Comprehensive Physiology Wiley Online Library

Abnormalities of Motor Behavior After Cortical Lesions in Humans

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Frontal Lobe
1.1 Ablation of Prefrontal Cortex
1.2 Frontal Motor Fields
1.3 Disturbances of Movement Execution
1.4 Functional Considerations on Pyramidal Syndrome in Humans
1.5 Supplementary Motor Area
1.6 Lesions of Premotor Cortex
1.7 Functional Significance of Premotor Cortex for Proximal Musculature Control and Interlimb Coordination
1.8 Frontal Eye Fields
1.9 Output Organization of Frontal Agranular Motor Areas
2 Parietal Lobe
2.1 Sensory Deficits
2.2 Motor Dysfunction After Parietal Lesions
3 Temporal Lobe
4 Occipital Lobe
5 Motor Coordination After Commissurotomy
6 Observations in Patients After Hemispherectomy
7 Apraxias
7.1 Historical Aspects
7.2 Distribution of the Apraxias in Different Body Parts
7.3 Concept of Disconnection Syndromes
7.4 Apraxia and Left Hemisphere
8 Approach Toward a Functional Analysis of Movement Disorders
8.1 Effects of Sensory Disturbances Due to Cortical Lesions on Motor Function
8.2 Sensory‐Motor and Motor‐Sensory Interaction: Hand as a Sense Organ
8.3 Posterior Apraxias as Disorders of Sensory‐Motor Integration
8.4 Anatomical Considerations
9 Temporal Aspects of Motor Control
10 Summary and Conclusions
Figure 1. Figure 1.

Computerized tomography scan, horizontal plane. Left, hemorrhage in frontal lobe involving premotor area and primary motor cortex region and underlying white matter. Middle and right, large parietal lesion on horizontal and coronal planes of a nuclear magnetic resonance scan. Neither patient had clinically detectable neurological deficits. Right side of brain is seen on left side of scans.

Figure 2. Figure 2.

Surface view of left cerebral hemisphere of macaque monkey. Medial surface of hemisphere is shown, inverted, at top. MI, primary motor cortex; Mil, supplementary motor cortex; PM, premotor cortex (approximate locations). Each dotted line represents fundus of a sulcus. Open squares, rough estimation of rostral boundary of PM.

From Wise
Figure 3. Figure 3.

Motor fields of human brain according to Foerster. Numbers indicate cytoarchitectonic areas as designated by Vogt and Vogt .

From Foerster
Figure 4. Figure 4.

Arm‐hand movements and brain stem of patient with total destruction of arm‐finger field of left precentral region. Initially there was complete paralysis of right arm. After 2 yr of intense physiotherapy, patient was able to perform movements shown in the various pictures. Individual finger movements were not possible, but synergistic finger flexion and interaction between forefinger and thumb were possible. Bottom, section of medulla oblongata shows complete degeneration of left pyramid.

From Foerster
Figure 5. Figure 5.

Computerized tomography scan of right‐handed patient with small lesion involving hand area of left precentral gyrus. Left of brain is to reader's right. Arrow points to lesion.

Figure 6. Figure 6.

Percent of mean increase of regional cerebral blood flow during internal programming of motor‐sequence test performed by contralateral hand. Subjects had learned to perform quick sequence of opposing movements of fingers and thumb, in which thumb had to touch index finger twice, middle finger once, ring finger three times, and little finger twice. Thereafter, movements had to be performed in reverse order. Each run had to be accomplished within 10 s. Values corrected for diffuse increases of the blood flow. Left, left hemisphere, 3 subjects; right, right hemisphere, 5 subjects.

From Roland et al.
Figure 7. Figure 7.

Averaged curves from typical experiment showing movement‐related potentials preceding unilateral right‐sided (A) and bilateral (B) movements. Electrode positions over C'3, left precentral; C'4′, right precentral; Cz, vertex; P3, left parietal; P4, right parietal; Pz, midline parietal. Averages of 256 right‐sided and 256 bilateral movements performed alternately in blocks of 128 within same experiment. With unilateral movements, a larger Bereitschaftspotential (readiness potential) can be seen over contralateral precentral region (C'3). With bilateral movements, readiness potential is larger over right, or minor, hemisphere of right‐handed subjects. This difference is pronounced in precentral leads and is almost missing in parietal leads. Vertex amplitudes tend to be larger with bilateral movements than with unilateral movements.

From Kristeva et al.
Figure 8. Figure 8.

Common region of overlap of frontal lesions involving premotor cortex of patients with proximal weakness and limb‐kinetic apraxia. Right hemisphere is shown on left. CS, central sulcus.

Prom Freund and Hummelsheim
Figure 9. Figure 9.

Computerized tomography (CT) scan on right shows patient with proximal weakness and lesion involving precentral gyrus in area of body representation for proximal muscles. For comparison, CT scan of patient with premotor lesion is shown on left. Right hemisphere is on left in both scans. CS, central sulcus.

From Freund and Hummelsheim
Figure 10. Figure 10.

Relative size of some descending tracts and nuclei in primates.

From Nathan and Smith
Figure 11. Figure 11.

Major motor cortical projections. Left, premotor‐reticulospinal pathway originating from premotor cortex; right, cortical spinal (pyramidal) tract from primary and supplementary motor areas.

From Freund
Figure 12. Figure 12.

Hand of patient with excision of parietal cortex. Left, patient trying to make fist; right, patient trying to write.

From Foerster
Figure 13. Figure 13.

Lesion sites in different forms of visuomotor ataxia. A: unilateral direct visuomotor ataxia, localized to one hand in homonymous field. B: unilateral crossed visuomotor ataxia, localized to one hand in visual field of opposite side. C: bilateral crossed visuomotor ataxia, affecting each hand in opposite visual fields.

From Rondot et al.
Figure 14. Figure 14.

Liepmann's original scheme showing suggested lesion sites for limb‐kinetic apraxia (1), ideo‐kinetic apraxia (2), and ideational apraxia (3).

From Liepmann
Figure 15. Figure 15.

Liepmann's scheme illustrating his concept about dyspraxia of left hand after damage of fibers originating from left precentral gyrus. Cortical lesion at site 1 (left hand area) and subcortical lesion at site 2 will not only damage descending but also callosal fibers, causing hemiparesis of right hand and dyspraxia of left hand. Damage at lesion site 3 will only cause dyspraxia of left hand and at lesion site 4 hemiparesis of right hand without left‐hand dyspraxia.

From Liepmann
Figure 16. Figure 16.

Moberg's picking‐up test. Objects shown are picked up and placed in a container. Patient is not asked to identify object.

From Moberg
Figure 17. Figure 17.

Moberg's illustration of “eyes of the fingers” (left) and of significance of hand sensation for motor function of the hand.

From Moberg
Figure 18. Figure 18.

Apparatus designed by Johansson and Westling for measuring grip force and load force during precision grip, a: Table; b: holes in table; c: exchangeable weight shielded from subject's view by table; d: exchangeable discs; e and f: vertical position transducer with ultrasonic receiver (e) and ultrasonic transmitter (f); g: accel‐erometer; h: strain‐gauge force transducers for measurement of grip force and load force (vertical lifting force); i: peg with hemispherical tip on which object rests while standing on table.

From Johansson and Westling
Figure 19. Figure 19.

Relationship between pure sensory, pure motor, and integrated sensory‐motor functions of brain and their disturbance patterns as seen in human motor disorders.

From Freund
Figure 20. Figure 20.

Lateral surface of rhesus monkey cerebral hemisphere showing three major divisions of association cortex: 1) parasensory association cortex (auditory association areas AAI and AAII); somatic sensory association areas SAI and SAII; (visual association areas VAI and VAII); 2) frontal association cortex (premotor and prefrontal areas); and 3) paralimbic association cortex (cingulate gyrus, parahippocampal gyrus, temporal pole, and orbitofrontal cortex).

From Pandya and Seltzer
Figure 21. Figure 21.

Lateral surface of rhesus monkey cerebral hemisphere showing location and pattern of cortical sensory convergence in intraparietal sulcus (IPS and POa), superior temporal sulcus (TPO and PGa), and frontal lobe (premotor and prefrontal areas). V, visual; A, auditory; S, somatosensory.

Adapted from Pandya and Seltzer


Figure 1.

Computerized tomography scan, horizontal plane. Left, hemorrhage in frontal lobe involving premotor area and primary motor cortex region and underlying white matter. Middle and right, large parietal lesion on horizontal and coronal planes of a nuclear magnetic resonance scan. Neither patient had clinically detectable neurological deficits. Right side of brain is seen on left side of scans.



Figure 2.

Surface view of left cerebral hemisphere of macaque monkey. Medial surface of hemisphere is shown, inverted, at top. MI, primary motor cortex; Mil, supplementary motor cortex; PM, premotor cortex (approximate locations). Each dotted line represents fundus of a sulcus. Open squares, rough estimation of rostral boundary of PM.

From Wise


Figure 3.

Motor fields of human brain according to Foerster. Numbers indicate cytoarchitectonic areas as designated by Vogt and Vogt .

From Foerster


Figure 4.

Arm‐hand movements and brain stem of patient with total destruction of arm‐finger field of left precentral region. Initially there was complete paralysis of right arm. After 2 yr of intense physiotherapy, patient was able to perform movements shown in the various pictures. Individual finger movements were not possible, but synergistic finger flexion and interaction between forefinger and thumb were possible. Bottom, section of medulla oblongata shows complete degeneration of left pyramid.

