Comprehensive Physiology Wiley Online Library

Preattentive Human Vision: Link Between Neurophysiology and Psychophysics

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Textons: Fundamental Elements of Preattentive Vision
2 Axiomatic Theory of Preattentive Vision
3 Texton Differences Direct Focal Attention
4 Knowing “Where” Versus “What”
5 Texton Theory Compared with Other Two‐Visual‐Systems Theories
6 Implications for Neurophysiology
7 Conclusions
Figure 1. Figure 1.

Preattentive texture discrimination (between + and L) vs. element‐by‐element scrutiny (between T and L), called focal attention.

From Julesz and Bergen 34
Figure 2. Figure 2.

Preattentively discriminable texture pair. Left: different textons (line segments) and different number of ends‐of‐line; right same as left, except that orientation of elements is not randomized.

Figure 3. Figure 3.

Preattentively discriminable texture pair (middle), where the two elements (shown in left) have identical line segment textons but differ in their ends‐of‐line (terminators). Right: preattentive discrimination is so strong a single element can be detected among 35 elements in 100‐ms brief flash terminated by masking stimulus.

From Julesz and Bergen 34
Figure 4. Figure 4.

Preattentive texture discrimination based on terminator differences (2 vs. 5 terminators) alone. Otherwise, like Fig. 3.

From Julesz and Bergen 34
Figure 5. Figure 5.

Preattentively indistinguishable texture pair (middle) and indistinguishable target (right), although elements themselves appear very different (left).

From Julesz and Bergen 34
Figure 6. Figure 6.

Left: same as Figure 5, middle, except that the elements have identical orientations. Right: same as left except that the elements are square shaped.

Left from Julesz 32
Figure 7. Figure 7.

Combination of elements with identical textons (left) yield indistinguishable textons (middle) even when elements are square shaped (right).

Figure 8. Figure 8.

Similar to Fig. 7 except that white elongated blobs (flanked by black line segments) modulate texton density and yield weak texture discrimination in right but not in middle.

Figure 9. Figure 9.

Role of crossing texton. Preattentive texture discrimination based on presence and absence of crossings (A) and indistinguishable texture pairs because pairs either have no crossing (B, C) or both have crossings (D).

From Julesz and Bergen 34
Figure 10. Figure 10.

A + stands out from L's because of crossing texton and not because of 1.4‐times apparent reduction of perceived size.

Figure 11. Figure 11.

Target detection with and without texton differences. Abscissa, stimulus onset asynchrony (SOA); ordinate, percent of correct response.

From Julesz and Bergen 34
Figure 12. Figure 12.

Finding of size constancy for detecting 1 T among 6 L's (or vice versa) for SOA = 100 ms indicates that aperture of focal attention can be minute portion of fovea. Diameter of targets ar,!ound fixation marker varies from 13.8° to 2.8° arc.

From Julesz and Bergen 34
Figure 13. Figure 13.

Left: preattentively discriminable quadrant based on small orientation difference from the rest. Right: same texture pair as left, but thin black lines at the texture boundary diminish preattentive texture discrimination.

From Frisby 19
Figure 14. Figure 14.

O'Brian‐Cornsweet illusion. Top has luminance profile shown at bottom when scanned across a center line. If perceived circular boundary between center disk and outside annulus is covered by thin string, entire stimulus appears to have uniform brightness.

From Cornsweet 16
Figure 15. Figure 15.

Model of preattentive/attentive visual system.

From Julesz and Bergen 34


Figure 1.

Preattentive texture discrimination (between + and L) vs. element‐by‐element scrutiny (between T and L), called focal attention.

From Julesz and Bergen 34


Figure 2.

Preattentively discriminable texture pair. Left: different textons (line segments) and different number of ends‐of‐line; right same as left, except that orientation of elements is not randomized.



Figure 3.

Preattentively discriminable texture pair (middle), where the two elements (shown in left) have identical line segment textons but differ in their ends‐of‐line (terminators). Right: preattentive discrimination is so strong a single element can be detected among 35 elements in 100‐ms brief flash terminated by masking stimulus.

From Julesz and Bergen 34


Figure 4.

