Comprehensive Physiology Wiley Online Library

Inferior Parietal Lobule Function in Spatial Perception and Visuomotor Integration

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Lesion Studies
1.1 Lesions in Humans
1.2 Lesions in Monkeys
2 Anatomical and Functional Organization
2.1 Cytoarchitectural Subdivisions
2.2 Functional Subdivisions
2.3 Corticocortical Connections
2.4 Thalamocortical Connections—Pulvinar
2.5 Corticopontine Projections
3 Physiology
3.1 Response Properties of IPL Neurons
4 Speculations Regarding Role of IPL in Behavior
4.1 Command Hypothesis
4.2 Attention Hypothesis
4.3 Visuomotor Integration Hypothesis
5 Conclusion
Figure 1. Figure 1.

Example of constructional deficit. Patient with left frontoparietal metastatic tumor was asked to copy block construction (left). Patient's copy (right) shows poor performance.

From Critchley
Figure 2. Figure 2.

Self‐portraits of stroke patient (German artist Anton Raderscheidt) with damage to right parietal cortex. Portraits were drawn 2 mo (upper left), 3.5 mo (upper right), 6 mo (lower left), and 9 mo (lower right) postlesion. Earlier portraits show side of face contralateral to lesion severely “neglected.”

From Jung
Figure 3. Figure 3.

Example of topographical memory deficit restricted to contralateral hemispace. Figure is map of Piazza del Duomo in Milan with various landmarks numbered. Right hemisphere stroke patient attempted to recall from two perspectives landmarks bordering square. Numbered dark circles, landmarks recalled from perspective A; numbered dark squares, landmarks recalled from perspective B.

Adapted from Bisiach and Luzzatti
Figure 4. Figure 4.

Lateral views of monkey and human cerebral hemispheres showing different cytoarchitectural parcellation schemata of posterior parietal cortex. A: Brodmann's subdivisions of monkey cortex (Cercopithecus) . B: von Bonin and Bailey's classification of monkey cortex (Macaca mulatta) . C: Brodmann's parcellation of human cortex . D: von Economo's parcellation of human posterior parietal cortex .

From Andersen
Figure 5. Figure 5.

Parcellation of monkey posterior parietal cortex (Macaca mulatta) based on cytoarchitecture and patterns of corticocortical connections. Upper drawings, medial surface; lower drawings, lateral surface. A: subdivisions of cortical hemisphere. B: lateral, intraparietal, and cingulate sulci have been opened up to show areas inside. AS, arcuate sulcus; CC, corpus callosum; CF, calcarine fissure; CING S, cingulate sulcus; CS, central sulcus; IOS, inferior occipital sulcus; LF, lateral fissure; LS, lunate sulcus; OTS, occipitotemporal sulcus; POMS, parieto‐occipital medial sulcus; PS, principal sulcus; STS, superior temporal sulcus.

From Pandya and Seltzer
Figure 6. Figure 6.

Parcellation of inferior parietal lobule and adjoining dorsal aspect of prelunate gyrus based on physiological, connectional, myeloarchitectural, and cytoarchitectural criteria. Cortical areas are represented on flattened reconstructions of cortex . A: lateral view of monkey hemisphere. Darker lines outline flattened area. B: same cortex isolated from rest of brain. Stippled areas, cortex buried in sulci; blackened area, floor of superior temporal sulcus (ST); arrows, movement of local cortical regions resulting from mechanical flattening. C: completely flattened representation of same area. Stippled areas, cortical regions buried in sulci; contourlike lines, tracings of layer IV taken from frontal sections through this area. D: locations of several cortical areas. Dotted lines, borders of cortical fields not precisely determinable. DP, dorsal prelunate area; IP, intraparietal sulcus; IPL, inferior parietal lobule; L, lunate sulcus; LF, lateral fissure; LIP, lateral intraparietal area; MST, medial superior temporal area; MT, middle temporal area.

Figure 7. Figure 7.

Laminar distribution of sources and terminations of feed‐forward and feedback corticocortical pathways. Feedforward pathways originate predominantly from cell bodies in superficial layers and end as terminals mainly in layer IV. Feedback pathways originate from superficial and deep layers and terminate mainly outside layer IV.

From Maunsell and Van Essen
Figure 8. Figure 8.

A: hierarchy of visual pathways from area V1 to inferior parietal cortex determined by laminar patterns of sources and terminations of projections. Dashed box, cortical areas of inferior parietal lobule and dorsal aspect of prelunate gyrus. B: 3 of shortest pathways for visual‐information travel from area V1 to area 7a.

Figure 9. Figure 9.

Disklike distribution of labeled terminals in medial pulvinar after injection of tritiated amino acids in area 7a. Drawings of frontal sections through pulvinar are arranged with anterior sections above posterior sections. CL, central lateral nucleus; HI, lateral habenular nucleus; LP, lateroposterior nucleus; MD, mediodorsal nucleus; Po, posterior nucleus; Pul. i, inferior nucleus of pulvinar complex; Pul. 1, lateral nucleus of pulvinar; Pul. m, medial nucleus of pulvinar; R, thalamic reticular nucleus; SG/Li, suprageniculate and limitans nuclei; VLps, ventral lateral nucleus pars postrema.

Adapted from Asanuma et al.
Figure 10. Figure 10.

Typical apparatus used for inferior parietal lobule recording experiments from awake behaving monkeys.

From Motter and Mountcastle
Figure 11. Figure 11.

Demonstration of eye‐position‐related and visual‐related responses recorded from same inferior parietal lobule neuron. A: animal fixates small light located 20° down from straight ahead in otherwise total darkness. Fixationpoint line indicates times when light was on and off. Lines H and V show horizontal and vertical eye‐position traces in degrees of visual angle (animal has been trained to maintain steady fixation even with fixation light off). B: same as A, but animal fixates target 20° down and 20° right. Tonic rate of activity in B is markedly reduced from that in A even when fixation light is off, indicating that cell is signaling eye position. C: animal fixates target, which does not blink off; a second test stimulus is flashed in visual field evoking visual‐related response. Ordinate, 4 spikes/division; abscissa, 1 s/division.

From Andersen et al.
Figure 12. Figure 12.

Task for demonstrating eye‐position‐related activity. A and B: animal fixates (with head fixed) point of light in center of screen through two 25‐diopter prisms. A: prisms are base down so animal must look 14° up from straight ahead to fixate target. B: prisms are base up so animal must look down 14°. C and D: prisms are removed and animal is made to look 14° up (C) or 14° down (D) by moving fixation point up or down on screen. Angles of gaze are identical for A and C and for B and D; retinotopic positions of visual background are identical in A and B but different in C and D. Recording data indicate that cell activity varies with eye position but not with changes in retinotopic location of visual background. Lines H and V, horizontal and vertical eye positions measured in degrees of visual angle. Ordinate, 5 spikes/division; abscissa, 1 s/division.

From Andersen et al.
Figure 13. Figure 13.

Example of smooth‐pursuit‐related activity. Left, animal tracks point of light moving left to right 9°/s. Right, animal tracks in opposite direction. Histograms at top of figure are made from spike rasters immediately below; below rasters are eye‐position recordings; below eye‐position recordings are graphs showing position of fixation point with respect to time. KD, time at which animal pulls back behavior key and target begins to move; LM, time at which target light dims, signaling animal to push key forward; D, mean reaction time.

From Mountcastle et al.
Figure 14. Figure 14.

Demonstration of pursuit‐related activity for medial superior temporal (MST) area neurons but not for middle temporal (MT) area neurons. A and C: animal tracks spot of light; line above histogram indicates position of tracking target vs. time. B and D: dashed lines of target‐position record indicate times at which tracking target was stabilized on retina and animal maintained smooth pursuit. Decreased activity of MT neuron during stabilization indicates that its activity was mainly due to visual stimulation resulting from movement of target image on retina. Maintained activity of MST neuron during stabilization indicates that cell has pursuit‐related activity not due to visual motion stimulation.

R. H. Wurtz and W. T. Newsome, unpublished observations
Figure 15. Figure 15.

Example of visual sensitivity of visual parietal neuron changing with eye position. A: visual receptive field of neuron plotted in coordinates of visual angle (with animal always fixating straight ahead). B: method of determining effect of eye position on visual sensitivity. Animal, with head fixed, fixates (f) at different locations on screen. Stimulus (s) is presented in center of receptive field (rf). C: poststimulus histograms corresponding to fixation locations (fix) on screen at which responses were recorded for retinotopically identical stimuli presented in center of receptive field. Ordinate, 25 spikes/division; abscissa, 100 ms/division; arrows, onset of stimulus flash.