From Foerster


Figure 5.

Computerized tomography scan of right‐handed patient with small lesion involving hand area of left precentral gyrus. Left of brain is to reader's right. Arrow points to lesion.



Figure 6.

Percent of mean increase of regional cerebral blood flow during internal programming of motor‐sequence test performed by contralateral hand. Subjects had learned to perform quick sequence of opposing movements of fingers and thumb, in which thumb had to touch index finger twice, middle finger once, ring finger three times, and little finger twice. Thereafter, movements had to be performed in reverse order. Each run had to be accomplished within 10 s. Values corrected for diffuse increases of the blood flow. Left, left hemisphere, 3 subjects; right, right hemisphere, 5 subjects.

From Roland et al.


Figure 7.

Averaged curves from typical experiment showing movement‐related potentials preceding unilateral right‐sided (A) and bilateral (B) movements. Electrode positions over C'3, left precentral; C'4′, right precentral; Cz, vertex; P3, left parietal; P4, right parietal; Pz, midline parietal. Averages of 256 right‐sided and 256 bilateral movements performed alternately in blocks of 128 within same experiment. With unilateral movements, a larger Bereitschaftspotential (readiness potential) can be seen over contralateral precentral region (C'3). With bilateral movements, readiness potential is larger over right, or minor, hemisphere of right‐handed subjects. This difference is pronounced in precentral leads and is almost missing in parietal leads. Vertex amplitudes tend to be larger with bilateral movements than with unilateral movements.

From Kristeva et al.


Figure 8.

Common region of overlap of frontal lesions involving premotor cortex of patients with proximal weakness and limb‐kinetic apraxia. Right hemisphere is shown on left. CS, central sulcus.

Prom Freund and Hummelsheim


Figure 9.

Computerized tomography (CT) scan on right shows patient with proximal weakness and lesion involving precentral gyrus in area of body representation for proximal muscles. For comparison, CT scan of patient with premotor lesion is shown on left. Right hemisphere is on left in both scans. CS, central sulcus.

From Freund and Hummelsheim


Figure 10.

Relative size of some descending tracts and nuclei in primates.

From Nathan and Smith


Figure 11.

Major motor cortical projections. Left, premotor‐reticulospinal pathway originating from premotor cortex; right, cortical spinal (pyramidal) tract from primary and supplementary motor areas.

From Freund


Figure 12.

Hand of patient with excision of parietal cortex. Left, patient trying to make fist; right, patient trying to write.

From Foerster


Figure 13.

Lesion sites in different forms of visuomotor ataxia. A: unilateral direct visuomotor ataxia, localized to one hand in homonymous field. B: unilateral crossed visuomotor ataxia, localized to one hand in visual field of opposite side. C: bilateral crossed visuomotor ataxia, affecting each hand in opposite visual fields.

From Rondot et al.


Figure 14.

Liepmann's original scheme showing suggested lesion sites for limb‐kinetic apraxia (1), ideo‐kinetic apraxia (2), and ideational apraxia (3).

From Liepmann


Figure 15.

Liepmann's scheme illustrating his concept about dyspraxia of left hand after damage of fibers originating from left precentral gyrus. Cortical lesion at site 1 (left hand area) and subcortical lesion at site 2 will not only damage descending but also callosal fibers, causing hemiparesis of right hand and dyspraxia of left hand. Damage at lesion site 3 will only cause dyspraxia of left hand and at lesion site 4 hemiparesis of right hand without left‐hand dyspraxia.

From Liepmann


Figure 16.

Moberg's picking‐up test. Objects shown are picked up and placed in a container. Patient is not asked to identify object.

From Moberg


Figure 17.

Moberg's illustration of “eyes of the fingers” (left) and of significance of hand sensation for motor function of the hand.

From Moberg


Figure 18.

Apparatus designed by Johansson and Westling for measuring grip force and load force during precision grip, a: Table; b: holes in table; c: exchangeable weight shielded from subject's view by table; d: exchangeable discs; e and f: vertical position transducer with ultrasonic receiver (e) and ultrasonic transmitter (f); g: accel‐erometer; h: strain‐gauge force transducers for measurement of grip force and load force (vertical lifting force); i: peg with hemispherical tip on which object rests while standing on table.

From Johansson and Westling


Figure 19.

Relationship between pure sensory, pure motor, and integrated sensory‐motor functions of brain and their disturbance patterns as seen in human motor disorders.

From Freund


Figure 20.

Lateral surface of rhesus monkey cerebral hemisphere showing three major divisions of association cortex: 1) parasensory association cortex (auditory association areas AAI and AAII); somatic sensory association areas SAI and SAII; (visual association areas VAI and VAII); 2) frontal association cortex (premotor and prefrontal areas); and 3) paralimbic association cortex (cingulate gyrus, parahippocampal gyrus, temporal pole, and orbitofrontal cortex).

From Pandya and Seltzer


Figure 21.

Lateral surface of rhesus monkey cerebral hemisphere showing location and pattern of cortical sensory convergence in intraparietal sulcus (IPS and POa), superior temporal sulcus (TPO and PGa), and frontal lobe (premotor and prefrontal areas). V, visual; A, auditory; S, somatosensory.