Preattentive texture discrimination based on terminator differences (2 vs. 5 terminators) alone. Otherwise, like Fig. 3.

From Julesz and Bergen 34


Figure 5.

Preattentively indistinguishable texture pair (middle) and indistinguishable target (right), although elements themselves appear very different (left).

From Julesz and Bergen 34


Figure 6.

Left: same as Figure 5, middle, except that the elements have identical orientations. Right: same as left except that the elements are square shaped.

Left from Julesz 32


Figure 7.

Combination of elements with identical textons (left) yield indistinguishable textons (middle) even when elements are square shaped (right).



Figure 8.

Similar to Fig. 7 except that white elongated blobs (flanked by black line segments) modulate texton density and yield weak texture discrimination in right but not in middle.



Figure 9.

Role of crossing texton. Preattentive texture discrimination based on presence and absence of crossings (A) and indistinguishable texture pairs because pairs either have no crossing (B, C) or both have crossings (D).

From Julesz and Bergen 34


Figure 10.

A + stands out from L's because of crossing texton and not because of 1.4‐times apparent reduction of perceived size.



Figure 11.

Target detection with and without texton differences. Abscissa, stimulus onset asynchrony (SOA); ordinate, percent of correct response.

From Julesz and Bergen 34


Figure 12.

Finding of size constancy for detecting 1 T among 6 L's (or vice versa) for SOA = 100 ms indicates that aperture of focal attention can be minute portion of fovea. Diameter of targets ar,!ound fixation marker varies from 13.8° to 2.8° arc.

From Julesz and Bergen 34


Figure 13.

Left: preattentively discriminable quadrant based on small orientation difference from the rest. Right: same texture pair as left, but thin black lines at the texture boundary diminish preattentive texture discrimination.

From Frisby 19


Figure 14.

O'Brian‐Cornsweet illusion. Top has luminance profile shown at bottom when scanned across a center line. If perceived circular boundary between center disk and outside annulus is covered by thin string, entire stimulus appears to have uniform brightness.

From Cornsweet 16


Figure 15.

Model of preattentive/attentive visual system.