From Andersen et al.
Figure 16. Figure 16.

Demonstration of spatial tuning by area 7a neurons. Gain linearly related to vertical eye position is multiplied by Gaussian function used to fit sensitivity profile along vertical axis through center of visual receptive field. A: computer simulation of response (in spikes/s) represented on contour plot. Abscissa, head‐centered coordinates of stimulus (hy); ordinate, eye‐position coordinates (ey). B: plot of actual recording data for cell with same gainfield and receptive‐field characteristics as model neuron plotted in A.

From Andersen et al.
Figure 17. Figure 17.

Directional selectivity of area 7a neuron. Upper left: spike raster, histogram, and eyeposition recordings illustrate response to visual stimulus moving 60°/s along horizontal meridian (contralateral to ipsilateral). Lower left: no response when same stimulus is moved in opposite direction. Right: spike rasters show almost no response to same stimulus if stationary and flashed at different locations along horizontal meridian.

From Motter and Mountcastle
Figure 18. Figure 18.

Two area 7a neurons with opposed directional sensitivity. Histograms depict activity evoked by stimuli sweeping along horizontal and vertical meridians. They were cut in half (at fixation point) and arranged so that upper panels show activity when motion was directed toward fixation point and lower panels show activity when stimuli had passed through and were moving away from fixation point. In both examples, cells respond only to inward motion.

From Motter and Mountcastle
Figure 19. Figure 19.

Simple model for opposed directionality. Dark arrows, directional sensitivity for long sweeps of visual stimulus; dashed arrows, local directionality (strongest in direction of radial organization). Although some cells show this local directional organization, for many cells, opponent‐vector organization for long sweeps results from long‐range inhibitory interactions between receptivefield regions. +, Fixation point.

From Mountcastle et al.
Figure 20. Figure 20.

Example of inferior parietal lobule neuron sensitive to rotation of visual stimuli. A and B: initially vertical (A) or initially horizontal (B) bar projected onto screen facing test animal produced response when rotated clockwise but not counterclockwise. C: square also produced response only when rotated clockwise. D: same bar stimulus as in A and B did not evoke response when translated horizontally toward right or left. E: paired points rotating about fixation point (FP) activated neuron; F and G: neither point traveling alone in same trajectory produced response.

Adapted from Sakata et al.
Figure 21. Figure 21.

Example of inferior parietal lobule neuron sensitive to size change. A: cell responds somewhat to horizontal translation of visual stimulus in frontoparallel plane, preferring leftward motion. B: cell responds much more to stimuli moving in depth toward animal. C: expanding size of stimulus also activates neuron; size‐change sensitivity at least in part accounts for movement‐in‐depth sensitivity of cell.

From Sakata et al.
Figure 22. Figure 22.

Responses of four D cells recorded in medial superior temporal area to various combinations of foreground and background movement. A, E, G, I: bar moved over stationary dot‐pattern background. B, F, H, J: background was moved without bar present. C, K: bar and background are both moved in same direction. D, L: bar and background are moved in opposite directions.

From Tanaka et al.


Figure 1.

Example of constructional deficit. Patient with left frontoparietal metastatic tumor was asked to copy block construction (left). Patient's copy (right) shows poor performance.

From Critchley


Figure 2.

Self‐portraits of stroke patient (German artist Anton Raderscheidt) with damage to right parietal cortex. Portraits were drawn 2 mo (upper left), 3.5 mo (upper right), 6 mo (lower left), and 9 mo (lower right) postlesion. Earlier portraits show side of face contralateral to lesion severely “neglected.”

From Jung


Figure 3.

Example of topographical memory deficit restricted to contralateral hemispace. Figure is map of Piazza del Duomo in Milan with various landmarks numbered. Right hemisphere stroke patient attempted to recall from two perspectives landmarks bordering square. Numbered dark circles, landmarks recalled from perspective A; numbered dark squares, landmarks recalled from perspective B.

Adapted from Bisiach and Luzzatti


Figure 4.

Lateral views of monkey and human cerebral hemispheres showing different cytoarchitectural parcellation schemata of posterior parietal cortex. A: Brodmann's subdivisions of monkey cortex (Cercopithecus) . B: von Bonin and Bailey's classification of monkey cortex (Macaca mulatta) . C: Brodmann's parcellation of human cortex . D: von Economo's parcellation of human posterior parietal cortex .

From Andersen


Figure 5.

Parcellation of monkey posterior parietal cortex (Macaca mulatta) based on cytoarchitecture and patterns of corticocortical connections. Upper drawings, medial surface; lower drawings, lateral surface. A: subdivisions of cortical hemisphere. B: lateral, intraparietal, and cingulate sulci have been opened up to show areas inside. AS, arcuate sulcus; CC, corpus callosum; CF, calcarine fissure; CING S, cingulate sulcus; CS, central sulcus; IOS, inferior occipital sulcus; LF, lateral fissure; LS, lunate sulcus; OTS, occipitotemporal sulcus; POMS, parieto‐occipital medial sulcus; PS, principal sulcus; STS, superior temporal sulcus.

From Pandya and Seltzer


Figure 6.

Parcellation of inferior parietal lobule and adjoining dorsal aspect of prelunate gyrus based on physiological, connectional, myeloarchitectural, and cytoarchitectural criteria. Cortical areas are represented on flattened reconstructions of cortex . A: lateral view of monkey hemisphere. Darker lines outline flattened area. B: same cortex isolated from rest of brain. Stippled areas, cortex buried in sulci; blackened area, floor of superior temporal sulcus (ST); arrows, movement of local cortical regions resulting from mechanical flattening. C: completely flattened representation of same area. Stippled areas, cortical regions buried in sulci; contourlike lines, tracings of layer IV taken from frontal sections through this area. D: locations of several cortical areas. Dotted lines, borders of cortical fields not precisely determinable. DP, dorsal prelunate area; IP, intraparietal sulcus; IPL, inferior parietal lobule; L, lunate sulcus; LF, lateral fissure; LIP, lateral intraparietal area; MST, medial superior temporal area; MT, middle temporal area.



Figure 7.

Laminar distribution of sources and terminations of feed‐forward and feedback corticocortical pathways. Feedforward pathways originate predominantly from cell bodies in superficial layers and end as terminals mainly in layer IV. Feedback pathways originate from superficial and deep layers and terminate mainly outside layer IV.

From Maunsell and Van Essen


Figure 8.

A: hierarchy of visual pathways from area V1 to inferior parietal cortex determined by laminar patterns of sources and terminations of projections. Dashed box, cortical areas of inferior parietal lobule and dorsal aspect of prelunate gyrus. B: 3 of shortest pathways for visual‐information travel from area V1 to area 7a.



Figure 9.

Disklike distribution of labeled terminals in medial pulvinar after injection of tritiated amino acids in area 7a. Drawings of frontal sections through pulvinar are arranged with anterior sections above posterior sections. CL, central lateral nucleus; HI, lateral habenular nucleus; LP, lateroposterior nucleus; MD, mediodorsal nucleus; Po, posterior nucleus; Pul. i, inferior nucleus of pulvinar complex; Pul. 1, lateral nucleus of pulvinar; Pul. m, medial nucleus of pulvinar; R, thalamic reticular nucleus; SG/Li, suprageniculate and limitans nuclei; VLps, ventral lateral nucleus pars postrema.

Adapted from Asanuma et al.


Figure 10.

Typical apparatus used for inferior parietal lobule recording experiments from awake behaving monkeys.

From Motter and Mountcastle


Figure 11.

Demonstration of eye‐position‐related and visual‐related responses recorded from same inferior parietal lobule neuron. A: animal fixates small light located 20° down from straight ahead in otherwise total darkness. Fixationpoint line indicates times when light was on and off. Lines H and V show horizontal and vertical eye‐position traces in degrees of visual angle (animal has been trained to maintain steady fixation even with fixation light off). B: same as A, but animal fixates target 20° down and 20° right. Tonic rate of activity in B is markedly reduced from that in A even when fixation light is off, indicating that cell is signaling eye position. C: animal fixates target, which does not blink off; a second test stimulus is flashed in visual field evoking visual‐related response. Ordinate, 4 spikes/division; abscissa, 1 s/division.

From Andersen et al.


Figure 12.