Adapted from Pandya and Seltzer
References
 1. Akelaitis, A. J. Studies on the corpus callosum. IV. Diagnostic dyspraxia in epileptics following partial and complete section of the corpus callosum. Am. J. Psychiatry 101: 594–599, 1944.
 2. Alajouanine, T., and F. Lhermitte. Les troubles des activités expressives du langage dans l'aphasie, leurs relations avec les apraxies. Rev. Neurol. Paris 102: 604–629, 1960.
 3. Albano, J. E., M. Mishkin, L. E. Westbrook, and R. H. Wurtz. Visuomotor deficits following ablation of monkey superior colliculus. J. Neurophysiol. 48: 338–351, 1982.
 4. Anton, D. G. Beiderseitige Erkrankung der Scheitelgegend des Grosshirns. Wien. Klin. Wochenschr. 12: 1193–1199, 1899.
 5. Badal, P. Cécités psychiques; aléxie, agraphie, hemianopsie inferieure, trouble du sens de l'espace. Arch. d'Ophthamol. VIII: 97–117, 1888.
 6. Bailey, P. A., and G. von Bonin. The Isocortex of Man. Urbana: Univ. of Illinois Press, 1951.
 7. Balint, R. Seelenlähmung des Schauens, optische Ataxie, räumliche Stöning der Aufmerksamkeit. Monatsschr. Psy‐chiatr. Neurol. 25: 51–81, 1909.
 8. Bates, J. A. V. Stimulation of the medial surface of the human cerebral hemisphere after hemispherectomy. Brain 76: 405–447, 1953.
 9. Bates, J. A. V., and G. Ettlinger. Posterior biparietal ablations in the monkey. Arch. Neurol. 3: 177–192, 1960.
 10. Bay, E. Die corticale Dysarthrie und ihre Beziehungen zur sogenannten motorischen Aphasie. Dtsch. Z. Nervenheilkd. 176: 553–594, 1957.
 11. Beevor, C. E., and V. Horsley. A further minute analysis of electric stimulation of the so‐called motor region of the cortex cerebri in the monkey (Macacus sinicus). Philos. Trans. R. Soc. Lond. 179: 205–241, 1888.
 12. Benati, M., S. Caghio, P. Morasso, V. Tagliasco, and R. Zaccaria. Anthropomorphic robotics. I. Representing mechanical complexity. II. Analysis of manipulator dynamics and the output motor impedance. Biol. Cybern. 38: 125–150, 1980.
 13. Bender, M. B., H.‐L. Teuber, and W. S. Battersby. Discriminations of weights by man with penetrating lesions of parietal lobes. Trans. Maer. Neurol. Assoc. 75: 252–255, 1950.
 14. Benecke, R., B. Conrad, H. M. Meinck, and J. Hohne. Electromyographic analysis of bicycling on an ergometer for evaluation of spasticity of lower limbs in man. In: Motor Control Mechanism in Health and Disease, edited by J. E. Desmedt. New York: Raven, 1983, p. 1035–1046.
 15. Bennett, R. E., D. G. Ferrington, and M. Rowe. Tactile neuron classes within second somatosensory area (SII) of cat cerebral cortex. J. Neurophysiol. 43: 292–309, 1980.
 16. Benton, A. L. The visual retention test as a constructional praxis task. Confin. Neurol. 22: 141–155, 1962.
 17. Benton, A. L. Disorders of spatial orientation. In: Handbook of Clinical Neurology, edited by J. P. Vinken and G. N. Bruyn. Amsterdam: North‐Holland, 1969, vol. 3, p. 212–228.
 18. Berger, W., E. Altenmueller, and V. Dietz. Normal and impaired development of children's gait. Hum. Neurobiol. 3: 163–170, 1984.
 19. Berger, W., G. Horstmann, and V. Dietz. Tension development and muscle activation in the leg during gait in spastic hemiparesis: independence of muscle hypertonia and exaggerated stretch reflexes. J. Neurol. Neurosurg. Psychiatry 47: 1029–1033, 1984.
 20. Berger, W., J. Quintern, and V. Dietz. Pathophysiology of gait in children with cerebral palsy. Electroencephalogr. Clin. Neurophysiol. 53: 538–548, 1982.
 21. Biemond, A. The conduction of pain above the level of the thalamus opticus. Arch. Neurol. Psychiatry 75: 231–244, 1956.
 22. Bogaert, L. van, and P. Martin. L'apraxie de la marche et l'atonie statique. Encéphale 24: 11–18, 1929.
 23. Bogen, J. E. The other side of the brain. I. Dysgraphia and dyscopia following cerebral commissurotomy. Bull. Los Ang. Neurol. Soc. 32: 73–105, 1969.
 24. Bonin, G. von. Architecture of the precentral motor cortex and some adjacent areas. In: The Precentral Motor Cortex, edited by P. C. Bucy. Urbana: Univ. of Illinois Press, 1949, p. 7–82.
 25. Bradvik, B., C. Hedqvist, D. H. Ingvar, K. Johnson, and E. Ryding. rCBF studies of hemisphere dominance and language functions (Abstract). Proc. Swed. Soc. Med. Dec: 262, 1982.
 26. Brickner, R. An interpretation of frontal lobe function based upon the study of a case of partial bilateral frontal lobectomy. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 13: 259–351, 1934
 27. Brinkman, C. Lesions in supplementary motor area interfere with a monkey's performance of a bimanual coordination task. Neurosci. Lett. 27: 267–270, 1981.
 28. Brinkman, J., and H. G. J. M. Kuypers. Cerebral control of contralateral and ipsilateral arm, hand and finger movements in the split‐brain rhesus monkey. Brain 96: 653–674, 1973.
 29. Brodmann, K. Beiträge zur histologischen Lokalisation der Grosshirnrinde. I. Die Regio Rolandica. J. Psychol. Neurol. 2: 79–107, 1903.
 30. Brown, J. W. Aphasia, Apraxia and Agnosia. Springfield, IL: Thomas, 1972.
 31. Bruce, C. J., and M. E. Goldberg. Physiology of the frontal eye fields. Trends Neurosci. 7: 436–441, 1984.
 32. Bruce, C. J., and M. E. Goldberg. Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol. 53: 603–635, 1985.
 33. Bucy, P. C. Electrical excitability and cyto‐architecture of the premotor cortex in monkeys. Arch. Neurol. Psychiatry 30: 1205–1225, 1933.
 34. Bucy, P. C. Concluding remarks. In: Cerebral Localization and Organization, edited by G. Schaltenbrand and C. N. Woolsey. Madison: Univ. of Wisconsin Press, 1964, p. 155.
 35. Burke, D., C. J. Andrews, and J. D. Gillies. The reflex response to sinusoidal stretching in spastic man. Brain 94: 455–470, 1971.
 36. Buser, P., and J. Bancaud. Electro‐clinical effects of stimulation of the supplementary motor area. In: Atlas of Stereotactic Anatomy of the Telencephalon, edited by J. Talairach and G. Szikla. Paris: Masson & Cie, 1967, p. 290–363.
 37. Campbell, R. J., and H. F. Harlow. Problem solution by monkeys following removal of the prefrontal areas. V. Spatial delayed reactions. J. Exp. Psychol. 35: 110–126, 1945.
 38. Castaigne, P., D. Laplane, and J. D. Degos. Trois cas de négligence motrice par lésion frontale pré‐rolandique. Tome 126: 5–15, 1972.
 39. Catsman‐Berrevoets, C. E., H. G. J. M. Kuypers, and R. N. Lemon. Cells of origin of the frontal projections to mag‐nocellular and parvocellular red nucleus and superior colliculus in cynomolgous monkey. An HRP study. Neurosci. Lett. 12: 41–46, 1979.
 40. Chapman, C. E., and M. Wiesendanger. Recovery of function following unilateral lesions of the bulbar pyramid in the monkey. Electroencephalogr. Clin. Neurophysiol. 53: 374–387, 1982.
 41. Chavis, D. A., and D. N. Pandya. Further observations on corticofrontal connections in the rhesus monkey. Brain Res. 117: 369–386, 1976.
 42. Conrad, B., R. Benecke, J. Carnehl, J. Höhne, and H. M. Meinck. Pathophysiological aspects of human locomotion. In: Motor Control Mechanism in Health and Disease, edited by J. E. Desmedt. New York: Raven, 1983, p. 717–726.
 43. Corkin, S., B. Milner, and T. Rasmussen. Somatosensory threshold: contrasting effects of post‐central gyrus and posterior parietal lobe excision. Arch. Neurol. 23: 41–58, 1970.
 44. Coxe, U. S., and W. M. Landau. Observations on the effect of supplementary motor ablation in the monkey. Brain 88: 763–772, 1965.
 45. Critchley, M. The anterior cerebral artery and its syndromes. Brain 53: 120–165, 1930.
 46. Critchley, M. The Parietal Lobes. New York: Hafner, 1953.
 47. Darian‐Smith, I., I. Davidson, and K. O. Johnson. Peripheral neural representation of spatial dimensions of a textured surface moving across the monkey's finger pad. J. Physiol. Lond. 309: 135–146, 1980.
 48. Darian‐Smith, I., A. Goodwin, M. Sugitani, and J. Hey‐Wood. Scanning a textured surface with the fingers: events in sensorimotor cortex. Exp. Brain Res. Suppl. 10: 17–43, 1985.
 49. Darlan‐Smlth, I., and L. E. Oke. Peripheral neural representation of the spatial frequency of a grating moving across the monkey's finger pad. J. Physiol. Lond. 309: 117–133, 1980.
 50. Déjérine, J. A propos de l'agnosie tactile. Rev. Neurol. Paris 15: 781–784, 1907.
 51. Déjérine, J., and J. Mouzon. Deux cas de syndrome sensitif cortical. Rev. Neurol. Paris 28: 388–392, 1914–1915.
 52. Delay, J. Les astéréognosies, pathologic du toucher. Paris: Masson & Cie, 1935.
 53. Dellon, A. L. Evaluation of Sensibility and Re‐education of Sensation in the Hand. Baltimore, MD: Williams & Wilkins, 1981.