From Julesz and Bergen 34
References
 1. Barlow, H. B. Summation and inhibition in the frog's retina. J. Physiol. Lond. 119: 69–88, 1953.
 2. Barlow, H. B. Single units and sensation: a neuron doctrine for perceptual psychology? Perception 1: 371–394, 1972.
 3. Barlow, H. B., R. M. Hill, and W. R. Levick. Retinal ganglion cells responding selectively to the direction and speed of image motion in the rabbit. J. Physiol. Lond. 137: 377–407, 1964.
 4. Barlow, H. B., and J. D. Mollon. The Senses. Cambridge, UK: Cambridge Univ. Press, 1982.
 5. Baumgartner, G. Indirekte Groessenbestimmung der receptiven Felder der Retina beim Menschen mittels der Hermannschen Gittertauschung (Abstract). Pfluegers Arch. 272: 21–22, 1960.
 6. Beck, J. Similarity grouping and peripheral discriminability under uncertainty. Am. J. Psychol. 85: 1–19, 1972.
 7. Bekesv, G. von. Zur Theorie des Hoerens. Phys. Z. 30: 115–125, 1929.
 8. Bergen, J. R., and B. Julesz. Parallel versus serial processing in rapid pattern discrimination. Nature Lond. 303: 696–698, 1983.
 9. Bergen, J. R., and B. Julesz. Rapid discrimination of visual patterns. IEEE Trans. Syst. Man Cybern. 13: 857–863, 1983.
 10. Blakemore, C, and B. Julesz. Stereoscopic depth aftereffect produced without monocular cues. Science Wash. DC 171: 386–388, 1971.
 11. Bowmaker, J. K., and H. J. A. Dartnall. Visual pigments of rods and cones in a human retina. J. Physiol. Lond. 298: 501–511, 1980.
 12. Breitmeyer, B. G., and L. Ganz. Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression, and information processing. Psychol. Rev. 83: 1–36, 1976.
 13. Caelli, T., and B. Julesz. On perceptual analyzers underlying visual texture discrimination: Part I. Biol. Cybern. 28: 167–175, 1978.
 14. Caelli, T., B. Julesz, and E. N. Gilbert. On perceptual analyzers underlying visual texture discrimination: Part II. Biol. Cybern. 29: 201–214, 1978.
 15. Chang, J. J., and B. Julesz. Displacement limits for spatial frequency filtered random‐dot cinematograms in apparent motion. Vision Res. 23: 1379–1385, 1983.
 16. Chang, J. J., and B. Julesz. Cooperative phenomena in apparent movement perception of random‐dot cinematograms. Vision Res. 24: 1781–1788, 1984.
 17. Cornsweet, T. N. Visual Perception. New York: Academic, 1970.
 18. Dev, P. Segmentation Processes in Visual Perception: A Cooperative Neural Model. Amherst, MA: Univ. of Massachusetts Press, 1974. (Coins Tech. Rep. 74C‐5.)
 19. De Yoe, E., J. Knierim, D. Sagi, B. Julesz, and D. Van Essen. Single unit responses to static and dynamic texture patterns im macaque V2 and V1 cortex (Abstract). Invest. Ophthalmol. Visual Sci. 27, Suppl.: 18, 1986.
 20. Enoch, J. M. Quantitative layer‐by‐layer perimetry. Invest. Ophthalmol. Visual Sci. 17: 208–257, 1978.
 21. Fender, D. H., and B. Julesz. Extension of Panum's fusional area in binocularly stabilized vision. J. Opt. Soc. Am. 57: 819–830, 1967.
 22. Frisby, J. P. Seeing: Illusion, Brain and Mind. Oxford, UK: Oxford Univ. Press, 1980.
 23. Gross, C. G., B. D. Bender, and C. E. Rocha‐Miranda. Visual receptive fields of neurons in the inferotemporal cortex of the monkey. Science Wash. DC 166: 1303–1306, 1969.
 24. Held, R., D. Ingle, G. E. Schneider, and C. B. Trevarthen. Locating and identifying: two modes of visual processing. Psychol. Forsch. 31: 44–62, 299–348, 1967–68.
 25. Helmholtz, H. von. Treatise on Physiological Optics. [Transl. from 3rd German ed. by J. P. C. Southall, Opt. Soc. of Am., 1925. Republished by Dover.]
 26. Hubel, D. H., and T. N. Wiesel. Receptive fields of single neurones in the cat's striate cortex. J. Physiol. Lond. 148: 574–591, 1959.
 27. Hubel, D. H., and T. N. Wiesel. Receptive fields of optic nerve fibres in the spider monkey. J. Physiol. Lond. 154: 572–580, 1960.
 28. Hubel, D. H., and T. N. Wiesel. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. Lond. 195: 215–243, 1968.
 29. Hubel, D. H., and T. N. Wiesel. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B Biol. Sci. 198: 1–59, 1977.