Task for demonstrating eye‐position‐related activity. A and B: animal fixates (with head fixed) point of light in center of screen through two 25‐diopter prisms. A: prisms are base down so animal must look 14° up from straight ahead to fixate target. B: prisms are base up so animal must look down 14°. C and D: prisms are removed and animal is made to look 14° up (C) or 14° down (D) by moving fixation point up or down on screen. Angles of gaze are identical for A and C and for B and D; retinotopic positions of visual background are identical in A and B but different in C and D. Recording data indicate that cell activity varies with eye position but not with changes in retinotopic location of visual background. Lines H and V, horizontal and vertical eye positions measured in degrees of visual angle. Ordinate, 5 spikes/division; abscissa, 1 s/division.

From Andersen et al.


Figure 13.

Example of smooth‐pursuit‐related activity. Left, animal tracks point of light moving left to right 9°/s. Right, animal tracks in opposite direction. Histograms at top of figure are made from spike rasters immediately below; below rasters are eye‐position recordings; below eye‐position recordings are graphs showing position of fixation point with respect to time. KD, time at which animal pulls back behavior key and target begins to move; LM, time at which target light dims, signaling animal to push key forward; D, mean reaction time.

From Mountcastle et al.


Figure 14.

Demonstration of pursuit‐related activity for medial superior temporal (MST) area neurons but not for middle temporal (MT) area neurons. A and C: animal tracks spot of light; line above histogram indicates position of tracking target vs. time. B and D: dashed lines of target‐position record indicate times at which tracking target was stabilized on retina and animal maintained smooth pursuit. Decreased activity of MT neuron during stabilization indicates that its activity was mainly due to visual stimulation resulting from movement of target image on retina. Maintained activity of MST neuron during stabilization indicates that cell has pursuit‐related activity not due to visual motion stimulation.

R. H. Wurtz and W. T. Newsome, unpublished observations


Figure 15.

Example of visual sensitivity of visual parietal neuron changing with eye position. A: visual receptive field of neuron plotted in coordinates of visual angle (with animal always fixating straight ahead). B: method of determining effect of eye position on visual sensitivity. Animal, with head fixed, fixates (f) at different locations on screen. Stimulus (s) is presented in center of receptive field (rf). C: poststimulus histograms corresponding to fixation locations (fix) on screen at which responses were recorded for retinotopically identical stimuli presented in center of receptive field. Ordinate, 25 spikes/division; abscissa, 100 ms/division; arrows, onset of stimulus flash.

From Andersen et al.


Figure 16.

Demonstration of spatial tuning by area 7a neurons. Gain linearly related to vertical eye position is multiplied by Gaussian function used to fit sensitivity profile along vertical axis through center of visual receptive field. A: computer simulation of response (in spikes/s) represented on contour plot. Abscissa, head‐centered coordinates of stimulus (hy); ordinate, eye‐position coordinates (ey). B: plot of actual recording data for cell with same gainfield and receptive‐field characteristics as model neuron plotted in A.

From Andersen et al.


Figure 17.

Directional selectivity of area 7a neuron. Upper left: spike raster, histogram, and eyeposition recordings illustrate response to visual stimulus moving 60°/s along horizontal meridian (contralateral to ipsilateral). Lower left: no response when same stimulus is moved in opposite direction. Right: spike rasters show almost no response to same stimulus if stationary and flashed at different locations along horizontal meridian.

From Motter and Mountcastle


Figure 18.

Two area 7a neurons with opposed directional sensitivity. Histograms depict activity evoked by stimuli sweeping along horizontal and vertical meridians. They were cut in half (at fixation point) and arranged so that upper panels show activity when motion was directed toward fixation point and lower panels show activity when stimuli had passed through and were moving away from fixation point. In both examples, cells respond only to inward motion.

From Motter and Mountcastle


Figure 19.

Simple model for opposed directionality. Dark arrows, directional sensitivity for long sweeps of visual stimulus; dashed arrows, local directionality (strongest in direction of radial organization). Although some cells show this local directional organization, for many cells, opponent‐vector organization for long sweeps results from long‐range inhibitory interactions between receptivefield regions. +, Fixation point.

From Mountcastle et al.


Figure 20.

Example of inferior parietal lobule neuron sensitive to rotation of visual stimuli. A and B: initially vertical (A) or initially horizontal (B) bar projected onto screen facing test animal produced response when rotated clockwise but not counterclockwise. C: square also produced response only when rotated clockwise. D: same bar stimulus as in A and B did not evoke response when translated horizontally toward right or left. E: paired points rotating about fixation point (FP) activated neuron; F and G: neither point traveling alone in same trajectory produced response.

Adapted from Sakata et al.


Figure 21.

Example of inferior parietal lobule neuron sensitive to size change. A: cell responds somewhat to horizontal translation of visual stimulus in frontoparallel plane, preferring leftward motion. B: cell responds much more to stimuli moving in depth toward animal. C: expanding size of stimulus also activates neuron; size‐change sensitivity at least in part accounts for movement‐in‐depth sensitivity of cell.

From Sakata et al.


Figure 22.

Responses of four D cells recorded in medial superior temporal area to various combinations of foreground and background movement. A, E, G, I: bar moved over stationary dot‐pattern background. B, F, H, J: background was moved without bar present. C, K: bar and background are both moved in same direction. D, L: bar and background are moved in opposite directions.