 54. Denny‐Brown, D. The nature of apraxia. J. Nerv. Ment. Dis. 126: 19–33, 1958.
 55. Denny‐Brown, D. The Cerebral Control of Movement. Liverpool, UK: Liverpool Univ. Press, 1966.
 56. Denny‐Brown, D., and E. H. Botterell. The motor functions of the agranular frontal cortex. Res. Publ. Assoc. Res. New. Ment. Dis. 27: 235–345, 1948.
 57. De Renzi, E., P. Faglioni, M. Lodesani, and A. Vecchi. Performance of left brain‐damaged patients on imitation of single movements and motor sequences. Frontal and parietal‐injured patients compared. Cortex 19: 333–343, 1983.
 58. De Renzi, E., P. Faglioni, and G. Scotti. Tactile spatial impairment and unilateral cerebral damage. J. Nerv. Ment. Dis. 146: 468–475, 1968.
 59. Derouesné, C. Le syndrome “pré‐moteur.” A propos de 5 observations de tumeurs rolando‐prérolandiques circonscrites. Rev. Neurol. Paris 128: 353–363, 1973.
 60. Deuel, R. K., and N. L. Dunlop. Role of frontal polysensory cortex in guidance of limb movements. Brain Res. 169: 183–188, 1979.
 61. Dietz, V., J. Quintern, and W. Berger. Electrophysiological studies of gait in spasticity and rigidity. Evidence that altered mechanical properties of muscle contribute to hypertonia. Brain 104: 431–449, 1981.
 62. Downer, J. L. De C. Changes in visually guided behaviour following midsagittal division of optic chiasm and corpus callosum in monkey (Macaca mulatta). Brain 82: 251–259, 1959.
 63. Emile, J. Contribution a l'étude des paralysies pseudo‐bul‐baires corticales (diplégie facio‐linguo‐masticatrice). Paris: AGEMP, 1965. Thèse.
 64. Enoka, R. M. Muscular control of a learned movement: the speed control system hypothesis. Exp. Brain Res. 51: 135–145, 1983.
 65. Ettlinger, G. Apraxia considered as a disorder of movements that are language‐dependent: evidence from cases of brain bisection. Cortex 5: 285–289, 1969.
 66. Ettlinger, G., and J. E. Kahlsbeck. Changes in tactual discrimination and in visual reaching after successive and simultaneous bilateral posterior parietal ablations in the monkey. J. Neurol. Neurosurg. Psychiatry 25: 256–268, 1962.
 67. Ettlinger, G., H. B. Morton, and A. Moffett. Tactile discrimination performance in the monkey: the effect of bilateral posterior parietal and lateral frontal ablations, and of callosal section. Cortex 2: 5–29, 1966.
 68. Evarts, E. V. Role of motor cortex in voluntary movements in primates. In: Handbook of Physiology. The Nervous System. Motor Control, edited by V. B. Brooks. Bethesda, MD: Am. Physiol. Soc, 1981, sect. 1, vol. II, pt. 2, chapt. 23, p. 1083–1120.
 69. Ferrier, D. The localisation of function in the brain. Proc. R. Soc. land. B Biol. Sci. 22: 229–232, 1874.
 70. Finkelnburg, R. Vortrag in der Niedernhein. Gesellschaft der Aerzte. Klin. Wochenschr. 7: 449, 1870.
 71. Fischer, B., and R. Boch. Enhanced activation of neurons in prelunate cortex before visually guided saccades of trained rhesus monkey. Exp. Brain Res. 44: 129–137, 1981.
 72. Fitts, P. M. The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47: 381–391, 1954.
 73. Foerster, O. Der Lähmungstypus bei corticalen Hirnherden. Dtsch. Z. Nervenheilkd. 37: 349–414, 1909.
 74. Foerster, O. Motor cortex in man in the light of Hughlings Jackson's doctrines. Brain 59: 135–139, 1936.
 75. Foerster, O. Motorische Felder und Bahnen. In: Handbuch der Neurologie, edited by H. Bumke and O. Foerster. Berlin: Springer‐Verlag, 1936, vol. 6, p. 1–357.
 76. Foerster, O. Motorische Felder und Bahnen: sensible corticate Felder. In: Handbuch der Neurologie, edited by H. Bumke and O. Foerster. Berlin: Springer‐Verlag, 1936, vol. 6, p. 358–448.
 77. Foix, C. Contribution a l'etude de l'apraxie idéomotrice. Rev. Neurol. Paris 1: 285–298, 1916.
 78. Foix, C., and P. Hillemand. Les syndromes de l'artère cerebrale anterieure. Encéphale 20: 209–221, 1925.
 79. Foix, C., and M. Levy. Les ramollissements sylviens. Syndromes des lesions en foyer du territoire de l'artère sylvienne et de ses branches. Rev. Neurol. Paris 2: 1–51, 1927.
 80. Fox, P. T., J. M. Fox, M. E. Raichle, and R. M. Burde. The role of cerebral cortex in the generation of voluntary saccades: a positron emission tomographic study. J. Neurophysiol. 54: 348–369, 1985.
 81. Fox, P. T., J. S. Perlmutter, and M. E. Raichle. A stereotactic method of anatomical localization for positron emission tomography. J. Comput. Assist. Tomogr. 9: 141–153, 1985.
 82. Freeman, R. B., Jr. The apraxias, purposeful motor behavior, and left‐hemisphere function. In: Cognition and Motor Processes, edited by W. Prinz and A. F. Sanders. Berlin: Springer‐Verlag, 1984, p. 29–50.
 83. French, L. A., and D. R. Johnson. Observations on the motor system following cerebral hemispherectomy. Neurology. 5: 11–14, 1955.
 84. Freud, S. Zur Auffassung der Aphasien. Wien: Deuticke, 1891.
 85. Freund, H.‐J. Premotor areas in man. Trends Neurosci. 7: 481–483, 1984.
 86. Freund, H.‐J. The pathophysiology of central paresis. In: Electromyography and Evoked Potentials, edited by A. Struppler and A. Weindl. New York: Springer‐Verlag, 1985, p. 19–22.
 87. Freund, H.‐J. Clinical aspects of premotor function. Behav. Brain Res. 18: 187–191, 1985.
 88. Freund, H.‐J. Time control of hand movements. In: Progress in Brain Research. The Oculomotor and Skeletalmotor Systems, edited by H.‐J. Freund, U. Buttner, B. Cohen, and J. Noth. Amsterdam: Elsevier, 1986, vol. 64, p. 287–294.
 89. Freund, H.‐J., and H. J. Buedingen. The relationship between speed and amplitude of the fastest voluntary contractions of human arm muscles. Exp. Brain Res. 31: 1–12, 1978.
 90. Freund, H.‐J., and H. Hummelsheim. Premotor cortex in man: evidence for innervation of proximal limb muscles. Exp. Brain Res. 53: 479–482, 1984.
 91. Freund, H.‐J., and H. Hummelsheim. Lesions of premotor cortex in man. Brain 108: 697–733, 1985.
 92. Fulton, J. F. Forced graping in relation to the syndrome of the premotor area. Arch. Neurol. Psychiatry 31: 221–235, 1934.
 93. Fulton, J. F. A note on the definition of the “motor” and “premotor” areas. Brain 58: 311–316, 1935.
 94. Fulton, J. F., C. F. Jacobson, and M. A. Kennard. A note concerning the relation of the frontal lobes to posture and forced grasping in monkeys. Brain 55: 524–536, 1932.
 95. Fulton, J. F., and M. A. Kennard. A study of flaccid and spastic paralyses produced by lesions of the cerebral cortex in primates. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 13: 158–210, 1934.
 96. Fuster, J. M. The Prefrontal Cortex. New York: Raven, 1980.
 97. Gardner, W. J., L. J. Karnosh, C. C. McClure, Jr., and A. K. Gardner. Residual function following hemispherectomy for tumour and for infantile hemiplegia. Brain 78: 487–502, 1955.
 98. Gazzaniga, M. S. Visuomotor integration in split‐brain monkeys with other cerebral lesions. Exp. Neurol. 16: 289–298, 1966.
 99. Gazzaniga, M. S. Eye position and visual motor co‐ordination. Neuropsychologia 7: 379–382, 1969.
 100. Gazzaniga, M. S., J. E. Bogen, and R. W. Sperry. Observations on visual perception after disconnexion of the cerebral hemispheres in man. Brain 88: 221–236, 1965.
 101. Gazzaniga, M. S., J. E. Bogen, and R. W. Sperry. Dyspraxia following division of the cerebral commissures. Arch. Neurol. 16: 606–612, 1967.
 102. Gerstmann, J., and P. Schilder. Über eine besondere Gangstörung bei Stirnhirnerkrankung. Wien. Med. Wochenschr. 76: 97–102, 1926.
 103. Geschwind, N. Disconnexion syndromes in animals and man. I. Brain 88: 237–294, 1965.
 104. Geschwind, N. Disconnexion syndromes in animals and man. II. Brain 88: 585–644, 1965.
 105. Geschwind, N. The apraxias. In: Phenomenology of Will and Action, edited by E. W. Straus and R. M. Griffith. Pittsburgh, PA: Duquesne Univ. Press, 1967, p. 91–102.
 106. Geschwind, N. The apraxias: neural mechanisms of disorders of learned movements. Am. Sci. 63: 188–195, 1975.
 107. Geschwind, N., and E. Kaplan. A human cerebral deconriection syndrome. Neurology 12: 675–685, 1962.
 108. Gibson, J. J. Observations on active touch. Psychol. Rev. 69: 477–491, 1962.
 109. Gilden, L., H. G. Vaughan, Jr., and L. D. Costa. Sum‐mated human EEG potentials associated with voluntary movement. Electroencephalogr. Clin. Neurophysiol. 20: 433–438, 1966.
 110. Gilman, S., and L. A. Marco. Effects of medullary pyramidotomy in the monkey. I. Clinical and electromyographic abnormalities. Brain 94: 495–514, 1971.