 30. James, W. The Principles of Psychology. New York: Holt, 1890.
 31. Julesz, B. Binocular depth perception of computer‐generated patterns. Bell Syst. Tech. J. 39: 1125–1162, 1960.
 32. Julesz, B. Visual pattern discrimination. IRE Trans. Inf. Theory 8: 84–92, 1962.
 33. Julesz, B. Binocular depth perception without familiarity cues. Science Wash. DC 145: 356–362, 1964.
 34. Julesz, B. Foundations of Cyclopean Perception. Chicago, IL: Univ. of Chicago Press, 1971.
 35. Julesz, B. Global stereopsis: cooperative phenomena in stereoscopic depth perception. In: Handbook of Sensory Physiology. Perception, edited by R. Held, H. W. Leibowitz, and H.‐L. Teuber. Berlin: Springer‐Verlag, 1978, vol. VIII, p. 215–256.
 36. Julesz, B. Spatial nonlinearities in the instantaneous perception of textures with identical power spectra. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 290: 83–94, 1980.
 37. Julesz, B. Textons, the elements of texture perception, and their interactions. Nature Lond. 290: 91–97, 1981.
 38. Julesz, B. Toward an axiomatic theory of preattentive vision. In: Dynamic Aspects of Neocortieal Function, edited by G. M. Edelman, W. M. Cowan, and W. E. Gall. New York: Wiley, 1984, p. 585–612.
 39. Julesz, B. Texton gradients: the texton theory revisited. Biol. Cybern. 54: 245–251, 1986.
 40. Julesz, B., and J. R. Bergen. Textons, the fundamental elements in preattentive vision and perception of textures. Bell Syst. Tech. J. 62: 1619–1645, 1983.
 41. Julesz, B., and J. J. Chang. Interaction between pools of binocular disparity detectors tuned to different disparities. Biol. Cybern. 22: 107–119, 1976.
 42. Julesz, B., and J. J. Chang. Do hypercyclopean textons exist (Abstract)? Invest. Ophthalmol. Visual Sci. 25, Suppl. 3: 199, 1984.
 43. Julesz, B., E. N. Gilbert, and J. D. Victor. Visual discrimination of textures with identical third‐order statistics. Biol. Cybern. 31: 137–140, 1978.
 44. Julesz, B., and R. A. Schumer. Early visual perception. Annu. Rev. Psychol. 32: 575–627, 1981.
 45. Jung, R., and L. Spillmann. Receptive‐field estimation and perceptual integration in human vision. In: Early Experience and Visual Information Processing in Perceptual and Reading Disorders, edited by F. A. Young and D. B. Lindslay. Washington, DC: Natl. Acad. Sci., 1970, p. 181–197.
 46. Kosslyn, S. M. Image and Mind. Cambridge, MA: Harvard Univ. Press, 1980.
 47. Kuffler, S. W. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16: 37–68, 1953.
 48. Lettvin, J. Y., H. R. Maturana, W. S. Mcculloch, and W. H. Pitts. What the frog's eye tells the frog's brain. Proc. Inst. Radio Eng. 47: 1940–1951, 1959.
 49. Macadam, D. L. Sources of Color Science. Cambridge, MA: MIT Press, 1970.
 50. Mackay, D. M., and V. MacKay. What causes decay of pattern contingent chromatic aftereffects? Vision Res. 15: 462–464, 1975.
 51. Maffei, L., and A. Fiorentini. Retinogeniculate convergence and analysis of contrast. Neurophysiology 35: 65–72, 1972.
 52. Marr, D. Early processing of visual information. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 275: 483–524, 1976.
 53. Marr, D. Vision. San Francisco, CA: Freeman, 1982.
 54. Marr, D., and T. Poggio. Cooperative computation of stereo disparity. Science Wash. DC 194: 283–287, 1976.
 55. Marr, D., and T. Poggio. A theory of human stereopsis. Proc. R. Soc. Lond. Ser. B Biol. Sci. 204: 301–328, 1979.
 56. Mayhew, J. E. W., and J. P. Frisby. Texture discrimination and Fourier analysis in human vision. Nature Lond. 275: 438–439, 1978.
 57. McCollough, C. Color adaptation of edge‐detectors in the human visual system. Science Wash. DC 149: 1115–1116, 1965.
 58. Mishkin, M. Cortical visual areas and their interactions. In: Brain and Human Behavior, edited by A. G. Karczmar and J. C. Eccles. Berlin: Springer‐Verlag, 1972, p. 187–208.
 59. Mountcastle, V. B. Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol. 20: 408–434, 1957.