From Tanaka et al.
References
 1. Acuña, C., F. Gonzalez, and R. Dominguez. Sensorimotor unit activity related to intention in the pulvinar of behaving Cebus apella monkeys. Exp. Brain Res. 52: 411–422, 1983.
 2. Albright, T. D. Direction and orientation selectivity of neurons in visual area MT of the macaque. J. Neurophysiol. 52: 1106–1130, 1984.
 3. Albright, T. D., R. Desimone, and C. G. Gross. Columnar organization of directionally selective cells in visual area MT of the macaque. J. Neurophysiol. 51: 16–31, 1984.
 4. Allman, J. M., J. F. Baker, W. T. Newsome, and S. E. Petersen. Visual topography and function: cortical visual areas in the owl monkey. In: Cortical Sensory Organization. Multiple Visual Areas, edited by C. N. Woolsey. Clifton, NJ: Humana, 1978, vol. 2, p. 171–185.
 5. Allman, J., F. Miezen, and E. McGuinness. Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanism for local‐global comparisons in visual neurons. Annu. Rev. Neurosci. 8: 407–430, 1985.
 6. Andersen, R. A. The neurobiological basis of spatial cognition: role of the parietal lobe. In: Spatial Cognition: Brain Bases and Development, edited by J. Stiles‐Davis, M. Kritchevsky, and U. Bellugi. Chicago, IL: Univ. of Chicago Press, in press.
 7. Andersen, R. A., C. Asanuma, and W. M. Cowan. Callosal and prefrontal associational projecting cell populations in area 7a of the macaque monkey: a study using retrogradely transported fluorescent dyes. J. Comp. Neurol. 232: 443–455, 1985.
 8. Andersen, R. A., G. K. Essick, and R. M. Siegel. Encoding of spatial location by posterior parietal neurons. Science Wash. DC 230: 456–458, 1985.
 9. Andersen, R. A., G. K. Essick, and R. M. Siegel. Neurons of area 7 activated by both visual stimuli and oculomotor behavior. Exp. Brain Res. In press.
 10. Andersen, R. A., and V. B. Mountcastle. The influence of the angle of gaze upon the excitability of the light‐sensitive neurons of the posterior parietal cortex. J. Neurosci. 3: 532–548, 1983.
 11. Andersen, R. A., R. M. Siegel, G. K. Essick, and C. Asanuma. Subdivision of the inferior parietal lobule and dorsal prelunate gyrus of macaque by connectional and functional criteria (Abstract). Invest. Ophthalmol. Visual Sci. 23: 266, 1985.
 12. Asanuma, C., R. A. Andersen, and W. M. Cowan. The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys: divergent cortical projections from cell clusters in the medial pulvinar nucleus. J. Comp. Neurol. 241: 357–381, 1985.
 13. Baleydier, C., and F. Mauguiere. The duality of the cingulate gyrus in monkey. Neuroanatomical study and functional hypothesis. Brain 103: 525–554, 1980.
 14. Baleydier, C., and F. Mauguiere. Anatomical evidence for medial pulvinar connections with the posterior cingulate cortex, the retrosplenial area, and the posterior parahippocampal gyrus in monkeys. J. Comp. Neurol. 232: 219–228, 1985.
 15. Ballard, D. H. Cortical connections and parallel processing: structure and function. Behav. Brain Sci. 9: 90–91, 1986.
 16. Barbas, H., and M.‐M. Mesulam. Organization of afferent input to subdivisions of area 8 in the rhesus monkey. J. Comp. Neurol. 200: 407–431, 1981.
 17. Barbur, J. L., K. H. Ruddock, and V. A. Waterfield. Human visual responses in the absence of the geniculo‐calcarine projection. Brain 103: 905–928, 1980.
 18. Bender, D. B. Retinotopic organization of macaque pulvinar. J. Neurophysiol. 46: 672–693, 1981.
 19. Benevento, L. A., and B. Davis. Topographic projections of the prestriate cortex to the pulvinar nuclei in the macaque monkey: an autoradiographic study. Exp. Brain Res. 30: 405–424, 1977.
 20. Benevento, L. A., and J. H. Fallon. The ascending projections of the superior colliculus in the rhesus monkey (Macaca mulatta). J. Comp. Neurol. 160: 339–362, 1975.
 21. Benevento, L. A., and J. Miller. Visual responses of single neurons in the caudal lateral pulvinar of the macaque monkey. J. Neurosci. 11: 1268–1278, 1981.
 22. Benevento, L. A., and M. Rezak. The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (Macaca mulatta): an autoradiographic study. Brain Res. 108: 1–24, 1976.
 23. Benevento, L. A., M. Rezak, and R. Santos‐Anderson. An autoradiographic study of the projections of the pretectum in the rhesus monkey (Macaca mulatta): evidence of sensorimotor links to the thalamus and oculomotor nuclei. Brain Res. 127: 197–218, 1977.
 24. Benevento, L. A., and G. P. Standage. The organization of projections of the retinorecipient and nonretinorecipient nuclei of the pretectal complex and layers of the superior colliculus to the lateral pulvinar and medial pulvinar in the macaque monkey. J. Comp. Neurol. 217: 307–336, 1983.
 25. Benson, D. F., and M. I. Barton. Disturbances in constructional ability. Cortex 6: 14–46, 1970.
 26. Bioulac, B., and Y. Lamarre. Activity of postcentral cortical neurons of the monkey during conditioned movements of a deafferented limb. Brain Res. 172: 427–437, 1979.
 27. Bisiach, E., and C. Luzzatti. Unilateral neglect of representational space. Cortex 14: 129–133, 1978.
 28. Bisiach, E., C. Luzzatti, and D. Perani. Unilateral neglect, representational schema and consciousness. Brain 102: 609–618, 1979.
 29. Blum, B. Enhancement of visual responses of area 7 neurons by electrical preconditioning stimulation of LP‐pulvinar nuclei of the monkey. Exp. Brain Res. 59: 434–440, 1985.
 30. Brain, W. R. Visual disorientation with special reference to lesions of the right cerebral hemisphere. Brain 64: 244–272, 1941.
 31. Bridgeman, B., and L. Stark. Omnidirectional increase in threshold for image shifts during saccadic eye movements. Percept. Psychophys. 25: 241–243, 1979.
 32. Brodal, P. Principles of organization of the monkey corticopontine projection. Brain 148: 214–218, 1978.
 33. Brodmann, K. Beitrage zur histologischen Lokalisation der Grosshirnrinde. Dritte Mitteilung: die Rindenfelder der niederen Affen. J. Psychol. Neurol. 4: 177–226, 1905.
 34. Brodmann, K. Beitrage zur histologischen Lokalisation der Grosshirnrinde. Sechste Mitteillung: die Cortex gliederung des Menschen. J. Psychol. Neurol. 10: 231–246, 1907.
 35. Brody, B. A., and K. H. Pribram. The role of frontal and parietal cortex in cognitive processing: tests of spatial and sequential functions. Brain 101: 607–633, 1978.
 36. Bruce, C. J., R. Desimone, and C. G. Gross. Properties of neurons in a visual polysensory area in the superior temporal sulcus of the macaque. J. Neurophysiol. 46: 369–384, 1981.
 37. Bushnell, M. C., M. E. Goldberg, and D. L. Robinson. Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. J. Neurophysiol. 46: 755–772, 1981.
 38. Caminiti, R., and A. Sbriccoli. The callosal system of the superior parietal lobule in the monkey. J. Comp. Neurol. 237: 85–99, 1985.
 39. Chalupa, L. M., R. S. Coyle, and D. B. Lindsley. Effect of pulvinar lesions on visual pattern discrimination in monkeys. J. Neurophysiol. 39: 354–369, 1976.
 40. Chapman, C. E., G. Spidalieri, and Y. Lamarre. Discharge properties of area 5 neurones during arm movements triggered by sensory stimuli in the monkey. Brain Res. 309: 63–78, 1984.
 41. Chavis, D. A., and D. M. Pandya. Further observation on corticofrontal connections in the rhesus monkey. Brain Res. 117: 369–386, 1976.
 42. Colby, C. L., R. Gattass, C. R. Olson, and C. G. Gross. Cortical afferents to visual areas in the macaque. Soc. Neurosci. Abstr. 9: 152, 1983.
 43. Crick, F. Function of the thalamic reticular complex: the searchlight hypothesis. Proc. Natl. Acad. Sci. USA 81: 4586–4590, 1984.
 44. Critchley, M. The Parietal Lobes. New York: Hafner, 1953.
 45. Denny‐Brown, D., and B. Banker. Armorphosynthesis from left parietal lesion. Arch. Neurol. Psychiatry 71: 302–313, 1954.
 46. De Renzi, E. Memory disorders following focal neocortical damage. Philos. Trans. R. Soc. Lond. B Biol. Sci. 298: 73–83, 1982.
 47. De Rrenzi, E., P. Faglioni, and P. Previdi. Spatial memory and hemispheric locus of lesion. Cortex 13: 424–433, 1977.
 48. De Renzi, E., P. Faglioni, and G. Scotti. Hemispheric contribution to exploration of space through the visual and tactile modality. Cortex 6: 191–203, 1970.