 111. Gilman, S., L. A. Marco, and H. C. Ebel. Effects of medullary pyramidotomy in the monkey. II. Abnormalities of spindle afferent responses. Brain 94: 515–530, 1971.
 112. Godschalk, M., R. N. Lemon, H. G. T. Nijs, and H. G. J. M. Kuypers. Behavior of neurons in monkey peri‐arcuate and precentral cortex before and during visually guided arm and hand movements. Exp. Brain Res. 44: 113–116, 1981.
 113. Gogol, D. Beitrag zur Lehre der Aphasie. Breslau, Germany: Universität Breslau, 1873. Dissertation.
 114. Goldberg, M. E. Supranuclear control of saccadic eye movements. In: Functional Basis of Ocular Motility Disorders, edited by G. Lennerstrand, D. S. Zee, and E. L. Keller. New York: Pergamon, 1982, p. 489–495.
 115. Goldberg, M. E. Studying the neurophysiology of behavior: methods for recording single neurons in awake behaving monkeys. In: Methods in Cellular Neurobiology, edited by J. L. Barker and J. F. McKelvy. New York: Wiley, 1983, vol. 3, chapt. 8, p. 225–248.
 116. Goldberg, M. E., and R. H. Wurtz. Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. J. Neurophysiol. 35: 560–574, 1972.
 117. Goldman, P. S., and W. J. H. Nauta. Intricately patterned prefrontal‐caudate projection in the rhesus monkey. J. Comp. Neurol. 171: 369–386, 1977.
 118. Goldman‐Rakic, P. S. Modular organization of prefrontal cortex. Trends Neurosci. 7: 419–424, 1984.
 119. Goldman‐Rakic, P. S. The frontal lobes: uncharted provinces of brain. Trends Neurosci. 7: 425–429, 1984.
 120. Gowers, W. Lectures on the Diagnosis of Diseases of the Brain. London: Churchill, 1887.
 121. Grünbaum, A. A. Aphasie und Motorik. Z. Gesamte Neurol. Psychiatr. 130: 385–412, 1930.
 122. Grunwald, A. P. A Braille‐reading machine. Sciences NY 154: 144–146, 1965.
 123. Haaxma, R., and H. G. J. M. Kuypers. Intrahemispheric cortical connections and visual guidance of hand and finger movements in the rhesus monkey. Brain 98: 239–260, 1975.
 124. Hagbarth, K.‐E. Microneurography: in vivo exploration of impulse traffic in human peripheral nerve fibers. In: Electromyography in CNS Disorders: Central EMG, edited by B. T. Shahani. Boston, MA: Butterworths, 1984, p. 19–28.
 125. Hagbarth, K.‐E., B. G. Wallin, and L. Löfstedt. Muscle spindle responses to stretch in normal and spastic subjects. Scand. J. Rehabil. Med. 5: 156–159, 1973.
 126. Halsband, U., and R. Passingham. The role of premotor and parietal cortex in the direction of action. Brain Res. 240: 368–372, 1982.
 127. Hartmann‐von Monakow, K., K. Akert, and H. Künzle. Projections of precentral and premotor cortex to red nucleus and other midbrain areas in Macaca fascicularis. Exp. Brain Res. 34: 91–105, 1979.
 128. Hashimoto, S., H. Gemba, and K. Sasaki. Analysis of slow cortical potentials preceding self‐paced hand movements in the monkey. Exp. Neurol. 65: 218–229, 1979.
 129. Head, H., and G. Holmes. Sensory disturbances from cerebral lesions. Brain 34: 102–254, 1911–1912.
 130. Hebb, D. O. Man's frontal lobes. Arch. Neurol. Psychiatry 54: 10–24, 1945.
 131. Hebb, D. O., and W. Penfield. Human behavior after extensive bilateral removal from the frontal lobes. Arch. Neurol. Psychiatry 44: 421–438, 1940.
 132. Hecaen, H. Clinical symptomology in right and left hemisphere lesions. In: Interhemispheric Relations and Cerebral Dominance, edited by V. B. Mountcastle. Baltimore, MD: Johns Hopkins Univ. Press, 1962, p. 215–243.
 133. Hécaen, H., and J. De Ajuriaguerra. Balint's syndrome (psychic paralysis of visual fixation) and its minor forms. Brain 77: 373–400, 1954.
 134. Hecaen, H., and M. L. Albert. Human Neuropsychology. New York: Wiley, 1978.
 135. Hécaen, H., L. Rouques, M. David, and M. B. Dell. Paralysie psychique du regard de Balint au cours de l'évolution d'une leuco‐encephalite type Balo. Rev. Neurol. Paris 83: 81–104, 1950.
 136. Heilman, K. M. Ideational apraxia—a re‐definition. Brain 96: 861–864, 1973.
 137. Heilman, K. The neuropsychological basis of skilled movement in man. In: Handbook of Behavioral Neurobiology: Social Behavior and Communication, edited by R. Vandenburgh. New York: Plenum, 1979, vol. 3, p. 447–461.
 138. Herman, R. The myotatic reflex. Clinico‐physiological aspects of spasticity and contracture. Brain 93: 273–312, 1970.
 139. Hines, M. On cerebral localization. Physiol. Rev. 9: 462–574, 1929.
 140. Hoffmann, H. Stereognostische Versuche, angesllellf zur Ermi Helangder Elemente des Gefahlssinnes, aus denen die Vorstellungen des korps vin Raume gebildet werden. Dtsch. Arch. Klin. Med. 36: 398–426, 1885.
 141. Holmes, G. Disturbance of visual orientation. Br. J. Ophthalmol. 2: 440–468, 506–516, 1918.
 142. Holmes, G., and G. Horrax. Disturbances of spatial orientation and visual attention with loss of stereoscopic vision. Arch. Neurol. Psychiatry 1: 385–407, 1919.
 143. Horsley, V. A note on the means of topographical diagnosis of focal disease affecting the so‐called motor region of the cerebral cortex. Am. J. Med. Sci. 93: 342–369, 1887.
 144. Horsley, V., and E. A. Schafer. A record of experiments upon the functions of the cerebral cortex. Philos. Trans. R. Soc. Land. B Biol. Sci. 179: 1–45, 1888.
 145. Hubel, D. H., and T. N. Wiesel. Shape and arrangement of columns in the cat's striate cortex. J. Physiol. Land. 165: 559–568, 1963.
 146. Hummelsheim, H., J. MacPherson, and M. Wiesendanger. How tight is the coupling of the supplementary motor area (SMA) with the spinal cord in monkeys (Abstract)? Experientia Basel 40: 595, 1984. (Union Schweiz. Ges. Exp. Biol. 16th Annu. Meet., Zurich.)
 147. Humphrey, D. R. On the cortical control of visually directed reaching: contributions by nonprecentral motor areas. In: Posture and Movement, edited by R. E. Talbott and D. R. Humphrey. New York: Raven, 1979, p. 51–112.
 148. Humphrey, D. R., R. Gold, and D. J. Reed. Sizes, laminar and topographic origins of cortical projections to the major divisions of the red nucleus in the monkey. J. Comp. Neurol. 225: 75–94, 1984.
 149. Hyvarinen, J. Posterior parietal lobe of the primate brain. Physiol. Rev. 62: 1060–1129, 1982.
 150. Ingvar, D. H. Patterns of brain activity revealed by measurements of regional cerebral blood flow. In: Brain Work, edited by D. H. Ingvar and N. A. Lassen. Copenhagen: Munksgaard, 1975, p. 397–413.
 151. Ingvar, D. H. L'idéogramme cerebral. Encéphale 3: 5–23, 1977.
 152. Ingvar, D. H. Functional landscapes of the brain pertaining to mentation. Hum. Neurobiol. 2: 1–3, 1983.
 153. Ingvar, D. H. Serial aspects of language and speech related to prefrontal cortical activity. A selective review. Hum. Neurobiol. 2: 177–189, 1983.
 154. Ingvar, D. H. Memory of the future. An essay on the temporal organization of conscious awareness. Hum. Neurobiol. 4: 127–136, 1985.
 155. Ingvar, D. H., and L. Philipson. Distribution of cerebral blood flow in the dominant hemisphere during motor ideation and motor performance. Ann. Neurol. 2: 230–237, 1977.
 156. Ingvar, D. H., and M. S. Schwartz. Blood flow patterns induced in the dominant hemisphere by speech and reading. Brain 97: 273–288, 1974.
 157. Itoh, M., S. Sasanuma, H. Hirose, H. Yoshioka, and T. Ushijima. Articulatory dynamics in a patient with apraxia of speech: x‐ray microbeam observation. Annu. Bull. RILP 12: 87–96, 1978.
 158. Itoh, M., S. Sasanuma, and T. Ushijima. Velar movements during speech in a patient with apraxia of speech. Brain Lang. 1: 42–61, 1979.
 159. Jackson, J. H. A study of convulsions. In: Selected Writings of J. H. Jackson, edited by J. Taylor. New York: Basic, 1958, p. 8–36.
 160. Jeannerod, M., F. Michel, and C. Prablanc. The control of hand movements in a case of hemianaesthesia following a parietal lesion. Brain 107: 899–920, 1984.
 161. Johansson, R. S., and G. Westling. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp. Brain Res. 56: 550–564, 1984.
 162. Johnson, K. O., and G. D. Lamb. Neural mechanisms of spatial tactile discrimination: neural patterns evoked by Braille‐like dot patterns in the monkey. J. Physiol. Lond. 310: 117–144, 1981.
 163. Jones, E. G., J. D. Coulter, and S. H. C. Hendry. Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. J. Comp. Neurol. 181: 291–348, 1978.
 164. Jones, E. G., and T. P. S. Powell. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793–820, 1970.
 165. Kalaska, J. F., R. Caminiti, and A. P. Georgopoulos. Cortical mechanisms related to the direction of two‐dimensional arm movements: relations in parietal area 5 and comparison with motor cortex. Exp. Brain Res. 51: 247–260, 1983.
