monkey. III. Cells discharging before eye movements. J. Neurophysiol. 35: 575–586, 1972.
 160. Wurtz, R. H., M. E. Goldberg, and D. L. Robinson. Behavioral modulation of visual responses in the monkey: stimulus selection for attention and movement. In: Progress in Psychobiology and Physiological Psychology, edited by J. M. Sprague and A. N. Epstein. New York: Academic, 1980, vol. 9, p. 43–83.
 161. Wurtz, R. H., and C. W. Mohler. Organization of monkey superior colliculus: enhanced visual response of superficial layer cells. J. Neurophysiol. 39: 745–765, 1976.
 162. Wurtz, R. H., and C. W. Mohler. Enhancement of visual responses in monkey striate cortex and frontal eye fields. J. Neurophysiol. 39: 766–772, 1976.
 163. Yin, T. C. T., and V. B. Mountcastle. Visual input to the visuomotor mechanisms of the monkey's parietal lobe. Science Wash. DC 197: 1381–1383, 1977.
 164. Yingling, C. D., and J. E. Skinner. Regulation of unit activity in nucleus reticularis thalami by the mesencephalic reticular formation and the frontal granular cortex. Electroencephalogr. Clin. Neurophysiol. 39: 635–642, 1975.
 165. Yingling, C. D., and J. E. Skinner. Gating of thalamic input to cerebral cortex by nucleus reticularis thalami. In: Progress in Clinical Neurophysiology, edited by J. E. Desmedt. New York: Karger, 1977, vol. 1, p. 70–96.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Kenneth M. Heilman, Robert T. Watson, Edward Valenstein, Michael E. Goldberg. Attention: Behavior and Neural Mechanisms. Compr Physiol 2011, Supplement 5: Handbook of Physiology, The Nervous System, Higher Functions of the Brain: 461-481. First published in print 1987. doi: 10.1002/cphy.cp010511