 49. De Renzi, E., P. Faglioni, and P. Villa. Topographical amnesia. J. Neurol. Neurosurg. Psychiatry 40: 498–505, 1977.
 50. Desimone, R., T. D. Albright, C. G. Gross, and C. Bruce. Stimulus‐selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4: 2051–2062, 1984.
 51. Divac, I., J. H. Lavail, P. Rakic, and K. R. Winston. Heterogeneous afferents to the inferior parietal lobule of the rhesus monkey revealed by the retrograde transport method. Brain Res. 123: 197–207, 1977.
 52. Dow, B. M. Functional classes of cells and their laminar distribution in monkey visual cortex. J. Neurophysiol. 37: 927–946, 1974.
 53. Dubner, R., and S. M. Zeki. Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Res. 35: 528–532, 1971.
 54. Duncker, K. Über induzierte Bewegung. Psychol. Forsch. 12: 180–259, 1929.
 55. Dursteler, M. R., R. H. Wurtz, W. T. Newsome, and A. Mikimi. Deficits in pursuit eye movements following ibotenic acid lesions of the foveal representation of area MT of macaque monkey. Soc. Neurosci. Abstr. 10: 475, 1984.
 56. Ettlinger, G., and J. E. Kalsbeck. Changes in tactile discrimination and in visual reaching after successive and simultaneous bilateral posterior parietal ablations in the monkey. J. Neurol. Neurosurg. Psychiatry 25: 256–268, 1962.
 57. Ettlinger, G., E. Warrington, and O. L. Zangwill. A further study of visual‐spatial agnosia. Brain 80: 335–361, 1957.
 58. Faugier‐Grimaud, S., C. Frenois, and D. G. Stein. Effects of posterior parietal lesions on visually guided behavior in monkeys. Neuropsychologia 16: 151–168, 1978.
 59. Festinger, L., H. A. Sedgwick, and J. D. Holtzman. Visual perception during smooth pursuit eye movements. Vision Res. 16: 1377–1386, 1976.
 60. Friedman, D. P., E. G. Jones, and H. Burton. Representation pattern in the second somatic sensory area of the monkey cerebral cortex. J. Comp. Neurol. 192: 21–41, 1980.
 61. Fuster, J. M. The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe. New York: Raven, 1980.
 62. Fuster, J. M. Prefrontal cortex in motor control. In: Handbook of Physiology. The Nervous System. Motor Control, edited by V. B. Brooks. Bethesda, MD: Am. Physiol. Soc., 1981, sect. 1, pt. 2, vol. 2, chapt. 25, p. 1149–1178.
 63. Glickstein, M., J. L. Cohen, B. Dixon, A. Gibson, M. Hollins, E. Labossiere, and F. Robinson. Corticopontine visual projections in macaque monkeys. J. Comp. Neurol. 190: 209–229, 1980.
 64. Glickstein, M., and J. May. Visual control of movement: the circuits which link visual to motor areas of the brain with special reference to the visual input to the pons and cerebellum. In: Contributions to Sensory Physiology, edited by W. D. Neff. New York: Academic, 1982, vol. 7, p. 103–145.
 65. Glickstein, M., J. May, and B. Mercer. Cortico‐pontine projection in the macaque: the distribution of labeled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J. Comp. Neurol. 235: 343–359, 1985.
 66. Goldberg, M. E., C. J. Bruce, L. Ungerleider, and M. Mishkin. Role of the striate cortex in generation of smooth pursuit eye movements (Abstract). Ann. Neurol. 12: 113, 1982.
 67. Gross, C. G. Visual functions of inferotemporal cortex. In: Handbook of Sensory Physiology. Visual Centers in the Brain, edited by R. Jung. Berlin: Springer‐Verlag, 1972, vol. VII, pt. 3B, p. 451–485.
 68. Gross, C. G., C. J. Bruce, R. Desimone, J. Fleming, and R. Gattass. Cortical visual areas of the temporal lobe: three areas in the macaque. In: Multiple Visual Areas, edited by C. N. Woolsey. Clifton, NJ: Humana, 1981, vol. 2, p. 187–216.
 69. Hallett, P. E., and A. D. Lightstone. Saccadic eye movements toward stimuli triggered by prior saccades. Vision Res. 16: 99–106, 1976.
 70. Hansen, R. M., and A. A. Skavenski. Accuracy of eye position information for motor control. Vision Res. 17: 919–926, 1977.
 71. Harting, J. K., M. F. Huerta, A. J. Frankfurter, N. L. Strominger, and G. J. Royce. Ascending pathways from the monkey superior colliculus: an autoradiographic analysis. J. Comp. Neurol. 192: 853–882, 1980.
 72. Hartje, W., and G. Ettlinger. Reaching in light and dark after unilateral posterior parietal ablations in the monkey. Cortex 9: 346–354, 1974.
 73. Hecaen, H., and J. Ajuriaguerra. Balint's syndrome (psychic paralysis of visual fixation) and its minor forms. Brain 77: 373–400, 1954.
 74. Hecaen, H., W. Penfield, C. Bertrand, and R. Malino. The syndrome of apractognosia due to lesions of the minor cerebral hemisphere. Arch. Neurol. Psychiatry 75: 400–434, 1956.
 75. Hedreen, J. C., and T. C. T. Yin. Homotopic and heterotopic callosal afferents of caudal inferior parietal lobule in Macaca mulatta. J. Comp. Neurol. 197: 605–621, 1981.
 76. Hier, D. B., J. Moudlock, and L. R. Caplan. Behavioral abnormalities after right hemisphere stroke. Neurology 33: 337–344, 1983.
 77. Hinton, G. E. Distributed Representations. New York: Carnegie‐Mellon Univ. Press, 1984. (Tech. Rep. CMU‐CS‐84–157.)
 78. Holmes, G. Disturbances of visual space perception. Br. Med. 2: 230–233, 1919.
 79. Holtzman, J. D., H. A. Sedgwick, and L. Festinger. Interaction of perceptually monitored and unmonitored efferent commands for smooth pursuit eye movements. Vision Res. 18: 1545–1555, 1978.
 80. Hyvärinen, J. Regional distribution of functions in parietal association area 7 of the monkey. Brain Res. 206: 287–303, 1981.
 81. Hyvärinen, J. The Parietal Cortex of Monkey and Man. Berlin: Springer‐Verlag, 1982.
 82. Hyvärinen, J., and A. Poranen. Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys. Brain 97: 673–692, 1974.
 83. Hyvärinen, J., and Y. Shelepin. Distribution of visual and somatic functions in the parietal associative area 7 of the monkey. Brain Res. 169: 561–564, 1979.
 84. Jacobson, S., and J. Q. Trojanowski. Prefrontal granular cortex of the rhesus monkey. I. Intrahemispheric cortical afferents. Brain Res. 132: 209–233, 1977.
 85. Jones, E. G., and T. P. S. Powell. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793–820, 1970.
 86. Jung, R. Neuropsychologie und er Neurophysiologie des Kontar‐ und Formsehens in Zeichnung und Mulerei. In: Psychopathologie Musischer Gestaltungen, edited by H. H. Wieck. Stuttgart, FRG: Schattauer, 1974, p. 29–88.
 87. Kaas, J. H., M. Sur, R. J. Nelson, and M. Merzenich. The postcentral somatosensory cortex: multiple representations of the body in primates. In: Cortical Sensory Organization. Multiple Somatic Areas, edited by C. N. Woolsey. Clifton, NJ: Humana, 1981, vol 1, p. 29–46.
 88. Kalaska, J. F., R. Caminiti, and A. P. Georgopoulis. Cortical mechanisms related to the direction of two‐dimensional arm movements: relations in parietal area 5 and comparison with motor cortex. Exp. Brain Res. 51: 247–260, 1983.
 89. Kasdon, D. L., and S. Jacobson. The thalamic afferents to the inferior parietal lobule of the rhesus monkey. J. Comp. Neurol. 177: 685–706, 1978.
 90. Kawano, K., M. Sasaki, and M. Yamashita. Response properties of neurons in posterior parietal cortex of monkey during visual‐vestibular stimulation. I. Visual tracking neurons. J. Neurophysiol. 51: 340–351, 1984.
 91. Keller, E. L., and W. F. Crandall. Neuronal responses to optokinetic stimuli in pontine nuclei of behaving monkey. J. Neurophysiol. 49: 169–187, 1983.
 92. Kinsbourne, M., and E. K. Warrington. A disorder of simultaneous form perception. Brain 45: 461–486, 1962.
 93. Kunzle, H., and K. Akert. Efferent connections of cortical area 8 (frontal eye field) in Macaca fascicularis. A reinvestigation using the autoradiographic techniques. J. Comp. Neurol. 173: 147–164, 1977.
 94. Kuypers, H. G. J. M., M. K. Szwarcbart, M. Mishkin, and H. E. Rosvold. Occipitotemporal corticocortical connections in the rhesus monkey. Exp. Neurol. 11: 245–262, 1965.
 95. Lamarre, Y., G. Spidalieri, and C. E. Chapman. Activity of areas 4 and 7 neurons during movements triggered by visual, auditory, and somesthetic stimuli in the monkey: movement‐related versus stimulus‐related responses. Exp. Brain Res. Suppl. 10: 196–210, 1985.
 96. Lamotte, R. H., and C. Acuña. Defects in accuracy of reaching after removal of posterior parietal cortex in monkeys. Brain Res. 139: 309–326, 1978.