 166. Karol, E. A., and D. N. Pandya. The distribution of the corpus callosum in the rhesus monkey. Brain 94: 471–486, 1971.
 167. Katz, D. Der Aufbau der Tastwelt. Z. Psychol. 11: 1–270, 1925.
 168. Katz, D. Gestaltpsychologie. Basel: Schwabe, 1948, p. 124–129.
 169. Keizer, K., and H. G. J. M. Kuypers. Distribution of corticospinal neurons with collaterals to lower brain stem reticular formation in cat. Exp. Brain Res. 54: 107–120, 1984.
 170. Kelso, J. A. S., and B. Tuller. Toward a theory of apractic syndromes. Brain Lang. 12: 224–245, 1981.
 171. Kennard, M. A., H. R. Viets, and J. F. Fulton. The syndrome of the premotor cortex in man: impairment in skilled movements, forced grasping, spasticity and vasomotor disturbance. Brain 57: 69–84, 1934.
 172. Kent, R. D., P. J. Carney, and L. R. Severeid. Velar movement and timing: evaluation of a model for binary control. J. Speech Hear. Res. 17: 470–488, 1974.
 173. Kerschensteiner, M., W. Hartje, B. Orgass, and K. Poeck. The recognition of simple and complex realistic figures in patients with unilateral brain lesion. Arch. Psychiatr. Ner‐venkr. 216: 188–200, 1972.
 174. Kerschensteiner, M., K. Poeck, and G. Lehmkuhl. Die Apraxien. Aktuel. Neurol. 2: 171–178, 1975.
 175. Kertesz, A., and P. Hooper. Praxis and language: the extent and variety of apraxia in aphasia. Neuropsychologia 20: 275–286, 1982.
 176. Kimura, D. Left‐hemisphere control of oral and brachial movements and their relation to communication. Philos. Trans. R. Soc. Lond. B Biol. Sci. 298: 135–149, 1982.
 177. Kimura, D., and Y. Archibald. Motor functions of the left hemisphere. Brain 97: 337–350, 1974.
 178. Klein, R. Zur Symptomatologie des Parietallappens. Z. Gesamte Neurol. Psychiatr. 135: 589–608, 1931.
 179. Kleist, K. Kortikale (innervatorische) Apraxie. Jahrb. Psychiatr. Neurol. 28: 46–112, 1907.
 180. Kleist, K. Der Gang und der gegenwartige Stand der Apraxieforschung. Ergeb. Neurol. Psychiatr. 1: 342–452, 1911.
 181. Kleist, K. Gehirnpathologie. Leipzig: Barth, 1934.
 182. Kolb, B., and B. Mllner. Performance of complex arm and facial movements after focal brain lesions. Neuropsychologia 19: 491–503, 1981.
 183. Kornhuber, D., and L. Deecke. Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 284: 1–17, 1965.
 184. Kornhuber, H. H. Motor functions of cerebellum and basal ganglia. Kybernetik 8: 157–162, 1971.
 185. Kots, Y. M. The Organization of Voluntary Movement. Neurophysiology Mechanisms. New York: Plenum, 1977.
 186. Kristeva, R., E. Keller, L. Deecke, and H. H. Kornhuber. Cerebral potentials preceding unilateral and simultaneous bilateral finger movements. Electroencephalogr. Clin. Neurophysiol. 47: 229–238, 1979.
 187. Krynauw, R. W. Infantile hemiplegia treated by removing one cerebral hemisphere. J. Neurol. Neurosurg. Psychiatry 13: 243–267, 1950.
 188. Kurtzberg, D., and H. G. Vaughan, Jr. Topographic analysis of human cortical potentials preceding self‐initiated and visually triggered saccades. Brain Res. 243: 1–9, 1982.
 189. Kuypers, H. G. J. M., and D. G. Lawrence. Cortical projections to the red nucleus and the brain stem in the rhesus monkey. Brain Res. 4: 151–188, 1967.
 190. Lamarre, Y., B. Bloulac, and B. Jacks. Activity of precentral neurones in conscious monkeys: effects of deafferentation and cerebellar ablation. J. Physiol. Paris 74: 253–264, 1978.
 191. Lamb, G. D. Tactile discrimination of textured surfaces: psychophysical performance measurements in humans. J. Physiol. Lond. 338: 551–565, 1983.
 192. Lamotte, R. H., and V. B. Mountcastle. Disorders in somesthesis following lesions of parietal lobe. J. Neurophysiol. 42: 400–419, 1979.
 193. Lance, J. W. The control of muscle tone, reflexes and movement: Robert Wartenberg lecture. Neurology 30: 1303–1313, 1980.
 194. Laplane, D., and J. D. Degos. Motor neglect. J. Neurol. Neurosurg. Psychiatry 46: 152–158, 1983.
 195. Laplane, D., J. Talairach, V. Meininger, J. Bancaud, and A. Bouchareine. Motor consequences of motor area ablations in man. J. Neurol. Sci. 31: 229–238, 1977.
 196. Lassen, N. A., D. H. Ingvar, and E. Skinhpj. Brain function and blood flow. Sci. Am. 239: 62–71, 1978.
 197. Lassen, N. A., and B. Larsen. Cortical activity in the left and right hemispheres during language‐related brain functions. Phonetica 37: 27–37, 1980.
 198. Lawrence, D. G., and H. G. J. M. Kuypers. The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain 91: 1–14, 1968.
 199. Lawrence, D. G. and H. G. J. M. Kuypers. The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain‐stem pathways. Brain 91: 15–36, 1968.
 200. Lederman, S. J., and M. M. Taylor. Fingertip force, surface geometry, and the perception of roughness by active touch. Percept. Psychophys. 12: 401–408, 1972.
 201. Lehman, R. A. W. Motor co‐ordination and hand preference after lesions of the visual pathways and corpus callosum. Brain 91: 525–538, 1968.
 202. Lehmkuhl, G., K. Poeck, and K. Willmes. Ideomotor apraxia and aphasia: an examination of types and manifestations of apraxic symptoms. Neuropsychologic 21: 199–212, 1983.
 203. Leist, A., H.‐J. Freund, and B. Cohen. Comparative characteristics of predictive eye‐hand tracking. Hum. Neurobiol. In press.
 204. Leyton, A. S. F., and C. S. Sherrington. Observations on the excitable cortex of the chimpanzee, orang‐outan and gorilla. Q. J. Exp. Physiol. XI: 135–221, 1917.
 205. Liberman, A. M., F. S. Cooper, D. R. Shankweiter, and M. Studert‐Kennedy. Perception of the speech code. Psychol. Rev. 74: 431–461, 1967.
 206. Liepmann, H. Das Krankheitsbild der Apraxie (“motorische Asymbolie”), auf Grand eines Falles von einseitiger Apraxie. Monatsschr. Psychiatr. Neurol. 8: 182–197, 1900.
 207. Liepmann, H. Drei Aufsatze aus dem Apraxiegebiet. Berlin: Karger, 1908.
 208. Liepmann, H. Apraxie. Brugsch's Ergebnisse der Gesamten Medizin. Berlin: Urban & Schwarzenberg, 1920, p. 518–543.
 209. Lund, J. S., J. L. De. C. Downer, and J. S. P. Lumley. Visual control of limb movement following section of optic chiasm and corpus callosum in the monkey. Cortex 6: 323–346, 1970.
 210. Luria, A. R. Higher Cortical Functions in Man. New York: Basic, 1966.
 211. Mackay, D. M. Elevation of visual threshold by displacement of retinal image. Nature Lond. 225: 90–92, 1970.
 212. Mann, L. Lahmungstypus bei der cerebralen Hemiplegie. Samml. Klin. Vortr. Nr. 132, 1895.
 213. Marrocco, R. T. Saccades induced by stimulation of the frontal eye fields: interaction with voluntary and reflexive eye movements. Brain Res. 146: 23–34, 1978.
 214. Mather, J. A., and C. Putchat. Parallel ocular and manual tracking responses to a continuously moving visual target. J. Motor Behav. 15: 29–38, 1983.
 215. McCloskey, D. I. Position sense after surgical disconnexion of the cerebral hemispheres in man. Brain 96: 269–276, 1973.
 216. McCloskey, D. I. Kinesthetic sensibility. Physiol. Rev. 58: 763–820, 1978.
 217. McCulloch, W. S., C. Graf, and H. W. Magoun. A cortico‐bulbo‐reticular pathway from area 4–s. J. Neurophysiol. 9: 127–132, 1946.
 218. McFie, J., M. F. Piercy, and O. C. Zangwill. Visual spatial agnosia associated with lesions of the right cerebral hemisphere. Brain 73: 167–190, 1950.
 219. J. M. McPherson, C. Marangoz, T. S. Miles, and M. Wiesendanger. Microstimulation of the supplementary motor area (SMA) in the awake monkey. Exp. Brain Res. 45: 410–416, 1982.
 220. Meinck, H.‐M., R. Benecke, and B. Conrad. Cutaneo‐muscular mechanisms in health and disease: possible implications on spasticity. In: Electromyography and Evoked Potentials, edited by A. Strappler and A. Weindl. Berlin: Springer‐Verlag, 1985, p. 75–83.
 221. Mesulam, M.‐M. A cortical network for directed attention and unilateral neglect. Ann. Neurol. 10: 309–325, 1981.
 222. Meyer, J., and D. Barron. Apraxia of gait: a clinical physiological study. Brain 83: 261–284, 1960.
 223. Meyer, J. C., and R. M. Herndon. Bilateral infarctions of the pyramidal tracts in man. Neurology 12: 637–642, 1962.
 224. Meynert, T. Klinische Vorksungen über Psychiatrie auf Wissenschaftlichen Grundlagen für Studierende, Aerzte, Juristen und Psychologen. Wien, Germany: Braumüller, 1890.
 225. Milner, B., and M. Petrides. Behavioural effects of frontal‐lobe lesions in man. Trends Neurosci. 7: 403–407, 1984.
 226. Moberg, E. Objective methods of determining functional value of sensibility in the hand. J. Bone Jt. Surg. 40: 454–466, 1958B.
 227. Moberg, E. Criticism and study of methods for examining sensibility in the hand. Neurology 12: 8–19, 1962.