 60. Neisser, U. Cognitive Psychology. New York: Appleton‐Century‐Crofts, 1967.
 61. Nelson, J. I. Globality and stereoscopic fusion in binocular vision. J. Theor. Biol. 49: 1–88, 1975.
 62. Osgood, C. E., and A. W. Heyer. A new interpretation of figural after‐effects. Psychol. Rev. 59: 98–118, 1952.
 63. Plateau, J. A. F. Quatrième note sur de nouvelles applications curieuses de la persistence des impressions de la rétine. Bull. Acad. Sci. Belg. 16: 254–260, 1850.
 64. Poggio, G. Processing stereoscopic information in primate visual cortex. In: Dynamic Aspects of Neocortieal Function, edited by G. M. Edelman, W. M. Cowan, and W. E. Gall. New York: Wiley, 1984, p. 613–635.
 65. Purkinje, J. A. Beiträge für nähren Kenntniss des Schwindles aus heautognostischen Daten. Med. Jb. Osterrekh 6: 553–564, 1820.
 66. Ransom‐Hogg, A., and L. Spillmann. Perceptive field size in fovea and periphery of the light‐ and dark‐adapted retina. Vision Res. 20: 221–228, 1980.
 67. Remington, R., and L. Pierce. Moving attention: evidence for time‐invariant shifts of visual selective attention. Percept. Psychophys. 35: 393–399, 1984.
 68. Resnlkoff, H. L. The Illusion of Reality. New York: Springer, in press.
 69. Sagi, D., and B. Julesz. “Where” and “what” in vision. Science Wash. DC 228: 1217–1219, 1985.
 70. Sagi, D., and B. Julesz. Short‐range limitation on detection of feature differences. Perception 14: A27, 1985.
 71. Sagi, D., and B. Julesz. Fast noninertial shifts of attention. Spatial Vision 1: 141–149, 1985.
 72. Sagi, D., and B. Julesz. Enhanced detection in the aperture of focal attention during simple discrimination tasks. Nature Lond. 321: 693–695, 1986.
 73. Schepelmann, F., H. Aschayeri, and G. Baumgartner. Die Reaktionen der “simple‐field” Neurone in Area 17 der Katze beim Hermann‐Gitter Kontrast (Abstract). Pfluegers Arch. 294: R57, 1967.
 74. Sekuler, R., and L. Ganz. Aftereffect of seen motion with a stabilized retinal image. Science Wash. DC 139: 419–420, 1963.
 75. Spillmann, L. Foveal perceptive fields in the human visual system measured with simultaneous contrast in grids and bars. Pfluegers Arch. 326: 281–299, 1971.
 76. Stiles, W. S. Mechanisms of Colour Vision. New York: Academic, 1978.
 77. Sutherland, N. S. Figural aftereffects and apparent size. Q. J. Exp. Physiol. 13: 222–228, 1961.
 78. Teller, D. Y. Locus questions in visual science. In: Visual Coding and Adaptability, edited by C. S. Harris, Hillsdale, NJ: Erlbaum, 1980, p. 151–176.
 79. Treisman, A. The psychological reality of levels of processing. In: Levels of Processing in Human Memory, edited by L. S. Cermak and F. I. M. Craik. Hillsdale, NJ: Erlbaum, 1979, p. 301–330.
 80. Treisman, A., and G. Gelade. A feature‐integration theory of attention. Cognit. Psychol. 12: 97–136, 1980.
 81. Troscianko, T. A stereoscopic presentation of the Hermann grid. Vision Res. 22: 485–489, 1982.
 82. Tsal, Y. Movements of attention across the visual field. J. Exp. Psychol. Hum. Percept. Perform. 9: 523–530, 1983.
 83. Tyler, C. W., and B. julesz. On the depth of the cyclopean retina. Exp. Brain Res. 40: 196–202, 1980.
 84. Ungerleider, L. G., and M. Mishkin. Two cortical visual systems. In: Analysis of Visual Behavior, edited by D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield. Cambridge, MA: MIT Press, 1982, p. 549–586.
 85. Westheimer, G. Spatial interaction in human cone vision. J. Physiol. Lond. 190: 139–154, 1967.
 86. Wohlgemuth, A. On the After‐Effect of Seen Movement. Cambridge, UK: Cambridge Univ. Press, 1911. PhD thesis, (Br. J. Psychol. Monogr. Suppl.)
 87. Zeki, S. M. Functional specialisation in the visual cortex of the rhesus monkey. Nature Lond. 274: 423–428, 1978.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Bela Julesz. Preattentive Human Vision: Link Between Neurophysiology and Psychophysics. Compr Physiol 2011, Supplement 5: Handbook of Physiology, The Nervous System, Higher Functions of the Brain: 585-604. First published in print 1987. doi: 10.1002/cphy.cp010514