 97. Lane, J. K. The Modular Efferent Organization of the Inferior Parietal Lobule and Caudal Principal Sulcus for Their Callosal and Reciprocal Association Projections. Baltimore, MD: Johns Hopkins Univ. Press, 1983. Dissertation.
 98. Leichnetz, G. R. An intrahemispheric columnar projection between two cortical multisensory convergence areas (inferior parietal lobule and prefrontal cortex): an anterograde study in macaque using HRP gel. Neurosci. Lett. 18: 119–124, 1980.
 99. Leinonen, L., J. Hyvärinen, G. Nyman, and I. Linnankoski. Functional I. properties of neurons in lateral part of associative area 7 in awake monkeys. Exp. Brain Res. 34: 299–320, 1979.
 100. Leinonen, L., and G. Nyman. II. Functional properties of cells in anterolateral part of area 7 associative face area of awake monkeys. Exp. Brain Res. 34: 321–333, 1979.
 101. Lisberger, S. G., and A. F. Fuchs. Response of flocculus Purkinje cells to adequate vestibular stimulation in the alert monkey: fixation vs. compensatory eye movement. Brain Res. 69: 347–353, 1974.
 102. Lisberger, S. G., and A. F. Fuchs. Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth‐pursuit eye movements and passive head rotation. J. Neurophysiol. 41: 733–763, 1978.
 103. Livingstone, M. S., and D. H. Hubel. Anatomy and physiology of a color system in the primate visual cortex. J. Neurosci. 4: 309–356, 1984.
 104. Lund, J. S., A. E. Hendrickson, M. P. Ogren, and E. A. Tobin. Anatomical organization of primate visual cortex area VII. J. Comp. Neurol. 202: 19–45, 1981.
 105. Lynch, J. C. The functional organization of posterior parietal association cortex. Behav. Brain Sci. 3: 485–534, 1980.
 106. Lynch, J. C., C. Acuña, H. Sakata, A. Georgopoulos, and V. B. Mountcastle. The parietal association areas and immediate extrapersonal space. Annu. Meet. Soc. Neurosci., 3rd, 1973, p. 244.
 107. Lynch, J. C., A. M. Graybiel, and L. J. Lobeck. The differential projection of two cytoarchitectural subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus. J. Comp. Neurol. 235: 241–254, 1985.
 108. Lynch, J. C., and J. W. McLaren. The contribution of parieto‐occipital association cortex to the control of slow eye movements. In: Functional Basis of Ocular Motility Disorders, edited by G. Lennerstrand, D. S. Zee, and E. L. Keller. Oxford, UK: Pergamon, 1982, p. 501–510.
 109. Lynch, J. C., V. B. Mountcastle, W. H. Talbot, and T. C. T. Yin. Parietal lobe mechanisms for directed visual attention. J. Neurophysiol. 40: 362–389, 1977.
 110. Lynch, J. C., T. C. T. Yin, W. H. Talbot, and V. B. Mountcastle. Parietal association cortex neurons active during hand and eye tracking of objects in immediate extra‐personal space. Physiologist 16: 384, 1973.
 111. Mack, A., and J. Bachant. Perceived movement of the afterimage during eye movements. Percept. Psychophys. 6: 379–384, 1969.
 112. MacKay, D. M. Visual stability and voluntary eye movements. In: Handbook of Sensory Physiology. Central Processing of Visual Information, edited by R. Jung. Berlin: Springer‐Verlag, 1973, vol. VII, pt. 3, p. 307–331.
 113. Matin, L. Eye movements and perceived visual direction. In: Handbook of Sensory Physiology. Visual Psychophysics, edited by D. Jameson and L. Hurvich. Berlin: Springer‐Verlag, 1972, vol. VII, pt. 4, p. 331–380.
 114. Maunsell, J. H. R., and D. C. Van Essen. The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J. Neurosci. 3: 2563–2586, 1983.
 115. Maunsell, J. H. R., and D. C. Van Essen. Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J. Neurophysiol. 49: 1127–1147, 1983.
 116. May, J. G., and R. A. Andersen. Different patterns of corticopontine projections from separate cortical fields within the inferior parietal lobule and dorsal prelunate gyrus of the macaque. Exp. Brain Res. 63: 265–278, 1986.
 117. Mays, L. E., and D. L. Sparks. Dissociation of visual and saccade‐related responses in superior colliculus neurons. J. Neurophysiol. 43: 207–232, 1980.
 118. McFie, J., and O. L. Zangwill. Visual‐constructive disabilities associated with lesions of the left cerebral hemisphere. Brain 83: 243–260, 1960.
 119. Mendoza, J. E., and R. K. Thomas. Effects of posterior parietal and frontal neocortical lesions in the squirrel monkey. J. Comp. Physiol. Psychol. 89: 170–182, 1975.
 120. Mesulam, M.‐M. A cortical network for directed attention and unilateral neglect. Ann. Neurol. 10: 309–325, 1981.
 121. Mesulam, M.‐M., and E. J. Mufson. Insula of the old world monkey. III. Efferent cortical output and comments on function. J. Comp. Neurol. 212: 38–52, 1982.
 122. Mesulam, M.‐M., G. W. Van Hoesen, D. N. Pandya, and N. Geschwind. Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: a study with a new method for horseradish peroxidase histochemistry. Brain Res. 136: 393–414, 1977.
 123. Miles, F. A., and J. H. Fuller. Visual tracking and the primate flocculus. Science Wash. DC 189: 1000–1002, 1975.
 124. Mishkin, M. A memory system in the monkey. Philos. Trans. R. Soc. Lond. B Biol. Sci. 298: 85–95, 1982.
 125. Moffett, A., G. Ettlinger, H. B. Morton, and M. F. Piercy. Tactile discrimination performance in the monkey: the effect of ablation of various subdivisions of the posterior parietal cortex. Cortex 3: 59–96, 1967.
 126. Moran, J., and R. Desimone. Selective attention gates visual processing in extrastriate cortex. Science Wash. DC 229: 782–784, 1985.
 127. Motter, B. C., and V. B. Mountcastle. The functional properties of the light‐sensitive neurons of the posterior parietal cortex studied in waking monkeys: foveal sparing and opponent vector organization. J. Neurosci. 1: 3–26, 1981.
 128. Motter, B. C., M. A. Steinmetz, and V. B. Mountcastle. Directional sensitivity of parietal visual neurons to moving stimuli depends upon the extent of the field traversed by the moving stimuli. Soc. Neurosci. Abstr. 11: 1011, 1985.
 129. Mountcastle, V. B., R. A. Andersen, and B. C. Motter. The influence of attentive fixation upon the excitability of the light‐sensitive neurons of the posterior parietal cortex. J. Neurosci. 1: 1218–1235, 1981.
 130. Mountcastle, V. B., J. C. Lynch, A. Georgopoulos, H. Sakata, and C. Acuña. Posterior parietal association cortex of the monkey: command function for operations within extrapersonal space. J. Neurophysiol. 38: 871–908, 1975.
 131. Mountcastle, V. B., B. C. Motter, M. A. Steinmetz, and C. J. Duffy. Looking and seeing: the visual functions of the parietal lobe. In: Dynamic Aspects of Neocortical Function, edited by G. M. Edelman, W. E. Gall, and W. M. Cowan. New York: Wiley, 1984, p. 159–194.
 132. Movshon, J. A., E. H. Adelson, M. S. Gizzi, and W. T. Newsome. The analysis of moving visual patterns. Exp. Brain Res. Suppl. 11: 117–151, 1985.
 133. Movshon, J. A., and W. T. Newsome. Functional characteristics of striate cortical neurons projecting to MT in the macaque. Soc. Neurosci. Abstr. 10: 933, 1984.
 134. Mufson, E. J., and M.‐M. Mesulam. Insula of the old world monkey. II. Afferent cortical input and comments on the claustrum. J. Comp. Neurol. 212: 23–37, 1982.
 135. Mufson, E. J., and M.‐M. Mesulam. Thalamic connections of the insula in the rhesus monkey and comments on the paralimbic connectivity of the medial pulvinar nucleus. J. Comp. Neurol. 227: 109–120, 1984.
 136. Mustavi, M. J., A. J. Fuchs, and J. Wallman. Smooth‐pursuit‐related units in the dorsolateral pons of the rhesus macaque. Soc. Neurosci. Abstr. 10: 987, 1984.
 137. Newsome, W. T., R. H. Wurtz, M. R. Dursteler, and A. Mikami. The middle temporal visual area of the macaque monkey: deficits in visual motion processing following ibotenic acid lesions in MT. J. Neurosci. 5: 825–840, 1985.
 138. Ogren, M., and A. Hendrickson. Pathways between striate cortex and subcortical regions in Macaca mulatta and Saimiri sciureus: evidence for a reciprocal pulvinar connection. Exp. Neurol. 53: 780–800, 1976.
 139. Ogren, M. P., and A. E. Hendrickson. The distribution of pulvinar terminals in visual areas 17 and 18 of the monkey. Brain Res. 137: 343–350, 1977.
 140. Ogren, M. P., and A. E. Hendrickson. The morphology and distribution of striate cortex terminals in the inferior and lateral subdivisions of the Macaca monkey pulvinar. J. Comp. Neurol. 188: 179–200, 1979.