 228. Moberg, E. Sensibilitätsprüfung. In: Dringliche Handchirurgie. 2. Auflage, edited by E. Moberg. Stuttgart: Thieme, 1968, p. 49–52.
 229. Moffett, A., G. Ettlinger, H. B. Morton, and M. F. Piercy. Tactile discrimination performance in the monkey: the effect of ablation of various subdivisions of posterior parietal cortex. Cortex 3: 59–96, 1967.
 230. Mohler, C. W., M. E. Goldberg, and R. H. Wurtz. Visual receptive fields of frontal eye neurons. Brain Res. 61: 385–389, 1973.
 231. Mohr, J. P. Lacunes. Stroke 13: 3–11, 1982.
 232. Moll, L., and H. G. J. M. Kuypers. Premotor cortical ablations in monkeys: contralateral changes in visually guided reaching behavior. Science Wash. DC 198: 317–319, 1977.
 233. Morley, J. W., A. W. Goodwin, and I. Darian‐Smith. Tactile discrimination of gratings. Exp. Brain Res. 49: 291–299, 1983.
 234. Mountcastle, V. B. Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol. 20: 408–434, 1957.
 235. Mountcastle, V. B., R. H. LaMotte, and G. Carli. Detection thresholds for stimuli in humans and monkeys: comparison with threshold events in mechanoreceptive afferent nerve fibers innervating the monkey hand. J. Neurophysiol. 35: 122–136, 1972.
 236. Mountcastle, V. B., J. C. Lynch, A. P. Georgopoulos, H. Sakata, and C. Acuña. Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J. Neurophysiol. 38: 871–908, 1975.
 237. Muakkassa, K. F., and P. L. Strick. Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized ‘premotor’ areas. Brain Res. Ill: 176–182, 1979.
 238. Murray, E. A., and J. D. Coulter. Organization of corticospinal neurons in the monkey. J. Comp. Neurol. 195: 339–365, 1981.
 239. Murray, E. A., and M. Mishkin. Relative contributions of SII and area 5 to tactile discrimination in monkeys. Behav. Brain Res. 11: 67–83, 1984.
 240. Nashner, L. M., and G. MCCollum. The organization of human postural movements: a formal basis and experimental synthesis. Behav. Brain Sci. 8: 135–172, 1985.
 241. Nashner, L. M., A. Shumway, and O. Marin. Stance posture control in selected groups of children with cerebral palsy: deficits in sensory integration and muscular coordination. Exp. Brain Res. 49: 393–409, 1983.
 242. Nashner, L. M., M. Woollacott, and G. Tuma. Organization of rapid responses to postural and locomotor‐like perturbations of standing man. Exp. Brain Res. 36: 463–476, 1979.
 243. Nathan, P. W. Facial apraxia and apraxic dysarthria. Brain 70: 449–478, 1947.
 244. Nathan, P. W., and M. C. Smith. The rubrospinal and central tegmental tracts in man. Brain 105: 223–269, 1982.
 245. Nauta, W. J. H. The problem of the frontal lobe: a reinter‐pretation. J. Psychiatry Res. 8: 167–187, 1971.
 246. Nielsen, J. M. Agnosia, Apraxia, Aphasia; Their Value in Cerebral Localization, (2nd ed.). New York: Hoeber, 1946.
 247. Nishizawa, Y., T. Skyhoj‐olsen, B. Larsen, and N. A. Lassen. Left‐right cortical asymmetries of regional cerebral blood flow during listening to words. J. Neurophysiol. 48: 458–466, 1982.
 248. Noorden, G. K. Von, and G. Mackensen. Pursuit movements of normal and amblyopic eyes. I. Physiology of pursuit movements. Am. J. Ophthalmol. 53: 325–336, 1962.
 249. Olesen, J. Contralateral focal increase of cerebral blood flow in man during arm work. Brain 94: 635–646, 1971.
 250. Orbach, J., and K. L. Chow. Differential effects of resections of somatic areas I and II in monkeys. J. Neurophysiol. 22: 195–203, 1959.
 251. Orgogozo, J. M., B. Larsen, P. E. Roland, and N. A. Lassen. Activation de l'aire motrice supplementaire au cours des mouvements volontaires chez l'homme. Rev. Neurol. Paris 135: 705–717, 1979.
 252. Paillard, J. Apraxia and the neurophysiology of motor control. Philos. Trans. R. Soc. Land. B Biol. Sci. 298: 111–134, 1982.
 253. Paillard, J. Introductory lecture: the functional labelling of neural codes. Exp. Brain Res. 7: 1–19, 1983.
 254. Paillard, J., F. Michel, and G. Stelmach. Localization and identification of cutaneous stimuli. Arch. Neurol. 41: 815–816, 1984.
 255. Pandya, D. N., and H. G. J. M. Kuypers. Cortico‐cortical connections in the rhesus monkey. Brain Res. 13: 13–36, 1969.
 256. Pandya, D. N., and B. Seltzer. Association areas of the cerebral cortex. Trends Neurosci. 5: 386–390, 1982.
 257. Pasik, P., and T. Pasik. Oculomotor functions in monkeys with lesions of the cerebrum and the superior colliculi. In: The Oculomotor System, edited by M. B. Bender. New York: Harper & Row, 1964, p. 40–80.
 258. Passingham, R. Information about movements in monkeys. (Macaca mulatta) with lesions of dorsal prefrontal cortex. Brain Res. 152: 313–328, 1978.
 259. Paterson, A., and O. L. Zangwill. Disorders of visual space perception associated with lesions of the right cerebral hemisphere. Brain 67: 331–358, 1944.
 260. Pellionisz, A., and R. Llinás. Tensorial approach to the geometry of brain function. Cerebellar coordination via a metric tensor. Neuroscience 5: 1125–1136, 1980.
 261. Penfield, W. Mechanisms of voluntary movement. Brain 77: 1–17, 1954.
 262. Penfield, W., and J. Evans. Functional defects produced by cerebral lobectomies. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 13: 352–377, 1934.
 263. Penfield, W., and T. Rasmussen. The Cerebral Cortex of Man. New York: Macmillan, 1950.
 264. Penfield, W., and K. Welch. The supplementary motor area in the cerebral cortex of man. Trans. Am. Neurol. Assoc. 74: 179–184, 1949.
 265. Petrovici, I. Apraxia of gait and of trunk movements. J. Neurol. Sci. 7: 229–243, 1968.
 266. Piercy, M., H. Hécaen, and J. de Ajuriaguerra. Constructional apraxia associated with unilateral cerebral lesion, left and right cases compared. Brain 83: 225–242, 1960.
 267. Poeck, K., and G. Lehmkuhl. Das Syndrom der ideatorischen Apraxie und seine Lokalisation. Nervenarzt 51: 217–225, 1980.
 268. Poetzl, O. Zum Apraxieproblem. Jahrb. Psychiatr. Neurol. 54: 133–149, 1937.
 269. Polit, A., and E. Bizzi. Processes controlling arm movements in monkeys. Science Wash. DC 201: 1235–1237, 1978.
 270. Poppelreuter, W. Die psychischen Schädigungen durch Kopfschuss im Kriege 1914/16. Band I. Die Störungen der niederen und höheren Sehleistungen durch Verktzungen des Okzipitalhirns. Leipzig, Germany: Voss, 1917.
 271. Preilowski, B. F. B. Possible contribution of the anterior forebrain commissures to bilateral motor coordination. Neu‐ropsychologia 10: 267–277, 1972.
 272. Preilowski, B. F. B. Bilateral motor interaction: perceptual‐motor performance of partial and complete split‐brain patients. In: Interhemispheric Connection, edited by K. J. Zülch, O. Creutzfeldt, and G. S. Galbraith. Berlin: Springer‐Verlag, 1975, vol. 2, 115–132.
 273. Pribram, K. H., L. Kruger, F. Robinson, and A. J. Ber‐Man. The effects of precentral lesions on the behavior of monkeys. J. Biol. Med. 28: 428–443, 1955.
 274. Pribram, K. H., M. Mishkin, H. E. Rosvold, and S. J. Kaplan. Effects on delayed‐response performance of lesions of dorsolateral and ventromedial frontal cortex of baboons. J. Comp. Psychol. 45: 565–575, 1952.
 275. Puchelt, F. Ueberpartielle Empfindungslähmung (Abstract). Med. Ann. Heidelberg 10: 485, 1844.
 276. Rasmussen, T., and W. Penfield. Movement of head and eyes from stimulation of human frontal cortex. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 27: 346–362, 1948.
 277. Revesz, G. Psychology and Art of the Blind. London: Longmans Green, 1950.
 278. Ridley, R. M., and G. Ettlinger. Impaired tactile learning and retention after removal of the second somatic sensory projection cortex (SII) in the monkey. Brain Res. 109: 656–660, 1976.
 279. Ridley, R. M., and G. Ettlinger. Further evidence of impaired tactile learning after removals of the second somatic sensory projection cortex (SII) in the monkey. Exp. Brain Res. 31: 475–488, 1978.
 280. Rizzolatti, G., M. Matelli, and G. Pavesi. Deficits in attention and movement following the removal of postarcuate (area 6) and prearcuate (area 8) cortex in macaque monkeys. Brain 43: 118–136, 1983.
 281. Robinson, D. A., and A. F. Fuchs. Eye movements evoked by stimulation of frontal eye fields. J. Neurophysiol. 32: 637–648, 1969.
 282. Roland, P. E. Cortical organization of voluntary behavior in man. Hum. Neurobiol. 4: 155–167, 1985.
 283. Roland, P. E., and B. Larsen. Focal increase of cerebral blood flow during stereognostic testing in man. Arch. Neurol. 33: 551–558, 1976.