 141. Ogren, M. P., C. A. Mateer, and A. R. Wyler. Alterations in visually related eye movements and following left pulvinar damage in man. Neuropsychologia 22: 187–196, 1984.
 142. Olszewski, J. The Thalamus of the Macaca Mulatta. An Atlas for Use in the Stereotaxic Instrument. Basel: Karger, 1952.
 143. Pandya, D. N., P. Dye, and N. Butters. Efferent cortico‐cortical projections of the prefrontal cortex in the rhesus monkey. Brain Res. 31: 35–46, 1971.
 144. Pandya, D. N., and H. G. J. M. Kuypers. Cortico‐cortical connections in the rhesus monkey. Brain Res. 13: 13–36, 1969.
 145. Pandya, D. N., and B. Seltzer. Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J. Comp. Neurol. 204: 196–210, 1982.
 146. Pandya, D. N., G. W. Van Hoesen, and M.‐M. Mesulam. Efferent connections of the cingulate gyrus in the rhesus monkey. Exp. Brain Res. 42: 319–330, 1981.
 147. Pandya, D. N., and L. A. Vignolo. Intra‐ and interhemi‐spheric projections of the precentral, premotor and arcuate areas in the rhesus monkey. Brain Res. 26: 217–233, 1971.
 148. Pandya, D. N., and E. H. Yeterian. Proposed neural circuitry for spatial memory in the primate brain. Neuropsychologia 22: 109–122, 1984.
 149. Paterson, A., and O. L. Zangwill. Disorders of visual space perception associated with lesions of the right hemisphere. Brain 67: 331–358, 1944.
 150. Pearson, R. C. A., P. Brodal, and T. P. S. Powell. The projection of the thalamus upon the parietal lobe in the monkey. Brain Res. 144: 143–148, 1978.
 151. Perenin, M. T., and M. Jeannerod. Visual function within the hemianopic field following early cerebral hemidecortication in man. I. Spatial localization. Neuropsychologia 16: 1–13, 1978.
 152. Perrett, D. I., E. T. Rolls, and W. Caan. Visual neurons responsive to faces in the monkey temporal cortex. Exp. Brain Res. 47: 329–342, 1982.
 153. Petersen, S. E., J. D. Morris, and D. L. Robinson. Modulation of attentional behavior by injection of GABA‐related drugs into the pulvinar of macaque. Soc. Neurosci. Abstr. 10: 475, 1984.
 154. Petersen, S. E., D. L. Robinson, and W. Keys. A physiological comparison of the lateral pulvinar and area 7 in the behaving macaque. Soc. Neurosci. Abstr. 8: 681, 1982.
 155. Petersen, S. E., D. L. Robinson, and W. Keys. Pulvinar nuclei of the behaving rhesus monkey: visual responses and their modulation. J. Neurophysiol. 54: 867–886, 1985.
 156. Petrides, M., and S. D. Iversen. Restricted posterior parietal lesions in the rhesus monkey and performance on visuo‐spatial tasks. Brain Res. 161: 63–77, 1979.
 157. Petrides, M., and D. N. Pandya. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J. Comp. Neurol. 228: 105–116, 1984.
 158. Piercy, M., H. Hecaen, and J. Ajuviaguerra. Constructional apraxia associated with unilateral cerebral lesions—left and right sided cases compared. Brain 83: 225–242, 1960.
 159. Pohl, W. Dissociation of spatial discrimination deficits following frontal and parietal lesions in monkeys. J. Comp. Physiol. Psychol. 82: 227–239, 1973.
 160. Poppel, E., R. Held, and D. Frost. Residual visual function after brain wounds involving the central visual pathways in man. Nature Lond. 243: 295–296, 1973.
 161. Posner, M. I. Orienting of attention. Q. J. Exp. Psychol. 32: 3–25, 1980.
 162. Posner, M. I., C. R. R. Snyder, and B. J. Davidson. Attention and the detection of signals. J. Exp. Psychol. 109: 160–174, 1980.
 163. Ratcliff, G., and G. A. B. Davies‐Jones. Defective visual localization in focal brain wounds. Brain 95: 49–60, 1972.
 164. Ratcliff, G., R. M. Ridley, and G. Ettlinger. Spatial disorientation in the monkey. Cortex 13: 62–65, 1977.
 165. Rezak, M., and L. A. Benevento. A comparison of the organization of the projections of the dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to primary visual cortex (area 17) in the macaque monkey. Brain Res. 167: 19–40, 1979.
 166. Richmond, B. J., and T. Sato. Visual responses of inferior temporal neurons are modified by attention to different stimulus dimensions. Soc. Neurosci. Abstr. 8: 812, 1982.
 167. Robinson, C. J., and H. Burton. Organization of somatosensory receptive fields in cortical areas 7b, retroinsular post‐auditory and granular insula of M. fascicularis. J. Comp. Neurol. 192: 69–92, 1980.
 168. Robinson, C. J., and H. Burton. Somatic submodality distribution within the second somatosensory (SII), 7b, retroinsular, postauditory, and granular insular cortical areas of M. fascicularis. J. Comp. Neurol. 192: 93–108, 1980.
 169. Robinson, D. A. Oculomotor control signals. In: Basic Mechanisms of Ocular Motility and Their Clinical Implications, edited by G. Lennerstrand and P. Bach‐y‐Rita. Oxford, UK: Pergamon, 1975, p. 337–374.
 170. Robinson, D. L., M. E. Goldberg, and G. B. Stanton. Parietal association cortex in the primate: sensory mechanisms and behavioral modulations. J. Neurophysiol. 41: 910–932, 1978.
 171. Robinson, D. L., J. D. Morris, and S. E. Petersen. Cued visual behavior and the pulvinar of the awake macaque (Abstract). Invest. Ophthalmol. Visual Sci. 25: S33, 1984.
 172. Rockland, K. S., and D. N. Pandya. Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res. 179: 3–20, 1979.
 173. Rolls, E. T., D. Perrett, S. J. Thorpe, A. Puerto, A. Roper‐Hall, and S. Maddison. Responses of neurons in area 7 of the parietal cortex to objects of different significance. Brain Res. 169: 194–198, 1979.
 174. Rose, J. E. The cellular structure of the auditory region of the cat. J. Comp. Neurol. 91: 409–440, 1949.
 175. Saito, H., M. Yukio, K. Tanaka, K. Hikosaka, Y. Fukada, and E. Iwai. Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J. Neurosci. 6: 145–157, 1986.
 176. Sakata, H., H. Shibutani, Y. Ito, and K. Tsurugai. Parietal cortical neurons responding to rotary movement of visual stimuli in space. Exp. Brain Res. 61: 658–663, 1986.
 177. Sakata, H., H. Shibutani, and K. Kawano. Parietal neurons with dual sensitivity to real and induced movements of visual stimuli. Neurosci. Lett. 9: 165–169, 1978.
 178. Sakata, H., H. Shibutani, and K. Kawano. Spatial properties of visual fixation neurons in posterior parietal association cortex of the monkey. J. Neurophysiol. 43: 1654–1672, 1980.
 179. Sakata, H., H. Shibutani, and K. Kawano. Functional properties of visual tracking neurons in posterior parietal association cortex of the monkey. J. Neurophysiol. 49: 1364–1380, 1983.
 180. Sakata, H., H. Shibutani, K. Kawano, and T. Harrington. Neural mechanisms of space vision in the parietal association cortex of the monkey. Vision Res. 25: 453–464, 1985.
 181. Saper, C. B., and F. Plum. Disorders of consciousness. In: Handbook of Clinical Neurology. Clinical Neuropsychology, edited by J. A. M. Frederiks. Amsterdam: Elsevier, 1985, vol. 1, p. 107–128.
 182. Schlag‐Rey, M., and J. Schlag. Visuomotor functions of central thalamus in monkey. I. Unit activity related to spontaneous eye movements. J. Neurophysiol. 51: 1149–1174, 1984.
 183. Schwartz, M. L., and P. S. Goldman‐Rakic. Single cortical neurones have axon collaterals to ipsilateral cortex in fetal and adult primates. Nature Lond. 299: 154–155, 1982.
 184. Schwartz, M. L., and P. S. Goldman‐Rakic. Callosal and intrahemispheric connectivity of the prefrontal association cortex in rhesus monkey: relation between intraparietal and principal sulcal cortex. J. Comp. Neurol. 226: 403–420, 1984.
 185. Seal, J., and D. Commenges. A quantitative analysis of stimulus‐ and movement‐related responses in the posterior parietal cortex of the monkey. Exp. Brain Res. 58: 144–153, 1985.
 186. Seal, J., C. Gross, and B. Bioulac. Activity of neurons in area 5 during a simple arm movement in monkeys before and after deafferentation of the trained limb. Brain Res. 250: 229–243, 1982.
 187. Seal, J., C. Gross, D. Doudet, and B. Bioulac. Instruction‐related changes of neuronal activity in area 5 during a simple forearm movement in the monkey. Neurosci. Lett. 36: 145–150, 1983.
 188. Sedgwick, H. A., and L. Festinger. Eye movements, efference, and visual perception. In: Eye Movements and Psychological Processes, edited by R. A. Monty and J. W. Senders. New York: Halsted, 1976, p. 221–230.
 189. Seltzer, B., and D. N. Pandya. Some cortical projections of the parahippocampal area in the rhesus monkey. Exp. Neurol. 50: 146–160, 1976.
 190. Seltzer, B., and D. N. Pandya. Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res. 149: 1–24, 1978.
 191. Seltzer, B., and D. N. Pandya. Converging visual and somatic sensory cortical input to the intraparietal sulcus of the rhesus monkey. Brain Res. 192: 339–351, 1980.
 192. Seltzer, B., and D. N. Pandya. Further observations on parieto‐temporal connections in the rhesus monkey. Exp. Brain Res. 55: 301–312, 1984.
 193. Seltzer, B., and G. W. Van Hoesen. A direct inferior parietal lobule projection to the presubiculum in the rhesus monkey. Brain Res. 179: 157–161, 1979.
 194. Semmes, J., S. Weinstein, L. Ghent, and H. L. Teuber. Correlates of impaired orientation in personal and extrapersonal space. Brain 86: 747–772, 1963.
 195. Shibutani, H., H. Sakata, and J. Hyvärinen. Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of the monkey. Exp. Brain Res. 55: 1–8, 1984.
 196. Siegel, R. M., R. A. Andersen, G. K. Essick, and C. Asanuma. The functional and anatomical subdivision of the inferior parietal lobule. Soc. Neurosci. Abstr. 11: 1012, 1985.
 197. Siqueira, E. B. The temporo‐pulvinar connections in the rhesus monkey. Arch. Neurol. 13: 321–330, 1965.
 198. Siqueira, E. B. The cortical connections of the nucleus pulvinaris of the dorsal thalamus in rhesus monkey. Int. J. Neurol. 8: 139–154, 1971.
 199. Skavenski, A. A., and R. M. Hansen. Role of eye position information in visual space perception. In: Eye Movements and the Higher Psychological Functions, edited by J. W. Senders, D. F. Fisher, and R. A. Monty. New York: Halsted, 1978, p. 15–34.
 200. Standage, G. P., and L. A. Benevento. The organization of connections between the pulvinar and visual area MT in the macaque monkey. Brain Res. 262: 288–294, 1983.
 201. Stanton, G. B., W. L. R. Cruce, M. C. Goldberg, and D. L. Robinson. Some ipsilateral projections to areas PF and PG of the inferior parietal lobule in monkeys. Neurosci. Lett. 6: 243–250, 1977.
 202. Stein, J. F. Effects of parietal lobe cooling on manipulative behavior in the conscious monkey. In: Active Touch—The Mechanism of Recognition of Objects by Manipulation. A Multidisciplinary Approach, edited by G. Gorden. Oxford, UK: Pergamon, 1978, p. 79–90.
 203. Suzuki, D. A., and E. L. Keller. Visual signals in the dorsolateral pontine nucleus of the alert monkey: their relationship to smooth‐pursuit eye movements. Exp. Brain Res. 53: 473–478, 1984.
 204. Suzuki, D. A., J. May, and E. L. Keller. Smooth‐pursuit eye movement deficits with pharmacological lesions in monkey dorsolateral pontine nucleus. Soc. Neurosci. Abstr. 10: 58, 1984.
 205. Tanaka, K., K. Hikosaka, H. Saito, M. Yukie, Y. Fukada, and E. Iwai. Analysis of local and wide‐field movements in the superior temporal visual areas of the macaque monkey. J. Neurosci. 6: 134–144, 1986.
 206. Teuber, H. L. Space perception and its disturbances after brain injury in man. Neuropsychologia 1: 47–57, 1963.
 207. Trojanowski, J. Q., and S. Jacobson. Medial pulvinar afferents to frontal eye fields in rhesus monkey demonstrated by horseradish peroxidase. Brain Res. 80: 395–411, 1974.
 208. Trojanowski, J. Q., and S. Jacobson. Peroxidase labeled subcortical afferents to pulvinar in rhesus monkey. Brain Res. 97: 144–150, 1975.
 209. Trojanowski, J. Q., and S. Jacobson. Areal and laminar distribution of some pulvinar cortical efferents in rhesus monkey. J. Comp. Neurol. 169: 371–392, 1976.
 210. Ungerleider, L. G., and B. A. Brody. Extrapersonal spatial orientation: the role of posterior parietal, anterior frontal, and inferotemporal cortex. Exp. Neurol. 56: 265–280, 1977.
 211. Ungerleider, L. G., and C. A. Christensen. Pulvinar lesions in monkeys produce abnormal eye movements during visual discrimination training. Brain Res. 136: 189–196, 1977.
 212. Ungerleider, L. G., and C. A. Christensen. Pulvinar lesions in monkeys produce abnormal scanning of a complex visual array. Neuropsychologia 17: 493–501, 1979.
 213. Ungerleider, L. G., and R. Desimone. Cortical connections of visual area MT in the macaque. J. Comp. Neurol. 248: 190–222, 1986.
 214. Ungerleider, L. G., R. Desimone, T. W. Galkin, and M. Mishkin. Subcortical projections of area MT in the macaque. J. Comp. Neurol. 223: 368–386, 1984.
 215. Ungerleider, L. G., T. W. Galkin, and M. Mishkin. Visuotopic organization of projections from striate cortex to inferior and lateral pulvinar in rhesus monkey. J. Comp. Neurol. 217: 137–157, 1983.
 216. Ungerleider, L. G., and M. Mishkin. Two cortical visual systems. In: The Analysis of Visual Behavior, edited by D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield. Cambridge, MA: MIT Press, 1982, p. 549–586.
 217. Van Essen, D. C. Visual areas of the mammalian cerebral cortex. Ann. Rev. Neurosci. 2: 227–263, 1979.
 218. Van Essen, D. C. Functional organization of primate and visual cortex. In: Cerebral Cortex, edited by A. A. Peters and E. G. Jones. New York: Plenum, 1985, vol. 3, p. 259–329.
 219. Van Essen, D. C., and J. H. R. Maunsell. Two‐dimensional maps of the cerebral cortex. J. Comp. Neurol. 191: 255–281, 1980.
 220. Van Essen, D. C., J. H. R. Maunsell, and J. L. Bixby. The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J. Comp. Neurol. 199: 293–326, 1981.
 221. Vogt, C., and O. Vogt. Allgemeine Ergebnisse unserer Hirn‐forschung. J. Psychol. Neurol. 25: 279–462, 1919.
 222. Von Bonin, G., and P. Bailey. The Neocortex of Macaca Mulatta. Urbana: Univ. of Illinois Press, 1947.
 223. Von Economo, C. The Cytoarchitectonics of the Human Cerebral Cortex. London: Oxford Univ. Press, 1929.
 224. Weiskrantz, L., E. K. Warrington, D. M. Sanders, and J. Marshall. Visual capacity in the hemianopic field following a restricted occipital ablation. Brain 97: 709–728, 1974.
 225. Wilbrand, H. Die Seelenblindheit als Herderscheinung. Wiesbaden, Germany: Bergmann, 1887.
 226. Wurtz, R. H., M. E. Goldberg, and D. L. Robinson. Brain mechanisms of visual attention. Sci. Am. 246: 124–135, 1982.
 227. Wurtz, R. H., and C. W. Mohler. Enhancement of visual responses in monkey striate cortex and frontal eye fields. J. Neurophysiol. 39: 766–772, 1976.
 228. Wurtz, R. H., and W. T. Newsome. Divergent signals encoded by neurons in extrastriate areas MT and MST during smooth pursuit eye movements. Soc. Neurosci. Abstr. 11: 1246, 1985.
 229. Yeterian, E. H., and D. N. Pandya. Corticothalamic connections of the posterior parietal cortex in the rhesus monkey. J. Comp. Neurol. 237: 408–426, 1985.
 230. Yin, T. C. T., and V. B. Mountcastle. Visual input to the visuomotor mechanisms of the monkey's parietal lobe. Science Wash. DC 197: 1381–1383, 1977.
 231. Yin, T. C. T., and V. B. Mountcastle. Mechanisms of neural integration in the parietal lobe for visual attention. Federation Proc. 37: 2251–2257, 1978.
 232. Zee, D. S., A. Yamazaki, P. H. Butler, and G. Gücer. Effects of ablation of flocculus and paraflocculus on eye movements in primate. J. Neurophysiol. 46: 878–899, 1981.
 233. Zeki, S. M. Colour coding in rhesus monkey prestriate cortex. Brain Res. 53: 422–427, 1973.
 234. Zeki, S. M. Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J. Physiol. Lond. 236: 549–573, 1974.
 235. Zeki, S. M. The functional organization of projections from striate to prestriate visual cortex in the rhesus monkey. Cold Spring Harbor Symp. Quant. Biol. 40: 591–600, 1975.
 236. Zeki, S. M. The representation of colours in the cerebral cortex. Nature Lond. 284: 412–418, 1980.
 237. Zihl, J., and D. von Cramon. The contribution of the ‘second’ visual system to directed visual attention in man. Brain 102: 835–856, 1979.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Richard A. Andersen. Inferior Parietal Lobule Function in Spatial Perception and Visuomotor Integration. Compr Physiol 2011, Supplement 5: Handbook of Physiology, The Nervous System, Higher Functions of the Brain: 483-518. First published in print 1987. doi: 10.1002/cphy.cp010512