 284. Roland, P. E., B. Larsen, N. A. Lassen, and E. Skinhøj. Supplementary motor area and other cortical areas in organization of voluntary movements in man. J. Neurophysiol. 43: 118–136, 1980.
 285. Roland, P. E., E. Meyer, T. Shibasaki, Y. L. Yamamoto, and C. J. Thompson. Regional cerebral blood flow changes in cortex and basal ganglia during voluntary movements in normal human volunteers. J. Neurophysiol. 48: 467–480, 1982.
 286. Roland, P. E., E. Skinhøj, N. A. Lassen, and B. Larsen. Different cortical areas in man in organization of voluntary movements in extrapersonal space. J. Neurophysiol. 43: 137–150, 1980.
 287. Rondot, P. Motor function. In: Handbook of Clinical Neurology, edited by P. J. Vinken and G. W. Bruyn. 1969, vol. 1, p. 147–168.
 288. Rondot, P., J. De Recondo, and J. L. Ribadeau Dumas. Visuomotor ataxia. Brain 100: 355–376, 1977.
 289. Rothwell, J. C., M. M. Traub, B. L. Day, J. A. Obeso, P. K. Thomas, and C. D. Marsden. Manual motor performance in a deafferented man. Brain 105: 515–542, 1982.
 290. Roy, E. A. Apraxia: a new look at an old syndrome. J. Hum. Mov. Stud. 4: 191–210, 1978.
 291. Ruch, T. C., and J. F. Fulton. Cortical localization of somatic sensibility: the effect of precentral, postcentral and posterior parietal lesions upon the performance of monkeys trained to discriminate weights. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 15: 289–330, 1935.
 292. Ruch, T. C., J. Fulton, and W. J. German. Sensory discrimination in monkey, chimpanzee and man after lesions of the parietal lobe. Arch. Neurol. Psychiatry 39: 919–938, 1938.
 293. Sanes, J. N., K.‐H. Mauritz, M. C. Dalakas, and E. V. Evarts. Motor control in humans with large‐fiber sensory neuropathy. Hum. NeurobM. 4: 101–114, 1985.
 294. Schell, G. R., and P. L. Strick. The origin of the thalamic inputs to the arcuate premotor and supplementary motor areas. J. Neurosci. 4: 539–560, 1984.
 295. Schiller, P. H. The effect of superior colliculus ablation on saccades elicited by cortical stimulation. Brain Res. 122: 154–156, 1977.
 296. Schiller, P. H., S. D. True, and J. L. Conway. Deficits in eye movements following frontal eye‐field and superior colliculus ablations. J. Neurophysiol. 44: 1175–1189, 1980.
 297. Semmes, J. A non‐tactual factor in astereognosia. Neuropsy‐chologia 3: 295–315, 1965.
 298. Semmes, J., and B. Turner. Effects of cortical lesions on somatosensory tasks. J. Invest. Dermatol. 69: 181–189, 1977.
 299. Semmes, J., S. Weinstein, L. Ghent, and H. L. Teuber. Somatosensory Changes after Penetrating Head Wounds in Man. Cambridge, MA: Harvard Univ. Press, 1960.
 300. Sessle, B. J., and M. Wiesendanger. Structural and functional definition of the motor cortex in the monkey. J. Physiol. Land. 323: 245–265, 1982.
 301. Sittig, O. ÜberApraxie. Berlin: Karger, 1931.
 302. Stein, J. Effects of parietal lobe cooling on manipulative behavior in the conscious monkey. In: Active Touch. The Mechanism of Recognition of Objects by Manipulation, edited by G. Gordon. New York: Pergamon, 1978, p. 79–90.
 303. Sternberg, S., R. L. Knoll, S. Monsell, and C. E. Wright. Control of Rapid Action Sequences in Speech and Typewriting. Murray Hill, NJ: AT & T Bell Lab., December 1983, p. 1–20. (Bell Lab. Tech. Mem.)
 304. Talairach, J., and J. Bancaud. The supplementary motor area in man. Int. J. Neurol. 5: 330–347, 1966.
 305. Talbot, W. H., I. Darian‐Smith, H. H. Kornhuber, and V. B. Mountcastle. The sense of flutter‐vibration: comparison of the human capacity with response patterns of mechan‐oreceptive afferents from the monkey hand. J. Neurophysiol. 31: 301–334, 1968.
 306. Tower, S. S. Pyramidal lesion in the monkey. Brain 63: 36–90, 1940.
 307. Toyoshima, K., and H. Sakai. Exact cortical extent of the origin of the corticospinal tract (CST) and the quantitative contribution to the CST in different cytoarchitectonic areas. A study with horseradish peroxidase in the monkey. J. Hirn‐forsch. 23: 257–269, 1982.
 308. Travis, A. M. Neurological deficiencies after ablation of the precentral motor area in Macaca mulatta. Brain 78: 11–173, 1955.
 309. Travis, A. M. Neurological deficiencies following supplementary motor area lesions in Macaca mulatta. Brain 78: 174–198, 1955.
 310. Travis, A. M., and C. N. Woolsey. Motor performance of monkeys after bilateral partial and total cerebral decortications. Am. J. Phys. Med. 35: 273–310, 1956.
 311. Valkenburg, C. T. Van. Zur Kenntnis der gestörten Tiefen‐wahrnehmung. Dtsch. Z. Nervenheilkd. 34: 322–337, 1908.
 312. Villaret, M., and M. Faure‐Beaulieu. Les anesthésies corticales à topographie atypique dans les traumatismes cran‐iens. Paris Med. 1: 514–518, 1916.
 313. Viviani, P., and C. Terzuolo. Space‐time invariance in learned motor skills. In: Tutorials in Motor Behavior, edited by G. E. Stelmach and J. Requin. Amsterdam: North‐Holland, 1980, p. 525–533.
 314. Vogt, C., and O. Vogt. Allgemeinere Ergebnisse unserer Hirnforschung. J. Psychol. Neurol. 25: 279–439, 1919.
 315. Wagman, I. H., H. P. Kriegerx, C. A. Papatheodorou, and M. B. Bender. Eye movements elicited by surface and depth stimulation of the frontal lobe of Macaca mulatta. J. Comp. Neurol. 117: 179–188, 1961.
 316. Wall, P. D. The sensory and motor role of impulses travelling in the dorsal columns towards cerebral cortex. Brain 93: 505–524, 1970.
 317. Walshe, F. M. R. On the “syndrome of the premotor cortex” (Fulton) and the definition of the terms “premotor” and “motor:” with a consideration of Jackson's views on the cortical representation of movements. Brain 58: 49–80, 1935.
 318. Weinrich, M., and S. P. Wise. The premotor cortex of the monkey. J. Neurosci. 2: 1329–1345, 1982.
 319. Weinrich, M., S. P. Wise, and K.‐H. Mauritz. A neuro‐physiological study of the premotor cortex in the rhesus monkey. Brain 107: 385–414, 1984.
 320. Werner, G., and V. B. Mountcastle. Neural activity in mechanoreceptive cutaneous afferents: stimulus‐response relations, Weber functions, and information transmission. J. Neurophysiol. 28: 359–397, 1965.
 321. Werner, G., and B. L. Whitsel. Functional organisation of the somatosensory cortex. In: Handbook of Sensory Physiology, edited by A. Iggo. Berlin: Springer‐Verlag, 1973, p. 621–700.
 322. Wernicke, C. Zur Kenntnis der zerebralen Hemiplegie. Berliner Klin. Wochenschr. 1889.
 323. Westphal, S. Über einen Fall von “amnestischer Aphasie,” Agraphie und Apraxie nebst eigenartigen Störungen des Er‐kennens und Vorstellens im Anschluß an eine eklamptische Psychose. Dtsch. Med. Wochenschr. 34: 2326–2327, 1908.
 324. Wiesendanger, M. Organization of secondary motor areas of cerebral cortex. In: Handbook of Physiology. The Nervous System. Motor Control, edited by V. B. Brooks. Bethesda, MD: Am. Physiol. Soc, 1981, sect. 1, vol. II, pt. 2, chapt. 24, p. 1121–1147.
 325. Wiesendanger, R., and M. Wiesendanger. The thalamic connections with medial area 6 (SMA) in the monkey (Macaca fascicularis). Exp. Brain Res. 59: 91–104, 1985.
 326. Wilson, M. Effects of circumscribed cortical lesions upon somesthetic and visual discrimination in the monkey. J. Comp. Physiol. Psychol. 50: 630–635, 1957.
 327. Wise, S. P. The primate premotor cortex: past, present and preparatory. Annu. Rev. Neurosci. 8: 1–19, 1985.
 328. Wise, S. P., M. Weinrich, and K.‐H. Mauritz. Motor aspects of cue‐related neuronal activity in premotor cortex of the rhesus monkey. Brain Res. 260: 301–305, 1983.
 329. Woolsey, C. N., T. C. Erickson, and W. E. Gilson. Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J. Neurosurg. 51: 476–506, 1979.
 330. Woolsey, C. N., P. H. Settlage, D. R. Meyer, W. Spencer, P. Hamuy, and A. M. Travis. Patterns of localization in precentral and “supplementary” motor areas and their relation to the concept of a premotor area. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 30: 238–264, 1952.
 331. Zaidel, D., and R. W. Sperry. Some long‐term motor effects of cerebral commissurotomy in man. Neuropsychologia 15: 193–204, 1976.
 332. Zangwill, O. L. Le problème de l'apraxie idéatoire. Rev. Neurol. Paris 102: 595–603, 1960.
 333. Zülch, K. J. Motor and sensory findings after hemispherec‐tomy: ipsi‐ or contralateral functions? Clin. Neurol. Neurosurg

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Hans‐Joachim Freund. Abnormalities of Motor Behavior After Cortical Lesions in Humans. Compr Physiol 2011, Supplement 5: Handbook of Physiology, The Nervous System, Higher Functions of the Brain: 763-810. First published in print 1987. doi: 10.1002/cphy.cp010519